fe18451c92710280f0bff4e27728eed4eb4821cb
[openocd.git] / src / flash / nor / kinetis.c
blobfe18451c92710280f0bff4e27728eed4eb4821cb
1 /***************************************************************************
2 * Copyright (C) 2011 by Mathias Kuester *
3 * kesmtp@freenet.de *
4 * *
5 * Copyright (C) 2011 sleep(5) ltd *
6 * tomas@sleepfive.com *
7 * *
8 * Copyright (C) 2012 by Christopher D. Kilgour *
9 * techie at whiterocker.com *
10 * *
11 * This program is free software; you can redistribute it and/or modify *
12 * it under the terms of the GNU General Public License as published by *
13 * the Free Software Foundation; either version 2 of the License, or *
14 * (at your option) any later version. *
15 * *
16 * This program is distributed in the hope that it will be useful, *
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
19 * GNU General Public License for more details. *
20 * *
21 * You should have received a copy of the GNU General Public License *
22 * along with this program; if not, write to the *
23 * Free Software Foundation, Inc., *
24 * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
25 ***************************************************************************/
27 #ifdef HAVE_CONFIG_H
28 #include "config.h"
29 #endif
31 #include "imp.h"
32 #include "helper/binarybuffer.h"
35 * Implementation Notes
37 * The persistent memories in the Kinetis chip families K10 through
38 * K70 are all manipulated with the Flash Memory Module. Some
39 * variants call this module the FTFE, others call it the FTFL. To
40 * indicate that both are considered here, we use FTFX.
42 * Within the module, according to the chip variant, the persistent
43 * memory is divided into what Freescale terms Program Flash, FlexNVM,
44 * and FlexRAM. All chip variants have Program Flash. Some chip
45 * variants also have FlexNVM and FlexRAM, which always appear
46 * together.
48 * A given Kinetis chip may have 2 or 4 blocks of flash. Here we map
49 * each block to a separate bank. Each block size varies by chip and
50 * may be determined by the read-only SIM_FCFG1 register. The sector
51 * size within each bank/block varies by the chip granularity as
52 * described below.
54 * Kinetis offers four different of flash granularities applicable
55 * across the chip families. The granularity is apparently reflected
56 * by at least the reference manual suffix. For example, for chip
57 * MK60FN1M0VLQ12, reference manual K60P144M150SF3RM ends in "SF3RM",
58 * where the "3" indicates there are four flash blocks with 4kiB
59 * sectors. All possible granularities are indicated below.
61 * The first half of the flash (1 or 2 blocks, depending on the
62 * granularity) is always Program Flash and always starts at address
63 * 0x00000000. The "PFLSH" flag, bit 23 of the read-only SIM_FCFG2
64 * register, determines whether the second half of the flash is also
65 * Program Flash or FlexNVM+FlexRAM. When PFLSH is set, the second
66 * half of flash is Program Flash and is contiguous in the memory map
67 * from the first half. When PFLSH is clear, the second half of flash
68 * is FlexNVM and always starts at address 0x10000000. FlexRAM, which
69 * is also present when PFLSH is clear, always starts at address
70 * 0x14000000.
72 * The Flash Memory Module provides a register set where flash
73 * commands are loaded to perform flash operations like erase and
74 * program. Different commands are available depending on whether
75 * Program Flash or FlexNVM/FlexRAM is being manipulated. Although
76 * the commands used are quite consistent between flash blocks, the
77 * parameters they accept differ according to the flash granularity.
78 * Some Kinetis chips have different granularity between Program Flash
79 * and FlexNVM/FlexRAM, so flash command arguments may differ between
80 * blocks in the same chip.
82 * Although not documented as such by Freescale, it appears that bits
83 * 8:7 of the read-only SIM_SDID register reflect the granularity
84 * settings 0..3, so sector sizes and block counts are applicable
85 * according to the following table.
87 const struct {
88 unsigned pflash_sector_size_bytes;
89 unsigned nvm_sector_size_bytes;
90 unsigned num_blocks;
91 } kinetis_flash_params[4] = {
92 { 1<<10, 1<<10, 2 },
93 { 2<<10, 1<<10, 2 },
94 { 2<<10, 2<<10, 2 },
95 { 4<<10, 4<<10, 4 }
98 /* Addressess */
99 #define FLEXRAM 0x14000000
100 #define FTFx_FSTAT 0x40020000
101 #define FTFx_FCNFG 0x40020001
102 #define FTFx_FCCOB3 0x40020004
103 #define FTFx_FPROT3 0x40020010
104 #define SIM_SDID 0x40048024
105 #define SIM_FCFG1 0x4004804c
106 #define SIM_FCFG2 0x40048050
108 /* Commands */
109 #define FTFx_CMD_BLOCKSTAT 0x00
110 #define FTFx_CMD_SECTSTAT 0x01
111 #define FTFx_CMD_LWORDPROG 0x06
112 #define FTFx_CMD_SECTERASE 0x09
113 #define FTFx_CMD_SECTWRITE 0x0b
114 #define FTFx_CMD_SETFLEXRAM 0x81
116 struct kinetis_flash_bank {
117 unsigned granularity;
118 unsigned bank_ordinal;
119 uint32_t sector_size;
120 uint32_t protection_size;
122 uint32_t sim_sdid;
123 uint32_t sim_fcfg1;
124 uint32_t sim_fcfg2;
126 enum {
127 FC_AUTO = 0,
128 FC_PFLASH,
129 FC_FLEX_NVM,
130 FC_FLEX_RAM,
131 } flash_class;
134 FLASH_BANK_COMMAND_HANDLER(kinetis_flash_bank_command)
136 struct kinetis_flash_bank *bank_info;
138 if (CMD_ARGC < 6)
139 return ERROR_COMMAND_SYNTAX_ERROR;
141 LOG_INFO("add flash_bank kinetis %s", bank->name);
143 bank_info = malloc(sizeof(struct kinetis_flash_bank));
145 memset(bank_info, 0, sizeof(struct kinetis_flash_bank));
147 bank->driver_priv = bank_info;
149 return ERROR_OK;
152 static int kinetis_protect(struct flash_bank *bank, int set, int first,
153 int last)
155 LOG_WARNING("kinetis_protect not supported yet");
156 /* FIXME: TODO */
158 if (bank->target->state != TARGET_HALTED) {
159 LOG_ERROR("Target not halted");
160 return ERROR_TARGET_NOT_HALTED;
163 return ERROR_FLASH_BANK_INVALID;
166 static int kinetis_protect_check(struct flash_bank *bank)
168 struct kinetis_flash_bank *kinfo = bank->driver_priv;
170 if (bank->target->state != TARGET_HALTED) {
171 LOG_ERROR("Target not halted");
172 return ERROR_TARGET_NOT_HALTED;
175 if (kinfo->flash_class == FC_PFLASH) {
176 int result;
177 uint8_t buffer[4];
178 uint32_t fprot, psec;
179 int i, b;
181 /* read protection register */
182 result = target_read_memory(bank->target, FTFx_FPROT3, 1, 4, buffer);
184 if (result != ERROR_OK)
185 return result;
187 fprot = target_buffer_get_u32(bank->target, buffer);
190 * Every bit protects 1/32 of the full flash (not necessarily
191 * just this bank), but we enforce the bank ordinals for
192 * PFlash to start at zero.
194 b = kinfo->bank_ordinal * (bank->size / kinfo->protection_size);
195 for (psec = 0, i = 0; i < bank->num_sectors; i++) {
196 if ((fprot >> b) & 1)
197 bank->sectors[i].is_protected = 0;
198 else
199 bank->sectors[i].is_protected = 1;
201 psec += bank->sectors[i].size;
203 if (psec >= kinfo->protection_size) {
204 psec = 0;
205 b++;
208 } else {
209 LOG_ERROR("Protection checks for FlexNVM not yet supported");
210 return ERROR_FLASH_BANK_INVALID;
213 return ERROR_OK;
216 static int kinetis_ftfx_command(struct flash_bank *bank, uint8_t fcmd, uint32_t faddr,
217 uint8_t fccob4, uint8_t fccob5, uint8_t fccob6, uint8_t fccob7,
218 uint8_t fccob8, uint8_t fccob9, uint8_t fccoba, uint8_t fccobb,
219 uint8_t *ftfx_fstat)
221 uint8_t command[12] = {faddr & 0xff, (faddr >> 8) & 0xff, (faddr >> 16) & 0xff, fcmd,
222 fccob7, fccob6, fccob5, fccob4,
223 fccobb, fccoba, fccob9, fccob8};
224 int result, i;
225 uint8_t buffer;
227 /* wait for done */
228 for (i = 0; i < 50; i++) {
229 result =
230 target_read_memory(bank->target, FTFx_FSTAT, 1, 1, &buffer);
232 if (result != ERROR_OK)
233 return result;
235 if (buffer & 0x80)
236 break;
238 buffer = 0x00;
241 if (buffer != 0x80) {
242 /* reset error flags */
243 buffer = 0x30;
244 result =
245 target_write_memory(bank->target, FTFx_FSTAT, 1, 1, &buffer);
246 if (result != ERROR_OK)
247 return result;
250 result = target_write_memory(bank->target, FTFx_FCCOB3, 4, 3, command);
252 if (result != ERROR_OK)
253 return result;
255 /* start command */
256 buffer = 0x80;
257 result = target_write_memory(bank->target, FTFx_FSTAT, 1, 1, &buffer);
258 if (result != ERROR_OK)
259 return result;
261 /* wait for done */
262 for (i = 0; i < 50; i++) {
263 result =
264 target_read_memory(bank->target, FTFx_FSTAT, 1, 1, ftfx_fstat);
266 if (result != ERROR_OK)
267 return result;
269 if (*ftfx_fstat & 0x80)
270 break;
273 if ((*ftfx_fstat & 0xf0) != 0x80) {
274 LOG_ERROR
275 ("ftfx command failed FSTAT: %02X FCCOB: %02X%02X%02X%02X %02X%02X%02X%02X %02X%02X%02X%02X",
276 *ftfx_fstat, command[3], command[2], command[1], command[0],
277 command[7], command[6], command[5], command[4],
278 command[11], command[10], command[9], command[8]);
279 return ERROR_FLASH_OPERATION_FAILED;
282 return ERROR_OK;
285 static int kinetis_erase(struct flash_bank *bank, int first, int last)
287 int result, i;
289 if (bank->target->state != TARGET_HALTED) {
290 LOG_ERROR("Target not halted");
291 return ERROR_TARGET_NOT_HALTED;
294 if ((first > bank->num_sectors) || (last > bank->num_sectors))
295 return ERROR_FLASH_OPERATION_FAILED;
298 * FIXME: TODO: use the 'Erase Flash Block' command if the
299 * requested erase is PFlash or NVM and encompasses the entire
300 * block. Should be quicker.
302 for (i = first; i <= last; i++) {
303 uint8_t ftfx_fstat;
304 /* set command and sector address */
305 result = kinetis_ftfx_command(bank, FTFx_CMD_SECTERASE, bank->base + bank->sectors[i].offset,
306 0, 0, 0, 0, 0, 0, 0, 0, &ftfx_fstat);
308 if (result != ERROR_OK) {
309 LOG_WARNING("erase sector %d failed", i);
310 return ERROR_FLASH_OPERATION_FAILED;
313 bank->sectors[i].is_erased = 1;
316 if (first == 0) {
317 LOG_WARNING
318 ("flash configuration field erased, please reset the device");
321 return ERROR_OK;
324 static int kinetis_write(struct flash_bank *bank, uint8_t *buffer,
325 uint32_t offset, uint32_t count)
327 unsigned int i, result, fallback = 0;
328 uint8_t buf[8];
329 uint32_t wc;
330 struct kinetis_flash_bank *kinfo = bank->driver_priv;
332 if (bank->target->state != TARGET_HALTED) {
333 LOG_ERROR("Target not halted");
334 return ERROR_TARGET_NOT_HALTED;
337 if (kinfo->flash_class == FC_FLEX_NVM) {
338 uint8_t ftfx_fstat;
340 LOG_DEBUG("flash write into FlexNVM @%08X", offset);
342 /* make flex ram available */
343 result = kinetis_ftfx_command(bank, FTFx_CMD_SETFLEXRAM, 0x00ff0000, 0, 0, 0, 0, 0, 0, 0, 0, &ftfx_fstat);
345 if (result != ERROR_OK)
346 return ERROR_FLASH_OPERATION_FAILED;
348 /* check if ram ready */
349 result = target_read_memory(bank->target, FTFx_FCNFG, 1, 1, buf);
351 if (result != ERROR_OK)
352 return result;
354 if (!(buf[0] & (1 << 1))) {
355 /* fallback to longword write */
356 fallback = 1;
358 LOG_WARNING("ram not ready, fallback to slow longword write (FCNFG: %02X)",
359 buf[0]);
361 } else {
362 LOG_DEBUG("flash write into PFLASH @08%X", offset);
366 /* program section command */
367 if (fallback == 0) {
369 * Kinetis uses different terms for the granularity of
370 * sector writes, e.g. "phrase" or "128 bits". We use
371 * the generic term "chunk". The largest possible
372 * Kinetis "chunk" is 16 bytes (128 bits).
374 unsigned prog_section_chunk_bytes = kinfo->sector_size >> 8;
375 /* assume the NVM sector size is half the FlexRAM size */
376 unsigned prog_size_bytes = MIN(kinfo->sector_size,
377 kinetis_flash_params[kinfo->granularity].nvm_sector_size_bytes);
378 for (i = 0; i < count; i += prog_size_bytes) {
379 uint8_t residual_buffer[16];
380 uint8_t ftfx_fstat;
381 uint32_t section_count = prog_size_bytes / prog_section_chunk_bytes;
382 uint32_t residual_wc = 0;
385 * Assume the word count covers an entire
386 * sector.
388 wc = prog_size_bytes / 4;
391 * If bytes to be programmed are less than the
392 * full sector, then determine the number of
393 * full-words to program, and put together the
394 * residual buffer so that a full "section"
395 * may always be programmed.
397 if ((count - i) < prog_size_bytes) {
398 /* number of bytes to program beyond full section */
399 unsigned residual_bc = (count-i) % prog_section_chunk_bytes;
401 /* number of complete words to copy directly from buffer */
402 wc = (count - i) / 4;
404 /* number of total sections to write, including residual */
405 section_count = DIV_ROUND_UP((count-i), prog_section_chunk_bytes);
407 /* any residual bytes delivers a whole residual section */
408 residual_wc = (residual_bc ? prog_section_chunk_bytes : 0)/4;
410 /* clear residual buffer then populate residual bytes */
411 (void) memset(residual_buffer, 0xff, prog_section_chunk_bytes);
412 (void) memcpy(residual_buffer, &buffer[i+4*wc], residual_bc);
415 LOG_DEBUG("write section @ %08X with length %d bytes",
416 offset + i, wc*4);
418 /* write data to flexram as whole-words */
419 result = target_write_memory(bank->target, FLEXRAM, 4, wc,
420 buffer + i);
422 if (result != ERROR_OK) {
423 LOG_ERROR("target_write_memory failed");
424 return result;
427 /* write the residual words to the flexram */
428 if (residual_wc) {
429 result = target_write_memory(bank->target,
430 FLEXRAM+4*wc,
431 4, residual_wc,
432 residual_buffer);
434 if (result != ERROR_OK) {
435 LOG_ERROR("target_write_memory failed");
436 return result;
440 /* execute section-write command */
441 result = kinetis_ftfx_command(bank, FTFx_CMD_SECTWRITE, bank->base + offset + i,
442 section_count>>8, section_count, 0, 0,
443 0, 0, 0, 0, &ftfx_fstat);
445 if (result != ERROR_OK)
446 return ERROR_FLASH_OPERATION_FAILED;
449 /* program longword command, not supported in "SF3" devices */
450 else if (kinfo->granularity != 3) {
451 for (i = 0; i < count; i += 4) {
452 uint8_t ftfx_fstat;
454 LOG_DEBUG("write longword @ %08X", offset + i);
456 uint8_t padding[4] = {0xff, 0xff, 0xff, 0xff};
457 memcpy(padding, buffer + i, MIN(4, count-i));
458 result = kinetis_ftfx_command(bank, FTFx_CMD_LWORDPROG, bank->base + offset + i,
459 padding[3], padding[2], padding[1], padding[0],
460 0, 0, 0, 0, &ftfx_fstat);
462 if (result != ERROR_OK)
463 return ERROR_FLASH_OPERATION_FAILED;
465 } else {
466 LOG_ERROR("Flash write strategy not implemented");
467 return ERROR_FLASH_OPERATION_FAILED;
470 return ERROR_OK;
473 static int kinetis_read_part_info(struct flash_bank *bank)
475 int result, i;
476 uint8_t buf[4];
477 uint32_t offset = 0;
478 uint8_t fcfg1_nvmsize, fcfg1_pfsize, fcfg1_eesize, fcfg2_pflsh;
479 uint32_t nvm_size = 0, pf_size = 0, ee_size = 0;
480 unsigned granularity, num_blocks = 0, num_pflash_blocks = 0, num_nvm_blocks = 0,
481 first_nvm_bank = 0, reassign = 0;
482 struct kinetis_flash_bank *kinfo = bank->driver_priv;
484 result = target_read_memory(bank->target, SIM_SDID, 1, 4, buf);
485 if (result != ERROR_OK)
486 return result;
487 kinfo->sim_sdid = target_buffer_get_u32(bank->target, buf);
488 granularity = (kinfo->sim_sdid >> 7) & 0x03;
490 result = target_read_memory(bank->target, SIM_FCFG1, 1, 4, buf);
491 if (result != ERROR_OK)
492 return result;
493 kinfo->sim_fcfg1 = target_buffer_get_u32(bank->target, buf);
495 result = target_read_memory(bank->target, SIM_FCFG2, 1, 4, buf);
496 if (result != ERROR_OK)
497 return result;
498 kinfo->sim_fcfg2 = target_buffer_get_u32(bank->target, buf);
499 fcfg2_pflsh = (kinfo->sim_fcfg2 >> 23) & 0x01;
501 LOG_DEBUG("SDID: %08X FCFG1: %08X FCFG2: %08X", kinfo->sim_sdid,
502 kinfo->sim_fcfg1, kinfo->sim_fcfg2);
504 fcfg1_nvmsize = (uint8_t)((kinfo->sim_fcfg1 >> 28) & 0x0f);
505 fcfg1_pfsize = (uint8_t)((kinfo->sim_fcfg1 >> 24) & 0x0f);
506 fcfg1_eesize = (uint8_t)((kinfo->sim_fcfg1 >> 16) & 0x0f);
508 /* when the PFLSH bit is set, there is no FlexNVM/FlexRAM */
509 if (!fcfg2_pflsh) {
510 switch (fcfg1_nvmsize) {
511 case 0x03:
512 case 0x07:
513 case 0x09:
514 case 0x0b:
515 nvm_size = 1 << (14 + (fcfg1_nvmsize >> 1));
516 break;
517 case 0x0f:
518 if (granularity == 3)
519 nvm_size = 512<<10;
520 else
521 nvm_size = 256<<10;
522 break;
523 default:
524 nvm_size = 0;
525 break;
528 switch (fcfg1_eesize) {
529 case 0x00:
530 case 0x01:
531 case 0x02:
532 case 0x03:
533 case 0x04:
534 case 0x05:
535 case 0x06:
536 case 0x07:
537 case 0x08:
538 case 0x09:
539 ee_size = (16 << (10 - fcfg1_eesize));
540 break;
541 default:
542 ee_size = 0;
543 break;
547 switch (fcfg1_pfsize) {
548 case 0x03:
549 case 0x05:
550 case 0x07:
551 case 0x09:
552 case 0x0b:
553 case 0x0d:
554 pf_size = 1 << (14 + (fcfg1_pfsize >> 1));
555 break;
556 case 0x0f:
557 if (granularity == 3)
558 pf_size = 1024<<10;
559 else if (fcfg2_pflsh)
560 pf_size = 512<<10;
561 else
562 pf_size = 256<<10;
563 break;
564 default:
565 pf_size = 0;
566 break;
569 LOG_DEBUG("FlexNVM: %d PFlash: %d FlexRAM: %d PFLSH: %d",
570 nvm_size, pf_size, ee_size, fcfg2_pflsh);
572 num_blocks = kinetis_flash_params[granularity].num_blocks;
573 num_pflash_blocks = num_blocks / (2 - fcfg2_pflsh);
574 first_nvm_bank = num_pflash_blocks;
575 num_nvm_blocks = num_blocks - num_pflash_blocks;
577 LOG_DEBUG("%d blocks total: %d PFlash, %d FlexNVM",
578 num_blocks, num_pflash_blocks, num_nvm_blocks);
581 * If the flash class is already assigned, verify the
582 * parameters.
584 if (kinfo->flash_class != FC_AUTO) {
585 if (kinfo->bank_ordinal != (unsigned) bank->bank_number) {
586 LOG_WARNING("Flash ordinal/bank number mismatch");
587 reassign = 1;
588 } else if (kinfo->granularity != granularity) {
589 LOG_WARNING("Flash granularity mismatch");
590 reassign = 1;
591 } else {
592 switch (kinfo->flash_class) {
593 case FC_PFLASH:
594 if (kinfo->bank_ordinal >= first_nvm_bank) {
595 LOG_WARNING("Class mismatch, bank %d is not PFlash",
596 bank->bank_number);
597 reassign = 1;
598 } else if (bank->size != (pf_size / num_pflash_blocks)) {
599 LOG_WARNING("PFlash size mismatch");
600 reassign = 1;
601 } else if (bank->base !=
602 (0x00000000 + bank->size * kinfo->bank_ordinal)) {
603 LOG_WARNING("PFlash address range mismatch");
604 reassign = 1;
605 } else if (kinfo->sector_size !=
606 kinetis_flash_params[granularity].pflash_sector_size_bytes) {
607 LOG_WARNING("PFlash sector size mismatch");
608 reassign = 1;
609 } else {
610 LOG_DEBUG("PFlash bank %d already configured okay",
611 kinfo->bank_ordinal);
613 break;
614 case FC_FLEX_NVM:
615 if ((kinfo->bank_ordinal >= num_blocks) ||
616 (kinfo->bank_ordinal < first_nvm_bank)) {
617 LOG_WARNING("Class mismatch, bank %d is not FlexNVM",
618 bank->bank_number);
619 reassign = 1;
620 } else if (bank->size != (nvm_size / num_nvm_blocks)) {
621 LOG_WARNING("FlexNVM size mismatch");
622 reassign = 1;
623 } else if (bank->base !=
624 (0x10000000 + bank->size * kinfo->bank_ordinal)) {
625 LOG_WARNING("FlexNVM address range mismatch");
626 reassign = 1;
627 } else if (kinfo->sector_size !=
628 kinetis_flash_params[granularity].nvm_sector_size_bytes) {
629 LOG_WARNING("FlexNVM sector size mismatch");
630 reassign = 1;
631 } else {
632 LOG_DEBUG("FlexNVM bank %d already configured okay",
633 kinfo->bank_ordinal);
635 break;
636 case FC_FLEX_RAM:
637 if (kinfo->bank_ordinal != num_blocks) {
638 LOG_WARNING("Class mismatch, bank %d is not FlexRAM",
639 bank->bank_number);
640 reassign = 1;
641 } else if (bank->size != ee_size) {
642 LOG_WARNING("FlexRAM size mismatch");
643 reassign = 1;
644 } else if (bank->base != FLEXRAM) {
645 LOG_WARNING("FlexRAM address mismatch");
646 reassign = 1;
647 } else if (kinfo->sector_size !=
648 kinetis_flash_params[granularity].nvm_sector_size_bytes) {
649 LOG_WARNING("FlexRAM sector size mismatch");
650 reassign = 1;
651 } else {
652 LOG_DEBUG("FlexRAM bank %d already configured okay",
653 kinfo->bank_ordinal);
655 break;
657 default:
658 LOG_WARNING("Unknown or inconsistent flash class");
659 reassign = 1;
660 break;
663 } else {
664 LOG_INFO("Probing flash info for bank %d", bank->bank_number);
665 reassign = 1;
668 if (!reassign)
669 return ERROR_OK;
671 kinfo->granularity = granularity;
673 if ((unsigned)bank->bank_number < num_pflash_blocks) {
674 /* pflash, banks start at address zero */
675 kinfo->flash_class = FC_PFLASH;
676 bank->size = (pf_size / num_pflash_blocks);
677 bank->base = 0x00000000 + bank->size * bank->bank_number;
678 kinfo->sector_size = kinetis_flash_params[granularity].pflash_sector_size_bytes;
679 kinfo->protection_size = pf_size / 32;
680 } else if ((unsigned)bank->bank_number < num_blocks) {
681 /* nvm, banks start at address 0x10000000 */
682 kinfo->flash_class = FC_FLEX_NVM;
683 bank->size = (nvm_size / num_nvm_blocks);
684 bank->base = 0x10000000 + bank->size * (bank->bank_number - first_nvm_bank);
685 kinfo->sector_size = kinetis_flash_params[granularity].nvm_sector_size_bytes;
686 kinfo->protection_size = 0; /* FIXME: TODO: depends on DEPART bits, chip */
687 } else if ((unsigned)bank->bank_number == num_blocks) {
688 LOG_ERROR("FlexRAM support not yet implemented");
689 return ERROR_FLASH_OPER_UNSUPPORTED;
690 } else {
691 LOG_ERROR("Cannot determine parameters for bank %d, only %d banks on device",
692 bank->bank_number, num_blocks);
693 return ERROR_FLASH_BANK_INVALID;
696 if (bank->sectors) {
697 free(bank->sectors);
698 bank->sectors = NULL;
701 bank->num_sectors = bank->size / kinfo->sector_size;
702 assert(bank->num_sectors > 0);
703 bank->sectors = malloc(sizeof(struct flash_sector) * bank->num_sectors);
705 for (i = 0; i < bank->num_sectors; i++) {
706 bank->sectors[i].offset = offset;
707 bank->sectors[i].size = kinfo->sector_size;
708 offset += kinfo->sector_size;
709 bank->sectors[i].is_erased = -1;
710 bank->sectors[i].is_protected = 1;
713 return ERROR_OK;
716 static int kinetis_probe(struct flash_bank *bank)
718 if (bank->target->state != TARGET_HALTED) {
719 LOG_WARNING("Cannot communicate... target not halted.");
720 return ERROR_TARGET_NOT_HALTED;
723 return kinetis_read_part_info(bank);
726 static int kinetis_auto_probe(struct flash_bank *bank)
728 struct kinetis_flash_bank *kinfo = bank->driver_priv;
730 if (kinfo->sim_sdid)
731 return ERROR_OK;
733 return kinetis_probe(bank);
736 static int kinetis_info(struct flash_bank *bank, char *buf, int buf_size)
738 const char *bank_class_names[] = {
739 "(ANY)", "PFlash", "FlexNVM", "FlexRAM"
742 struct kinetis_flash_bank *kinfo = bank->driver_priv;
744 (void) snprintf(buf, buf_size,
745 "%s driver for %s flash bank %s at 0x%8.8" PRIx32 "",
746 bank->driver->name, bank_class_names[kinfo->flash_class],
747 bank->name, bank->base);
749 return ERROR_OK;
752 static int kinetis_blank_check(struct flash_bank *bank)
754 struct kinetis_flash_bank *kinfo = bank->driver_priv;
756 if (bank->target->state != TARGET_HALTED) {
757 LOG_ERROR("Target not halted");
758 return ERROR_TARGET_NOT_HALTED;
761 if (kinfo->flash_class == FC_PFLASH) {
762 int result;
763 uint8_t ftfx_fstat;
765 /* check if whole bank is blank */
766 result = kinetis_ftfx_command(bank, FTFx_CMD_BLOCKSTAT, bank->base, 0, 0, 0, 0, 0, 0, 0, 0, &ftfx_fstat);
768 if (result != ERROR_OK)
769 return result;
771 if (ftfx_fstat & 0x01) {
772 /* the whole bank is not erased, check sector-by-sector */
773 int i;
774 for (i = 0; i < bank->num_sectors; i++) {
775 /* normal margin */
776 result = kinetis_ftfx_command(bank, FTFx_CMD_SECTSTAT, bank->base + bank->sectors[i].offset,
777 1, 0, 0, 0, 0, 0, 0, 0, &ftfx_fstat);
779 if (result == ERROR_OK) {
780 bank->sectors[i].is_erased = !(ftfx_fstat & 0x01);
781 } else {
782 LOG_DEBUG("Ignoring errored PFlash sector blank-check");
783 bank->sectors[i].is_erased = -1;
786 } else {
787 /* the whole bank is erased, update all sectors */
788 int i;
789 for (i = 0; i < bank->num_sectors; i++)
790 bank->sectors[i].is_erased = 1;
792 } else {
793 LOG_WARNING("kinetis_blank_check not supported yet for FlexNVM");
794 return ERROR_FLASH_OPERATION_FAILED;
797 return ERROR_OK;
800 static int kinetis_flash_read(struct flash_bank *bank,
801 uint8_t *buffer, uint32_t offset, uint32_t count)
803 LOG_WARNING("kinetis_flash_read not supported yet");
805 if (bank->target->state != TARGET_HALTED) {
806 LOG_ERROR("Target not halted");
807 return ERROR_TARGET_NOT_HALTED;
810 return ERROR_FLASH_OPERATION_FAILED;
813 struct flash_driver kinetis_flash = {
814 .name = "kinetis",
815 .flash_bank_command = kinetis_flash_bank_command,
816 .erase = kinetis_erase,
817 .protect = kinetis_protect,
818 .write = kinetis_write,
819 .read = kinetis_flash_read,
820 .probe = kinetis_probe,
821 .auto_probe = kinetis_auto_probe,
822 .erase_check = kinetis_blank_check,
823 .protect_check = kinetis_protect_check,
824 .info = kinetis_info,