stm32f2x: Fix sector numbering for dual bank flash erase
[openocd.git] / src / flash / nor / stm32f2x.c
bloba7aba2b3bd98190d1b13cb0a08b46b89d836a9b9
1 /***************************************************************************
2 * Copyright (C) 2005 by Dominic Rath *
3 * Dominic.Rath@gmx.de *
4 * *
5 * Copyright (C) 2008 by Spencer Oliver *
6 * spen@spen-soft.co.uk *
7 * *
8 * Copyright (C) 2011 Øyvind Harboe *
9 * oyvind.harboe@zylin.com *
10 * *
11 * This program is free software; you can redistribute it and/or modify *
12 * it under the terms of the GNU General Public License as published by *
13 * the Free Software Foundation; either version 2 of the License, or *
14 * (at your option) any later version. *
15 * *
16 * This program is distributed in the hope that it will be useful, *
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
19 * GNU General Public License for more details. *
20 * *
21 * You should have received a copy of the GNU General Public License *
22 * along with this program; if not, write to the *
23 * Free Software Foundation, Inc., *
24 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. *
25 ***************************************************************************/
27 #ifdef HAVE_CONFIG_H
28 #include "config.h"
29 #endif
31 #include "imp.h"
32 #include <helper/binarybuffer.h>
33 #include <target/algorithm.h>
34 #include <target/armv7m.h>
36 /* Regarding performance:
38 * Short story - it might be best to leave the performance at
39 * current levels.
41 * You may see a jump in speed if you change to using
42 * 32bit words for the block programming.
44 * Its a shame you cannot use the double word as its
45 * even faster - but you require external VPP for that mode.
47 * Having said all that 16bit writes give us the widest vdd
48 * operating range, so may be worth adding a note to that effect.
52 /* Danger!!!! The STM32F1x and STM32F2x series actually have
53 * quite different flash controllers.
55 * What's more scary is that the names of the registers and their
56 * addresses are the same, but the actual bits and what they do are
57 * can be very different.
59 * To reduce testing complexity and dangers of regressions,
60 * a seperate file is used for stm32fx2x.
62 * 1mByte part with 4 x 16, 1 x 64, 7 x 128kBytes sectors
64 * What's the protection page size???
66 * Tested with STM3220F-EVAL board.
68 * STM32F21xx series for reference.
70 * RM0033
71 * http://www.st.com/internet/mcu/product/250192.jsp
73 * PM0059
74 * www.st.com/internet/com/TECHNICAL_RESOURCES/TECHNICAL_LITERATURE/
75 * PROGRAMMING_MANUAL/CD00233952.pdf
77 * STM32F1x series - notice that this code was copy, pasted and knocked
78 * into a stm32f2x driver, so in case something has been converted or
79 * bugs haven't been fixed, here are the original manuals:
81 * RM0008 - Reference manual
83 * RM0042, the Flash programming manual for low-, medium- high-density and
84 * connectivity line STM32F10x devices
86 * PM0068, the Flash programming manual for XL-density STM32F10x devices.
90 /* Erase time can be as high as 1000ms, 10x this and it's toast... */
91 #define FLASH_ERASE_TIMEOUT 10000
92 #define FLASH_WRITE_TIMEOUT 5
94 #define STM32_FLASH_BASE 0x40023c00
95 #define STM32_FLASH_ACR 0x40023c00
96 #define STM32_FLASH_KEYR 0x40023c04
97 #define STM32_FLASH_OPTKEYR 0x40023c08
98 #define STM32_FLASH_SR 0x40023c0C
99 #define STM32_FLASH_CR 0x40023c10
100 #define STM32_FLASH_OPTCR 0x40023c14
101 #define STM32_FLASH_OPTCR1 0x40023c18
103 /* FLASH_CR register bits */
105 #define FLASH_PG (1 << 0)
106 #define FLASH_SER (1 << 1)
107 #define FLASH_MER (1 << 2)
108 #define FLASH_MER1 (1 << 15)
109 #define FLASH_STRT (1 << 16)
110 #define FLASH_PSIZE_8 (0 << 8)
111 #define FLASH_PSIZE_16 (1 << 8)
112 #define FLASH_PSIZE_32 (2 << 8)
113 #define FLASH_PSIZE_64 (3 << 8)
114 /* The sector number encoding is not straight binary for dual bank flash.
115 * Warning: evaluates the argument multiple times */
116 #define FLASH_SNB(a) ((((a) >= 12) ? 0x10 | ((a) - 12) : (a)) << 3)
117 #define FLASH_LOCK (1 << 31)
119 /* FLASH_SR register bits */
121 #define FLASH_BSY (1 << 16)
122 #define FLASH_PGSERR (1 << 7) /* Programming sequence error */
123 #define FLASH_PGPERR (1 << 6) /* Programming parallelism error */
124 #define FLASH_PGAERR (1 << 5) /* Programming alignment error */
125 #define FLASH_WRPERR (1 << 4) /* Write protection error */
126 #define FLASH_OPERR (1 << 1) /* Operation error */
128 #define FLASH_ERROR (FLASH_PGSERR | FLASH_PGPERR | FLASH_PGAERR | FLASH_WRPERR | FLASH_OPERR)
130 /* STM32_FLASH_OPTCR register bits */
132 #define OPT_LOCK (1 << 0)
133 #define OPT_START (1 << 1)
135 /* STM32_FLASH_OBR bit definitions (reading) */
137 #define OPT_ERROR 0
138 #define OPT_READOUT 1
139 #define OPT_RDWDGSW 2
140 #define OPT_RDRSTSTOP 3
141 #define OPT_RDRSTSTDBY 4
142 #define OPT_BFB2 5 /* dual flash bank only */
144 /* register unlock keys */
146 #define KEY1 0x45670123
147 #define KEY2 0xCDEF89AB
149 /* option register unlock key */
150 #define OPTKEY1 0x08192A3B
151 #define OPTKEY2 0x4C5D6E7F
153 struct stm32x_options {
154 uint8_t RDP;
155 uint8_t user_options;
156 uint32_t protection;
159 struct stm32x_flash_bank {
160 struct stm32x_options option_bytes;
161 int probed;
162 bool has_large_mem; /* stm32f42x/stm32f43x family */
163 uint32_t user_bank_size;
166 /* flash bank stm32x <base> <size> 0 0 <target#>
168 FLASH_BANK_COMMAND_HANDLER(stm32x_flash_bank_command)
170 struct stm32x_flash_bank *stm32x_info;
172 if (CMD_ARGC < 6)
173 return ERROR_COMMAND_SYNTAX_ERROR;
175 stm32x_info = malloc(sizeof(struct stm32x_flash_bank));
176 bank->driver_priv = stm32x_info;
178 stm32x_info->probed = 0;
179 stm32x_info->user_bank_size = bank->size;
181 return ERROR_OK;
184 static inline int stm32x_get_flash_reg(struct flash_bank *bank, uint32_t reg)
186 return reg;
189 static inline int stm32x_get_flash_status(struct flash_bank *bank, uint32_t *status)
191 struct target *target = bank->target;
192 return target_read_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_SR), status);
195 static int stm32x_wait_status_busy(struct flash_bank *bank, int timeout)
197 struct target *target = bank->target;
198 uint32_t status;
199 int retval = ERROR_OK;
201 /* wait for busy to clear */
202 for (;;) {
203 retval = stm32x_get_flash_status(bank, &status);
204 if (retval != ERROR_OK)
205 return retval;
206 LOG_DEBUG("status: 0x%" PRIx32 "", status);
207 if ((status & FLASH_BSY) == 0)
208 break;
209 if (timeout-- <= 0) {
210 LOG_ERROR("timed out waiting for flash");
211 return ERROR_FAIL;
213 alive_sleep(1);
217 if (status & FLASH_WRPERR) {
218 LOG_ERROR("stm32x device protected");
219 retval = ERROR_FAIL;
222 /* Clear but report errors */
223 if (status & FLASH_ERROR) {
224 /* If this operation fails, we ignore it and report the original
225 * retval
227 target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_SR),
228 status & FLASH_ERROR);
230 return retval;
233 static int stm32x_unlock_reg(struct target *target)
235 uint32_t ctrl;
237 /* first check if not already unlocked
238 * otherwise writing on STM32_FLASH_KEYR will fail
240 int retval = target_read_u32(target, STM32_FLASH_CR, &ctrl);
241 if (retval != ERROR_OK)
242 return retval;
244 if ((ctrl & FLASH_LOCK) == 0)
245 return ERROR_OK;
247 /* unlock flash registers */
248 retval = target_write_u32(target, STM32_FLASH_KEYR, KEY1);
249 if (retval != ERROR_OK)
250 return retval;
252 retval = target_write_u32(target, STM32_FLASH_KEYR, KEY2);
253 if (retval != ERROR_OK)
254 return retval;
256 retval = target_read_u32(target, STM32_FLASH_CR, &ctrl);
257 if (retval != ERROR_OK)
258 return retval;
260 if (ctrl & FLASH_LOCK) {
261 LOG_ERROR("flash not unlocked STM32_FLASH_CR: %x", ctrl);
262 return ERROR_TARGET_FAILURE;
265 return ERROR_OK;
268 static int stm32x_unlock_option_reg(struct target *target)
270 uint32_t ctrl;
272 int retval = target_read_u32(target, STM32_FLASH_OPTCR, &ctrl);
273 if (retval != ERROR_OK)
274 return retval;
276 if ((ctrl & OPT_LOCK) == 0)
277 return ERROR_OK;
279 /* unlock option registers */
280 retval = target_write_u32(target, STM32_FLASH_OPTKEYR, OPTKEY1);
281 if (retval != ERROR_OK)
282 return retval;
284 retval = target_write_u32(target, STM32_FLASH_OPTKEYR, OPTKEY2);
285 if (retval != ERROR_OK)
286 return retval;
288 retval = target_read_u32(target, STM32_FLASH_OPTCR, &ctrl);
289 if (retval != ERROR_OK)
290 return retval;
292 if (ctrl & OPT_LOCK) {
293 LOG_ERROR("options not unlocked STM32_FLASH_OPTCR: %x", ctrl);
294 return ERROR_TARGET_FAILURE;
297 return ERROR_OK;
300 static int stm32x_read_options(struct flash_bank *bank)
302 uint32_t optiondata;
303 struct stm32x_flash_bank *stm32x_info = NULL;
304 struct target *target = bank->target;
306 stm32x_info = bank->driver_priv;
308 /* read current option bytes */
309 int retval = target_read_u32(target, STM32_FLASH_OPTCR, &optiondata);
310 if (retval != ERROR_OK)
311 return retval;
313 stm32x_info->option_bytes.user_options = optiondata & 0xec;
314 stm32x_info->option_bytes.RDP = (optiondata >> 8) & 0xff;
315 stm32x_info->option_bytes.protection = (optiondata >> 16) & 0xfff;
317 if (stm32x_info->has_large_mem) {
319 retval = target_read_u32(target, STM32_FLASH_OPTCR1, &optiondata);
320 if (retval != ERROR_OK)
321 return retval;
323 /* append protection bits */
324 stm32x_info->option_bytes.protection |= (optiondata >> 4) & 0x00fff000;
327 if (stm32x_info->option_bytes.RDP != 0xAA)
328 LOG_INFO("Device Security Bit Set");
330 return ERROR_OK;
333 static int stm32x_write_options(struct flash_bank *bank)
335 struct stm32x_flash_bank *stm32x_info = NULL;
336 struct target *target = bank->target;
337 uint32_t optiondata;
339 stm32x_info = bank->driver_priv;
341 int retval = stm32x_unlock_option_reg(target);
342 if (retval != ERROR_OK)
343 return retval;
345 /* rebuild option data */
346 optiondata = stm32x_info->option_bytes.user_options;
347 buf_set_u32(&optiondata, 8, 8, stm32x_info->option_bytes.RDP);
348 buf_set_u32(&optiondata, 16, 12, stm32x_info->option_bytes.protection);
350 /* program options */
351 retval = target_write_u32(target, STM32_FLASH_OPTCR, optiondata);
352 if (retval != ERROR_OK)
353 return retval;
355 if (stm32x_info->has_large_mem) {
357 uint32_t optiondata2 = 0;
358 buf_set_u32(&optiondata2, 16, 12, stm32x_info->option_bytes.protection >> 12);
359 retval = target_write_u32(target, STM32_FLASH_OPTCR1, optiondata2);
360 if (retval != ERROR_OK)
361 return retval;
364 /* start programming cycle */
365 retval = target_write_u32(target, STM32_FLASH_OPTCR, optiondata | OPT_START);
366 if (retval != ERROR_OK)
367 return retval;
369 /* wait for completion */
370 retval = stm32x_wait_status_busy(bank, FLASH_ERASE_TIMEOUT);
371 if (retval != ERROR_OK)
372 return retval;
374 /* relock registers */
375 retval = target_write_u32(target, STM32_FLASH_OPTCR, OPT_LOCK);
376 if (retval != ERROR_OK)
377 return retval;
379 return ERROR_OK;
382 static int stm32x_protect_check(struct flash_bank *bank)
384 struct stm32x_flash_bank *stm32x_info = bank->driver_priv;
386 /* read write protection settings */
387 int retval = stm32x_read_options(bank);
388 if (retval != ERROR_OK) {
389 LOG_DEBUG("unable to read option bytes");
390 return retval;
393 for (int i = 0; i < bank->num_sectors; i++) {
394 if (stm32x_info->option_bytes.protection & (1 << i))
395 bank->sectors[i].is_protected = 0;
396 else
397 bank->sectors[i].is_protected = 1;
400 return ERROR_OK;
403 static int stm32x_erase(struct flash_bank *bank, int first, int last)
405 struct target *target = bank->target;
406 int i;
408 assert(first < bank->num_sectors);
409 assert(last < bank->num_sectors);
411 if (bank->target->state != TARGET_HALTED) {
412 LOG_ERROR("Target not halted");
413 return ERROR_TARGET_NOT_HALTED;
416 int retval;
417 retval = stm32x_unlock_reg(target);
418 if (retval != ERROR_OK)
419 return retval;
422 Sector Erase
423 To erase a sector, follow the procedure below:
424 1. Check that no Flash memory operation is ongoing by checking the BSY bit in the
425 FLASH_SR register
426 2. Set the SER bit and select the sector
427 you wish to erase (SNB) in the FLASH_CR register
428 3. Set the STRT bit in the FLASH_CR register
429 4. Wait for the BSY bit to be cleared
432 for (i = first; i <= last; i++) {
433 retval = target_write_u32(target,
434 stm32x_get_flash_reg(bank, STM32_FLASH_CR), FLASH_SER | FLASH_SNB(i) | FLASH_STRT);
435 if (retval != ERROR_OK)
436 return retval;
438 retval = stm32x_wait_status_busy(bank, FLASH_ERASE_TIMEOUT);
439 if (retval != ERROR_OK)
440 return retval;
442 bank->sectors[i].is_erased = 1;
445 retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_CR), FLASH_LOCK);
446 if (retval != ERROR_OK)
447 return retval;
449 return ERROR_OK;
452 static int stm32x_protect(struct flash_bank *bank, int set, int first, int last)
454 struct target *target = bank->target;
455 struct stm32x_flash_bank *stm32x_info = bank->driver_priv;
457 if (target->state != TARGET_HALTED) {
458 LOG_ERROR("Target not halted");
459 return ERROR_TARGET_NOT_HALTED;
462 /* read protection settings */
463 int retval = stm32x_read_options(bank);
464 if (retval != ERROR_OK) {
465 LOG_DEBUG("unable to read option bytes");
466 return retval;
469 for (int i = first; i <= last; i++) {
471 if (set)
472 stm32x_info->option_bytes.protection &= ~(1 << i);
473 else
474 stm32x_info->option_bytes.protection |= (1 << i);
477 retval = stm32x_write_options(bank);
478 if (retval != ERROR_OK)
479 return retval;
481 return ERROR_OK;
484 static int stm32x_write_block(struct flash_bank *bank, uint8_t *buffer,
485 uint32_t offset, uint32_t count)
487 struct target *target = bank->target;
488 uint32_t buffer_size = 16384;
489 struct working_area *write_algorithm;
490 struct working_area *source;
491 uint32_t address = bank->base + offset;
492 struct reg_param reg_params[5];
493 struct armv7m_algorithm armv7m_info;
494 int retval = ERROR_OK;
496 /* see contrib/loaders/flash/stm32f2x.S for src */
498 static const uint8_t stm32x_flash_write_code[] = {
499 /* wait_fifo: */
500 0xD0, 0xF8, 0x00, 0x80, /* ldr r8, [r0, #0] */
501 0xB8, 0xF1, 0x00, 0x0F, /* cmp r8, #0 */
502 0x1A, 0xD0, /* beq exit */
503 0x47, 0x68, /* ldr r7, [r0, #4] */
504 0x47, 0x45, /* cmp r7, r8 */
505 0xF7, 0xD0, /* beq wait_fifo */
507 0xDF, 0xF8, 0x30, 0x60, /* ldr r6, STM32_PROG16 */
508 0x26, 0x61, /* str r6, [r4, #STM32_FLASH_CR_OFFSET] */
509 0x37, 0xF8, 0x02, 0x6B, /* ldrh r6, [r7], #0x02 */
510 0x22, 0xF8, 0x02, 0x6B, /* strh r6, [r2], #0x02 */
511 /* busy: */
512 0xE6, 0x68, /* ldr r6, [r4, #STM32_FLASH_SR_OFFSET] */
513 0x16, 0xF4, 0x80, 0x3F, /* tst r6, #0x10000 */
514 0xFB, 0xD1, /* bne busy */
515 0x16, 0xF0, 0xF0, 0x0F, /* tst r6, #0xf0 */
516 0x07, 0xD1, /* bne error */
518 0x8F, 0x42, /* cmp r7, r1 */
519 0x28, 0xBF, /* it cs */
520 0x00, 0xF1, 0x08, 0x07, /* addcs r7, r0, #8 */
521 0x47, 0x60, /* str r7, [r0, #4] */
522 0x01, 0x3B, /* subs r3, r3, #1 */
523 0x13, 0xB1, /* cbz r3, exit */
524 0xE1, 0xE7, /* b wait_fifo */
525 /* error: */
526 0x00, 0x21, /* movs r1, #0 */
527 0x41, 0x60, /* str r1, [r0, #4] */
528 /* exit: */
529 0x30, 0x46, /* mov r0, r6 */
530 0x00, 0xBE, /* bkpt #0x00 */
532 /* <STM32_PROG16>: */
533 0x01, 0x01, 0x00, 0x00, /* .word 0x00000101 */
536 if (target_alloc_working_area(target, sizeof(stm32x_flash_write_code),
537 &write_algorithm) != ERROR_OK) {
538 LOG_WARNING("no working area available, can't do block memory writes");
539 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
542 retval = target_write_buffer(target, write_algorithm->address,
543 sizeof(stm32x_flash_write_code),
544 (uint8_t *)stm32x_flash_write_code);
545 if (retval != ERROR_OK)
546 return retval;
548 /* memory buffer */
549 while (target_alloc_working_area_try(target, buffer_size, &source) != ERROR_OK) {
550 buffer_size /= 2;
551 if (buffer_size <= 256) {
552 /* we already allocated the writing code, but failed to get a
553 * buffer, free the algorithm */
554 target_free_working_area(target, write_algorithm);
556 LOG_WARNING("no large enough working area available, can't do block memory writes");
557 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
561 armv7m_info.common_magic = ARMV7M_COMMON_MAGIC;
562 armv7m_info.core_mode = ARM_MODE_THREAD;
564 init_reg_param(&reg_params[0], "r0", 32, PARAM_IN_OUT); /* buffer start, status (out) */
565 init_reg_param(&reg_params[1], "r1", 32, PARAM_OUT); /* buffer end */
566 init_reg_param(&reg_params[2], "r2", 32, PARAM_OUT); /* target address */
567 init_reg_param(&reg_params[3], "r3", 32, PARAM_OUT); /* count (halfword-16bit) */
568 init_reg_param(&reg_params[4], "r4", 32, PARAM_OUT); /* flash base */
570 buf_set_u32(reg_params[0].value, 0, 32, source->address);
571 buf_set_u32(reg_params[1].value, 0, 32, source->address + source->size);
572 buf_set_u32(reg_params[2].value, 0, 32, address);
573 buf_set_u32(reg_params[3].value, 0, 32, count);
574 buf_set_u32(reg_params[4].value, 0, 32, STM32_FLASH_BASE);
576 retval = target_run_flash_async_algorithm(target, buffer, count, 2,
577 0, NULL,
578 5, reg_params,
579 source->address, source->size,
580 write_algorithm->address, 0,
581 &armv7m_info);
583 if (retval == ERROR_FLASH_OPERATION_FAILED) {
584 LOG_ERROR("error executing stm32x flash write algorithm");
586 uint32_t error = buf_get_u32(reg_params[0].value, 0, 32) & FLASH_ERROR;
588 if (error & FLASH_WRPERR)
589 LOG_ERROR("flash memory write protected");
591 if (error != 0) {
592 LOG_ERROR("flash write failed = %08x", error);
593 /* Clear but report errors */
594 target_write_u32(target, STM32_FLASH_SR, error);
595 retval = ERROR_FAIL;
599 target_free_working_area(target, source);
600 target_free_working_area(target, write_algorithm);
602 destroy_reg_param(&reg_params[0]);
603 destroy_reg_param(&reg_params[1]);
604 destroy_reg_param(&reg_params[2]);
605 destroy_reg_param(&reg_params[3]);
606 destroy_reg_param(&reg_params[4]);
608 return retval;
611 static int stm32x_write(struct flash_bank *bank, uint8_t *buffer,
612 uint32_t offset, uint32_t count)
614 struct target *target = bank->target;
615 uint32_t words_remaining = (count / 2);
616 uint32_t bytes_remaining = (count & 0x00000001);
617 uint32_t address = bank->base + offset;
618 uint32_t bytes_written = 0;
619 int retval;
621 if (bank->target->state != TARGET_HALTED) {
622 LOG_ERROR("Target not halted");
623 return ERROR_TARGET_NOT_HALTED;
626 if (offset & 0x1) {
627 LOG_WARNING("offset 0x%" PRIx32 " breaks required 2-byte alignment", offset);
628 return ERROR_FLASH_DST_BREAKS_ALIGNMENT;
631 retval = stm32x_unlock_reg(target);
632 if (retval != ERROR_OK)
633 return retval;
635 /* multiple half words (2-byte) to be programmed? */
636 if (words_remaining > 0) {
637 /* try using a block write */
638 retval = stm32x_write_block(bank, buffer, offset, words_remaining);
639 if (retval != ERROR_OK) {
640 if (retval == ERROR_TARGET_RESOURCE_NOT_AVAILABLE) {
641 /* if block write failed (no sufficient working area),
642 * we use normal (slow) single dword accesses */
643 LOG_WARNING("couldn't use block writes, falling back to single memory accesses");
645 } else {
646 buffer += words_remaining * 2;
647 address += words_remaining * 2;
648 words_remaining = 0;
652 if ((retval != ERROR_OK) && (retval != ERROR_TARGET_RESOURCE_NOT_AVAILABLE))
653 return retval;
656 Standard programming
657 The Flash memory programming sequence is as follows:
658 1. Check that no main Flash memory operation is ongoing by checking the BSY bit in the
659 FLASH_SR register.
660 2. Set the PG bit in the FLASH_CR register
661 3. Perform the data write operation(s) to the desired memory address (inside main
662 memory block or OTP area):
663 – – Half-word access in case of x16 parallelism
664 – Word access in case of x32 parallelism
665 –
667 Byte access in case of x8 parallelism
668 Double word access in case of x64 parallelism
669 Wait for the BSY bit to be cleared
671 while (words_remaining > 0) {
672 uint16_t value;
673 memcpy(&value, buffer + bytes_written, sizeof(uint16_t));
675 retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_CR),
676 FLASH_PG | FLASH_PSIZE_16);
677 if (retval != ERROR_OK)
678 return retval;
680 retval = target_write_u16(target, address, value);
681 if (retval != ERROR_OK)
682 return retval;
684 retval = stm32x_wait_status_busy(bank, FLASH_WRITE_TIMEOUT);
685 if (retval != ERROR_OK)
686 return retval;
688 bytes_written += 2;
689 words_remaining--;
690 address += 2;
693 if (bytes_remaining) {
694 retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_CR),
695 FLASH_PG | FLASH_PSIZE_8);
696 if (retval != ERROR_OK)
697 return retval;
698 retval = target_write_u8(target, address, buffer[bytes_written]);
699 if (retval != ERROR_OK)
700 return retval;
702 retval = stm32x_wait_status_busy(bank, FLASH_WRITE_TIMEOUT);
703 if (retval != ERROR_OK)
704 return retval;
707 return target_write_u32(target, STM32_FLASH_CR, FLASH_LOCK);
710 static void setup_sector(struct flash_bank *bank, int start, int num, int size)
712 for (int i = start; i < (start + num) ; i++) {
713 assert(i < bank->num_sectors);
714 bank->sectors[i].offset = bank->size;
715 bank->sectors[i].size = size;
716 bank->size += bank->sectors[i].size;
720 static int stm32x_get_device_id(struct flash_bank *bank, uint32_t *device_id)
722 /* this checks for a stm32f4x errata issue where a
723 * stm32f2x DBGMCU_IDCODE is incorrectly returned.
724 * If the issue is detected target is forced to stm32f4x Rev A.
725 * Only effects Rev A silicon */
727 struct target *target = bank->target;
728 uint32_t cpuid;
730 /* read stm32 device id register */
731 int retval = target_read_u32(target, 0xE0042000, device_id);
732 if (retval != ERROR_OK)
733 return retval;
735 if ((*device_id & 0xfff) == 0x411) {
736 /* read CPUID reg to check core type */
737 retval = target_read_u32(target, 0xE000ED00, &cpuid);
738 if (retval != ERROR_OK)
739 return retval;
741 /* check for cortex_m4 */
742 if (((cpuid >> 4) & 0xFFF) == 0xC24) {
743 *device_id &= ~((0xFFFF << 16) | 0xfff);
744 *device_id |= (0x1000 << 16) | 0x413;
745 LOG_INFO("stm32f4x errata detected - fixing incorrect MCU_IDCODE");
748 return retval;
751 static int stm32x_probe(struct flash_bank *bank)
753 struct target *target = bank->target;
754 struct stm32x_flash_bank *stm32x_info = bank->driver_priv;
755 int i;
756 uint16_t flash_size_in_kb;
757 uint16_t max_flash_size_in_kb;
758 uint32_t device_id;
759 uint32_t base_address = 0x08000000;
761 stm32x_info->probed = 0;
762 stm32x_info->has_large_mem = false;
764 /* read stm32 device id register */
765 int retval = stm32x_get_device_id(bank, &device_id);
766 if (retval != ERROR_OK)
767 return retval;
768 LOG_INFO("device id = 0x%08" PRIx32 "", device_id);
770 /* set max flash size depending on family */
771 switch (device_id & 0xfff) {
772 case 0x411:
773 case 0x413:
774 max_flash_size_in_kb = 1024;
775 break;
776 case 0x419:
777 max_flash_size_in_kb = 2048;
778 break;
779 case 0x423:
780 max_flash_size_in_kb = 256;
781 break;
782 default:
783 LOG_WARNING("Cannot identify target as a STM32 family.");
784 return ERROR_FAIL;
787 /* get flash size from target. */
788 retval = target_read_u16(target, 0x1FFF7A22, &flash_size_in_kb);
790 /* failed reading flash size or flash size invalid (early silicon),
791 * default to max target family */
792 if (retval != ERROR_OK || flash_size_in_kb == 0xffff || flash_size_in_kb == 0) {
793 LOG_WARNING("STM32 flash size failed, probe inaccurate - assuming %dk flash",
794 max_flash_size_in_kb);
795 flash_size_in_kb = max_flash_size_in_kb;
798 /* if the user sets the size manually then ignore the probed value
799 * this allows us to work around devices that have a invalid flash size register value */
800 if (stm32x_info->user_bank_size) {
801 LOG_INFO("ignoring flash probed value, using configured bank size");
802 flash_size_in_kb = stm32x_info->user_bank_size / 1024;
805 /* only devices with > 1024kB have dual banks */
806 if (flash_size_in_kb > 1024)
807 stm32x_info->has_large_mem = true;
809 LOG_INFO("flash size = %dkbytes", flash_size_in_kb);
811 /* did we assign flash size? */
812 assert(flash_size_in_kb != 0xffff);
814 /* calculate numbers of pages */
815 int num_pages = (flash_size_in_kb / 128) + 4;
817 /* check for larger 2048 bytes devices */
818 if (stm32x_info->has_large_mem)
819 num_pages += 4;
821 /* check that calculation result makes sense */
822 assert(num_pages > 0);
824 if (bank->sectors) {
825 free(bank->sectors);
826 bank->sectors = NULL;
829 bank->base = base_address;
830 bank->num_sectors = num_pages;
831 bank->sectors = malloc(sizeof(struct flash_sector) * num_pages);
832 bank->size = 0;
834 /* fixed memory */
835 setup_sector(bank, 0, 4, 16 * 1024);
836 setup_sector(bank, 4, 1, 64 * 1024);
838 /* dynamic memory */
839 setup_sector(bank, 4 + 1, MIN(12, num_pages) - 5, 128 * 1024);
841 if (stm32x_info->has_large_mem) {
843 /* fixed memory for larger devices */
844 setup_sector(bank, 12, 4, 16 * 1024);
845 setup_sector(bank, 16, 1, 64 * 1024);
847 /* dynamic memory for larger devices */
848 setup_sector(bank, 16 + 1, num_pages - 5 - 12, 128 * 1024);
851 for (i = 0; i < num_pages; i++) {
852 bank->sectors[i].is_erased = -1;
853 bank->sectors[i].is_protected = 0;
856 stm32x_info->probed = 1;
858 return ERROR_OK;
861 static int stm32x_auto_probe(struct flash_bank *bank)
863 struct stm32x_flash_bank *stm32x_info = bank->driver_priv;
864 if (stm32x_info->probed)
865 return ERROR_OK;
866 return stm32x_probe(bank);
869 static int get_stm32x_info(struct flash_bank *bank, char *buf, int buf_size)
871 uint32_t dbgmcu_idcode;
873 /* read stm32 device id register */
874 int retval = stm32x_get_device_id(bank, &dbgmcu_idcode);
875 if (retval != ERROR_OK)
876 return retval;
878 uint16_t device_id = dbgmcu_idcode & 0xfff;
879 uint16_t rev_id = dbgmcu_idcode >> 16;
880 const char *device_str;
881 const char *rev_str = NULL;
883 switch (device_id) {
884 case 0x411:
885 device_str = "STM32F2xx";
887 switch (rev_id) {
888 case 0x1000:
889 rev_str = "A";
890 break;
892 case 0x2000:
893 rev_str = "B";
894 break;
896 case 0x1001:
897 rev_str = "Z";
898 break;
900 case 0x2001:
901 rev_str = "Y";
902 break;
904 case 0x2003:
905 rev_str = "X";
906 break;
908 break;
910 case 0x413:
911 case 0x419:
912 device_str = "STM32F4xx";
914 switch (rev_id) {
915 case 0x1000:
916 rev_str = "A";
917 break;
919 case 0x1001:
920 rev_str = "Z";
921 break;
923 case 0x1003:
924 rev_str = "Y";
925 break;
927 break;
929 case 0x423:
930 device_str = "STM32F4xx (Low Power)";
932 switch (rev_id) {
933 case 0x1000:
934 rev_str = "A";
935 break;
937 case 0x1001:
938 rev_str = "Z";
939 break;
941 break;
943 default:
944 snprintf(buf, buf_size, "Cannot identify target as a STM32F2/4\n");
945 return ERROR_FAIL;
948 if (rev_str != NULL)
949 snprintf(buf, buf_size, "%s - Rev: %s", device_str, rev_str);
950 else
951 snprintf(buf, buf_size, "%s - Rev: unknown (0x%04x)", device_str, rev_id);
953 return ERROR_OK;
956 COMMAND_HANDLER(stm32x_handle_lock_command)
958 struct target *target = NULL;
959 struct stm32x_flash_bank *stm32x_info = NULL;
961 if (CMD_ARGC < 1)
962 return ERROR_COMMAND_SYNTAX_ERROR;
964 struct flash_bank *bank;
965 int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
966 if (ERROR_OK != retval)
967 return retval;
969 stm32x_info = bank->driver_priv;
970 target = bank->target;
972 if (target->state != TARGET_HALTED) {
973 LOG_ERROR("Target not halted");
974 return ERROR_TARGET_NOT_HALTED;
977 if (stm32x_read_options(bank) != ERROR_OK) {
978 command_print(CMD_CTX, "%s failed to read options", bank->driver->name);
979 return ERROR_OK;
982 /* set readout protection */
983 stm32x_info->option_bytes.RDP = 0;
985 if (stm32x_write_options(bank) != ERROR_OK) {
986 command_print(CMD_CTX, "%s failed to lock device", bank->driver->name);
987 return ERROR_OK;
990 command_print(CMD_CTX, "%s locked", bank->driver->name);
992 return ERROR_OK;
995 COMMAND_HANDLER(stm32x_handle_unlock_command)
997 struct target *target = NULL;
998 struct stm32x_flash_bank *stm32x_info = NULL;
1000 if (CMD_ARGC < 1)
1001 return ERROR_COMMAND_SYNTAX_ERROR;
1003 struct flash_bank *bank;
1004 int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
1005 if (ERROR_OK != retval)
1006 return retval;
1008 stm32x_info = bank->driver_priv;
1009 target = bank->target;
1011 if (target->state != TARGET_HALTED) {
1012 LOG_ERROR("Target not halted");
1013 return ERROR_TARGET_NOT_HALTED;
1016 if (stm32x_read_options(bank) != ERROR_OK) {
1017 command_print(CMD_CTX, "%s failed to read options", bank->driver->name);
1018 return ERROR_OK;
1021 /* clear readout protection and complementary option bytes
1022 * this will also force a device unlock if set */
1023 stm32x_info->option_bytes.RDP = 0xAA;
1025 if (stm32x_write_options(bank) != ERROR_OK) {
1026 command_print(CMD_CTX, "%s failed to unlock device", bank->driver->name);
1027 return ERROR_OK;
1030 command_print(CMD_CTX, "%s unlocked.\n"
1031 "INFO: a reset or power cycle is required "
1032 "for the new settings to take effect.", bank->driver->name);
1034 return ERROR_OK;
1037 static int stm32x_mass_erase(struct flash_bank *bank)
1039 int retval;
1040 struct target *target = bank->target;
1041 struct stm32x_flash_bank *stm32x_info = NULL;
1043 if (target->state != TARGET_HALTED) {
1044 LOG_ERROR("Target not halted");
1045 return ERROR_TARGET_NOT_HALTED;
1048 stm32x_info = bank->driver_priv;
1050 retval = stm32x_unlock_reg(target);
1051 if (retval != ERROR_OK)
1052 return retval;
1054 /* mass erase flash memory */
1055 if (stm32x_info->has_large_mem)
1056 retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_CR), FLASH_MER | FLASH_MER1);
1057 else
1058 retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_CR), FLASH_MER);
1059 if (retval != ERROR_OK)
1060 return retval;
1061 retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_CR),
1062 FLASH_MER | FLASH_STRT);
1063 if (retval != ERROR_OK)
1064 return retval;
1066 retval = stm32x_wait_status_busy(bank, 30000);
1067 if (retval != ERROR_OK)
1068 return retval;
1070 retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_CR), FLASH_LOCK);
1071 if (retval != ERROR_OK)
1072 return retval;
1074 return ERROR_OK;
1077 COMMAND_HANDLER(stm32x_handle_mass_erase_command)
1079 int i;
1081 if (CMD_ARGC < 1) {
1082 command_print(CMD_CTX, "stm32x mass_erase <bank>");
1083 return ERROR_COMMAND_SYNTAX_ERROR;
1086 struct flash_bank *bank;
1087 int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
1088 if (ERROR_OK != retval)
1089 return retval;
1091 retval = stm32x_mass_erase(bank);
1092 if (retval == ERROR_OK) {
1093 /* set all sectors as erased */
1094 for (i = 0; i < bank->num_sectors; i++)
1095 bank->sectors[i].is_erased = 1;
1097 command_print(CMD_CTX, "stm32x mass erase complete");
1098 } else {
1099 command_print(CMD_CTX, "stm32x mass erase failed");
1102 return retval;
1105 static const struct command_registration stm32x_exec_command_handlers[] = {
1107 .name = "lock",
1108 .handler = stm32x_handle_lock_command,
1109 .mode = COMMAND_EXEC,
1110 .usage = "bank_id",
1111 .help = "Lock entire flash device.",
1114 .name = "unlock",
1115 .handler = stm32x_handle_unlock_command,
1116 .mode = COMMAND_EXEC,
1117 .usage = "bank_id",
1118 .help = "Unlock entire protected flash device.",
1121 .name = "mass_erase",
1122 .handler = stm32x_handle_mass_erase_command,
1123 .mode = COMMAND_EXEC,
1124 .usage = "bank_id",
1125 .help = "Erase entire flash device.",
1127 COMMAND_REGISTRATION_DONE
1130 static const struct command_registration stm32x_command_handlers[] = {
1132 .name = "stm32f2x",
1133 .mode = COMMAND_ANY,
1134 .help = "stm32f2x flash command group",
1135 .usage = "",
1136 .chain = stm32x_exec_command_handlers,
1138 COMMAND_REGISTRATION_DONE
1141 struct flash_driver stm32f2x_flash = {
1142 .name = "stm32f2x",
1143 .commands = stm32x_command_handlers,
1144 .flash_bank_command = stm32x_flash_bank_command,
1145 .erase = stm32x_erase,
1146 .protect = stm32x_protect,
1147 .write = stm32x_write,
1148 .read = default_flash_read,
1149 .probe = stm32x_probe,
1150 .auto_probe = stm32x_auto_probe,
1151 .erase_check = default_flash_blank_check,
1152 .protect_check = stm32x_protect_check,
1153 .info = get_stm32x_info,