libusb: idProduct of USB device may be zero
[openocd.git] / src / flash / nand / arm_io.c
blobcf494766dddb46744e7db6f92a2ac482adbe24d1
1 /*
2 * Copyright (C) 2009 by Marvell Semiconductors, Inc.
3 * Written by Nicolas Pitre <nico at marvell.com>
5 * Copyright (C) 2009 by David Brownell
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the
19 * Free Software Foundation, Inc.,
20 * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
23 #ifdef HAVE_CONFIG_H
24 #include "config.h"
25 #endif
27 #include "core.h"
28 #include "arm_io.h"
29 #include <helper/binarybuffer.h>
30 #include <target/arm.h>
31 #include <target/algorithm.h>
33 /**
34 * Copies code to a working area. This will allocate room for the code plus the
35 * additional amount requested if the working area pointer is null.
37 * @param target Pointer to the target to copy code to
38 * @param code Pointer to the code area to be copied
39 * @param code_size Size of the code being copied
40 * @param additional Size of the additional area to be allocated in addition to
41 * code
42 * @param area Pointer to a pointer to a working area to copy code to
43 * @return Success or failure of the operation
45 static int arm_code_to_working_area(struct target *target,
46 const uint32_t *code, unsigned code_size,
47 unsigned additional, struct working_area **area)
49 uint8_t code_buf[code_size];
50 unsigned i;
51 int retval;
52 unsigned size = code_size + additional;
54 /* REVISIT this assumes size doesn't ever change.
55 * That's usually correct; but there are boards with
56 * both large and small page chips, where it won't be...
59 /* make sure we have a working area */
60 if (NULL == *area) {
61 retval = target_alloc_working_area(target, size, area);
62 if (retval != ERROR_OK) {
63 LOG_DEBUG("%s: no %d byte buffer", __func__, (int) size);
64 return ERROR_NAND_NO_BUFFER;
68 /* buffer code in target endianness */
69 for (i = 0; i < code_size / 4; i++)
70 target_buffer_set_u32(target, code_buf + i * 4, code[i]);
72 /* copy code to work area */
73 retval = target_write_memory(target, (*area)->address,
74 4, code_size / 4, code_buf);
76 return retval;
79 /**
80 * ARM-specific bulk write from buffer to address of 8-bit wide NAND.
81 * For now this only supports ARMv4 and ARMv5 cores.
83 * Enhancements to target_run_algorithm() could enable:
84 * - ARMv6 and ARMv7 cores in ARM mode
86 * Different code fragments could handle:
87 * - Thumb2 cores like Cortex-M (needs different byteswapping)
88 * - 16-bit wide data (needs different setup too)
90 * @param nand Pointer to the arm_nand_data struct that defines the I/O
91 * @param data Pointer to the data to be copied to flash
92 * @param size Size of the data being copied
93 * @return Success or failure of the operation
95 int arm_nandwrite(struct arm_nand_data *nand, uint8_t *data, int size)
97 struct target *target = nand->target;
98 struct arm_algorithm algo;
99 struct arm *arm = target->arch_info;
100 struct reg_param reg_params[3];
101 uint32_t target_buf;
102 uint32_t exit_var = 0;
103 int retval;
105 /* Inputs:
106 * r0 NAND data address (byte wide)
107 * r1 buffer address
108 * r2 buffer length
110 static const uint32_t code[] = {
111 0xe4d13001, /* s: ldrb r3, [r1], #1 */
112 0xe5c03000, /* strb r3, [r0] */
113 0xe2522001, /* subs r2, r2, #1 */
114 0x1afffffb, /* bne s */
116 /* exit: ARMv4 needs hardware breakpoint */
117 0xe1200070, /* e: bkpt #0 */
120 if (nand->op != ARM_NAND_WRITE || !nand->copy_area) {
121 retval = arm_code_to_working_area(target, code, sizeof(code),
122 nand->chunk_size, &nand->copy_area);
123 if (retval != ERROR_OK)
124 return retval;
127 nand->op = ARM_NAND_WRITE;
129 /* copy data to work area */
130 target_buf = nand->copy_area->address + sizeof(code);
131 retval = target_bulk_write_memory(target, target_buf, size / 4, data);
132 if (retval == ERROR_OK && (size & 3) != 0)
133 retval = target_write_memory(target,
134 target_buf + (size & ~3),
135 1, size & 3, data + (size & ~3));
136 if (retval != ERROR_OK)
137 return retval;
139 /* set up algorithm and parameters */
140 algo.common_magic = ARM_COMMON_MAGIC;
141 algo.core_mode = ARM_MODE_SVC;
142 algo.core_state = ARM_STATE_ARM;
144 init_reg_param(&reg_params[0], "r0", 32, PARAM_IN);
145 init_reg_param(&reg_params[1], "r1", 32, PARAM_IN);
146 init_reg_param(&reg_params[2], "r2", 32, PARAM_IN);
148 buf_set_u32(reg_params[0].value, 0, 32, nand->data);
149 buf_set_u32(reg_params[1].value, 0, 32, target_buf);
150 buf_set_u32(reg_params[2].value, 0, 32, size);
152 /* armv4 must exit using a hardware breakpoint */
153 if (arm->is_armv4)
154 exit_var = nand->copy_area->address + sizeof(code) - 4;
156 /* use alg to write data from work area to NAND chip */
157 retval = target_run_algorithm(target, 0, NULL, 3, reg_params,
158 nand->copy_area->address, exit_var, 1000, &algo);
159 if (retval != ERROR_OK)
160 LOG_ERROR("error executing hosted NAND write");
162 destroy_reg_param(&reg_params[0]);
163 destroy_reg_param(&reg_params[1]);
164 destroy_reg_param(&reg_params[2]);
166 return retval;
170 * Uses an on-chip algorithm for an ARM device to read from a NAND device and
171 * store the data into the host machine's memory.
173 * @param nand Pointer to the arm_nand_data struct that defines the I/O
174 * @param data Pointer to the data buffer to store the read data
175 * @param size Amount of data to be stored to the buffer.
176 * @return Success or failure of the operation
178 int arm_nandread(struct arm_nand_data *nand, uint8_t *data, uint32_t size)
180 struct target *target = nand->target;
181 struct arm_algorithm algo;
182 struct arm *arm = target->arch_info;
183 struct reg_param reg_params[3];
184 uint32_t target_buf;
185 uint32_t exit_var = 0;
186 int retval;
188 /* Inputs:
189 * r0 buffer address
190 * r1 NAND data address (byte wide)
191 * r2 buffer length
193 static const uint32_t code[] = {
194 0xe5d13000, /* s: ldrb r3, [r1] */
195 0xe4c03001, /* strb r3, [r0], #1 */
196 0xe2522001, /* subs r2, r2, #1 */
197 0x1afffffb, /* bne s */
199 /* exit: ARMv4 needs hardware breakpoint */
200 0xe1200070, /* e: bkpt #0 */
203 /* create the copy area if not yet available */
204 if (nand->op != ARM_NAND_READ || !nand->copy_area) {
205 retval = arm_code_to_working_area(target, code, sizeof(code),
206 nand->chunk_size, &nand->copy_area);
207 if (retval != ERROR_OK)
208 return retval;
211 nand->op = ARM_NAND_READ;
212 target_buf = nand->copy_area->address + sizeof(code);
214 /* set up algorithm and parameters */
215 algo.common_magic = ARM_COMMON_MAGIC;
216 algo.core_mode = ARM_MODE_SVC;
217 algo.core_state = ARM_STATE_ARM;
219 init_reg_param(&reg_params[0], "r0", 32, PARAM_IN);
220 init_reg_param(&reg_params[1], "r1", 32, PARAM_IN);
221 init_reg_param(&reg_params[2], "r2", 32, PARAM_IN);
223 buf_set_u32(reg_params[0].value, 0, 32, target_buf);
224 buf_set_u32(reg_params[1].value, 0, 32, nand->data);
225 buf_set_u32(reg_params[2].value, 0, 32, size);
227 /* armv4 must exit using a hardware breakpoint */
228 if (arm->is_armv4)
229 exit_var = nand->copy_area->address + sizeof(code) - 4;
231 /* use alg to write data from NAND chip to work area */
232 retval = target_run_algorithm(target, 0, NULL, 3, reg_params,
233 nand->copy_area->address, exit_var, 1000, &algo);
234 if (retval != ERROR_OK)
235 LOG_ERROR("error executing hosted NAND read");
237 destroy_reg_param(&reg_params[0]);
238 destroy_reg_param(&reg_params[1]);
239 destroy_reg_param(&reg_params[2]);
241 /* read from work area to the host's memory */
242 retval = target_read_buffer(target, target_buf, size, data);
244 return retval;