armv7m: restore core mode after executing algorithm
[openocd.git] / src / target / armv7m.c
blob9740a28c5790e6caafe5537e8d594601e0d84a8c
1 /***************************************************************************
2 * Copyright (C) 2005 by Dominic Rath *
3 * Dominic.Rath@gmx.de *
4 * *
5 * Copyright (C) 2006 by Magnus Lundin *
6 * lundin@mlu.mine.nu *
7 * *
8 * Copyright (C) 2008 by Spencer Oliver *
9 * spen@spen-soft.co.uk *
10 * *
11 * Copyright (C) 2007,2008 √ėyvind Harboe *
12 * oyvind.harboe@zylin.com *
13 * *
14 * This program is free software; you can redistribute it and/or modify *
15 * it under the terms of the GNU General Public License as published by *
16 * the Free Software Foundation; either version 2 of the License, or *
17 * (at your option) any later version. *
18 * *
19 * This program is distributed in the hope that it will be useful, *
20 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
21 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
22 * GNU General Public License for more details. *
23 * *
24 * You should have received a copy of the GNU General Public License *
25 * along with this program; if not, write to the *
26 * Free Software Foundation, Inc., *
27 * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
28 * *
29 * ARMv7-M Architecture, Application Level Reference Manual *
30 * ARM DDI 0405C (September 2008) *
31 * *
32 ***************************************************************************/
34 #ifdef HAVE_CONFIG_H
35 #include "config.h"
36 #endif
38 #include "breakpoints.h"
39 #include "armv7m.h"
40 #include "algorithm.h"
41 #include "register.h"
43 #if 0
44 #define _DEBUG_INSTRUCTION_EXECUTION_
45 #endif
47 static char *armv7m_exception_strings[] = {
48 "", "Reset", "NMI", "HardFault",
49 "MemManage", "BusFault", "UsageFault", "RESERVED",
50 "RESERVED", "RESERVED", "RESERVED", "SVCall",
51 "DebugMonitor", "RESERVED", "PendSV", "SysTick"
54 /* PSP is used in some thread modes */
55 const int armv7m_psp_reg_map[17] = {
56 ARMV7M_R0, ARMV7M_R1, ARMV7M_R2, ARMV7M_R3,
57 ARMV7M_R4, ARMV7M_R5, ARMV7M_R6, ARMV7M_R7,
58 ARMV7M_R8, ARMV7M_R9, ARMV7M_R10, ARMV7M_R11,
59 ARMV7M_R12, ARMV7M_PSP, ARMV7M_R14, ARMV7M_PC,
60 ARMV7M_xPSR,
63 /* MSP is used in handler and some thread modes */
64 const int armv7m_msp_reg_map[17] = {
65 ARMV7M_R0, ARMV7M_R1, ARMV7M_R2, ARMV7M_R3,
66 ARMV7M_R4, ARMV7M_R5, ARMV7M_R6, ARMV7M_R7,
67 ARMV7M_R8, ARMV7M_R9, ARMV7M_R10, ARMV7M_R11,
68 ARMV7M_R12, ARMV7M_MSP, ARMV7M_R14, ARMV7M_PC,
69 ARMV7M_xPSR,
72 #ifdef ARMV7_GDB_HACKS
73 uint8_t armv7m_gdb_dummy_cpsr_value[] = {0, 0, 0, 0};
75 struct reg armv7m_gdb_dummy_cpsr_reg = {
76 .name = "GDB dummy cpsr register",
77 .value = armv7m_gdb_dummy_cpsr_value,
78 .dirty = 0,
79 .valid = 1,
80 .size = 32,
81 .arch_info = NULL,
83 #endif
86 * These registers are not memory-mapped. The ARMv7-M profile includes
87 * memory mapped registers too, such as for the NVIC (interrupt controller)
88 * and SysTick (timer) modules; those can mostly be treated as peripherals.
90 * The ARMv6-M profile is almost identical in this respect, except that it
91 * doesn't include basepri or faultmask registers.
93 static const struct {
94 unsigned id;
95 const char *name;
96 unsigned bits;
97 } armv7m_regs[] = {
98 { ARMV7M_R0, "r0", 32 },
99 { ARMV7M_R1, "r1", 32 },
100 { ARMV7M_R2, "r2", 32 },
101 { ARMV7M_R3, "r3", 32 },
103 { ARMV7M_R4, "r4", 32 },
104 { ARMV7M_R5, "r5", 32 },
105 { ARMV7M_R6, "r6", 32 },
106 { ARMV7M_R7, "r7", 32 },
108 { ARMV7M_R8, "r8", 32 },
109 { ARMV7M_R9, "r9", 32 },
110 { ARMV7M_R10, "r10", 32 },
111 { ARMV7M_R11, "r11", 32 },
113 { ARMV7M_R12, "r12", 32 },
114 { ARMV7M_R13, "sp", 32 },
115 { ARMV7M_R14, "lr", 32 },
116 { ARMV7M_PC, "pc", 32 },
118 { ARMV7M_xPSR, "xPSR", 32 },
119 { ARMV7M_MSP, "msp", 32 },
120 { ARMV7M_PSP, "psp", 32 },
122 { ARMV7M_PRIMASK, "primask", 1 },
123 { ARMV7M_BASEPRI, "basepri", 8 },
124 { ARMV7M_FAULTMASK, "faultmask", 1 },
125 { ARMV7M_CONTROL, "control", 2 },
128 #define ARMV7M_NUM_REGS ARRAY_SIZE(armv7m_regs)
131 * Restores target context using the cache of core registers set up
132 * by armv7m_build_reg_cache(), calling optional core-specific hooks.
134 int armv7m_restore_context(struct target *target)
136 int i;
137 struct armv7m_common *armv7m = target_to_armv7m(target);
138 struct reg_cache *cache = armv7m->arm.core_cache;
140 LOG_DEBUG(" ");
142 if (armv7m->pre_restore_context)
143 armv7m->pre_restore_context(target);
145 for (i = ARMV7M_NUM_REGS - 1; i >= 0; i--) {
146 if (cache->reg_list[i].dirty) {
147 uint32_t value = buf_get_u32(cache->reg_list[i].value, 0, 32);
148 armv7m->arm.write_core_reg(target, &cache->reg_list[i], i, ARM_MODE_ANY, value);
152 return ERROR_OK;
155 /* Core state functions */
158 * Maps ISR number (from xPSR) to name.
159 * Note that while names and meanings for the first sixteen are standardized
160 * (with zero not a true exception), external interrupts are only numbered.
161 * They are assigned by vendors, which generally assign different numbers to
162 * peripherals (such as UART0 or a USB peripheral controller).
164 char *armv7m_exception_string(int number)
166 static char enamebuf[32];
168 if ((number < 0) | (number > 511))
169 return "Invalid exception";
170 if (number < 16)
171 return armv7m_exception_strings[number];
172 sprintf(enamebuf, "External Interrupt(%i)", number - 16);
173 return enamebuf;
176 static int armv7m_get_core_reg(struct reg *reg)
178 int retval;
179 struct arm_reg *armv7m_reg = reg->arch_info;
180 struct target *target = armv7m_reg->target;
181 struct arm *arm = target_to_arm(target);
183 if (target->state != TARGET_HALTED)
184 return ERROR_TARGET_NOT_HALTED;
186 retval = arm->read_core_reg(target, reg, armv7m_reg->num, arm->core_mode);
188 return retval;
191 static int armv7m_set_core_reg(struct reg *reg, uint8_t *buf)
193 struct arm_reg *armv7m_reg = reg->arch_info;
194 struct target *target = armv7m_reg->target;
195 uint32_t value = buf_get_u32(buf, 0, 32);
197 if (target->state != TARGET_HALTED)
198 return ERROR_TARGET_NOT_HALTED;
200 buf_set_u32(reg->value, 0, 32, value);
201 reg->dirty = 1;
202 reg->valid = 1;
204 return ERROR_OK;
207 static int armv7m_read_core_reg(struct target *target, struct reg *r,
208 int num, enum arm_mode mode)
210 uint32_t reg_value;
211 int retval;
212 struct arm_reg *armv7m_core_reg;
213 struct armv7m_common *armv7m = target_to_armv7m(target);
215 assert(num < (int)armv7m->arm.core_cache->num_regs);
217 armv7m_core_reg = armv7m->arm.core_cache->reg_list[num].arch_info;
218 retval = armv7m->load_core_reg_u32(target,
219 armv7m_core_reg->num, &reg_value);
221 buf_set_u32(armv7m->arm.core_cache->reg_list[num].value, 0, 32, reg_value);
222 armv7m->arm.core_cache->reg_list[num].valid = 1;
223 armv7m->arm.core_cache->reg_list[num].dirty = 0;
225 return retval;
228 static int armv7m_write_core_reg(struct target *target, struct reg *r,
229 int num, enum arm_mode mode, uint32_t value)
231 int retval;
232 uint32_t reg_value;
233 struct arm_reg *armv7m_core_reg;
234 struct armv7m_common *armv7m = target_to_armv7m(target);
236 assert(num < (int)armv7m->arm.core_cache->num_regs);
238 reg_value = buf_get_u32(armv7m->arm.core_cache->reg_list[num].value, 0, 32);
239 armv7m_core_reg = armv7m->arm.core_cache->reg_list[num].arch_info;
240 retval = armv7m->store_core_reg_u32(target,
241 armv7m_core_reg->num,
242 reg_value);
243 if (retval != ERROR_OK) {
244 LOG_ERROR("JTAG failure");
245 armv7m->arm.core_cache->reg_list[num].dirty = armv7m->arm.core_cache->reg_list[num].valid;
246 return ERROR_JTAG_DEVICE_ERROR;
249 LOG_DEBUG("write core reg %i value 0x%" PRIx32 "", num, reg_value);
250 armv7m->arm.core_cache->reg_list[num].valid = 1;
251 armv7m->arm.core_cache->reg_list[num].dirty = 0;
253 return ERROR_OK;
257 * Returns generic ARM userspace registers to GDB.
258 * GDB doesn't quite understand that most ARMs don't have floating point
259 * hardware, so this also fakes a set of long-obsolete FPA registers that
260 * are not used in EABI based software stacks.
262 int armv7m_get_gdb_reg_list(struct target *target, struct reg **reg_list[], int *reg_list_size)
264 struct armv7m_common *armv7m = target_to_armv7m(target);
265 int i;
267 *reg_list_size = 26;
268 *reg_list = malloc(sizeof(struct reg *) * (*reg_list_size));
271 * GDB register packet format for ARM:
272 * - the first 16 registers are r0..r15
273 * - (obsolete) 8 FPA registers
274 * - (obsolete) FPA status
275 * - CPSR
277 for (i = 0; i < 16; i++)
278 (*reg_list)[i] = &armv7m->arm.core_cache->reg_list[i];
280 for (i = 16; i < 24; i++)
281 (*reg_list)[i] = &arm_gdb_dummy_fp_reg;
282 (*reg_list)[24] = &arm_gdb_dummy_fps_reg;
284 #ifdef ARMV7_GDB_HACKS
285 /* use dummy cpsr reg otherwise gdb may try and set the thumb bit */
286 (*reg_list)[25] = &armv7m_gdb_dummy_cpsr_reg;
288 /* ARMV7M is always in thumb mode, try to make GDB understand this
289 * if it does not support this arch */
290 *((char *)armv7m->arm.pc->value) |= 1;
291 #else
292 (*reg_list)[25] = &armv7m->core_cache->reg_list[ARMV7M_xPSR];
293 #endif
295 return ERROR_OK;
298 /** Runs a Thumb algorithm in the target. */
299 int armv7m_run_algorithm(struct target *target,
300 int num_mem_params, struct mem_param *mem_params,
301 int num_reg_params, struct reg_param *reg_params,
302 uint32_t entry_point, uint32_t exit_point,
303 int timeout_ms, void *arch_info)
305 int retval;
307 retval = armv7m_start_algorithm(target,
308 num_mem_params, mem_params,
309 num_reg_params, reg_params,
310 entry_point, exit_point,
311 arch_info);
313 if (retval == ERROR_OK)
314 retval = armv7m_wait_algorithm(target,
315 num_mem_params, mem_params,
316 num_reg_params, reg_params,
317 exit_point, timeout_ms,
318 arch_info);
320 return retval;
323 /** Starts a Thumb algorithm in the target. */
324 int armv7m_start_algorithm(struct target *target,
325 int num_mem_params, struct mem_param *mem_params,
326 int num_reg_params, struct reg_param *reg_params,
327 uint32_t entry_point, uint32_t exit_point,
328 void *arch_info)
330 struct armv7m_common *armv7m = target_to_armv7m(target);
331 struct armv7m_algorithm *armv7m_algorithm_info = arch_info;
332 enum arm_mode core_mode = armv7m->arm.core_mode;
333 int retval = ERROR_OK;
335 /* NOTE: armv7m_run_algorithm requires that each algorithm uses a software breakpoint
336 * at the exit point */
338 if (armv7m_algorithm_info->common_magic != ARMV7M_COMMON_MAGIC) {
339 LOG_ERROR("current target isn't an ARMV7M target");
340 return ERROR_TARGET_INVALID;
343 if (target->state != TARGET_HALTED) {
344 LOG_WARNING("target not halted");
345 return ERROR_TARGET_NOT_HALTED;
348 /* refresh core register cache
349 * Not needed if core register cache is always consistent with target process state */
350 for (unsigned i = 0; i < ARMV7M_NUM_REGS; i++) {
352 armv7m_algorithm_info->context[i] = buf_get_u32(
353 armv7m->arm.core_cache->reg_list[i].value,
355 32);
358 for (int i = 0; i < num_mem_params; i++) {
359 /* TODO: Write only out params */
360 retval = target_write_buffer(target, mem_params[i].address,
361 mem_params[i].size,
362 mem_params[i].value);
363 if (retval != ERROR_OK)
364 return retval;
367 for (int i = 0; i < num_reg_params; i++) {
368 struct reg *reg =
369 register_get_by_name(armv7m->arm.core_cache, reg_params[i].reg_name, 0);
370 /* uint32_t regvalue; */
372 if (!reg) {
373 LOG_ERROR("BUG: register '%s' not found", reg_params[i].reg_name);
374 return ERROR_COMMAND_SYNTAX_ERROR;
377 if (reg->size != reg_params[i].size) {
378 LOG_ERROR("BUG: register '%s' size doesn't match reg_params[i].size",
379 reg_params[i].reg_name);
380 return ERROR_COMMAND_SYNTAX_ERROR;
383 /* regvalue = buf_get_u32(reg_params[i].value, 0, 32); */
384 armv7m_set_core_reg(reg, reg_params[i].value);
387 if (armv7m_algorithm_info->core_mode != ARM_MODE_ANY &&
388 armv7m_algorithm_info->core_mode != core_mode) {
390 /* we cannot set ARM_MODE_HANDLER, so use ARM_MODE_THREAD instead */
391 if (armv7m_algorithm_info->core_mode == ARM_MODE_HANDLER) {
392 armv7m_algorithm_info->core_mode = ARM_MODE_THREAD;
393 LOG_INFO("ARM_MODE_HANDLER not currently supported, using ARM_MODE_THREAD instead");
396 LOG_DEBUG("setting core_mode: 0x%2.2x", armv7m_algorithm_info->core_mode);
397 buf_set_u32(armv7m->arm.core_cache->reg_list[ARMV7M_CONTROL].value,
398 0, 1, armv7m_algorithm_info->core_mode);
399 armv7m->arm.core_cache->reg_list[ARMV7M_CONTROL].dirty = 1;
400 armv7m->arm.core_cache->reg_list[ARMV7M_CONTROL].valid = 1;
403 /* save previous core mode */
404 armv7m_algorithm_info->core_mode = core_mode;
406 retval = target_resume(target, 0, entry_point, 1, 1);
408 return retval;
411 /** Waits for an algorithm in the target. */
412 int armv7m_wait_algorithm(struct target *target,
413 int num_mem_params, struct mem_param *mem_params,
414 int num_reg_params, struct reg_param *reg_params,
415 uint32_t exit_point, int timeout_ms,
416 void *arch_info)
418 struct armv7m_common *armv7m = target_to_armv7m(target);
419 struct armv7m_algorithm *armv7m_algorithm_info = arch_info;
420 int retval = ERROR_OK;
421 uint32_t pc;
423 /* NOTE: armv7m_run_algorithm requires that each algorithm uses a software breakpoint
424 * at the exit point */
426 if (armv7m_algorithm_info->common_magic != ARMV7M_COMMON_MAGIC) {
427 LOG_ERROR("current target isn't an ARMV7M target");
428 return ERROR_TARGET_INVALID;
431 retval = target_wait_state(target, TARGET_HALTED, timeout_ms);
432 /* If the target fails to halt due to the breakpoint, force a halt */
433 if (retval != ERROR_OK || target->state != TARGET_HALTED) {
434 retval = target_halt(target);
435 if (retval != ERROR_OK)
436 return retval;
437 retval = target_wait_state(target, TARGET_HALTED, 500);
438 if (retval != ERROR_OK)
439 return retval;
440 return ERROR_TARGET_TIMEOUT;
443 armv7m->load_core_reg_u32(target, 15, &pc);
444 if (exit_point && (pc != exit_point)) {
445 LOG_DEBUG("failed algorithm halted at 0x%" PRIx32 ", expected 0x%" PRIx32,
447 exit_point);
448 return ERROR_TARGET_TIMEOUT;
451 /* Read memory values to mem_params[] */
452 for (int i = 0; i < num_mem_params; i++) {
453 if (mem_params[i].direction != PARAM_OUT) {
454 retval = target_read_buffer(target, mem_params[i].address,
455 mem_params[i].size,
456 mem_params[i].value);
457 if (retval != ERROR_OK)
458 return retval;
462 /* Copy core register values to reg_params[] */
463 for (int i = 0; i < num_reg_params; i++) {
464 if (reg_params[i].direction != PARAM_OUT) {
465 struct reg *reg = register_get_by_name(armv7m->arm.core_cache,
466 reg_params[i].reg_name,
469 if (!reg) {
470 LOG_ERROR("BUG: register '%s' not found", reg_params[i].reg_name);
471 return ERROR_COMMAND_SYNTAX_ERROR;
474 if (reg->size != reg_params[i].size) {
475 LOG_ERROR(
476 "BUG: register '%s' size doesn't match reg_params[i].size",
477 reg_params[i].reg_name);
478 return ERROR_COMMAND_SYNTAX_ERROR;
481 buf_set_u32(reg_params[i].value, 0, 32, buf_get_u32(reg->value, 0, 32));
485 for (int i = ARMV7M_NUM_REGS - 1; i >= 0; i--) {
486 uint32_t regvalue;
487 regvalue = buf_get_u32(armv7m->arm.core_cache->reg_list[i].value, 0, 32);
488 if (regvalue != armv7m_algorithm_info->context[i]) {
489 LOG_DEBUG("restoring register %s with value 0x%8.8" PRIx32,
490 armv7m->arm.core_cache->reg_list[i].name,
491 armv7m_algorithm_info->context[i]);
492 buf_set_u32(armv7m->arm.core_cache->reg_list[i].value,
493 0, 32, armv7m_algorithm_info->context[i]);
494 armv7m->arm.core_cache->reg_list[i].valid = 1;
495 armv7m->arm.core_cache->reg_list[i].dirty = 1;
499 /* restore previous core mode */
500 if (armv7m_algorithm_info->core_mode != armv7m->arm.core_mode) {
501 LOG_DEBUG("restoring core_mode: 0x%2.2x", armv7m_algorithm_info->core_mode);
502 buf_set_u32(armv7m->arm.core_cache->reg_list[ARMV7M_CONTROL].value,
503 0, 1, armv7m_algorithm_info->core_mode);
504 armv7m->arm.core_cache->reg_list[ARMV7M_CONTROL].dirty = 1;
505 armv7m->arm.core_cache->reg_list[ARMV7M_CONTROL].valid = 1;
508 armv7m->arm.core_mode = armv7m_algorithm_info->core_mode;
510 return retval;
513 /** Logs summary of ARMv7-M state for a halted target. */
514 int armv7m_arch_state(struct target *target)
516 struct armv7m_common *armv7m = target_to_armv7m(target);
517 struct arm *arm = &armv7m->arm;
518 uint32_t ctrl, sp;
520 ctrl = buf_get_u32(arm->core_cache->reg_list[ARMV7M_CONTROL].value, 0, 32);
521 sp = buf_get_u32(arm->core_cache->reg_list[ARMV7M_R13].value, 0, 32);
523 LOG_USER("target halted due to %s, current mode: %s %s\n"
524 "xPSR: %#8.8" PRIx32 " pc: %#8.8" PRIx32 " %csp: %#8.8" PRIx32 "%s",
525 debug_reason_name(target),
526 arm_mode_name(arm->core_mode),
527 armv7m_exception_string(armv7m->exception_number),
528 buf_get_u32(arm->cpsr->value, 0, 32),
529 buf_get_u32(arm->pc->value, 0, 32),
530 (ctrl & 0x02) ? 'p' : 'm',
532 arm->is_semihosting ? ", semihosting" : "");
534 return ERROR_OK;
537 static const struct reg_arch_type armv7m_reg_type = {
538 .get = armv7m_get_core_reg,
539 .set = armv7m_set_core_reg,
542 /** Builds cache of architecturally defined registers. */
543 struct reg_cache *armv7m_build_reg_cache(struct target *target)
545 struct armv7m_common *armv7m = target_to_armv7m(target);
546 struct arm *arm = &armv7m->arm;
547 int num_regs = ARMV7M_NUM_REGS;
548 struct reg_cache **cache_p = register_get_last_cache_p(&target->reg_cache);
549 struct reg_cache *cache = malloc(sizeof(struct reg_cache));
550 struct reg *reg_list = calloc(num_regs, sizeof(struct reg));
551 struct arm_reg *arch_info = calloc(num_regs, sizeof(struct arm_reg));
552 int i;
554 #ifdef ARMV7_GDB_HACKS
555 register_init_dummy(&armv7m_gdb_dummy_cpsr_reg);
556 #endif
558 /* Build the process context cache */
559 cache->name = "arm v7m registers";
560 cache->next = NULL;
561 cache->reg_list = reg_list;
562 cache->num_regs = num_regs;
563 (*cache_p) = cache;
565 for (i = 0; i < num_regs; i++) {
566 arch_info[i].num = armv7m_regs[i].id;
567 arch_info[i].target = target;
568 arch_info[i].arm = arm;
570 reg_list[i].name = armv7m_regs[i].name;
571 reg_list[i].size = armv7m_regs[i].bits;
572 reg_list[i].value = calloc(1, 4);
573 reg_list[i].dirty = 0;
574 reg_list[i].valid = 0;
575 reg_list[i].type = &armv7m_reg_type;
576 reg_list[i].arch_info = &arch_info[i];
579 arm->cpsr = reg_list + ARMV7M_xPSR;
580 arm->pc = reg_list + ARMV7M_PC;
581 arm->core_cache = cache;
582 return cache;
585 static int armv7m_setup_semihosting(struct target *target, int enable)
587 /* nothing todo for armv7m */
588 return ERROR_OK;
591 /** Sets up target as a generic ARMv7-M core */
592 int armv7m_init_arch_info(struct target *target, struct armv7m_common *armv7m)
594 struct arm *arm = &armv7m->arm;
596 armv7m->common_magic = ARMV7M_COMMON_MAGIC;
597 armv7m->fp_feature = FP_NONE;
599 arm->core_type = ARM_MODE_THREAD;
600 arm->arch_info = armv7m;
601 arm->setup_semihosting = armv7m_setup_semihosting;
603 arm->read_core_reg = armv7m_read_core_reg;
604 arm->write_core_reg = armv7m_write_core_reg;
606 return arm_init_arch_info(target, arm);
609 /** Generates a CRC32 checksum of a memory region. */
610 int armv7m_checksum_memory(struct target *target,
611 uint32_t address, uint32_t count, uint32_t *checksum)
613 struct working_area *crc_algorithm;
614 struct armv7m_algorithm armv7m_info;
615 struct reg_param reg_params[2];
616 int retval;
618 /* see contrib/loaders/checksum/armv7m_crc.s for src */
620 static const uint8_t cortex_m3_crc_code[] = {
621 /* main: */
622 0x02, 0x46, /* mov r2, r0 */
623 0x00, 0x20, /* movs r0, #0 */
624 0xC0, 0x43, /* mvns r0, r0 */
625 0x0A, 0x4E, /* ldr r6, CRC32XOR */
626 0x0B, 0x46, /* mov r3, r1 */
627 0x00, 0x24, /* movs r4, #0 */
628 0x0D, 0xE0, /* b ncomp */
629 /* nbyte: */
630 0x11, 0x5D, /* ldrb r1, [r2, r4] */
631 0x09, 0x06, /* lsls r1, r1, #24 */
632 0x48, 0x40, /* eors r0, r0, r1 */
633 0x00, 0x25, /* movs r5, #0 */
634 /* loop: */
635 0x00, 0x28, /* cmp r0, #0 */
636 0x02, 0xDA, /* bge notset */
637 0x40, 0x00, /* lsls r0, r0, #1 */
638 0x70, 0x40, /* eors r0, r0, r6 */
639 0x00, 0xE0, /* b cont */
640 /* notset: */
641 0x40, 0x00, /* lsls r0, r0, #1 */
642 /* cont: */
643 0x01, 0x35, /* adds r5, r5, #1 */
644 0x08, 0x2D, /* cmp r5, #8 */
645 0xF6, 0xD1, /* bne loop */
646 0x01, 0x34, /* adds r4, r4, #1 */
647 /* ncomp: */
648 0x9C, 0x42, /* cmp r4, r3 */
649 0xEF, 0xD1, /* bne nbyte */
650 0x00, 0xBE, /* bkpt #0 */
651 0xB7, 0x1D, 0xC1, 0x04 /* CRC32XOR: .word 0x04c11db7 */
654 retval = target_alloc_working_area(target, sizeof(cortex_m3_crc_code), &crc_algorithm);
655 if (retval != ERROR_OK)
656 return retval;
658 retval = target_write_buffer(target, crc_algorithm->address,
659 sizeof(cortex_m3_crc_code), (uint8_t *)cortex_m3_crc_code);
660 if (retval != ERROR_OK)
661 goto cleanup;
663 armv7m_info.common_magic = ARMV7M_COMMON_MAGIC;
664 armv7m_info.core_mode = ARM_MODE_ANY;
666 init_reg_param(&reg_params[0], "r0", 32, PARAM_IN_OUT);
667 init_reg_param(&reg_params[1], "r1", 32, PARAM_OUT);
669 buf_set_u32(reg_params[0].value, 0, 32, address);
670 buf_set_u32(reg_params[1].value, 0, 32, count);
672 int timeout = 20000 * (1 + (count / (1024 * 1024)));
674 retval = target_run_algorithm(target, 0, NULL, 2, reg_params, crc_algorithm->address,
675 crc_algorithm->address + (sizeof(cortex_m3_crc_code) - 6),
676 timeout, &armv7m_info);
678 if (retval == ERROR_OK)
679 *checksum = buf_get_u32(reg_params[0].value, 0, 32);
680 else
681 LOG_ERROR("error executing cortex_m3 crc algorithm");
683 destroy_reg_param(&reg_params[0]);
684 destroy_reg_param(&reg_params[1]);
686 cleanup:
687 target_free_working_area(target, crc_algorithm);
689 return retval;
692 /** Checks whether a memory region is zeroed. */
693 int armv7m_blank_check_memory(struct target *target,
694 uint32_t address, uint32_t count, uint32_t *blank)
696 struct working_area *erase_check_algorithm;
697 struct reg_param reg_params[3];
698 struct armv7m_algorithm armv7m_info;
699 int retval;
701 /* see contrib/loaders/erase_check/armv7m_erase_check.s for src */
703 static const uint8_t erase_check_code[] = {
704 /* loop: */
705 0x03, 0x78, /* ldrb r3, [r0] */
706 0x01, 0x30, /* adds r0, #1 */
707 0x1A, 0x40, /* ands r2, r2, r3 */
708 0x01, 0x39, /* subs r1, r1, #1 */
709 0xFA, 0xD1, /* bne loop */
710 0x00, 0xBE /* bkpt #0 */
713 /* make sure we have a working area */
714 if (target_alloc_working_area(target, sizeof(erase_check_code),
715 &erase_check_algorithm) != ERROR_OK)
716 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
718 retval = target_write_buffer(target, erase_check_algorithm->address,
719 sizeof(erase_check_code), (uint8_t *)erase_check_code);
720 if (retval != ERROR_OK)
721 return retval;
723 armv7m_info.common_magic = ARMV7M_COMMON_MAGIC;
724 armv7m_info.core_mode = ARM_MODE_ANY;
726 init_reg_param(&reg_params[0], "r0", 32, PARAM_OUT);
727 buf_set_u32(reg_params[0].value, 0, 32, address);
729 init_reg_param(&reg_params[1], "r1", 32, PARAM_OUT);
730 buf_set_u32(reg_params[1].value, 0, 32, count);
732 init_reg_param(&reg_params[2], "r2", 32, PARAM_IN_OUT);
733 buf_set_u32(reg_params[2].value, 0, 32, 0xff);
735 retval = target_run_algorithm(target,
737 NULL,
739 reg_params,
740 erase_check_algorithm->address,
741 erase_check_algorithm->address + (sizeof(erase_check_code) - 2),
742 10000,
743 &armv7m_info);
745 if (retval == ERROR_OK)
746 *blank = buf_get_u32(reg_params[2].value, 0, 32);
748 destroy_reg_param(&reg_params[0]);
749 destroy_reg_param(&reg_params[1]);
750 destroy_reg_param(&reg_params[2]);
752 target_free_working_area(target, erase_check_algorithm);
754 return retval;
757 int armv7m_maybe_skip_bkpt_inst(struct target *target, bool *inst_found)
759 struct armv7m_common *armv7m = target_to_armv7m(target);
760 struct reg *r = armv7m->arm.pc;
761 bool result = false;
764 /* if we halted last time due to a bkpt instruction
765 * then we have to manually step over it, otherwise
766 * the core will break again */
768 if (target->debug_reason == DBG_REASON_BREAKPOINT) {
769 uint16_t op;
770 uint32_t pc = buf_get_u32(r->value, 0, 32);
772 pc &= ~1;
773 if (target_read_u16(target, pc, &op) == ERROR_OK) {
774 if ((op & 0xFF00) == 0xBE00) {
775 pc = buf_get_u32(r->value, 0, 32) + 2;
776 buf_set_u32(r->value, 0, 32, pc);
777 r->dirty = true;
778 r->valid = true;
779 result = true;
780 LOG_DEBUG("Skipping over BKPT instruction");
785 if (inst_found)
786 *inst_found = result;
788 return ERROR_OK;
791 const struct command_registration armv7m_command_handlers[] = {
793 .chain = arm_command_handlers,
796 .chain = dap_command_handlers,
798 COMMAND_REGISTRATION_DONE