Revert "target: remove unused working area 'user' field"
[openocd.git] / src / target / target.c
blobb8e4c2ff9ed937dc0720b2f98634a3c6923aa074
1 /***************************************************************************
2 * Copyright (C) 2005 by Dominic Rath *
3 * Dominic.Rath@gmx.de *
4 * *
5 * Copyright (C) 2007-2010 Øyvind Harboe *
6 * oyvind.harboe@zylin.com *
7 * *
8 * Copyright (C) 2008, Duane Ellis *
9 * openocd@duaneeellis.com *
10 * *
11 * Copyright (C) 2008 by Spencer Oliver *
12 * spen@spen-soft.co.uk *
13 * *
14 * Copyright (C) 2008 by Rick Altherr *
15 * kc8apf@kc8apf.net> *
16 * *
17 * Copyright (C) 2011 by Broadcom Corporation *
18 * Evan Hunter - ehunter@broadcom.com *
19 * *
20 * Copyright (C) ST-Ericsson SA 2011 *
21 * michel.jaouen@stericsson.com : smp minimum support *
22 * *
23 * Copyright (C) 2011 Andreas Fritiofson *
24 * andreas.fritiofson@gmail.com *
25 * *
26 * This program is free software; you can redistribute it and/or modify *
27 * it under the terms of the GNU General Public License as published by *
28 * the Free Software Foundation; either version 2 of the License, or *
29 * (at your option) any later version. *
30 * *
31 * This program is distributed in the hope that it will be useful, *
32 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
33 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
34 * GNU General Public License for more details. *
35 * *
36 * You should have received a copy of the GNU General Public License *
37 * along with this program; if not, write to the *
38 * Free Software Foundation, Inc., *
39 * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
40 ***************************************************************************/
42 #ifdef HAVE_CONFIG_H
43 #include "config.h"
44 #endif
46 #include <helper/time_support.h>
47 #include <jtag/jtag.h>
48 #include <flash/nor/core.h>
50 #include "target.h"
51 #include "target_type.h"
52 #include "target_request.h"
53 #include "breakpoints.h"
54 #include "register.h"
55 #include "trace.h"
56 #include "image.h"
57 #include "rtos/rtos.h"
59 static int target_read_buffer_default(struct target *target, uint32_t address,
60 uint32_t size, uint8_t *buffer);
61 static int target_write_buffer_default(struct target *target, uint32_t address,
62 uint32_t size, const uint8_t *buffer);
63 static int target_array2mem(Jim_Interp *interp, struct target *target,
64 int argc, Jim_Obj * const *argv);
65 static int target_mem2array(Jim_Interp *interp, struct target *target,
66 int argc, Jim_Obj * const *argv);
67 static int target_register_user_commands(struct command_context *cmd_ctx);
69 /* targets */
70 extern struct target_type arm7tdmi_target;
71 extern struct target_type arm720t_target;
72 extern struct target_type arm9tdmi_target;
73 extern struct target_type arm920t_target;
74 extern struct target_type arm966e_target;
75 extern struct target_type arm946e_target;
76 extern struct target_type arm926ejs_target;
77 extern struct target_type fa526_target;
78 extern struct target_type feroceon_target;
79 extern struct target_type dragonite_target;
80 extern struct target_type xscale_target;
81 extern struct target_type cortexm3_target;
82 extern struct target_type cortexa8_target;
83 extern struct target_type arm11_target;
84 extern struct target_type mips_m4k_target;
85 extern struct target_type avr_target;
86 extern struct target_type dsp563xx_target;
87 extern struct target_type dsp5680xx_target;
88 extern struct target_type testee_target;
89 extern struct target_type avr32_ap7k_target;
90 extern struct target_type stm32_stlink_target;
92 static struct target_type *target_types[] = {
93 &arm7tdmi_target,
94 &arm9tdmi_target,
95 &arm920t_target,
96 &arm720t_target,
97 &arm966e_target,
98 &arm946e_target,
99 &arm926ejs_target,
100 &fa526_target,
101 &feroceon_target,
102 &dragonite_target,
103 &xscale_target,
104 &cortexm3_target,
105 &cortexa8_target,
106 &arm11_target,
107 &mips_m4k_target,
108 &avr_target,
109 &dsp563xx_target,
110 &dsp5680xx_target,
111 &testee_target,
112 &avr32_ap7k_target,
113 &stm32_stlink_target,
114 NULL,
117 struct target *all_targets;
118 static struct target_event_callback *target_event_callbacks;
119 static struct target_timer_callback *target_timer_callbacks;
120 static const int polling_interval = 100;
122 static const Jim_Nvp nvp_assert[] = {
123 { .name = "assert", NVP_ASSERT },
124 { .name = "deassert", NVP_DEASSERT },
125 { .name = "T", NVP_ASSERT },
126 { .name = "F", NVP_DEASSERT },
127 { .name = "t", NVP_ASSERT },
128 { .name = "f", NVP_DEASSERT },
129 { .name = NULL, .value = -1 }
132 static const Jim_Nvp nvp_error_target[] = {
133 { .value = ERROR_TARGET_INVALID, .name = "err-invalid" },
134 { .value = ERROR_TARGET_INIT_FAILED, .name = "err-init-failed" },
135 { .value = ERROR_TARGET_TIMEOUT, .name = "err-timeout" },
136 { .value = ERROR_TARGET_NOT_HALTED, .name = "err-not-halted" },
137 { .value = ERROR_TARGET_FAILURE, .name = "err-failure" },
138 { .value = ERROR_TARGET_UNALIGNED_ACCESS , .name = "err-unaligned-access" },
139 { .value = ERROR_TARGET_DATA_ABORT , .name = "err-data-abort" },
140 { .value = ERROR_TARGET_RESOURCE_NOT_AVAILABLE , .name = "err-resource-not-available" },
141 { .value = ERROR_TARGET_TRANSLATION_FAULT , .name = "err-translation-fault" },
142 { .value = ERROR_TARGET_NOT_RUNNING, .name = "err-not-running" },
143 { .value = ERROR_TARGET_NOT_EXAMINED, .name = "err-not-examined" },
144 { .value = -1, .name = NULL }
147 static const char *target_strerror_safe(int err)
149 const Jim_Nvp *n;
151 n = Jim_Nvp_value2name_simple(nvp_error_target, err);
152 if (n->name == NULL)
153 return "unknown";
154 else
155 return n->name;
158 static const Jim_Nvp nvp_target_event[] = {
160 { .value = TARGET_EVENT_GDB_HALT, .name = "gdb-halt" },
161 { .value = TARGET_EVENT_HALTED, .name = "halted" },
162 { .value = TARGET_EVENT_RESUMED, .name = "resumed" },
163 { .value = TARGET_EVENT_RESUME_START, .name = "resume-start" },
164 { .value = TARGET_EVENT_RESUME_END, .name = "resume-end" },
166 { .name = "gdb-start", .value = TARGET_EVENT_GDB_START },
167 { .name = "gdb-end", .value = TARGET_EVENT_GDB_END },
169 { .value = TARGET_EVENT_RESET_START, .name = "reset-start" },
170 { .value = TARGET_EVENT_RESET_ASSERT_PRE, .name = "reset-assert-pre" },
171 { .value = TARGET_EVENT_RESET_ASSERT, .name = "reset-assert" },
172 { .value = TARGET_EVENT_RESET_ASSERT_POST, .name = "reset-assert-post" },
173 { .value = TARGET_EVENT_RESET_DEASSERT_PRE, .name = "reset-deassert-pre" },
174 { .value = TARGET_EVENT_RESET_DEASSERT_POST, .name = "reset-deassert-post" },
175 { .value = TARGET_EVENT_RESET_HALT_PRE, .name = "reset-halt-pre" },
176 { .value = TARGET_EVENT_RESET_HALT_POST, .name = "reset-halt-post" },
177 { .value = TARGET_EVENT_RESET_WAIT_PRE, .name = "reset-wait-pre" },
178 { .value = TARGET_EVENT_RESET_WAIT_POST, .name = "reset-wait-post" },
179 { .value = TARGET_EVENT_RESET_INIT, .name = "reset-init" },
180 { .value = TARGET_EVENT_RESET_END, .name = "reset-end" },
182 { .value = TARGET_EVENT_EXAMINE_START, .name = "examine-start" },
183 { .value = TARGET_EVENT_EXAMINE_END, .name = "examine-end" },
185 { .value = TARGET_EVENT_DEBUG_HALTED, .name = "debug-halted" },
186 { .value = TARGET_EVENT_DEBUG_RESUMED, .name = "debug-resumed" },
188 { .value = TARGET_EVENT_GDB_ATTACH, .name = "gdb-attach" },
189 { .value = TARGET_EVENT_GDB_DETACH, .name = "gdb-detach" },
191 { .value = TARGET_EVENT_GDB_FLASH_WRITE_START, .name = "gdb-flash-write-start" },
192 { .value = TARGET_EVENT_GDB_FLASH_WRITE_END , .name = "gdb-flash-write-end" },
194 { .value = TARGET_EVENT_GDB_FLASH_ERASE_START, .name = "gdb-flash-erase-start" },
195 { .value = TARGET_EVENT_GDB_FLASH_ERASE_END , .name = "gdb-flash-erase-end" },
197 { .name = NULL, .value = -1 }
200 static const Jim_Nvp nvp_target_state[] = {
201 { .name = "unknown", .value = TARGET_UNKNOWN },
202 { .name = "running", .value = TARGET_RUNNING },
203 { .name = "halted", .value = TARGET_HALTED },
204 { .name = "reset", .value = TARGET_RESET },
205 { .name = "debug-running", .value = TARGET_DEBUG_RUNNING },
206 { .name = NULL, .value = -1 },
209 static const Jim_Nvp nvp_target_debug_reason[] = {
210 { .name = "debug-request" , .value = DBG_REASON_DBGRQ },
211 { .name = "breakpoint" , .value = DBG_REASON_BREAKPOINT },
212 { .name = "watchpoint" , .value = DBG_REASON_WATCHPOINT },
213 { .name = "watchpoint-and-breakpoint", .value = DBG_REASON_WPTANDBKPT },
214 { .name = "single-step" , .value = DBG_REASON_SINGLESTEP },
215 { .name = "target-not-halted" , .value = DBG_REASON_NOTHALTED },
216 { .name = "undefined" , .value = DBG_REASON_UNDEFINED },
217 { .name = NULL, .value = -1 },
220 static const Jim_Nvp nvp_target_endian[] = {
221 { .name = "big", .value = TARGET_BIG_ENDIAN },
222 { .name = "little", .value = TARGET_LITTLE_ENDIAN },
223 { .name = "be", .value = TARGET_BIG_ENDIAN },
224 { .name = "le", .value = TARGET_LITTLE_ENDIAN },
225 { .name = NULL, .value = -1 },
228 static const Jim_Nvp nvp_reset_modes[] = {
229 { .name = "unknown", .value = RESET_UNKNOWN },
230 { .name = "run" , .value = RESET_RUN },
231 { .name = "halt" , .value = RESET_HALT },
232 { .name = "init" , .value = RESET_INIT },
233 { .name = NULL , .value = -1 },
236 const char *debug_reason_name(struct target *t)
238 const char *cp;
240 cp = Jim_Nvp_value2name_simple(nvp_target_debug_reason,
241 t->debug_reason)->name;
242 if (!cp) {
243 LOG_ERROR("Invalid debug reason: %d", (int)(t->debug_reason));
244 cp = "(*BUG*unknown*BUG*)";
246 return cp;
249 const char *target_state_name(struct target *t)
251 const char *cp;
252 cp = Jim_Nvp_value2name_simple(nvp_target_state, t->state)->name;
253 if (!cp) {
254 LOG_ERROR("Invalid target state: %d", (int)(t->state));
255 cp = "(*BUG*unknown*BUG*)";
257 return cp;
260 /* determine the number of the new target */
261 static int new_target_number(void)
263 struct target *t;
264 int x;
266 /* number is 0 based */
267 x = -1;
268 t = all_targets;
269 while (t) {
270 if (x < t->target_number)
271 x = t->target_number;
272 t = t->next;
274 return x + 1;
277 /* read a uint32_t from a buffer in target memory endianness */
278 uint32_t target_buffer_get_u32(struct target *target, const uint8_t *buffer)
280 if (target->endianness == TARGET_LITTLE_ENDIAN)
281 return le_to_h_u32(buffer);
282 else
283 return be_to_h_u32(buffer);
286 /* read a uint24_t from a buffer in target memory endianness */
287 uint32_t target_buffer_get_u24(struct target *target, const uint8_t *buffer)
289 if (target->endianness == TARGET_LITTLE_ENDIAN)
290 return le_to_h_u24(buffer);
291 else
292 return be_to_h_u24(buffer);
295 /* read a uint16_t from a buffer in target memory endianness */
296 uint16_t target_buffer_get_u16(struct target *target, const uint8_t *buffer)
298 if (target->endianness == TARGET_LITTLE_ENDIAN)
299 return le_to_h_u16(buffer);
300 else
301 return be_to_h_u16(buffer);
304 /* read a uint8_t from a buffer in target memory endianness */
305 static uint8_t target_buffer_get_u8(struct target *target, const uint8_t *buffer)
307 return *buffer & 0x0ff;
310 /* write a uint32_t to a buffer in target memory endianness */
311 void target_buffer_set_u32(struct target *target, uint8_t *buffer, uint32_t value)
313 if (target->endianness == TARGET_LITTLE_ENDIAN)
314 h_u32_to_le(buffer, value);
315 else
316 h_u32_to_be(buffer, value);
319 /* write a uint24_t to a buffer in target memory endianness */
320 void target_buffer_set_u24(struct target *target, uint8_t *buffer, uint32_t value)
322 if (target->endianness == TARGET_LITTLE_ENDIAN)
323 h_u24_to_le(buffer, value);
324 else
325 h_u24_to_be(buffer, value);
328 /* write a uint16_t to a buffer in target memory endianness */
329 void target_buffer_set_u16(struct target *target, uint8_t *buffer, uint16_t value)
331 if (target->endianness == TARGET_LITTLE_ENDIAN)
332 h_u16_to_le(buffer, value);
333 else
334 h_u16_to_be(buffer, value);
337 /* write a uint8_t to a buffer in target memory endianness */
338 static void target_buffer_set_u8(struct target *target, uint8_t *buffer, uint8_t value)
340 *buffer = value;
343 /* write a uint32_t array to a buffer in target memory endianness */
344 void target_buffer_get_u32_array(struct target *target, const uint8_t *buffer, uint32_t count, uint32_t *dstbuf)
346 uint32_t i;
347 for (i = 0; i < count; i++)
348 dstbuf[i] = target_buffer_get_u32(target, &buffer[i * 4]);
351 /* write a uint16_t array to a buffer in target memory endianness */
352 void target_buffer_get_u16_array(struct target *target, const uint8_t *buffer, uint32_t count, uint16_t *dstbuf)
354 uint32_t i;
355 for (i = 0; i < count; i++)
356 dstbuf[i] = target_buffer_get_u16(target, &buffer[i * 2]);
359 /* write a uint32_t array to a buffer in target memory endianness */
360 void target_buffer_set_u32_array(struct target *target, uint8_t *buffer, uint32_t count, uint32_t *srcbuf)
362 uint32_t i;
363 for (i = 0; i < count; i++)
364 target_buffer_set_u32(target, &buffer[i * 4], srcbuf[i]);
367 /* write a uint16_t array to a buffer in target memory endianness */
368 void target_buffer_set_u16_array(struct target *target, uint8_t *buffer, uint32_t count, uint16_t *srcbuf)
370 uint32_t i;
371 for (i = 0; i < count; i++)
372 target_buffer_set_u16(target, &buffer[i * 2], srcbuf[i]);
375 /* return a pointer to a configured target; id is name or number */
376 struct target *get_target(const char *id)
378 struct target *target;
380 /* try as tcltarget name */
381 for (target = all_targets; target; target = target->next) {
382 if (target->cmd_name == NULL)
383 continue;
384 if (strcmp(id, target->cmd_name) == 0)
385 return target;
388 /* It's OK to remove this fallback sometime after August 2010 or so */
390 /* no match, try as number */
391 unsigned num;
392 if (parse_uint(id, &num) != ERROR_OK)
393 return NULL;
395 for (target = all_targets; target; target = target->next) {
396 if (target->target_number == (int)num) {
397 LOG_WARNING("use '%s' as target identifier, not '%u'",
398 target->cmd_name, num);
399 return target;
403 return NULL;
406 /* returns a pointer to the n-th configured target */
407 static struct target *get_target_by_num(int num)
409 struct target *target = all_targets;
411 while (target) {
412 if (target->target_number == num)
413 return target;
414 target = target->next;
417 return NULL;
420 struct target *get_current_target(struct command_context *cmd_ctx)
422 struct target *target = get_target_by_num(cmd_ctx->current_target);
424 if (target == NULL) {
425 LOG_ERROR("BUG: current_target out of bounds");
426 exit(-1);
429 return target;
432 int target_poll(struct target *target)
434 int retval;
436 /* We can't poll until after examine */
437 if (!target_was_examined(target)) {
438 /* Fail silently lest we pollute the log */
439 return ERROR_FAIL;
442 retval = target->type->poll(target);
443 if (retval != ERROR_OK)
444 return retval;
446 if (target->halt_issued) {
447 if (target->state == TARGET_HALTED)
448 target->halt_issued = false;
449 else {
450 long long t = timeval_ms() - target->halt_issued_time;
451 if (t > 1000) {
452 target->halt_issued = false;
453 LOG_INFO("Halt timed out, wake up GDB.");
454 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
459 return ERROR_OK;
462 int target_halt(struct target *target)
464 int retval;
465 /* We can't poll until after examine */
466 if (!target_was_examined(target)) {
467 LOG_ERROR("Target not examined yet");
468 return ERROR_FAIL;
471 retval = target->type->halt(target);
472 if (retval != ERROR_OK)
473 return retval;
475 target->halt_issued = true;
476 target->halt_issued_time = timeval_ms();
478 return ERROR_OK;
482 * Make the target (re)start executing using its saved execution
483 * context (possibly with some modifications).
485 * @param target Which target should start executing.
486 * @param current True to use the target's saved program counter instead
487 * of the address parameter
488 * @param address Optionally used as the program counter.
489 * @param handle_breakpoints True iff breakpoints at the resumption PC
490 * should be skipped. (For example, maybe execution was stopped by
491 * such a breakpoint, in which case it would be counterprodutive to
492 * let it re-trigger.
493 * @param debug_execution False if all working areas allocated by OpenOCD
494 * should be released and/or restored to their original contents.
495 * (This would for example be true to run some downloaded "helper"
496 * algorithm code, which resides in one such working buffer and uses
497 * another for data storage.)
499 * @todo Resolve the ambiguity about what the "debug_execution" flag
500 * signifies. For example, Target implementations don't agree on how
501 * it relates to invalidation of the register cache, or to whether
502 * breakpoints and watchpoints should be enabled. (It would seem wrong
503 * to enable breakpoints when running downloaded "helper" algorithms
504 * (debug_execution true), since the breakpoints would be set to match
505 * target firmware being debugged, not the helper algorithm.... and
506 * enabling them could cause such helpers to malfunction (for example,
507 * by overwriting data with a breakpoint instruction. On the other
508 * hand the infrastructure for running such helpers might use this
509 * procedure but rely on hardware breakpoint to detect termination.)
511 int target_resume(struct target *target, int current, uint32_t address, int handle_breakpoints, int debug_execution)
513 int retval;
515 /* We can't poll until after examine */
516 if (!target_was_examined(target)) {
517 LOG_ERROR("Target not examined yet");
518 return ERROR_FAIL;
521 target_call_event_callbacks(target, TARGET_EVENT_RESUME_START);
523 /* note that resume *must* be asynchronous. The CPU can halt before
524 * we poll. The CPU can even halt at the current PC as a result of
525 * a software breakpoint being inserted by (a bug?) the application.
527 retval = target->type->resume(target, current, address, handle_breakpoints, debug_execution);
528 if (retval != ERROR_OK)
529 return retval;
531 target_call_event_callbacks(target, TARGET_EVENT_RESUME_END);
533 return retval;
536 static int target_process_reset(struct command_context *cmd_ctx, enum target_reset_mode reset_mode)
538 char buf[100];
539 int retval;
540 Jim_Nvp *n;
541 n = Jim_Nvp_value2name_simple(nvp_reset_modes, reset_mode);
542 if (n->name == NULL) {
543 LOG_ERROR("invalid reset mode");
544 return ERROR_FAIL;
547 /* disable polling during reset to make reset event scripts
548 * more predictable, i.e. dr/irscan & pathmove in events will
549 * not have JTAG operations injected into the middle of a sequence.
551 bool save_poll = jtag_poll_get_enabled();
553 jtag_poll_set_enabled(false);
555 sprintf(buf, "ocd_process_reset %s", n->name);
556 retval = Jim_Eval(cmd_ctx->interp, buf);
558 jtag_poll_set_enabled(save_poll);
560 if (retval != JIM_OK) {
561 Jim_MakeErrorMessage(cmd_ctx->interp);
562 command_print(NULL, "%s\n", Jim_GetString(Jim_GetResult(cmd_ctx->interp), NULL));
563 return ERROR_FAIL;
566 /* We want any events to be processed before the prompt */
567 retval = target_call_timer_callbacks_now();
569 struct target *target;
570 for (target = all_targets; target; target = target->next)
571 target->type->check_reset(target);
573 return retval;
576 static int identity_virt2phys(struct target *target,
577 uint32_t virtual, uint32_t *physical)
579 *physical = virtual;
580 return ERROR_OK;
583 static int no_mmu(struct target *target, int *enabled)
585 *enabled = 0;
586 return ERROR_OK;
589 static int default_examine(struct target *target)
591 target_set_examined(target);
592 return ERROR_OK;
595 /* no check by default */
596 static int default_check_reset(struct target *target)
598 return ERROR_OK;
601 int target_examine_one(struct target *target)
603 return target->type->examine(target);
606 static int jtag_enable_callback(enum jtag_event event, void *priv)
608 struct target *target = priv;
610 if (event != JTAG_TAP_EVENT_ENABLE || !target->tap->enabled)
611 return ERROR_OK;
613 jtag_unregister_event_callback(jtag_enable_callback, target);
615 target_call_event_callbacks(target, TARGET_EVENT_EXAMINE_START);
617 int retval = target_examine_one(target);
618 if (retval != ERROR_OK)
619 return retval;
621 target_call_event_callbacks(target, TARGET_EVENT_EXAMINE_END);
623 return retval;
626 /* Targets that correctly implement init + examine, i.e.
627 * no communication with target during init:
629 * XScale
631 int target_examine(void)
633 int retval = ERROR_OK;
634 struct target *target;
636 for (target = all_targets; target; target = target->next) {
637 /* defer examination, but don't skip it */
638 if (!target->tap->enabled) {
639 jtag_register_event_callback(jtag_enable_callback,
640 target);
641 continue;
644 target_call_event_callbacks(target, TARGET_EVENT_EXAMINE_START);
646 retval = target_examine_one(target);
647 if (retval != ERROR_OK)
648 return retval;
650 target_call_event_callbacks(target, TARGET_EVENT_EXAMINE_END);
652 return retval;
655 const char *target_type_name(struct target *target)
657 return target->type->name;
660 static int target_write_memory_imp(struct target *target, uint32_t address,
661 uint32_t size, uint32_t count, const uint8_t *buffer)
663 if (!target_was_examined(target)) {
664 LOG_ERROR("Target not examined yet");
665 return ERROR_FAIL;
667 return target->type->write_memory_imp(target, address, size, count, buffer);
670 static int target_read_memory_imp(struct target *target, uint32_t address,
671 uint32_t size, uint32_t count, uint8_t *buffer)
673 if (!target_was_examined(target)) {
674 LOG_ERROR("Target not examined yet");
675 return ERROR_FAIL;
677 return target->type->read_memory_imp(target, address, size, count, buffer);
680 static int target_soft_reset_halt_imp(struct target *target)
682 if (!target_was_examined(target)) {
683 LOG_ERROR("Target not examined yet");
684 return ERROR_FAIL;
686 if (!target->type->soft_reset_halt_imp) {
687 LOG_ERROR("Target %s does not support soft_reset_halt",
688 target_name(target));
689 return ERROR_FAIL;
691 return target->type->soft_reset_halt_imp(target);
695 * Downloads a target-specific native code algorithm to the target,
696 * and executes it. * Note that some targets may need to set up, enable,
697 * and tear down a breakpoint (hard or * soft) to detect algorithm
698 * termination, while others may support lower overhead schemes where
699 * soft breakpoints embedded in the algorithm automatically terminate the
700 * algorithm.
702 * @param target used to run the algorithm
703 * @param arch_info target-specific description of the algorithm.
705 int target_run_algorithm(struct target *target,
706 int num_mem_params, struct mem_param *mem_params,
707 int num_reg_params, struct reg_param *reg_param,
708 uint32_t entry_point, uint32_t exit_point,
709 int timeout_ms, void *arch_info)
711 int retval = ERROR_FAIL;
713 if (!target_was_examined(target)) {
714 LOG_ERROR("Target not examined yet");
715 goto done;
717 if (!target->type->run_algorithm) {
718 LOG_ERROR("Target type '%s' does not support %s",
719 target_type_name(target), __func__);
720 goto done;
723 target->running_alg = true;
724 retval = target->type->run_algorithm(target,
725 num_mem_params, mem_params,
726 num_reg_params, reg_param,
727 entry_point, exit_point, timeout_ms, arch_info);
728 target->running_alg = false;
730 done:
731 return retval;
735 * Downloads a target-specific native code algorithm to the target,
736 * executes and leaves it running.
738 * @param target used to run the algorithm
739 * @param arch_info target-specific description of the algorithm.
741 int target_start_algorithm(struct target *target,
742 int num_mem_params, struct mem_param *mem_params,
743 int num_reg_params, struct reg_param *reg_params,
744 uint32_t entry_point, uint32_t exit_point,
745 void *arch_info)
747 int retval = ERROR_FAIL;
749 if (!target_was_examined(target)) {
750 LOG_ERROR("Target not examined yet");
751 goto done;
753 if (!target->type->start_algorithm) {
754 LOG_ERROR("Target type '%s' does not support %s",
755 target_type_name(target), __func__);
756 goto done;
758 if (target->running_alg) {
759 LOG_ERROR("Target is already running an algorithm");
760 goto done;
763 target->running_alg = true;
764 retval = target->type->start_algorithm(target,
765 num_mem_params, mem_params,
766 num_reg_params, reg_params,
767 entry_point, exit_point, arch_info);
769 done:
770 return retval;
774 * Waits for an algorithm started with target_start_algorithm() to complete.
776 * @param target used to run the algorithm
777 * @param arch_info target-specific description of the algorithm.
779 int target_wait_algorithm(struct target *target,
780 int num_mem_params, struct mem_param *mem_params,
781 int num_reg_params, struct reg_param *reg_params,
782 uint32_t exit_point, int timeout_ms,
783 void *arch_info)
785 int retval = ERROR_FAIL;
787 if (!target->type->wait_algorithm) {
788 LOG_ERROR("Target type '%s' does not support %s",
789 target_type_name(target), __func__);
790 goto done;
792 if (!target->running_alg) {
793 LOG_ERROR("Target is not running an algorithm");
794 goto done;
797 retval = target->type->wait_algorithm(target,
798 num_mem_params, mem_params,
799 num_reg_params, reg_params,
800 exit_point, timeout_ms, arch_info);
801 if (retval != ERROR_TARGET_TIMEOUT)
802 target->running_alg = false;
804 done:
805 return retval;
809 * Executes a target-specific native code algorithm in the target.
810 * It differs from target_run_algorithm in that the algorithm is asynchronous.
811 * Because of this it requires an compliant algorithm:
812 * see contrib/loaders/flash/stm32f1x.S for example.
814 * @param target used to run the algorithm
817 int target_run_flash_async_algorithm(struct target *target,
818 uint8_t *buffer, uint32_t count, int block_size,
819 int num_mem_params, struct mem_param *mem_params,
820 int num_reg_params, struct reg_param *reg_params,
821 uint32_t buffer_start, uint32_t buffer_size,
822 uint32_t entry_point, uint32_t exit_point, void *arch_info)
824 int retval;
826 /* Set up working area. First word is write pointer, second word is read pointer,
827 * rest is fifo data area. */
828 uint32_t wp_addr = buffer_start;
829 uint32_t rp_addr = buffer_start + 4;
830 uint32_t fifo_start_addr = buffer_start + 8;
831 uint32_t fifo_end_addr = buffer_start + buffer_size;
833 uint32_t wp = fifo_start_addr;
834 uint32_t rp = fifo_start_addr;
836 /* validate block_size is 2^n */
837 assert(!block_size || !(block_size & (block_size - 1)));
839 retval = target_write_u32(target, wp_addr, wp);
840 if (retval != ERROR_OK)
841 return retval;
842 retval = target_write_u32(target, rp_addr, rp);
843 if (retval != ERROR_OK)
844 return retval;
846 /* Start up algorithm on target and let it idle while writing the first chunk */
847 retval = target_start_algorithm(target, num_mem_params, mem_params,
848 num_reg_params, reg_params,
849 entry_point,
850 exit_point,
851 arch_info);
853 if (retval != ERROR_OK) {
854 LOG_ERROR("error starting target flash write algorithm");
855 return retval;
858 while (count > 0) {
860 retval = target_read_u32(target, rp_addr, &rp);
861 if (retval != ERROR_OK) {
862 LOG_ERROR("failed to get read pointer");
863 break;
866 LOG_DEBUG("count 0x%" PRIx32 " wp 0x%" PRIx32 " rp 0x%" PRIx32, count, wp, rp);
868 if (rp == 0) {
869 LOG_ERROR("flash write algorithm aborted by target");
870 retval = ERROR_FLASH_OPERATION_FAILED;
871 break;
874 if ((rp & (block_size - 1)) || rp < fifo_start_addr || rp >= fifo_end_addr) {
875 LOG_ERROR("corrupted fifo read pointer 0x%" PRIx32, rp);
876 break;
879 /* Count the number of bytes available in the fifo without
880 * crossing the wrap around. Make sure to not fill it completely,
881 * because that would make wp == rp and that's the empty condition. */
882 uint32_t thisrun_bytes;
883 if (rp > wp)
884 thisrun_bytes = rp - wp - block_size;
885 else if (rp > fifo_start_addr)
886 thisrun_bytes = fifo_end_addr - wp;
887 else
888 thisrun_bytes = fifo_end_addr - wp - block_size;
890 if (thisrun_bytes == 0) {
891 /* Throttle polling a bit if transfer is (much) faster than flash
892 * programming. The exact delay shouldn't matter as long as it's
893 * less than buffer size / flash speed. This is very unlikely to
894 * run when using high latency connections such as USB. */
895 alive_sleep(10);
896 continue;
899 /* Limit to the amount of data we actually want to write */
900 if (thisrun_bytes > count * block_size)
901 thisrun_bytes = count * block_size;
903 /* Write data to fifo */
904 retval = target_write_buffer(target, wp, thisrun_bytes, buffer);
905 if (retval != ERROR_OK)
906 break;
908 /* Update counters and wrap write pointer */
909 buffer += thisrun_bytes;
910 count -= thisrun_bytes / block_size;
911 wp += thisrun_bytes;
912 if (wp >= fifo_end_addr)
913 wp = fifo_start_addr;
915 /* Store updated write pointer to target */
916 retval = target_write_u32(target, wp_addr, wp);
917 if (retval != ERROR_OK)
918 break;
921 if (retval != ERROR_OK) {
922 /* abort flash write algorithm on target */
923 target_write_u32(target, wp_addr, 0);
926 int retval2 = target_wait_algorithm(target, num_mem_params, mem_params,
927 num_reg_params, reg_params,
928 exit_point,
929 10000,
930 arch_info);
932 if (retval2 != ERROR_OK) {
933 LOG_ERROR("error waiting for target flash write algorithm");
934 retval = retval2;
937 return retval;
940 int target_read_memory(struct target *target,
941 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
943 return target->type->read_memory(target, address, size, count, buffer);
946 static int target_read_phys_memory(struct target *target,
947 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
949 return target->type->read_phys_memory(target, address, size, count, buffer);
952 int target_write_memory(struct target *target,
953 uint32_t address, uint32_t size, uint32_t count, const uint8_t *buffer)
955 return target->type->write_memory(target, address, size, count, buffer);
958 static int target_write_phys_memory(struct target *target,
959 uint32_t address, uint32_t size, uint32_t count, const uint8_t *buffer)
961 return target->type->write_phys_memory(target, address, size, count, buffer);
964 int target_bulk_write_memory(struct target *target,
965 uint32_t address, uint32_t count, const uint8_t *buffer)
967 return target->type->bulk_write_memory(target, address, count, buffer);
970 int target_add_breakpoint(struct target *target,
971 struct breakpoint *breakpoint)
973 if ((target->state != TARGET_HALTED) && (breakpoint->type != BKPT_HARD)) {
974 LOG_WARNING("target %s is not halted", target->cmd_name);
975 return ERROR_TARGET_NOT_HALTED;
977 return target->type->add_breakpoint(target, breakpoint);
980 int target_add_context_breakpoint(struct target *target,
981 struct breakpoint *breakpoint)
983 if (target->state != TARGET_HALTED) {
984 LOG_WARNING("target %s is not halted", target->cmd_name);
985 return ERROR_TARGET_NOT_HALTED;
987 return target->type->add_context_breakpoint(target, breakpoint);
990 int target_add_hybrid_breakpoint(struct target *target,
991 struct breakpoint *breakpoint)
993 if (target->state != TARGET_HALTED) {
994 LOG_WARNING("target %s is not halted", target->cmd_name);
995 return ERROR_TARGET_NOT_HALTED;
997 return target->type->add_hybrid_breakpoint(target, breakpoint);
1000 int target_remove_breakpoint(struct target *target,
1001 struct breakpoint *breakpoint)
1003 return target->type->remove_breakpoint(target, breakpoint);
1006 int target_add_watchpoint(struct target *target,
1007 struct watchpoint *watchpoint)
1009 if (target->state != TARGET_HALTED) {
1010 LOG_WARNING("target %s is not halted", target->cmd_name);
1011 return ERROR_TARGET_NOT_HALTED;
1013 return target->type->add_watchpoint(target, watchpoint);
1015 int target_remove_watchpoint(struct target *target,
1016 struct watchpoint *watchpoint)
1018 return target->type->remove_watchpoint(target, watchpoint);
1021 int target_get_gdb_reg_list(struct target *target,
1022 struct reg **reg_list[], int *reg_list_size)
1024 return target->type->get_gdb_reg_list(target, reg_list, reg_list_size);
1026 int target_step(struct target *target,
1027 int current, uint32_t address, int handle_breakpoints)
1029 return target->type->step(target, current, address, handle_breakpoints);
1033 * Reset the @c examined flag for the given target.
1034 * Pure paranoia -- targets are zeroed on allocation.
1036 static void target_reset_examined(struct target *target)
1038 target->examined = false;
1041 static int err_read_phys_memory(struct target *target, uint32_t address,
1042 uint32_t size, uint32_t count, uint8_t *buffer)
1044 LOG_ERROR("Not implemented: %s", __func__);
1045 return ERROR_FAIL;
1048 static int err_write_phys_memory(struct target *target, uint32_t address,
1049 uint32_t size, uint32_t count, const uint8_t *buffer)
1051 LOG_ERROR("Not implemented: %s", __func__);
1052 return ERROR_FAIL;
1055 static int handle_target(void *priv);
1057 static int target_init_one(struct command_context *cmd_ctx,
1058 struct target *target)
1060 target_reset_examined(target);
1062 struct target_type *type = target->type;
1063 if (type->examine == NULL)
1064 type->examine = default_examine;
1066 if (type->check_reset == NULL)
1067 type->check_reset = default_check_reset;
1069 assert(type->init_target != NULL);
1071 int retval = type->init_target(cmd_ctx, target);
1072 if (ERROR_OK != retval) {
1073 LOG_ERROR("target '%s' init failed", target_name(target));
1074 return retval;
1078 * @todo get rid of those *memory_imp() methods, now that all
1079 * callers are using target_*_memory() accessors ... and make
1080 * sure the "physical" paths handle the same issues.
1082 /* a non-invasive way(in terms of patches) to add some code that
1083 * runs before the type->write/read_memory implementation
1085 type->write_memory_imp = target->type->write_memory;
1086 type->write_memory = target_write_memory_imp;
1088 type->read_memory_imp = target->type->read_memory;
1089 type->read_memory = target_read_memory_imp;
1091 type->soft_reset_halt_imp = target->type->soft_reset_halt;
1092 type->soft_reset_halt = target_soft_reset_halt_imp;
1094 /* Sanity-check MMU support ... stub in what we must, to help
1095 * implement it in stages, but warn if we need to do so.
1097 if (type->mmu) {
1098 if (type->write_phys_memory == NULL) {
1099 LOG_ERROR("type '%s' is missing write_phys_memory",
1100 type->name);
1101 type->write_phys_memory = err_write_phys_memory;
1103 if (type->read_phys_memory == NULL) {
1104 LOG_ERROR("type '%s' is missing read_phys_memory",
1105 type->name);
1106 type->read_phys_memory = err_read_phys_memory;
1108 if (type->virt2phys == NULL) {
1109 LOG_ERROR("type '%s' is missing virt2phys", type->name);
1110 type->virt2phys = identity_virt2phys;
1112 } else {
1113 /* Make sure no-MMU targets all behave the same: make no
1114 * distinction between physical and virtual addresses, and
1115 * ensure that virt2phys() is always an identity mapping.
1117 if (type->write_phys_memory || type->read_phys_memory || type->virt2phys)
1118 LOG_WARNING("type '%s' has bad MMU hooks", type->name);
1120 type->mmu = no_mmu;
1121 type->write_phys_memory = type->write_memory;
1122 type->read_phys_memory = type->read_memory;
1123 type->virt2phys = identity_virt2phys;
1126 if (target->type->read_buffer == NULL)
1127 target->type->read_buffer = target_read_buffer_default;
1129 if (target->type->write_buffer == NULL)
1130 target->type->write_buffer = target_write_buffer_default;
1132 return ERROR_OK;
1135 static int target_init(struct command_context *cmd_ctx)
1137 struct target *target;
1138 int retval;
1140 for (target = all_targets; target; target = target->next) {
1141 retval = target_init_one(cmd_ctx, target);
1142 if (ERROR_OK != retval)
1143 return retval;
1146 if (!all_targets)
1147 return ERROR_OK;
1149 retval = target_register_user_commands(cmd_ctx);
1150 if (ERROR_OK != retval)
1151 return retval;
1153 retval = target_register_timer_callback(&handle_target,
1154 polling_interval, 1, cmd_ctx->interp);
1155 if (ERROR_OK != retval)
1156 return retval;
1158 return ERROR_OK;
1161 COMMAND_HANDLER(handle_target_init_command)
1163 int retval;
1165 if (CMD_ARGC != 0)
1166 return ERROR_COMMAND_SYNTAX_ERROR;
1168 static bool target_initialized;
1169 if (target_initialized) {
1170 LOG_INFO("'target init' has already been called");
1171 return ERROR_OK;
1173 target_initialized = true;
1175 retval = command_run_line(CMD_CTX, "init_targets");
1176 if (ERROR_OK != retval)
1177 return retval;
1179 retval = command_run_line(CMD_CTX, "init_board");
1180 if (ERROR_OK != retval)
1181 return retval;
1183 LOG_DEBUG("Initializing targets...");
1184 return target_init(CMD_CTX);
1187 int target_register_event_callback(int (*callback)(struct target *target,
1188 enum target_event event, void *priv), void *priv)
1190 struct target_event_callback **callbacks_p = &target_event_callbacks;
1192 if (callback == NULL)
1193 return ERROR_COMMAND_SYNTAX_ERROR;
1195 if (*callbacks_p) {
1196 while ((*callbacks_p)->next)
1197 callbacks_p = &((*callbacks_p)->next);
1198 callbacks_p = &((*callbacks_p)->next);
1201 (*callbacks_p) = malloc(sizeof(struct target_event_callback));
1202 (*callbacks_p)->callback = callback;
1203 (*callbacks_p)->priv = priv;
1204 (*callbacks_p)->next = NULL;
1206 return ERROR_OK;
1209 int target_register_timer_callback(int (*callback)(void *priv), int time_ms, int periodic, void *priv)
1211 struct target_timer_callback **callbacks_p = &target_timer_callbacks;
1212 struct timeval now;
1214 if (callback == NULL)
1215 return ERROR_COMMAND_SYNTAX_ERROR;
1217 if (*callbacks_p) {
1218 while ((*callbacks_p)->next)
1219 callbacks_p = &((*callbacks_p)->next);
1220 callbacks_p = &((*callbacks_p)->next);
1223 (*callbacks_p) = malloc(sizeof(struct target_timer_callback));
1224 (*callbacks_p)->callback = callback;
1225 (*callbacks_p)->periodic = periodic;
1226 (*callbacks_p)->time_ms = time_ms;
1228 gettimeofday(&now, NULL);
1229 (*callbacks_p)->when.tv_usec = now.tv_usec + (time_ms % 1000) * 1000;
1230 time_ms -= (time_ms % 1000);
1231 (*callbacks_p)->when.tv_sec = now.tv_sec + (time_ms / 1000);
1232 if ((*callbacks_p)->when.tv_usec > 1000000) {
1233 (*callbacks_p)->when.tv_usec = (*callbacks_p)->when.tv_usec - 1000000;
1234 (*callbacks_p)->when.tv_sec += 1;
1237 (*callbacks_p)->priv = priv;
1238 (*callbacks_p)->next = NULL;
1240 return ERROR_OK;
1243 int target_unregister_event_callback(int (*callback)(struct target *target,
1244 enum target_event event, void *priv), void *priv)
1246 struct target_event_callback **p = &target_event_callbacks;
1247 struct target_event_callback *c = target_event_callbacks;
1249 if (callback == NULL)
1250 return ERROR_COMMAND_SYNTAX_ERROR;
1252 while (c) {
1253 struct target_event_callback *next = c->next;
1254 if ((c->callback == callback) && (c->priv == priv)) {
1255 *p = next;
1256 free(c);
1257 return ERROR_OK;
1258 } else
1259 p = &(c->next);
1260 c = next;
1263 return ERROR_OK;
1266 static int target_unregister_timer_callback(int (*callback)(void *priv), void *priv)
1268 struct target_timer_callback **p = &target_timer_callbacks;
1269 struct target_timer_callback *c = target_timer_callbacks;
1271 if (callback == NULL)
1272 return ERROR_COMMAND_SYNTAX_ERROR;
1274 while (c) {
1275 struct target_timer_callback *next = c->next;
1276 if ((c->callback == callback) && (c->priv == priv)) {
1277 *p = next;
1278 free(c);
1279 return ERROR_OK;
1280 } else
1281 p = &(c->next);
1282 c = next;
1285 return ERROR_OK;
1288 int target_call_event_callbacks(struct target *target, enum target_event event)
1290 struct target_event_callback *callback = target_event_callbacks;
1291 struct target_event_callback *next_callback;
1293 if (event == TARGET_EVENT_HALTED) {
1294 /* execute early halted first */
1295 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
1298 LOG_DEBUG("target event %i (%s)", event,
1299 Jim_Nvp_value2name_simple(nvp_target_event, event)->name);
1301 target_handle_event(target, event);
1303 while (callback) {
1304 next_callback = callback->next;
1305 callback->callback(target, event, callback->priv);
1306 callback = next_callback;
1309 return ERROR_OK;
1312 static int target_timer_callback_periodic_restart(
1313 struct target_timer_callback *cb, struct timeval *now)
1315 int time_ms = cb->time_ms;
1316 cb->when.tv_usec = now->tv_usec + (time_ms % 1000) * 1000;
1317 time_ms -= (time_ms % 1000);
1318 cb->when.tv_sec = now->tv_sec + time_ms / 1000;
1319 if (cb->when.tv_usec > 1000000) {
1320 cb->when.tv_usec = cb->when.tv_usec - 1000000;
1321 cb->when.tv_sec += 1;
1323 return ERROR_OK;
1326 static int target_call_timer_callback(struct target_timer_callback *cb,
1327 struct timeval *now)
1329 cb->callback(cb->priv);
1331 if (cb->periodic)
1332 return target_timer_callback_periodic_restart(cb, now);
1334 return target_unregister_timer_callback(cb->callback, cb->priv);
1337 static int target_call_timer_callbacks_check_time(int checktime)
1339 keep_alive();
1341 struct timeval now;
1342 gettimeofday(&now, NULL);
1344 struct target_timer_callback *callback = target_timer_callbacks;
1345 while (callback) {
1346 /* cleaning up may unregister and free this callback */
1347 struct target_timer_callback *next_callback = callback->next;
1349 bool call_it = callback->callback &&
1350 ((!checktime && callback->periodic) ||
1351 now.tv_sec > callback->when.tv_sec ||
1352 (now.tv_sec == callback->when.tv_sec &&
1353 now.tv_usec >= callback->when.tv_usec));
1355 if (call_it) {
1356 int retval = target_call_timer_callback(callback, &now);
1357 if (retval != ERROR_OK)
1358 return retval;
1361 callback = next_callback;
1364 return ERROR_OK;
1367 int target_call_timer_callbacks(void)
1369 return target_call_timer_callbacks_check_time(1);
1372 /* invoke periodic callbacks immediately */
1373 int target_call_timer_callbacks_now(void)
1375 return target_call_timer_callbacks_check_time(0);
1378 /* Prints the working area layout for debug purposes */
1379 static void print_wa_layout(struct target *target)
1381 struct working_area *c = target->working_areas;
1383 while (c) {
1384 LOG_DEBUG("%c%c 0x%08"PRIx32"-0x%08"PRIx32" (%"PRIu32" bytes)",
1385 c->backup ? 'b' : ' ', c->free ? ' ' : '*',
1386 c->address, c->address + c->size - 1, c->size);
1387 c = c->next;
1391 /* Reduce area to size bytes, create a new free area from the remaining bytes, if any. */
1392 static void target_split_working_area(struct working_area *area, uint32_t size)
1394 assert(area->free); /* Shouldn't split an allocated area */
1395 assert(size <= area->size); /* Caller should guarantee this */
1397 /* Split only if not already the right size */
1398 if (size < area->size) {
1399 struct working_area *new_wa = malloc(sizeof(*new_wa));
1401 if (new_wa == NULL)
1402 return;
1404 new_wa->next = area->next;
1405 new_wa->size = area->size - size;
1406 new_wa->address = area->address + size;
1407 new_wa->backup = NULL;
1408 new_wa->user = NULL;
1409 new_wa->free = true;
1411 area->next = new_wa;
1412 area->size = size;
1414 /* If backup memory was allocated to this area, it has the wrong size
1415 * now so free it and it will be reallocated if/when needed */
1416 if (area->backup) {
1417 free(area->backup);
1418 area->backup = NULL;
1423 /* Merge all adjacent free areas into one */
1424 static void target_merge_working_areas(struct target *target)
1426 struct working_area *c = target->working_areas;
1428 while (c && c->next) {
1429 assert(c->next->address == c->address + c->size); /* This is an invariant */
1431 /* Find two adjacent free areas */
1432 if (c->free && c->next->free) {
1433 /* Merge the last into the first */
1434 c->size += c->next->size;
1436 /* Remove the last */
1437 struct working_area *to_be_freed = c->next;
1438 c->next = c->next->next;
1439 if (to_be_freed->backup)
1440 free(to_be_freed->backup);
1441 free(to_be_freed);
1443 /* If backup memory was allocated to the remaining area, it's has
1444 * the wrong size now */
1445 if (c->backup) {
1446 free(c->backup);
1447 c->backup = NULL;
1449 } else {
1450 c = c->next;
1455 int target_alloc_working_area_try(struct target *target, uint32_t size, struct working_area **area)
1457 /* Reevaluate working area address based on MMU state*/
1458 if (target->working_areas == NULL) {
1459 int retval;
1460 int enabled;
1462 retval = target->type->mmu(target, &enabled);
1463 if (retval != ERROR_OK)
1464 return retval;
1466 if (!enabled) {
1467 if (target->working_area_phys_spec) {
1468 LOG_DEBUG("MMU disabled, using physical "
1469 "address for working memory 0x%08"PRIx32,
1470 target->working_area_phys);
1471 target->working_area = target->working_area_phys;
1472 } else {
1473 LOG_ERROR("No working memory available. "
1474 "Specify -work-area-phys to target.");
1475 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1477 } else {
1478 if (target->working_area_virt_spec) {
1479 LOG_DEBUG("MMU enabled, using virtual "
1480 "address for working memory 0x%08"PRIx32,
1481 target->working_area_virt);
1482 target->working_area = target->working_area_virt;
1483 } else {
1484 LOG_ERROR("No working memory available. "
1485 "Specify -work-area-virt to target.");
1486 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1490 /* Set up initial working area on first call */
1491 struct working_area *new_wa = malloc(sizeof(*new_wa));
1492 if (new_wa) {
1493 new_wa->next = NULL;
1494 new_wa->size = target->working_area_size & ~3UL; /* 4-byte align */
1495 new_wa->address = target->working_area;
1496 new_wa->backup = NULL;
1497 new_wa->user = NULL;
1498 new_wa->free = true;
1501 target->working_areas = new_wa;
1504 /* only allocate multiples of 4 byte */
1505 if (size % 4)
1506 size = (size + 3) & (~3UL);
1508 struct working_area *c = target->working_areas;
1510 /* Find the first large enough working area */
1511 while (c) {
1512 if (c->free && c->size >= size)
1513 break;
1514 c = c->next;
1517 if (c == NULL)
1518 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1520 /* Split the working area into the requested size */
1521 target_split_working_area(c, size);
1523 LOG_DEBUG("allocated new working area of %"PRIu32" bytes at address 0x%08"PRIx32, size, c->address);
1525 if (target->backup_working_area) {
1526 if (c->backup == NULL) {
1527 c->backup = malloc(c->size);
1528 if (c->backup == NULL)
1529 return ERROR_FAIL;
1532 int retval = target_read_memory(target, c->address, 4, c->size / 4, c->backup);
1533 if (retval != ERROR_OK)
1534 return retval;
1537 /* mark as used, and return the new (reused) area */
1538 c->free = false;
1539 *area = c;
1541 /* user pointer */
1542 c->user = area;
1544 print_wa_layout(target);
1546 return ERROR_OK;
1549 int target_alloc_working_area(struct target *target, uint32_t size, struct working_area **area)
1551 int retval;
1553 retval = target_alloc_working_area_try(target, size, area);
1554 if (retval == ERROR_TARGET_RESOURCE_NOT_AVAILABLE)
1555 LOG_WARNING("not enough working area available(requested %"PRIu32")", size);
1556 return retval;
1560 static int target_restore_working_area(struct target *target, struct working_area *area)
1562 int retval = ERROR_OK;
1564 if (target->backup_working_area && area->backup != NULL) {
1565 retval = target_write_memory(target, area->address, 4, area->size / 4, area->backup);
1566 if (retval != ERROR_OK)
1567 LOG_ERROR("failed to restore %"PRIu32" bytes of working area at address 0x%08"PRIx32,
1568 area->size, area->address);
1571 return retval;
1574 /* Restore the area's backup memory, if any, and return the area to the allocation pool */
1575 static int target_free_working_area_restore(struct target *target, struct working_area *area, int restore)
1577 int retval = ERROR_OK;
1579 if (area->free)
1580 return retval;
1582 if (restore) {
1583 retval = target_restore_working_area(target, area);
1584 /* REVISIT: Perhaps the area should be freed even if restoring fails. */
1585 if (retval != ERROR_OK)
1586 return retval;
1589 area->free = true;
1591 LOG_DEBUG("freed %"PRIu32" bytes of working area at address 0x%08"PRIx32,
1592 area->size, area->address);
1594 /* mark user pointer invalid */
1595 /* TODO: Is this really safe? It points to some previous caller's memory.
1596 * How could we know that the area pointer is still in that place and not
1597 * some other vital data? What's the purpose of this, anyway? */
1598 *area->user = NULL;
1599 area->user = NULL;
1601 target_merge_working_areas(target);
1603 print_wa_layout(target);
1605 return retval;
1608 int target_free_working_area(struct target *target, struct working_area *area)
1610 return target_free_working_area_restore(target, area, 1);
1613 /* free resources and restore memory, if restoring memory fails,
1614 * free up resources anyway
1616 static void target_free_all_working_areas_restore(struct target *target, int restore)
1618 struct working_area *c = target->working_areas;
1620 LOG_DEBUG("freeing all working areas");
1622 /* Loop through all areas, restoring the allocated ones and marking them as free */
1623 while (c) {
1624 if (!c->free) {
1625 if (restore)
1626 target_restore_working_area(target, c);
1627 c->free = true;
1628 *c->user = NULL; /* Same as above */
1629 c->user = NULL;
1631 c = c->next;
1634 /* Run a merge pass to combine all areas into one */
1635 target_merge_working_areas(target);
1637 print_wa_layout(target);
1640 void target_free_all_working_areas(struct target *target)
1642 target_free_all_working_areas_restore(target, 1);
1645 /* Find the largest number of bytes that can be allocated */
1646 uint32_t target_get_working_area_avail(struct target *target)
1648 struct working_area *c = target->working_areas;
1649 uint32_t max_size = 0;
1651 if (c == NULL)
1652 return target->working_area_size;
1654 while (c) {
1655 if (c->free && max_size < c->size)
1656 max_size = c->size;
1658 c = c->next;
1661 return max_size;
1664 int target_arch_state(struct target *target)
1666 int retval;
1667 if (target == NULL) {
1668 LOG_USER("No target has been configured");
1669 return ERROR_OK;
1672 LOG_USER("target state: %s", target_state_name(target));
1674 if (target->state != TARGET_HALTED)
1675 return ERROR_OK;
1677 retval = target->type->arch_state(target);
1678 return retval;
1681 /* Single aligned words are guaranteed to use 16 or 32 bit access
1682 * mode respectively, otherwise data is handled as quickly as
1683 * possible
1685 int target_write_buffer(struct target *target, uint32_t address, uint32_t size, const uint8_t *buffer)
1687 LOG_DEBUG("writing buffer of %i byte at 0x%8.8x",
1688 (int)size, (unsigned)address);
1690 if (!target_was_examined(target)) {
1691 LOG_ERROR("Target not examined yet");
1692 return ERROR_FAIL;
1695 if (size == 0)
1696 return ERROR_OK;
1698 if ((address + size - 1) < address) {
1699 /* GDB can request this when e.g. PC is 0xfffffffc*/
1700 LOG_ERROR("address + size wrapped(0x%08x, 0x%08x)",
1701 (unsigned)address,
1702 (unsigned)size);
1703 return ERROR_FAIL;
1706 return target->type->write_buffer(target, address, size, buffer);
1709 static int target_write_buffer_default(struct target *target, uint32_t address, uint32_t size, const uint8_t *buffer)
1711 int retval = ERROR_OK;
1713 if (((address % 2) == 0) && (size == 2))
1714 return target_write_memory(target, address, 2, 1, buffer);
1716 /* handle unaligned head bytes */
1717 if (address % 4) {
1718 uint32_t unaligned = 4 - (address % 4);
1720 if (unaligned > size)
1721 unaligned = size;
1723 retval = target_write_memory(target, address, 1, unaligned, buffer);
1724 if (retval != ERROR_OK)
1725 return retval;
1727 buffer += unaligned;
1728 address += unaligned;
1729 size -= unaligned;
1732 /* handle aligned words */
1733 if (size >= 4) {
1734 int aligned = size - (size % 4);
1736 /* use bulk writes above a certain limit. This may have to be changed */
1737 if (aligned > 128) {
1738 retval = target->type->bulk_write_memory(target, address, aligned / 4, buffer);
1739 if (retval != ERROR_OK)
1740 return retval;
1741 } else {
1742 retval = target_write_memory(target, address, 4, aligned / 4, buffer);
1743 if (retval != ERROR_OK)
1744 return retval;
1747 buffer += aligned;
1748 address += aligned;
1749 size -= aligned;
1752 /* handle tail writes of less than 4 bytes */
1753 if (size > 0) {
1754 retval = target_write_memory(target, address, 1, size, buffer);
1755 if (retval != ERROR_OK)
1756 return retval;
1759 return retval;
1762 /* Single aligned words are guaranteed to use 16 or 32 bit access
1763 * mode respectively, otherwise data is handled as quickly as
1764 * possible
1766 int target_read_buffer(struct target *target, uint32_t address, uint32_t size, uint8_t *buffer)
1768 LOG_DEBUG("reading buffer of %i byte at 0x%8.8x",
1769 (int)size, (unsigned)address);
1771 if (!target_was_examined(target)) {
1772 LOG_ERROR("Target not examined yet");
1773 return ERROR_FAIL;
1776 if (size == 0)
1777 return ERROR_OK;
1779 if ((address + size - 1) < address) {
1780 /* GDB can request this when e.g. PC is 0xfffffffc*/
1781 LOG_ERROR("address + size wrapped(0x%08" PRIx32 ", 0x%08" PRIx32 ")",
1782 address,
1783 size);
1784 return ERROR_FAIL;
1787 return target->type->read_buffer(target, address, size, buffer);
1790 static int target_read_buffer_default(struct target *target, uint32_t address, uint32_t size, uint8_t *buffer)
1792 int retval = ERROR_OK;
1794 if (((address % 2) == 0) && (size == 2))
1795 return target_read_memory(target, address, 2, 1, buffer);
1797 /* handle unaligned head bytes */
1798 if (address % 4) {
1799 uint32_t unaligned = 4 - (address % 4);
1801 if (unaligned > size)
1802 unaligned = size;
1804 retval = target_read_memory(target, address, 1, unaligned, buffer);
1805 if (retval != ERROR_OK)
1806 return retval;
1808 buffer += unaligned;
1809 address += unaligned;
1810 size -= unaligned;
1813 /* handle aligned words */
1814 if (size >= 4) {
1815 int aligned = size - (size % 4);
1817 retval = target_read_memory(target, address, 4, aligned / 4, buffer);
1818 if (retval != ERROR_OK)
1819 return retval;
1821 buffer += aligned;
1822 address += aligned;
1823 size -= aligned;
1826 /*prevent byte access when possible (avoid AHB access limitations in some cases)*/
1827 if (size >= 2) {
1828 int aligned = size - (size % 2);
1829 retval = target_read_memory(target, address, 2, aligned / 2, buffer);
1830 if (retval != ERROR_OK)
1831 return retval;
1833 buffer += aligned;
1834 address += aligned;
1835 size -= aligned;
1837 /* handle tail writes of less than 4 bytes */
1838 if (size > 0) {
1839 retval = target_read_memory(target, address, 1, size, buffer);
1840 if (retval != ERROR_OK)
1841 return retval;
1844 return ERROR_OK;
1847 int target_checksum_memory(struct target *target, uint32_t address, uint32_t size, uint32_t* crc)
1849 uint8_t *buffer;
1850 int retval;
1851 uint32_t i;
1852 uint32_t checksum = 0;
1853 if (!target_was_examined(target)) {
1854 LOG_ERROR("Target not examined yet");
1855 return ERROR_FAIL;
1858 retval = target->type->checksum_memory(target, address, size, &checksum);
1859 if (retval != ERROR_OK) {
1860 buffer = malloc(size);
1861 if (buffer == NULL) {
1862 LOG_ERROR("error allocating buffer for section (%d bytes)", (int)size);
1863 return ERROR_COMMAND_SYNTAX_ERROR;
1865 retval = target_read_buffer(target, address, size, buffer);
1866 if (retval != ERROR_OK) {
1867 free(buffer);
1868 return retval;
1871 /* convert to target endianness */
1872 for (i = 0; i < (size/sizeof(uint32_t)); i++) {
1873 uint32_t target_data;
1874 target_data = target_buffer_get_u32(target, &buffer[i*sizeof(uint32_t)]);
1875 target_buffer_set_u32(target, &buffer[i*sizeof(uint32_t)], target_data);
1878 retval = image_calculate_checksum(buffer, size, &checksum);
1879 free(buffer);
1882 *crc = checksum;
1884 return retval;
1887 int target_blank_check_memory(struct target *target, uint32_t address, uint32_t size, uint32_t* blank)
1889 int retval;
1890 if (!target_was_examined(target)) {
1891 LOG_ERROR("Target not examined yet");
1892 return ERROR_FAIL;
1895 if (target->type->blank_check_memory == 0)
1896 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1898 retval = target->type->blank_check_memory(target, address, size, blank);
1900 return retval;
1903 int target_read_u32(struct target *target, uint32_t address, uint32_t *value)
1905 uint8_t value_buf[4];
1906 if (!target_was_examined(target)) {
1907 LOG_ERROR("Target not examined yet");
1908 return ERROR_FAIL;
1911 int retval = target_read_memory(target, address, 4, 1, value_buf);
1913 if (retval == ERROR_OK) {
1914 *value = target_buffer_get_u32(target, value_buf);
1915 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%8.8" PRIx32 "",
1916 address,
1917 *value);
1918 } else {
1919 *value = 0x0;
1920 LOG_DEBUG("address: 0x%8.8" PRIx32 " failed",
1921 address);
1924 return retval;
1927 int target_read_u16(struct target *target, uint32_t address, uint16_t *value)
1929 uint8_t value_buf[2];
1930 if (!target_was_examined(target)) {
1931 LOG_ERROR("Target not examined yet");
1932 return ERROR_FAIL;
1935 int retval = target_read_memory(target, address, 2, 1, value_buf);
1937 if (retval == ERROR_OK) {
1938 *value = target_buffer_get_u16(target, value_buf);
1939 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%4.4x",
1940 address,
1941 *value);
1942 } else {
1943 *value = 0x0;
1944 LOG_DEBUG("address: 0x%8.8" PRIx32 " failed",
1945 address);
1948 return retval;
1951 int target_read_u8(struct target *target, uint32_t address, uint8_t *value)
1953 int retval = target_read_memory(target, address, 1, 1, value);
1954 if (!target_was_examined(target)) {
1955 LOG_ERROR("Target not examined yet");
1956 return ERROR_FAIL;
1959 if (retval == ERROR_OK) {
1960 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%2.2x",
1961 address,
1962 *value);
1963 } else {
1964 *value = 0x0;
1965 LOG_DEBUG("address: 0x%8.8" PRIx32 " failed",
1966 address);
1969 return retval;
1972 int target_write_u32(struct target *target, uint32_t address, uint32_t value)
1974 int retval;
1975 uint8_t value_buf[4];
1976 if (!target_was_examined(target)) {
1977 LOG_ERROR("Target not examined yet");
1978 return ERROR_FAIL;
1981 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%8.8" PRIx32 "",
1982 address,
1983 value);
1985 target_buffer_set_u32(target, value_buf, value);
1986 retval = target_write_memory(target, address, 4, 1, value_buf);
1987 if (retval != ERROR_OK)
1988 LOG_DEBUG("failed: %i", retval);
1990 return retval;
1993 int target_write_u16(struct target *target, uint32_t address, uint16_t value)
1995 int retval;
1996 uint8_t value_buf[2];
1997 if (!target_was_examined(target)) {
1998 LOG_ERROR("Target not examined yet");
1999 return ERROR_FAIL;
2002 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%8.8x",
2003 address,
2004 value);
2006 target_buffer_set_u16(target, value_buf, value);
2007 retval = target_write_memory(target, address, 2, 1, value_buf);
2008 if (retval != ERROR_OK)
2009 LOG_DEBUG("failed: %i", retval);
2011 return retval;
2014 int target_write_u8(struct target *target, uint32_t address, uint8_t value)
2016 int retval;
2017 if (!target_was_examined(target)) {
2018 LOG_ERROR("Target not examined yet");
2019 return ERROR_FAIL;
2022 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%2.2x",
2023 address, value);
2025 retval = target_write_memory(target, address, 1, 1, &value);
2026 if (retval != ERROR_OK)
2027 LOG_DEBUG("failed: %i", retval);
2029 return retval;
2032 static int find_target(struct command_context *cmd_ctx, const char *name)
2034 struct target *target = get_target(name);
2035 if (target == NULL) {
2036 LOG_ERROR("Target: %s is unknown, try one of:\n", name);
2037 return ERROR_FAIL;
2039 if (!target->tap->enabled) {
2040 LOG_USER("Target: TAP %s is disabled, "
2041 "can't be the current target\n",
2042 target->tap->dotted_name);
2043 return ERROR_FAIL;
2046 cmd_ctx->current_target = target->target_number;
2047 return ERROR_OK;
2051 COMMAND_HANDLER(handle_targets_command)
2053 int retval = ERROR_OK;
2054 if (CMD_ARGC == 1) {
2055 retval = find_target(CMD_CTX, CMD_ARGV[0]);
2056 if (retval == ERROR_OK) {
2057 /* we're done! */
2058 return retval;
2062 struct target *target = all_targets;
2063 command_print(CMD_CTX, " TargetName Type Endian TapName State ");
2064 command_print(CMD_CTX, "-- ------------------ ---------- ------ ------------------ ------------");
2065 while (target) {
2066 const char *state;
2067 char marker = ' ';
2069 if (target->tap->enabled)
2070 state = target_state_name(target);
2071 else
2072 state = "tap-disabled";
2074 if (CMD_CTX->current_target == target->target_number)
2075 marker = '*';
2077 /* keep columns lined up to match the headers above */
2078 command_print(CMD_CTX,
2079 "%2d%c %-18s %-10s %-6s %-18s %s",
2080 target->target_number,
2081 marker,
2082 target_name(target),
2083 target_type_name(target),
2084 Jim_Nvp_value2name_simple(nvp_target_endian,
2085 target->endianness)->name,
2086 target->tap->dotted_name,
2087 state);
2088 target = target->next;
2091 return retval;
2094 /* every 300ms we check for reset & powerdropout and issue a "reset halt" if so. */
2096 static int powerDropout;
2097 static int srstAsserted;
2099 static int runPowerRestore;
2100 static int runPowerDropout;
2101 static int runSrstAsserted;
2102 static int runSrstDeasserted;
2104 static int sense_handler(void)
2106 static int prevSrstAsserted;
2107 static int prevPowerdropout;
2109 int retval = jtag_power_dropout(&powerDropout);
2110 if (retval != ERROR_OK)
2111 return retval;
2113 int powerRestored;
2114 powerRestored = prevPowerdropout && !powerDropout;
2115 if (powerRestored)
2116 runPowerRestore = 1;
2118 long long current = timeval_ms();
2119 static long long lastPower;
2120 int waitMore = lastPower + 2000 > current;
2121 if (powerDropout && !waitMore) {
2122 runPowerDropout = 1;
2123 lastPower = current;
2126 retval = jtag_srst_asserted(&srstAsserted);
2127 if (retval != ERROR_OK)
2128 return retval;
2130 int srstDeasserted;
2131 srstDeasserted = prevSrstAsserted && !srstAsserted;
2133 static long long lastSrst;
2134 waitMore = lastSrst + 2000 > current;
2135 if (srstDeasserted && !waitMore) {
2136 runSrstDeasserted = 1;
2137 lastSrst = current;
2140 if (!prevSrstAsserted && srstAsserted)
2141 runSrstAsserted = 1;
2143 prevSrstAsserted = srstAsserted;
2144 prevPowerdropout = powerDropout;
2146 if (srstDeasserted || powerRestored) {
2147 /* Other than logging the event we can't do anything here.
2148 * Issuing a reset is a particularly bad idea as we might
2149 * be inside a reset already.
2153 return ERROR_OK;
2156 static int backoff_times;
2157 static int backoff_count;
2159 /* process target state changes */
2160 static int handle_target(void *priv)
2162 Jim_Interp *interp = (Jim_Interp *)priv;
2163 int retval = ERROR_OK;
2165 if (!is_jtag_poll_safe()) {
2166 /* polling is disabled currently */
2167 return ERROR_OK;
2170 /* we do not want to recurse here... */
2171 static int recursive;
2172 if (!recursive) {
2173 recursive = 1;
2174 sense_handler();
2175 /* danger! running these procedures can trigger srst assertions and power dropouts.
2176 * We need to avoid an infinite loop/recursion here and we do that by
2177 * clearing the flags after running these events.
2179 int did_something = 0;
2180 if (runSrstAsserted) {
2181 LOG_INFO("srst asserted detected, running srst_asserted proc.");
2182 Jim_Eval(interp, "srst_asserted");
2183 did_something = 1;
2185 if (runSrstDeasserted) {
2186 Jim_Eval(interp, "srst_deasserted");
2187 did_something = 1;
2189 if (runPowerDropout) {
2190 LOG_INFO("Power dropout detected, running power_dropout proc.");
2191 Jim_Eval(interp, "power_dropout");
2192 did_something = 1;
2194 if (runPowerRestore) {
2195 Jim_Eval(interp, "power_restore");
2196 did_something = 1;
2199 if (did_something) {
2200 /* clear detect flags */
2201 sense_handler();
2204 /* clear action flags */
2206 runSrstAsserted = 0;
2207 runSrstDeasserted = 0;
2208 runPowerRestore = 0;
2209 runPowerDropout = 0;
2211 recursive = 0;
2214 if (backoff_times > backoff_count) {
2215 /* do not poll this time as we failed previously */
2216 backoff_count++;
2217 return ERROR_OK;
2219 backoff_count = 0;
2221 /* Poll targets for state changes unless that's globally disabled.
2222 * Skip targets that are currently disabled.
2224 for (struct target *target = all_targets;
2225 is_jtag_poll_safe() && target;
2226 target = target->next) {
2227 if (!target->tap->enabled)
2228 continue;
2230 /* only poll target if we've got power and srst isn't asserted */
2231 if (!powerDropout && !srstAsserted) {
2232 /* polling may fail silently until the target has been examined */
2233 retval = target_poll(target);
2234 if (retval != ERROR_OK) {
2235 /* 100ms polling interval. Increase interval between polling up to 5000ms */
2236 if (backoff_times * polling_interval < 5000) {
2237 backoff_times *= 2;
2238 backoff_times++;
2240 LOG_USER("Polling target failed, GDB will be halted. Polling again in %dms",
2241 backoff_times * polling_interval);
2243 /* Tell GDB to halt the debugger. This allows the user to
2244 * run monitor commands to handle the situation.
2246 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
2247 return retval;
2249 /* Since we succeeded, we reset backoff count */
2250 if (backoff_times > 0)
2251 LOG_USER("Polling succeeded again");
2252 backoff_times = 0;
2256 return retval;
2259 COMMAND_HANDLER(handle_reg_command)
2261 struct target *target;
2262 struct reg *reg = NULL;
2263 unsigned count = 0;
2264 char *value;
2266 LOG_DEBUG("-");
2268 target = get_current_target(CMD_CTX);
2270 /* list all available registers for the current target */
2271 if (CMD_ARGC == 0) {
2272 struct reg_cache *cache = target->reg_cache;
2274 count = 0;
2275 while (cache) {
2276 unsigned i;
2278 command_print(CMD_CTX, "===== %s", cache->name);
2280 for (i = 0, reg = cache->reg_list;
2281 i < cache->num_regs;
2282 i++, reg++, count++) {
2283 /* only print cached values if they are valid */
2284 if (reg->valid) {
2285 value = buf_to_str(reg->value,
2286 reg->size, 16);
2287 command_print(CMD_CTX,
2288 "(%i) %s (/%" PRIu32 "): 0x%s%s",
2289 count, reg->name,
2290 reg->size, value,
2291 reg->dirty
2292 ? " (dirty)"
2293 : "");
2294 free(value);
2295 } else {
2296 command_print(CMD_CTX, "(%i) %s (/%" PRIu32 ")",
2297 count, reg->name,
2298 reg->size) ;
2301 cache = cache->next;
2304 return ERROR_OK;
2307 /* access a single register by its ordinal number */
2308 if ((CMD_ARGV[0][0] >= '0') && (CMD_ARGV[0][0] <= '9')) {
2309 unsigned num;
2310 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[0], num);
2312 struct reg_cache *cache = target->reg_cache;
2313 count = 0;
2314 while (cache) {
2315 unsigned i;
2316 for (i = 0; i < cache->num_regs; i++) {
2317 if (count++ == num) {
2318 reg = &cache->reg_list[i];
2319 break;
2322 if (reg)
2323 break;
2324 cache = cache->next;
2327 if (!reg) {
2328 command_print(CMD_CTX, "%i is out of bounds, the current target "
2329 "has only %i registers (0 - %i)", num, count, count - 1);
2330 return ERROR_OK;
2332 } else {
2333 /* access a single register by its name */
2334 reg = register_get_by_name(target->reg_cache, CMD_ARGV[0], 1);
2336 if (!reg) {
2337 command_print(CMD_CTX, "register %s not found in current target", CMD_ARGV[0]);
2338 return ERROR_OK;
2342 assert(reg != NULL); /* give clang a hint that we *know* reg is != NULL here */
2344 /* display a register */
2345 if ((CMD_ARGC == 1) || ((CMD_ARGC == 2) && !((CMD_ARGV[1][0] >= '0')
2346 && (CMD_ARGV[1][0] <= '9')))) {
2347 if ((CMD_ARGC == 2) && (strcmp(CMD_ARGV[1], "force") == 0))
2348 reg->valid = 0;
2350 if (reg->valid == 0)
2351 reg->type->get(reg);
2352 value = buf_to_str(reg->value, reg->size, 16);
2353 command_print(CMD_CTX, "%s (/%i): 0x%s", reg->name, (int)(reg->size), value);
2354 free(value);
2355 return ERROR_OK;
2358 /* set register value */
2359 if (CMD_ARGC == 2) {
2360 uint8_t *buf = malloc(DIV_ROUND_UP(reg->size, 8));
2361 if (buf == NULL)
2362 return ERROR_FAIL;
2363 str_to_buf(CMD_ARGV[1], strlen(CMD_ARGV[1]), buf, reg->size, 0);
2365 reg->type->set(reg, buf);
2367 value = buf_to_str(reg->value, reg->size, 16);
2368 command_print(CMD_CTX, "%s (/%i): 0x%s", reg->name, (int)(reg->size), value);
2369 free(value);
2371 free(buf);
2373 return ERROR_OK;
2376 return ERROR_COMMAND_SYNTAX_ERROR;
2379 COMMAND_HANDLER(handle_poll_command)
2381 int retval = ERROR_OK;
2382 struct target *target = get_current_target(CMD_CTX);
2384 if (CMD_ARGC == 0) {
2385 command_print(CMD_CTX, "background polling: %s",
2386 jtag_poll_get_enabled() ? "on" : "off");
2387 command_print(CMD_CTX, "TAP: %s (%s)",
2388 target->tap->dotted_name,
2389 target->tap->enabled ? "enabled" : "disabled");
2390 if (!target->tap->enabled)
2391 return ERROR_OK;
2392 retval = target_poll(target);
2393 if (retval != ERROR_OK)
2394 return retval;
2395 retval = target_arch_state(target);
2396 if (retval != ERROR_OK)
2397 return retval;
2398 } else if (CMD_ARGC == 1) {
2399 bool enable;
2400 COMMAND_PARSE_ON_OFF(CMD_ARGV[0], enable);
2401 jtag_poll_set_enabled(enable);
2402 } else
2403 return ERROR_COMMAND_SYNTAX_ERROR;
2405 return retval;
2408 COMMAND_HANDLER(handle_wait_halt_command)
2410 if (CMD_ARGC > 1)
2411 return ERROR_COMMAND_SYNTAX_ERROR;
2413 unsigned ms = 5000;
2414 if (1 == CMD_ARGC) {
2415 int retval = parse_uint(CMD_ARGV[0], &ms);
2416 if (ERROR_OK != retval)
2417 return ERROR_COMMAND_SYNTAX_ERROR;
2418 /* convert seconds (given) to milliseconds (needed) */
2419 ms *= 1000;
2422 struct target *target = get_current_target(CMD_CTX);
2423 return target_wait_state(target, TARGET_HALTED, ms);
2426 /* wait for target state to change. The trick here is to have a low
2427 * latency for short waits and not to suck up all the CPU time
2428 * on longer waits.
2430 * After 500ms, keep_alive() is invoked
2432 int target_wait_state(struct target *target, enum target_state state, int ms)
2434 int retval;
2435 long long then = 0, cur;
2436 int once = 1;
2438 for (;;) {
2439 retval = target_poll(target);
2440 if (retval != ERROR_OK)
2441 return retval;
2442 if (target->state == state)
2443 break;
2444 cur = timeval_ms();
2445 if (once) {
2446 once = 0;
2447 then = timeval_ms();
2448 LOG_DEBUG("waiting for target %s...",
2449 Jim_Nvp_value2name_simple(nvp_target_state, state)->name);
2452 if (cur-then > 500)
2453 keep_alive();
2455 if ((cur-then) > ms) {
2456 LOG_ERROR("timed out while waiting for target %s",
2457 Jim_Nvp_value2name_simple(nvp_target_state, state)->name);
2458 return ERROR_FAIL;
2462 return ERROR_OK;
2465 COMMAND_HANDLER(handle_halt_command)
2467 LOG_DEBUG("-");
2469 struct target *target = get_current_target(CMD_CTX);
2470 int retval = target_halt(target);
2471 if (ERROR_OK != retval)
2472 return retval;
2474 if (CMD_ARGC == 1) {
2475 unsigned wait_local;
2476 retval = parse_uint(CMD_ARGV[0], &wait_local);
2477 if (ERROR_OK != retval)
2478 return ERROR_COMMAND_SYNTAX_ERROR;
2479 if (!wait_local)
2480 return ERROR_OK;
2483 return CALL_COMMAND_HANDLER(handle_wait_halt_command);
2486 COMMAND_HANDLER(handle_soft_reset_halt_command)
2488 struct target *target = get_current_target(CMD_CTX);
2490 LOG_USER("requesting target halt and executing a soft reset");
2492 target->type->soft_reset_halt(target);
2494 return ERROR_OK;
2497 COMMAND_HANDLER(handle_reset_command)
2499 if (CMD_ARGC > 1)
2500 return ERROR_COMMAND_SYNTAX_ERROR;
2502 enum target_reset_mode reset_mode = RESET_RUN;
2503 if (CMD_ARGC == 1) {
2504 const Jim_Nvp *n;
2505 n = Jim_Nvp_name2value_simple(nvp_reset_modes, CMD_ARGV[0]);
2506 if ((n->name == NULL) || (n->value == RESET_UNKNOWN))
2507 return ERROR_COMMAND_SYNTAX_ERROR;
2508 reset_mode = n->value;
2511 /* reset *all* targets */
2512 return target_process_reset(CMD_CTX, reset_mode);
2516 COMMAND_HANDLER(handle_resume_command)
2518 int current = 1;
2519 if (CMD_ARGC > 1)
2520 return ERROR_COMMAND_SYNTAX_ERROR;
2522 struct target *target = get_current_target(CMD_CTX);
2524 /* with no CMD_ARGV, resume from current pc, addr = 0,
2525 * with one arguments, addr = CMD_ARGV[0],
2526 * handle breakpoints, not debugging */
2527 uint32_t addr = 0;
2528 if (CMD_ARGC == 1) {
2529 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
2530 current = 0;
2533 return target_resume(target, current, addr, 1, 0);
2536 COMMAND_HANDLER(handle_step_command)
2538 if (CMD_ARGC > 1)
2539 return ERROR_COMMAND_SYNTAX_ERROR;
2541 LOG_DEBUG("-");
2543 /* with no CMD_ARGV, step from current pc, addr = 0,
2544 * with one argument addr = CMD_ARGV[0],
2545 * handle breakpoints, debugging */
2546 uint32_t addr = 0;
2547 int current_pc = 1;
2548 if (CMD_ARGC == 1) {
2549 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
2550 current_pc = 0;
2553 struct target *target = get_current_target(CMD_CTX);
2555 return target->type->step(target, current_pc, addr, 1);
2558 static void handle_md_output(struct command_context *cmd_ctx,
2559 struct target *target, uint32_t address, unsigned size,
2560 unsigned count, const uint8_t *buffer)
2562 const unsigned line_bytecnt = 32;
2563 unsigned line_modulo = line_bytecnt / size;
2565 char output[line_bytecnt * 4 + 1];
2566 unsigned output_len = 0;
2568 const char *value_fmt;
2569 switch (size) {
2570 case 4:
2571 value_fmt = "%8.8x ";
2572 break;
2573 case 2:
2574 value_fmt = "%4.4x ";
2575 break;
2576 case 1:
2577 value_fmt = "%2.2x ";
2578 break;
2579 default:
2580 /* "can't happen", caller checked */
2581 LOG_ERROR("invalid memory read size: %u", size);
2582 return;
2585 for (unsigned i = 0; i < count; i++) {
2586 if (i % line_modulo == 0) {
2587 output_len += snprintf(output + output_len,
2588 sizeof(output) - output_len,
2589 "0x%8.8x: ",
2590 (unsigned)(address + (i*size)));
2593 uint32_t value = 0;
2594 const uint8_t *value_ptr = buffer + i * size;
2595 switch (size) {
2596 case 4:
2597 value = target_buffer_get_u32(target, value_ptr);
2598 break;
2599 case 2:
2600 value = target_buffer_get_u16(target, value_ptr);
2601 break;
2602 case 1:
2603 value = *value_ptr;
2605 output_len += snprintf(output + output_len,
2606 sizeof(output) - output_len,
2607 value_fmt, value);
2609 if ((i % line_modulo == line_modulo - 1) || (i == count - 1)) {
2610 command_print(cmd_ctx, "%s", output);
2611 output_len = 0;
2616 COMMAND_HANDLER(handle_md_command)
2618 if (CMD_ARGC < 1)
2619 return ERROR_COMMAND_SYNTAX_ERROR;
2621 unsigned size = 0;
2622 switch (CMD_NAME[2]) {
2623 case 'w':
2624 size = 4;
2625 break;
2626 case 'h':
2627 size = 2;
2628 break;
2629 case 'b':
2630 size = 1;
2631 break;
2632 default:
2633 return ERROR_COMMAND_SYNTAX_ERROR;
2636 bool physical = strcmp(CMD_ARGV[0], "phys") == 0;
2637 int (*fn)(struct target *target,
2638 uint32_t address, uint32_t size_value, uint32_t count, uint8_t *buffer);
2639 if (physical) {
2640 CMD_ARGC--;
2641 CMD_ARGV++;
2642 fn = target_read_phys_memory;
2643 } else
2644 fn = target_read_memory;
2645 if ((CMD_ARGC < 1) || (CMD_ARGC > 2))
2646 return ERROR_COMMAND_SYNTAX_ERROR;
2648 uint32_t address;
2649 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], address);
2651 unsigned count = 1;
2652 if (CMD_ARGC == 2)
2653 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[1], count);
2655 uint8_t *buffer = calloc(count, size);
2657 struct target *target = get_current_target(CMD_CTX);
2658 int retval = fn(target, address, size, count, buffer);
2659 if (ERROR_OK == retval)
2660 handle_md_output(CMD_CTX, target, address, size, count, buffer);
2662 free(buffer);
2664 return retval;
2667 typedef int (*target_write_fn)(struct target *target,
2668 uint32_t address, uint32_t size, uint32_t count, const uint8_t *buffer);
2670 static int target_write_memory_fast(struct target *target,
2671 uint32_t address, uint32_t size, uint32_t count, const uint8_t *buffer)
2673 return target_write_buffer(target, address, size * count, buffer);
2676 static int target_fill_mem(struct target *target,
2677 uint32_t address,
2678 target_write_fn fn,
2679 unsigned data_size,
2680 /* value */
2681 uint32_t b,
2682 /* count */
2683 unsigned c)
2685 /* We have to write in reasonably large chunks to be able
2686 * to fill large memory areas with any sane speed */
2687 const unsigned chunk_size = 16384;
2688 uint8_t *target_buf = malloc(chunk_size * data_size);
2689 if (target_buf == NULL) {
2690 LOG_ERROR("Out of memory");
2691 return ERROR_FAIL;
2694 for (unsigned i = 0; i < chunk_size; i++) {
2695 switch (data_size) {
2696 case 4:
2697 target_buffer_set_u32(target, target_buf + i * data_size, b);
2698 break;
2699 case 2:
2700 target_buffer_set_u16(target, target_buf + i * data_size, b);
2701 break;
2702 case 1:
2703 target_buffer_set_u8(target, target_buf + i * data_size, b);
2704 break;
2705 default:
2706 exit(-1);
2710 int retval = ERROR_OK;
2712 for (unsigned x = 0; x < c; x += chunk_size) {
2713 unsigned current;
2714 current = c - x;
2715 if (current > chunk_size)
2716 current = chunk_size;
2717 retval = fn(target, address + x * data_size, data_size, current, target_buf);
2718 if (retval != ERROR_OK)
2719 break;
2720 /* avoid GDB timeouts */
2721 keep_alive();
2723 free(target_buf);
2725 return retval;
2729 COMMAND_HANDLER(handle_mw_command)
2731 if (CMD_ARGC < 2)
2732 return ERROR_COMMAND_SYNTAX_ERROR;
2733 bool physical = strcmp(CMD_ARGV[0], "phys") == 0;
2734 target_write_fn fn;
2735 if (physical) {
2736 CMD_ARGC--;
2737 CMD_ARGV++;
2738 fn = target_write_phys_memory;
2739 } else
2740 fn = target_write_memory_fast;
2741 if ((CMD_ARGC < 2) || (CMD_ARGC > 3))
2742 return ERROR_COMMAND_SYNTAX_ERROR;
2744 uint32_t address;
2745 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], address);
2747 uint32_t value;
2748 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], value);
2750 unsigned count = 1;
2751 if (CMD_ARGC == 3)
2752 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[2], count);
2754 struct target *target = get_current_target(CMD_CTX);
2755 unsigned wordsize;
2756 switch (CMD_NAME[2]) {
2757 case 'w':
2758 wordsize = 4;
2759 break;
2760 case 'h':
2761 wordsize = 2;
2762 break;
2763 case 'b':
2764 wordsize = 1;
2765 break;
2766 default:
2767 return ERROR_COMMAND_SYNTAX_ERROR;
2770 return target_fill_mem(target, address, fn, wordsize, value, count);
2773 static COMMAND_HELPER(parse_load_image_command_CMD_ARGV, struct image *image,
2774 uint32_t *min_address, uint32_t *max_address)
2776 if (CMD_ARGC < 1 || CMD_ARGC > 5)
2777 return ERROR_COMMAND_SYNTAX_ERROR;
2779 /* a base address isn't always necessary,
2780 * default to 0x0 (i.e. don't relocate) */
2781 if (CMD_ARGC >= 2) {
2782 uint32_t addr;
2783 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], addr);
2784 image->base_address = addr;
2785 image->base_address_set = 1;
2786 } else
2787 image->base_address_set = 0;
2789 image->start_address_set = 0;
2791 if (CMD_ARGC >= 4)
2792 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[3], *min_address);
2793 if (CMD_ARGC == 5) {
2794 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[4], *max_address);
2795 /* use size (given) to find max (required) */
2796 *max_address += *min_address;
2799 if (*min_address > *max_address)
2800 return ERROR_COMMAND_SYNTAX_ERROR;
2802 return ERROR_OK;
2805 COMMAND_HANDLER(handle_load_image_command)
2807 uint8_t *buffer;
2808 size_t buf_cnt;
2809 uint32_t image_size;
2810 uint32_t min_address = 0;
2811 uint32_t max_address = 0xffffffff;
2812 int i;
2813 struct image image;
2815 int retval = CALL_COMMAND_HANDLER(parse_load_image_command_CMD_ARGV,
2816 &image, &min_address, &max_address);
2817 if (ERROR_OK != retval)
2818 return retval;
2820 struct target *target = get_current_target(CMD_CTX);
2822 struct duration bench;
2823 duration_start(&bench);
2825 if (image_open(&image, CMD_ARGV[0], (CMD_ARGC >= 3) ? CMD_ARGV[2] : NULL) != ERROR_OK)
2826 return ERROR_OK;
2828 image_size = 0x0;
2829 retval = ERROR_OK;
2830 for (i = 0; i < image.num_sections; i++) {
2831 buffer = malloc(image.sections[i].size);
2832 if (buffer == NULL) {
2833 command_print(CMD_CTX,
2834 "error allocating buffer for section (%d bytes)",
2835 (int)(image.sections[i].size));
2836 break;
2839 retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt);
2840 if (retval != ERROR_OK) {
2841 free(buffer);
2842 break;
2845 uint32_t offset = 0;
2846 uint32_t length = buf_cnt;
2848 /* DANGER!!! beware of unsigned comparision here!!! */
2850 if ((image.sections[i].base_address + buf_cnt >= min_address) &&
2851 (image.sections[i].base_address < max_address)) {
2853 if (image.sections[i].base_address < min_address) {
2854 /* clip addresses below */
2855 offset += min_address-image.sections[i].base_address;
2856 length -= offset;
2859 if (image.sections[i].base_address + buf_cnt > max_address)
2860 length -= (image.sections[i].base_address + buf_cnt)-max_address;
2862 retval = target_write_buffer(target,
2863 image.sections[i].base_address + offset, length, buffer + offset);
2864 if (retval != ERROR_OK) {
2865 free(buffer);
2866 break;
2868 image_size += length;
2869 command_print(CMD_CTX, "%u bytes written at address 0x%8.8" PRIx32 "",
2870 (unsigned int)length,
2871 image.sections[i].base_address + offset);
2874 free(buffer);
2877 if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK)) {
2878 command_print(CMD_CTX, "downloaded %" PRIu32 " bytes "
2879 "in %fs (%0.3f KiB/s)", image_size,
2880 duration_elapsed(&bench), duration_kbps(&bench, image_size));
2883 image_close(&image);
2885 return retval;
2889 COMMAND_HANDLER(handle_dump_image_command)
2891 struct fileio fileio;
2892 uint8_t *buffer;
2893 int retval, retvaltemp;
2894 uint32_t address, size;
2895 struct duration bench;
2896 struct target *target = get_current_target(CMD_CTX);
2898 if (CMD_ARGC != 3)
2899 return ERROR_COMMAND_SYNTAX_ERROR;
2901 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], address);
2902 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[2], size);
2904 uint32_t buf_size = (size > 4096) ? 4096 : size;
2905 buffer = malloc(buf_size);
2906 if (!buffer)
2907 return ERROR_FAIL;
2909 retval = fileio_open(&fileio, CMD_ARGV[0], FILEIO_WRITE, FILEIO_BINARY);
2910 if (retval != ERROR_OK) {
2911 free(buffer);
2912 return retval;
2915 duration_start(&bench);
2917 while (size > 0) {
2918 size_t size_written;
2919 uint32_t this_run_size = (size > buf_size) ? buf_size : size;
2920 retval = target_read_buffer(target, address, this_run_size, buffer);
2921 if (retval != ERROR_OK)
2922 break;
2924 retval = fileio_write(&fileio, this_run_size, buffer, &size_written);
2925 if (retval != ERROR_OK)
2926 break;
2928 size -= this_run_size;
2929 address += this_run_size;
2932 free(buffer);
2934 if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK)) {
2935 int filesize;
2936 retval = fileio_size(&fileio, &filesize);
2937 if (retval != ERROR_OK)
2938 return retval;
2939 command_print(CMD_CTX,
2940 "dumped %ld bytes in %fs (%0.3f KiB/s)", (long)filesize,
2941 duration_elapsed(&bench), duration_kbps(&bench, filesize));
2944 retvaltemp = fileio_close(&fileio);
2945 if (retvaltemp != ERROR_OK)
2946 return retvaltemp;
2948 return retval;
2951 static COMMAND_HELPER(handle_verify_image_command_internal, int verify)
2953 uint8_t *buffer;
2954 size_t buf_cnt;
2955 uint32_t image_size;
2956 int i;
2957 int retval;
2958 uint32_t checksum = 0;
2959 uint32_t mem_checksum = 0;
2961 struct image image;
2963 struct target *target = get_current_target(CMD_CTX);
2965 if (CMD_ARGC < 1)
2966 return ERROR_COMMAND_SYNTAX_ERROR;
2968 if (!target) {
2969 LOG_ERROR("no target selected");
2970 return ERROR_FAIL;
2973 struct duration bench;
2974 duration_start(&bench);
2976 if (CMD_ARGC >= 2) {
2977 uint32_t addr;
2978 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], addr);
2979 image.base_address = addr;
2980 image.base_address_set = 1;
2981 } else {
2982 image.base_address_set = 0;
2983 image.base_address = 0x0;
2986 image.start_address_set = 0;
2988 retval = image_open(&image, CMD_ARGV[0], (CMD_ARGC == 3) ? CMD_ARGV[2] : NULL);
2989 if (retval != ERROR_OK)
2990 return retval;
2992 image_size = 0x0;
2993 int diffs = 0;
2994 retval = ERROR_OK;
2995 for (i = 0; i < image.num_sections; i++) {
2996 buffer = malloc(image.sections[i].size);
2997 if (buffer == NULL) {
2998 command_print(CMD_CTX,
2999 "error allocating buffer for section (%d bytes)",
3000 (int)(image.sections[i].size));
3001 break;
3003 retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt);
3004 if (retval != ERROR_OK) {
3005 free(buffer);
3006 break;
3009 if (verify) {
3010 /* calculate checksum of image */
3011 retval = image_calculate_checksum(buffer, buf_cnt, &checksum);
3012 if (retval != ERROR_OK) {
3013 free(buffer);
3014 break;
3017 retval = target_checksum_memory(target, image.sections[i].base_address, buf_cnt, &mem_checksum);
3018 if (retval != ERROR_OK) {
3019 free(buffer);
3020 break;
3023 if (checksum != mem_checksum) {
3024 /* failed crc checksum, fall back to a binary compare */
3025 uint8_t *data;
3027 if (diffs == 0)
3028 LOG_ERROR("checksum mismatch - attempting binary compare");
3030 data = (uint8_t *)malloc(buf_cnt);
3032 /* Can we use 32bit word accesses? */
3033 int size = 1;
3034 int count = buf_cnt;
3035 if ((count % 4) == 0) {
3036 size *= 4;
3037 count /= 4;
3039 retval = target_read_memory(target, image.sections[i].base_address, size, count, data);
3040 if (retval == ERROR_OK) {
3041 uint32_t t;
3042 for (t = 0; t < buf_cnt; t++) {
3043 if (data[t] != buffer[t]) {
3044 command_print(CMD_CTX,
3045 "diff %d address 0x%08x. Was 0x%02x instead of 0x%02x",
3046 diffs,
3047 (unsigned)(t + image.sections[i].base_address),
3048 data[t],
3049 buffer[t]);
3050 if (diffs++ >= 127) {
3051 command_print(CMD_CTX, "More than 128 errors, the rest are not printed.");
3052 free(data);
3053 free(buffer);
3054 goto done;
3057 keep_alive();
3060 free(data);
3062 } else {
3063 command_print(CMD_CTX, "address 0x%08" PRIx32 " length 0x%08zx",
3064 image.sections[i].base_address,
3065 buf_cnt);
3068 free(buffer);
3069 image_size += buf_cnt;
3071 if (diffs > 0)
3072 command_print(CMD_CTX, "No more differences found.");
3073 done:
3074 if (diffs > 0)
3075 retval = ERROR_FAIL;
3076 if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK)) {
3077 command_print(CMD_CTX, "verified %" PRIu32 " bytes "
3078 "in %fs (%0.3f KiB/s)", image_size,
3079 duration_elapsed(&bench), duration_kbps(&bench, image_size));
3082 image_close(&image);
3084 return retval;
3087 COMMAND_HANDLER(handle_verify_image_command)
3089 return CALL_COMMAND_HANDLER(handle_verify_image_command_internal, 1);
3092 COMMAND_HANDLER(handle_test_image_command)
3094 return CALL_COMMAND_HANDLER(handle_verify_image_command_internal, 0);
3097 static int handle_bp_command_list(struct command_context *cmd_ctx)
3099 struct target *target = get_current_target(cmd_ctx);
3100 struct breakpoint *breakpoint = target->breakpoints;
3101 while (breakpoint) {
3102 if (breakpoint->type == BKPT_SOFT) {
3103 char *buf = buf_to_str(breakpoint->orig_instr,
3104 breakpoint->length, 16);
3105 command_print(cmd_ctx, "IVA breakpoint: 0x%8.8" PRIx32 ", 0x%x, %i, 0x%s",
3106 breakpoint->address,
3107 breakpoint->length,
3108 breakpoint->set, buf);
3109 free(buf);
3110 } else {
3111 if ((breakpoint->address == 0) && (breakpoint->asid != 0))
3112 command_print(cmd_ctx, "Context breakpoint: 0x%8.8" PRIx32 ", 0x%x, %i",
3113 breakpoint->asid,
3114 breakpoint->length, breakpoint->set);
3115 else if ((breakpoint->address != 0) && (breakpoint->asid != 0)) {
3116 command_print(cmd_ctx, "Hybrid breakpoint(IVA): 0x%8.8" PRIx32 ", 0x%x, %i",
3117 breakpoint->address,
3118 breakpoint->length, breakpoint->set);
3119 command_print(cmd_ctx, "\t|--->linked with ContextID: 0x%8.8" PRIx32,
3120 breakpoint->asid);
3121 } else
3122 command_print(cmd_ctx, "Breakpoint(IVA): 0x%8.8" PRIx32 ", 0x%x, %i",
3123 breakpoint->address,
3124 breakpoint->length, breakpoint->set);
3127 breakpoint = breakpoint->next;
3129 return ERROR_OK;
3132 static int handle_bp_command_set(struct command_context *cmd_ctx,
3133 uint32_t addr, uint32_t asid, uint32_t length, int hw)
3135 struct target *target = get_current_target(cmd_ctx);
3137 if (asid == 0) {
3138 int retval = breakpoint_add(target, addr, length, hw);
3139 if (ERROR_OK == retval)
3140 command_print(cmd_ctx, "breakpoint set at 0x%8.8" PRIx32 "", addr);
3141 else {
3142 LOG_ERROR("Failure setting breakpoint, the same address(IVA) is already used");
3143 return retval;
3145 } else if (addr == 0) {
3146 int retval = context_breakpoint_add(target, asid, length, hw);
3147 if (ERROR_OK == retval)
3148 command_print(cmd_ctx, "Context breakpoint set at 0x%8.8" PRIx32 "", asid);
3149 else {
3150 LOG_ERROR("Failure setting breakpoint, the same address(CONTEXTID) is already used");
3151 return retval;
3153 } else {
3154 int retval = hybrid_breakpoint_add(target, addr, asid, length, hw);
3155 if (ERROR_OK == retval)
3156 command_print(cmd_ctx, "Hybrid breakpoint set at 0x%8.8" PRIx32 "", asid);
3157 else {
3158 LOG_ERROR("Failure setting breakpoint, the same address is already used");
3159 return retval;
3162 return ERROR_OK;
3165 COMMAND_HANDLER(handle_bp_command)
3167 uint32_t addr;
3168 uint32_t asid;
3169 uint32_t length;
3170 int hw = BKPT_SOFT;
3172 switch (CMD_ARGC) {
3173 case 0:
3174 return handle_bp_command_list(CMD_CTX);
3176 case 2:
3177 asid = 0;
3178 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3179 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
3180 return handle_bp_command_set(CMD_CTX, addr, asid, length, hw);
3182 case 3:
3183 if (strcmp(CMD_ARGV[2], "hw") == 0) {
3184 hw = BKPT_HARD;
3185 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3187 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
3189 asid = 0;
3190 return handle_bp_command_set(CMD_CTX, addr, asid, length, hw);
3191 } else if (strcmp(CMD_ARGV[2], "hw_ctx") == 0) {
3192 hw = BKPT_HARD;
3193 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], asid);
3194 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
3195 addr = 0;
3196 return handle_bp_command_set(CMD_CTX, addr, asid, length, hw);
3199 case 4:
3200 hw = BKPT_HARD;
3201 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3202 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], asid);
3203 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[2], length);
3204 return handle_bp_command_set(CMD_CTX, addr, asid, length, hw);
3206 default:
3207 return ERROR_COMMAND_SYNTAX_ERROR;
3211 COMMAND_HANDLER(handle_rbp_command)
3213 if (CMD_ARGC != 1)
3214 return ERROR_COMMAND_SYNTAX_ERROR;
3216 uint32_t addr;
3217 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3219 struct target *target = get_current_target(CMD_CTX);
3220 breakpoint_remove(target, addr);
3222 return ERROR_OK;
3225 COMMAND_HANDLER(handle_wp_command)
3227 struct target *target = get_current_target(CMD_CTX);
3229 if (CMD_ARGC == 0) {
3230 struct watchpoint *watchpoint = target->watchpoints;
3232 while (watchpoint) {
3233 command_print(CMD_CTX, "address: 0x%8.8" PRIx32
3234 ", len: 0x%8.8" PRIx32
3235 ", r/w/a: %i, value: 0x%8.8" PRIx32
3236 ", mask: 0x%8.8" PRIx32,
3237 watchpoint->address,
3238 watchpoint->length,
3239 (int)watchpoint->rw,
3240 watchpoint->value,
3241 watchpoint->mask);
3242 watchpoint = watchpoint->next;
3244 return ERROR_OK;
3247 enum watchpoint_rw type = WPT_ACCESS;
3248 uint32_t addr = 0;
3249 uint32_t length = 0;
3250 uint32_t data_value = 0x0;
3251 uint32_t data_mask = 0xffffffff;
3253 switch (CMD_ARGC) {
3254 case 5:
3255 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[4], data_mask);
3256 /* fall through */
3257 case 4:
3258 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[3], data_value);
3259 /* fall through */
3260 case 3:
3261 switch (CMD_ARGV[2][0]) {
3262 case 'r':
3263 type = WPT_READ;
3264 break;
3265 case 'w':
3266 type = WPT_WRITE;
3267 break;
3268 case 'a':
3269 type = WPT_ACCESS;
3270 break;
3271 default:
3272 LOG_ERROR("invalid watchpoint mode ('%c')", CMD_ARGV[2][0]);
3273 return ERROR_COMMAND_SYNTAX_ERROR;
3275 /* fall through */
3276 case 2:
3277 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
3278 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3279 break;
3281 default:
3282 return ERROR_COMMAND_SYNTAX_ERROR;
3285 int retval = watchpoint_add(target, addr, length, type,
3286 data_value, data_mask);
3287 if (ERROR_OK != retval)
3288 LOG_ERROR("Failure setting watchpoints");
3290 return retval;
3293 COMMAND_HANDLER(handle_rwp_command)
3295 if (CMD_ARGC != 1)
3296 return ERROR_COMMAND_SYNTAX_ERROR;
3298 uint32_t addr;
3299 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3301 struct target *target = get_current_target(CMD_CTX);
3302 watchpoint_remove(target, addr);
3304 return ERROR_OK;
3308 * Translate a virtual address to a physical address.
3310 * The low-level target implementation must have logged a detailed error
3311 * which is forwarded to telnet/GDB session.
3313 COMMAND_HANDLER(handle_virt2phys_command)
3315 if (CMD_ARGC != 1)
3316 return ERROR_COMMAND_SYNTAX_ERROR;
3318 uint32_t va;
3319 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], va);
3320 uint32_t pa;
3322 struct target *target = get_current_target(CMD_CTX);
3323 int retval = target->type->virt2phys(target, va, &pa);
3324 if (retval == ERROR_OK)
3325 command_print(CMD_CTX, "Physical address 0x%08" PRIx32 "", pa);
3327 return retval;
3330 static void writeData(FILE *f, const void *data, size_t len)
3332 size_t written = fwrite(data, 1, len, f);
3333 if (written != len)
3334 LOG_ERROR("failed to write %zu bytes: %s", len, strerror(errno));
3337 static void writeLong(FILE *f, int l)
3339 int i;
3340 for (i = 0; i < 4; i++) {
3341 char c = (l >> (i*8))&0xff;
3342 writeData(f, &c, 1);
3347 static void writeString(FILE *f, char *s)
3349 writeData(f, s, strlen(s));
3352 /* Dump a gmon.out histogram file. */
3353 static void writeGmon(uint32_t *samples, uint32_t sampleNum, const char *filename)
3355 uint32_t i;
3356 FILE *f = fopen(filename, "w");
3357 if (f == NULL)
3358 return;
3359 writeString(f, "gmon");
3360 writeLong(f, 0x00000001); /* Version */
3361 writeLong(f, 0); /* padding */
3362 writeLong(f, 0); /* padding */
3363 writeLong(f, 0); /* padding */
3365 uint8_t zero = 0; /* GMON_TAG_TIME_HIST */
3366 writeData(f, &zero, 1);
3368 /* figure out bucket size */
3369 uint32_t min = samples[0];
3370 uint32_t max = samples[0];
3371 for (i = 0; i < sampleNum; i++) {
3372 if (min > samples[i])
3373 min = samples[i];
3374 if (max < samples[i])
3375 max = samples[i];
3378 int addressSpace = (max - min + 1);
3379 assert(addressSpace >= 2);
3381 static const uint32_t maxBuckets = 16 * 1024; /* maximum buckets. */
3382 uint32_t length = addressSpace;
3383 if (length > maxBuckets)
3384 length = maxBuckets;
3385 int *buckets = malloc(sizeof(int)*length);
3386 if (buckets == NULL) {
3387 fclose(f);
3388 return;
3390 memset(buckets, 0, sizeof(int) * length);
3391 for (i = 0; i < sampleNum; i++) {
3392 uint32_t address = samples[i];
3393 long long a = address - min;
3394 long long b = length - 1;
3395 long long c = addressSpace - 1;
3396 int index_t = (a * b) / c; /* danger!!!! int32 overflows */
3397 buckets[index_t]++;
3400 /* append binary memory gmon.out &profile_hist_hdr ((char*)&profile_hist_hdr + sizeof(struct gmon_hist_hdr)) */
3401 writeLong(f, min); /* low_pc */
3402 writeLong(f, max); /* high_pc */
3403 writeLong(f, length); /* # of samples */
3404 writeLong(f, 100); /* KLUDGE! We lie, ca. 100Hz best case. */
3405 writeString(f, "seconds");
3406 for (i = 0; i < (15-strlen("seconds")); i++)
3407 writeData(f, &zero, 1);
3408 writeString(f, "s");
3410 /*append binary memory gmon.out profile_hist_data (profile_hist_data + profile_hist_hdr.hist_size) */
3412 char *data = malloc(2 * length);
3413 if (data != NULL) {
3414 for (i = 0; i < length; i++) {
3415 int val;
3416 val = buckets[i];
3417 if (val > 65535)
3418 val = 65535;
3419 data[i * 2] = val&0xff;
3420 data[i * 2 + 1] = (val >> 8) & 0xff;
3422 free(buckets);
3423 writeData(f, data, length * 2);
3424 free(data);
3425 } else
3426 free(buckets);
3428 fclose(f);
3431 /* profiling samples the CPU PC as quickly as OpenOCD is able,
3432 * which will be used as a random sampling of PC */
3433 COMMAND_HANDLER(handle_profile_command)
3435 struct target *target = get_current_target(CMD_CTX);
3436 struct timeval timeout, now;
3438 gettimeofday(&timeout, NULL);
3439 if (CMD_ARGC != 2)
3440 return ERROR_COMMAND_SYNTAX_ERROR;
3441 unsigned offset;
3442 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[0], offset);
3444 timeval_add_time(&timeout, offset, 0);
3447 * @todo: Some cores let us sample the PC without the
3448 * annoying halt/resume step; for example, ARMv7 PCSR.
3449 * Provide a way to use that more efficient mechanism.
3452 command_print(CMD_CTX, "Starting profiling. Halting and resuming the target as often as we can...");
3454 static const int maxSample = 10000;
3455 uint32_t *samples = malloc(sizeof(uint32_t)*maxSample);
3456 if (samples == NULL)
3457 return ERROR_OK;
3459 int numSamples = 0;
3460 /* hopefully it is safe to cache! We want to stop/restart as quickly as possible. */
3461 struct reg *reg = register_get_by_name(target->reg_cache, "pc", 1);
3463 int retval = ERROR_OK;
3464 for (;;) {
3465 target_poll(target);
3466 if (target->state == TARGET_HALTED) {
3467 uint32_t t = *((uint32_t *)reg->value);
3468 samples[numSamples++] = t;
3469 /* current pc, addr = 0, do not handle breakpoints, not debugging */
3470 retval = target_resume(target, 1, 0, 0, 0);
3471 target_poll(target);
3472 alive_sleep(10); /* sleep 10ms, i.e. <100 samples/second. */
3473 } else if (target->state == TARGET_RUNNING) {
3474 /* We want to quickly sample the PC. */
3475 retval = target_halt(target);
3476 if (retval != ERROR_OK) {
3477 free(samples);
3478 return retval;
3480 } else {
3481 command_print(CMD_CTX, "Target not halted or running");
3482 retval = ERROR_OK;
3483 break;
3485 if (retval != ERROR_OK)
3486 break;
3488 gettimeofday(&now, NULL);
3489 if ((numSamples >= maxSample) || ((now.tv_sec >= timeout.tv_sec)
3490 && (now.tv_usec >= timeout.tv_usec))) {
3491 command_print(CMD_CTX, "Profiling completed. %d samples.", numSamples);
3492 retval = target_poll(target);
3493 if (retval != ERROR_OK) {
3494 free(samples);
3495 return retval;
3497 if (target->state == TARGET_HALTED) {
3498 /* current pc, addr = 0, do not handle
3499 * breakpoints, not debugging */
3500 target_resume(target, 1, 0, 0, 0);
3502 retval = target_poll(target);
3503 if (retval != ERROR_OK) {
3504 free(samples);
3505 return retval;
3507 writeGmon(samples, numSamples, CMD_ARGV[1]);
3508 command_print(CMD_CTX, "Wrote %s", CMD_ARGV[1]);
3509 break;
3512 free(samples);
3514 return retval;
3517 static int new_int_array_element(Jim_Interp *interp, const char *varname, int idx, uint32_t val)
3519 char *namebuf;
3520 Jim_Obj *nameObjPtr, *valObjPtr;
3521 int result;
3523 namebuf = alloc_printf("%s(%d)", varname, idx);
3524 if (!namebuf)
3525 return JIM_ERR;
3527 nameObjPtr = Jim_NewStringObj(interp, namebuf, -1);
3528 valObjPtr = Jim_NewIntObj(interp, val);
3529 if (!nameObjPtr || !valObjPtr) {
3530 free(namebuf);
3531 return JIM_ERR;
3534 Jim_IncrRefCount(nameObjPtr);
3535 Jim_IncrRefCount(valObjPtr);
3536 result = Jim_SetVariable(interp, nameObjPtr, valObjPtr);
3537 Jim_DecrRefCount(interp, nameObjPtr);
3538 Jim_DecrRefCount(interp, valObjPtr);
3539 free(namebuf);
3540 /* printf("%s(%d) <= 0%08x\n", varname, idx, val); */
3541 return result;
3544 static int jim_mem2array(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
3546 struct command_context *context;
3547 struct target *target;
3549 context = current_command_context(interp);
3550 assert(context != NULL);
3552 target = get_current_target(context);
3553 if (target == NULL) {
3554 LOG_ERROR("mem2array: no current target");
3555 return JIM_ERR;
3558 return target_mem2array(interp, target, argc - 1, argv + 1);
3561 static int target_mem2array(Jim_Interp *interp, struct target *target, int argc, Jim_Obj *const *argv)
3563 long l;
3564 uint32_t width;
3565 int len;
3566 uint32_t addr;
3567 uint32_t count;
3568 uint32_t v;
3569 const char *varname;
3570 int n, e, retval;
3571 uint32_t i;
3573 /* argv[1] = name of array to receive the data
3574 * argv[2] = desired width
3575 * argv[3] = memory address
3576 * argv[4] = count of times to read
3578 if (argc != 4) {
3579 Jim_WrongNumArgs(interp, 1, argv, "varname width addr nelems");
3580 return JIM_ERR;
3582 varname = Jim_GetString(argv[0], &len);
3583 /* given "foo" get space for worse case "foo(%d)" .. add 20 */
3585 e = Jim_GetLong(interp, argv[1], &l);
3586 width = l;
3587 if (e != JIM_OK)
3588 return e;
3590 e = Jim_GetLong(interp, argv[2], &l);
3591 addr = l;
3592 if (e != JIM_OK)
3593 return e;
3594 e = Jim_GetLong(interp, argv[3], &l);
3595 len = l;
3596 if (e != JIM_OK)
3597 return e;
3598 switch (width) {
3599 case 8:
3600 width = 1;
3601 break;
3602 case 16:
3603 width = 2;
3604 break;
3605 case 32:
3606 width = 4;
3607 break;
3608 default:
3609 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3610 Jim_AppendStrings(interp, Jim_GetResult(interp), "Invalid width param, must be 8/16/32", NULL);
3611 return JIM_ERR;
3613 if (len == 0) {
3614 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3615 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: zero width read?", NULL);
3616 return JIM_ERR;
3618 if ((addr + (len * width)) < addr) {
3619 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3620 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: addr + len - wraps to zero?", NULL);
3621 return JIM_ERR;
3623 /* absurd transfer size? */
3624 if (len > 65536) {
3625 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3626 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: absurd > 64K item request", NULL);
3627 return JIM_ERR;
3630 if ((width == 1) ||
3631 ((width == 2) && ((addr & 1) == 0)) ||
3632 ((width == 4) && ((addr & 3) == 0))) {
3633 /* all is well */
3634 } else {
3635 char buf[100];
3636 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3637 sprintf(buf, "mem2array address: 0x%08" PRIx32 " is not aligned for %" PRId32 " byte reads",
3638 addr,
3639 width);
3640 Jim_AppendStrings(interp, Jim_GetResult(interp), buf , NULL);
3641 return JIM_ERR;
3644 /* Transfer loop */
3646 /* index counter */
3647 n = 0;
3649 size_t buffersize = 4096;
3650 uint8_t *buffer = malloc(buffersize);
3651 if (buffer == NULL)
3652 return JIM_ERR;
3654 /* assume ok */
3655 e = JIM_OK;
3656 while (len) {
3657 /* Slurp... in buffer size chunks */
3659 count = len; /* in objects.. */
3660 if (count > (buffersize / width))
3661 count = (buffersize / width);
3663 retval = target_read_memory(target, addr, width, count, buffer);
3664 if (retval != ERROR_OK) {
3665 /* BOO !*/
3666 LOG_ERROR("mem2array: Read @ 0x%08x, w=%d, cnt=%d, failed",
3667 (unsigned int)addr,
3668 (int)width,
3669 (int)count);
3670 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3671 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: cannot read memory", NULL);
3672 e = JIM_ERR;
3673 break;
3674 } else {
3675 v = 0; /* shut up gcc */
3676 for (i = 0; i < count ; i++, n++) {
3677 switch (width) {
3678 case 4:
3679 v = target_buffer_get_u32(target, &buffer[i*width]);
3680 break;
3681 case 2:
3682 v = target_buffer_get_u16(target, &buffer[i*width]);
3683 break;
3684 case 1:
3685 v = buffer[i] & 0x0ff;
3686 break;
3688 new_int_array_element(interp, varname, n, v);
3690 len -= count;
3694 free(buffer);
3696 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3698 return e;
3701 static int get_int_array_element(Jim_Interp *interp, const char *varname, int idx, uint32_t *val)
3703 char *namebuf;
3704 Jim_Obj *nameObjPtr, *valObjPtr;
3705 int result;
3706 long l;
3708 namebuf = alloc_printf("%s(%d)", varname, idx);
3709 if (!namebuf)
3710 return JIM_ERR;
3712 nameObjPtr = Jim_NewStringObj(interp, namebuf, -1);
3713 if (!nameObjPtr) {
3714 free(namebuf);
3715 return JIM_ERR;
3718 Jim_IncrRefCount(nameObjPtr);
3719 valObjPtr = Jim_GetVariable(interp, nameObjPtr, JIM_ERRMSG);
3720 Jim_DecrRefCount(interp, nameObjPtr);
3721 free(namebuf);
3722 if (valObjPtr == NULL)
3723 return JIM_ERR;
3725 result = Jim_GetLong(interp, valObjPtr, &l);
3726 /* printf("%s(%d) => 0%08x\n", varname, idx, val); */
3727 *val = l;
3728 return result;
3731 static int jim_array2mem(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
3733 struct command_context *context;
3734 struct target *target;
3736 context = current_command_context(interp);
3737 assert(context != NULL);
3739 target = get_current_target(context);
3740 if (target == NULL) {
3741 LOG_ERROR("array2mem: no current target");
3742 return JIM_ERR;
3745 return target_array2mem(interp, target, argc-1, argv + 1);
3748 static int target_array2mem(Jim_Interp *interp, struct target *target,
3749 int argc, Jim_Obj *const *argv)
3751 long l;
3752 uint32_t width;
3753 int len;
3754 uint32_t addr;
3755 uint32_t count;
3756 uint32_t v;
3757 const char *varname;
3758 int n, e, retval;
3759 uint32_t i;
3761 /* argv[1] = name of array to get the data
3762 * argv[2] = desired width
3763 * argv[3] = memory address
3764 * argv[4] = count to write
3766 if (argc != 4) {
3767 Jim_WrongNumArgs(interp, 0, argv, "varname width addr nelems");
3768 return JIM_ERR;
3770 varname = Jim_GetString(argv[0], &len);
3771 /* given "foo" get space for worse case "foo(%d)" .. add 20 */
3773 e = Jim_GetLong(interp, argv[1], &l);
3774 width = l;
3775 if (e != JIM_OK)
3776 return e;
3778 e = Jim_GetLong(interp, argv[2], &l);
3779 addr = l;
3780 if (e != JIM_OK)
3781 return e;
3782 e = Jim_GetLong(interp, argv[3], &l);
3783 len = l;
3784 if (e != JIM_OK)
3785 return e;
3786 switch (width) {
3787 case 8:
3788 width = 1;
3789 break;
3790 case 16:
3791 width = 2;
3792 break;
3793 case 32:
3794 width = 4;
3795 break;
3796 default:
3797 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3798 Jim_AppendStrings(interp, Jim_GetResult(interp),
3799 "Invalid width param, must be 8/16/32", NULL);
3800 return JIM_ERR;
3802 if (len == 0) {
3803 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3804 Jim_AppendStrings(interp, Jim_GetResult(interp),
3805 "array2mem: zero width read?", NULL);
3806 return JIM_ERR;
3808 if ((addr + (len * width)) < addr) {
3809 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3810 Jim_AppendStrings(interp, Jim_GetResult(interp),
3811 "array2mem: addr + len - wraps to zero?", NULL);
3812 return JIM_ERR;
3814 /* absurd transfer size? */
3815 if (len > 65536) {
3816 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3817 Jim_AppendStrings(interp, Jim_GetResult(interp),
3818 "array2mem: absurd > 64K item request", NULL);
3819 return JIM_ERR;
3822 if ((width == 1) ||
3823 ((width == 2) && ((addr & 1) == 0)) ||
3824 ((width == 4) && ((addr & 3) == 0))) {
3825 /* all is well */
3826 } else {
3827 char buf[100];
3828 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3829 sprintf(buf, "array2mem address: 0x%08x is not aligned for %d byte reads",
3830 (unsigned int)addr,
3831 (int)width);
3832 Jim_AppendStrings(interp, Jim_GetResult(interp), buf , NULL);
3833 return JIM_ERR;
3836 /* Transfer loop */
3838 /* index counter */
3839 n = 0;
3840 /* assume ok */
3841 e = JIM_OK;
3843 size_t buffersize = 4096;
3844 uint8_t *buffer = malloc(buffersize);
3845 if (buffer == NULL)
3846 return JIM_ERR;
3848 while (len) {
3849 /* Slurp... in buffer size chunks */
3851 count = len; /* in objects.. */
3852 if (count > (buffersize / width))
3853 count = (buffersize / width);
3855 v = 0; /* shut up gcc */
3856 for (i = 0; i < count; i++, n++) {
3857 get_int_array_element(interp, varname, n, &v);
3858 switch (width) {
3859 case 4:
3860 target_buffer_set_u32(target, &buffer[i * width], v);
3861 break;
3862 case 2:
3863 target_buffer_set_u16(target, &buffer[i * width], v);
3864 break;
3865 case 1:
3866 buffer[i] = v & 0x0ff;
3867 break;
3870 len -= count;
3872 retval = target_write_memory(target, addr, width, count, buffer);
3873 if (retval != ERROR_OK) {
3874 /* BOO !*/
3875 LOG_ERROR("array2mem: Write @ 0x%08x, w=%d, cnt=%d, failed",
3876 (unsigned int)addr,
3877 (int)width,
3878 (int)count);
3879 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3880 Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: cannot read memory", NULL);
3881 e = JIM_ERR;
3882 break;
3886 free(buffer);
3888 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3890 return e;
3893 /* FIX? should we propagate errors here rather than printing them
3894 * and continuing?
3896 void target_handle_event(struct target *target, enum target_event e)
3898 struct target_event_action *teap;
3900 for (teap = target->event_action; teap != NULL; teap = teap->next) {
3901 if (teap->event == e) {
3902 LOG_DEBUG("target: (%d) %s (%s) event: %d (%s) action: %s",
3903 target->target_number,
3904 target_name(target),
3905 target_type_name(target),
3907 Jim_Nvp_value2name_simple(nvp_target_event, e)->name,
3908 Jim_GetString(teap->body, NULL));
3909 if (Jim_EvalObj(teap->interp, teap->body) != JIM_OK) {
3910 Jim_MakeErrorMessage(teap->interp);
3911 command_print(NULL, "%s\n", Jim_GetString(Jim_GetResult(teap->interp), NULL));
3918 * Returns true only if the target has a handler for the specified event.
3920 bool target_has_event_action(struct target *target, enum target_event event)
3922 struct target_event_action *teap;
3924 for (teap = target->event_action; teap != NULL; teap = teap->next) {
3925 if (teap->event == event)
3926 return true;
3928 return false;
3931 enum target_cfg_param {
3932 TCFG_TYPE,
3933 TCFG_EVENT,
3934 TCFG_WORK_AREA_VIRT,
3935 TCFG_WORK_AREA_PHYS,
3936 TCFG_WORK_AREA_SIZE,
3937 TCFG_WORK_AREA_BACKUP,
3938 TCFG_ENDIAN,
3939 TCFG_VARIANT,
3940 TCFG_COREID,
3941 TCFG_CHAIN_POSITION,
3942 TCFG_DBGBASE,
3943 TCFG_RTOS,
3946 static Jim_Nvp nvp_config_opts[] = {
3947 { .name = "-type", .value = TCFG_TYPE },
3948 { .name = "-event", .value = TCFG_EVENT },
3949 { .name = "-work-area-virt", .value = TCFG_WORK_AREA_VIRT },
3950 { .name = "-work-area-phys", .value = TCFG_WORK_AREA_PHYS },
3951 { .name = "-work-area-size", .value = TCFG_WORK_AREA_SIZE },
3952 { .name = "-work-area-backup", .value = TCFG_WORK_AREA_BACKUP },
3953 { .name = "-endian" , .value = TCFG_ENDIAN },
3954 { .name = "-variant", .value = TCFG_VARIANT },
3955 { .name = "-coreid", .value = TCFG_COREID },
3956 { .name = "-chain-position", .value = TCFG_CHAIN_POSITION },
3957 { .name = "-dbgbase", .value = TCFG_DBGBASE },
3958 { .name = "-rtos", .value = TCFG_RTOS },
3959 { .name = NULL, .value = -1 }
3962 static int target_configure(Jim_GetOptInfo *goi, struct target *target)
3964 Jim_Nvp *n;
3965 Jim_Obj *o;
3966 jim_wide w;
3967 char *cp;
3968 int e;
3970 /* parse config or cget options ... */
3971 while (goi->argc > 0) {
3972 Jim_SetEmptyResult(goi->interp);
3973 /* Jim_GetOpt_Debug(goi); */
3975 if (target->type->target_jim_configure) {
3976 /* target defines a configure function */
3977 /* target gets first dibs on parameters */
3978 e = (*(target->type->target_jim_configure))(target, goi);
3979 if (e == JIM_OK) {
3980 /* more? */
3981 continue;
3983 if (e == JIM_ERR) {
3984 /* An error */
3985 return e;
3987 /* otherwise we 'continue' below */
3989 e = Jim_GetOpt_Nvp(goi, nvp_config_opts, &n);
3990 if (e != JIM_OK) {
3991 Jim_GetOpt_NvpUnknown(goi, nvp_config_opts, 0);
3992 return e;
3994 switch (n->value) {
3995 case TCFG_TYPE:
3996 /* not setable */
3997 if (goi->isconfigure) {
3998 Jim_SetResultFormatted(goi->interp,
3999 "not settable: %s", n->name);
4000 return JIM_ERR;
4001 } else {
4002 no_params:
4003 if (goi->argc != 0) {
4004 Jim_WrongNumArgs(goi->interp,
4005 goi->argc, goi->argv,
4006 "NO PARAMS");
4007 return JIM_ERR;
4010 Jim_SetResultString(goi->interp,
4011 target_type_name(target), -1);
4012 /* loop for more */
4013 break;
4014 case TCFG_EVENT:
4015 if (goi->argc == 0) {
4016 Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name? ...");
4017 return JIM_ERR;
4020 e = Jim_GetOpt_Nvp(goi, nvp_target_event, &n);
4021 if (e != JIM_OK) {
4022 Jim_GetOpt_NvpUnknown(goi, nvp_target_event, 1);
4023 return e;
4026 if (goi->isconfigure) {
4027 if (goi->argc != 1) {
4028 Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name? ?EVENT-BODY?");
4029 return JIM_ERR;
4031 } else {
4032 if (goi->argc != 0) {
4033 Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name?");
4034 return JIM_ERR;
4039 struct target_event_action *teap;
4041 teap = target->event_action;
4042 /* replace existing? */
4043 while (teap) {
4044 if (teap->event == (enum target_event)n->value)
4045 break;
4046 teap = teap->next;
4049 if (goi->isconfigure) {
4050 bool replace = true;
4051 if (teap == NULL) {
4052 /* create new */
4053 teap = calloc(1, sizeof(*teap));
4054 replace = false;
4056 teap->event = n->value;
4057 teap->interp = goi->interp;
4058 Jim_GetOpt_Obj(goi, &o);
4059 if (teap->body)
4060 Jim_DecrRefCount(teap->interp, teap->body);
4061 teap->body = Jim_DuplicateObj(goi->interp, o);
4063 * FIXME:
4064 * Tcl/TK - "tk events" have a nice feature.
4065 * See the "BIND" command.
4066 * We should support that here.
4067 * You can specify %X and %Y in the event code.
4068 * The idea is: %T - target name.
4069 * The idea is: %N - target number
4070 * The idea is: %E - event name.
4072 Jim_IncrRefCount(teap->body);
4074 if (!replace) {
4075 /* add to head of event list */
4076 teap->next = target->event_action;
4077 target->event_action = teap;
4079 Jim_SetEmptyResult(goi->interp);
4080 } else {
4081 /* get */
4082 if (teap == NULL)
4083 Jim_SetEmptyResult(goi->interp);
4084 else
4085 Jim_SetResult(goi->interp, Jim_DuplicateObj(goi->interp, teap->body));
4088 /* loop for more */
4089 break;
4091 case TCFG_WORK_AREA_VIRT:
4092 if (goi->isconfigure) {
4093 target_free_all_working_areas(target);
4094 e = Jim_GetOpt_Wide(goi, &w);
4095 if (e != JIM_OK)
4096 return e;
4097 target->working_area_virt = w;
4098 target->working_area_virt_spec = true;
4099 } else {
4100 if (goi->argc != 0)
4101 goto no_params;
4103 Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_virt));
4104 /* loop for more */
4105 break;
4107 case TCFG_WORK_AREA_PHYS:
4108 if (goi->isconfigure) {
4109 target_free_all_working_areas(target);
4110 e = Jim_GetOpt_Wide(goi, &w);
4111 if (e != JIM_OK)
4112 return e;
4113 target->working_area_phys = w;
4114 target->working_area_phys_spec = true;
4115 } else {
4116 if (goi->argc != 0)
4117 goto no_params;
4119 Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_phys));
4120 /* loop for more */
4121 break;
4123 case TCFG_WORK_AREA_SIZE:
4124 if (goi->isconfigure) {
4125 target_free_all_working_areas(target);
4126 e = Jim_GetOpt_Wide(goi, &w);
4127 if (e != JIM_OK)
4128 return e;
4129 target->working_area_size = w;
4130 } else {
4131 if (goi->argc != 0)
4132 goto no_params;
4134 Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_size));
4135 /* loop for more */
4136 break;
4138 case TCFG_WORK_AREA_BACKUP:
4139 if (goi->isconfigure) {
4140 target_free_all_working_areas(target);
4141 e = Jim_GetOpt_Wide(goi, &w);
4142 if (e != JIM_OK)
4143 return e;
4144 /* make this exactly 1 or 0 */
4145 target->backup_working_area = (!!w);
4146 } else {
4147 if (goi->argc != 0)
4148 goto no_params;
4150 Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->backup_working_area));
4151 /* loop for more e*/
4152 break;
4155 case TCFG_ENDIAN:
4156 if (goi->isconfigure) {
4157 e = Jim_GetOpt_Nvp(goi, nvp_target_endian, &n);
4158 if (e != JIM_OK) {
4159 Jim_GetOpt_NvpUnknown(goi, nvp_target_endian, 1);
4160 return e;
4162 target->endianness = n->value;
4163 } else {
4164 if (goi->argc != 0)
4165 goto no_params;
4167 n = Jim_Nvp_value2name_simple(nvp_target_endian, target->endianness);
4168 if (n->name == NULL) {
4169 target->endianness = TARGET_LITTLE_ENDIAN;
4170 n = Jim_Nvp_value2name_simple(nvp_target_endian, target->endianness);
4172 Jim_SetResultString(goi->interp, n->name, -1);
4173 /* loop for more */
4174 break;
4176 case TCFG_VARIANT:
4177 if (goi->isconfigure) {
4178 if (goi->argc < 1) {
4179 Jim_SetResultFormatted(goi->interp,
4180 "%s ?STRING?",
4181 n->name);
4182 return JIM_ERR;
4184 if (target->variant)
4185 free((void *)(target->variant));
4186 e = Jim_GetOpt_String(goi, &cp, NULL);
4187 if (e != JIM_OK)
4188 return e;
4189 target->variant = strdup(cp);
4190 } else {
4191 if (goi->argc != 0)
4192 goto no_params;
4194 Jim_SetResultString(goi->interp, target->variant, -1);
4195 /* loop for more */
4196 break;
4198 case TCFG_COREID:
4199 if (goi->isconfigure) {
4200 e = Jim_GetOpt_Wide(goi, &w);
4201 if (e != JIM_OK)
4202 return e;
4203 target->coreid = (int32_t)w;
4204 } else {
4205 if (goi->argc != 0)
4206 goto no_params;
4208 Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_size));
4209 /* loop for more */
4210 break;
4212 case TCFG_CHAIN_POSITION:
4213 if (goi->isconfigure) {
4214 Jim_Obj *o_t;
4215 struct jtag_tap *tap;
4216 target_free_all_working_areas(target);
4217 e = Jim_GetOpt_Obj(goi, &o_t);
4218 if (e != JIM_OK)
4219 return e;
4220 tap = jtag_tap_by_jim_obj(goi->interp, o_t);
4221 if (tap == NULL)
4222 return JIM_ERR;
4223 /* make this exactly 1 or 0 */
4224 target->tap = tap;
4225 } else {
4226 if (goi->argc != 0)
4227 goto no_params;
4229 Jim_SetResultString(goi->interp, target->tap->dotted_name, -1);
4230 /* loop for more e*/
4231 break;
4232 case TCFG_DBGBASE:
4233 if (goi->isconfigure) {
4234 e = Jim_GetOpt_Wide(goi, &w);
4235 if (e != JIM_OK)
4236 return e;
4237 target->dbgbase = (uint32_t)w;
4238 target->dbgbase_set = true;
4239 } else {
4240 if (goi->argc != 0)
4241 goto no_params;
4243 Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->dbgbase));
4244 /* loop for more */
4245 break;
4247 case TCFG_RTOS:
4248 /* RTOS */
4250 int result = rtos_create(goi, target);
4251 if (result != JIM_OK)
4252 return result;
4254 /* loop for more */
4255 break;
4257 } /* while (goi->argc) */
4260 /* done - we return */
4261 return JIM_OK;
4264 static int jim_target_configure(Jim_Interp *interp, int argc, Jim_Obj * const *argv)
4266 Jim_GetOptInfo goi;
4268 Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4269 goi.isconfigure = !strcmp(Jim_GetString(argv[0], NULL), "configure");
4270 int need_args = 1 + goi.isconfigure;
4271 if (goi.argc < need_args) {
4272 Jim_WrongNumArgs(goi.interp, goi.argc, goi.argv,
4273 goi.isconfigure
4274 ? "missing: -option VALUE ..."
4275 : "missing: -option ...");
4276 return JIM_ERR;
4278 struct target *target = Jim_CmdPrivData(goi.interp);
4279 return target_configure(&goi, target);
4282 static int jim_target_mw(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4284 const char *cmd_name = Jim_GetString(argv[0], NULL);
4286 Jim_GetOptInfo goi;
4287 Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4289 if (goi.argc < 2 || goi.argc > 4) {
4290 Jim_SetResultFormatted(goi.interp,
4291 "usage: %s [phys] <address> <data> [<count>]", cmd_name);
4292 return JIM_ERR;
4295 target_write_fn fn;
4296 fn = target_write_memory_fast;
4298 int e;
4299 if (strcmp(Jim_GetString(argv[1], NULL), "phys") == 0) {
4300 /* consume it */
4301 struct Jim_Obj *obj;
4302 e = Jim_GetOpt_Obj(&goi, &obj);
4303 if (e != JIM_OK)
4304 return e;
4306 fn = target_write_phys_memory;
4309 jim_wide a;
4310 e = Jim_GetOpt_Wide(&goi, &a);
4311 if (e != JIM_OK)
4312 return e;
4314 jim_wide b;
4315 e = Jim_GetOpt_Wide(&goi, &b);
4316 if (e != JIM_OK)
4317 return e;
4319 jim_wide c = 1;
4320 if (goi.argc == 1) {
4321 e = Jim_GetOpt_Wide(&goi, &c);
4322 if (e != JIM_OK)
4323 return e;
4326 /* all args must be consumed */
4327 if (goi.argc != 0)
4328 return JIM_ERR;
4330 struct target *target = Jim_CmdPrivData(goi.interp);
4331 unsigned data_size;
4332 if (strcasecmp(cmd_name, "mww") == 0)
4333 data_size = 4;
4334 else if (strcasecmp(cmd_name, "mwh") == 0)
4335 data_size = 2;
4336 else if (strcasecmp(cmd_name, "mwb") == 0)
4337 data_size = 1;
4338 else {
4339 LOG_ERROR("command '%s' unknown: ", cmd_name);
4340 return JIM_ERR;
4343 return (target_fill_mem(target, a, fn, data_size, b, c) == ERROR_OK) ? JIM_OK : JIM_ERR;
4347 * @brief Reads an array of words/halfwords/bytes from target memory starting at specified address.
4349 * Usage: mdw [phys] <address> [<count>] - for 32 bit reads
4350 * mdh [phys] <address> [<count>] - for 16 bit reads
4351 * mdb [phys] <address> [<count>] - for 8 bit reads
4353 * Count defaults to 1.
4355 * Calls target_read_memory or target_read_phys_memory depending on
4356 * the presence of the "phys" argument
4357 * Reads the target memory in blocks of max. 32 bytes, and returns an array of ints formatted
4358 * to int representation in base16.
4359 * Also outputs read data in a human readable form using command_print
4361 * @param phys if present target_read_phys_memory will be used instead of target_read_memory
4362 * @param address address where to start the read. May be specified in decimal or hex using the standard "0x" prefix
4363 * @param count optional count parameter to read an array of values. If not specified, defaults to 1.
4364 * @returns: JIM_ERR on error or JIM_OK on success and sets the result string to an array of ascii formatted numbers
4365 * on success, with [<count>] number of elements.
4367 * In case of little endian target:
4368 * Example1: "mdw 0x00000000" returns "10123456"
4369 * Exmaple2: "mdh 0x00000000 1" returns "3456"
4370 * Example3: "mdb 0x00000000" returns "56"
4371 * Example4: "mdh 0x00000000 2" returns "3456 1012"
4372 * Example5: "mdb 0x00000000 3" returns "56 34 12"
4374 static int jim_target_md(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4376 const char *cmd_name = Jim_GetString(argv[0], NULL);
4378 Jim_GetOptInfo goi;
4379 Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4381 if ((goi.argc < 1) || (goi.argc > 3)) {
4382 Jim_SetResultFormatted(goi.interp,
4383 "usage: %s [phys] <address> [<count>]", cmd_name);
4384 return JIM_ERR;
4387 int (*fn)(struct target *target,
4388 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer);
4389 fn = target_read_memory;
4391 int e;
4392 if (strcmp(Jim_GetString(argv[1], NULL), "phys") == 0) {
4393 /* consume it */
4394 struct Jim_Obj *obj;
4395 e = Jim_GetOpt_Obj(&goi, &obj);
4396 if (e != JIM_OK)
4397 return e;
4399 fn = target_read_phys_memory;
4402 /* Read address parameter */
4403 jim_wide addr;
4404 e = Jim_GetOpt_Wide(&goi, &addr);
4405 if (e != JIM_OK)
4406 return JIM_ERR;
4408 /* If next parameter exists, read it out as the count parameter, if not, set it to 1 (default) */
4409 jim_wide count;
4410 if (goi.argc == 1) {
4411 e = Jim_GetOpt_Wide(&goi, &count);
4412 if (e != JIM_OK)
4413 return JIM_ERR;
4414 } else
4415 count = 1;
4417 /* all args must be consumed */
4418 if (goi.argc != 0)
4419 return JIM_ERR;
4421 jim_wide dwidth = 1; /* shut up gcc */
4422 if (strcasecmp(cmd_name, "mdw") == 0)
4423 dwidth = 4;
4424 else if (strcasecmp(cmd_name, "mdh") == 0)
4425 dwidth = 2;
4426 else if (strcasecmp(cmd_name, "mdb") == 0)
4427 dwidth = 1;
4428 else {
4429 LOG_ERROR("command '%s' unknown: ", cmd_name);
4430 return JIM_ERR;
4433 /* convert count to "bytes" */
4434 int bytes = count * dwidth;
4436 struct target *target = Jim_CmdPrivData(goi.interp);
4437 uint8_t target_buf[32];
4438 jim_wide x, y, z;
4439 while (bytes > 0) {
4440 y = (bytes < 16) ? bytes : 16; /* y = min(bytes, 16); */
4442 /* Try to read out next block */
4443 e = fn(target, addr, dwidth, y / dwidth, target_buf);
4445 if (e != ERROR_OK) {
4446 Jim_SetResultFormatted(interp, "error reading target @ 0x%08lx", (long)addr);
4447 return JIM_ERR;
4450 command_print_sameline(NULL, "0x%08x ", (int)(addr));
4451 switch (dwidth) {
4452 case 4:
4453 for (x = 0; x < 16 && x < y; x += 4) {
4454 z = target_buffer_get_u32(target, &(target_buf[x]));
4455 command_print_sameline(NULL, "%08x ", (int)(z));
4457 for (; (x < 16) ; x += 4)
4458 command_print_sameline(NULL, " ");
4459 break;
4460 case 2:
4461 for (x = 0; x < 16 && x < y; x += 2) {
4462 z = target_buffer_get_u16(target, &(target_buf[x]));
4463 command_print_sameline(NULL, "%04x ", (int)(z));
4465 for (; (x < 16) ; x += 2)
4466 command_print_sameline(NULL, " ");
4467 break;
4468 case 1:
4469 default:
4470 for (x = 0 ; (x < 16) && (x < y) ; x += 1) {
4471 z = target_buffer_get_u8(target, &(target_buf[x]));
4472 command_print_sameline(NULL, "%02x ", (int)(z));
4474 for (; (x < 16) ; x += 1)
4475 command_print_sameline(NULL, " ");
4476 break;
4478 /* ascii-ify the bytes */
4479 for (x = 0 ; x < y ; x++) {
4480 if ((target_buf[x] >= 0x20) &&
4481 (target_buf[x] <= 0x7e)) {
4482 /* good */
4483 } else {
4484 /* smack it */
4485 target_buf[x] = '.';
4488 /* space pad */
4489 while (x < 16) {
4490 target_buf[x] = ' ';
4491 x++;
4493 /* terminate */
4494 target_buf[16] = 0;
4495 /* print - with a newline */
4496 command_print_sameline(NULL, "%s\n", target_buf);
4497 /* NEXT... */
4498 bytes -= 16;
4499 addr += 16;
4501 return JIM_OK;
4504 static int jim_target_mem2array(Jim_Interp *interp,
4505 int argc, Jim_Obj *const *argv)
4507 struct target *target = Jim_CmdPrivData(interp);
4508 return target_mem2array(interp, target, argc - 1, argv + 1);
4511 static int jim_target_array2mem(Jim_Interp *interp,
4512 int argc, Jim_Obj *const *argv)
4514 struct target *target = Jim_CmdPrivData(interp);
4515 return target_array2mem(interp, target, argc - 1, argv + 1);
4518 static int jim_target_tap_disabled(Jim_Interp *interp)
4520 Jim_SetResultFormatted(interp, "[TAP is disabled]");
4521 return JIM_ERR;
4524 static int jim_target_examine(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4526 if (argc != 1) {
4527 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
4528 return JIM_ERR;
4530 struct target *target = Jim_CmdPrivData(interp);
4531 if (!target->tap->enabled)
4532 return jim_target_tap_disabled(interp);
4534 int e = target->type->examine(target);
4535 if (e != ERROR_OK)
4536 return JIM_ERR;
4537 return JIM_OK;
4540 static int jim_target_halt_gdb(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4542 if (argc != 1) {
4543 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
4544 return JIM_ERR;
4546 struct target *target = Jim_CmdPrivData(interp);
4548 if (target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT) != ERROR_OK)
4549 return JIM_ERR;
4551 return JIM_OK;
4554 static int jim_target_poll(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4556 if (argc != 1) {
4557 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
4558 return JIM_ERR;
4560 struct target *target = Jim_CmdPrivData(interp);
4561 if (!target->tap->enabled)
4562 return jim_target_tap_disabled(interp);
4564 int e;
4565 if (!(target_was_examined(target)))
4566 e = ERROR_TARGET_NOT_EXAMINED;
4567 else
4568 e = target->type->poll(target);
4569 if (e != ERROR_OK)
4570 return JIM_ERR;
4571 return JIM_OK;
4574 static int jim_target_reset(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4576 Jim_GetOptInfo goi;
4577 Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4579 if (goi.argc != 2) {
4580 Jim_WrongNumArgs(interp, 0, argv,
4581 "([tT]|[fF]|assert|deassert) BOOL");
4582 return JIM_ERR;
4585 Jim_Nvp *n;
4586 int e = Jim_GetOpt_Nvp(&goi, nvp_assert, &n);
4587 if (e != JIM_OK) {
4588 Jim_GetOpt_NvpUnknown(&goi, nvp_assert, 1);
4589 return e;
4591 /* the halt or not param */
4592 jim_wide a;
4593 e = Jim_GetOpt_Wide(&goi, &a);
4594 if (e != JIM_OK)
4595 return e;
4597 struct target *target = Jim_CmdPrivData(goi.interp);
4598 if (!target->tap->enabled)
4599 return jim_target_tap_disabled(interp);
4600 if (!(target_was_examined(target))) {
4601 LOG_ERROR("Target not examined yet");
4602 return ERROR_TARGET_NOT_EXAMINED;
4604 if (!target->type->assert_reset || !target->type->deassert_reset) {
4605 Jim_SetResultFormatted(interp,
4606 "No target-specific reset for %s",
4607 target_name(target));
4608 return JIM_ERR;
4610 /* determine if we should halt or not. */
4611 target->reset_halt = !!a;
4612 /* When this happens - all workareas are invalid. */
4613 target_free_all_working_areas_restore(target, 0);
4615 /* do the assert */
4616 if (n->value == NVP_ASSERT)
4617 e = target->type->assert_reset(target);
4618 else
4619 e = target->type->deassert_reset(target);
4620 return (e == ERROR_OK) ? JIM_OK : JIM_ERR;
4623 static int jim_target_halt(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4625 if (argc != 1) {
4626 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
4627 return JIM_ERR;
4629 struct target *target = Jim_CmdPrivData(interp);
4630 if (!target->tap->enabled)
4631 return jim_target_tap_disabled(interp);
4632 int e = target->type->halt(target);
4633 return (e == ERROR_OK) ? JIM_OK : JIM_ERR;
4636 static int jim_target_wait_state(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4638 Jim_GetOptInfo goi;
4639 Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4641 /* params: <name> statename timeoutmsecs */
4642 if (goi.argc != 2) {
4643 const char *cmd_name = Jim_GetString(argv[0], NULL);
4644 Jim_SetResultFormatted(goi.interp,
4645 "%s <state_name> <timeout_in_msec>", cmd_name);
4646 return JIM_ERR;
4649 Jim_Nvp *n;
4650 int e = Jim_GetOpt_Nvp(&goi, nvp_target_state, &n);
4651 if (e != JIM_OK) {
4652 Jim_GetOpt_NvpUnknown(&goi, nvp_target_state, 1);
4653 return e;
4655 jim_wide a;
4656 e = Jim_GetOpt_Wide(&goi, &a);
4657 if (e != JIM_OK)
4658 return e;
4659 struct target *target = Jim_CmdPrivData(interp);
4660 if (!target->tap->enabled)
4661 return jim_target_tap_disabled(interp);
4663 e = target_wait_state(target, n->value, a);
4664 if (e != ERROR_OK) {
4665 Jim_Obj *eObj = Jim_NewIntObj(interp, e);
4666 Jim_SetResultFormatted(goi.interp,
4667 "target: %s wait %s fails (%#s) %s",
4668 target_name(target), n->name,
4669 eObj, target_strerror_safe(e));
4670 Jim_FreeNewObj(interp, eObj);
4671 return JIM_ERR;
4673 return JIM_OK;
4675 /* List for human, Events defined for this target.
4676 * scripts/programs should use 'name cget -event NAME'
4678 static int jim_target_event_list(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4680 struct command_context *cmd_ctx = current_command_context(interp);
4681 assert(cmd_ctx != NULL);
4683 struct target *target = Jim_CmdPrivData(interp);
4684 struct target_event_action *teap = target->event_action;
4685 command_print(cmd_ctx, "Event actions for target (%d) %s\n",
4686 target->target_number,
4687 target_name(target));
4688 command_print(cmd_ctx, "%-25s | Body", "Event");
4689 command_print(cmd_ctx, "------------------------- | "
4690 "----------------------------------------");
4691 while (teap) {
4692 Jim_Nvp *opt = Jim_Nvp_value2name_simple(nvp_target_event, teap->event);
4693 command_print(cmd_ctx, "%-25s | %s",
4694 opt->name, Jim_GetString(teap->body, NULL));
4695 teap = teap->next;
4697 command_print(cmd_ctx, "***END***");
4698 return JIM_OK;
4700 static int jim_target_current_state(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4702 if (argc != 1) {
4703 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
4704 return JIM_ERR;
4706 struct target *target = Jim_CmdPrivData(interp);
4707 Jim_SetResultString(interp, target_state_name(target), -1);
4708 return JIM_OK;
4710 static int jim_target_invoke_event(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4712 Jim_GetOptInfo goi;
4713 Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4714 if (goi.argc != 1) {
4715 const char *cmd_name = Jim_GetString(argv[0], NULL);
4716 Jim_SetResultFormatted(goi.interp, "%s <eventname>", cmd_name);
4717 return JIM_ERR;
4719 Jim_Nvp *n;
4720 int e = Jim_GetOpt_Nvp(&goi, nvp_target_event, &n);
4721 if (e != JIM_OK) {
4722 Jim_GetOpt_NvpUnknown(&goi, nvp_target_event, 1);
4723 return e;
4725 struct target *target = Jim_CmdPrivData(interp);
4726 target_handle_event(target, n->value);
4727 return JIM_OK;
4730 static const struct command_registration target_instance_command_handlers[] = {
4732 .name = "configure",
4733 .mode = COMMAND_CONFIG,
4734 .jim_handler = jim_target_configure,
4735 .help = "configure a new target for use",
4736 .usage = "[target_attribute ...]",
4739 .name = "cget",
4740 .mode = COMMAND_ANY,
4741 .jim_handler = jim_target_configure,
4742 .help = "returns the specified target attribute",
4743 .usage = "target_attribute",
4746 .name = "mww",
4747 .mode = COMMAND_EXEC,
4748 .jim_handler = jim_target_mw,
4749 .help = "Write 32-bit word(s) to target memory",
4750 .usage = "address data [count]",
4753 .name = "mwh",
4754 .mode = COMMAND_EXEC,
4755 .jim_handler = jim_target_mw,
4756 .help = "Write 16-bit half-word(s) to target memory",
4757 .usage = "address data [count]",
4760 .name = "mwb",
4761 .mode = COMMAND_EXEC,
4762 .jim_handler = jim_target_mw,
4763 .help = "Write byte(s) to target memory",
4764 .usage = "address data [count]",
4767 .name = "mdw",
4768 .mode = COMMAND_EXEC,
4769 .jim_handler = jim_target_md,
4770 .help = "Display target memory as 32-bit words",
4771 .usage = "address [count]",
4774 .name = "mdh",
4775 .mode = COMMAND_EXEC,
4776 .jim_handler = jim_target_md,
4777 .help = "Display target memory as 16-bit half-words",
4778 .usage = "address [count]",
4781 .name = "mdb",
4782 .mode = COMMAND_EXEC,
4783 .jim_handler = jim_target_md,
4784 .help = "Display target memory as 8-bit bytes",
4785 .usage = "address [count]",
4788 .name = "array2mem",
4789 .mode = COMMAND_EXEC,
4790 .jim_handler = jim_target_array2mem,
4791 .help = "Writes Tcl array of 8/16/32 bit numbers "
4792 "to target memory",
4793 .usage = "arrayname bitwidth address count",
4796 .name = "mem2array",
4797 .mode = COMMAND_EXEC,
4798 .jim_handler = jim_target_mem2array,
4799 .help = "Loads Tcl array of 8/16/32 bit numbers "
4800 "from target memory",
4801 .usage = "arrayname bitwidth address count",
4804 .name = "eventlist",
4805 .mode = COMMAND_EXEC,
4806 .jim_handler = jim_target_event_list,
4807 .help = "displays a table of events defined for this target",
4810 .name = "curstate",
4811 .mode = COMMAND_EXEC,
4812 .jim_handler = jim_target_current_state,
4813 .help = "displays the current state of this target",
4816 .name = "arp_examine",
4817 .mode = COMMAND_EXEC,
4818 .jim_handler = jim_target_examine,
4819 .help = "used internally for reset processing",
4822 .name = "arp_halt_gdb",
4823 .mode = COMMAND_EXEC,
4824 .jim_handler = jim_target_halt_gdb,
4825 .help = "used internally for reset processing to halt GDB",
4828 .name = "arp_poll",
4829 .mode = COMMAND_EXEC,
4830 .jim_handler = jim_target_poll,
4831 .help = "used internally for reset processing",
4834 .name = "arp_reset",
4835 .mode = COMMAND_EXEC,
4836 .jim_handler = jim_target_reset,
4837 .help = "used internally for reset processing",
4840 .name = "arp_halt",
4841 .mode = COMMAND_EXEC,
4842 .jim_handler = jim_target_halt,
4843 .help = "used internally for reset processing",
4846 .name = "arp_waitstate",
4847 .mode = COMMAND_EXEC,
4848 .jim_handler = jim_target_wait_state,
4849 .help = "used internally for reset processing",
4852 .name = "invoke-event",
4853 .mode = COMMAND_EXEC,
4854 .jim_handler = jim_target_invoke_event,
4855 .help = "invoke handler for specified event",
4856 .usage = "event_name",
4858 COMMAND_REGISTRATION_DONE
4861 static int target_create(Jim_GetOptInfo *goi)
4863 Jim_Obj *new_cmd;
4864 Jim_Cmd *cmd;
4865 const char *cp;
4866 char *cp2;
4867 int e;
4868 int x;
4869 struct target *target;
4870 struct command_context *cmd_ctx;
4872 cmd_ctx = current_command_context(goi->interp);
4873 assert(cmd_ctx != NULL);
4875 if (goi->argc < 3) {
4876 Jim_WrongNumArgs(goi->interp, 1, goi->argv, "?name? ?type? ..options...");
4877 return JIM_ERR;
4880 /* COMMAND */
4881 Jim_GetOpt_Obj(goi, &new_cmd);
4882 /* does this command exist? */
4883 cmd = Jim_GetCommand(goi->interp, new_cmd, JIM_ERRMSG);
4884 if (cmd) {
4885 cp = Jim_GetString(new_cmd, NULL);
4886 Jim_SetResultFormatted(goi->interp, "Command/target: %s Exists", cp);
4887 return JIM_ERR;
4890 /* TYPE */
4891 e = Jim_GetOpt_String(goi, &cp2, NULL);
4892 if (e != JIM_OK)
4893 return e;
4894 cp = cp2;
4895 /* now does target type exist */
4896 for (x = 0 ; target_types[x] ; x++) {
4897 if (0 == strcmp(cp, target_types[x]->name)) {
4898 /* found */
4899 break;
4902 if (target_types[x] == NULL) {
4903 Jim_SetResultFormatted(goi->interp, "Unknown target type %s, try one of ", cp);
4904 for (x = 0 ; target_types[x] ; x++) {
4905 if (target_types[x + 1]) {
4906 Jim_AppendStrings(goi->interp,
4907 Jim_GetResult(goi->interp),
4908 target_types[x]->name,
4909 ", ", NULL);
4910 } else {
4911 Jim_AppendStrings(goi->interp,
4912 Jim_GetResult(goi->interp),
4913 " or ",
4914 target_types[x]->name, NULL);
4917 return JIM_ERR;
4920 /* Create it */
4921 target = calloc(1, sizeof(struct target));
4922 /* set target number */
4923 target->target_number = new_target_number();
4925 /* allocate memory for each unique target type */
4926 target->type = (struct target_type *)calloc(1, sizeof(struct target_type));
4928 memcpy(target->type, target_types[x], sizeof(struct target_type));
4930 /* will be set by "-endian" */
4931 target->endianness = TARGET_ENDIAN_UNKNOWN;
4933 /* default to first core, override with -coreid */
4934 target->coreid = 0;
4936 target->working_area = 0x0;
4937 target->working_area_size = 0x0;
4938 target->working_areas = NULL;
4939 target->backup_working_area = 0;
4941 target->state = TARGET_UNKNOWN;
4942 target->debug_reason = DBG_REASON_UNDEFINED;
4943 target->reg_cache = NULL;
4944 target->breakpoints = NULL;
4945 target->watchpoints = NULL;
4946 target->next = NULL;
4947 target->arch_info = NULL;
4949 target->display = 1;
4951 target->halt_issued = false;
4953 /* initialize trace information */
4954 target->trace_info = malloc(sizeof(struct trace));
4955 target->trace_info->num_trace_points = 0;
4956 target->trace_info->trace_points_size = 0;
4957 target->trace_info->trace_points = NULL;
4958 target->trace_info->trace_history_size = 0;
4959 target->trace_info->trace_history = NULL;
4960 target->trace_info->trace_history_pos = 0;
4961 target->trace_info->trace_history_overflowed = 0;
4963 target->dbgmsg = NULL;
4964 target->dbg_msg_enabled = 0;
4966 target->endianness = TARGET_ENDIAN_UNKNOWN;
4968 target->rtos = NULL;
4969 target->rtos_auto_detect = false;
4971 /* Do the rest as "configure" options */
4972 goi->isconfigure = 1;
4973 e = target_configure(goi, target);
4975 if (target->tap == NULL) {
4976 Jim_SetResultString(goi->interp, "-chain-position required when creating target", -1);
4977 e = JIM_ERR;
4980 if (e != JIM_OK) {
4981 free(target->type);
4982 free(target);
4983 return e;
4986 if (target->endianness == TARGET_ENDIAN_UNKNOWN) {
4987 /* default endian to little if not specified */
4988 target->endianness = TARGET_LITTLE_ENDIAN;
4991 /* incase variant is not set */
4992 if (!target->variant)
4993 target->variant = strdup("");
4995 cp = Jim_GetString(new_cmd, NULL);
4996 target->cmd_name = strdup(cp);
4998 /* create the target specific commands */
4999 if (target->type->commands) {
5000 e = register_commands(cmd_ctx, NULL, target->type->commands);
5001 if (ERROR_OK != e)
5002 LOG_ERROR("unable to register '%s' commands", cp);
5004 if (target->type->target_create)
5005 (*(target->type->target_create))(target, goi->interp);
5007 /* append to end of list */
5009 struct target **tpp;
5010 tpp = &(all_targets);
5011 while (*tpp)
5012 tpp = &((*tpp)->next);
5013 *tpp = target;
5016 /* now - create the new target name command */
5017 const const struct command_registration target_subcommands[] = {
5019 .chain = target_instance_command_handlers,
5022 .chain = target->type->commands,
5024 COMMAND_REGISTRATION_DONE
5026 const const struct command_registration target_commands[] = {
5028 .name = cp,
5029 .mode = COMMAND_ANY,
5030 .help = "target command group",
5031 .usage = "",
5032 .chain = target_subcommands,
5034 COMMAND_REGISTRATION_DONE
5036 e = register_commands(cmd_ctx, NULL, target_commands);
5037 if (ERROR_OK != e)
5038 return JIM_ERR;
5040 struct command *c = command_find_in_context(cmd_ctx, cp);
5041 assert(c);
5042 command_set_handler_data(c, target);
5044 return (ERROR_OK == e) ? JIM_OK : JIM_ERR;
5047 static int jim_target_current(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5049 if (argc != 1) {
5050 Jim_WrongNumArgs(interp, 1, argv, "Too many parameters");
5051 return JIM_ERR;
5053 struct command_context *cmd_ctx = current_command_context(interp);
5054 assert(cmd_ctx != NULL);
5056 Jim_SetResultString(interp, get_current_target(cmd_ctx)->cmd_name, -1);
5057 return JIM_OK;
5060 static int jim_target_types(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5062 if (argc != 1) {
5063 Jim_WrongNumArgs(interp, 1, argv, "Too many parameters");
5064 return JIM_ERR;
5066 Jim_SetResult(interp, Jim_NewListObj(interp, NULL, 0));
5067 for (unsigned x = 0; NULL != target_types[x]; x++) {
5068 Jim_ListAppendElement(interp, Jim_GetResult(interp),
5069 Jim_NewStringObj(interp, target_types[x]->name, -1));
5071 return JIM_OK;
5074 static int jim_target_names(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5076 if (argc != 1) {
5077 Jim_WrongNumArgs(interp, 1, argv, "Too many parameters");
5078 return JIM_ERR;
5080 Jim_SetResult(interp, Jim_NewListObj(interp, NULL, 0));
5081 struct target *target = all_targets;
5082 while (target) {
5083 Jim_ListAppendElement(interp, Jim_GetResult(interp),
5084 Jim_NewStringObj(interp, target_name(target), -1));
5085 target = target->next;
5087 return JIM_OK;
5090 static int jim_target_smp(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5092 int i;
5093 const char *targetname;
5094 int retval, len;
5095 struct target *target = (struct target *) NULL;
5096 struct target_list *head, *curr, *new;
5097 curr = (struct target_list *) NULL;
5098 head = (struct target_list *) NULL;
5100 retval = 0;
5101 LOG_DEBUG("%d", argc);
5102 /* argv[1] = target to associate in smp
5103 * argv[2] = target to assoicate in smp
5104 * argv[3] ...
5107 for (i = 1; i < argc; i++) {
5109 targetname = Jim_GetString(argv[i], &len);
5110 target = get_target(targetname);
5111 LOG_DEBUG("%s ", targetname);
5112 if (target) {
5113 new = malloc(sizeof(struct target_list));
5114 new->target = target;
5115 new->next = (struct target_list *)NULL;
5116 if (head == (struct target_list *)NULL) {
5117 head = new;
5118 curr = head;
5119 } else {
5120 curr->next = new;
5121 curr = new;
5125 /* now parse the list of cpu and put the target in smp mode*/
5126 curr = head;
5128 while (curr != (struct target_list *)NULL) {
5129 target = curr->target;
5130 target->smp = 1;
5131 target->head = head;
5132 curr = curr->next;
5135 if (target && target->rtos)
5136 retval = rtos_smp_init(head->target);
5138 return retval;
5142 static int jim_target_create(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5144 Jim_GetOptInfo goi;
5145 Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
5146 if (goi.argc < 3) {
5147 Jim_WrongNumArgs(goi.interp, goi.argc, goi.argv,
5148 "<name> <target_type> [<target_options> ...]");
5149 return JIM_ERR;
5151 return target_create(&goi);
5154 static int jim_target_number(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5156 Jim_GetOptInfo goi;
5157 Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
5159 /* It's OK to remove this mechanism sometime after August 2010 or so */
5160 LOG_WARNING("don't use numbers as target identifiers; use names");
5161 if (goi.argc != 1) {
5162 Jim_SetResultFormatted(goi.interp, "usage: target number <number>");
5163 return JIM_ERR;
5165 jim_wide w;
5166 int e = Jim_GetOpt_Wide(&goi, &w);
5167 if (e != JIM_OK)
5168 return JIM_ERR;
5170 struct target *target;
5171 for (target = all_targets; NULL != target; target = target->next) {
5172 if (target->target_number != w)
5173 continue;
5175 Jim_SetResultString(goi.interp, target_name(target), -1);
5176 return JIM_OK;
5179 Jim_Obj *wObj = Jim_NewIntObj(goi.interp, w);
5180 Jim_SetResultFormatted(goi.interp,
5181 "Target: number %#s does not exist", wObj);
5182 Jim_FreeNewObj(interp, wObj);
5184 return JIM_ERR;
5187 static int jim_target_count(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5189 if (argc != 1) {
5190 Jim_WrongNumArgs(interp, 1, argv, "<no parameters>");
5191 return JIM_ERR;
5193 unsigned count = 0;
5194 struct target *target = all_targets;
5195 while (NULL != target) {
5196 target = target->next;
5197 count++;
5199 Jim_SetResult(interp, Jim_NewIntObj(interp, count));
5200 return JIM_OK;
5203 static const struct command_registration target_subcommand_handlers[] = {
5205 .name = "init",
5206 .mode = COMMAND_CONFIG,
5207 .handler = handle_target_init_command,
5208 .help = "initialize targets",
5211 .name = "create",
5212 /* REVISIT this should be COMMAND_CONFIG ... */
5213 .mode = COMMAND_ANY,
5214 .jim_handler = jim_target_create,
5215 .usage = "name type '-chain-position' name [options ...]",
5216 .help = "Creates and selects a new target",
5219 .name = "current",
5220 .mode = COMMAND_ANY,
5221 .jim_handler = jim_target_current,
5222 .help = "Returns the currently selected target",
5225 .name = "types",
5226 .mode = COMMAND_ANY,
5227 .jim_handler = jim_target_types,
5228 .help = "Returns the available target types as "
5229 "a list of strings",
5232 .name = "names",
5233 .mode = COMMAND_ANY,
5234 .jim_handler = jim_target_names,
5235 .help = "Returns the names of all targets as a list of strings",
5238 .name = "number",
5239 .mode = COMMAND_ANY,
5240 .jim_handler = jim_target_number,
5241 .usage = "number",
5242 .help = "Returns the name of the numbered target "
5243 "(DEPRECATED)",
5246 .name = "count",
5247 .mode = COMMAND_ANY,
5248 .jim_handler = jim_target_count,
5249 .help = "Returns the number of targets as an integer "
5250 "(DEPRECATED)",
5253 .name = "smp",
5254 .mode = COMMAND_ANY,
5255 .jim_handler = jim_target_smp,
5256 .usage = "targetname1 targetname2 ...",
5257 .help = "gather several target in a smp list"
5260 COMMAND_REGISTRATION_DONE
5263 struct FastLoad {
5264 uint32_t address;
5265 uint8_t *data;
5266 int length;
5270 static int fastload_num;
5271 static struct FastLoad *fastload;
5273 static void free_fastload(void)
5275 if (fastload != NULL) {
5276 int i;
5277 for (i = 0; i < fastload_num; i++) {
5278 if (fastload[i].data)
5279 free(fastload[i].data);
5281 free(fastload);
5282 fastload = NULL;
5286 COMMAND_HANDLER(handle_fast_load_image_command)
5288 uint8_t *buffer;
5289 size_t buf_cnt;
5290 uint32_t image_size;
5291 uint32_t min_address = 0;
5292 uint32_t max_address = 0xffffffff;
5293 int i;
5295 struct image image;
5297 int retval = CALL_COMMAND_HANDLER(parse_load_image_command_CMD_ARGV,
5298 &image, &min_address, &max_address);
5299 if (ERROR_OK != retval)
5300 return retval;
5302 struct duration bench;
5303 duration_start(&bench);
5305 retval = image_open(&image, CMD_ARGV[0], (CMD_ARGC >= 3) ? CMD_ARGV[2] : NULL);
5306 if (retval != ERROR_OK)
5307 return retval;
5309 image_size = 0x0;
5310 retval = ERROR_OK;
5311 fastload_num = image.num_sections;
5312 fastload = (struct FastLoad *)malloc(sizeof(struct FastLoad)*image.num_sections);
5313 if (fastload == NULL) {
5314 command_print(CMD_CTX, "out of memory");
5315 image_close(&image);
5316 return ERROR_FAIL;
5318 memset(fastload, 0, sizeof(struct FastLoad)*image.num_sections);
5319 for (i = 0; i < image.num_sections; i++) {
5320 buffer = malloc(image.sections[i].size);
5321 if (buffer == NULL) {
5322 command_print(CMD_CTX, "error allocating buffer for section (%d bytes)",
5323 (int)(image.sections[i].size));
5324 retval = ERROR_FAIL;
5325 break;
5328 retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt);
5329 if (retval != ERROR_OK) {
5330 free(buffer);
5331 break;
5334 uint32_t offset = 0;
5335 uint32_t length = buf_cnt;
5337 /* DANGER!!! beware of unsigned comparision here!!! */
5339 if ((image.sections[i].base_address + buf_cnt >= min_address) &&
5340 (image.sections[i].base_address < max_address)) {
5341 if (image.sections[i].base_address < min_address) {
5342 /* clip addresses below */
5343 offset += min_address-image.sections[i].base_address;
5344 length -= offset;
5347 if (image.sections[i].base_address + buf_cnt > max_address)
5348 length -= (image.sections[i].base_address + buf_cnt)-max_address;
5350 fastload[i].address = image.sections[i].base_address + offset;
5351 fastload[i].data = malloc(length);
5352 if (fastload[i].data == NULL) {
5353 free(buffer);
5354 command_print(CMD_CTX, "error allocating buffer for section (%d bytes)",
5355 length);
5356 retval = ERROR_FAIL;
5357 break;
5359 memcpy(fastload[i].data, buffer + offset, length);
5360 fastload[i].length = length;
5362 image_size += length;
5363 command_print(CMD_CTX, "%u bytes written at address 0x%8.8x",
5364 (unsigned int)length,
5365 ((unsigned int)(image.sections[i].base_address + offset)));
5368 free(buffer);
5371 if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK)) {
5372 command_print(CMD_CTX, "Loaded %" PRIu32 " bytes "
5373 "in %fs (%0.3f KiB/s)", image_size,
5374 duration_elapsed(&bench), duration_kbps(&bench, image_size));
5376 command_print(CMD_CTX,
5377 "WARNING: image has not been loaded to target!"
5378 "You can issue a 'fast_load' to finish loading.");
5381 image_close(&image);
5383 if (retval != ERROR_OK)
5384 free_fastload();
5386 return retval;
5389 COMMAND_HANDLER(handle_fast_load_command)
5391 if (CMD_ARGC > 0)
5392 return ERROR_COMMAND_SYNTAX_ERROR;
5393 if (fastload == NULL) {
5394 LOG_ERROR("No image in memory");
5395 return ERROR_FAIL;
5397 int i;
5398 int ms = timeval_ms();
5399 int size = 0;
5400 int retval = ERROR_OK;
5401 for (i = 0; i < fastload_num; i++) {
5402 struct target *target = get_current_target(CMD_CTX);
5403 command_print(CMD_CTX, "Write to 0x%08x, length 0x%08x",
5404 (unsigned int)(fastload[i].address),
5405 (unsigned int)(fastload[i].length));
5406 retval = target_write_buffer(target, fastload[i].address, fastload[i].length, fastload[i].data);
5407 if (retval != ERROR_OK)
5408 break;
5409 size += fastload[i].length;
5411 if (retval == ERROR_OK) {
5412 int after = timeval_ms();
5413 command_print(CMD_CTX, "Loaded image %f kBytes/s", (float)(size/1024.0)/((float)(after-ms)/1000.0));
5415 return retval;
5418 static const struct command_registration target_command_handlers[] = {
5420 .name = "targets",
5421 .handler = handle_targets_command,
5422 .mode = COMMAND_ANY,
5423 .help = "change current default target (one parameter) "
5424 "or prints table of all targets (no parameters)",
5425 .usage = "[target]",
5428 .name = "target",
5429 .mode = COMMAND_CONFIG,
5430 .help = "configure target",
5432 .chain = target_subcommand_handlers,
5434 COMMAND_REGISTRATION_DONE
5437 int target_register_commands(struct command_context *cmd_ctx)
5439 return register_commands(cmd_ctx, NULL, target_command_handlers);
5442 static bool target_reset_nag = true;
5444 bool get_target_reset_nag(void)
5446 return target_reset_nag;
5449 COMMAND_HANDLER(handle_target_reset_nag)
5451 return CALL_COMMAND_HANDLER(handle_command_parse_bool,
5452 &target_reset_nag, "Nag after each reset about options to improve "
5453 "performance");
5456 COMMAND_HANDLER(handle_ps_command)
5458 struct target *target = get_current_target(CMD_CTX);
5459 char *display;
5460 if (target->state != TARGET_HALTED) {
5461 LOG_INFO("target not halted !!");
5462 return ERROR_OK;
5465 if ((target->rtos) && (target->rtos->type)
5466 && (target->rtos->type->ps_command)) {
5467 display = target->rtos->type->ps_command(target);
5468 command_print(CMD_CTX, "%s", display);
5469 free(display);
5470 return ERROR_OK;
5471 } else {
5472 LOG_INFO("failed");
5473 return ERROR_TARGET_FAILURE;
5477 static const struct command_registration target_exec_command_handlers[] = {
5479 .name = "fast_load_image",
5480 .handler = handle_fast_load_image_command,
5481 .mode = COMMAND_ANY,
5482 .help = "Load image into server memory for later use by "
5483 "fast_load; primarily for profiling",
5484 .usage = "filename address ['bin'|'ihex'|'elf'|'s19'] "
5485 "[min_address [max_length]]",
5488 .name = "fast_load",
5489 .handler = handle_fast_load_command,
5490 .mode = COMMAND_EXEC,
5491 .help = "loads active fast load image to current target "
5492 "- mainly for profiling purposes",
5493 .usage = "",
5496 .name = "profile",
5497 .handler = handle_profile_command,
5498 .mode = COMMAND_EXEC,
5499 .usage = "seconds filename",
5500 .help = "profiling samples the CPU PC",
5502 /** @todo don't register virt2phys() unless target supports it */
5504 .name = "virt2phys",
5505 .handler = handle_virt2phys_command,
5506 .mode = COMMAND_ANY,
5507 .help = "translate a virtual address into a physical address",
5508 .usage = "virtual_address",
5511 .name = "reg",
5512 .handler = handle_reg_command,
5513 .mode = COMMAND_EXEC,
5514 .help = "display or set a register; with no arguments, "
5515 "displays all registers and their values",
5516 .usage = "[(register_name|register_number) [value]]",
5519 .name = "poll",
5520 .handler = handle_poll_command,
5521 .mode = COMMAND_EXEC,
5522 .help = "poll target state; or reconfigure background polling",
5523 .usage = "['on'|'off']",
5526 .name = "wait_halt",
5527 .handler = handle_wait_halt_command,
5528 .mode = COMMAND_EXEC,
5529 .help = "wait up to the specified number of milliseconds "
5530 "(default 5) for a previously requested halt",
5531 .usage = "[milliseconds]",
5534 .name = "halt",
5535 .handler = handle_halt_command,
5536 .mode = COMMAND_EXEC,
5537 .help = "request target to halt, then wait up to the specified"
5538 "number of milliseconds (default 5) for it to complete",
5539 .usage = "[milliseconds]",
5542 .name = "resume",
5543 .handler = handle_resume_command,
5544 .mode = COMMAND_EXEC,
5545 .help = "resume target execution from current PC or address",
5546 .usage = "[address]",
5549 .name = "reset",
5550 .handler = handle_reset_command,
5551 .mode = COMMAND_EXEC,
5552 .usage = "[run|halt|init]",
5553 .help = "Reset all targets into the specified mode."
5554 "Default reset mode is run, if not given.",
5557 .name = "soft_reset_halt",
5558 .handler = handle_soft_reset_halt_command,
5559 .mode = COMMAND_EXEC,
5560 .usage = "",
5561 .help = "halt the target and do a soft reset",
5564 .name = "step",
5565 .handler = handle_step_command,
5566 .mode = COMMAND_EXEC,
5567 .help = "step one instruction from current PC or address",
5568 .usage = "[address]",
5571 .name = "mdw",
5572 .handler = handle_md_command,
5573 .mode = COMMAND_EXEC,
5574 .help = "display memory words",
5575 .usage = "['phys'] address [count]",
5578 .name = "mdh",
5579 .handler = handle_md_command,
5580 .mode = COMMAND_EXEC,
5581 .help = "display memory half-words",
5582 .usage = "['phys'] address [count]",
5585 .name = "mdb",
5586 .handler = handle_md_command,
5587 .mode = COMMAND_EXEC,
5588 .help = "display memory bytes",
5589 .usage = "['phys'] address [count]",
5592 .name = "mww",
5593 .handler = handle_mw_command,
5594 .mode = COMMAND_EXEC,
5595 .help = "write memory word",
5596 .usage = "['phys'] address value [count]",
5599 .name = "mwh",
5600 .handler = handle_mw_command,
5601 .mode = COMMAND_EXEC,
5602 .help = "write memory half-word",
5603 .usage = "['phys'] address value [count]",
5606 .name = "mwb",
5607 .handler = handle_mw_command,
5608 .mode = COMMAND_EXEC,
5609 .help = "write memory byte",
5610 .usage = "['phys'] address value [count]",
5613 .name = "bp",
5614 .handler = handle_bp_command,
5615 .mode = COMMAND_EXEC,
5616 .help = "list or set hardware or software breakpoint",
5617 .usage = "<address> [<asid>]<length> ['hw'|'hw_ctx']",
5620 .name = "rbp",
5621 .handler = handle_rbp_command,
5622 .mode = COMMAND_EXEC,
5623 .help = "remove breakpoint",
5624 .usage = "address",
5627 .name = "wp",
5628 .handler = handle_wp_command,
5629 .mode = COMMAND_EXEC,
5630 .help = "list (no params) or create watchpoints",
5631 .usage = "[address length [('r'|'w'|'a') value [mask]]]",
5634 .name = "rwp",
5635 .handler = handle_rwp_command,
5636 .mode = COMMAND_EXEC,
5637 .help = "remove watchpoint",
5638 .usage = "address",
5641 .name = "load_image",
5642 .handler = handle_load_image_command,
5643 .mode = COMMAND_EXEC,
5644 .usage = "filename address ['bin'|'ihex'|'elf'|'s19'] "
5645 "[min_address] [max_length]",
5648 .name = "dump_image",
5649 .handler = handle_dump_image_command,
5650 .mode = COMMAND_EXEC,
5651 .usage = "filename address size",
5654 .name = "verify_image",
5655 .handler = handle_verify_image_command,
5656 .mode = COMMAND_EXEC,
5657 .usage = "filename [offset [type]]",
5660 .name = "test_image",
5661 .handler = handle_test_image_command,
5662 .mode = COMMAND_EXEC,
5663 .usage = "filename [offset [type]]",
5666 .name = "mem2array",
5667 .mode = COMMAND_EXEC,
5668 .jim_handler = jim_mem2array,
5669 .help = "read 8/16/32 bit memory and return as a TCL array "
5670 "for script processing",
5671 .usage = "arrayname bitwidth address count",
5674 .name = "array2mem",
5675 .mode = COMMAND_EXEC,
5676 .jim_handler = jim_array2mem,
5677 .help = "convert a TCL array to memory locations "
5678 "and write the 8/16/32 bit values",
5679 .usage = "arrayname bitwidth address count",
5682 .name = "reset_nag",
5683 .handler = handle_target_reset_nag,
5684 .mode = COMMAND_ANY,
5685 .help = "Nag after each reset about options that could have been "
5686 "enabled to improve performance. ",
5687 .usage = "['enable'|'disable']",
5690 .name = "ps",
5691 .handler = handle_ps_command,
5692 .mode = COMMAND_EXEC,
5693 .help = "list all tasks ",
5694 .usage = " ",
5697 COMMAND_REGISTRATION_DONE
5699 static int target_register_user_commands(struct command_context *cmd_ctx)
5701 int retval = ERROR_OK;
5702 retval = target_request_register_commands(cmd_ctx);
5703 if (retval != ERROR_OK)
5704 return retval;
5706 retval = trace_register_commands(cmd_ctx);
5707 if (retval != ERROR_OK)
5708 return retval;
5711 return register_commands(cmd_ctx, NULL, target_exec_command_handlers);