target: Remove error messages as no .get_gdb_fileio_info
[openocd.git] / src / target / target.c
blob29a011cea13756efd635fe822c1a298c41a6a45e
1 /***************************************************************************
2 * Copyright (C) 2005 by Dominic Rath *
3 * Dominic.Rath@gmx.de *
4 * *
5 * Copyright (C) 2007-2010 Øyvind Harboe *
6 * oyvind.harboe@zylin.com *
7 * *
8 * Copyright (C) 2008, Duane Ellis *
9 * openocd@duaneeellis.com *
10 * *
11 * Copyright (C) 2008 by Spencer Oliver *
12 * spen@spen-soft.co.uk *
13 * *
14 * Copyright (C) 2008 by Rick Altherr *
15 * kc8apf@kc8apf.net> *
16 * *
17 * Copyright (C) 2011 by Broadcom Corporation *
18 * Evan Hunter - ehunter@broadcom.com *
19 * *
20 * Copyright (C) ST-Ericsson SA 2011 *
21 * michel.jaouen@stericsson.com : smp minimum support *
22 * *
23 * Copyright (C) 2011 Andreas Fritiofson *
24 * andreas.fritiofson@gmail.com *
25 * *
26 * This program is free software; you can redistribute it and/or modify *
27 * it under the terms of the GNU General Public License as published by *
28 * the Free Software Foundation; either version 2 of the License, or *
29 * (at your option) any later version. *
30 * *
31 * This program is distributed in the hope that it will be useful, *
32 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
33 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
34 * GNU General Public License for more details. *
35 * *
36 * You should have received a copy of the GNU General Public License *
37 * along with this program; if not, write to the *
38 * Free Software Foundation, Inc., *
39 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. *
40 ***************************************************************************/
42 #ifdef HAVE_CONFIG_H
43 #include "config.h"
44 #endif
46 #include <helper/time_support.h>
47 #include <jtag/jtag.h>
48 #include <flash/nor/core.h>
50 #include "target.h"
51 #include "target_type.h"
52 #include "target_request.h"
53 #include "breakpoints.h"
54 #include "register.h"
55 #include "trace.h"
56 #include "image.h"
57 #include "rtos/rtos.h"
59 /* default halt wait timeout (ms) */
60 #define DEFAULT_HALT_TIMEOUT 5000
62 static int target_read_buffer_default(struct target *target, uint32_t address,
63 uint32_t size, uint8_t *buffer);
64 static int target_write_buffer_default(struct target *target, uint32_t address,
65 uint32_t size, const uint8_t *buffer);
66 static int target_array2mem(Jim_Interp *interp, struct target *target,
67 int argc, Jim_Obj * const *argv);
68 static int target_mem2array(Jim_Interp *interp, struct target *target,
69 int argc, Jim_Obj * const *argv);
70 static int target_register_user_commands(struct command_context *cmd_ctx);
71 static int target_get_gdb_fileio_info_default(struct target *target,
72 struct gdb_fileio_info *fileio_info);
73 static int target_gdb_fileio_end_default(struct target *target, int retcode,
74 int fileio_errno, bool ctrl_c);
76 /* targets */
77 extern struct target_type arm7tdmi_target;
78 extern struct target_type arm720t_target;
79 extern struct target_type arm9tdmi_target;
80 extern struct target_type arm920t_target;
81 extern struct target_type arm966e_target;
82 extern struct target_type arm946e_target;
83 extern struct target_type arm926ejs_target;
84 extern struct target_type fa526_target;
85 extern struct target_type feroceon_target;
86 extern struct target_type dragonite_target;
87 extern struct target_type xscale_target;
88 extern struct target_type cortexm3_target;
89 extern struct target_type cortexa8_target;
90 extern struct target_type cortexr4_target;
91 extern struct target_type arm11_target;
92 extern struct target_type mips_m4k_target;
93 extern struct target_type avr_target;
94 extern struct target_type dsp563xx_target;
95 extern struct target_type dsp5680xx_target;
96 extern struct target_type testee_target;
97 extern struct target_type avr32_ap7k_target;
98 extern struct target_type hla_target;
99 extern struct target_type nds32_v2_target;
100 extern struct target_type nds32_v3_target;
101 extern struct target_type nds32_v3m_target;
103 static struct target_type *target_types[] = {
104 &arm7tdmi_target,
105 &arm9tdmi_target,
106 &arm920t_target,
107 &arm720t_target,
108 &arm966e_target,
109 &arm946e_target,
110 &arm926ejs_target,
111 &fa526_target,
112 &feroceon_target,
113 &dragonite_target,
114 &xscale_target,
115 &cortexm3_target,
116 &cortexa8_target,
117 &cortexr4_target,
118 &arm11_target,
119 &mips_m4k_target,
120 &avr_target,
121 &dsp563xx_target,
122 &dsp5680xx_target,
123 &testee_target,
124 &avr32_ap7k_target,
125 &hla_target,
126 &nds32_v2_target,
127 &nds32_v3_target,
128 &nds32_v3m_target,
129 NULL,
132 struct target *all_targets;
133 static struct target_event_callback *target_event_callbacks;
134 static struct target_timer_callback *target_timer_callbacks;
135 static const int polling_interval = 100;
137 static const Jim_Nvp nvp_assert[] = {
138 { .name = "assert", NVP_ASSERT },
139 { .name = "deassert", NVP_DEASSERT },
140 { .name = "T", NVP_ASSERT },
141 { .name = "F", NVP_DEASSERT },
142 { .name = "t", NVP_ASSERT },
143 { .name = "f", NVP_DEASSERT },
144 { .name = NULL, .value = -1 }
147 static const Jim_Nvp nvp_error_target[] = {
148 { .value = ERROR_TARGET_INVALID, .name = "err-invalid" },
149 { .value = ERROR_TARGET_INIT_FAILED, .name = "err-init-failed" },
150 { .value = ERROR_TARGET_TIMEOUT, .name = "err-timeout" },
151 { .value = ERROR_TARGET_NOT_HALTED, .name = "err-not-halted" },
152 { .value = ERROR_TARGET_FAILURE, .name = "err-failure" },
153 { .value = ERROR_TARGET_UNALIGNED_ACCESS , .name = "err-unaligned-access" },
154 { .value = ERROR_TARGET_DATA_ABORT , .name = "err-data-abort" },
155 { .value = ERROR_TARGET_RESOURCE_NOT_AVAILABLE , .name = "err-resource-not-available" },
156 { .value = ERROR_TARGET_TRANSLATION_FAULT , .name = "err-translation-fault" },
157 { .value = ERROR_TARGET_NOT_RUNNING, .name = "err-not-running" },
158 { .value = ERROR_TARGET_NOT_EXAMINED, .name = "err-not-examined" },
159 { .value = -1, .name = NULL }
162 static const char *target_strerror_safe(int err)
164 const Jim_Nvp *n;
166 n = Jim_Nvp_value2name_simple(nvp_error_target, err);
167 if (n->name == NULL)
168 return "unknown";
169 else
170 return n->name;
173 static const Jim_Nvp nvp_target_event[] = {
175 { .value = TARGET_EVENT_GDB_HALT, .name = "gdb-halt" },
176 { .value = TARGET_EVENT_HALTED, .name = "halted" },
177 { .value = TARGET_EVENT_RESUMED, .name = "resumed" },
178 { .value = TARGET_EVENT_RESUME_START, .name = "resume-start" },
179 { .value = TARGET_EVENT_RESUME_END, .name = "resume-end" },
181 { .name = "gdb-start", .value = TARGET_EVENT_GDB_START },
182 { .name = "gdb-end", .value = TARGET_EVENT_GDB_END },
184 { .value = TARGET_EVENT_RESET_START, .name = "reset-start" },
185 { .value = TARGET_EVENT_RESET_ASSERT_PRE, .name = "reset-assert-pre" },
186 { .value = TARGET_EVENT_RESET_ASSERT, .name = "reset-assert" },
187 { .value = TARGET_EVENT_RESET_ASSERT_POST, .name = "reset-assert-post" },
188 { .value = TARGET_EVENT_RESET_DEASSERT_PRE, .name = "reset-deassert-pre" },
189 { .value = TARGET_EVENT_RESET_DEASSERT_POST, .name = "reset-deassert-post" },
190 { .value = TARGET_EVENT_RESET_HALT_PRE, .name = "reset-halt-pre" },
191 { .value = TARGET_EVENT_RESET_HALT_POST, .name = "reset-halt-post" },
192 { .value = TARGET_EVENT_RESET_WAIT_PRE, .name = "reset-wait-pre" },
193 { .value = TARGET_EVENT_RESET_WAIT_POST, .name = "reset-wait-post" },
194 { .value = TARGET_EVENT_RESET_INIT, .name = "reset-init" },
195 { .value = TARGET_EVENT_RESET_END, .name = "reset-end" },
197 { .value = TARGET_EVENT_EXAMINE_START, .name = "examine-start" },
198 { .value = TARGET_EVENT_EXAMINE_END, .name = "examine-end" },
200 { .value = TARGET_EVENT_DEBUG_HALTED, .name = "debug-halted" },
201 { .value = TARGET_EVENT_DEBUG_RESUMED, .name = "debug-resumed" },
203 { .value = TARGET_EVENT_GDB_ATTACH, .name = "gdb-attach" },
204 { .value = TARGET_EVENT_GDB_DETACH, .name = "gdb-detach" },
206 { .value = TARGET_EVENT_GDB_FLASH_WRITE_START, .name = "gdb-flash-write-start" },
207 { .value = TARGET_EVENT_GDB_FLASH_WRITE_END , .name = "gdb-flash-write-end" },
209 { .value = TARGET_EVENT_GDB_FLASH_ERASE_START, .name = "gdb-flash-erase-start" },
210 { .value = TARGET_EVENT_GDB_FLASH_ERASE_END , .name = "gdb-flash-erase-end" },
212 { .name = NULL, .value = -1 }
215 static const Jim_Nvp nvp_target_state[] = {
216 { .name = "unknown", .value = TARGET_UNKNOWN },
217 { .name = "running", .value = TARGET_RUNNING },
218 { .name = "halted", .value = TARGET_HALTED },
219 { .name = "reset", .value = TARGET_RESET },
220 { .name = "debug-running", .value = TARGET_DEBUG_RUNNING },
221 { .name = NULL, .value = -1 },
224 static const Jim_Nvp nvp_target_debug_reason[] = {
225 { .name = "debug-request" , .value = DBG_REASON_DBGRQ },
226 { .name = "breakpoint" , .value = DBG_REASON_BREAKPOINT },
227 { .name = "watchpoint" , .value = DBG_REASON_WATCHPOINT },
228 { .name = "watchpoint-and-breakpoint", .value = DBG_REASON_WPTANDBKPT },
229 { .name = "single-step" , .value = DBG_REASON_SINGLESTEP },
230 { .name = "target-not-halted" , .value = DBG_REASON_NOTHALTED },
231 { .name = "program-exit" , .value = DBG_REASON_EXIT },
232 { .name = "undefined" , .value = DBG_REASON_UNDEFINED },
233 { .name = NULL, .value = -1 },
236 static const Jim_Nvp nvp_target_endian[] = {
237 { .name = "big", .value = TARGET_BIG_ENDIAN },
238 { .name = "little", .value = TARGET_LITTLE_ENDIAN },
239 { .name = "be", .value = TARGET_BIG_ENDIAN },
240 { .name = "le", .value = TARGET_LITTLE_ENDIAN },
241 { .name = NULL, .value = -1 },
244 static const Jim_Nvp nvp_reset_modes[] = {
245 { .name = "unknown", .value = RESET_UNKNOWN },
246 { .name = "run" , .value = RESET_RUN },
247 { .name = "halt" , .value = RESET_HALT },
248 { .name = "init" , .value = RESET_INIT },
249 { .name = NULL , .value = -1 },
252 const char *debug_reason_name(struct target *t)
254 const char *cp;
256 cp = Jim_Nvp_value2name_simple(nvp_target_debug_reason,
257 t->debug_reason)->name;
258 if (!cp) {
259 LOG_ERROR("Invalid debug reason: %d", (int)(t->debug_reason));
260 cp = "(*BUG*unknown*BUG*)";
262 return cp;
265 const char *target_state_name(struct target *t)
267 const char *cp;
268 cp = Jim_Nvp_value2name_simple(nvp_target_state, t->state)->name;
269 if (!cp) {
270 LOG_ERROR("Invalid target state: %d", (int)(t->state));
271 cp = "(*BUG*unknown*BUG*)";
273 return cp;
276 /* determine the number of the new target */
277 static int new_target_number(void)
279 struct target *t;
280 int x;
282 /* number is 0 based */
283 x = -1;
284 t = all_targets;
285 while (t) {
286 if (x < t->target_number)
287 x = t->target_number;
288 t = t->next;
290 return x + 1;
293 /* read a uint32_t from a buffer in target memory endianness */
294 uint32_t target_buffer_get_u32(struct target *target, const uint8_t *buffer)
296 if (target->endianness == TARGET_LITTLE_ENDIAN)
297 return le_to_h_u32(buffer);
298 else
299 return be_to_h_u32(buffer);
302 /* read a uint24_t from a buffer in target memory endianness */
303 uint32_t target_buffer_get_u24(struct target *target, const uint8_t *buffer)
305 if (target->endianness == TARGET_LITTLE_ENDIAN)
306 return le_to_h_u24(buffer);
307 else
308 return be_to_h_u24(buffer);
311 /* read a uint16_t from a buffer in target memory endianness */
312 uint16_t target_buffer_get_u16(struct target *target, const uint8_t *buffer)
314 if (target->endianness == TARGET_LITTLE_ENDIAN)
315 return le_to_h_u16(buffer);
316 else
317 return be_to_h_u16(buffer);
320 /* read a uint8_t from a buffer in target memory endianness */
321 static uint8_t target_buffer_get_u8(struct target *target, const uint8_t *buffer)
323 return *buffer & 0x0ff;
326 /* write a uint32_t to a buffer in target memory endianness */
327 void target_buffer_set_u32(struct target *target, uint8_t *buffer, uint32_t value)
329 if (target->endianness == TARGET_LITTLE_ENDIAN)
330 h_u32_to_le(buffer, value);
331 else
332 h_u32_to_be(buffer, value);
335 /* write a uint24_t to a buffer in target memory endianness */
336 void target_buffer_set_u24(struct target *target, uint8_t *buffer, uint32_t value)
338 if (target->endianness == TARGET_LITTLE_ENDIAN)
339 h_u24_to_le(buffer, value);
340 else
341 h_u24_to_be(buffer, value);
344 /* write a uint16_t to a buffer in target memory endianness */
345 void target_buffer_set_u16(struct target *target, uint8_t *buffer, uint16_t value)
347 if (target->endianness == TARGET_LITTLE_ENDIAN)
348 h_u16_to_le(buffer, value);
349 else
350 h_u16_to_be(buffer, value);
353 /* write a uint8_t to a buffer in target memory endianness */
354 static void target_buffer_set_u8(struct target *target, uint8_t *buffer, uint8_t value)
356 *buffer = value;
359 /* write a uint32_t array to a buffer in target memory endianness */
360 void target_buffer_get_u32_array(struct target *target, const uint8_t *buffer, uint32_t count, uint32_t *dstbuf)
362 uint32_t i;
363 for (i = 0; i < count; i++)
364 dstbuf[i] = target_buffer_get_u32(target, &buffer[i * 4]);
367 /* write a uint16_t array to a buffer in target memory endianness */
368 void target_buffer_get_u16_array(struct target *target, const uint8_t *buffer, uint32_t count, uint16_t *dstbuf)
370 uint32_t i;
371 for (i = 0; i < count; i++)
372 dstbuf[i] = target_buffer_get_u16(target, &buffer[i * 2]);
375 /* write a uint32_t array to a buffer in target memory endianness */
376 void target_buffer_set_u32_array(struct target *target, uint8_t *buffer, uint32_t count, uint32_t *srcbuf)
378 uint32_t i;
379 for (i = 0; i < count; i++)
380 target_buffer_set_u32(target, &buffer[i * 4], srcbuf[i]);
383 /* write a uint16_t array to a buffer in target memory endianness */
384 void target_buffer_set_u16_array(struct target *target, uint8_t *buffer, uint32_t count, uint16_t *srcbuf)
386 uint32_t i;
387 for (i = 0; i < count; i++)
388 target_buffer_set_u16(target, &buffer[i * 2], srcbuf[i]);
391 /* return a pointer to a configured target; id is name or number */
392 struct target *get_target(const char *id)
394 struct target *target;
396 /* try as tcltarget name */
397 for (target = all_targets; target; target = target->next) {
398 if (target_name(target) == NULL)
399 continue;
400 if (strcmp(id, target_name(target)) == 0)
401 return target;
404 /* It's OK to remove this fallback sometime after August 2010 or so */
406 /* no match, try as number */
407 unsigned num;
408 if (parse_uint(id, &num) != ERROR_OK)
409 return NULL;
411 for (target = all_targets; target; target = target->next) {
412 if (target->target_number == (int)num) {
413 LOG_WARNING("use '%s' as target identifier, not '%u'",
414 target_name(target), num);
415 return target;
419 return NULL;
422 /* returns a pointer to the n-th configured target */
423 static struct target *get_target_by_num(int num)
425 struct target *target = all_targets;
427 while (target) {
428 if (target->target_number == num)
429 return target;
430 target = target->next;
433 return NULL;
436 struct target *get_current_target(struct command_context *cmd_ctx)
438 struct target *target = get_target_by_num(cmd_ctx->current_target);
440 if (target == NULL) {
441 LOG_ERROR("BUG: current_target out of bounds");
442 exit(-1);
445 return target;
448 int target_poll(struct target *target)
450 int retval;
452 /* We can't poll until after examine */
453 if (!target_was_examined(target)) {
454 /* Fail silently lest we pollute the log */
455 return ERROR_FAIL;
458 retval = target->type->poll(target);
459 if (retval != ERROR_OK)
460 return retval;
462 if (target->halt_issued) {
463 if (target->state == TARGET_HALTED)
464 target->halt_issued = false;
465 else {
466 long long t = timeval_ms() - target->halt_issued_time;
467 if (t > DEFAULT_HALT_TIMEOUT) {
468 target->halt_issued = false;
469 LOG_INFO("Halt timed out, wake up GDB.");
470 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
475 return ERROR_OK;
478 int target_halt(struct target *target)
480 int retval;
481 /* We can't poll until after examine */
482 if (!target_was_examined(target)) {
483 LOG_ERROR("Target not examined yet");
484 return ERROR_FAIL;
487 retval = target->type->halt(target);
488 if (retval != ERROR_OK)
489 return retval;
491 target->halt_issued = true;
492 target->halt_issued_time = timeval_ms();
494 return ERROR_OK;
498 * Make the target (re)start executing using its saved execution
499 * context (possibly with some modifications).
501 * @param target Which target should start executing.
502 * @param current True to use the target's saved program counter instead
503 * of the address parameter
504 * @param address Optionally used as the program counter.
505 * @param handle_breakpoints True iff breakpoints at the resumption PC
506 * should be skipped. (For example, maybe execution was stopped by
507 * such a breakpoint, in which case it would be counterprodutive to
508 * let it re-trigger.
509 * @param debug_execution False if all working areas allocated by OpenOCD
510 * should be released and/or restored to their original contents.
511 * (This would for example be true to run some downloaded "helper"
512 * algorithm code, which resides in one such working buffer and uses
513 * another for data storage.)
515 * @todo Resolve the ambiguity about what the "debug_execution" flag
516 * signifies. For example, Target implementations don't agree on how
517 * it relates to invalidation of the register cache, or to whether
518 * breakpoints and watchpoints should be enabled. (It would seem wrong
519 * to enable breakpoints when running downloaded "helper" algorithms
520 * (debug_execution true), since the breakpoints would be set to match
521 * target firmware being debugged, not the helper algorithm.... and
522 * enabling them could cause such helpers to malfunction (for example,
523 * by overwriting data with a breakpoint instruction. On the other
524 * hand the infrastructure for running such helpers might use this
525 * procedure but rely on hardware breakpoint to detect termination.)
527 int target_resume(struct target *target, int current, uint32_t address, int handle_breakpoints, int debug_execution)
529 int retval;
531 /* We can't poll until after examine */
532 if (!target_was_examined(target)) {
533 LOG_ERROR("Target not examined yet");
534 return ERROR_FAIL;
537 target_call_event_callbacks(target, TARGET_EVENT_RESUME_START);
539 /* note that resume *must* be asynchronous. The CPU can halt before
540 * we poll. The CPU can even halt at the current PC as a result of
541 * a software breakpoint being inserted by (a bug?) the application.
543 retval = target->type->resume(target, current, address, handle_breakpoints, debug_execution);
544 if (retval != ERROR_OK)
545 return retval;
547 target_call_event_callbacks(target, TARGET_EVENT_RESUME_END);
549 return retval;
552 static int target_process_reset(struct command_context *cmd_ctx, enum target_reset_mode reset_mode)
554 char buf[100];
555 int retval;
556 Jim_Nvp *n;
557 n = Jim_Nvp_value2name_simple(nvp_reset_modes, reset_mode);
558 if (n->name == NULL) {
559 LOG_ERROR("invalid reset mode");
560 return ERROR_FAIL;
563 /* disable polling during reset to make reset event scripts
564 * more predictable, i.e. dr/irscan & pathmove in events will
565 * not have JTAG operations injected into the middle of a sequence.
567 bool save_poll = jtag_poll_get_enabled();
569 jtag_poll_set_enabled(false);
571 sprintf(buf, "ocd_process_reset %s", n->name);
572 retval = Jim_Eval(cmd_ctx->interp, buf);
574 jtag_poll_set_enabled(save_poll);
576 if (retval != JIM_OK) {
577 Jim_MakeErrorMessage(cmd_ctx->interp);
578 command_print(NULL, "%s\n", Jim_GetString(Jim_GetResult(cmd_ctx->interp), NULL));
579 return ERROR_FAIL;
582 /* We want any events to be processed before the prompt */
583 retval = target_call_timer_callbacks_now();
585 struct target *target;
586 for (target = all_targets; target; target = target->next) {
587 target->type->check_reset(target);
588 target->running_alg = false;
591 return retval;
594 static int identity_virt2phys(struct target *target,
595 uint32_t virtual, uint32_t *physical)
597 *physical = virtual;
598 return ERROR_OK;
601 static int no_mmu(struct target *target, int *enabled)
603 *enabled = 0;
604 return ERROR_OK;
607 static int default_examine(struct target *target)
609 target_set_examined(target);
610 return ERROR_OK;
613 /* no check by default */
614 static int default_check_reset(struct target *target)
616 return ERROR_OK;
619 int target_examine_one(struct target *target)
621 return target->type->examine(target);
624 static int jtag_enable_callback(enum jtag_event event, void *priv)
626 struct target *target = priv;
628 if (event != JTAG_TAP_EVENT_ENABLE || !target->tap->enabled)
629 return ERROR_OK;
631 jtag_unregister_event_callback(jtag_enable_callback, target);
633 target_call_event_callbacks(target, TARGET_EVENT_EXAMINE_START);
635 int retval = target_examine_one(target);
636 if (retval != ERROR_OK)
637 return retval;
639 target_call_event_callbacks(target, TARGET_EVENT_EXAMINE_END);
641 return retval;
644 /* Targets that correctly implement init + examine, i.e.
645 * no communication with target during init:
647 * XScale
649 int target_examine(void)
651 int retval = ERROR_OK;
652 struct target *target;
654 for (target = all_targets; target; target = target->next) {
655 /* defer examination, but don't skip it */
656 if (!target->tap->enabled) {
657 jtag_register_event_callback(jtag_enable_callback,
658 target);
659 continue;
662 target_call_event_callbacks(target, TARGET_EVENT_EXAMINE_START);
664 retval = target_examine_one(target);
665 if (retval != ERROR_OK)
666 return retval;
668 target_call_event_callbacks(target, TARGET_EVENT_EXAMINE_END);
670 return retval;
673 const char *target_type_name(struct target *target)
675 return target->type->name;
678 static int target_soft_reset_halt(struct target *target)
680 if (!target_was_examined(target)) {
681 LOG_ERROR("Target not examined yet");
682 return ERROR_FAIL;
684 if (!target->type->soft_reset_halt) {
685 LOG_ERROR("Target %s does not support soft_reset_halt",
686 target_name(target));
687 return ERROR_FAIL;
689 return target->type->soft_reset_halt(target);
693 * Downloads a target-specific native code algorithm to the target,
694 * and executes it. * Note that some targets may need to set up, enable,
695 * and tear down a breakpoint (hard or * soft) to detect algorithm
696 * termination, while others may support lower overhead schemes where
697 * soft breakpoints embedded in the algorithm automatically terminate the
698 * algorithm.
700 * @param target used to run the algorithm
701 * @param arch_info target-specific description of the algorithm.
703 int target_run_algorithm(struct target *target,
704 int num_mem_params, struct mem_param *mem_params,
705 int num_reg_params, struct reg_param *reg_param,
706 uint32_t entry_point, uint32_t exit_point,
707 int timeout_ms, void *arch_info)
709 int retval = ERROR_FAIL;
711 if (!target_was_examined(target)) {
712 LOG_ERROR("Target not examined yet");
713 goto done;
715 if (!target->type->run_algorithm) {
716 LOG_ERROR("Target type '%s' does not support %s",
717 target_type_name(target), __func__);
718 goto done;
721 target->running_alg = true;
722 retval = target->type->run_algorithm(target,
723 num_mem_params, mem_params,
724 num_reg_params, reg_param,
725 entry_point, exit_point, timeout_ms, arch_info);
726 target->running_alg = false;
728 done:
729 return retval;
733 * Downloads a target-specific native code algorithm to the target,
734 * executes and leaves it running.
736 * @param target used to run the algorithm
737 * @param arch_info target-specific description of the algorithm.
739 int target_start_algorithm(struct target *target,
740 int num_mem_params, struct mem_param *mem_params,
741 int num_reg_params, struct reg_param *reg_params,
742 uint32_t entry_point, uint32_t exit_point,
743 void *arch_info)
745 int retval = ERROR_FAIL;
747 if (!target_was_examined(target)) {
748 LOG_ERROR("Target not examined yet");
749 goto done;
751 if (!target->type->start_algorithm) {
752 LOG_ERROR("Target type '%s' does not support %s",
753 target_type_name(target), __func__);
754 goto done;
756 if (target->running_alg) {
757 LOG_ERROR("Target is already running an algorithm");
758 goto done;
761 target->running_alg = true;
762 retval = target->type->start_algorithm(target,
763 num_mem_params, mem_params,
764 num_reg_params, reg_params,
765 entry_point, exit_point, arch_info);
767 done:
768 return retval;
772 * Waits for an algorithm started with target_start_algorithm() to complete.
774 * @param target used to run the algorithm
775 * @param arch_info target-specific description of the algorithm.
777 int target_wait_algorithm(struct target *target,
778 int num_mem_params, struct mem_param *mem_params,
779 int num_reg_params, struct reg_param *reg_params,
780 uint32_t exit_point, int timeout_ms,
781 void *arch_info)
783 int retval = ERROR_FAIL;
785 if (!target->type->wait_algorithm) {
786 LOG_ERROR("Target type '%s' does not support %s",
787 target_type_name(target), __func__);
788 goto done;
790 if (!target->running_alg) {
791 LOG_ERROR("Target is not running an algorithm");
792 goto done;
795 retval = target->type->wait_algorithm(target,
796 num_mem_params, mem_params,
797 num_reg_params, reg_params,
798 exit_point, timeout_ms, arch_info);
799 if (retval != ERROR_TARGET_TIMEOUT)
800 target->running_alg = false;
802 done:
803 return retval;
807 * Executes a target-specific native code algorithm in the target.
808 * It differs from target_run_algorithm in that the algorithm is asynchronous.
809 * Because of this it requires an compliant algorithm:
810 * see contrib/loaders/flash/stm32f1x.S for example.
812 * @param target used to run the algorithm
815 int target_run_flash_async_algorithm(struct target *target,
816 uint8_t *buffer, uint32_t count, int block_size,
817 int num_mem_params, struct mem_param *mem_params,
818 int num_reg_params, struct reg_param *reg_params,
819 uint32_t buffer_start, uint32_t buffer_size,
820 uint32_t entry_point, uint32_t exit_point, void *arch_info)
822 int retval;
823 int timeout = 0;
825 /* Set up working area. First word is write pointer, second word is read pointer,
826 * rest is fifo data area. */
827 uint32_t wp_addr = buffer_start;
828 uint32_t rp_addr = buffer_start + 4;
829 uint32_t fifo_start_addr = buffer_start + 8;
830 uint32_t fifo_end_addr = buffer_start + buffer_size;
832 uint32_t wp = fifo_start_addr;
833 uint32_t rp = fifo_start_addr;
835 /* validate block_size is 2^n */
836 assert(!block_size || !(block_size & (block_size - 1)));
838 retval = target_write_u32(target, wp_addr, wp);
839 if (retval != ERROR_OK)
840 return retval;
841 retval = target_write_u32(target, rp_addr, rp);
842 if (retval != ERROR_OK)
843 return retval;
845 /* Start up algorithm on target and let it idle while writing the first chunk */
846 retval = target_start_algorithm(target, num_mem_params, mem_params,
847 num_reg_params, reg_params,
848 entry_point,
849 exit_point,
850 arch_info);
852 if (retval != ERROR_OK) {
853 LOG_ERROR("error starting target flash write algorithm");
854 return retval;
857 while (count > 0) {
859 retval = target_read_u32(target, rp_addr, &rp);
860 if (retval != ERROR_OK) {
861 LOG_ERROR("failed to get read pointer");
862 break;
865 LOG_DEBUG("count 0x%" PRIx32 " wp 0x%" PRIx32 " rp 0x%" PRIx32, count, wp, rp);
867 if (rp == 0) {
868 LOG_ERROR("flash write algorithm aborted by target");
869 retval = ERROR_FLASH_OPERATION_FAILED;
870 break;
873 if ((rp & (block_size - 1)) || rp < fifo_start_addr || rp >= fifo_end_addr) {
874 LOG_ERROR("corrupted fifo read pointer 0x%" PRIx32, rp);
875 break;
878 /* Count the number of bytes available in the fifo without
879 * crossing the wrap around. Make sure to not fill it completely,
880 * because that would make wp == rp and that's the empty condition. */
881 uint32_t thisrun_bytes;
882 if (rp > wp)
883 thisrun_bytes = rp - wp - block_size;
884 else if (rp > fifo_start_addr)
885 thisrun_bytes = fifo_end_addr - wp;
886 else
887 thisrun_bytes = fifo_end_addr - wp - block_size;
889 if (thisrun_bytes == 0) {
890 /* Throttle polling a bit if transfer is (much) faster than flash
891 * programming. The exact delay shouldn't matter as long as it's
892 * less than buffer size / flash speed. This is very unlikely to
893 * run when using high latency connections such as USB. */
894 alive_sleep(10);
896 /* to stop an infinite loop on some targets check and increment a timeout
897 * this issue was observed on a stellaris using the new ICDI interface */
898 if (timeout++ >= 500) {
899 LOG_ERROR("timeout waiting for algorithm, a target reset is recommended");
900 return ERROR_FLASH_OPERATION_FAILED;
902 continue;
905 /* reset our timeout */
906 timeout = 0;
908 /* Limit to the amount of data we actually want to write */
909 if (thisrun_bytes > count * block_size)
910 thisrun_bytes = count * block_size;
912 /* Write data to fifo */
913 retval = target_write_buffer(target, wp, thisrun_bytes, buffer);
914 if (retval != ERROR_OK)
915 break;
917 /* Update counters and wrap write pointer */
918 buffer += thisrun_bytes;
919 count -= thisrun_bytes / block_size;
920 wp += thisrun_bytes;
921 if (wp >= fifo_end_addr)
922 wp = fifo_start_addr;
924 /* Store updated write pointer to target */
925 retval = target_write_u32(target, wp_addr, wp);
926 if (retval != ERROR_OK)
927 break;
930 if (retval != ERROR_OK) {
931 /* abort flash write algorithm on target */
932 target_write_u32(target, wp_addr, 0);
935 int retval2 = target_wait_algorithm(target, num_mem_params, mem_params,
936 num_reg_params, reg_params,
937 exit_point,
938 10000,
939 arch_info);
941 if (retval2 != ERROR_OK) {
942 LOG_ERROR("error waiting for target flash write algorithm");
943 retval = retval2;
946 return retval;
949 int target_read_memory(struct target *target,
950 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
952 if (!target_was_examined(target)) {
953 LOG_ERROR("Target not examined yet");
954 return ERROR_FAIL;
956 return target->type->read_memory(target, address, size, count, buffer);
959 int target_read_phys_memory(struct target *target,
960 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
962 if (!target_was_examined(target)) {
963 LOG_ERROR("Target not examined yet");
964 return ERROR_FAIL;
966 return target->type->read_phys_memory(target, address, size, count, buffer);
969 int target_write_memory(struct target *target,
970 uint32_t address, uint32_t size, uint32_t count, const uint8_t *buffer)
972 if (!target_was_examined(target)) {
973 LOG_ERROR("Target not examined yet");
974 return ERROR_FAIL;
976 return target->type->write_memory(target, address, size, count, buffer);
979 int target_write_phys_memory(struct target *target,
980 uint32_t address, uint32_t size, uint32_t count, const uint8_t *buffer)
982 if (!target_was_examined(target)) {
983 LOG_ERROR("Target not examined yet");
984 return ERROR_FAIL;
986 return target->type->write_phys_memory(target, address, size, count, buffer);
989 static int target_bulk_write_memory_default(struct target *target,
990 uint32_t address, uint32_t count, const uint8_t *buffer)
992 return target_write_memory(target, address, 4, count, buffer);
995 int target_add_breakpoint(struct target *target,
996 struct breakpoint *breakpoint)
998 if ((target->state != TARGET_HALTED) && (breakpoint->type != BKPT_HARD)) {
999 LOG_WARNING("target %s is not halted", target_name(target));
1000 return ERROR_TARGET_NOT_HALTED;
1002 return target->type->add_breakpoint(target, breakpoint);
1005 int target_add_context_breakpoint(struct target *target,
1006 struct breakpoint *breakpoint)
1008 if (target->state != TARGET_HALTED) {
1009 LOG_WARNING("target %s is not halted", target_name(target));
1010 return ERROR_TARGET_NOT_HALTED;
1012 return target->type->add_context_breakpoint(target, breakpoint);
1015 int target_add_hybrid_breakpoint(struct target *target,
1016 struct breakpoint *breakpoint)
1018 if (target->state != TARGET_HALTED) {
1019 LOG_WARNING("target %s is not halted", target_name(target));
1020 return ERROR_TARGET_NOT_HALTED;
1022 return target->type->add_hybrid_breakpoint(target, breakpoint);
1025 int target_remove_breakpoint(struct target *target,
1026 struct breakpoint *breakpoint)
1028 return target->type->remove_breakpoint(target, breakpoint);
1031 int target_add_watchpoint(struct target *target,
1032 struct watchpoint *watchpoint)
1034 if (target->state != TARGET_HALTED) {
1035 LOG_WARNING("target %s is not halted", target_name(target));
1036 return ERROR_TARGET_NOT_HALTED;
1038 return target->type->add_watchpoint(target, watchpoint);
1040 int target_remove_watchpoint(struct target *target,
1041 struct watchpoint *watchpoint)
1043 return target->type->remove_watchpoint(target, watchpoint);
1045 int target_hit_watchpoint(struct target *target,
1046 struct watchpoint **hit_watchpoint)
1048 if (target->state != TARGET_HALTED) {
1049 LOG_WARNING("target %s is not halted", target->cmd_name);
1050 return ERROR_TARGET_NOT_HALTED;
1053 if (target->type->hit_watchpoint == NULL) {
1054 /* For backward compatible, if hit_watchpoint is not implemented,
1055 * return ERROR_FAIL such that gdb_server will not take the nonsense
1056 * information. */
1057 return ERROR_FAIL;
1060 return target->type->hit_watchpoint(target, hit_watchpoint);
1063 int target_get_gdb_reg_list(struct target *target,
1064 struct reg **reg_list[], int *reg_list_size,
1065 enum target_register_class reg_class)
1067 return target->type->get_gdb_reg_list(target, reg_list, reg_list_size, reg_class);
1069 int target_step(struct target *target,
1070 int current, uint32_t address, int handle_breakpoints)
1072 return target->type->step(target, current, address, handle_breakpoints);
1075 int target_get_gdb_fileio_info(struct target *target, struct gdb_fileio_info *fileio_info)
1077 if (target->state != TARGET_HALTED) {
1078 LOG_WARNING("target %s is not halted", target->cmd_name);
1079 return ERROR_TARGET_NOT_HALTED;
1081 return target->type->get_gdb_fileio_info(target, fileio_info);
1084 int target_gdb_fileio_end(struct target *target, int retcode, int fileio_errno, bool ctrl_c)
1086 if (target->state != TARGET_HALTED) {
1087 LOG_WARNING("target %s is not halted", target->cmd_name);
1088 return ERROR_TARGET_NOT_HALTED;
1090 return target->type->gdb_fileio_end(target, retcode, fileio_errno, ctrl_c);
1094 * Reset the @c examined flag for the given target.
1095 * Pure paranoia -- targets are zeroed on allocation.
1097 static void target_reset_examined(struct target *target)
1099 target->examined = false;
1102 static int err_read_phys_memory(struct target *target, uint32_t address,
1103 uint32_t size, uint32_t count, uint8_t *buffer)
1105 LOG_ERROR("Not implemented: %s", __func__);
1106 return ERROR_FAIL;
1109 static int err_write_phys_memory(struct target *target, uint32_t address,
1110 uint32_t size, uint32_t count, const uint8_t *buffer)
1112 LOG_ERROR("Not implemented: %s", __func__);
1113 return ERROR_FAIL;
1116 static int handle_target(void *priv);
1118 static int target_init_one(struct command_context *cmd_ctx,
1119 struct target *target)
1121 target_reset_examined(target);
1123 struct target_type *type = target->type;
1124 if (type->examine == NULL)
1125 type->examine = default_examine;
1127 if (type->check_reset == NULL)
1128 type->check_reset = default_check_reset;
1130 assert(type->init_target != NULL);
1132 int retval = type->init_target(cmd_ctx, target);
1133 if (ERROR_OK != retval) {
1134 LOG_ERROR("target '%s' init failed", target_name(target));
1135 return retval;
1138 /* Sanity-check MMU support ... stub in what we must, to help
1139 * implement it in stages, but warn if we need to do so.
1141 if (type->mmu) {
1142 if (type->write_phys_memory == NULL) {
1143 LOG_ERROR("type '%s' is missing write_phys_memory",
1144 type->name);
1145 type->write_phys_memory = err_write_phys_memory;
1147 if (type->read_phys_memory == NULL) {
1148 LOG_ERROR("type '%s' is missing read_phys_memory",
1149 type->name);
1150 type->read_phys_memory = err_read_phys_memory;
1152 if (type->virt2phys == NULL) {
1153 LOG_ERROR("type '%s' is missing virt2phys", type->name);
1154 type->virt2phys = identity_virt2phys;
1156 } else {
1157 /* Make sure no-MMU targets all behave the same: make no
1158 * distinction between physical and virtual addresses, and
1159 * ensure that virt2phys() is always an identity mapping.
1161 if (type->write_phys_memory || type->read_phys_memory || type->virt2phys)
1162 LOG_WARNING("type '%s' has bad MMU hooks", type->name);
1164 type->mmu = no_mmu;
1165 type->write_phys_memory = type->write_memory;
1166 type->read_phys_memory = type->read_memory;
1167 type->virt2phys = identity_virt2phys;
1170 if (target->type->read_buffer == NULL)
1171 target->type->read_buffer = target_read_buffer_default;
1173 if (target->type->write_buffer == NULL)
1174 target->type->write_buffer = target_write_buffer_default;
1176 if (target->type->bulk_write_memory == NULL)
1177 target->type->bulk_write_memory = target_bulk_write_memory_default;
1179 if (target->type->get_gdb_fileio_info == NULL)
1180 target->type->get_gdb_fileio_info = target_get_gdb_fileio_info_default;
1182 if (target->type->gdb_fileio_end == NULL)
1183 target->type->gdb_fileio_end = target_gdb_fileio_end_default;
1185 return ERROR_OK;
1188 static int target_init(struct command_context *cmd_ctx)
1190 struct target *target;
1191 int retval;
1193 for (target = all_targets; target; target = target->next) {
1194 retval = target_init_one(cmd_ctx, target);
1195 if (ERROR_OK != retval)
1196 return retval;
1199 if (!all_targets)
1200 return ERROR_OK;
1202 retval = target_register_user_commands(cmd_ctx);
1203 if (ERROR_OK != retval)
1204 return retval;
1206 retval = target_register_timer_callback(&handle_target,
1207 polling_interval, 1, cmd_ctx->interp);
1208 if (ERROR_OK != retval)
1209 return retval;
1211 return ERROR_OK;
1214 COMMAND_HANDLER(handle_target_init_command)
1216 int retval;
1218 if (CMD_ARGC != 0)
1219 return ERROR_COMMAND_SYNTAX_ERROR;
1221 static bool target_initialized;
1222 if (target_initialized) {
1223 LOG_INFO("'target init' has already been called");
1224 return ERROR_OK;
1226 target_initialized = true;
1228 retval = command_run_line(CMD_CTX, "init_targets");
1229 if (ERROR_OK != retval)
1230 return retval;
1232 retval = command_run_line(CMD_CTX, "init_board");
1233 if (ERROR_OK != retval)
1234 return retval;
1236 LOG_DEBUG("Initializing targets...");
1237 return target_init(CMD_CTX);
1240 int target_register_event_callback(int (*callback)(struct target *target,
1241 enum target_event event, void *priv), void *priv)
1243 struct target_event_callback **callbacks_p = &target_event_callbacks;
1245 if (callback == NULL)
1246 return ERROR_COMMAND_SYNTAX_ERROR;
1248 if (*callbacks_p) {
1249 while ((*callbacks_p)->next)
1250 callbacks_p = &((*callbacks_p)->next);
1251 callbacks_p = &((*callbacks_p)->next);
1254 (*callbacks_p) = malloc(sizeof(struct target_event_callback));
1255 (*callbacks_p)->callback = callback;
1256 (*callbacks_p)->priv = priv;
1257 (*callbacks_p)->next = NULL;
1259 return ERROR_OK;
1262 int target_register_timer_callback(int (*callback)(void *priv), int time_ms, int periodic, void *priv)
1264 struct target_timer_callback **callbacks_p = &target_timer_callbacks;
1265 struct timeval now;
1267 if (callback == NULL)
1268 return ERROR_COMMAND_SYNTAX_ERROR;
1270 if (*callbacks_p) {
1271 while ((*callbacks_p)->next)
1272 callbacks_p = &((*callbacks_p)->next);
1273 callbacks_p = &((*callbacks_p)->next);
1276 (*callbacks_p) = malloc(sizeof(struct target_timer_callback));
1277 (*callbacks_p)->callback = callback;
1278 (*callbacks_p)->periodic = periodic;
1279 (*callbacks_p)->time_ms = time_ms;
1281 gettimeofday(&now, NULL);
1282 (*callbacks_p)->when.tv_usec = now.tv_usec + (time_ms % 1000) * 1000;
1283 time_ms -= (time_ms % 1000);
1284 (*callbacks_p)->when.tv_sec = now.tv_sec + (time_ms / 1000);
1285 if ((*callbacks_p)->when.tv_usec > 1000000) {
1286 (*callbacks_p)->when.tv_usec = (*callbacks_p)->when.tv_usec - 1000000;
1287 (*callbacks_p)->when.tv_sec += 1;
1290 (*callbacks_p)->priv = priv;
1291 (*callbacks_p)->next = NULL;
1293 return ERROR_OK;
1296 int target_unregister_event_callback(int (*callback)(struct target *target,
1297 enum target_event event, void *priv), void *priv)
1299 struct target_event_callback **p = &target_event_callbacks;
1300 struct target_event_callback *c = target_event_callbacks;
1302 if (callback == NULL)
1303 return ERROR_COMMAND_SYNTAX_ERROR;
1305 while (c) {
1306 struct target_event_callback *next = c->next;
1307 if ((c->callback == callback) && (c->priv == priv)) {
1308 *p = next;
1309 free(c);
1310 return ERROR_OK;
1311 } else
1312 p = &(c->next);
1313 c = next;
1316 return ERROR_OK;
1319 static int target_unregister_timer_callback(int (*callback)(void *priv), void *priv)
1321 struct target_timer_callback **p = &target_timer_callbacks;
1322 struct target_timer_callback *c = target_timer_callbacks;
1324 if (callback == NULL)
1325 return ERROR_COMMAND_SYNTAX_ERROR;
1327 while (c) {
1328 struct target_timer_callback *next = c->next;
1329 if ((c->callback == callback) && (c->priv == priv)) {
1330 *p = next;
1331 free(c);
1332 return ERROR_OK;
1333 } else
1334 p = &(c->next);
1335 c = next;
1338 return ERROR_OK;
1341 int target_call_event_callbacks(struct target *target, enum target_event event)
1343 struct target_event_callback *callback = target_event_callbacks;
1344 struct target_event_callback *next_callback;
1346 if (event == TARGET_EVENT_HALTED) {
1347 /* execute early halted first */
1348 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
1351 LOG_DEBUG("target event %i (%s)", event,
1352 Jim_Nvp_value2name_simple(nvp_target_event, event)->name);
1354 target_handle_event(target, event);
1356 while (callback) {
1357 next_callback = callback->next;
1358 callback->callback(target, event, callback->priv);
1359 callback = next_callback;
1362 return ERROR_OK;
1365 static int target_timer_callback_periodic_restart(
1366 struct target_timer_callback *cb, struct timeval *now)
1368 int time_ms = cb->time_ms;
1369 cb->when.tv_usec = now->tv_usec + (time_ms % 1000) * 1000;
1370 time_ms -= (time_ms % 1000);
1371 cb->when.tv_sec = now->tv_sec + time_ms / 1000;
1372 if (cb->when.tv_usec > 1000000) {
1373 cb->when.tv_usec = cb->when.tv_usec - 1000000;
1374 cb->when.tv_sec += 1;
1376 return ERROR_OK;
1379 static int target_call_timer_callback(struct target_timer_callback *cb,
1380 struct timeval *now)
1382 cb->callback(cb->priv);
1384 if (cb->periodic)
1385 return target_timer_callback_periodic_restart(cb, now);
1387 return target_unregister_timer_callback(cb->callback, cb->priv);
1390 static int target_call_timer_callbacks_check_time(int checktime)
1392 keep_alive();
1394 struct timeval now;
1395 gettimeofday(&now, NULL);
1397 struct target_timer_callback *callback = target_timer_callbacks;
1398 while (callback) {
1399 /* cleaning up may unregister and free this callback */
1400 struct target_timer_callback *next_callback = callback->next;
1402 bool call_it = callback->callback &&
1403 ((!checktime && callback->periodic) ||
1404 now.tv_sec > callback->when.tv_sec ||
1405 (now.tv_sec == callback->when.tv_sec &&
1406 now.tv_usec >= callback->when.tv_usec));
1408 if (call_it) {
1409 int retval = target_call_timer_callback(callback, &now);
1410 if (retval != ERROR_OK)
1411 return retval;
1414 callback = next_callback;
1417 return ERROR_OK;
1420 int target_call_timer_callbacks(void)
1422 return target_call_timer_callbacks_check_time(1);
1425 /* invoke periodic callbacks immediately */
1426 int target_call_timer_callbacks_now(void)
1428 return target_call_timer_callbacks_check_time(0);
1431 /* Prints the working area layout for debug purposes */
1432 static void print_wa_layout(struct target *target)
1434 struct working_area *c = target->working_areas;
1436 while (c) {
1437 LOG_DEBUG("%c%c 0x%08"PRIx32"-0x%08"PRIx32" (%"PRIu32" bytes)",
1438 c->backup ? 'b' : ' ', c->free ? ' ' : '*',
1439 c->address, c->address + c->size - 1, c->size);
1440 c = c->next;
1444 /* Reduce area to size bytes, create a new free area from the remaining bytes, if any. */
1445 static void target_split_working_area(struct working_area *area, uint32_t size)
1447 assert(area->free); /* Shouldn't split an allocated area */
1448 assert(size <= area->size); /* Caller should guarantee this */
1450 /* Split only if not already the right size */
1451 if (size < area->size) {
1452 struct working_area *new_wa = malloc(sizeof(*new_wa));
1454 if (new_wa == NULL)
1455 return;
1457 new_wa->next = area->next;
1458 new_wa->size = area->size - size;
1459 new_wa->address = area->address + size;
1460 new_wa->backup = NULL;
1461 new_wa->user = NULL;
1462 new_wa->free = true;
1464 area->next = new_wa;
1465 area->size = size;
1467 /* If backup memory was allocated to this area, it has the wrong size
1468 * now so free it and it will be reallocated if/when needed */
1469 if (area->backup) {
1470 free(area->backup);
1471 area->backup = NULL;
1476 /* Merge all adjacent free areas into one */
1477 static void target_merge_working_areas(struct target *target)
1479 struct working_area *c = target->working_areas;
1481 while (c && c->next) {
1482 assert(c->next->address == c->address + c->size); /* This is an invariant */
1484 /* Find two adjacent free areas */
1485 if (c->free && c->next->free) {
1486 /* Merge the last into the first */
1487 c->size += c->next->size;
1489 /* Remove the last */
1490 struct working_area *to_be_freed = c->next;
1491 c->next = c->next->next;
1492 if (to_be_freed->backup)
1493 free(to_be_freed->backup);
1494 free(to_be_freed);
1496 /* If backup memory was allocated to the remaining area, it's has
1497 * the wrong size now */
1498 if (c->backup) {
1499 free(c->backup);
1500 c->backup = NULL;
1502 } else {
1503 c = c->next;
1508 int target_alloc_working_area_try(struct target *target, uint32_t size, struct working_area **area)
1510 /* Reevaluate working area address based on MMU state*/
1511 if (target->working_areas == NULL) {
1512 int retval;
1513 int enabled;
1515 retval = target->type->mmu(target, &enabled);
1516 if (retval != ERROR_OK)
1517 return retval;
1519 if (!enabled) {
1520 if (target->working_area_phys_spec) {
1521 LOG_DEBUG("MMU disabled, using physical "
1522 "address for working memory 0x%08"PRIx32,
1523 target->working_area_phys);
1524 target->working_area = target->working_area_phys;
1525 } else {
1526 LOG_ERROR("No working memory available. "
1527 "Specify -work-area-phys to target.");
1528 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1530 } else {
1531 if (target->working_area_virt_spec) {
1532 LOG_DEBUG("MMU enabled, using virtual "
1533 "address for working memory 0x%08"PRIx32,
1534 target->working_area_virt);
1535 target->working_area = target->working_area_virt;
1536 } else {
1537 LOG_ERROR("No working memory available. "
1538 "Specify -work-area-virt to target.");
1539 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1543 /* Set up initial working area on first call */
1544 struct working_area *new_wa = malloc(sizeof(*new_wa));
1545 if (new_wa) {
1546 new_wa->next = NULL;
1547 new_wa->size = target->working_area_size & ~3UL; /* 4-byte align */
1548 new_wa->address = target->working_area;
1549 new_wa->backup = NULL;
1550 new_wa->user = NULL;
1551 new_wa->free = true;
1554 target->working_areas = new_wa;
1557 /* only allocate multiples of 4 byte */
1558 if (size % 4)
1559 size = (size + 3) & (~3UL);
1561 struct working_area *c = target->working_areas;
1563 /* Find the first large enough working area */
1564 while (c) {
1565 if (c->free && c->size >= size)
1566 break;
1567 c = c->next;
1570 if (c == NULL)
1571 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1573 /* Split the working area into the requested size */
1574 target_split_working_area(c, size);
1576 LOG_DEBUG("allocated new working area of %"PRIu32" bytes at address 0x%08"PRIx32, size, c->address);
1578 if (target->backup_working_area) {
1579 if (c->backup == NULL) {
1580 c->backup = malloc(c->size);
1581 if (c->backup == NULL)
1582 return ERROR_FAIL;
1585 int retval = target_read_memory(target, c->address, 4, c->size / 4, c->backup);
1586 if (retval != ERROR_OK)
1587 return retval;
1590 /* mark as used, and return the new (reused) area */
1591 c->free = false;
1592 *area = c;
1594 /* user pointer */
1595 c->user = area;
1597 print_wa_layout(target);
1599 return ERROR_OK;
1602 int target_alloc_working_area(struct target *target, uint32_t size, struct working_area **area)
1604 int retval;
1606 retval = target_alloc_working_area_try(target, size, area);
1607 if (retval == ERROR_TARGET_RESOURCE_NOT_AVAILABLE)
1608 LOG_WARNING("not enough working area available(requested %"PRIu32")", size);
1609 return retval;
1613 static int target_restore_working_area(struct target *target, struct working_area *area)
1615 int retval = ERROR_OK;
1617 if (target->backup_working_area && area->backup != NULL) {
1618 retval = target_write_memory(target, area->address, 4, area->size / 4, area->backup);
1619 if (retval != ERROR_OK)
1620 LOG_ERROR("failed to restore %"PRIu32" bytes of working area at address 0x%08"PRIx32,
1621 area->size, area->address);
1624 return retval;
1627 /* Restore the area's backup memory, if any, and return the area to the allocation pool */
1628 static int target_free_working_area_restore(struct target *target, struct working_area *area, int restore)
1630 int retval = ERROR_OK;
1632 if (area->free)
1633 return retval;
1635 if (restore) {
1636 retval = target_restore_working_area(target, area);
1637 /* REVISIT: Perhaps the area should be freed even if restoring fails. */
1638 if (retval != ERROR_OK)
1639 return retval;
1642 area->free = true;
1644 LOG_DEBUG("freed %"PRIu32" bytes of working area at address 0x%08"PRIx32,
1645 area->size, area->address);
1647 /* mark user pointer invalid */
1648 /* TODO: Is this really safe? It points to some previous caller's memory.
1649 * How could we know that the area pointer is still in that place and not
1650 * some other vital data? What's the purpose of this, anyway? */
1651 *area->user = NULL;
1652 area->user = NULL;
1654 target_merge_working_areas(target);
1656 print_wa_layout(target);
1658 return retval;
1661 int target_free_working_area(struct target *target, struct working_area *area)
1663 return target_free_working_area_restore(target, area, 1);
1666 /* free resources and restore memory, if restoring memory fails,
1667 * free up resources anyway
1669 static void target_free_all_working_areas_restore(struct target *target, int restore)
1671 struct working_area *c = target->working_areas;
1673 LOG_DEBUG("freeing all working areas");
1675 /* Loop through all areas, restoring the allocated ones and marking them as free */
1676 while (c) {
1677 if (!c->free) {
1678 if (restore)
1679 target_restore_working_area(target, c);
1680 c->free = true;
1681 *c->user = NULL; /* Same as above */
1682 c->user = NULL;
1684 c = c->next;
1687 /* Run a merge pass to combine all areas into one */
1688 target_merge_working_areas(target);
1690 print_wa_layout(target);
1693 void target_free_all_working_areas(struct target *target)
1695 target_free_all_working_areas_restore(target, 1);
1698 /* Find the largest number of bytes that can be allocated */
1699 uint32_t target_get_working_area_avail(struct target *target)
1701 struct working_area *c = target->working_areas;
1702 uint32_t max_size = 0;
1704 if (c == NULL)
1705 return target->working_area_size;
1707 while (c) {
1708 if (c->free && max_size < c->size)
1709 max_size = c->size;
1711 c = c->next;
1714 return max_size;
1717 int target_arch_state(struct target *target)
1719 int retval;
1720 if (target == NULL) {
1721 LOG_USER("No target has been configured");
1722 return ERROR_OK;
1725 LOG_USER("target state: %s", target_state_name(target));
1727 if (target->state != TARGET_HALTED)
1728 return ERROR_OK;
1730 retval = target->type->arch_state(target);
1731 return retval;
1734 static int target_get_gdb_fileio_info_default(struct target *target,
1735 struct gdb_fileio_info *fileio_info)
1737 /* If target does not support semi-hosting function, target
1738 has no need to provide .get_gdb_fileio_info callback.
1739 It just return ERROR_FAIL and gdb_server will return "Txx"
1740 as target halted every time. */
1741 return ERROR_FAIL;
1744 static int target_gdb_fileio_end_default(struct target *target,
1745 int retcode, int fileio_errno, bool ctrl_c)
1747 return ERROR_OK;
1750 /* Single aligned words are guaranteed to use 16 or 32 bit access
1751 * mode respectively, otherwise data is handled as quickly as
1752 * possible
1754 int target_write_buffer(struct target *target, uint32_t address, uint32_t size, const uint8_t *buffer)
1756 LOG_DEBUG("writing buffer of %i byte at 0x%8.8x",
1757 (int)size, (unsigned)address);
1759 if (!target_was_examined(target)) {
1760 LOG_ERROR("Target not examined yet");
1761 return ERROR_FAIL;
1764 if (size == 0)
1765 return ERROR_OK;
1767 if ((address + size - 1) < address) {
1768 /* GDB can request this when e.g. PC is 0xfffffffc*/
1769 LOG_ERROR("address + size wrapped(0x%08x, 0x%08x)",
1770 (unsigned)address,
1771 (unsigned)size);
1772 return ERROR_FAIL;
1775 return target->type->write_buffer(target, address, size, buffer);
1778 static int target_write_buffer_default(struct target *target, uint32_t address, uint32_t size, const uint8_t *buffer)
1780 int retval = ERROR_OK;
1782 if (((address % 2) == 0) && (size == 2))
1783 return target_write_memory(target, address, 2, 1, buffer);
1785 /* handle unaligned head bytes */
1786 if (address % 4) {
1787 uint32_t unaligned = 4 - (address % 4);
1789 if (unaligned > size)
1790 unaligned = size;
1792 retval = target_write_memory(target, address, 1, unaligned, buffer);
1793 if (retval != ERROR_OK)
1794 return retval;
1796 buffer += unaligned;
1797 address += unaligned;
1798 size -= unaligned;
1801 /* handle aligned words */
1802 if (size >= 4) {
1803 int aligned = size - (size % 4);
1805 /* use bulk writes above a certain limit. This may have to be changed */
1806 if (aligned > 128) {
1807 retval = target->type->bulk_write_memory(target, address, aligned / 4, buffer);
1808 if (retval != ERROR_OK)
1809 return retval;
1810 } else {
1811 retval = target_write_memory(target, address, 4, aligned / 4, buffer);
1812 if (retval != ERROR_OK)
1813 return retval;
1816 buffer += aligned;
1817 address += aligned;
1818 size -= aligned;
1821 /* handle tail writes of less than 4 bytes */
1822 if (size > 0) {
1823 retval = target_write_memory(target, address, 1, size, buffer);
1824 if (retval != ERROR_OK)
1825 return retval;
1828 return retval;
1831 /* Single aligned words are guaranteed to use 16 or 32 bit access
1832 * mode respectively, otherwise data is handled as quickly as
1833 * possible
1835 int target_read_buffer(struct target *target, uint32_t address, uint32_t size, uint8_t *buffer)
1837 LOG_DEBUG("reading buffer of %i byte at 0x%8.8x",
1838 (int)size, (unsigned)address);
1840 if (!target_was_examined(target)) {
1841 LOG_ERROR("Target not examined yet");
1842 return ERROR_FAIL;
1845 if (size == 0)
1846 return ERROR_OK;
1848 if ((address + size - 1) < address) {
1849 /* GDB can request this when e.g. PC is 0xfffffffc*/
1850 LOG_ERROR("address + size wrapped(0x%08" PRIx32 ", 0x%08" PRIx32 ")",
1851 address,
1852 size);
1853 return ERROR_FAIL;
1856 return target->type->read_buffer(target, address, size, buffer);
1859 static int target_read_buffer_default(struct target *target, uint32_t address, uint32_t size, uint8_t *buffer)
1861 int retval = ERROR_OK;
1863 if (((address % 2) == 0) && (size == 2))
1864 return target_read_memory(target, address, 2, 1, buffer);
1866 /* handle unaligned head bytes */
1867 if (address % 4) {
1868 uint32_t unaligned = 4 - (address % 4);
1870 if (unaligned > size)
1871 unaligned = size;
1873 retval = target_read_memory(target, address, 1, unaligned, buffer);
1874 if (retval != ERROR_OK)
1875 return retval;
1877 buffer += unaligned;
1878 address += unaligned;
1879 size -= unaligned;
1882 /* handle aligned words */
1883 if (size >= 4) {
1884 int aligned = size - (size % 4);
1886 retval = target_read_memory(target, address, 4, aligned / 4, buffer);
1887 if (retval != ERROR_OK)
1888 return retval;
1890 buffer += aligned;
1891 address += aligned;
1892 size -= aligned;
1895 /*prevent byte access when possible (avoid AHB access limitations in some cases)*/
1896 if (size >= 2) {
1897 int aligned = size - (size % 2);
1898 retval = target_read_memory(target, address, 2, aligned / 2, buffer);
1899 if (retval != ERROR_OK)
1900 return retval;
1902 buffer += aligned;
1903 address += aligned;
1904 size -= aligned;
1906 /* handle tail writes of less than 4 bytes */
1907 if (size > 0) {
1908 retval = target_read_memory(target, address, 1, size, buffer);
1909 if (retval != ERROR_OK)
1910 return retval;
1913 return ERROR_OK;
1916 int target_checksum_memory(struct target *target, uint32_t address, uint32_t size, uint32_t* crc)
1918 uint8_t *buffer;
1919 int retval;
1920 uint32_t i;
1921 uint32_t checksum = 0;
1922 if (!target_was_examined(target)) {
1923 LOG_ERROR("Target not examined yet");
1924 return ERROR_FAIL;
1927 retval = target->type->checksum_memory(target, address, size, &checksum);
1928 if (retval != ERROR_OK) {
1929 buffer = malloc(size);
1930 if (buffer == NULL) {
1931 LOG_ERROR("error allocating buffer for section (%d bytes)", (int)size);
1932 return ERROR_COMMAND_SYNTAX_ERROR;
1934 retval = target_read_buffer(target, address, size, buffer);
1935 if (retval != ERROR_OK) {
1936 free(buffer);
1937 return retval;
1940 /* convert to target endianness */
1941 for (i = 0; i < (size/sizeof(uint32_t)); i++) {
1942 uint32_t target_data;
1943 target_data = target_buffer_get_u32(target, &buffer[i*sizeof(uint32_t)]);
1944 target_buffer_set_u32(target, &buffer[i*sizeof(uint32_t)], target_data);
1947 retval = image_calculate_checksum(buffer, size, &checksum);
1948 free(buffer);
1951 *crc = checksum;
1953 return retval;
1956 int target_blank_check_memory(struct target *target, uint32_t address, uint32_t size, uint32_t* blank)
1958 int retval;
1959 if (!target_was_examined(target)) {
1960 LOG_ERROR("Target not examined yet");
1961 return ERROR_FAIL;
1964 if (target->type->blank_check_memory == 0)
1965 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1967 retval = target->type->blank_check_memory(target, address, size, blank);
1969 return retval;
1972 int target_read_u32(struct target *target, uint32_t address, uint32_t *value)
1974 uint8_t value_buf[4];
1975 if (!target_was_examined(target)) {
1976 LOG_ERROR("Target not examined yet");
1977 return ERROR_FAIL;
1980 int retval = target_read_memory(target, address, 4, 1, value_buf);
1982 if (retval == ERROR_OK) {
1983 *value = target_buffer_get_u32(target, value_buf);
1984 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%8.8" PRIx32 "",
1985 address,
1986 *value);
1987 } else {
1988 *value = 0x0;
1989 LOG_DEBUG("address: 0x%8.8" PRIx32 " failed",
1990 address);
1993 return retval;
1996 int target_read_u16(struct target *target, uint32_t address, uint16_t *value)
1998 uint8_t value_buf[2];
1999 if (!target_was_examined(target)) {
2000 LOG_ERROR("Target not examined yet");
2001 return ERROR_FAIL;
2004 int retval = target_read_memory(target, address, 2, 1, value_buf);
2006 if (retval == ERROR_OK) {
2007 *value = target_buffer_get_u16(target, value_buf);
2008 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%4.4x",
2009 address,
2010 *value);
2011 } else {
2012 *value = 0x0;
2013 LOG_DEBUG("address: 0x%8.8" PRIx32 " failed",
2014 address);
2017 return retval;
2020 int target_read_u8(struct target *target, uint32_t address, uint8_t *value)
2022 int retval = target_read_memory(target, address, 1, 1, value);
2023 if (!target_was_examined(target)) {
2024 LOG_ERROR("Target not examined yet");
2025 return ERROR_FAIL;
2028 if (retval == ERROR_OK) {
2029 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%2.2x",
2030 address,
2031 *value);
2032 } else {
2033 *value = 0x0;
2034 LOG_DEBUG("address: 0x%8.8" PRIx32 " failed",
2035 address);
2038 return retval;
2041 int target_write_u32(struct target *target, uint32_t address, uint32_t value)
2043 int retval;
2044 uint8_t value_buf[4];
2045 if (!target_was_examined(target)) {
2046 LOG_ERROR("Target not examined yet");
2047 return ERROR_FAIL;
2050 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%8.8" PRIx32 "",
2051 address,
2052 value);
2054 target_buffer_set_u32(target, value_buf, value);
2055 retval = target_write_memory(target, address, 4, 1, value_buf);
2056 if (retval != ERROR_OK)
2057 LOG_DEBUG("failed: %i", retval);
2059 return retval;
2062 int target_write_u16(struct target *target, uint32_t address, uint16_t value)
2064 int retval;
2065 uint8_t value_buf[2];
2066 if (!target_was_examined(target)) {
2067 LOG_ERROR("Target not examined yet");
2068 return ERROR_FAIL;
2071 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%8.8x",
2072 address,
2073 value);
2075 target_buffer_set_u16(target, value_buf, value);
2076 retval = target_write_memory(target, address, 2, 1, value_buf);
2077 if (retval != ERROR_OK)
2078 LOG_DEBUG("failed: %i", retval);
2080 return retval;
2083 int target_write_u8(struct target *target, uint32_t address, uint8_t value)
2085 int retval;
2086 if (!target_was_examined(target)) {
2087 LOG_ERROR("Target not examined yet");
2088 return ERROR_FAIL;
2091 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%2.2x",
2092 address, value);
2094 retval = target_write_memory(target, address, 1, 1, &value);
2095 if (retval != ERROR_OK)
2096 LOG_DEBUG("failed: %i", retval);
2098 return retval;
2101 static int find_target(struct command_context *cmd_ctx, const char *name)
2103 struct target *target = get_target(name);
2104 if (target == NULL) {
2105 LOG_ERROR("Target: %s is unknown, try one of:\n", name);
2106 return ERROR_FAIL;
2108 if (!target->tap->enabled) {
2109 LOG_USER("Target: TAP %s is disabled, "
2110 "can't be the current target\n",
2111 target->tap->dotted_name);
2112 return ERROR_FAIL;
2115 cmd_ctx->current_target = target->target_number;
2116 return ERROR_OK;
2120 COMMAND_HANDLER(handle_targets_command)
2122 int retval = ERROR_OK;
2123 if (CMD_ARGC == 1) {
2124 retval = find_target(CMD_CTX, CMD_ARGV[0]);
2125 if (retval == ERROR_OK) {
2126 /* we're done! */
2127 return retval;
2131 struct target *target = all_targets;
2132 command_print(CMD_CTX, " TargetName Type Endian TapName State ");
2133 command_print(CMD_CTX, "-- ------------------ ---------- ------ ------------------ ------------");
2134 while (target) {
2135 const char *state;
2136 char marker = ' ';
2138 if (target->tap->enabled)
2139 state = target_state_name(target);
2140 else
2141 state = "tap-disabled";
2143 if (CMD_CTX->current_target == target->target_number)
2144 marker = '*';
2146 /* keep columns lined up to match the headers above */
2147 command_print(CMD_CTX,
2148 "%2d%c %-18s %-10s %-6s %-18s %s",
2149 target->target_number,
2150 marker,
2151 target_name(target),
2152 target_type_name(target),
2153 Jim_Nvp_value2name_simple(nvp_target_endian,
2154 target->endianness)->name,
2155 target->tap->dotted_name,
2156 state);
2157 target = target->next;
2160 return retval;
2163 /* every 300ms we check for reset & powerdropout and issue a "reset halt" if so. */
2165 static int powerDropout;
2166 static int srstAsserted;
2168 static int runPowerRestore;
2169 static int runPowerDropout;
2170 static int runSrstAsserted;
2171 static int runSrstDeasserted;
2173 static int sense_handler(void)
2175 static int prevSrstAsserted;
2176 static int prevPowerdropout;
2178 int retval = jtag_power_dropout(&powerDropout);
2179 if (retval != ERROR_OK)
2180 return retval;
2182 int powerRestored;
2183 powerRestored = prevPowerdropout && !powerDropout;
2184 if (powerRestored)
2185 runPowerRestore = 1;
2187 long long current = timeval_ms();
2188 static long long lastPower;
2189 int waitMore = lastPower + 2000 > current;
2190 if (powerDropout && !waitMore) {
2191 runPowerDropout = 1;
2192 lastPower = current;
2195 retval = jtag_srst_asserted(&srstAsserted);
2196 if (retval != ERROR_OK)
2197 return retval;
2199 int srstDeasserted;
2200 srstDeasserted = prevSrstAsserted && !srstAsserted;
2202 static long long lastSrst;
2203 waitMore = lastSrst + 2000 > current;
2204 if (srstDeasserted && !waitMore) {
2205 runSrstDeasserted = 1;
2206 lastSrst = current;
2209 if (!prevSrstAsserted && srstAsserted)
2210 runSrstAsserted = 1;
2212 prevSrstAsserted = srstAsserted;
2213 prevPowerdropout = powerDropout;
2215 if (srstDeasserted || powerRestored) {
2216 /* Other than logging the event we can't do anything here.
2217 * Issuing a reset is a particularly bad idea as we might
2218 * be inside a reset already.
2222 return ERROR_OK;
2225 /* process target state changes */
2226 static int handle_target(void *priv)
2228 Jim_Interp *interp = (Jim_Interp *)priv;
2229 int retval = ERROR_OK;
2231 if (!is_jtag_poll_safe()) {
2232 /* polling is disabled currently */
2233 return ERROR_OK;
2236 /* we do not want to recurse here... */
2237 static int recursive;
2238 if (!recursive) {
2239 recursive = 1;
2240 sense_handler();
2241 /* danger! running these procedures can trigger srst assertions and power dropouts.
2242 * We need to avoid an infinite loop/recursion here and we do that by
2243 * clearing the flags after running these events.
2245 int did_something = 0;
2246 if (runSrstAsserted) {
2247 LOG_INFO("srst asserted detected, running srst_asserted proc.");
2248 Jim_Eval(interp, "srst_asserted");
2249 did_something = 1;
2251 if (runSrstDeasserted) {
2252 Jim_Eval(interp, "srst_deasserted");
2253 did_something = 1;
2255 if (runPowerDropout) {
2256 LOG_INFO("Power dropout detected, running power_dropout proc.");
2257 Jim_Eval(interp, "power_dropout");
2258 did_something = 1;
2260 if (runPowerRestore) {
2261 Jim_Eval(interp, "power_restore");
2262 did_something = 1;
2265 if (did_something) {
2266 /* clear detect flags */
2267 sense_handler();
2270 /* clear action flags */
2272 runSrstAsserted = 0;
2273 runSrstDeasserted = 0;
2274 runPowerRestore = 0;
2275 runPowerDropout = 0;
2277 recursive = 0;
2280 /* Poll targets for state changes unless that's globally disabled.
2281 * Skip targets that are currently disabled.
2283 for (struct target *target = all_targets;
2284 is_jtag_poll_safe() && target;
2285 target = target->next) {
2286 if (!target->tap->enabled)
2287 continue;
2289 if (target->backoff.times > target->backoff.count) {
2290 /* do not poll this time as we failed previously */
2291 target->backoff.count++;
2292 continue;
2294 target->backoff.count = 0;
2296 /* only poll target if we've got power and srst isn't asserted */
2297 if (!powerDropout && !srstAsserted) {
2298 /* polling may fail silently until the target has been examined */
2299 retval = target_poll(target);
2300 if (retval != ERROR_OK) {
2301 /* 100ms polling interval. Increase interval between polling up to 5000ms */
2302 if (target->backoff.times * polling_interval < 5000) {
2303 target->backoff.times *= 2;
2304 target->backoff.times++;
2306 LOG_USER("Polling target %s failed, GDB will be halted. Polling again in %dms",
2307 target_name(target),
2308 target->backoff.times * polling_interval);
2310 /* Tell GDB to halt the debugger. This allows the user to
2311 * run monitor commands to handle the situation.
2313 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
2314 return retval;
2316 /* Since we succeeded, we reset backoff count */
2317 if (target->backoff.times > 0)
2318 LOG_USER("Polling target %s succeeded again", target_name(target));
2319 target->backoff.times = 0;
2323 return retval;
2326 COMMAND_HANDLER(handle_reg_command)
2328 struct target *target;
2329 struct reg *reg = NULL;
2330 unsigned count = 0;
2331 char *value;
2333 LOG_DEBUG("-");
2335 target = get_current_target(CMD_CTX);
2337 /* list all available registers for the current target */
2338 if (CMD_ARGC == 0) {
2339 struct reg_cache *cache = target->reg_cache;
2341 count = 0;
2342 while (cache) {
2343 unsigned i;
2345 command_print(CMD_CTX, "===== %s", cache->name);
2347 for (i = 0, reg = cache->reg_list;
2348 i < cache->num_regs;
2349 i++, reg++, count++) {
2350 /* only print cached values if they are valid */
2351 if (reg->valid) {
2352 value = buf_to_str(reg->value,
2353 reg->size, 16);
2354 command_print(CMD_CTX,
2355 "(%i) %s (/%" PRIu32 "): 0x%s%s",
2356 count, reg->name,
2357 reg->size, value,
2358 reg->dirty
2359 ? " (dirty)"
2360 : "");
2361 free(value);
2362 } else {
2363 command_print(CMD_CTX, "(%i) %s (/%" PRIu32 ")",
2364 count, reg->name,
2365 reg->size) ;
2368 cache = cache->next;
2371 return ERROR_OK;
2374 /* access a single register by its ordinal number */
2375 if ((CMD_ARGV[0][0] >= '0') && (CMD_ARGV[0][0] <= '9')) {
2376 unsigned num;
2377 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[0], num);
2379 struct reg_cache *cache = target->reg_cache;
2380 count = 0;
2381 while (cache) {
2382 unsigned i;
2383 for (i = 0; i < cache->num_regs; i++) {
2384 if (count++ == num) {
2385 reg = &cache->reg_list[i];
2386 break;
2389 if (reg)
2390 break;
2391 cache = cache->next;
2394 if (!reg) {
2395 command_print(CMD_CTX, "%i is out of bounds, the current target "
2396 "has only %i registers (0 - %i)", num, count, count - 1);
2397 return ERROR_OK;
2399 } else {
2400 /* access a single register by its name */
2401 reg = register_get_by_name(target->reg_cache, CMD_ARGV[0], 1);
2403 if (!reg) {
2404 command_print(CMD_CTX, "register %s not found in current target", CMD_ARGV[0]);
2405 return ERROR_OK;
2409 assert(reg != NULL); /* give clang a hint that we *know* reg is != NULL here */
2411 /* display a register */
2412 if ((CMD_ARGC == 1) || ((CMD_ARGC == 2) && !((CMD_ARGV[1][0] >= '0')
2413 && (CMD_ARGV[1][0] <= '9')))) {
2414 if ((CMD_ARGC == 2) && (strcmp(CMD_ARGV[1], "force") == 0))
2415 reg->valid = 0;
2417 if (reg->valid == 0)
2418 reg->type->get(reg);
2419 value = buf_to_str(reg->value, reg->size, 16);
2420 command_print(CMD_CTX, "%s (/%i): 0x%s", reg->name, (int)(reg->size), value);
2421 free(value);
2422 return ERROR_OK;
2425 /* set register value */
2426 if (CMD_ARGC == 2) {
2427 uint8_t *buf = malloc(DIV_ROUND_UP(reg->size, 8));
2428 if (buf == NULL)
2429 return ERROR_FAIL;
2430 str_to_buf(CMD_ARGV[1], strlen(CMD_ARGV[1]), buf, reg->size, 0);
2432 reg->type->set(reg, buf);
2434 value = buf_to_str(reg->value, reg->size, 16);
2435 command_print(CMD_CTX, "%s (/%i): 0x%s", reg->name, (int)(reg->size), value);
2436 free(value);
2438 free(buf);
2440 return ERROR_OK;
2443 return ERROR_COMMAND_SYNTAX_ERROR;
2446 COMMAND_HANDLER(handle_poll_command)
2448 int retval = ERROR_OK;
2449 struct target *target = get_current_target(CMD_CTX);
2451 if (CMD_ARGC == 0) {
2452 command_print(CMD_CTX, "background polling: %s",
2453 jtag_poll_get_enabled() ? "on" : "off");
2454 command_print(CMD_CTX, "TAP: %s (%s)",
2455 target->tap->dotted_name,
2456 target->tap->enabled ? "enabled" : "disabled");
2457 if (!target->tap->enabled)
2458 return ERROR_OK;
2459 retval = target_poll(target);
2460 if (retval != ERROR_OK)
2461 return retval;
2462 retval = target_arch_state(target);
2463 if (retval != ERROR_OK)
2464 return retval;
2465 } else if (CMD_ARGC == 1) {
2466 bool enable;
2467 COMMAND_PARSE_ON_OFF(CMD_ARGV[0], enable);
2468 jtag_poll_set_enabled(enable);
2469 } else
2470 return ERROR_COMMAND_SYNTAX_ERROR;
2472 return retval;
2475 COMMAND_HANDLER(handle_wait_halt_command)
2477 if (CMD_ARGC > 1)
2478 return ERROR_COMMAND_SYNTAX_ERROR;
2480 unsigned ms = DEFAULT_HALT_TIMEOUT;
2481 if (1 == CMD_ARGC) {
2482 int retval = parse_uint(CMD_ARGV[0], &ms);
2483 if (ERROR_OK != retval)
2484 return ERROR_COMMAND_SYNTAX_ERROR;
2487 struct target *target = get_current_target(CMD_CTX);
2488 return target_wait_state(target, TARGET_HALTED, ms);
2491 /* wait for target state to change. The trick here is to have a low
2492 * latency for short waits and not to suck up all the CPU time
2493 * on longer waits.
2495 * After 500ms, keep_alive() is invoked
2497 int target_wait_state(struct target *target, enum target_state state, int ms)
2499 int retval;
2500 long long then = 0, cur;
2501 int once = 1;
2503 for (;;) {
2504 retval = target_poll(target);
2505 if (retval != ERROR_OK)
2506 return retval;
2507 if (target->state == state)
2508 break;
2509 cur = timeval_ms();
2510 if (once) {
2511 once = 0;
2512 then = timeval_ms();
2513 LOG_DEBUG("waiting for target %s...",
2514 Jim_Nvp_value2name_simple(nvp_target_state, state)->name);
2517 if (cur-then > 500)
2518 keep_alive();
2520 if ((cur-then) > ms) {
2521 LOG_ERROR("timed out while waiting for target %s",
2522 Jim_Nvp_value2name_simple(nvp_target_state, state)->name);
2523 return ERROR_FAIL;
2527 return ERROR_OK;
2530 COMMAND_HANDLER(handle_halt_command)
2532 LOG_DEBUG("-");
2534 struct target *target = get_current_target(CMD_CTX);
2535 int retval = target_halt(target);
2536 if (ERROR_OK != retval)
2537 return retval;
2539 if (CMD_ARGC == 1) {
2540 unsigned wait_local;
2541 retval = parse_uint(CMD_ARGV[0], &wait_local);
2542 if (ERROR_OK != retval)
2543 return ERROR_COMMAND_SYNTAX_ERROR;
2544 if (!wait_local)
2545 return ERROR_OK;
2548 return CALL_COMMAND_HANDLER(handle_wait_halt_command);
2551 COMMAND_HANDLER(handle_soft_reset_halt_command)
2553 struct target *target = get_current_target(CMD_CTX);
2555 LOG_USER("requesting target halt and executing a soft reset");
2557 target_soft_reset_halt(target);
2559 return ERROR_OK;
2562 COMMAND_HANDLER(handle_reset_command)
2564 if (CMD_ARGC > 1)
2565 return ERROR_COMMAND_SYNTAX_ERROR;
2567 enum target_reset_mode reset_mode = RESET_RUN;
2568 if (CMD_ARGC == 1) {
2569 const Jim_Nvp *n;
2570 n = Jim_Nvp_name2value_simple(nvp_reset_modes, CMD_ARGV[0]);
2571 if ((n->name == NULL) || (n->value == RESET_UNKNOWN))
2572 return ERROR_COMMAND_SYNTAX_ERROR;
2573 reset_mode = n->value;
2576 /* reset *all* targets */
2577 return target_process_reset(CMD_CTX, reset_mode);
2581 COMMAND_HANDLER(handle_resume_command)
2583 int current = 1;
2584 if (CMD_ARGC > 1)
2585 return ERROR_COMMAND_SYNTAX_ERROR;
2587 struct target *target = get_current_target(CMD_CTX);
2589 /* with no CMD_ARGV, resume from current pc, addr = 0,
2590 * with one arguments, addr = CMD_ARGV[0],
2591 * handle breakpoints, not debugging */
2592 uint32_t addr = 0;
2593 if (CMD_ARGC == 1) {
2594 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
2595 current = 0;
2598 return target_resume(target, current, addr, 1, 0);
2601 COMMAND_HANDLER(handle_step_command)
2603 if (CMD_ARGC > 1)
2604 return ERROR_COMMAND_SYNTAX_ERROR;
2606 LOG_DEBUG("-");
2608 /* with no CMD_ARGV, step from current pc, addr = 0,
2609 * with one argument addr = CMD_ARGV[0],
2610 * handle breakpoints, debugging */
2611 uint32_t addr = 0;
2612 int current_pc = 1;
2613 if (CMD_ARGC == 1) {
2614 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
2615 current_pc = 0;
2618 struct target *target = get_current_target(CMD_CTX);
2620 return target->type->step(target, current_pc, addr, 1);
2623 static void handle_md_output(struct command_context *cmd_ctx,
2624 struct target *target, uint32_t address, unsigned size,
2625 unsigned count, const uint8_t *buffer)
2627 const unsigned line_bytecnt = 32;
2628 unsigned line_modulo = line_bytecnt / size;
2630 char output[line_bytecnt * 4 + 1];
2631 unsigned output_len = 0;
2633 const char *value_fmt;
2634 switch (size) {
2635 case 4:
2636 value_fmt = "%8.8x ";
2637 break;
2638 case 2:
2639 value_fmt = "%4.4x ";
2640 break;
2641 case 1:
2642 value_fmt = "%2.2x ";
2643 break;
2644 default:
2645 /* "can't happen", caller checked */
2646 LOG_ERROR("invalid memory read size: %u", size);
2647 return;
2650 for (unsigned i = 0; i < count; i++) {
2651 if (i % line_modulo == 0) {
2652 output_len += snprintf(output + output_len,
2653 sizeof(output) - output_len,
2654 "0x%8.8x: ",
2655 (unsigned)(address + (i*size)));
2658 uint32_t value = 0;
2659 const uint8_t *value_ptr = buffer + i * size;
2660 switch (size) {
2661 case 4:
2662 value = target_buffer_get_u32(target, value_ptr);
2663 break;
2664 case 2:
2665 value = target_buffer_get_u16(target, value_ptr);
2666 break;
2667 case 1:
2668 value = *value_ptr;
2670 output_len += snprintf(output + output_len,
2671 sizeof(output) - output_len,
2672 value_fmt, value);
2674 if ((i % line_modulo == line_modulo - 1) || (i == count - 1)) {
2675 command_print(cmd_ctx, "%s", output);
2676 output_len = 0;
2681 COMMAND_HANDLER(handle_md_command)
2683 if (CMD_ARGC < 1)
2684 return ERROR_COMMAND_SYNTAX_ERROR;
2686 unsigned size = 0;
2687 switch (CMD_NAME[2]) {
2688 case 'w':
2689 size = 4;
2690 break;
2691 case 'h':
2692 size = 2;
2693 break;
2694 case 'b':
2695 size = 1;
2696 break;
2697 default:
2698 return ERROR_COMMAND_SYNTAX_ERROR;
2701 bool physical = strcmp(CMD_ARGV[0], "phys") == 0;
2702 int (*fn)(struct target *target,
2703 uint32_t address, uint32_t size_value, uint32_t count, uint8_t *buffer);
2704 if (physical) {
2705 CMD_ARGC--;
2706 CMD_ARGV++;
2707 fn = target_read_phys_memory;
2708 } else
2709 fn = target_read_memory;
2710 if ((CMD_ARGC < 1) || (CMD_ARGC > 2))
2711 return ERROR_COMMAND_SYNTAX_ERROR;
2713 uint32_t address;
2714 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], address);
2716 unsigned count = 1;
2717 if (CMD_ARGC == 2)
2718 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[1], count);
2720 uint8_t *buffer = calloc(count, size);
2722 struct target *target = get_current_target(CMD_CTX);
2723 int retval = fn(target, address, size, count, buffer);
2724 if (ERROR_OK == retval)
2725 handle_md_output(CMD_CTX, target, address, size, count, buffer);
2727 free(buffer);
2729 return retval;
2732 typedef int (*target_write_fn)(struct target *target,
2733 uint32_t address, uint32_t size, uint32_t count, const uint8_t *buffer);
2735 static int target_write_memory_fast(struct target *target,
2736 uint32_t address, uint32_t size, uint32_t count, const uint8_t *buffer)
2738 return target_write_buffer(target, address, size * count, buffer);
2741 static int target_fill_mem(struct target *target,
2742 uint32_t address,
2743 target_write_fn fn,
2744 unsigned data_size,
2745 /* value */
2746 uint32_t b,
2747 /* count */
2748 unsigned c)
2750 /* We have to write in reasonably large chunks to be able
2751 * to fill large memory areas with any sane speed */
2752 const unsigned chunk_size = 16384;
2753 uint8_t *target_buf = malloc(chunk_size * data_size);
2754 if (target_buf == NULL) {
2755 LOG_ERROR("Out of memory");
2756 return ERROR_FAIL;
2759 for (unsigned i = 0; i < chunk_size; i++) {
2760 switch (data_size) {
2761 case 4:
2762 target_buffer_set_u32(target, target_buf + i * data_size, b);
2763 break;
2764 case 2:
2765 target_buffer_set_u16(target, target_buf + i * data_size, b);
2766 break;
2767 case 1:
2768 target_buffer_set_u8(target, target_buf + i * data_size, b);
2769 break;
2770 default:
2771 exit(-1);
2775 int retval = ERROR_OK;
2777 for (unsigned x = 0; x < c; x += chunk_size) {
2778 unsigned current;
2779 current = c - x;
2780 if (current > chunk_size)
2781 current = chunk_size;
2782 retval = fn(target, address + x * data_size, data_size, current, target_buf);
2783 if (retval != ERROR_OK)
2784 break;
2785 /* avoid GDB timeouts */
2786 keep_alive();
2788 free(target_buf);
2790 return retval;
2794 COMMAND_HANDLER(handle_mw_command)
2796 if (CMD_ARGC < 2)
2797 return ERROR_COMMAND_SYNTAX_ERROR;
2798 bool physical = strcmp(CMD_ARGV[0], "phys") == 0;
2799 target_write_fn fn;
2800 if (physical) {
2801 CMD_ARGC--;
2802 CMD_ARGV++;
2803 fn = target_write_phys_memory;
2804 } else
2805 fn = target_write_memory_fast;
2806 if ((CMD_ARGC < 2) || (CMD_ARGC > 3))
2807 return ERROR_COMMAND_SYNTAX_ERROR;
2809 uint32_t address;
2810 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], address);
2812 uint32_t value;
2813 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], value);
2815 unsigned count = 1;
2816 if (CMD_ARGC == 3)
2817 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[2], count);
2819 struct target *target = get_current_target(CMD_CTX);
2820 unsigned wordsize;
2821 switch (CMD_NAME[2]) {
2822 case 'w':
2823 wordsize = 4;
2824 break;
2825 case 'h':
2826 wordsize = 2;
2827 break;
2828 case 'b':
2829 wordsize = 1;
2830 break;
2831 default:
2832 return ERROR_COMMAND_SYNTAX_ERROR;
2835 return target_fill_mem(target, address, fn, wordsize, value, count);
2838 static COMMAND_HELPER(parse_load_image_command_CMD_ARGV, struct image *image,
2839 uint32_t *min_address, uint32_t *max_address)
2841 if (CMD_ARGC < 1 || CMD_ARGC > 5)
2842 return ERROR_COMMAND_SYNTAX_ERROR;
2844 /* a base address isn't always necessary,
2845 * default to 0x0 (i.e. don't relocate) */
2846 if (CMD_ARGC >= 2) {
2847 uint32_t addr;
2848 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], addr);
2849 image->base_address = addr;
2850 image->base_address_set = 1;
2851 } else
2852 image->base_address_set = 0;
2854 image->start_address_set = 0;
2856 if (CMD_ARGC >= 4)
2857 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[3], *min_address);
2858 if (CMD_ARGC == 5) {
2859 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[4], *max_address);
2860 /* use size (given) to find max (required) */
2861 *max_address += *min_address;
2864 if (*min_address > *max_address)
2865 return ERROR_COMMAND_SYNTAX_ERROR;
2867 return ERROR_OK;
2870 COMMAND_HANDLER(handle_load_image_command)
2872 uint8_t *buffer;
2873 size_t buf_cnt;
2874 uint32_t image_size;
2875 uint32_t min_address = 0;
2876 uint32_t max_address = 0xffffffff;
2877 int i;
2878 struct image image;
2880 int retval = CALL_COMMAND_HANDLER(parse_load_image_command_CMD_ARGV,
2881 &image, &min_address, &max_address);
2882 if (ERROR_OK != retval)
2883 return retval;
2885 struct target *target = get_current_target(CMD_CTX);
2887 struct duration bench;
2888 duration_start(&bench);
2890 if (image_open(&image, CMD_ARGV[0], (CMD_ARGC >= 3) ? CMD_ARGV[2] : NULL) != ERROR_OK)
2891 return ERROR_OK;
2893 image_size = 0x0;
2894 retval = ERROR_OK;
2895 for (i = 0; i < image.num_sections; i++) {
2896 buffer = malloc(image.sections[i].size);
2897 if (buffer == NULL) {
2898 command_print(CMD_CTX,
2899 "error allocating buffer for section (%d bytes)",
2900 (int)(image.sections[i].size));
2901 break;
2904 retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt);
2905 if (retval != ERROR_OK) {
2906 free(buffer);
2907 break;
2910 uint32_t offset = 0;
2911 uint32_t length = buf_cnt;
2913 /* DANGER!!! beware of unsigned comparision here!!! */
2915 if ((image.sections[i].base_address + buf_cnt >= min_address) &&
2916 (image.sections[i].base_address < max_address)) {
2918 if (image.sections[i].base_address < min_address) {
2919 /* clip addresses below */
2920 offset += min_address-image.sections[i].base_address;
2921 length -= offset;
2924 if (image.sections[i].base_address + buf_cnt > max_address)
2925 length -= (image.sections[i].base_address + buf_cnt)-max_address;
2927 retval = target_write_buffer(target,
2928 image.sections[i].base_address + offset, length, buffer + offset);
2929 if (retval != ERROR_OK) {
2930 free(buffer);
2931 break;
2933 image_size += length;
2934 command_print(CMD_CTX, "%u bytes written at address 0x%8.8" PRIx32 "",
2935 (unsigned int)length,
2936 image.sections[i].base_address + offset);
2939 free(buffer);
2942 if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK)) {
2943 command_print(CMD_CTX, "downloaded %" PRIu32 " bytes "
2944 "in %fs (%0.3f KiB/s)", image_size,
2945 duration_elapsed(&bench), duration_kbps(&bench, image_size));
2948 image_close(&image);
2950 return retval;
2954 COMMAND_HANDLER(handle_dump_image_command)
2956 struct fileio fileio;
2957 uint8_t *buffer;
2958 int retval, retvaltemp;
2959 uint32_t address, size;
2960 struct duration bench;
2961 struct target *target = get_current_target(CMD_CTX);
2963 if (CMD_ARGC != 3)
2964 return ERROR_COMMAND_SYNTAX_ERROR;
2966 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], address);
2967 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[2], size);
2969 uint32_t buf_size = (size > 4096) ? 4096 : size;
2970 buffer = malloc(buf_size);
2971 if (!buffer)
2972 return ERROR_FAIL;
2974 retval = fileio_open(&fileio, CMD_ARGV[0], FILEIO_WRITE, FILEIO_BINARY);
2975 if (retval != ERROR_OK) {
2976 free(buffer);
2977 return retval;
2980 duration_start(&bench);
2982 while (size > 0) {
2983 size_t size_written;
2984 uint32_t this_run_size = (size > buf_size) ? buf_size : size;
2985 retval = target_read_buffer(target, address, this_run_size, buffer);
2986 if (retval != ERROR_OK)
2987 break;
2989 retval = fileio_write(&fileio, this_run_size, buffer, &size_written);
2990 if (retval != ERROR_OK)
2991 break;
2993 size -= this_run_size;
2994 address += this_run_size;
2997 free(buffer);
2999 if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK)) {
3000 int filesize;
3001 retval = fileio_size(&fileio, &filesize);
3002 if (retval != ERROR_OK)
3003 return retval;
3004 command_print(CMD_CTX,
3005 "dumped %ld bytes in %fs (%0.3f KiB/s)", (long)filesize,
3006 duration_elapsed(&bench), duration_kbps(&bench, filesize));
3009 retvaltemp = fileio_close(&fileio);
3010 if (retvaltemp != ERROR_OK)
3011 return retvaltemp;
3013 return retval;
3016 static COMMAND_HELPER(handle_verify_image_command_internal, int verify)
3018 uint8_t *buffer;
3019 size_t buf_cnt;
3020 uint32_t image_size;
3021 int i;
3022 int retval;
3023 uint32_t checksum = 0;
3024 uint32_t mem_checksum = 0;
3026 struct image image;
3028 struct target *target = get_current_target(CMD_CTX);
3030 if (CMD_ARGC < 1)
3031 return ERROR_COMMAND_SYNTAX_ERROR;
3033 if (!target) {
3034 LOG_ERROR("no target selected");
3035 return ERROR_FAIL;
3038 struct duration bench;
3039 duration_start(&bench);
3041 if (CMD_ARGC >= 2) {
3042 uint32_t addr;
3043 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], addr);
3044 image.base_address = addr;
3045 image.base_address_set = 1;
3046 } else {
3047 image.base_address_set = 0;
3048 image.base_address = 0x0;
3051 image.start_address_set = 0;
3053 retval = image_open(&image, CMD_ARGV[0], (CMD_ARGC == 3) ? CMD_ARGV[2] : NULL);
3054 if (retval != ERROR_OK)
3055 return retval;
3057 image_size = 0x0;
3058 int diffs = 0;
3059 retval = ERROR_OK;
3060 for (i = 0; i < image.num_sections; i++) {
3061 buffer = malloc(image.sections[i].size);
3062 if (buffer == NULL) {
3063 command_print(CMD_CTX,
3064 "error allocating buffer for section (%d bytes)",
3065 (int)(image.sections[i].size));
3066 break;
3068 retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt);
3069 if (retval != ERROR_OK) {
3070 free(buffer);
3071 break;
3074 if (verify) {
3075 /* calculate checksum of image */
3076 retval = image_calculate_checksum(buffer, buf_cnt, &checksum);
3077 if (retval != ERROR_OK) {
3078 free(buffer);
3079 break;
3082 retval = target_checksum_memory(target, image.sections[i].base_address, buf_cnt, &mem_checksum);
3083 if (retval != ERROR_OK) {
3084 free(buffer);
3085 break;
3088 if (checksum != mem_checksum) {
3089 /* failed crc checksum, fall back to a binary compare */
3090 uint8_t *data;
3092 if (diffs == 0)
3093 LOG_ERROR("checksum mismatch - attempting binary compare");
3095 data = (uint8_t *)malloc(buf_cnt);
3097 /* Can we use 32bit word accesses? */
3098 int size = 1;
3099 int count = buf_cnt;
3100 if ((count % 4) == 0) {
3101 size *= 4;
3102 count /= 4;
3104 retval = target_read_memory(target, image.sections[i].base_address, size, count, data);
3105 if (retval == ERROR_OK) {
3106 uint32_t t;
3107 for (t = 0; t < buf_cnt; t++) {
3108 if (data[t] != buffer[t]) {
3109 command_print(CMD_CTX,
3110 "diff %d address 0x%08x. Was 0x%02x instead of 0x%02x",
3111 diffs,
3112 (unsigned)(t + image.sections[i].base_address),
3113 data[t],
3114 buffer[t]);
3115 if (diffs++ >= 127) {
3116 command_print(CMD_CTX, "More than 128 errors, the rest are not printed.");
3117 free(data);
3118 free(buffer);
3119 goto done;
3122 keep_alive();
3125 free(data);
3127 } else {
3128 command_print(CMD_CTX, "address 0x%08" PRIx32 " length 0x%08zx",
3129 image.sections[i].base_address,
3130 buf_cnt);
3133 free(buffer);
3134 image_size += buf_cnt;
3136 if (diffs > 0)
3137 command_print(CMD_CTX, "No more differences found.");
3138 done:
3139 if (diffs > 0)
3140 retval = ERROR_FAIL;
3141 if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK)) {
3142 command_print(CMD_CTX, "verified %" PRIu32 " bytes "
3143 "in %fs (%0.3f KiB/s)", image_size,
3144 duration_elapsed(&bench), duration_kbps(&bench, image_size));
3147 image_close(&image);
3149 return retval;
3152 COMMAND_HANDLER(handle_verify_image_command)
3154 return CALL_COMMAND_HANDLER(handle_verify_image_command_internal, 1);
3157 COMMAND_HANDLER(handle_test_image_command)
3159 return CALL_COMMAND_HANDLER(handle_verify_image_command_internal, 0);
3162 static int handle_bp_command_list(struct command_context *cmd_ctx)
3164 struct target *target = get_current_target(cmd_ctx);
3165 struct breakpoint *breakpoint = target->breakpoints;
3166 while (breakpoint) {
3167 if (breakpoint->type == BKPT_SOFT) {
3168 char *buf = buf_to_str(breakpoint->orig_instr,
3169 breakpoint->length, 16);
3170 command_print(cmd_ctx, "IVA breakpoint: 0x%8.8" PRIx32 ", 0x%x, %i, 0x%s",
3171 breakpoint->address,
3172 breakpoint->length,
3173 breakpoint->set, buf);
3174 free(buf);
3175 } else {
3176 if ((breakpoint->address == 0) && (breakpoint->asid != 0))
3177 command_print(cmd_ctx, "Context breakpoint: 0x%8.8" PRIx32 ", 0x%x, %i",
3178 breakpoint->asid,
3179 breakpoint->length, breakpoint->set);
3180 else if ((breakpoint->address != 0) && (breakpoint->asid != 0)) {
3181 command_print(cmd_ctx, "Hybrid breakpoint(IVA): 0x%8.8" PRIx32 ", 0x%x, %i",
3182 breakpoint->address,
3183 breakpoint->length, breakpoint->set);
3184 command_print(cmd_ctx, "\t|--->linked with ContextID: 0x%8.8" PRIx32,
3185 breakpoint->asid);
3186 } else
3187 command_print(cmd_ctx, "Breakpoint(IVA): 0x%8.8" PRIx32 ", 0x%x, %i",
3188 breakpoint->address,
3189 breakpoint->length, breakpoint->set);
3192 breakpoint = breakpoint->next;
3194 return ERROR_OK;
3197 static int handle_bp_command_set(struct command_context *cmd_ctx,
3198 uint32_t addr, uint32_t asid, uint32_t length, int hw)
3200 struct target *target = get_current_target(cmd_ctx);
3202 if (asid == 0) {
3203 int retval = breakpoint_add(target, addr, length, hw);
3204 if (ERROR_OK == retval)
3205 command_print(cmd_ctx, "breakpoint set at 0x%8.8" PRIx32 "", addr);
3206 else {
3207 LOG_ERROR("Failure setting breakpoint, the same address(IVA) is already used");
3208 return retval;
3210 } else if (addr == 0) {
3211 int retval = context_breakpoint_add(target, asid, length, hw);
3212 if (ERROR_OK == retval)
3213 command_print(cmd_ctx, "Context breakpoint set at 0x%8.8" PRIx32 "", asid);
3214 else {
3215 LOG_ERROR("Failure setting breakpoint, the same address(CONTEXTID) is already used");
3216 return retval;
3218 } else {
3219 int retval = hybrid_breakpoint_add(target, addr, asid, length, hw);
3220 if (ERROR_OK == retval)
3221 command_print(cmd_ctx, "Hybrid breakpoint set at 0x%8.8" PRIx32 "", asid);
3222 else {
3223 LOG_ERROR("Failure setting breakpoint, the same address is already used");
3224 return retval;
3227 return ERROR_OK;
3230 COMMAND_HANDLER(handle_bp_command)
3232 uint32_t addr;
3233 uint32_t asid;
3234 uint32_t length;
3235 int hw = BKPT_SOFT;
3237 switch (CMD_ARGC) {
3238 case 0:
3239 return handle_bp_command_list(CMD_CTX);
3241 case 2:
3242 asid = 0;
3243 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3244 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
3245 return handle_bp_command_set(CMD_CTX, addr, asid, length, hw);
3247 case 3:
3248 if (strcmp(CMD_ARGV[2], "hw") == 0) {
3249 hw = BKPT_HARD;
3250 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3252 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
3254 asid = 0;
3255 return handle_bp_command_set(CMD_CTX, addr, asid, length, hw);
3256 } else if (strcmp(CMD_ARGV[2], "hw_ctx") == 0) {
3257 hw = BKPT_HARD;
3258 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], asid);
3259 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
3260 addr = 0;
3261 return handle_bp_command_set(CMD_CTX, addr, asid, length, hw);
3264 case 4:
3265 hw = BKPT_HARD;
3266 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3267 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], asid);
3268 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[2], length);
3269 return handle_bp_command_set(CMD_CTX, addr, asid, length, hw);
3271 default:
3272 return ERROR_COMMAND_SYNTAX_ERROR;
3276 COMMAND_HANDLER(handle_rbp_command)
3278 if (CMD_ARGC != 1)
3279 return ERROR_COMMAND_SYNTAX_ERROR;
3281 uint32_t addr;
3282 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3284 struct target *target = get_current_target(CMD_CTX);
3285 breakpoint_remove(target, addr);
3287 return ERROR_OK;
3290 COMMAND_HANDLER(handle_wp_command)
3292 struct target *target = get_current_target(CMD_CTX);
3294 if (CMD_ARGC == 0) {
3295 struct watchpoint *watchpoint = target->watchpoints;
3297 while (watchpoint) {
3298 command_print(CMD_CTX, "address: 0x%8.8" PRIx32
3299 ", len: 0x%8.8" PRIx32
3300 ", r/w/a: %i, value: 0x%8.8" PRIx32
3301 ", mask: 0x%8.8" PRIx32,
3302 watchpoint->address,
3303 watchpoint->length,
3304 (int)watchpoint->rw,
3305 watchpoint->value,
3306 watchpoint->mask);
3307 watchpoint = watchpoint->next;
3309 return ERROR_OK;
3312 enum watchpoint_rw type = WPT_ACCESS;
3313 uint32_t addr = 0;
3314 uint32_t length = 0;
3315 uint32_t data_value = 0x0;
3316 uint32_t data_mask = 0xffffffff;
3318 switch (CMD_ARGC) {
3319 case 5:
3320 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[4], data_mask);
3321 /* fall through */
3322 case 4:
3323 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[3], data_value);
3324 /* fall through */
3325 case 3:
3326 switch (CMD_ARGV[2][0]) {
3327 case 'r':
3328 type = WPT_READ;
3329 break;
3330 case 'w':
3331 type = WPT_WRITE;
3332 break;
3333 case 'a':
3334 type = WPT_ACCESS;
3335 break;
3336 default:
3337 LOG_ERROR("invalid watchpoint mode ('%c')", CMD_ARGV[2][0]);
3338 return ERROR_COMMAND_SYNTAX_ERROR;
3340 /* fall through */
3341 case 2:
3342 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
3343 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3344 break;
3346 default:
3347 return ERROR_COMMAND_SYNTAX_ERROR;
3350 int retval = watchpoint_add(target, addr, length, type,
3351 data_value, data_mask);
3352 if (ERROR_OK != retval)
3353 LOG_ERROR("Failure setting watchpoints");
3355 return retval;
3358 COMMAND_HANDLER(handle_rwp_command)
3360 if (CMD_ARGC != 1)
3361 return ERROR_COMMAND_SYNTAX_ERROR;
3363 uint32_t addr;
3364 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3366 struct target *target = get_current_target(CMD_CTX);
3367 watchpoint_remove(target, addr);
3369 return ERROR_OK;
3373 * Translate a virtual address to a physical address.
3375 * The low-level target implementation must have logged a detailed error
3376 * which is forwarded to telnet/GDB session.
3378 COMMAND_HANDLER(handle_virt2phys_command)
3380 if (CMD_ARGC != 1)
3381 return ERROR_COMMAND_SYNTAX_ERROR;
3383 uint32_t va;
3384 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], va);
3385 uint32_t pa;
3387 struct target *target = get_current_target(CMD_CTX);
3388 int retval = target->type->virt2phys(target, va, &pa);
3389 if (retval == ERROR_OK)
3390 command_print(CMD_CTX, "Physical address 0x%08" PRIx32 "", pa);
3392 return retval;
3395 static void writeData(FILE *f, const void *data, size_t len)
3397 size_t written = fwrite(data, 1, len, f);
3398 if (written != len)
3399 LOG_ERROR("failed to write %zu bytes: %s", len, strerror(errno));
3402 static void writeLong(FILE *f, int l)
3404 int i;
3405 for (i = 0; i < 4; i++) {
3406 char c = (l >> (i*8))&0xff;
3407 writeData(f, &c, 1);
3412 static void writeString(FILE *f, char *s)
3414 writeData(f, s, strlen(s));
3417 /* Dump a gmon.out histogram file. */
3418 static void writeGmon(uint32_t *samples, uint32_t sampleNum, const char *filename)
3420 uint32_t i;
3421 FILE *f = fopen(filename, "w");
3422 if (f == NULL)
3423 return;
3424 writeString(f, "gmon");
3425 writeLong(f, 0x00000001); /* Version */
3426 writeLong(f, 0); /* padding */
3427 writeLong(f, 0); /* padding */
3428 writeLong(f, 0); /* padding */
3430 uint8_t zero = 0; /* GMON_TAG_TIME_HIST */
3431 writeData(f, &zero, 1);
3433 /* figure out bucket size */
3434 uint32_t min = samples[0];
3435 uint32_t max = samples[0];
3436 for (i = 0; i < sampleNum; i++) {
3437 if (min > samples[i])
3438 min = samples[i];
3439 if (max < samples[i])
3440 max = samples[i];
3443 int addressSpace = (max - min + 1);
3444 assert(addressSpace >= 2);
3446 static const uint32_t maxBuckets = 16 * 1024; /* maximum buckets. */
3447 uint32_t length = addressSpace;
3448 if (length > maxBuckets)
3449 length = maxBuckets;
3450 int *buckets = malloc(sizeof(int)*length);
3451 if (buckets == NULL) {
3452 fclose(f);
3453 return;
3455 memset(buckets, 0, sizeof(int) * length);
3456 for (i = 0; i < sampleNum; i++) {
3457 uint32_t address = samples[i];
3458 long long a = address - min;
3459 long long b = length - 1;
3460 long long c = addressSpace - 1;
3461 int index_t = (a * b) / c; /* danger!!!! int32 overflows */
3462 buckets[index_t]++;
3465 /* append binary memory gmon.out &profile_hist_hdr ((char*)&profile_hist_hdr + sizeof(struct gmon_hist_hdr)) */
3466 writeLong(f, min); /* low_pc */
3467 writeLong(f, max); /* high_pc */
3468 writeLong(f, length); /* # of samples */
3469 writeLong(f, 100); /* KLUDGE! We lie, ca. 100Hz best case. */
3470 writeString(f, "seconds");
3471 for (i = 0; i < (15-strlen("seconds")); i++)
3472 writeData(f, &zero, 1);
3473 writeString(f, "s");
3475 /*append binary memory gmon.out profile_hist_data (profile_hist_data + profile_hist_hdr.hist_size) */
3477 char *data = malloc(2 * length);
3478 if (data != NULL) {
3479 for (i = 0; i < length; i++) {
3480 int val;
3481 val = buckets[i];
3482 if (val > 65535)
3483 val = 65535;
3484 data[i * 2] = val&0xff;
3485 data[i * 2 + 1] = (val >> 8) & 0xff;
3487 free(buckets);
3488 writeData(f, data, length * 2);
3489 free(data);
3490 } else
3491 free(buckets);
3493 fclose(f);
3496 /* profiling samples the CPU PC as quickly as OpenOCD is able,
3497 * which will be used as a random sampling of PC */
3498 COMMAND_HANDLER(handle_profile_command)
3500 struct target *target = get_current_target(CMD_CTX);
3501 struct timeval timeout, now;
3503 gettimeofday(&timeout, NULL);
3504 if (CMD_ARGC != 2)
3505 return ERROR_COMMAND_SYNTAX_ERROR;
3506 unsigned offset;
3507 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[0], offset);
3509 timeval_add_time(&timeout, offset, 0);
3512 * @todo: Some cores let us sample the PC without the
3513 * annoying halt/resume step; for example, ARMv7 PCSR.
3514 * Provide a way to use that more efficient mechanism.
3517 command_print(CMD_CTX, "Starting profiling. Halting and resuming the target as often as we can...");
3519 static const int maxSample = 10000;
3520 uint32_t *samples = malloc(sizeof(uint32_t)*maxSample);
3521 if (samples == NULL)
3522 return ERROR_OK;
3524 int numSamples = 0;
3525 /* hopefully it is safe to cache! We want to stop/restart as quickly as possible. */
3526 struct reg *reg = register_get_by_name(target->reg_cache, "pc", 1);
3528 int retval = ERROR_OK;
3529 for (;;) {
3530 target_poll(target);
3531 if (target->state == TARGET_HALTED) {
3532 uint32_t t = *((uint32_t *)reg->value);
3533 samples[numSamples++] = t;
3534 /* current pc, addr = 0, do not handle breakpoints, not debugging */
3535 retval = target_resume(target, 1, 0, 0, 0);
3536 target_poll(target);
3537 alive_sleep(10); /* sleep 10ms, i.e. <100 samples/second. */
3538 } else if (target->state == TARGET_RUNNING) {
3539 /* We want to quickly sample the PC. */
3540 retval = target_halt(target);
3541 if (retval != ERROR_OK) {
3542 free(samples);
3543 return retval;
3545 } else {
3546 command_print(CMD_CTX, "Target not halted or running");
3547 retval = ERROR_OK;
3548 break;
3550 if (retval != ERROR_OK)
3551 break;
3553 gettimeofday(&now, NULL);
3554 if ((numSamples >= maxSample) || ((now.tv_sec >= timeout.tv_sec)
3555 && (now.tv_usec >= timeout.tv_usec))) {
3556 command_print(CMD_CTX, "Profiling completed. %d samples.", numSamples);
3557 retval = target_poll(target);
3558 if (retval != ERROR_OK) {
3559 free(samples);
3560 return retval;
3562 if (target->state == TARGET_HALTED) {
3563 /* current pc, addr = 0, do not handle
3564 * breakpoints, not debugging */
3565 target_resume(target, 1, 0, 0, 0);
3567 retval = target_poll(target);
3568 if (retval != ERROR_OK) {
3569 free(samples);
3570 return retval;
3572 writeGmon(samples, numSamples, CMD_ARGV[1]);
3573 command_print(CMD_CTX, "Wrote %s", CMD_ARGV[1]);
3574 break;
3577 free(samples);
3579 return retval;
3582 static int new_int_array_element(Jim_Interp *interp, const char *varname, int idx, uint32_t val)
3584 char *namebuf;
3585 Jim_Obj *nameObjPtr, *valObjPtr;
3586 int result;
3588 namebuf = alloc_printf("%s(%d)", varname, idx);
3589 if (!namebuf)
3590 return JIM_ERR;
3592 nameObjPtr = Jim_NewStringObj(interp, namebuf, -1);
3593 valObjPtr = Jim_NewIntObj(interp, val);
3594 if (!nameObjPtr || !valObjPtr) {
3595 free(namebuf);
3596 return JIM_ERR;
3599 Jim_IncrRefCount(nameObjPtr);
3600 Jim_IncrRefCount(valObjPtr);
3601 result = Jim_SetVariable(interp, nameObjPtr, valObjPtr);
3602 Jim_DecrRefCount(interp, nameObjPtr);
3603 Jim_DecrRefCount(interp, valObjPtr);
3604 free(namebuf);
3605 /* printf("%s(%d) <= 0%08x\n", varname, idx, val); */
3606 return result;
3609 static int jim_mem2array(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
3611 struct command_context *context;
3612 struct target *target;
3614 context = current_command_context(interp);
3615 assert(context != NULL);
3617 target = get_current_target(context);
3618 if (target == NULL) {
3619 LOG_ERROR("mem2array: no current target");
3620 return JIM_ERR;
3623 return target_mem2array(interp, target, argc - 1, argv + 1);
3626 static int target_mem2array(Jim_Interp *interp, struct target *target, int argc, Jim_Obj *const *argv)
3628 long l;
3629 uint32_t width;
3630 int len;
3631 uint32_t addr;
3632 uint32_t count;
3633 uint32_t v;
3634 const char *varname;
3635 int n, e, retval;
3636 uint32_t i;
3638 /* argv[1] = name of array to receive the data
3639 * argv[2] = desired width
3640 * argv[3] = memory address
3641 * argv[4] = count of times to read
3643 if (argc != 4) {
3644 Jim_WrongNumArgs(interp, 1, argv, "varname width addr nelems");
3645 return JIM_ERR;
3647 varname = Jim_GetString(argv[0], &len);
3648 /* given "foo" get space for worse case "foo(%d)" .. add 20 */
3650 e = Jim_GetLong(interp, argv[1], &l);
3651 width = l;
3652 if (e != JIM_OK)
3653 return e;
3655 e = Jim_GetLong(interp, argv[2], &l);
3656 addr = l;
3657 if (e != JIM_OK)
3658 return e;
3659 e = Jim_GetLong(interp, argv[3], &l);
3660 len = l;
3661 if (e != JIM_OK)
3662 return e;
3663 switch (width) {
3664 case 8:
3665 width = 1;
3666 break;
3667 case 16:
3668 width = 2;
3669 break;
3670 case 32:
3671 width = 4;
3672 break;
3673 default:
3674 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3675 Jim_AppendStrings(interp, Jim_GetResult(interp), "Invalid width param, must be 8/16/32", NULL);
3676 return JIM_ERR;
3678 if (len == 0) {
3679 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3680 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: zero width read?", NULL);
3681 return JIM_ERR;
3683 if ((addr + (len * width)) < addr) {
3684 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3685 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: addr + len - wraps to zero?", NULL);
3686 return JIM_ERR;
3688 /* absurd transfer size? */
3689 if (len > 65536) {
3690 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3691 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: absurd > 64K item request", NULL);
3692 return JIM_ERR;
3695 if ((width == 1) ||
3696 ((width == 2) && ((addr & 1) == 0)) ||
3697 ((width == 4) && ((addr & 3) == 0))) {
3698 /* all is well */
3699 } else {
3700 char buf[100];
3701 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3702 sprintf(buf, "mem2array address: 0x%08" PRIx32 " is not aligned for %" PRId32 " byte reads",
3703 addr,
3704 width);
3705 Jim_AppendStrings(interp, Jim_GetResult(interp), buf , NULL);
3706 return JIM_ERR;
3709 /* Transfer loop */
3711 /* index counter */
3712 n = 0;
3714 size_t buffersize = 4096;
3715 uint8_t *buffer = malloc(buffersize);
3716 if (buffer == NULL)
3717 return JIM_ERR;
3719 /* assume ok */
3720 e = JIM_OK;
3721 while (len) {
3722 /* Slurp... in buffer size chunks */
3724 count = len; /* in objects.. */
3725 if (count > (buffersize / width))
3726 count = (buffersize / width);
3728 retval = target_read_memory(target, addr, width, count, buffer);
3729 if (retval != ERROR_OK) {
3730 /* BOO !*/
3731 LOG_ERROR("mem2array: Read @ 0x%08x, w=%d, cnt=%d, failed",
3732 (unsigned int)addr,
3733 (int)width,
3734 (int)count);
3735 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3736 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: cannot read memory", NULL);
3737 e = JIM_ERR;
3738 break;
3739 } else {
3740 v = 0; /* shut up gcc */
3741 for (i = 0; i < count ; i++, n++) {
3742 switch (width) {
3743 case 4:
3744 v = target_buffer_get_u32(target, &buffer[i*width]);
3745 break;
3746 case 2:
3747 v = target_buffer_get_u16(target, &buffer[i*width]);
3748 break;
3749 case 1:
3750 v = buffer[i] & 0x0ff;
3751 break;
3753 new_int_array_element(interp, varname, n, v);
3755 len -= count;
3759 free(buffer);
3761 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3763 return e;
3766 static int get_int_array_element(Jim_Interp *interp, const char *varname, int idx, uint32_t *val)
3768 char *namebuf;
3769 Jim_Obj *nameObjPtr, *valObjPtr;
3770 int result;
3771 long l;
3773 namebuf = alloc_printf("%s(%d)", varname, idx);
3774 if (!namebuf)
3775 return JIM_ERR;
3777 nameObjPtr = Jim_NewStringObj(interp, namebuf, -1);
3778 if (!nameObjPtr) {
3779 free(namebuf);
3780 return JIM_ERR;
3783 Jim_IncrRefCount(nameObjPtr);
3784 valObjPtr = Jim_GetVariable(interp, nameObjPtr, JIM_ERRMSG);
3785 Jim_DecrRefCount(interp, nameObjPtr);
3786 free(namebuf);
3787 if (valObjPtr == NULL)
3788 return JIM_ERR;
3790 result = Jim_GetLong(interp, valObjPtr, &l);
3791 /* printf("%s(%d) => 0%08x\n", varname, idx, val); */
3792 *val = l;
3793 return result;
3796 static int jim_array2mem(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
3798 struct command_context *context;
3799 struct target *target;
3801 context = current_command_context(interp);
3802 assert(context != NULL);
3804 target = get_current_target(context);
3805 if (target == NULL) {
3806 LOG_ERROR("array2mem: no current target");
3807 return JIM_ERR;
3810 return target_array2mem(interp, target, argc-1, argv + 1);
3813 static int target_array2mem(Jim_Interp *interp, struct target *target,
3814 int argc, Jim_Obj *const *argv)
3816 long l;
3817 uint32_t width;
3818 int len;
3819 uint32_t addr;
3820 uint32_t count;
3821 uint32_t v;
3822 const char *varname;
3823 int n, e, retval;
3824 uint32_t i;
3826 /* argv[1] = name of array to get the data
3827 * argv[2] = desired width
3828 * argv[3] = memory address
3829 * argv[4] = count to write
3831 if (argc != 4) {
3832 Jim_WrongNumArgs(interp, 0, argv, "varname width addr nelems");
3833 return JIM_ERR;
3835 varname = Jim_GetString(argv[0], &len);
3836 /* given "foo" get space for worse case "foo(%d)" .. add 20 */
3838 e = Jim_GetLong(interp, argv[1], &l);
3839 width = l;
3840 if (e != JIM_OK)
3841 return e;
3843 e = Jim_GetLong(interp, argv[2], &l);
3844 addr = l;
3845 if (e != JIM_OK)
3846 return e;
3847 e = Jim_GetLong(interp, argv[3], &l);
3848 len = l;
3849 if (e != JIM_OK)
3850 return e;
3851 switch (width) {
3852 case 8:
3853 width = 1;
3854 break;
3855 case 16:
3856 width = 2;
3857 break;
3858 case 32:
3859 width = 4;
3860 break;
3861 default:
3862 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3863 Jim_AppendStrings(interp, Jim_GetResult(interp),
3864 "Invalid width param, must be 8/16/32", NULL);
3865 return JIM_ERR;
3867 if (len == 0) {
3868 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3869 Jim_AppendStrings(interp, Jim_GetResult(interp),
3870 "array2mem: zero width read?", NULL);
3871 return JIM_ERR;
3873 if ((addr + (len * width)) < addr) {
3874 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3875 Jim_AppendStrings(interp, Jim_GetResult(interp),
3876 "array2mem: addr + len - wraps to zero?", NULL);
3877 return JIM_ERR;
3879 /* absurd transfer size? */
3880 if (len > 65536) {
3881 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3882 Jim_AppendStrings(interp, Jim_GetResult(interp),
3883 "array2mem: absurd > 64K item request", NULL);
3884 return JIM_ERR;
3887 if ((width == 1) ||
3888 ((width == 2) && ((addr & 1) == 0)) ||
3889 ((width == 4) && ((addr & 3) == 0))) {
3890 /* all is well */
3891 } else {
3892 char buf[100];
3893 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3894 sprintf(buf, "array2mem address: 0x%08x is not aligned for %d byte reads",
3895 (unsigned int)addr,
3896 (int)width);
3897 Jim_AppendStrings(interp, Jim_GetResult(interp), buf , NULL);
3898 return JIM_ERR;
3901 /* Transfer loop */
3903 /* index counter */
3904 n = 0;
3905 /* assume ok */
3906 e = JIM_OK;
3908 size_t buffersize = 4096;
3909 uint8_t *buffer = malloc(buffersize);
3910 if (buffer == NULL)
3911 return JIM_ERR;
3913 while (len) {
3914 /* Slurp... in buffer size chunks */
3916 count = len; /* in objects.. */
3917 if (count > (buffersize / width))
3918 count = (buffersize / width);
3920 v = 0; /* shut up gcc */
3921 for (i = 0; i < count; i++, n++) {
3922 get_int_array_element(interp, varname, n, &v);
3923 switch (width) {
3924 case 4:
3925 target_buffer_set_u32(target, &buffer[i * width], v);
3926 break;
3927 case 2:
3928 target_buffer_set_u16(target, &buffer[i * width], v);
3929 break;
3930 case 1:
3931 buffer[i] = v & 0x0ff;
3932 break;
3935 len -= count;
3937 retval = target_write_memory(target, addr, width, count, buffer);
3938 if (retval != ERROR_OK) {
3939 /* BOO !*/
3940 LOG_ERROR("array2mem: Write @ 0x%08x, w=%d, cnt=%d, failed",
3941 (unsigned int)addr,
3942 (int)width,
3943 (int)count);
3944 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3945 Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: cannot read memory", NULL);
3946 e = JIM_ERR;
3947 break;
3951 free(buffer);
3953 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3955 return e;
3958 /* FIX? should we propagate errors here rather than printing them
3959 * and continuing?
3961 void target_handle_event(struct target *target, enum target_event e)
3963 struct target_event_action *teap;
3965 for (teap = target->event_action; teap != NULL; teap = teap->next) {
3966 if (teap->event == e) {
3967 LOG_DEBUG("target: (%d) %s (%s) event: %d (%s) action: %s",
3968 target->target_number,
3969 target_name(target),
3970 target_type_name(target),
3972 Jim_Nvp_value2name_simple(nvp_target_event, e)->name,
3973 Jim_GetString(teap->body, NULL));
3974 if (Jim_EvalObj(teap->interp, teap->body) != JIM_OK) {
3975 Jim_MakeErrorMessage(teap->interp);
3976 command_print(NULL, "%s\n", Jim_GetString(Jim_GetResult(teap->interp), NULL));
3983 * Returns true only if the target has a handler for the specified event.
3985 bool target_has_event_action(struct target *target, enum target_event event)
3987 struct target_event_action *teap;
3989 for (teap = target->event_action; teap != NULL; teap = teap->next) {
3990 if (teap->event == event)
3991 return true;
3993 return false;
3996 enum target_cfg_param {
3997 TCFG_TYPE,
3998 TCFG_EVENT,
3999 TCFG_WORK_AREA_VIRT,
4000 TCFG_WORK_AREA_PHYS,
4001 TCFG_WORK_AREA_SIZE,
4002 TCFG_WORK_AREA_BACKUP,
4003 TCFG_ENDIAN,
4004 TCFG_VARIANT,
4005 TCFG_COREID,
4006 TCFG_CHAIN_POSITION,
4007 TCFG_DBGBASE,
4008 TCFG_RTOS,
4011 static Jim_Nvp nvp_config_opts[] = {
4012 { .name = "-type", .value = TCFG_TYPE },
4013 { .name = "-event", .value = TCFG_EVENT },
4014 { .name = "-work-area-virt", .value = TCFG_WORK_AREA_VIRT },
4015 { .name = "-work-area-phys", .value = TCFG_WORK_AREA_PHYS },
4016 { .name = "-work-area-size", .value = TCFG_WORK_AREA_SIZE },
4017 { .name = "-work-area-backup", .value = TCFG_WORK_AREA_BACKUP },
4018 { .name = "-endian" , .value = TCFG_ENDIAN },
4019 { .name = "-variant", .value = TCFG_VARIANT },
4020 { .name = "-coreid", .value = TCFG_COREID },
4021 { .name = "-chain-position", .value = TCFG_CHAIN_POSITION },
4022 { .name = "-dbgbase", .value = TCFG_DBGBASE },
4023 { .name = "-rtos", .value = TCFG_RTOS },
4024 { .name = NULL, .value = -1 }
4027 static int target_configure(Jim_GetOptInfo *goi, struct target *target)
4029 Jim_Nvp *n;
4030 Jim_Obj *o;
4031 jim_wide w;
4032 char *cp;
4033 int e;
4035 /* parse config or cget options ... */
4036 while (goi->argc > 0) {
4037 Jim_SetEmptyResult(goi->interp);
4038 /* Jim_GetOpt_Debug(goi); */
4040 if (target->type->target_jim_configure) {
4041 /* target defines a configure function */
4042 /* target gets first dibs on parameters */
4043 e = (*(target->type->target_jim_configure))(target, goi);
4044 if (e == JIM_OK) {
4045 /* more? */
4046 continue;
4048 if (e == JIM_ERR) {
4049 /* An error */
4050 return e;
4052 /* otherwise we 'continue' below */
4054 e = Jim_GetOpt_Nvp(goi, nvp_config_opts, &n);
4055 if (e != JIM_OK) {
4056 Jim_GetOpt_NvpUnknown(goi, nvp_config_opts, 0);
4057 return e;
4059 switch (n->value) {
4060 case TCFG_TYPE:
4061 /* not setable */
4062 if (goi->isconfigure) {
4063 Jim_SetResultFormatted(goi->interp,
4064 "not settable: %s", n->name);
4065 return JIM_ERR;
4066 } else {
4067 no_params:
4068 if (goi->argc != 0) {
4069 Jim_WrongNumArgs(goi->interp,
4070 goi->argc, goi->argv,
4071 "NO PARAMS");
4072 return JIM_ERR;
4075 Jim_SetResultString(goi->interp,
4076 target_type_name(target), -1);
4077 /* loop for more */
4078 break;
4079 case TCFG_EVENT:
4080 if (goi->argc == 0) {
4081 Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name? ...");
4082 return JIM_ERR;
4085 e = Jim_GetOpt_Nvp(goi, nvp_target_event, &n);
4086 if (e != JIM_OK) {
4087 Jim_GetOpt_NvpUnknown(goi, nvp_target_event, 1);
4088 return e;
4091 if (goi->isconfigure) {
4092 if (goi->argc != 1) {
4093 Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name? ?EVENT-BODY?");
4094 return JIM_ERR;
4096 } else {
4097 if (goi->argc != 0) {
4098 Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name?");
4099 return JIM_ERR;
4104 struct target_event_action *teap;
4106 teap = target->event_action;
4107 /* replace existing? */
4108 while (teap) {
4109 if (teap->event == (enum target_event)n->value)
4110 break;
4111 teap = teap->next;
4114 if (goi->isconfigure) {
4115 bool replace = true;
4116 if (teap == NULL) {
4117 /* create new */
4118 teap = calloc(1, sizeof(*teap));
4119 replace = false;
4121 teap->event = n->value;
4122 teap->interp = goi->interp;
4123 Jim_GetOpt_Obj(goi, &o);
4124 if (teap->body)
4125 Jim_DecrRefCount(teap->interp, teap->body);
4126 teap->body = Jim_DuplicateObj(goi->interp, o);
4128 * FIXME:
4129 * Tcl/TK - "tk events" have a nice feature.
4130 * See the "BIND" command.
4131 * We should support that here.
4132 * You can specify %X and %Y in the event code.
4133 * The idea is: %T - target name.
4134 * The idea is: %N - target number
4135 * The idea is: %E - event name.
4137 Jim_IncrRefCount(teap->body);
4139 if (!replace) {
4140 /* add to head of event list */
4141 teap->next = target->event_action;
4142 target->event_action = teap;
4144 Jim_SetEmptyResult(goi->interp);
4145 } else {
4146 /* get */
4147 if (teap == NULL)
4148 Jim_SetEmptyResult(goi->interp);
4149 else
4150 Jim_SetResult(goi->interp, Jim_DuplicateObj(goi->interp, teap->body));
4153 /* loop for more */
4154 break;
4156 case TCFG_WORK_AREA_VIRT:
4157 if (goi->isconfigure) {
4158 target_free_all_working_areas(target);
4159 e = Jim_GetOpt_Wide(goi, &w);
4160 if (e != JIM_OK)
4161 return e;
4162 target->working_area_virt = w;
4163 target->working_area_virt_spec = true;
4164 } else {
4165 if (goi->argc != 0)
4166 goto no_params;
4168 Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_virt));
4169 /* loop for more */
4170 break;
4172 case TCFG_WORK_AREA_PHYS:
4173 if (goi->isconfigure) {
4174 target_free_all_working_areas(target);
4175 e = Jim_GetOpt_Wide(goi, &w);
4176 if (e != JIM_OK)
4177 return e;
4178 target->working_area_phys = w;
4179 target->working_area_phys_spec = true;
4180 } else {
4181 if (goi->argc != 0)
4182 goto no_params;
4184 Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_phys));
4185 /* loop for more */
4186 break;
4188 case TCFG_WORK_AREA_SIZE:
4189 if (goi->isconfigure) {
4190 target_free_all_working_areas(target);
4191 e = Jim_GetOpt_Wide(goi, &w);
4192 if (e != JIM_OK)
4193 return e;
4194 target->working_area_size = w;
4195 } else {
4196 if (goi->argc != 0)
4197 goto no_params;
4199 Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_size));
4200 /* loop for more */
4201 break;
4203 case TCFG_WORK_AREA_BACKUP:
4204 if (goi->isconfigure) {
4205 target_free_all_working_areas(target);
4206 e = Jim_GetOpt_Wide(goi, &w);
4207 if (e != JIM_OK)
4208 return e;
4209 /* make this exactly 1 or 0 */
4210 target->backup_working_area = (!!w);
4211 } else {
4212 if (goi->argc != 0)
4213 goto no_params;
4215 Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->backup_working_area));
4216 /* loop for more e*/
4217 break;
4220 case TCFG_ENDIAN:
4221 if (goi->isconfigure) {
4222 e = Jim_GetOpt_Nvp(goi, nvp_target_endian, &n);
4223 if (e != JIM_OK) {
4224 Jim_GetOpt_NvpUnknown(goi, nvp_target_endian, 1);
4225 return e;
4227 target->endianness = n->value;
4228 } else {
4229 if (goi->argc != 0)
4230 goto no_params;
4232 n = Jim_Nvp_value2name_simple(nvp_target_endian, target->endianness);
4233 if (n->name == NULL) {
4234 target->endianness = TARGET_LITTLE_ENDIAN;
4235 n = Jim_Nvp_value2name_simple(nvp_target_endian, target->endianness);
4237 Jim_SetResultString(goi->interp, n->name, -1);
4238 /* loop for more */
4239 break;
4241 case TCFG_VARIANT:
4242 if (goi->isconfigure) {
4243 if (goi->argc < 1) {
4244 Jim_SetResultFormatted(goi->interp,
4245 "%s ?STRING?",
4246 n->name);
4247 return JIM_ERR;
4249 if (target->variant)
4250 free((void *)(target->variant));
4251 e = Jim_GetOpt_String(goi, &cp, NULL);
4252 if (e != JIM_OK)
4253 return e;
4254 target->variant = strdup(cp);
4255 } else {
4256 if (goi->argc != 0)
4257 goto no_params;
4259 Jim_SetResultString(goi->interp, target->variant, -1);
4260 /* loop for more */
4261 break;
4263 case TCFG_COREID:
4264 if (goi->isconfigure) {
4265 e = Jim_GetOpt_Wide(goi, &w);
4266 if (e != JIM_OK)
4267 return e;
4268 target->coreid = (int32_t)w;
4269 } else {
4270 if (goi->argc != 0)
4271 goto no_params;
4273 Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_size));
4274 /* loop for more */
4275 break;
4277 case TCFG_CHAIN_POSITION:
4278 if (goi->isconfigure) {
4279 Jim_Obj *o_t;
4280 struct jtag_tap *tap;
4281 target_free_all_working_areas(target);
4282 e = Jim_GetOpt_Obj(goi, &o_t);
4283 if (e != JIM_OK)
4284 return e;
4285 tap = jtag_tap_by_jim_obj(goi->interp, o_t);
4286 if (tap == NULL)
4287 return JIM_ERR;
4288 /* make this exactly 1 or 0 */
4289 target->tap = tap;
4290 } else {
4291 if (goi->argc != 0)
4292 goto no_params;
4294 Jim_SetResultString(goi->interp, target->tap->dotted_name, -1);
4295 /* loop for more e*/
4296 break;
4297 case TCFG_DBGBASE:
4298 if (goi->isconfigure) {
4299 e = Jim_GetOpt_Wide(goi, &w);
4300 if (e != JIM_OK)
4301 return e;
4302 target->dbgbase = (uint32_t)w;
4303 target->dbgbase_set = true;
4304 } else {
4305 if (goi->argc != 0)
4306 goto no_params;
4308 Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->dbgbase));
4309 /* loop for more */
4310 break;
4312 case TCFG_RTOS:
4313 /* RTOS */
4315 int result = rtos_create(goi, target);
4316 if (result != JIM_OK)
4317 return result;
4319 /* loop for more */
4320 break;
4322 } /* while (goi->argc) */
4325 /* done - we return */
4326 return JIM_OK;
4329 static int jim_target_configure(Jim_Interp *interp, int argc, Jim_Obj * const *argv)
4331 Jim_GetOptInfo goi;
4333 Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4334 goi.isconfigure = !strcmp(Jim_GetString(argv[0], NULL), "configure");
4335 int need_args = 1 + goi.isconfigure;
4336 if (goi.argc < need_args) {
4337 Jim_WrongNumArgs(goi.interp, goi.argc, goi.argv,
4338 goi.isconfigure
4339 ? "missing: -option VALUE ..."
4340 : "missing: -option ...");
4341 return JIM_ERR;
4343 struct target *target = Jim_CmdPrivData(goi.interp);
4344 return target_configure(&goi, target);
4347 static int jim_target_mw(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4349 const char *cmd_name = Jim_GetString(argv[0], NULL);
4351 Jim_GetOptInfo goi;
4352 Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4354 if (goi.argc < 2 || goi.argc > 4) {
4355 Jim_SetResultFormatted(goi.interp,
4356 "usage: %s [phys] <address> <data> [<count>]", cmd_name);
4357 return JIM_ERR;
4360 target_write_fn fn;
4361 fn = target_write_memory_fast;
4363 int e;
4364 if (strcmp(Jim_GetString(argv[1], NULL), "phys") == 0) {
4365 /* consume it */
4366 struct Jim_Obj *obj;
4367 e = Jim_GetOpt_Obj(&goi, &obj);
4368 if (e != JIM_OK)
4369 return e;
4371 fn = target_write_phys_memory;
4374 jim_wide a;
4375 e = Jim_GetOpt_Wide(&goi, &a);
4376 if (e != JIM_OK)
4377 return e;
4379 jim_wide b;
4380 e = Jim_GetOpt_Wide(&goi, &b);
4381 if (e != JIM_OK)
4382 return e;
4384 jim_wide c = 1;
4385 if (goi.argc == 1) {
4386 e = Jim_GetOpt_Wide(&goi, &c);
4387 if (e != JIM_OK)
4388 return e;
4391 /* all args must be consumed */
4392 if (goi.argc != 0)
4393 return JIM_ERR;
4395 struct target *target = Jim_CmdPrivData(goi.interp);
4396 unsigned data_size;
4397 if (strcasecmp(cmd_name, "mww") == 0)
4398 data_size = 4;
4399 else if (strcasecmp(cmd_name, "mwh") == 0)
4400 data_size = 2;
4401 else if (strcasecmp(cmd_name, "mwb") == 0)
4402 data_size = 1;
4403 else {
4404 LOG_ERROR("command '%s' unknown: ", cmd_name);
4405 return JIM_ERR;
4408 return (target_fill_mem(target, a, fn, data_size, b, c) == ERROR_OK) ? JIM_OK : JIM_ERR;
4412 * @brief Reads an array of words/halfwords/bytes from target memory starting at specified address.
4414 * Usage: mdw [phys] <address> [<count>] - for 32 bit reads
4415 * mdh [phys] <address> [<count>] - for 16 bit reads
4416 * mdb [phys] <address> [<count>] - for 8 bit reads
4418 * Count defaults to 1.
4420 * Calls target_read_memory or target_read_phys_memory depending on
4421 * the presence of the "phys" argument
4422 * Reads the target memory in blocks of max. 32 bytes, and returns an array of ints formatted
4423 * to int representation in base16.
4424 * Also outputs read data in a human readable form using command_print
4426 * @param phys if present target_read_phys_memory will be used instead of target_read_memory
4427 * @param address address where to start the read. May be specified in decimal or hex using the standard "0x" prefix
4428 * @param count optional count parameter to read an array of values. If not specified, defaults to 1.
4429 * @returns: JIM_ERR on error or JIM_OK on success and sets the result string to an array of ascii formatted numbers
4430 * on success, with [<count>] number of elements.
4432 * In case of little endian target:
4433 * Example1: "mdw 0x00000000" returns "10123456"
4434 * Exmaple2: "mdh 0x00000000 1" returns "3456"
4435 * Example3: "mdb 0x00000000" returns "56"
4436 * Example4: "mdh 0x00000000 2" returns "3456 1012"
4437 * Example5: "mdb 0x00000000 3" returns "56 34 12"
4439 static int jim_target_md(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4441 const char *cmd_name = Jim_GetString(argv[0], NULL);
4443 Jim_GetOptInfo goi;
4444 Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4446 if ((goi.argc < 1) || (goi.argc > 3)) {
4447 Jim_SetResultFormatted(goi.interp,
4448 "usage: %s [phys] <address> [<count>]", cmd_name);
4449 return JIM_ERR;
4452 int (*fn)(struct target *target,
4453 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer);
4454 fn = target_read_memory;
4456 int e;
4457 if (strcmp(Jim_GetString(argv[1], NULL), "phys") == 0) {
4458 /* consume it */
4459 struct Jim_Obj *obj;
4460 e = Jim_GetOpt_Obj(&goi, &obj);
4461 if (e != JIM_OK)
4462 return e;
4464 fn = target_read_phys_memory;
4467 /* Read address parameter */
4468 jim_wide addr;
4469 e = Jim_GetOpt_Wide(&goi, &addr);
4470 if (e != JIM_OK)
4471 return JIM_ERR;
4473 /* If next parameter exists, read it out as the count parameter, if not, set it to 1 (default) */
4474 jim_wide count;
4475 if (goi.argc == 1) {
4476 e = Jim_GetOpt_Wide(&goi, &count);
4477 if (e != JIM_OK)
4478 return JIM_ERR;
4479 } else
4480 count = 1;
4482 /* all args must be consumed */
4483 if (goi.argc != 0)
4484 return JIM_ERR;
4486 jim_wide dwidth = 1; /* shut up gcc */
4487 if (strcasecmp(cmd_name, "mdw") == 0)
4488 dwidth = 4;
4489 else if (strcasecmp(cmd_name, "mdh") == 0)
4490 dwidth = 2;
4491 else if (strcasecmp(cmd_name, "mdb") == 0)
4492 dwidth = 1;
4493 else {
4494 LOG_ERROR("command '%s' unknown: ", cmd_name);
4495 return JIM_ERR;
4498 /* convert count to "bytes" */
4499 int bytes = count * dwidth;
4501 struct target *target = Jim_CmdPrivData(goi.interp);
4502 uint8_t target_buf[32];
4503 jim_wide x, y, z;
4504 while (bytes > 0) {
4505 y = (bytes < 16) ? bytes : 16; /* y = min(bytes, 16); */
4507 /* Try to read out next block */
4508 e = fn(target, addr, dwidth, y / dwidth, target_buf);
4510 if (e != ERROR_OK) {
4511 Jim_SetResultFormatted(interp, "error reading target @ 0x%08lx", (long)addr);
4512 return JIM_ERR;
4515 command_print_sameline(NULL, "0x%08x ", (int)(addr));
4516 switch (dwidth) {
4517 case 4:
4518 for (x = 0; x < 16 && x < y; x += 4) {
4519 z = target_buffer_get_u32(target, &(target_buf[x]));
4520 command_print_sameline(NULL, "%08x ", (int)(z));
4522 for (; (x < 16) ; x += 4)
4523 command_print_sameline(NULL, " ");
4524 break;
4525 case 2:
4526 for (x = 0; x < 16 && x < y; x += 2) {
4527 z = target_buffer_get_u16(target, &(target_buf[x]));
4528 command_print_sameline(NULL, "%04x ", (int)(z));
4530 for (; (x < 16) ; x += 2)
4531 command_print_sameline(NULL, " ");
4532 break;
4533 case 1:
4534 default:
4535 for (x = 0 ; (x < 16) && (x < y) ; x += 1) {
4536 z = target_buffer_get_u8(target, &(target_buf[x]));
4537 command_print_sameline(NULL, "%02x ", (int)(z));
4539 for (; (x < 16) ; x += 1)
4540 command_print_sameline(NULL, " ");
4541 break;
4543 /* ascii-ify the bytes */
4544 for (x = 0 ; x < y ; x++) {
4545 if ((target_buf[x] >= 0x20) &&
4546 (target_buf[x] <= 0x7e)) {
4547 /* good */
4548 } else {
4549 /* smack it */
4550 target_buf[x] = '.';
4553 /* space pad */
4554 while (x < 16) {
4555 target_buf[x] = ' ';
4556 x++;
4558 /* terminate */
4559 target_buf[16] = 0;
4560 /* print - with a newline */
4561 command_print_sameline(NULL, "%s\n", target_buf);
4562 /* NEXT... */
4563 bytes -= 16;
4564 addr += 16;
4566 return JIM_OK;
4569 static int jim_target_mem2array(Jim_Interp *interp,
4570 int argc, Jim_Obj *const *argv)
4572 struct target *target = Jim_CmdPrivData(interp);
4573 return target_mem2array(interp, target, argc - 1, argv + 1);
4576 static int jim_target_array2mem(Jim_Interp *interp,
4577 int argc, Jim_Obj *const *argv)
4579 struct target *target = Jim_CmdPrivData(interp);
4580 return target_array2mem(interp, target, argc - 1, argv + 1);
4583 static int jim_target_tap_disabled(Jim_Interp *interp)
4585 Jim_SetResultFormatted(interp, "[TAP is disabled]");
4586 return JIM_ERR;
4589 static int jim_target_examine(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4591 if (argc != 1) {
4592 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
4593 return JIM_ERR;
4595 struct target *target = Jim_CmdPrivData(interp);
4596 if (!target->tap->enabled)
4597 return jim_target_tap_disabled(interp);
4599 int e = target->type->examine(target);
4600 if (e != ERROR_OK)
4601 return JIM_ERR;
4602 return JIM_OK;
4605 static int jim_target_halt_gdb(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4607 if (argc != 1) {
4608 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
4609 return JIM_ERR;
4611 struct target *target = Jim_CmdPrivData(interp);
4613 if (target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT) != ERROR_OK)
4614 return JIM_ERR;
4616 return JIM_OK;
4619 static int jim_target_poll(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4621 if (argc != 1) {
4622 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
4623 return JIM_ERR;
4625 struct target *target = Jim_CmdPrivData(interp);
4626 if (!target->tap->enabled)
4627 return jim_target_tap_disabled(interp);
4629 int e;
4630 if (!(target_was_examined(target)))
4631 e = ERROR_TARGET_NOT_EXAMINED;
4632 else
4633 e = target->type->poll(target);
4634 if (e != ERROR_OK)
4635 return JIM_ERR;
4636 return JIM_OK;
4639 static int jim_target_reset(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4641 Jim_GetOptInfo goi;
4642 Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4644 if (goi.argc != 2) {
4645 Jim_WrongNumArgs(interp, 0, argv,
4646 "([tT]|[fF]|assert|deassert) BOOL");
4647 return JIM_ERR;
4650 Jim_Nvp *n;
4651 int e = Jim_GetOpt_Nvp(&goi, nvp_assert, &n);
4652 if (e != JIM_OK) {
4653 Jim_GetOpt_NvpUnknown(&goi, nvp_assert, 1);
4654 return e;
4656 /* the halt or not param */
4657 jim_wide a;
4658 e = Jim_GetOpt_Wide(&goi, &a);
4659 if (e != JIM_OK)
4660 return e;
4662 struct target *target = Jim_CmdPrivData(goi.interp);
4663 if (!target->tap->enabled)
4664 return jim_target_tap_disabled(interp);
4665 if (!(target_was_examined(target))) {
4666 LOG_ERROR("Target not examined yet");
4667 return ERROR_TARGET_NOT_EXAMINED;
4669 if (!target->type->assert_reset || !target->type->deassert_reset) {
4670 Jim_SetResultFormatted(interp,
4671 "No target-specific reset for %s",
4672 target_name(target));
4673 return JIM_ERR;
4675 /* determine if we should halt or not. */
4676 target->reset_halt = !!a;
4677 /* When this happens - all workareas are invalid. */
4678 target_free_all_working_areas_restore(target, 0);
4680 /* do the assert */
4681 if (n->value == NVP_ASSERT)
4682 e = target->type->assert_reset(target);
4683 else
4684 e = target->type->deassert_reset(target);
4685 return (e == ERROR_OK) ? JIM_OK : JIM_ERR;
4688 static int jim_target_halt(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4690 if (argc != 1) {
4691 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
4692 return JIM_ERR;
4694 struct target *target = Jim_CmdPrivData(interp);
4695 if (!target->tap->enabled)
4696 return jim_target_tap_disabled(interp);
4697 int e = target->type->halt(target);
4698 return (e == ERROR_OK) ? JIM_OK : JIM_ERR;
4701 static int jim_target_wait_state(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4703 Jim_GetOptInfo goi;
4704 Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4706 /* params: <name> statename timeoutmsecs */
4707 if (goi.argc != 2) {
4708 const char *cmd_name = Jim_GetString(argv[0], NULL);
4709 Jim_SetResultFormatted(goi.interp,
4710 "%s <state_name> <timeout_in_msec>", cmd_name);
4711 return JIM_ERR;
4714 Jim_Nvp *n;
4715 int e = Jim_GetOpt_Nvp(&goi, nvp_target_state, &n);
4716 if (e != JIM_OK) {
4717 Jim_GetOpt_NvpUnknown(&goi, nvp_target_state, 1);
4718 return e;
4720 jim_wide a;
4721 e = Jim_GetOpt_Wide(&goi, &a);
4722 if (e != JIM_OK)
4723 return e;
4724 struct target *target = Jim_CmdPrivData(interp);
4725 if (!target->tap->enabled)
4726 return jim_target_tap_disabled(interp);
4728 e = target_wait_state(target, n->value, a);
4729 if (e != ERROR_OK) {
4730 Jim_Obj *eObj = Jim_NewIntObj(interp, e);
4731 Jim_SetResultFormatted(goi.interp,
4732 "target: %s wait %s fails (%#s) %s",
4733 target_name(target), n->name,
4734 eObj, target_strerror_safe(e));
4735 Jim_FreeNewObj(interp, eObj);
4736 return JIM_ERR;
4738 return JIM_OK;
4740 /* List for human, Events defined for this target.
4741 * scripts/programs should use 'name cget -event NAME'
4743 static int jim_target_event_list(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4745 struct command_context *cmd_ctx = current_command_context(interp);
4746 assert(cmd_ctx != NULL);
4748 struct target *target = Jim_CmdPrivData(interp);
4749 struct target_event_action *teap = target->event_action;
4750 command_print(cmd_ctx, "Event actions for target (%d) %s\n",
4751 target->target_number,
4752 target_name(target));
4753 command_print(cmd_ctx, "%-25s | Body", "Event");
4754 command_print(cmd_ctx, "------------------------- | "
4755 "----------------------------------------");
4756 while (teap) {
4757 Jim_Nvp *opt = Jim_Nvp_value2name_simple(nvp_target_event, teap->event);
4758 command_print(cmd_ctx, "%-25s | %s",
4759 opt->name, Jim_GetString(teap->body, NULL));
4760 teap = teap->next;
4762 command_print(cmd_ctx, "***END***");
4763 return JIM_OK;
4765 static int jim_target_current_state(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4767 if (argc != 1) {
4768 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
4769 return JIM_ERR;
4771 struct target *target = Jim_CmdPrivData(interp);
4772 Jim_SetResultString(interp, target_state_name(target), -1);
4773 return JIM_OK;
4775 static int jim_target_invoke_event(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4777 Jim_GetOptInfo goi;
4778 Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4779 if (goi.argc != 1) {
4780 const char *cmd_name = Jim_GetString(argv[0], NULL);
4781 Jim_SetResultFormatted(goi.interp, "%s <eventname>", cmd_name);
4782 return JIM_ERR;
4784 Jim_Nvp *n;
4785 int e = Jim_GetOpt_Nvp(&goi, nvp_target_event, &n);
4786 if (e != JIM_OK) {
4787 Jim_GetOpt_NvpUnknown(&goi, nvp_target_event, 1);
4788 return e;
4790 struct target *target = Jim_CmdPrivData(interp);
4791 target_handle_event(target, n->value);
4792 return JIM_OK;
4795 static const struct command_registration target_instance_command_handlers[] = {
4797 .name = "configure",
4798 .mode = COMMAND_CONFIG,
4799 .jim_handler = jim_target_configure,
4800 .help = "configure a new target for use",
4801 .usage = "[target_attribute ...]",
4804 .name = "cget",
4805 .mode = COMMAND_ANY,
4806 .jim_handler = jim_target_configure,
4807 .help = "returns the specified target attribute",
4808 .usage = "target_attribute",
4811 .name = "mww",
4812 .mode = COMMAND_EXEC,
4813 .jim_handler = jim_target_mw,
4814 .help = "Write 32-bit word(s) to target memory",
4815 .usage = "address data [count]",
4818 .name = "mwh",
4819 .mode = COMMAND_EXEC,
4820 .jim_handler = jim_target_mw,
4821 .help = "Write 16-bit half-word(s) to target memory",
4822 .usage = "address data [count]",
4825 .name = "mwb",
4826 .mode = COMMAND_EXEC,
4827 .jim_handler = jim_target_mw,
4828 .help = "Write byte(s) to target memory",
4829 .usage = "address data [count]",
4832 .name = "mdw",
4833 .mode = COMMAND_EXEC,
4834 .jim_handler = jim_target_md,
4835 .help = "Display target memory as 32-bit words",
4836 .usage = "address [count]",
4839 .name = "mdh",
4840 .mode = COMMAND_EXEC,
4841 .jim_handler = jim_target_md,
4842 .help = "Display target memory as 16-bit half-words",
4843 .usage = "address [count]",
4846 .name = "mdb",
4847 .mode = COMMAND_EXEC,
4848 .jim_handler = jim_target_md,
4849 .help = "Display target memory as 8-bit bytes",
4850 .usage = "address [count]",
4853 .name = "array2mem",
4854 .mode = COMMAND_EXEC,
4855 .jim_handler = jim_target_array2mem,
4856 .help = "Writes Tcl array of 8/16/32 bit numbers "
4857 "to target memory",
4858 .usage = "arrayname bitwidth address count",
4861 .name = "mem2array",
4862 .mode = COMMAND_EXEC,
4863 .jim_handler = jim_target_mem2array,
4864 .help = "Loads Tcl array of 8/16/32 bit numbers "
4865 "from target memory",
4866 .usage = "arrayname bitwidth address count",
4869 .name = "eventlist",
4870 .mode = COMMAND_EXEC,
4871 .jim_handler = jim_target_event_list,
4872 .help = "displays a table of events defined for this target",
4875 .name = "curstate",
4876 .mode = COMMAND_EXEC,
4877 .jim_handler = jim_target_current_state,
4878 .help = "displays the current state of this target",
4881 .name = "arp_examine",
4882 .mode = COMMAND_EXEC,
4883 .jim_handler = jim_target_examine,
4884 .help = "used internally for reset processing",
4887 .name = "arp_halt_gdb",
4888 .mode = COMMAND_EXEC,
4889 .jim_handler = jim_target_halt_gdb,
4890 .help = "used internally for reset processing to halt GDB",
4893 .name = "arp_poll",
4894 .mode = COMMAND_EXEC,
4895 .jim_handler = jim_target_poll,
4896 .help = "used internally for reset processing",
4899 .name = "arp_reset",
4900 .mode = COMMAND_EXEC,
4901 .jim_handler = jim_target_reset,
4902 .help = "used internally for reset processing",
4905 .name = "arp_halt",
4906 .mode = COMMAND_EXEC,
4907 .jim_handler = jim_target_halt,
4908 .help = "used internally for reset processing",
4911 .name = "arp_waitstate",
4912 .mode = COMMAND_EXEC,
4913 .jim_handler = jim_target_wait_state,
4914 .help = "used internally for reset processing",
4917 .name = "invoke-event",
4918 .mode = COMMAND_EXEC,
4919 .jim_handler = jim_target_invoke_event,
4920 .help = "invoke handler for specified event",
4921 .usage = "event_name",
4923 COMMAND_REGISTRATION_DONE
4926 static int target_create(Jim_GetOptInfo *goi)
4928 Jim_Obj *new_cmd;
4929 Jim_Cmd *cmd;
4930 const char *cp;
4931 char *cp2;
4932 int e;
4933 int x;
4934 struct target *target;
4935 struct command_context *cmd_ctx;
4937 cmd_ctx = current_command_context(goi->interp);
4938 assert(cmd_ctx != NULL);
4940 if (goi->argc < 3) {
4941 Jim_WrongNumArgs(goi->interp, 1, goi->argv, "?name? ?type? ..options...");
4942 return JIM_ERR;
4945 /* COMMAND */
4946 Jim_GetOpt_Obj(goi, &new_cmd);
4947 /* does this command exist? */
4948 cmd = Jim_GetCommand(goi->interp, new_cmd, JIM_ERRMSG);
4949 if (cmd) {
4950 cp = Jim_GetString(new_cmd, NULL);
4951 Jim_SetResultFormatted(goi->interp, "Command/target: %s Exists", cp);
4952 return JIM_ERR;
4955 /* TYPE */
4956 e = Jim_GetOpt_String(goi, &cp2, NULL);
4957 if (e != JIM_OK)
4958 return e;
4959 cp = cp2;
4960 /* now does target type exist */
4961 for (x = 0 ; target_types[x] ; x++) {
4962 if (0 == strcmp(cp, target_types[x]->name)) {
4963 /* found */
4964 break;
4967 /* check for deprecated name */
4968 if (target_types[x]->deprecated_name) {
4969 if (0 == strcmp(cp, target_types[x]->deprecated_name)) {
4970 /* found */
4971 LOG_WARNING("target name is deprecated use: \'%s\'", target_types[x]->name);
4972 break;
4976 if (target_types[x] == NULL) {
4977 Jim_SetResultFormatted(goi->interp, "Unknown target type %s, try one of ", cp);
4978 for (x = 0 ; target_types[x] ; x++) {
4979 if (target_types[x + 1]) {
4980 Jim_AppendStrings(goi->interp,
4981 Jim_GetResult(goi->interp),
4982 target_types[x]->name,
4983 ", ", NULL);
4984 } else {
4985 Jim_AppendStrings(goi->interp,
4986 Jim_GetResult(goi->interp),
4987 " or ",
4988 target_types[x]->name, NULL);
4991 return JIM_ERR;
4994 /* Create it */
4995 target = calloc(1, sizeof(struct target));
4996 /* set target number */
4997 target->target_number = new_target_number();
4999 /* allocate memory for each unique target type */
5000 target->type = (struct target_type *)calloc(1, sizeof(struct target_type));
5002 memcpy(target->type, target_types[x], sizeof(struct target_type));
5004 /* will be set by "-endian" */
5005 target->endianness = TARGET_ENDIAN_UNKNOWN;
5007 /* default to first core, override with -coreid */
5008 target->coreid = 0;
5010 target->working_area = 0x0;
5011 target->working_area_size = 0x0;
5012 target->working_areas = NULL;
5013 target->backup_working_area = 0;
5015 target->state = TARGET_UNKNOWN;
5016 target->debug_reason = DBG_REASON_UNDEFINED;
5017 target->reg_cache = NULL;
5018 target->breakpoints = NULL;
5019 target->watchpoints = NULL;
5020 target->next = NULL;
5021 target->arch_info = NULL;
5023 target->display = 1;
5025 target->halt_issued = false;
5027 /* initialize trace information */
5028 target->trace_info = malloc(sizeof(struct trace));
5029 target->trace_info->num_trace_points = 0;
5030 target->trace_info->trace_points_size = 0;
5031 target->trace_info->trace_points = NULL;
5032 target->trace_info->trace_history_size = 0;
5033 target->trace_info->trace_history = NULL;
5034 target->trace_info->trace_history_pos = 0;
5035 target->trace_info->trace_history_overflowed = 0;
5037 target->dbgmsg = NULL;
5038 target->dbg_msg_enabled = 0;
5040 target->endianness = TARGET_ENDIAN_UNKNOWN;
5042 target->rtos = NULL;
5043 target->rtos_auto_detect = false;
5045 /* Do the rest as "configure" options */
5046 goi->isconfigure = 1;
5047 e = target_configure(goi, target);
5049 if (target->tap == NULL) {
5050 Jim_SetResultString(goi->interp, "-chain-position required when creating target", -1);
5051 e = JIM_ERR;
5054 if (e != JIM_OK) {
5055 free(target->type);
5056 free(target);
5057 return e;
5060 if (target->endianness == TARGET_ENDIAN_UNKNOWN) {
5061 /* default endian to little if not specified */
5062 target->endianness = TARGET_LITTLE_ENDIAN;
5065 /* incase variant is not set */
5066 if (!target->variant)
5067 target->variant = strdup("");
5069 cp = Jim_GetString(new_cmd, NULL);
5070 target->cmd_name = strdup(cp);
5072 /* create the target specific commands */
5073 if (target->type->commands) {
5074 e = register_commands(cmd_ctx, NULL, target->type->commands);
5075 if (ERROR_OK != e)
5076 LOG_ERROR("unable to register '%s' commands", cp);
5078 if (target->type->target_create)
5079 (*(target->type->target_create))(target, goi->interp);
5081 /* append to end of list */
5083 struct target **tpp;
5084 tpp = &(all_targets);
5085 while (*tpp)
5086 tpp = &((*tpp)->next);
5087 *tpp = target;
5090 /* now - create the new target name command */
5091 const struct command_registration target_subcommands[] = {
5093 .chain = target_instance_command_handlers,
5096 .chain = target->type->commands,
5098 COMMAND_REGISTRATION_DONE
5100 const struct command_registration target_commands[] = {
5102 .name = cp,
5103 .mode = COMMAND_ANY,
5104 .help = "target command group",
5105 .usage = "",
5106 .chain = target_subcommands,
5108 COMMAND_REGISTRATION_DONE
5110 e = register_commands(cmd_ctx, NULL, target_commands);
5111 if (ERROR_OK != e)
5112 return JIM_ERR;
5114 struct command *c = command_find_in_context(cmd_ctx, cp);
5115 assert(c);
5116 command_set_handler_data(c, target);
5118 return (ERROR_OK == e) ? JIM_OK : JIM_ERR;
5121 static int jim_target_current(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5123 if (argc != 1) {
5124 Jim_WrongNumArgs(interp, 1, argv, "Too many parameters");
5125 return JIM_ERR;
5127 struct command_context *cmd_ctx = current_command_context(interp);
5128 assert(cmd_ctx != NULL);
5130 Jim_SetResultString(interp, target_name(get_current_target(cmd_ctx)), -1);
5131 return JIM_OK;
5134 static int jim_target_types(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5136 if (argc != 1) {
5137 Jim_WrongNumArgs(interp, 1, argv, "Too many parameters");
5138 return JIM_ERR;
5140 Jim_SetResult(interp, Jim_NewListObj(interp, NULL, 0));
5141 for (unsigned x = 0; NULL != target_types[x]; x++) {
5142 Jim_ListAppendElement(interp, Jim_GetResult(interp),
5143 Jim_NewStringObj(interp, target_types[x]->name, -1));
5145 return JIM_OK;
5148 static int jim_target_names(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5150 if (argc != 1) {
5151 Jim_WrongNumArgs(interp, 1, argv, "Too many parameters");
5152 return JIM_ERR;
5154 Jim_SetResult(interp, Jim_NewListObj(interp, NULL, 0));
5155 struct target *target = all_targets;
5156 while (target) {
5157 Jim_ListAppendElement(interp, Jim_GetResult(interp),
5158 Jim_NewStringObj(interp, target_name(target), -1));
5159 target = target->next;
5161 return JIM_OK;
5164 static int jim_target_smp(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5166 int i;
5167 const char *targetname;
5168 int retval, len;
5169 struct target *target = (struct target *) NULL;
5170 struct target_list *head, *curr, *new;
5171 curr = (struct target_list *) NULL;
5172 head = (struct target_list *) NULL;
5174 retval = 0;
5175 LOG_DEBUG("%d", argc);
5176 /* argv[1] = target to associate in smp
5177 * argv[2] = target to assoicate in smp
5178 * argv[3] ...
5181 for (i = 1; i < argc; i++) {
5183 targetname = Jim_GetString(argv[i], &len);
5184 target = get_target(targetname);
5185 LOG_DEBUG("%s ", targetname);
5186 if (target) {
5187 new = malloc(sizeof(struct target_list));
5188 new->target = target;
5189 new->next = (struct target_list *)NULL;
5190 if (head == (struct target_list *)NULL) {
5191 head = new;
5192 curr = head;
5193 } else {
5194 curr->next = new;
5195 curr = new;
5199 /* now parse the list of cpu and put the target in smp mode*/
5200 curr = head;
5202 while (curr != (struct target_list *)NULL) {
5203 target = curr->target;
5204 target->smp = 1;
5205 target->head = head;
5206 curr = curr->next;
5209 if (target && target->rtos)
5210 retval = rtos_smp_init(head->target);
5212 return retval;
5216 static int jim_target_create(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5218 Jim_GetOptInfo goi;
5219 Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
5220 if (goi.argc < 3) {
5221 Jim_WrongNumArgs(goi.interp, goi.argc, goi.argv,
5222 "<name> <target_type> [<target_options> ...]");
5223 return JIM_ERR;
5225 return target_create(&goi);
5228 static int jim_target_number(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5230 Jim_GetOptInfo goi;
5231 Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
5233 /* It's OK to remove this mechanism sometime after August 2010 or so */
5234 LOG_WARNING("don't use numbers as target identifiers; use names");
5235 if (goi.argc != 1) {
5236 Jim_SetResultFormatted(goi.interp, "usage: target number <number>");
5237 return JIM_ERR;
5239 jim_wide w;
5240 int e = Jim_GetOpt_Wide(&goi, &w);
5241 if (e != JIM_OK)
5242 return JIM_ERR;
5244 struct target *target;
5245 for (target = all_targets; NULL != target; target = target->next) {
5246 if (target->target_number != w)
5247 continue;
5249 Jim_SetResultString(goi.interp, target_name(target), -1);
5250 return JIM_OK;
5253 Jim_Obj *wObj = Jim_NewIntObj(goi.interp, w);
5254 Jim_SetResultFormatted(goi.interp,
5255 "Target: number %#s does not exist", wObj);
5256 Jim_FreeNewObj(interp, wObj);
5258 return JIM_ERR;
5261 static int jim_target_count(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5263 if (argc != 1) {
5264 Jim_WrongNumArgs(interp, 1, argv, "<no parameters>");
5265 return JIM_ERR;
5267 unsigned count = 0;
5268 struct target *target = all_targets;
5269 while (NULL != target) {
5270 target = target->next;
5271 count++;
5273 Jim_SetResult(interp, Jim_NewIntObj(interp, count));
5274 return JIM_OK;
5277 static const struct command_registration target_subcommand_handlers[] = {
5279 .name = "init",
5280 .mode = COMMAND_CONFIG,
5281 .handler = handle_target_init_command,
5282 .help = "initialize targets",
5285 .name = "create",
5286 /* REVISIT this should be COMMAND_CONFIG ... */
5287 .mode = COMMAND_ANY,
5288 .jim_handler = jim_target_create,
5289 .usage = "name type '-chain-position' name [options ...]",
5290 .help = "Creates and selects a new target",
5293 .name = "current",
5294 .mode = COMMAND_ANY,
5295 .jim_handler = jim_target_current,
5296 .help = "Returns the currently selected target",
5299 .name = "types",
5300 .mode = COMMAND_ANY,
5301 .jim_handler = jim_target_types,
5302 .help = "Returns the available target types as "
5303 "a list of strings",
5306 .name = "names",
5307 .mode = COMMAND_ANY,
5308 .jim_handler = jim_target_names,
5309 .help = "Returns the names of all targets as a list of strings",
5312 .name = "number",
5313 .mode = COMMAND_ANY,
5314 .jim_handler = jim_target_number,
5315 .usage = "number",
5316 .help = "Returns the name of the numbered target "
5317 "(DEPRECATED)",
5320 .name = "count",
5321 .mode = COMMAND_ANY,
5322 .jim_handler = jim_target_count,
5323 .help = "Returns the number of targets as an integer "
5324 "(DEPRECATED)",
5327 .name = "smp",
5328 .mode = COMMAND_ANY,
5329 .jim_handler = jim_target_smp,
5330 .usage = "targetname1 targetname2 ...",
5331 .help = "gather several target in a smp list"
5334 COMMAND_REGISTRATION_DONE
5337 struct FastLoad {
5338 uint32_t address;
5339 uint8_t *data;
5340 int length;
5344 static int fastload_num;
5345 static struct FastLoad *fastload;
5347 static void free_fastload(void)
5349 if (fastload != NULL) {
5350 int i;
5351 for (i = 0; i < fastload_num; i++) {
5352 if (fastload[i].data)
5353 free(fastload[i].data);
5355 free(fastload);
5356 fastload = NULL;
5360 COMMAND_HANDLER(handle_fast_load_image_command)
5362 uint8_t *buffer;
5363 size_t buf_cnt;
5364 uint32_t image_size;
5365 uint32_t min_address = 0;
5366 uint32_t max_address = 0xffffffff;
5367 int i;
5369 struct image image;
5371 int retval = CALL_COMMAND_HANDLER(parse_load_image_command_CMD_ARGV,
5372 &image, &min_address, &max_address);
5373 if (ERROR_OK != retval)
5374 return retval;
5376 struct duration bench;
5377 duration_start(&bench);
5379 retval = image_open(&image, CMD_ARGV[0], (CMD_ARGC >= 3) ? CMD_ARGV[2] : NULL);
5380 if (retval != ERROR_OK)
5381 return retval;
5383 image_size = 0x0;
5384 retval = ERROR_OK;
5385 fastload_num = image.num_sections;
5386 fastload = (struct FastLoad *)malloc(sizeof(struct FastLoad)*image.num_sections);
5387 if (fastload == NULL) {
5388 command_print(CMD_CTX, "out of memory");
5389 image_close(&image);
5390 return ERROR_FAIL;
5392 memset(fastload, 0, sizeof(struct FastLoad)*image.num_sections);
5393 for (i = 0; i < image.num_sections; i++) {
5394 buffer = malloc(image.sections[i].size);
5395 if (buffer == NULL) {
5396 command_print(CMD_CTX, "error allocating buffer for section (%d bytes)",
5397 (int)(image.sections[i].size));
5398 retval = ERROR_FAIL;
5399 break;
5402 retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt);
5403 if (retval != ERROR_OK) {
5404 free(buffer);
5405 break;
5408 uint32_t offset = 0;
5409 uint32_t length = buf_cnt;
5411 /* DANGER!!! beware of unsigned comparision here!!! */
5413 if ((image.sections[i].base_address + buf_cnt >= min_address) &&
5414 (image.sections[i].base_address < max_address)) {
5415 if (image.sections[i].base_address < min_address) {
5416 /* clip addresses below */
5417 offset += min_address-image.sections[i].base_address;
5418 length -= offset;
5421 if (image.sections[i].base_address + buf_cnt > max_address)
5422 length -= (image.sections[i].base_address + buf_cnt)-max_address;
5424 fastload[i].address = image.sections[i].base_address + offset;
5425 fastload[i].data = malloc(length);
5426 if (fastload[i].data == NULL) {
5427 free(buffer);
5428 command_print(CMD_CTX, "error allocating buffer for section (%d bytes)",
5429 length);
5430 retval = ERROR_FAIL;
5431 break;
5433 memcpy(fastload[i].data, buffer + offset, length);
5434 fastload[i].length = length;
5436 image_size += length;
5437 command_print(CMD_CTX, "%u bytes written at address 0x%8.8x",
5438 (unsigned int)length,
5439 ((unsigned int)(image.sections[i].base_address + offset)));
5442 free(buffer);
5445 if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK)) {
5446 command_print(CMD_CTX, "Loaded %" PRIu32 " bytes "
5447 "in %fs (%0.3f KiB/s)", image_size,
5448 duration_elapsed(&bench), duration_kbps(&bench, image_size));
5450 command_print(CMD_CTX,
5451 "WARNING: image has not been loaded to target!"
5452 "You can issue a 'fast_load' to finish loading.");
5455 image_close(&image);
5457 if (retval != ERROR_OK)
5458 free_fastload();
5460 return retval;
5463 COMMAND_HANDLER(handle_fast_load_command)
5465 if (CMD_ARGC > 0)
5466 return ERROR_COMMAND_SYNTAX_ERROR;
5467 if (fastload == NULL) {
5468 LOG_ERROR("No image in memory");
5469 return ERROR_FAIL;
5471 int i;
5472 int ms = timeval_ms();
5473 int size = 0;
5474 int retval = ERROR_OK;
5475 for (i = 0; i < fastload_num; i++) {
5476 struct target *target = get_current_target(CMD_CTX);
5477 command_print(CMD_CTX, "Write to 0x%08x, length 0x%08x",
5478 (unsigned int)(fastload[i].address),
5479 (unsigned int)(fastload[i].length));
5480 retval = target_write_buffer(target, fastload[i].address, fastload[i].length, fastload[i].data);
5481 if (retval != ERROR_OK)
5482 break;
5483 size += fastload[i].length;
5485 if (retval == ERROR_OK) {
5486 int after = timeval_ms();
5487 command_print(CMD_CTX, "Loaded image %f kBytes/s", (float)(size/1024.0)/((float)(after-ms)/1000.0));
5489 return retval;
5492 static const struct command_registration target_command_handlers[] = {
5494 .name = "targets",
5495 .handler = handle_targets_command,
5496 .mode = COMMAND_ANY,
5497 .help = "change current default target (one parameter) "
5498 "or prints table of all targets (no parameters)",
5499 .usage = "[target]",
5502 .name = "target",
5503 .mode = COMMAND_CONFIG,
5504 .help = "configure target",
5506 .chain = target_subcommand_handlers,
5508 COMMAND_REGISTRATION_DONE
5511 int target_register_commands(struct command_context *cmd_ctx)
5513 return register_commands(cmd_ctx, NULL, target_command_handlers);
5516 static bool target_reset_nag = true;
5518 bool get_target_reset_nag(void)
5520 return target_reset_nag;
5523 COMMAND_HANDLER(handle_target_reset_nag)
5525 return CALL_COMMAND_HANDLER(handle_command_parse_bool,
5526 &target_reset_nag, "Nag after each reset about options to improve "
5527 "performance");
5530 COMMAND_HANDLER(handle_ps_command)
5532 struct target *target = get_current_target(CMD_CTX);
5533 char *display;
5534 if (target->state != TARGET_HALTED) {
5535 LOG_INFO("target not halted !!");
5536 return ERROR_OK;
5539 if ((target->rtos) && (target->rtos->type)
5540 && (target->rtos->type->ps_command)) {
5541 display = target->rtos->type->ps_command(target);
5542 command_print(CMD_CTX, "%s", display);
5543 free(display);
5544 return ERROR_OK;
5545 } else {
5546 LOG_INFO("failed");
5547 return ERROR_TARGET_FAILURE;
5551 static const struct command_registration target_exec_command_handlers[] = {
5553 .name = "fast_load_image",
5554 .handler = handle_fast_load_image_command,
5555 .mode = COMMAND_ANY,
5556 .help = "Load image into server memory for later use by "
5557 "fast_load; primarily for profiling",
5558 .usage = "filename address ['bin'|'ihex'|'elf'|'s19'] "
5559 "[min_address [max_length]]",
5562 .name = "fast_load",
5563 .handler = handle_fast_load_command,
5564 .mode = COMMAND_EXEC,
5565 .help = "loads active fast load image to current target "
5566 "- mainly for profiling purposes",
5567 .usage = "",
5570 .name = "profile",
5571 .handler = handle_profile_command,
5572 .mode = COMMAND_EXEC,
5573 .usage = "seconds filename",
5574 .help = "profiling samples the CPU PC",
5576 /** @todo don't register virt2phys() unless target supports it */
5578 .name = "virt2phys",
5579 .handler = handle_virt2phys_command,
5580 .mode = COMMAND_ANY,
5581 .help = "translate a virtual address into a physical address",
5582 .usage = "virtual_address",
5585 .name = "reg",
5586 .handler = handle_reg_command,
5587 .mode = COMMAND_EXEC,
5588 .help = "display or set a register; with no arguments, "
5589 "displays all registers and their values",
5590 .usage = "[(register_name|register_number) [value]]",
5593 .name = "poll",
5594 .handler = handle_poll_command,
5595 .mode = COMMAND_EXEC,
5596 .help = "poll target state; or reconfigure background polling",
5597 .usage = "['on'|'off']",
5600 .name = "wait_halt",
5601 .handler = handle_wait_halt_command,
5602 .mode = COMMAND_EXEC,
5603 .help = "wait up to the specified number of milliseconds "
5604 "(default 5000) for a previously requested halt",
5605 .usage = "[milliseconds]",
5608 .name = "halt",
5609 .handler = handle_halt_command,
5610 .mode = COMMAND_EXEC,
5611 .help = "request target to halt, then wait up to the specified"
5612 "number of milliseconds (default 5000) for it to complete",
5613 .usage = "[milliseconds]",
5616 .name = "resume",
5617 .handler = handle_resume_command,
5618 .mode = COMMAND_EXEC,
5619 .help = "resume target execution from current PC or address",
5620 .usage = "[address]",
5623 .name = "reset",
5624 .handler = handle_reset_command,
5625 .mode = COMMAND_EXEC,
5626 .usage = "[run|halt|init]",
5627 .help = "Reset all targets into the specified mode."
5628 "Default reset mode is run, if not given.",
5631 .name = "soft_reset_halt",
5632 .handler = handle_soft_reset_halt_command,
5633 .mode = COMMAND_EXEC,
5634 .usage = "",
5635 .help = "halt the target and do a soft reset",
5638 .name = "step",
5639 .handler = handle_step_command,
5640 .mode = COMMAND_EXEC,
5641 .help = "step one instruction from current PC or address",
5642 .usage = "[address]",
5645 .name = "mdw",
5646 .handler = handle_md_command,
5647 .mode = COMMAND_EXEC,
5648 .help = "display memory words",
5649 .usage = "['phys'] address [count]",
5652 .name = "mdh",
5653 .handler = handle_md_command,
5654 .mode = COMMAND_EXEC,
5655 .help = "display memory half-words",
5656 .usage = "['phys'] address [count]",
5659 .name = "mdb",
5660 .handler = handle_md_command,
5661 .mode = COMMAND_EXEC,
5662 .help = "display memory bytes",
5663 .usage = "['phys'] address [count]",
5666 .name = "mww",
5667 .handler = handle_mw_command,
5668 .mode = COMMAND_EXEC,
5669 .help = "write memory word",
5670 .usage = "['phys'] address value [count]",
5673 .name = "mwh",
5674 .handler = handle_mw_command,
5675 .mode = COMMAND_EXEC,
5676 .help = "write memory half-word",
5677 .usage = "['phys'] address value [count]",
5680 .name = "mwb",
5681 .handler = handle_mw_command,
5682 .mode = COMMAND_EXEC,
5683 .help = "write memory byte",
5684 .usage = "['phys'] address value [count]",
5687 .name = "bp",
5688 .handler = handle_bp_command,
5689 .mode = COMMAND_EXEC,
5690 .help = "list or set hardware or software breakpoint",
5691 .usage = "<address> [<asid>]<length> ['hw'|'hw_ctx']",
5694 .name = "rbp",
5695 .handler = handle_rbp_command,
5696 .mode = COMMAND_EXEC,
5697 .help = "remove breakpoint",
5698 .usage = "address",
5701 .name = "wp",
5702 .handler = handle_wp_command,
5703 .mode = COMMAND_EXEC,
5704 .help = "list (no params) or create watchpoints",
5705 .usage = "[address length [('r'|'w'|'a') value [mask]]]",
5708 .name = "rwp",
5709 .handler = handle_rwp_command,
5710 .mode = COMMAND_EXEC,
5711 .help = "remove watchpoint",
5712 .usage = "address",
5715 .name = "load_image",
5716 .handler = handle_load_image_command,
5717 .mode = COMMAND_EXEC,
5718 .usage = "filename address ['bin'|'ihex'|'elf'|'s19'] "
5719 "[min_address] [max_length]",
5722 .name = "dump_image",
5723 .handler = handle_dump_image_command,
5724 .mode = COMMAND_EXEC,
5725 .usage = "filename address size",
5728 .name = "verify_image",
5729 .handler = handle_verify_image_command,
5730 .mode = COMMAND_EXEC,
5731 .usage = "filename [offset [type]]",
5734 .name = "test_image",
5735 .handler = handle_test_image_command,
5736 .mode = COMMAND_EXEC,
5737 .usage = "filename [offset [type]]",
5740 .name = "mem2array",
5741 .mode = COMMAND_EXEC,
5742 .jim_handler = jim_mem2array,
5743 .help = "read 8/16/32 bit memory and return as a TCL array "
5744 "for script processing",
5745 .usage = "arrayname bitwidth address count",
5748 .name = "array2mem",
5749 .mode = COMMAND_EXEC,
5750 .jim_handler = jim_array2mem,
5751 .help = "convert a TCL array to memory locations "
5752 "and write the 8/16/32 bit values",
5753 .usage = "arrayname bitwidth address count",
5756 .name = "reset_nag",
5757 .handler = handle_target_reset_nag,
5758 .mode = COMMAND_ANY,
5759 .help = "Nag after each reset about options that could have been "
5760 "enabled to improve performance. ",
5761 .usage = "['enable'|'disable']",
5764 .name = "ps",
5765 .handler = handle_ps_command,
5766 .mode = COMMAND_EXEC,
5767 .help = "list all tasks ",
5768 .usage = " ",
5771 COMMAND_REGISTRATION_DONE
5773 static int target_register_user_commands(struct command_context *cmd_ctx)
5775 int retval = ERROR_OK;
5776 retval = target_request_register_commands(cmd_ctx);
5777 if (retval != ERROR_OK)
5778 return retval;
5780 retval = trace_register_commands(cmd_ctx);
5781 if (retval != ERROR_OK)
5782 return retval;
5785 return register_commands(cmd_ctx, NULL, target_exec_command_handlers);