Remove FSF address from GPL notices
[openocd.git] / src / target / target.c
blobd6558c49a92e3a4474d7613df807c8f00fa51719
1 /***************************************************************************
2 * Copyright (C) 2005 by Dominic Rath *
3 * Dominic.Rath@gmx.de *
4 * *
5 * Copyright (C) 2007-2010 Øyvind Harboe *
6 * oyvind.harboe@zylin.com *
7 * *
8 * Copyright (C) 2008, Duane Ellis *
9 * openocd@duaneeellis.com *
10 * *
11 * Copyright (C) 2008 by Spencer Oliver *
12 * spen@spen-soft.co.uk *
13 * *
14 * Copyright (C) 2008 by Rick Altherr *
15 * kc8apf@kc8apf.net> *
16 * *
17 * Copyright (C) 2011 by Broadcom Corporation *
18 * Evan Hunter - ehunter@broadcom.com *
19 * *
20 * Copyright (C) ST-Ericsson SA 2011 *
21 * michel.jaouen@stericsson.com : smp minimum support *
22 * *
23 * Copyright (C) 2011 Andreas Fritiofson *
24 * andreas.fritiofson@gmail.com *
25 * *
26 * This program is free software; you can redistribute it and/or modify *
27 * it under the terms of the GNU General Public License as published by *
28 * the Free Software Foundation; either version 2 of the License, or *
29 * (at your option) any later version. *
30 * *
31 * This program is distributed in the hope that it will be useful, *
32 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
33 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
34 * GNU General Public License for more details. *
35 * *
36 * You should have received a copy of the GNU General Public License *
37 * along with this program. If not, see <http://www.gnu.org/licenses/>. *
38 ***************************************************************************/
40 #ifdef HAVE_CONFIG_H
41 #include "config.h"
42 #endif
44 #include <helper/time_support.h>
45 #include <jtag/jtag.h>
46 #include <flash/nor/core.h>
48 #include "target.h"
49 #include "target_type.h"
50 #include "target_request.h"
51 #include "breakpoints.h"
52 #include "register.h"
53 #include "trace.h"
54 #include "image.h"
55 #include "rtos/rtos.h"
56 #include "transport/transport.h"
58 /* default halt wait timeout (ms) */
59 #define DEFAULT_HALT_TIMEOUT 5000
61 static int target_read_buffer_default(struct target *target, uint32_t address,
62 uint32_t count, uint8_t *buffer);
63 static int target_write_buffer_default(struct target *target, uint32_t address,
64 uint32_t count, const uint8_t *buffer);
65 static int target_array2mem(Jim_Interp *interp, struct target *target,
66 int argc, Jim_Obj * const *argv);
67 static int target_mem2array(Jim_Interp *interp, struct target *target,
68 int argc, Jim_Obj * const *argv);
69 static int target_register_user_commands(struct command_context *cmd_ctx);
70 static int target_get_gdb_fileio_info_default(struct target *target,
71 struct gdb_fileio_info *fileio_info);
72 static int target_gdb_fileio_end_default(struct target *target, int retcode,
73 int fileio_errno, bool ctrl_c);
74 static int target_profiling_default(struct target *target, uint32_t *samples,
75 uint32_t max_num_samples, uint32_t *num_samples, uint32_t seconds);
77 /* targets */
78 extern struct target_type arm7tdmi_target;
79 extern struct target_type arm720t_target;
80 extern struct target_type arm9tdmi_target;
81 extern struct target_type arm920t_target;
82 extern struct target_type arm966e_target;
83 extern struct target_type arm946e_target;
84 extern struct target_type arm926ejs_target;
85 extern struct target_type fa526_target;
86 extern struct target_type feroceon_target;
87 extern struct target_type dragonite_target;
88 extern struct target_type xscale_target;
89 extern struct target_type cortexm_target;
90 extern struct target_type cortexa_target;
91 extern struct target_type cortexr4_target;
92 extern struct target_type arm11_target;
93 extern struct target_type mips_m4k_target;
94 extern struct target_type avr_target;
95 extern struct target_type dsp563xx_target;
96 extern struct target_type dsp5680xx_target;
97 extern struct target_type testee_target;
98 extern struct target_type avr32_ap7k_target;
99 extern struct target_type hla_target;
100 extern struct target_type nds32_v2_target;
101 extern struct target_type nds32_v3_target;
102 extern struct target_type nds32_v3m_target;
103 extern struct target_type or1k_target;
104 extern struct target_type quark_x10xx_target;
105 extern struct target_type quark_d20xx_target;
107 static struct target_type *target_types[] = {
108 &arm7tdmi_target,
109 &arm9tdmi_target,
110 &arm920t_target,
111 &arm720t_target,
112 &arm966e_target,
113 &arm946e_target,
114 &arm926ejs_target,
115 &fa526_target,
116 &feroceon_target,
117 &dragonite_target,
118 &xscale_target,
119 &cortexm_target,
120 &cortexa_target,
121 &cortexr4_target,
122 &arm11_target,
123 &mips_m4k_target,
124 &avr_target,
125 &dsp563xx_target,
126 &dsp5680xx_target,
127 &testee_target,
128 &avr32_ap7k_target,
129 &hla_target,
130 &nds32_v2_target,
131 &nds32_v3_target,
132 &nds32_v3m_target,
133 &or1k_target,
134 &quark_x10xx_target,
135 &quark_d20xx_target,
136 NULL,
139 struct target *all_targets;
140 static struct target_event_callback *target_event_callbacks;
141 static struct target_timer_callback *target_timer_callbacks;
142 LIST_HEAD(target_reset_callback_list);
143 LIST_HEAD(target_trace_callback_list);
144 static const int polling_interval = 100;
146 static const Jim_Nvp nvp_assert[] = {
147 { .name = "assert", NVP_ASSERT },
148 { .name = "deassert", NVP_DEASSERT },
149 { .name = "T", NVP_ASSERT },
150 { .name = "F", NVP_DEASSERT },
151 { .name = "t", NVP_ASSERT },
152 { .name = "f", NVP_DEASSERT },
153 { .name = NULL, .value = -1 }
156 static const Jim_Nvp nvp_error_target[] = {
157 { .value = ERROR_TARGET_INVALID, .name = "err-invalid" },
158 { .value = ERROR_TARGET_INIT_FAILED, .name = "err-init-failed" },
159 { .value = ERROR_TARGET_TIMEOUT, .name = "err-timeout" },
160 { .value = ERROR_TARGET_NOT_HALTED, .name = "err-not-halted" },
161 { .value = ERROR_TARGET_FAILURE, .name = "err-failure" },
162 { .value = ERROR_TARGET_UNALIGNED_ACCESS , .name = "err-unaligned-access" },
163 { .value = ERROR_TARGET_DATA_ABORT , .name = "err-data-abort" },
164 { .value = ERROR_TARGET_RESOURCE_NOT_AVAILABLE , .name = "err-resource-not-available" },
165 { .value = ERROR_TARGET_TRANSLATION_FAULT , .name = "err-translation-fault" },
166 { .value = ERROR_TARGET_NOT_RUNNING, .name = "err-not-running" },
167 { .value = ERROR_TARGET_NOT_EXAMINED, .name = "err-not-examined" },
168 { .value = -1, .name = NULL }
171 static const char *target_strerror_safe(int err)
173 const Jim_Nvp *n;
175 n = Jim_Nvp_value2name_simple(nvp_error_target, err);
176 if (n->name == NULL)
177 return "unknown";
178 else
179 return n->name;
182 static const Jim_Nvp nvp_target_event[] = {
184 { .value = TARGET_EVENT_GDB_HALT, .name = "gdb-halt" },
185 { .value = TARGET_EVENT_HALTED, .name = "halted" },
186 { .value = TARGET_EVENT_RESUMED, .name = "resumed" },
187 { .value = TARGET_EVENT_RESUME_START, .name = "resume-start" },
188 { .value = TARGET_EVENT_RESUME_END, .name = "resume-end" },
190 { .name = "gdb-start", .value = TARGET_EVENT_GDB_START },
191 { .name = "gdb-end", .value = TARGET_EVENT_GDB_END },
193 { .value = TARGET_EVENT_RESET_START, .name = "reset-start" },
194 { .value = TARGET_EVENT_RESET_ASSERT_PRE, .name = "reset-assert-pre" },
195 { .value = TARGET_EVENT_RESET_ASSERT, .name = "reset-assert" },
196 { .value = TARGET_EVENT_RESET_ASSERT_POST, .name = "reset-assert-post" },
197 { .value = TARGET_EVENT_RESET_DEASSERT_PRE, .name = "reset-deassert-pre" },
198 { .value = TARGET_EVENT_RESET_DEASSERT_POST, .name = "reset-deassert-post" },
199 { .value = TARGET_EVENT_RESET_HALT_PRE, .name = "reset-halt-pre" },
200 { .value = TARGET_EVENT_RESET_HALT_POST, .name = "reset-halt-post" },
201 { .value = TARGET_EVENT_RESET_WAIT_PRE, .name = "reset-wait-pre" },
202 { .value = TARGET_EVENT_RESET_WAIT_POST, .name = "reset-wait-post" },
203 { .value = TARGET_EVENT_RESET_INIT, .name = "reset-init" },
204 { .value = TARGET_EVENT_RESET_END, .name = "reset-end" },
206 { .value = TARGET_EVENT_EXAMINE_START, .name = "examine-start" },
207 { .value = TARGET_EVENT_EXAMINE_END, .name = "examine-end" },
209 { .value = TARGET_EVENT_DEBUG_HALTED, .name = "debug-halted" },
210 { .value = TARGET_EVENT_DEBUG_RESUMED, .name = "debug-resumed" },
212 { .value = TARGET_EVENT_GDB_ATTACH, .name = "gdb-attach" },
213 { .value = TARGET_EVENT_GDB_DETACH, .name = "gdb-detach" },
215 { .value = TARGET_EVENT_GDB_FLASH_WRITE_START, .name = "gdb-flash-write-start" },
216 { .value = TARGET_EVENT_GDB_FLASH_WRITE_END , .name = "gdb-flash-write-end" },
218 { .value = TARGET_EVENT_GDB_FLASH_ERASE_START, .name = "gdb-flash-erase-start" },
219 { .value = TARGET_EVENT_GDB_FLASH_ERASE_END , .name = "gdb-flash-erase-end" },
221 { .value = TARGET_EVENT_TRACE_CONFIG, .name = "trace-config" },
223 { .name = NULL, .value = -1 }
226 static const Jim_Nvp nvp_target_state[] = {
227 { .name = "unknown", .value = TARGET_UNKNOWN },
228 { .name = "running", .value = TARGET_RUNNING },
229 { .name = "halted", .value = TARGET_HALTED },
230 { .name = "reset", .value = TARGET_RESET },
231 { .name = "debug-running", .value = TARGET_DEBUG_RUNNING },
232 { .name = NULL, .value = -1 },
235 static const Jim_Nvp nvp_target_debug_reason[] = {
236 { .name = "debug-request" , .value = DBG_REASON_DBGRQ },
237 { .name = "breakpoint" , .value = DBG_REASON_BREAKPOINT },
238 { .name = "watchpoint" , .value = DBG_REASON_WATCHPOINT },
239 { .name = "watchpoint-and-breakpoint", .value = DBG_REASON_WPTANDBKPT },
240 { .name = "single-step" , .value = DBG_REASON_SINGLESTEP },
241 { .name = "target-not-halted" , .value = DBG_REASON_NOTHALTED },
242 { .name = "program-exit" , .value = DBG_REASON_EXIT },
243 { .name = "undefined" , .value = DBG_REASON_UNDEFINED },
244 { .name = NULL, .value = -1 },
247 static const Jim_Nvp nvp_target_endian[] = {
248 { .name = "big", .value = TARGET_BIG_ENDIAN },
249 { .name = "little", .value = TARGET_LITTLE_ENDIAN },
250 { .name = "be", .value = TARGET_BIG_ENDIAN },
251 { .name = "le", .value = TARGET_LITTLE_ENDIAN },
252 { .name = NULL, .value = -1 },
255 static const Jim_Nvp nvp_reset_modes[] = {
256 { .name = "unknown", .value = RESET_UNKNOWN },
257 { .name = "run" , .value = RESET_RUN },
258 { .name = "halt" , .value = RESET_HALT },
259 { .name = "init" , .value = RESET_INIT },
260 { .name = NULL , .value = -1 },
263 const char *debug_reason_name(struct target *t)
265 const char *cp;
267 cp = Jim_Nvp_value2name_simple(nvp_target_debug_reason,
268 t->debug_reason)->name;
269 if (!cp) {
270 LOG_ERROR("Invalid debug reason: %d", (int)(t->debug_reason));
271 cp = "(*BUG*unknown*BUG*)";
273 return cp;
276 const char *target_state_name(struct target *t)
278 const char *cp;
279 cp = Jim_Nvp_value2name_simple(nvp_target_state, t->state)->name;
280 if (!cp) {
281 LOG_ERROR("Invalid target state: %d", (int)(t->state));
282 cp = "(*BUG*unknown*BUG*)";
284 return cp;
287 const char *target_event_name(enum target_event event)
289 const char *cp;
290 cp = Jim_Nvp_value2name_simple(nvp_target_event, event)->name;
291 if (!cp) {
292 LOG_ERROR("Invalid target event: %d", (int)(event));
293 cp = "(*BUG*unknown*BUG*)";
295 return cp;
298 const char *target_reset_mode_name(enum target_reset_mode reset_mode)
300 const char *cp;
301 cp = Jim_Nvp_value2name_simple(nvp_reset_modes, reset_mode)->name;
302 if (!cp) {
303 LOG_ERROR("Invalid target reset mode: %d", (int)(reset_mode));
304 cp = "(*BUG*unknown*BUG*)";
306 return cp;
309 /* determine the number of the new target */
310 static int new_target_number(void)
312 struct target *t;
313 int x;
315 /* number is 0 based */
316 x = -1;
317 t = all_targets;
318 while (t) {
319 if (x < t->target_number)
320 x = t->target_number;
321 t = t->next;
323 return x + 1;
326 /* read a uint64_t from a buffer in target memory endianness */
327 uint64_t target_buffer_get_u64(struct target *target, const uint8_t *buffer)
329 if (target->endianness == TARGET_LITTLE_ENDIAN)
330 return le_to_h_u64(buffer);
331 else
332 return be_to_h_u64(buffer);
335 /* read a uint32_t from a buffer in target memory endianness */
336 uint32_t target_buffer_get_u32(struct target *target, const uint8_t *buffer)
338 if (target->endianness == TARGET_LITTLE_ENDIAN)
339 return le_to_h_u32(buffer);
340 else
341 return be_to_h_u32(buffer);
344 /* read a uint24_t from a buffer in target memory endianness */
345 uint32_t target_buffer_get_u24(struct target *target, const uint8_t *buffer)
347 if (target->endianness == TARGET_LITTLE_ENDIAN)
348 return le_to_h_u24(buffer);
349 else
350 return be_to_h_u24(buffer);
353 /* read a uint16_t from a buffer in target memory endianness */
354 uint16_t target_buffer_get_u16(struct target *target, const uint8_t *buffer)
356 if (target->endianness == TARGET_LITTLE_ENDIAN)
357 return le_to_h_u16(buffer);
358 else
359 return be_to_h_u16(buffer);
362 /* read a uint8_t from a buffer in target memory endianness */
363 static uint8_t target_buffer_get_u8(struct target *target, const uint8_t *buffer)
365 return *buffer & 0x0ff;
368 /* write a uint64_t to a buffer in target memory endianness */
369 void target_buffer_set_u64(struct target *target, uint8_t *buffer, uint64_t value)
371 if (target->endianness == TARGET_LITTLE_ENDIAN)
372 h_u64_to_le(buffer, value);
373 else
374 h_u64_to_be(buffer, value);
377 /* write a uint32_t to a buffer in target memory endianness */
378 void target_buffer_set_u32(struct target *target, uint8_t *buffer, uint32_t value)
380 if (target->endianness == TARGET_LITTLE_ENDIAN)
381 h_u32_to_le(buffer, value);
382 else
383 h_u32_to_be(buffer, value);
386 /* write a uint24_t to a buffer in target memory endianness */
387 void target_buffer_set_u24(struct target *target, uint8_t *buffer, uint32_t value)
389 if (target->endianness == TARGET_LITTLE_ENDIAN)
390 h_u24_to_le(buffer, value);
391 else
392 h_u24_to_be(buffer, value);
395 /* write a uint16_t to a buffer in target memory endianness */
396 void target_buffer_set_u16(struct target *target, uint8_t *buffer, uint16_t value)
398 if (target->endianness == TARGET_LITTLE_ENDIAN)
399 h_u16_to_le(buffer, value);
400 else
401 h_u16_to_be(buffer, value);
404 /* write a uint8_t to a buffer in target memory endianness */
405 static void target_buffer_set_u8(struct target *target, uint8_t *buffer, uint8_t value)
407 *buffer = value;
410 /* write a uint64_t array to a buffer in target memory endianness */
411 void target_buffer_get_u64_array(struct target *target, const uint8_t *buffer, uint32_t count, uint64_t *dstbuf)
413 uint32_t i;
414 for (i = 0; i < count; i++)
415 dstbuf[i] = target_buffer_get_u64(target, &buffer[i * 8]);
418 /* write a uint32_t array to a buffer in target memory endianness */
419 void target_buffer_get_u32_array(struct target *target, const uint8_t *buffer, uint32_t count, uint32_t *dstbuf)
421 uint32_t i;
422 for (i = 0; i < count; i++)
423 dstbuf[i] = target_buffer_get_u32(target, &buffer[i * 4]);
426 /* write a uint16_t array to a buffer in target memory endianness */
427 void target_buffer_get_u16_array(struct target *target, const uint8_t *buffer, uint32_t count, uint16_t *dstbuf)
429 uint32_t i;
430 for (i = 0; i < count; i++)
431 dstbuf[i] = target_buffer_get_u16(target, &buffer[i * 2]);
434 /* write a uint64_t array to a buffer in target memory endianness */
435 void target_buffer_set_u64_array(struct target *target, uint8_t *buffer, uint32_t count, const uint64_t *srcbuf)
437 uint32_t i;
438 for (i = 0; i < count; i++)
439 target_buffer_set_u64(target, &buffer[i * 8], srcbuf[i]);
442 /* write a uint32_t array to a buffer in target memory endianness */
443 void target_buffer_set_u32_array(struct target *target, uint8_t *buffer, uint32_t count, const uint32_t *srcbuf)
445 uint32_t i;
446 for (i = 0; i < count; i++)
447 target_buffer_set_u32(target, &buffer[i * 4], srcbuf[i]);
450 /* write a uint16_t array to a buffer in target memory endianness */
451 void target_buffer_set_u16_array(struct target *target, uint8_t *buffer, uint32_t count, const uint16_t *srcbuf)
453 uint32_t i;
454 for (i = 0; i < count; i++)
455 target_buffer_set_u16(target, &buffer[i * 2], srcbuf[i]);
458 /* return a pointer to a configured target; id is name or number */
459 struct target *get_target(const char *id)
461 struct target *target;
463 /* try as tcltarget name */
464 for (target = all_targets; target; target = target->next) {
465 if (target_name(target) == NULL)
466 continue;
467 if (strcmp(id, target_name(target)) == 0)
468 return target;
471 /* It's OK to remove this fallback sometime after August 2010 or so */
473 /* no match, try as number */
474 unsigned num;
475 if (parse_uint(id, &num) != ERROR_OK)
476 return NULL;
478 for (target = all_targets; target; target = target->next) {
479 if (target->target_number == (int)num) {
480 LOG_WARNING("use '%s' as target identifier, not '%u'",
481 target_name(target), num);
482 return target;
486 return NULL;
489 /* returns a pointer to the n-th configured target */
490 struct target *get_target_by_num(int num)
492 struct target *target = all_targets;
494 while (target) {
495 if (target->target_number == num)
496 return target;
497 target = target->next;
500 return NULL;
503 struct target *get_current_target(struct command_context *cmd_ctx)
505 struct target *target = get_target_by_num(cmd_ctx->current_target);
507 if (target == NULL) {
508 LOG_ERROR("BUG: current_target out of bounds");
509 exit(-1);
512 return target;
515 int target_poll(struct target *target)
517 int retval;
519 /* We can't poll until after examine */
520 if (!target_was_examined(target)) {
521 /* Fail silently lest we pollute the log */
522 return ERROR_FAIL;
525 retval = target->type->poll(target);
526 if (retval != ERROR_OK)
527 return retval;
529 if (target->halt_issued) {
530 if (target->state == TARGET_HALTED)
531 target->halt_issued = false;
532 else {
533 long long t = timeval_ms() - target->halt_issued_time;
534 if (t > DEFAULT_HALT_TIMEOUT) {
535 target->halt_issued = false;
536 LOG_INFO("Halt timed out, wake up GDB.");
537 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
542 return ERROR_OK;
545 int target_halt(struct target *target)
547 int retval;
548 /* We can't poll until after examine */
549 if (!target_was_examined(target)) {
550 LOG_ERROR("Target not examined yet");
551 return ERROR_FAIL;
554 retval = target->type->halt(target);
555 if (retval != ERROR_OK)
556 return retval;
558 target->halt_issued = true;
559 target->halt_issued_time = timeval_ms();
561 return ERROR_OK;
565 * Make the target (re)start executing using its saved execution
566 * context (possibly with some modifications).
568 * @param target Which target should start executing.
569 * @param current True to use the target's saved program counter instead
570 * of the address parameter
571 * @param address Optionally used as the program counter.
572 * @param handle_breakpoints True iff breakpoints at the resumption PC
573 * should be skipped. (For example, maybe execution was stopped by
574 * such a breakpoint, in which case it would be counterprodutive to
575 * let it re-trigger.
576 * @param debug_execution False if all working areas allocated by OpenOCD
577 * should be released and/or restored to their original contents.
578 * (This would for example be true to run some downloaded "helper"
579 * algorithm code, which resides in one such working buffer and uses
580 * another for data storage.)
582 * @todo Resolve the ambiguity about what the "debug_execution" flag
583 * signifies. For example, Target implementations don't agree on how
584 * it relates to invalidation of the register cache, or to whether
585 * breakpoints and watchpoints should be enabled. (It would seem wrong
586 * to enable breakpoints when running downloaded "helper" algorithms
587 * (debug_execution true), since the breakpoints would be set to match
588 * target firmware being debugged, not the helper algorithm.... and
589 * enabling them could cause such helpers to malfunction (for example,
590 * by overwriting data with a breakpoint instruction. On the other
591 * hand the infrastructure for running such helpers might use this
592 * procedure but rely on hardware breakpoint to detect termination.)
594 int target_resume(struct target *target, int current, uint32_t address, int handle_breakpoints, int debug_execution)
596 int retval;
598 /* We can't poll until after examine */
599 if (!target_was_examined(target)) {
600 LOG_ERROR("Target not examined yet");
601 return ERROR_FAIL;
604 target_call_event_callbacks(target, TARGET_EVENT_RESUME_START);
606 /* note that resume *must* be asynchronous. The CPU can halt before
607 * we poll. The CPU can even halt at the current PC as a result of
608 * a software breakpoint being inserted by (a bug?) the application.
610 retval = target->type->resume(target, current, address, handle_breakpoints, debug_execution);
611 if (retval != ERROR_OK)
612 return retval;
614 target_call_event_callbacks(target, TARGET_EVENT_RESUME_END);
616 return retval;
619 static int target_process_reset(struct command_context *cmd_ctx, enum target_reset_mode reset_mode)
621 char buf[100];
622 int retval;
623 Jim_Nvp *n;
624 n = Jim_Nvp_value2name_simple(nvp_reset_modes, reset_mode);
625 if (n->name == NULL) {
626 LOG_ERROR("invalid reset mode");
627 return ERROR_FAIL;
630 struct target *target;
631 for (target = all_targets; target; target = target->next)
632 target_call_reset_callbacks(target, reset_mode);
634 /* disable polling during reset to make reset event scripts
635 * more predictable, i.e. dr/irscan & pathmove in events will
636 * not have JTAG operations injected into the middle of a sequence.
638 bool save_poll = jtag_poll_get_enabled();
640 jtag_poll_set_enabled(false);
642 sprintf(buf, "ocd_process_reset %s", n->name);
643 retval = Jim_Eval(cmd_ctx->interp, buf);
645 jtag_poll_set_enabled(save_poll);
647 if (retval != JIM_OK) {
648 Jim_MakeErrorMessage(cmd_ctx->interp);
649 command_print(NULL, "%s\n", Jim_GetString(Jim_GetResult(cmd_ctx->interp), NULL));
650 return ERROR_FAIL;
653 /* We want any events to be processed before the prompt */
654 retval = target_call_timer_callbacks_now();
656 for (target = all_targets; target; target = target->next) {
657 target->type->check_reset(target);
658 target->running_alg = false;
661 return retval;
664 static int identity_virt2phys(struct target *target,
665 uint32_t virtual, uint32_t *physical)
667 *physical = virtual;
668 return ERROR_OK;
671 static int no_mmu(struct target *target, int *enabled)
673 *enabled = 0;
674 return ERROR_OK;
677 static int default_examine(struct target *target)
679 target_set_examined(target);
680 return ERROR_OK;
683 /* no check by default */
684 static int default_check_reset(struct target *target)
686 return ERROR_OK;
689 int target_examine_one(struct target *target)
691 target_call_event_callbacks(target, TARGET_EVENT_EXAMINE_START);
693 int retval = target->type->examine(target);
694 if (retval != ERROR_OK)
695 return retval;
697 target_call_event_callbacks(target, TARGET_EVENT_EXAMINE_END);
699 return ERROR_OK;
702 static int jtag_enable_callback(enum jtag_event event, void *priv)
704 struct target *target = priv;
706 if (event != JTAG_TAP_EVENT_ENABLE || !target->tap->enabled)
707 return ERROR_OK;
709 jtag_unregister_event_callback(jtag_enable_callback, target);
711 return target_examine_one(target);
714 /* Targets that correctly implement init + examine, i.e.
715 * no communication with target during init:
717 * XScale
719 int target_examine(void)
721 int retval = ERROR_OK;
722 struct target *target;
724 for (target = all_targets; target; target = target->next) {
725 /* defer examination, but don't skip it */
726 if (!target->tap->enabled) {
727 jtag_register_event_callback(jtag_enable_callback,
728 target);
729 continue;
732 retval = target_examine_one(target);
733 if (retval != ERROR_OK)
734 return retval;
736 return retval;
739 const char *target_type_name(struct target *target)
741 return target->type->name;
744 static int target_soft_reset_halt(struct target *target)
746 if (!target_was_examined(target)) {
747 LOG_ERROR("Target not examined yet");
748 return ERROR_FAIL;
750 if (!target->type->soft_reset_halt) {
751 LOG_ERROR("Target %s does not support soft_reset_halt",
752 target_name(target));
753 return ERROR_FAIL;
755 return target->type->soft_reset_halt(target);
759 * Downloads a target-specific native code algorithm to the target,
760 * and executes it. * Note that some targets may need to set up, enable,
761 * and tear down a breakpoint (hard or * soft) to detect algorithm
762 * termination, while others may support lower overhead schemes where
763 * soft breakpoints embedded in the algorithm automatically terminate the
764 * algorithm.
766 * @param target used to run the algorithm
767 * @param arch_info target-specific description of the algorithm.
769 int target_run_algorithm(struct target *target,
770 int num_mem_params, struct mem_param *mem_params,
771 int num_reg_params, struct reg_param *reg_param,
772 uint32_t entry_point, uint32_t exit_point,
773 int timeout_ms, void *arch_info)
775 int retval = ERROR_FAIL;
777 if (!target_was_examined(target)) {
778 LOG_ERROR("Target not examined yet");
779 goto done;
781 if (!target->type->run_algorithm) {
782 LOG_ERROR("Target type '%s' does not support %s",
783 target_type_name(target), __func__);
784 goto done;
787 target->running_alg = true;
788 retval = target->type->run_algorithm(target,
789 num_mem_params, mem_params,
790 num_reg_params, reg_param,
791 entry_point, exit_point, timeout_ms, arch_info);
792 target->running_alg = false;
794 done:
795 return retval;
799 * Downloads a target-specific native code algorithm to the target,
800 * executes and leaves it running.
802 * @param target used to run the algorithm
803 * @param arch_info target-specific description of the algorithm.
805 int target_start_algorithm(struct target *target,
806 int num_mem_params, struct mem_param *mem_params,
807 int num_reg_params, struct reg_param *reg_params,
808 uint32_t entry_point, uint32_t exit_point,
809 void *arch_info)
811 int retval = ERROR_FAIL;
813 if (!target_was_examined(target)) {
814 LOG_ERROR("Target not examined yet");
815 goto done;
817 if (!target->type->start_algorithm) {
818 LOG_ERROR("Target type '%s' does not support %s",
819 target_type_name(target), __func__);
820 goto done;
822 if (target->running_alg) {
823 LOG_ERROR("Target is already running an algorithm");
824 goto done;
827 target->running_alg = true;
828 retval = target->type->start_algorithm(target,
829 num_mem_params, mem_params,
830 num_reg_params, reg_params,
831 entry_point, exit_point, arch_info);
833 done:
834 return retval;
838 * Waits for an algorithm started with target_start_algorithm() to complete.
840 * @param target used to run the algorithm
841 * @param arch_info target-specific description of the algorithm.
843 int target_wait_algorithm(struct target *target,
844 int num_mem_params, struct mem_param *mem_params,
845 int num_reg_params, struct reg_param *reg_params,
846 uint32_t exit_point, int timeout_ms,
847 void *arch_info)
849 int retval = ERROR_FAIL;
851 if (!target->type->wait_algorithm) {
852 LOG_ERROR("Target type '%s' does not support %s",
853 target_type_name(target), __func__);
854 goto done;
856 if (!target->running_alg) {
857 LOG_ERROR("Target is not running an algorithm");
858 goto done;
861 retval = target->type->wait_algorithm(target,
862 num_mem_params, mem_params,
863 num_reg_params, reg_params,
864 exit_point, timeout_ms, arch_info);
865 if (retval != ERROR_TARGET_TIMEOUT)
866 target->running_alg = false;
868 done:
869 return retval;
873 * Executes a target-specific native code algorithm in the target.
874 * It differs from target_run_algorithm in that the algorithm is asynchronous.
875 * Because of this it requires an compliant algorithm:
876 * see contrib/loaders/flash/stm32f1x.S for example.
878 * @param target used to run the algorithm
881 int target_run_flash_async_algorithm(struct target *target,
882 const uint8_t *buffer, uint32_t count, int block_size,
883 int num_mem_params, struct mem_param *mem_params,
884 int num_reg_params, struct reg_param *reg_params,
885 uint32_t buffer_start, uint32_t buffer_size,
886 uint32_t entry_point, uint32_t exit_point, void *arch_info)
888 int retval;
889 int timeout = 0;
891 const uint8_t *buffer_orig = buffer;
893 /* Set up working area. First word is write pointer, second word is read pointer,
894 * rest is fifo data area. */
895 uint32_t wp_addr = buffer_start;
896 uint32_t rp_addr = buffer_start + 4;
897 uint32_t fifo_start_addr = buffer_start + 8;
898 uint32_t fifo_end_addr = buffer_start + buffer_size;
900 uint32_t wp = fifo_start_addr;
901 uint32_t rp = fifo_start_addr;
903 /* validate block_size is 2^n */
904 assert(!block_size || !(block_size & (block_size - 1)));
906 retval = target_write_u32(target, wp_addr, wp);
907 if (retval != ERROR_OK)
908 return retval;
909 retval = target_write_u32(target, rp_addr, rp);
910 if (retval != ERROR_OK)
911 return retval;
913 /* Start up algorithm on target and let it idle while writing the first chunk */
914 retval = target_start_algorithm(target, num_mem_params, mem_params,
915 num_reg_params, reg_params,
916 entry_point,
917 exit_point,
918 arch_info);
920 if (retval != ERROR_OK) {
921 LOG_ERROR("error starting target flash write algorithm");
922 return retval;
925 while (count > 0) {
927 retval = target_read_u32(target, rp_addr, &rp);
928 if (retval != ERROR_OK) {
929 LOG_ERROR("failed to get read pointer");
930 break;
933 LOG_DEBUG("offs 0x%zx count 0x%" PRIx32 " wp 0x%" PRIx32 " rp 0x%" PRIx32,
934 (size_t) (buffer - buffer_orig), count, wp, rp);
936 if (rp == 0) {
937 LOG_ERROR("flash write algorithm aborted by target");
938 retval = ERROR_FLASH_OPERATION_FAILED;
939 break;
942 if (((rp - fifo_start_addr) & (block_size - 1)) || rp < fifo_start_addr || rp >= fifo_end_addr) {
943 LOG_ERROR("corrupted fifo read pointer 0x%" PRIx32, rp);
944 break;
947 /* Count the number of bytes available in the fifo without
948 * crossing the wrap around. Make sure to not fill it completely,
949 * because that would make wp == rp and that's the empty condition. */
950 uint32_t thisrun_bytes;
951 if (rp > wp)
952 thisrun_bytes = rp - wp - block_size;
953 else if (rp > fifo_start_addr)
954 thisrun_bytes = fifo_end_addr - wp;
955 else
956 thisrun_bytes = fifo_end_addr - wp - block_size;
958 if (thisrun_bytes == 0) {
959 /* Throttle polling a bit if transfer is (much) faster than flash
960 * programming. The exact delay shouldn't matter as long as it's
961 * less than buffer size / flash speed. This is very unlikely to
962 * run when using high latency connections such as USB. */
963 alive_sleep(10);
965 /* to stop an infinite loop on some targets check and increment a timeout
966 * this issue was observed on a stellaris using the new ICDI interface */
967 if (timeout++ >= 500) {
968 LOG_ERROR("timeout waiting for algorithm, a target reset is recommended");
969 return ERROR_FLASH_OPERATION_FAILED;
971 continue;
974 /* reset our timeout */
975 timeout = 0;
977 /* Limit to the amount of data we actually want to write */
978 if (thisrun_bytes > count * block_size)
979 thisrun_bytes = count * block_size;
981 /* Write data to fifo */
982 retval = target_write_buffer(target, wp, thisrun_bytes, buffer);
983 if (retval != ERROR_OK)
984 break;
986 /* Update counters and wrap write pointer */
987 buffer += thisrun_bytes;
988 count -= thisrun_bytes / block_size;
989 wp += thisrun_bytes;
990 if (wp >= fifo_end_addr)
991 wp = fifo_start_addr;
993 /* Store updated write pointer to target */
994 retval = target_write_u32(target, wp_addr, wp);
995 if (retval != ERROR_OK)
996 break;
999 if (retval != ERROR_OK) {
1000 /* abort flash write algorithm on target */
1001 target_write_u32(target, wp_addr, 0);
1004 int retval2 = target_wait_algorithm(target, num_mem_params, mem_params,
1005 num_reg_params, reg_params,
1006 exit_point,
1007 10000,
1008 arch_info);
1010 if (retval2 != ERROR_OK) {
1011 LOG_ERROR("error waiting for target flash write algorithm");
1012 retval = retval2;
1015 return retval;
1018 int target_read_memory(struct target *target,
1019 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
1021 if (!target_was_examined(target)) {
1022 LOG_ERROR("Target not examined yet");
1023 return ERROR_FAIL;
1025 if (!target->type->read_memory) {
1026 LOG_ERROR("Target %s doesn't support read_memory", target_name(target));
1027 return ERROR_FAIL;
1029 return target->type->read_memory(target, address, size, count, buffer);
1032 int target_read_phys_memory(struct target *target,
1033 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
1035 if (!target_was_examined(target)) {
1036 LOG_ERROR("Target not examined yet");
1037 return ERROR_FAIL;
1039 if (!target->type->read_phys_memory) {
1040 LOG_ERROR("Target %s doesn't support read_phys_memory", target_name(target));
1041 return ERROR_FAIL;
1043 return target->type->read_phys_memory(target, address, size, count, buffer);
1046 int target_write_memory(struct target *target,
1047 uint32_t address, uint32_t size, uint32_t count, const uint8_t *buffer)
1049 if (!target_was_examined(target)) {
1050 LOG_ERROR("Target not examined yet");
1051 return ERROR_FAIL;
1053 if (!target->type->write_memory) {
1054 LOG_ERROR("Target %s doesn't support write_memory", target_name(target));
1055 return ERROR_FAIL;
1057 return target->type->write_memory(target, address, size, count, buffer);
1060 int target_write_phys_memory(struct target *target,
1061 uint32_t address, uint32_t size, uint32_t count, const uint8_t *buffer)
1063 if (!target_was_examined(target)) {
1064 LOG_ERROR("Target not examined yet");
1065 return ERROR_FAIL;
1067 if (!target->type->write_phys_memory) {
1068 LOG_ERROR("Target %s doesn't support write_phys_memory", target_name(target));
1069 return ERROR_FAIL;
1071 return target->type->write_phys_memory(target, address, size, count, buffer);
1074 int target_add_breakpoint(struct target *target,
1075 struct breakpoint *breakpoint)
1077 if ((target->state != TARGET_HALTED) && (breakpoint->type != BKPT_HARD)) {
1078 LOG_WARNING("target %s is not halted", target_name(target));
1079 return ERROR_TARGET_NOT_HALTED;
1081 return target->type->add_breakpoint(target, breakpoint);
1084 int target_add_context_breakpoint(struct target *target,
1085 struct breakpoint *breakpoint)
1087 if (target->state != TARGET_HALTED) {
1088 LOG_WARNING("target %s is not halted", target_name(target));
1089 return ERROR_TARGET_NOT_HALTED;
1091 return target->type->add_context_breakpoint(target, breakpoint);
1094 int target_add_hybrid_breakpoint(struct target *target,
1095 struct breakpoint *breakpoint)
1097 if (target->state != TARGET_HALTED) {
1098 LOG_WARNING("target %s is not halted", target_name(target));
1099 return ERROR_TARGET_NOT_HALTED;
1101 return target->type->add_hybrid_breakpoint(target, breakpoint);
1104 int target_remove_breakpoint(struct target *target,
1105 struct breakpoint *breakpoint)
1107 return target->type->remove_breakpoint(target, breakpoint);
1110 int target_add_watchpoint(struct target *target,
1111 struct watchpoint *watchpoint)
1113 if (target->state != TARGET_HALTED) {
1114 LOG_WARNING("target %s is not halted", target_name(target));
1115 return ERROR_TARGET_NOT_HALTED;
1117 return target->type->add_watchpoint(target, watchpoint);
1119 int target_remove_watchpoint(struct target *target,
1120 struct watchpoint *watchpoint)
1122 return target->type->remove_watchpoint(target, watchpoint);
1124 int target_hit_watchpoint(struct target *target,
1125 struct watchpoint **hit_watchpoint)
1127 if (target->state != TARGET_HALTED) {
1128 LOG_WARNING("target %s is not halted", target->cmd_name);
1129 return ERROR_TARGET_NOT_HALTED;
1132 if (target->type->hit_watchpoint == NULL) {
1133 /* For backward compatible, if hit_watchpoint is not implemented,
1134 * return ERROR_FAIL such that gdb_server will not take the nonsense
1135 * information. */
1136 return ERROR_FAIL;
1139 return target->type->hit_watchpoint(target, hit_watchpoint);
1142 int target_get_gdb_reg_list(struct target *target,
1143 struct reg **reg_list[], int *reg_list_size,
1144 enum target_register_class reg_class)
1146 return target->type->get_gdb_reg_list(target, reg_list, reg_list_size, reg_class);
1148 int target_step(struct target *target,
1149 int current, uint32_t address, int handle_breakpoints)
1151 return target->type->step(target, current, address, handle_breakpoints);
1154 int target_get_gdb_fileio_info(struct target *target, struct gdb_fileio_info *fileio_info)
1156 if (target->state != TARGET_HALTED) {
1157 LOG_WARNING("target %s is not halted", target->cmd_name);
1158 return ERROR_TARGET_NOT_HALTED;
1160 return target->type->get_gdb_fileio_info(target, fileio_info);
1163 int target_gdb_fileio_end(struct target *target, int retcode, int fileio_errno, bool ctrl_c)
1165 if (target->state != TARGET_HALTED) {
1166 LOG_WARNING("target %s is not halted", target->cmd_name);
1167 return ERROR_TARGET_NOT_HALTED;
1169 return target->type->gdb_fileio_end(target, retcode, fileio_errno, ctrl_c);
1172 int target_profiling(struct target *target, uint32_t *samples,
1173 uint32_t max_num_samples, uint32_t *num_samples, uint32_t seconds)
1175 if (target->state != TARGET_HALTED) {
1176 LOG_WARNING("target %s is not halted", target->cmd_name);
1177 return ERROR_TARGET_NOT_HALTED;
1179 return target->type->profiling(target, samples, max_num_samples,
1180 num_samples, seconds);
1184 * Reset the @c examined flag for the given target.
1185 * Pure paranoia -- targets are zeroed on allocation.
1187 static void target_reset_examined(struct target *target)
1189 target->examined = false;
1192 static int handle_target(void *priv);
1194 static int target_init_one(struct command_context *cmd_ctx,
1195 struct target *target)
1197 target_reset_examined(target);
1199 struct target_type *type = target->type;
1200 if (type->examine == NULL)
1201 type->examine = default_examine;
1203 if (type->check_reset == NULL)
1204 type->check_reset = default_check_reset;
1206 assert(type->init_target != NULL);
1208 int retval = type->init_target(cmd_ctx, target);
1209 if (ERROR_OK != retval) {
1210 LOG_ERROR("target '%s' init failed", target_name(target));
1211 return retval;
1214 /* Sanity-check MMU support ... stub in what we must, to help
1215 * implement it in stages, but warn if we need to do so.
1217 if (type->mmu) {
1218 if (type->virt2phys == NULL) {
1219 LOG_ERROR("type '%s' is missing virt2phys", type->name);
1220 type->virt2phys = identity_virt2phys;
1222 } else {
1223 /* Make sure no-MMU targets all behave the same: make no
1224 * distinction between physical and virtual addresses, and
1225 * ensure that virt2phys() is always an identity mapping.
1227 if (type->write_phys_memory || type->read_phys_memory || type->virt2phys)
1228 LOG_WARNING("type '%s' has bad MMU hooks", type->name);
1230 type->mmu = no_mmu;
1231 type->write_phys_memory = type->write_memory;
1232 type->read_phys_memory = type->read_memory;
1233 type->virt2phys = identity_virt2phys;
1236 if (target->type->read_buffer == NULL)
1237 target->type->read_buffer = target_read_buffer_default;
1239 if (target->type->write_buffer == NULL)
1240 target->type->write_buffer = target_write_buffer_default;
1242 if (target->type->get_gdb_fileio_info == NULL)
1243 target->type->get_gdb_fileio_info = target_get_gdb_fileio_info_default;
1245 if (target->type->gdb_fileio_end == NULL)
1246 target->type->gdb_fileio_end = target_gdb_fileio_end_default;
1248 if (target->type->profiling == NULL)
1249 target->type->profiling = target_profiling_default;
1251 return ERROR_OK;
1254 static int target_init(struct command_context *cmd_ctx)
1256 struct target *target;
1257 int retval;
1259 for (target = all_targets; target; target = target->next) {
1260 retval = target_init_one(cmd_ctx, target);
1261 if (ERROR_OK != retval)
1262 return retval;
1265 if (!all_targets)
1266 return ERROR_OK;
1268 retval = target_register_user_commands(cmd_ctx);
1269 if (ERROR_OK != retval)
1270 return retval;
1272 retval = target_register_timer_callback(&handle_target,
1273 polling_interval, 1, cmd_ctx->interp);
1274 if (ERROR_OK != retval)
1275 return retval;
1277 return ERROR_OK;
1280 COMMAND_HANDLER(handle_target_init_command)
1282 int retval;
1284 if (CMD_ARGC != 0)
1285 return ERROR_COMMAND_SYNTAX_ERROR;
1287 static bool target_initialized;
1288 if (target_initialized) {
1289 LOG_INFO("'target init' has already been called");
1290 return ERROR_OK;
1292 target_initialized = true;
1294 retval = command_run_line(CMD_CTX, "init_targets");
1295 if (ERROR_OK != retval)
1296 return retval;
1298 retval = command_run_line(CMD_CTX, "init_target_events");
1299 if (ERROR_OK != retval)
1300 return retval;
1302 retval = command_run_line(CMD_CTX, "init_board");
1303 if (ERROR_OK != retval)
1304 return retval;
1306 LOG_DEBUG("Initializing targets...");
1307 return target_init(CMD_CTX);
1310 int target_register_event_callback(int (*callback)(struct target *target,
1311 enum target_event event, void *priv), void *priv)
1313 struct target_event_callback **callbacks_p = &target_event_callbacks;
1315 if (callback == NULL)
1316 return ERROR_COMMAND_SYNTAX_ERROR;
1318 if (*callbacks_p) {
1319 while ((*callbacks_p)->next)
1320 callbacks_p = &((*callbacks_p)->next);
1321 callbacks_p = &((*callbacks_p)->next);
1324 (*callbacks_p) = malloc(sizeof(struct target_event_callback));
1325 (*callbacks_p)->callback = callback;
1326 (*callbacks_p)->priv = priv;
1327 (*callbacks_p)->next = NULL;
1329 return ERROR_OK;
1332 int target_register_reset_callback(int (*callback)(struct target *target,
1333 enum target_reset_mode reset_mode, void *priv), void *priv)
1335 struct target_reset_callback *entry;
1337 if (callback == NULL)
1338 return ERROR_COMMAND_SYNTAX_ERROR;
1340 entry = malloc(sizeof(struct target_reset_callback));
1341 if (entry == NULL) {
1342 LOG_ERROR("error allocating buffer for reset callback entry");
1343 return ERROR_COMMAND_SYNTAX_ERROR;
1346 entry->callback = callback;
1347 entry->priv = priv;
1348 list_add(&entry->list, &target_reset_callback_list);
1351 return ERROR_OK;
1354 int target_register_trace_callback(int (*callback)(struct target *target,
1355 size_t len, uint8_t *data, void *priv), void *priv)
1357 struct target_trace_callback *entry;
1359 if (callback == NULL)
1360 return ERROR_COMMAND_SYNTAX_ERROR;
1362 entry = malloc(sizeof(struct target_trace_callback));
1363 if (entry == NULL) {
1364 LOG_ERROR("error allocating buffer for trace callback entry");
1365 return ERROR_COMMAND_SYNTAX_ERROR;
1368 entry->callback = callback;
1369 entry->priv = priv;
1370 list_add(&entry->list, &target_trace_callback_list);
1373 return ERROR_OK;
1376 int target_register_timer_callback(int (*callback)(void *priv), int time_ms, int periodic, void *priv)
1378 struct target_timer_callback **callbacks_p = &target_timer_callbacks;
1379 struct timeval now;
1381 if (callback == NULL)
1382 return ERROR_COMMAND_SYNTAX_ERROR;
1384 if (*callbacks_p) {
1385 while ((*callbacks_p)->next)
1386 callbacks_p = &((*callbacks_p)->next);
1387 callbacks_p = &((*callbacks_p)->next);
1390 (*callbacks_p) = malloc(sizeof(struct target_timer_callback));
1391 (*callbacks_p)->callback = callback;
1392 (*callbacks_p)->periodic = periodic;
1393 (*callbacks_p)->time_ms = time_ms;
1394 (*callbacks_p)->removed = false;
1396 gettimeofday(&now, NULL);
1397 (*callbacks_p)->when.tv_usec = now.tv_usec + (time_ms % 1000) * 1000;
1398 time_ms -= (time_ms % 1000);
1399 (*callbacks_p)->when.tv_sec = now.tv_sec + (time_ms / 1000);
1400 if ((*callbacks_p)->when.tv_usec > 1000000) {
1401 (*callbacks_p)->when.tv_usec = (*callbacks_p)->when.tv_usec - 1000000;
1402 (*callbacks_p)->when.tv_sec += 1;
1405 (*callbacks_p)->priv = priv;
1406 (*callbacks_p)->next = NULL;
1408 return ERROR_OK;
1411 int target_unregister_event_callback(int (*callback)(struct target *target,
1412 enum target_event event, void *priv), void *priv)
1414 struct target_event_callback **p = &target_event_callbacks;
1415 struct target_event_callback *c = target_event_callbacks;
1417 if (callback == NULL)
1418 return ERROR_COMMAND_SYNTAX_ERROR;
1420 while (c) {
1421 struct target_event_callback *next = c->next;
1422 if ((c->callback == callback) && (c->priv == priv)) {
1423 *p = next;
1424 free(c);
1425 return ERROR_OK;
1426 } else
1427 p = &(c->next);
1428 c = next;
1431 return ERROR_OK;
1434 int target_unregister_reset_callback(int (*callback)(struct target *target,
1435 enum target_reset_mode reset_mode, void *priv), void *priv)
1437 struct target_reset_callback *entry;
1439 if (callback == NULL)
1440 return ERROR_COMMAND_SYNTAX_ERROR;
1442 list_for_each_entry(entry, &target_reset_callback_list, list) {
1443 if (entry->callback == callback && entry->priv == priv) {
1444 list_del(&entry->list);
1445 free(entry);
1446 break;
1450 return ERROR_OK;
1453 int target_unregister_trace_callback(int (*callback)(struct target *target,
1454 size_t len, uint8_t *data, void *priv), void *priv)
1456 struct target_trace_callback *entry;
1458 if (callback == NULL)
1459 return ERROR_COMMAND_SYNTAX_ERROR;
1461 list_for_each_entry(entry, &target_trace_callback_list, list) {
1462 if (entry->callback == callback && entry->priv == priv) {
1463 list_del(&entry->list);
1464 free(entry);
1465 break;
1469 return ERROR_OK;
1472 int target_unregister_timer_callback(int (*callback)(void *priv), void *priv)
1474 if (callback == NULL)
1475 return ERROR_COMMAND_SYNTAX_ERROR;
1477 for (struct target_timer_callback *c = target_timer_callbacks;
1478 c; c = c->next) {
1479 if ((c->callback == callback) && (c->priv == priv)) {
1480 c->removed = true;
1481 return ERROR_OK;
1485 return ERROR_FAIL;
1488 int target_call_event_callbacks(struct target *target, enum target_event event)
1490 struct target_event_callback *callback = target_event_callbacks;
1491 struct target_event_callback *next_callback;
1493 if (event == TARGET_EVENT_HALTED) {
1494 /* execute early halted first */
1495 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
1498 LOG_DEBUG("target event %i (%s)", event,
1499 Jim_Nvp_value2name_simple(nvp_target_event, event)->name);
1501 target_handle_event(target, event);
1503 while (callback) {
1504 next_callback = callback->next;
1505 callback->callback(target, event, callback->priv);
1506 callback = next_callback;
1509 return ERROR_OK;
1512 int target_call_reset_callbacks(struct target *target, enum target_reset_mode reset_mode)
1514 struct target_reset_callback *callback;
1516 LOG_DEBUG("target reset %i (%s)", reset_mode,
1517 Jim_Nvp_value2name_simple(nvp_reset_modes, reset_mode)->name);
1519 list_for_each_entry(callback, &target_reset_callback_list, list)
1520 callback->callback(target, reset_mode, callback->priv);
1522 return ERROR_OK;
1525 int target_call_trace_callbacks(struct target *target, size_t len, uint8_t *data)
1527 struct target_trace_callback *callback;
1529 list_for_each_entry(callback, &target_trace_callback_list, list)
1530 callback->callback(target, len, data, callback->priv);
1532 return ERROR_OK;
1535 static int target_timer_callback_periodic_restart(
1536 struct target_timer_callback *cb, struct timeval *now)
1538 int time_ms = cb->time_ms;
1539 cb->when.tv_usec = now->tv_usec + (time_ms % 1000) * 1000;
1540 time_ms -= (time_ms % 1000);
1541 cb->when.tv_sec = now->tv_sec + time_ms / 1000;
1542 if (cb->when.tv_usec > 1000000) {
1543 cb->when.tv_usec = cb->when.tv_usec - 1000000;
1544 cb->when.tv_sec += 1;
1546 return ERROR_OK;
1549 static int target_call_timer_callback(struct target_timer_callback *cb,
1550 struct timeval *now)
1552 cb->callback(cb->priv);
1554 if (cb->periodic)
1555 return target_timer_callback_periodic_restart(cb, now);
1557 return target_unregister_timer_callback(cb->callback, cb->priv);
1560 static int target_call_timer_callbacks_check_time(int checktime)
1562 static bool callback_processing;
1564 /* Do not allow nesting */
1565 if (callback_processing)
1566 return ERROR_OK;
1568 callback_processing = true;
1570 keep_alive();
1572 struct timeval now;
1573 gettimeofday(&now, NULL);
1575 /* Store an address of the place containing a pointer to the
1576 * next item; initially, that's a standalone "root of the
1577 * list" variable. */
1578 struct target_timer_callback **callback = &target_timer_callbacks;
1579 while (*callback) {
1580 if ((*callback)->removed) {
1581 struct target_timer_callback *p = *callback;
1582 *callback = (*callback)->next;
1583 free(p);
1584 continue;
1587 bool call_it = (*callback)->callback &&
1588 ((!checktime && (*callback)->periodic) ||
1589 now.tv_sec > (*callback)->when.tv_sec ||
1590 (now.tv_sec == (*callback)->when.tv_sec &&
1591 now.tv_usec >= (*callback)->when.tv_usec));
1593 if (call_it)
1594 target_call_timer_callback(*callback, &now);
1596 callback = &(*callback)->next;
1599 callback_processing = false;
1600 return ERROR_OK;
1603 int target_call_timer_callbacks(void)
1605 return target_call_timer_callbacks_check_time(1);
1608 /* invoke periodic callbacks immediately */
1609 int target_call_timer_callbacks_now(void)
1611 return target_call_timer_callbacks_check_time(0);
1614 /* Prints the working area layout for debug purposes */
1615 static void print_wa_layout(struct target *target)
1617 struct working_area *c = target->working_areas;
1619 while (c) {
1620 LOG_DEBUG("%c%c 0x%08"PRIx32"-0x%08"PRIx32" (%"PRIu32" bytes)",
1621 c->backup ? 'b' : ' ', c->free ? ' ' : '*',
1622 c->address, c->address + c->size - 1, c->size);
1623 c = c->next;
1627 /* Reduce area to size bytes, create a new free area from the remaining bytes, if any. */
1628 static void target_split_working_area(struct working_area *area, uint32_t size)
1630 assert(area->free); /* Shouldn't split an allocated area */
1631 assert(size <= area->size); /* Caller should guarantee this */
1633 /* Split only if not already the right size */
1634 if (size < area->size) {
1635 struct working_area *new_wa = malloc(sizeof(*new_wa));
1637 if (new_wa == NULL)
1638 return;
1640 new_wa->next = area->next;
1641 new_wa->size = area->size - size;
1642 new_wa->address = area->address + size;
1643 new_wa->backup = NULL;
1644 new_wa->user = NULL;
1645 new_wa->free = true;
1647 area->next = new_wa;
1648 area->size = size;
1650 /* If backup memory was allocated to this area, it has the wrong size
1651 * now so free it and it will be reallocated if/when needed */
1652 if (area->backup) {
1653 free(area->backup);
1654 area->backup = NULL;
1659 /* Merge all adjacent free areas into one */
1660 static void target_merge_working_areas(struct target *target)
1662 struct working_area *c = target->working_areas;
1664 while (c && c->next) {
1665 assert(c->next->address == c->address + c->size); /* This is an invariant */
1667 /* Find two adjacent free areas */
1668 if (c->free && c->next->free) {
1669 /* Merge the last into the first */
1670 c->size += c->next->size;
1672 /* Remove the last */
1673 struct working_area *to_be_freed = c->next;
1674 c->next = c->next->next;
1675 if (to_be_freed->backup)
1676 free(to_be_freed->backup);
1677 free(to_be_freed);
1679 /* If backup memory was allocated to the remaining area, it's has
1680 * the wrong size now */
1681 if (c->backup) {
1682 free(c->backup);
1683 c->backup = NULL;
1685 } else {
1686 c = c->next;
1691 int target_alloc_working_area_try(struct target *target, uint32_t size, struct working_area **area)
1693 /* Reevaluate working area address based on MMU state*/
1694 if (target->working_areas == NULL) {
1695 int retval;
1696 int enabled;
1698 retval = target->type->mmu(target, &enabled);
1699 if (retval != ERROR_OK)
1700 return retval;
1702 if (!enabled) {
1703 if (target->working_area_phys_spec) {
1704 LOG_DEBUG("MMU disabled, using physical "
1705 "address for working memory 0x%08"PRIx32,
1706 target->working_area_phys);
1707 target->working_area = target->working_area_phys;
1708 } else {
1709 LOG_ERROR("No working memory available. "
1710 "Specify -work-area-phys to target.");
1711 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1713 } else {
1714 if (target->working_area_virt_spec) {
1715 LOG_DEBUG("MMU enabled, using virtual "
1716 "address for working memory 0x%08"PRIx32,
1717 target->working_area_virt);
1718 target->working_area = target->working_area_virt;
1719 } else {
1720 LOG_ERROR("No working memory available. "
1721 "Specify -work-area-virt to target.");
1722 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1726 /* Set up initial working area on first call */
1727 struct working_area *new_wa = malloc(sizeof(*new_wa));
1728 if (new_wa) {
1729 new_wa->next = NULL;
1730 new_wa->size = target->working_area_size & ~3UL; /* 4-byte align */
1731 new_wa->address = target->working_area;
1732 new_wa->backup = NULL;
1733 new_wa->user = NULL;
1734 new_wa->free = true;
1737 target->working_areas = new_wa;
1740 /* only allocate multiples of 4 byte */
1741 if (size % 4)
1742 size = (size + 3) & (~3UL);
1744 struct working_area *c = target->working_areas;
1746 /* Find the first large enough working area */
1747 while (c) {
1748 if (c->free && c->size >= size)
1749 break;
1750 c = c->next;
1753 if (c == NULL)
1754 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1756 /* Split the working area into the requested size */
1757 target_split_working_area(c, size);
1759 LOG_DEBUG("allocated new working area of %"PRIu32" bytes at address 0x%08"PRIx32, size, c->address);
1761 if (target->backup_working_area) {
1762 if (c->backup == NULL) {
1763 c->backup = malloc(c->size);
1764 if (c->backup == NULL)
1765 return ERROR_FAIL;
1768 int retval = target_read_memory(target, c->address, 4, c->size / 4, c->backup);
1769 if (retval != ERROR_OK)
1770 return retval;
1773 /* mark as used, and return the new (reused) area */
1774 c->free = false;
1775 *area = c;
1777 /* user pointer */
1778 c->user = area;
1780 print_wa_layout(target);
1782 return ERROR_OK;
1785 int target_alloc_working_area(struct target *target, uint32_t size, struct working_area **area)
1787 int retval;
1789 retval = target_alloc_working_area_try(target, size, area);
1790 if (retval == ERROR_TARGET_RESOURCE_NOT_AVAILABLE)
1791 LOG_WARNING("not enough working area available(requested %"PRIu32")", size);
1792 return retval;
1796 static int target_restore_working_area(struct target *target, struct working_area *area)
1798 int retval = ERROR_OK;
1800 if (target->backup_working_area && area->backup != NULL) {
1801 retval = target_write_memory(target, area->address, 4, area->size / 4, area->backup);
1802 if (retval != ERROR_OK)
1803 LOG_ERROR("failed to restore %"PRIu32" bytes of working area at address 0x%08"PRIx32,
1804 area->size, area->address);
1807 return retval;
1810 /* Restore the area's backup memory, if any, and return the area to the allocation pool */
1811 static int target_free_working_area_restore(struct target *target, struct working_area *area, int restore)
1813 int retval = ERROR_OK;
1815 if (area->free)
1816 return retval;
1818 if (restore) {
1819 retval = target_restore_working_area(target, area);
1820 /* REVISIT: Perhaps the area should be freed even if restoring fails. */
1821 if (retval != ERROR_OK)
1822 return retval;
1825 area->free = true;
1827 LOG_DEBUG("freed %"PRIu32" bytes of working area at address 0x%08"PRIx32,
1828 area->size, area->address);
1830 /* mark user pointer invalid */
1831 /* TODO: Is this really safe? It points to some previous caller's memory.
1832 * How could we know that the area pointer is still in that place and not
1833 * some other vital data? What's the purpose of this, anyway? */
1834 *area->user = NULL;
1835 area->user = NULL;
1837 target_merge_working_areas(target);
1839 print_wa_layout(target);
1841 return retval;
1844 int target_free_working_area(struct target *target, struct working_area *area)
1846 return target_free_working_area_restore(target, area, 1);
1849 void target_quit(void)
1851 struct target_event_callback *pe = target_event_callbacks;
1852 while (pe) {
1853 struct target_event_callback *t = pe->next;
1854 free(pe);
1855 pe = t;
1857 target_event_callbacks = NULL;
1859 struct target_timer_callback *pt = target_timer_callbacks;
1860 while (pt) {
1861 struct target_timer_callback *t = pt->next;
1862 free(pt);
1863 pt = t;
1865 target_timer_callbacks = NULL;
1867 for (struct target *target = all_targets;
1868 target; target = target->next) {
1869 if (target->type->deinit_target)
1870 target->type->deinit_target(target);
1874 /* free resources and restore memory, if restoring memory fails,
1875 * free up resources anyway
1877 static void target_free_all_working_areas_restore(struct target *target, int restore)
1879 struct working_area *c = target->working_areas;
1881 LOG_DEBUG("freeing all working areas");
1883 /* Loop through all areas, restoring the allocated ones and marking them as free */
1884 while (c) {
1885 if (!c->free) {
1886 if (restore)
1887 target_restore_working_area(target, c);
1888 c->free = true;
1889 *c->user = NULL; /* Same as above */
1890 c->user = NULL;
1892 c = c->next;
1895 /* Run a merge pass to combine all areas into one */
1896 target_merge_working_areas(target);
1898 print_wa_layout(target);
1901 void target_free_all_working_areas(struct target *target)
1903 target_free_all_working_areas_restore(target, 1);
1906 /* Find the largest number of bytes that can be allocated */
1907 uint32_t target_get_working_area_avail(struct target *target)
1909 struct working_area *c = target->working_areas;
1910 uint32_t max_size = 0;
1912 if (c == NULL)
1913 return target->working_area_size;
1915 while (c) {
1916 if (c->free && max_size < c->size)
1917 max_size = c->size;
1919 c = c->next;
1922 return max_size;
1925 int target_arch_state(struct target *target)
1927 int retval;
1928 if (target == NULL) {
1929 LOG_USER("No target has been configured");
1930 return ERROR_OK;
1933 LOG_USER("%s: target state: %s", target_name(target),
1934 target_state_name(target));
1936 if (target->state != TARGET_HALTED)
1937 return ERROR_OK;
1939 retval = target->type->arch_state(target);
1940 return retval;
1943 static int target_get_gdb_fileio_info_default(struct target *target,
1944 struct gdb_fileio_info *fileio_info)
1946 /* If target does not support semi-hosting function, target
1947 has no need to provide .get_gdb_fileio_info callback.
1948 It just return ERROR_FAIL and gdb_server will return "Txx"
1949 as target halted every time. */
1950 return ERROR_FAIL;
1953 static int target_gdb_fileio_end_default(struct target *target,
1954 int retcode, int fileio_errno, bool ctrl_c)
1956 return ERROR_OK;
1959 static int target_profiling_default(struct target *target, uint32_t *samples,
1960 uint32_t max_num_samples, uint32_t *num_samples, uint32_t seconds)
1962 struct timeval timeout, now;
1964 gettimeofday(&timeout, NULL);
1965 timeval_add_time(&timeout, seconds, 0);
1967 LOG_INFO("Starting profiling. Halting and resuming the"
1968 " target as often as we can...");
1970 uint32_t sample_count = 0;
1971 /* hopefully it is safe to cache! We want to stop/restart as quickly as possible. */
1972 struct reg *reg = register_get_by_name(target->reg_cache, "pc", 1);
1974 int retval = ERROR_OK;
1975 for (;;) {
1976 target_poll(target);
1977 if (target->state == TARGET_HALTED) {
1978 uint32_t t = buf_get_u32(reg->value, 0, 32);
1979 samples[sample_count++] = t;
1980 /* current pc, addr = 0, do not handle breakpoints, not debugging */
1981 retval = target_resume(target, 1, 0, 0, 0);
1982 target_poll(target);
1983 alive_sleep(10); /* sleep 10ms, i.e. <100 samples/second. */
1984 } else if (target->state == TARGET_RUNNING) {
1985 /* We want to quickly sample the PC. */
1986 retval = target_halt(target);
1987 } else {
1988 LOG_INFO("Target not halted or running");
1989 retval = ERROR_OK;
1990 break;
1993 if (retval != ERROR_OK)
1994 break;
1996 gettimeofday(&now, NULL);
1997 if ((sample_count >= max_num_samples) ||
1998 ((now.tv_sec >= timeout.tv_sec) && (now.tv_usec >= timeout.tv_usec))) {
1999 LOG_INFO("Profiling completed. %" PRIu32 " samples.", sample_count);
2000 break;
2004 *num_samples = sample_count;
2005 return retval;
2008 /* Single aligned words are guaranteed to use 16 or 32 bit access
2009 * mode respectively, otherwise data is handled as quickly as
2010 * possible
2012 int target_write_buffer(struct target *target, uint32_t address, uint32_t size, const uint8_t *buffer)
2014 LOG_DEBUG("writing buffer of %i byte at 0x%8.8x",
2015 (int)size, (unsigned)address);
2017 if (!target_was_examined(target)) {
2018 LOG_ERROR("Target not examined yet");
2019 return ERROR_FAIL;
2022 if (size == 0)
2023 return ERROR_OK;
2025 if ((address + size - 1) < address) {
2026 /* GDB can request this when e.g. PC is 0xfffffffc*/
2027 LOG_ERROR("address + size wrapped(0x%08x, 0x%08x)",
2028 (unsigned)address,
2029 (unsigned)size);
2030 return ERROR_FAIL;
2033 return target->type->write_buffer(target, address, size, buffer);
2036 static int target_write_buffer_default(struct target *target, uint32_t address, uint32_t count, const uint8_t *buffer)
2038 uint32_t size;
2040 /* Align up to maximum 4 bytes. The loop condition makes sure the next pass
2041 * will have something to do with the size we leave to it. */
2042 for (size = 1; size < 4 && count >= size * 2 + (address & size); size *= 2) {
2043 if (address & size) {
2044 int retval = target_write_memory(target, address, size, 1, buffer);
2045 if (retval != ERROR_OK)
2046 return retval;
2047 address += size;
2048 count -= size;
2049 buffer += size;
2053 /* Write the data with as large access size as possible. */
2054 for (; size > 0; size /= 2) {
2055 uint32_t aligned = count - count % size;
2056 if (aligned > 0) {
2057 int retval = target_write_memory(target, address, size, aligned / size, buffer);
2058 if (retval != ERROR_OK)
2059 return retval;
2060 address += aligned;
2061 count -= aligned;
2062 buffer += aligned;
2066 return ERROR_OK;
2069 /* Single aligned words are guaranteed to use 16 or 32 bit access
2070 * mode respectively, otherwise data is handled as quickly as
2071 * possible
2073 int target_read_buffer(struct target *target, uint32_t address, uint32_t size, uint8_t *buffer)
2075 LOG_DEBUG("reading buffer of %i byte at 0x%8.8x",
2076 (int)size, (unsigned)address);
2078 if (!target_was_examined(target)) {
2079 LOG_ERROR("Target not examined yet");
2080 return ERROR_FAIL;
2083 if (size == 0)
2084 return ERROR_OK;
2086 if ((address + size - 1) < address) {
2087 /* GDB can request this when e.g. PC is 0xfffffffc*/
2088 LOG_ERROR("address + size wrapped(0x%08" PRIx32 ", 0x%08" PRIx32 ")",
2089 address,
2090 size);
2091 return ERROR_FAIL;
2094 return target->type->read_buffer(target, address, size, buffer);
2097 static int target_read_buffer_default(struct target *target, uint32_t address, uint32_t count, uint8_t *buffer)
2099 uint32_t size;
2101 /* Align up to maximum 4 bytes. The loop condition makes sure the next pass
2102 * will have something to do with the size we leave to it. */
2103 for (size = 1; size < 4 && count >= size * 2 + (address & size); size *= 2) {
2104 if (address & size) {
2105 int retval = target_read_memory(target, address, size, 1, buffer);
2106 if (retval != ERROR_OK)
2107 return retval;
2108 address += size;
2109 count -= size;
2110 buffer += size;
2114 /* Read the data with as large access size as possible. */
2115 for (; size > 0; size /= 2) {
2116 uint32_t aligned = count - count % size;
2117 if (aligned > 0) {
2118 int retval = target_read_memory(target, address, size, aligned / size, buffer);
2119 if (retval != ERROR_OK)
2120 return retval;
2121 address += aligned;
2122 count -= aligned;
2123 buffer += aligned;
2127 return ERROR_OK;
2130 int target_checksum_memory(struct target *target, uint32_t address, uint32_t size, uint32_t* crc)
2132 uint8_t *buffer;
2133 int retval;
2134 uint32_t i;
2135 uint32_t checksum = 0;
2136 if (!target_was_examined(target)) {
2137 LOG_ERROR("Target not examined yet");
2138 return ERROR_FAIL;
2141 retval = target->type->checksum_memory(target, address, size, &checksum);
2142 if (retval != ERROR_OK) {
2143 buffer = malloc(size);
2144 if (buffer == NULL) {
2145 LOG_ERROR("error allocating buffer for section (%d bytes)", (int)size);
2146 return ERROR_COMMAND_SYNTAX_ERROR;
2148 retval = target_read_buffer(target, address, size, buffer);
2149 if (retval != ERROR_OK) {
2150 free(buffer);
2151 return retval;
2154 /* convert to target endianness */
2155 for (i = 0; i < (size/sizeof(uint32_t)); i++) {
2156 uint32_t target_data;
2157 target_data = target_buffer_get_u32(target, &buffer[i*sizeof(uint32_t)]);
2158 target_buffer_set_u32(target, &buffer[i*sizeof(uint32_t)], target_data);
2161 retval = image_calculate_checksum(buffer, size, &checksum);
2162 free(buffer);
2165 *crc = checksum;
2167 return retval;
2170 int target_blank_check_memory(struct target *target, uint32_t address, uint32_t size, uint32_t* blank)
2172 int retval;
2173 if (!target_was_examined(target)) {
2174 LOG_ERROR("Target not examined yet");
2175 return ERROR_FAIL;
2178 if (target->type->blank_check_memory == 0)
2179 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
2181 retval = target->type->blank_check_memory(target, address, size, blank);
2183 return retval;
2186 int target_read_u64(struct target *target, uint64_t address, uint64_t *value)
2188 uint8_t value_buf[8];
2189 if (!target_was_examined(target)) {
2190 LOG_ERROR("Target not examined yet");
2191 return ERROR_FAIL;
2194 int retval = target_read_memory(target, address, 8, 1, value_buf);
2196 if (retval == ERROR_OK) {
2197 *value = target_buffer_get_u64(target, value_buf);
2198 LOG_DEBUG("address: 0x%" PRIx64 ", value: 0x%16.16" PRIx64 "",
2199 address,
2200 *value);
2201 } else {
2202 *value = 0x0;
2203 LOG_DEBUG("address: 0x%" PRIx64 " failed",
2204 address);
2207 return retval;
2210 int target_read_u32(struct target *target, uint32_t address, uint32_t *value)
2212 uint8_t value_buf[4];
2213 if (!target_was_examined(target)) {
2214 LOG_ERROR("Target not examined yet");
2215 return ERROR_FAIL;
2218 int retval = target_read_memory(target, address, 4, 1, value_buf);
2220 if (retval == ERROR_OK) {
2221 *value = target_buffer_get_u32(target, value_buf);
2222 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%8.8" PRIx32 "",
2223 address,
2224 *value);
2225 } else {
2226 *value = 0x0;
2227 LOG_DEBUG("address: 0x%8.8" PRIx32 " failed",
2228 address);
2231 return retval;
2234 int target_read_u16(struct target *target, uint32_t address, uint16_t *value)
2236 uint8_t value_buf[2];
2237 if (!target_was_examined(target)) {
2238 LOG_ERROR("Target not examined yet");
2239 return ERROR_FAIL;
2242 int retval = target_read_memory(target, address, 2, 1, value_buf);
2244 if (retval == ERROR_OK) {
2245 *value = target_buffer_get_u16(target, value_buf);
2246 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%4.4x",
2247 address,
2248 *value);
2249 } else {
2250 *value = 0x0;
2251 LOG_DEBUG("address: 0x%8.8" PRIx32 " failed",
2252 address);
2255 return retval;
2258 int target_read_u8(struct target *target, uint32_t address, uint8_t *value)
2260 if (!target_was_examined(target)) {
2261 LOG_ERROR("Target not examined yet");
2262 return ERROR_FAIL;
2265 int retval = target_read_memory(target, address, 1, 1, value);
2267 if (retval == ERROR_OK) {
2268 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%2.2x",
2269 address,
2270 *value);
2271 } else {
2272 *value = 0x0;
2273 LOG_DEBUG("address: 0x%8.8" PRIx32 " failed",
2274 address);
2277 return retval;
2280 int target_write_u64(struct target *target, uint64_t address, uint64_t value)
2282 int retval;
2283 uint8_t value_buf[8];
2284 if (!target_was_examined(target)) {
2285 LOG_ERROR("Target not examined yet");
2286 return ERROR_FAIL;
2289 LOG_DEBUG("address: 0x%" PRIx64 ", value: 0x%16.16" PRIx64 "",
2290 address,
2291 value);
2293 target_buffer_set_u64(target, value_buf, value);
2294 retval = target_write_memory(target, address, 8, 1, value_buf);
2295 if (retval != ERROR_OK)
2296 LOG_DEBUG("failed: %i", retval);
2298 return retval;
2301 int target_write_u32(struct target *target, uint32_t address, uint32_t value)
2303 int retval;
2304 uint8_t value_buf[4];
2305 if (!target_was_examined(target)) {
2306 LOG_ERROR("Target not examined yet");
2307 return ERROR_FAIL;
2310 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%8.8" PRIx32 "",
2311 address,
2312 value);
2314 target_buffer_set_u32(target, value_buf, value);
2315 retval = target_write_memory(target, address, 4, 1, value_buf);
2316 if (retval != ERROR_OK)
2317 LOG_DEBUG("failed: %i", retval);
2319 return retval;
2322 int target_write_u16(struct target *target, uint32_t address, uint16_t value)
2324 int retval;
2325 uint8_t value_buf[2];
2326 if (!target_was_examined(target)) {
2327 LOG_ERROR("Target not examined yet");
2328 return ERROR_FAIL;
2331 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%8.8x",
2332 address,
2333 value);
2335 target_buffer_set_u16(target, value_buf, value);
2336 retval = target_write_memory(target, address, 2, 1, value_buf);
2337 if (retval != ERROR_OK)
2338 LOG_DEBUG("failed: %i", retval);
2340 return retval;
2343 int target_write_u8(struct target *target, uint32_t address, uint8_t value)
2345 int retval;
2346 if (!target_was_examined(target)) {
2347 LOG_ERROR("Target not examined yet");
2348 return ERROR_FAIL;
2351 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%2.2x",
2352 address, value);
2354 retval = target_write_memory(target, address, 1, 1, &value);
2355 if (retval != ERROR_OK)
2356 LOG_DEBUG("failed: %i", retval);
2358 return retval;
2361 static int find_target(struct command_context *cmd_ctx, const char *name)
2363 struct target *target = get_target(name);
2364 if (target == NULL) {
2365 LOG_ERROR("Target: %s is unknown, try one of:\n", name);
2366 return ERROR_FAIL;
2368 if (!target->tap->enabled) {
2369 LOG_USER("Target: TAP %s is disabled, "
2370 "can't be the current target\n",
2371 target->tap->dotted_name);
2372 return ERROR_FAIL;
2375 cmd_ctx->current_target = target->target_number;
2376 return ERROR_OK;
2380 COMMAND_HANDLER(handle_targets_command)
2382 int retval = ERROR_OK;
2383 if (CMD_ARGC == 1) {
2384 retval = find_target(CMD_CTX, CMD_ARGV[0]);
2385 if (retval == ERROR_OK) {
2386 /* we're done! */
2387 return retval;
2391 struct target *target = all_targets;
2392 command_print(CMD_CTX, " TargetName Type Endian TapName State ");
2393 command_print(CMD_CTX, "-- ------------------ ---------- ------ ------------------ ------------");
2394 while (target) {
2395 const char *state;
2396 char marker = ' ';
2398 if (target->tap->enabled)
2399 state = target_state_name(target);
2400 else
2401 state = "tap-disabled";
2403 if (CMD_CTX->current_target == target->target_number)
2404 marker = '*';
2406 /* keep columns lined up to match the headers above */
2407 command_print(CMD_CTX,
2408 "%2d%c %-18s %-10s %-6s %-18s %s",
2409 target->target_number,
2410 marker,
2411 target_name(target),
2412 target_type_name(target),
2413 Jim_Nvp_value2name_simple(nvp_target_endian,
2414 target->endianness)->name,
2415 target->tap->dotted_name,
2416 state);
2417 target = target->next;
2420 return retval;
2423 /* every 300ms we check for reset & powerdropout and issue a "reset halt" if so. */
2425 static int powerDropout;
2426 static int srstAsserted;
2428 static int runPowerRestore;
2429 static int runPowerDropout;
2430 static int runSrstAsserted;
2431 static int runSrstDeasserted;
2433 static int sense_handler(void)
2435 static int prevSrstAsserted;
2436 static int prevPowerdropout;
2438 int retval = jtag_power_dropout(&powerDropout);
2439 if (retval != ERROR_OK)
2440 return retval;
2442 int powerRestored;
2443 powerRestored = prevPowerdropout && !powerDropout;
2444 if (powerRestored)
2445 runPowerRestore = 1;
2447 long long current = timeval_ms();
2448 static long long lastPower;
2449 int waitMore = lastPower + 2000 > current;
2450 if (powerDropout && !waitMore) {
2451 runPowerDropout = 1;
2452 lastPower = current;
2455 retval = jtag_srst_asserted(&srstAsserted);
2456 if (retval != ERROR_OK)
2457 return retval;
2459 int srstDeasserted;
2460 srstDeasserted = prevSrstAsserted && !srstAsserted;
2462 static long long lastSrst;
2463 waitMore = lastSrst + 2000 > current;
2464 if (srstDeasserted && !waitMore) {
2465 runSrstDeasserted = 1;
2466 lastSrst = current;
2469 if (!prevSrstAsserted && srstAsserted)
2470 runSrstAsserted = 1;
2472 prevSrstAsserted = srstAsserted;
2473 prevPowerdropout = powerDropout;
2475 if (srstDeasserted || powerRestored) {
2476 /* Other than logging the event we can't do anything here.
2477 * Issuing a reset is a particularly bad idea as we might
2478 * be inside a reset already.
2482 return ERROR_OK;
2485 /* process target state changes */
2486 static int handle_target(void *priv)
2488 Jim_Interp *interp = (Jim_Interp *)priv;
2489 int retval = ERROR_OK;
2491 if (!is_jtag_poll_safe()) {
2492 /* polling is disabled currently */
2493 return ERROR_OK;
2496 /* we do not want to recurse here... */
2497 static int recursive;
2498 if (!recursive) {
2499 recursive = 1;
2500 sense_handler();
2501 /* danger! running these procedures can trigger srst assertions and power dropouts.
2502 * We need to avoid an infinite loop/recursion here and we do that by
2503 * clearing the flags after running these events.
2505 int did_something = 0;
2506 if (runSrstAsserted) {
2507 LOG_INFO("srst asserted detected, running srst_asserted proc.");
2508 Jim_Eval(interp, "srst_asserted");
2509 did_something = 1;
2511 if (runSrstDeasserted) {
2512 Jim_Eval(interp, "srst_deasserted");
2513 did_something = 1;
2515 if (runPowerDropout) {
2516 LOG_INFO("Power dropout detected, running power_dropout proc.");
2517 Jim_Eval(interp, "power_dropout");
2518 did_something = 1;
2520 if (runPowerRestore) {
2521 Jim_Eval(interp, "power_restore");
2522 did_something = 1;
2525 if (did_something) {
2526 /* clear detect flags */
2527 sense_handler();
2530 /* clear action flags */
2532 runSrstAsserted = 0;
2533 runSrstDeasserted = 0;
2534 runPowerRestore = 0;
2535 runPowerDropout = 0;
2537 recursive = 0;
2540 /* Poll targets for state changes unless that's globally disabled.
2541 * Skip targets that are currently disabled.
2543 for (struct target *target = all_targets;
2544 is_jtag_poll_safe() && target;
2545 target = target->next) {
2547 if (!target_was_examined(target))
2548 continue;
2550 if (!target->tap->enabled)
2551 continue;
2553 if (target->backoff.times > target->backoff.count) {
2554 /* do not poll this time as we failed previously */
2555 target->backoff.count++;
2556 continue;
2558 target->backoff.count = 0;
2560 /* only poll target if we've got power and srst isn't asserted */
2561 if (!powerDropout && !srstAsserted) {
2562 /* polling may fail silently until the target has been examined */
2563 retval = target_poll(target);
2564 if (retval != ERROR_OK) {
2565 /* 100ms polling interval. Increase interval between polling up to 5000ms */
2566 if (target->backoff.times * polling_interval < 5000) {
2567 target->backoff.times *= 2;
2568 target->backoff.times++;
2571 /* Tell GDB to halt the debugger. This allows the user to
2572 * run monitor commands to handle the situation.
2574 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
2576 if (target->backoff.times > 0) {
2577 LOG_USER("Polling target %s failed, trying to reexamine", target_name(target));
2578 target_reset_examined(target);
2579 retval = target_examine_one(target);
2580 /* Target examination could have failed due to unstable connection,
2581 * but we set the examined flag anyway to repoll it later */
2582 if (retval != ERROR_OK) {
2583 target->examined = true;
2584 LOG_USER("Examination failed, GDB will be halted. Polling again in %dms",
2585 target->backoff.times * polling_interval);
2586 return retval;
2590 /* Since we succeeded, we reset backoff count */
2591 target->backoff.times = 0;
2595 return retval;
2598 COMMAND_HANDLER(handle_reg_command)
2600 struct target *target;
2601 struct reg *reg = NULL;
2602 unsigned count = 0;
2603 char *value;
2605 LOG_DEBUG("-");
2607 target = get_current_target(CMD_CTX);
2609 /* list all available registers for the current target */
2610 if (CMD_ARGC == 0) {
2611 struct reg_cache *cache = target->reg_cache;
2613 count = 0;
2614 while (cache) {
2615 unsigned i;
2617 command_print(CMD_CTX, "===== %s", cache->name);
2619 for (i = 0, reg = cache->reg_list;
2620 i < cache->num_regs;
2621 i++, reg++, count++) {
2622 /* only print cached values if they are valid */
2623 if (reg->valid) {
2624 value = buf_to_str(reg->value,
2625 reg->size, 16);
2626 command_print(CMD_CTX,
2627 "(%i) %s (/%" PRIu32 "): 0x%s%s",
2628 count, reg->name,
2629 reg->size, value,
2630 reg->dirty
2631 ? " (dirty)"
2632 : "");
2633 free(value);
2634 } else {
2635 command_print(CMD_CTX, "(%i) %s (/%" PRIu32 ")",
2636 count, reg->name,
2637 reg->size) ;
2640 cache = cache->next;
2643 return ERROR_OK;
2646 /* access a single register by its ordinal number */
2647 if ((CMD_ARGV[0][0] >= '0') && (CMD_ARGV[0][0] <= '9')) {
2648 unsigned num;
2649 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[0], num);
2651 struct reg_cache *cache = target->reg_cache;
2652 count = 0;
2653 while (cache) {
2654 unsigned i;
2655 for (i = 0; i < cache->num_regs; i++) {
2656 if (count++ == num) {
2657 reg = &cache->reg_list[i];
2658 break;
2661 if (reg)
2662 break;
2663 cache = cache->next;
2666 if (!reg) {
2667 command_print(CMD_CTX, "%i is out of bounds, the current target "
2668 "has only %i registers (0 - %i)", num, count, count - 1);
2669 return ERROR_OK;
2671 } else {
2672 /* access a single register by its name */
2673 reg = register_get_by_name(target->reg_cache, CMD_ARGV[0], 1);
2675 if (!reg) {
2676 command_print(CMD_CTX, "register %s not found in current target", CMD_ARGV[0]);
2677 return ERROR_OK;
2681 assert(reg != NULL); /* give clang a hint that we *know* reg is != NULL here */
2683 /* display a register */
2684 if ((CMD_ARGC == 1) || ((CMD_ARGC == 2) && !((CMD_ARGV[1][0] >= '0')
2685 && (CMD_ARGV[1][0] <= '9')))) {
2686 if ((CMD_ARGC == 2) && (strcmp(CMD_ARGV[1], "force") == 0))
2687 reg->valid = 0;
2689 if (reg->valid == 0)
2690 reg->type->get(reg);
2691 value = buf_to_str(reg->value, reg->size, 16);
2692 command_print(CMD_CTX, "%s (/%i): 0x%s", reg->name, (int)(reg->size), value);
2693 free(value);
2694 return ERROR_OK;
2697 /* set register value */
2698 if (CMD_ARGC == 2) {
2699 uint8_t *buf = malloc(DIV_ROUND_UP(reg->size, 8));
2700 if (buf == NULL)
2701 return ERROR_FAIL;
2702 str_to_buf(CMD_ARGV[1], strlen(CMD_ARGV[1]), buf, reg->size, 0);
2704 reg->type->set(reg, buf);
2706 value = buf_to_str(reg->value, reg->size, 16);
2707 command_print(CMD_CTX, "%s (/%i): 0x%s", reg->name, (int)(reg->size), value);
2708 free(value);
2710 free(buf);
2712 return ERROR_OK;
2715 return ERROR_COMMAND_SYNTAX_ERROR;
2718 COMMAND_HANDLER(handle_poll_command)
2720 int retval = ERROR_OK;
2721 struct target *target = get_current_target(CMD_CTX);
2723 if (CMD_ARGC == 0) {
2724 command_print(CMD_CTX, "background polling: %s",
2725 jtag_poll_get_enabled() ? "on" : "off");
2726 command_print(CMD_CTX, "TAP: %s (%s)",
2727 target->tap->dotted_name,
2728 target->tap->enabled ? "enabled" : "disabled");
2729 if (!target->tap->enabled)
2730 return ERROR_OK;
2731 retval = target_poll(target);
2732 if (retval != ERROR_OK)
2733 return retval;
2734 retval = target_arch_state(target);
2735 if (retval != ERROR_OK)
2736 return retval;
2737 } else if (CMD_ARGC == 1) {
2738 bool enable;
2739 COMMAND_PARSE_ON_OFF(CMD_ARGV[0], enable);
2740 jtag_poll_set_enabled(enable);
2741 } else
2742 return ERROR_COMMAND_SYNTAX_ERROR;
2744 return retval;
2747 COMMAND_HANDLER(handle_wait_halt_command)
2749 if (CMD_ARGC > 1)
2750 return ERROR_COMMAND_SYNTAX_ERROR;
2752 unsigned ms = DEFAULT_HALT_TIMEOUT;
2753 if (1 == CMD_ARGC) {
2754 int retval = parse_uint(CMD_ARGV[0], &ms);
2755 if (ERROR_OK != retval)
2756 return ERROR_COMMAND_SYNTAX_ERROR;
2759 struct target *target = get_current_target(CMD_CTX);
2760 return target_wait_state(target, TARGET_HALTED, ms);
2763 /* wait for target state to change. The trick here is to have a low
2764 * latency for short waits and not to suck up all the CPU time
2765 * on longer waits.
2767 * After 500ms, keep_alive() is invoked
2769 int target_wait_state(struct target *target, enum target_state state, int ms)
2771 int retval;
2772 long long then = 0, cur;
2773 int once = 1;
2775 for (;;) {
2776 retval = target_poll(target);
2777 if (retval != ERROR_OK)
2778 return retval;
2779 if (target->state == state)
2780 break;
2781 cur = timeval_ms();
2782 if (once) {
2783 once = 0;
2784 then = timeval_ms();
2785 LOG_DEBUG("waiting for target %s...",
2786 Jim_Nvp_value2name_simple(nvp_target_state, state)->name);
2789 if (cur-then > 500)
2790 keep_alive();
2792 if ((cur-then) > ms) {
2793 LOG_ERROR("timed out while waiting for target %s",
2794 Jim_Nvp_value2name_simple(nvp_target_state, state)->name);
2795 return ERROR_FAIL;
2799 return ERROR_OK;
2802 COMMAND_HANDLER(handle_halt_command)
2804 LOG_DEBUG("-");
2806 struct target *target = get_current_target(CMD_CTX);
2807 int retval = target_halt(target);
2808 if (ERROR_OK != retval)
2809 return retval;
2811 if (CMD_ARGC == 1) {
2812 unsigned wait_local;
2813 retval = parse_uint(CMD_ARGV[0], &wait_local);
2814 if (ERROR_OK != retval)
2815 return ERROR_COMMAND_SYNTAX_ERROR;
2816 if (!wait_local)
2817 return ERROR_OK;
2820 return CALL_COMMAND_HANDLER(handle_wait_halt_command);
2823 COMMAND_HANDLER(handle_soft_reset_halt_command)
2825 struct target *target = get_current_target(CMD_CTX);
2827 LOG_USER("requesting target halt and executing a soft reset");
2829 target_soft_reset_halt(target);
2831 return ERROR_OK;
2834 COMMAND_HANDLER(handle_reset_command)
2836 if (CMD_ARGC > 1)
2837 return ERROR_COMMAND_SYNTAX_ERROR;
2839 enum target_reset_mode reset_mode = RESET_RUN;
2840 if (CMD_ARGC == 1) {
2841 const Jim_Nvp *n;
2842 n = Jim_Nvp_name2value_simple(nvp_reset_modes, CMD_ARGV[0]);
2843 if ((n->name == NULL) || (n->value == RESET_UNKNOWN))
2844 return ERROR_COMMAND_SYNTAX_ERROR;
2845 reset_mode = n->value;
2848 /* reset *all* targets */
2849 return target_process_reset(CMD_CTX, reset_mode);
2853 COMMAND_HANDLER(handle_resume_command)
2855 int current = 1;
2856 if (CMD_ARGC > 1)
2857 return ERROR_COMMAND_SYNTAX_ERROR;
2859 struct target *target = get_current_target(CMD_CTX);
2861 /* with no CMD_ARGV, resume from current pc, addr = 0,
2862 * with one arguments, addr = CMD_ARGV[0],
2863 * handle breakpoints, not debugging */
2864 uint32_t addr = 0;
2865 if (CMD_ARGC == 1) {
2866 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
2867 current = 0;
2870 return target_resume(target, current, addr, 1, 0);
2873 COMMAND_HANDLER(handle_step_command)
2875 if (CMD_ARGC > 1)
2876 return ERROR_COMMAND_SYNTAX_ERROR;
2878 LOG_DEBUG("-");
2880 /* with no CMD_ARGV, step from current pc, addr = 0,
2881 * with one argument addr = CMD_ARGV[0],
2882 * handle breakpoints, debugging */
2883 uint32_t addr = 0;
2884 int current_pc = 1;
2885 if (CMD_ARGC == 1) {
2886 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
2887 current_pc = 0;
2890 struct target *target = get_current_target(CMD_CTX);
2892 return target->type->step(target, current_pc, addr, 1);
2895 static void handle_md_output(struct command_context *cmd_ctx,
2896 struct target *target, uint32_t address, unsigned size,
2897 unsigned count, const uint8_t *buffer)
2899 const unsigned line_bytecnt = 32;
2900 unsigned line_modulo = line_bytecnt / size;
2902 char output[line_bytecnt * 4 + 1];
2903 unsigned output_len = 0;
2905 const char *value_fmt;
2906 switch (size) {
2907 case 4:
2908 value_fmt = "%8.8x ";
2909 break;
2910 case 2:
2911 value_fmt = "%4.4x ";
2912 break;
2913 case 1:
2914 value_fmt = "%2.2x ";
2915 break;
2916 default:
2917 /* "can't happen", caller checked */
2918 LOG_ERROR("invalid memory read size: %u", size);
2919 return;
2922 for (unsigned i = 0; i < count; i++) {
2923 if (i % line_modulo == 0) {
2924 output_len += snprintf(output + output_len,
2925 sizeof(output) - output_len,
2926 "0x%8.8x: ",
2927 (unsigned)(address + (i*size)));
2930 uint32_t value = 0;
2931 const uint8_t *value_ptr = buffer + i * size;
2932 switch (size) {
2933 case 4:
2934 value = target_buffer_get_u32(target, value_ptr);
2935 break;
2936 case 2:
2937 value = target_buffer_get_u16(target, value_ptr);
2938 break;
2939 case 1:
2940 value = *value_ptr;
2942 output_len += snprintf(output + output_len,
2943 sizeof(output) - output_len,
2944 value_fmt, value);
2946 if ((i % line_modulo == line_modulo - 1) || (i == count - 1)) {
2947 command_print(cmd_ctx, "%s", output);
2948 output_len = 0;
2953 COMMAND_HANDLER(handle_md_command)
2955 if (CMD_ARGC < 1)
2956 return ERROR_COMMAND_SYNTAX_ERROR;
2958 unsigned size = 0;
2959 switch (CMD_NAME[2]) {
2960 case 'w':
2961 size = 4;
2962 break;
2963 case 'h':
2964 size = 2;
2965 break;
2966 case 'b':
2967 size = 1;
2968 break;
2969 default:
2970 return ERROR_COMMAND_SYNTAX_ERROR;
2973 bool physical = strcmp(CMD_ARGV[0], "phys") == 0;
2974 int (*fn)(struct target *target,
2975 uint32_t address, uint32_t size_value, uint32_t count, uint8_t *buffer);
2976 if (physical) {
2977 CMD_ARGC--;
2978 CMD_ARGV++;
2979 fn = target_read_phys_memory;
2980 } else
2981 fn = target_read_memory;
2982 if ((CMD_ARGC < 1) || (CMD_ARGC > 2))
2983 return ERROR_COMMAND_SYNTAX_ERROR;
2985 uint32_t address;
2986 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], address);
2988 unsigned count = 1;
2989 if (CMD_ARGC == 2)
2990 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[1], count);
2992 uint8_t *buffer = calloc(count, size);
2994 struct target *target = get_current_target(CMD_CTX);
2995 int retval = fn(target, address, size, count, buffer);
2996 if (ERROR_OK == retval)
2997 handle_md_output(CMD_CTX, target, address, size, count, buffer);
2999 free(buffer);
3001 return retval;
3004 typedef int (*target_write_fn)(struct target *target,
3005 uint32_t address, uint32_t size, uint32_t count, const uint8_t *buffer);
3007 static int target_fill_mem(struct target *target,
3008 uint32_t address,
3009 target_write_fn fn,
3010 unsigned data_size,
3011 /* value */
3012 uint32_t b,
3013 /* count */
3014 unsigned c)
3016 /* We have to write in reasonably large chunks to be able
3017 * to fill large memory areas with any sane speed */
3018 const unsigned chunk_size = 16384;
3019 uint8_t *target_buf = malloc(chunk_size * data_size);
3020 if (target_buf == NULL) {
3021 LOG_ERROR("Out of memory");
3022 return ERROR_FAIL;
3025 for (unsigned i = 0; i < chunk_size; i++) {
3026 switch (data_size) {
3027 case 4:
3028 target_buffer_set_u32(target, target_buf + i * data_size, b);
3029 break;
3030 case 2:
3031 target_buffer_set_u16(target, target_buf + i * data_size, b);
3032 break;
3033 case 1:
3034 target_buffer_set_u8(target, target_buf + i * data_size, b);
3035 break;
3036 default:
3037 exit(-1);
3041 int retval = ERROR_OK;
3043 for (unsigned x = 0; x < c; x += chunk_size) {
3044 unsigned current;
3045 current = c - x;
3046 if (current > chunk_size)
3047 current = chunk_size;
3048 retval = fn(target, address + x * data_size, data_size, current, target_buf);
3049 if (retval != ERROR_OK)
3050 break;
3051 /* avoid GDB timeouts */
3052 keep_alive();
3054 free(target_buf);
3056 return retval;
3060 COMMAND_HANDLER(handle_mw_command)
3062 if (CMD_ARGC < 2)
3063 return ERROR_COMMAND_SYNTAX_ERROR;
3064 bool physical = strcmp(CMD_ARGV[0], "phys") == 0;
3065 target_write_fn fn;
3066 if (physical) {
3067 CMD_ARGC--;
3068 CMD_ARGV++;
3069 fn = target_write_phys_memory;
3070 } else
3071 fn = target_write_memory;
3072 if ((CMD_ARGC < 2) || (CMD_ARGC > 3))
3073 return ERROR_COMMAND_SYNTAX_ERROR;
3075 uint32_t address;
3076 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], address);
3078 uint32_t value;
3079 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], value);
3081 unsigned count = 1;
3082 if (CMD_ARGC == 3)
3083 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[2], count);
3085 struct target *target = get_current_target(CMD_CTX);
3086 unsigned wordsize;
3087 switch (CMD_NAME[2]) {
3088 case 'w':
3089 wordsize = 4;
3090 break;
3091 case 'h':
3092 wordsize = 2;
3093 break;
3094 case 'b':
3095 wordsize = 1;
3096 break;
3097 default:
3098 return ERROR_COMMAND_SYNTAX_ERROR;
3101 return target_fill_mem(target, address, fn, wordsize, value, count);
3104 static COMMAND_HELPER(parse_load_image_command_CMD_ARGV, struct image *image,
3105 uint32_t *min_address, uint32_t *max_address)
3107 if (CMD_ARGC < 1 || CMD_ARGC > 5)
3108 return ERROR_COMMAND_SYNTAX_ERROR;
3110 /* a base address isn't always necessary,
3111 * default to 0x0 (i.e. don't relocate) */
3112 if (CMD_ARGC >= 2) {
3113 uint32_t addr;
3114 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], addr);
3115 image->base_address = addr;
3116 image->base_address_set = 1;
3117 } else
3118 image->base_address_set = 0;
3120 image->start_address_set = 0;
3122 if (CMD_ARGC >= 4)
3123 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[3], *min_address);
3124 if (CMD_ARGC == 5) {
3125 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[4], *max_address);
3126 /* use size (given) to find max (required) */
3127 *max_address += *min_address;
3130 if (*min_address > *max_address)
3131 return ERROR_COMMAND_SYNTAX_ERROR;
3133 return ERROR_OK;
3136 COMMAND_HANDLER(handle_load_image_command)
3138 uint8_t *buffer;
3139 size_t buf_cnt;
3140 uint32_t image_size;
3141 uint32_t min_address = 0;
3142 uint32_t max_address = 0xffffffff;
3143 int i;
3144 struct image image;
3146 int retval = CALL_COMMAND_HANDLER(parse_load_image_command_CMD_ARGV,
3147 &image, &min_address, &max_address);
3148 if (ERROR_OK != retval)
3149 return retval;
3151 struct target *target = get_current_target(CMD_CTX);
3153 struct duration bench;
3154 duration_start(&bench);
3156 if (image_open(&image, CMD_ARGV[0], (CMD_ARGC >= 3) ? CMD_ARGV[2] : NULL) != ERROR_OK)
3157 return ERROR_OK;
3159 image_size = 0x0;
3160 retval = ERROR_OK;
3161 for (i = 0; i < image.num_sections; i++) {
3162 buffer = malloc(image.sections[i].size);
3163 if (buffer == NULL) {
3164 command_print(CMD_CTX,
3165 "error allocating buffer for section (%d bytes)",
3166 (int)(image.sections[i].size));
3167 break;
3170 retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt);
3171 if (retval != ERROR_OK) {
3172 free(buffer);
3173 break;
3176 uint32_t offset = 0;
3177 uint32_t length = buf_cnt;
3179 /* DANGER!!! beware of unsigned comparision here!!! */
3181 if ((image.sections[i].base_address + buf_cnt >= min_address) &&
3182 (image.sections[i].base_address < max_address)) {
3184 if (image.sections[i].base_address < min_address) {
3185 /* clip addresses below */
3186 offset += min_address-image.sections[i].base_address;
3187 length -= offset;
3190 if (image.sections[i].base_address + buf_cnt > max_address)
3191 length -= (image.sections[i].base_address + buf_cnt)-max_address;
3193 retval = target_write_buffer(target,
3194 image.sections[i].base_address + offset, length, buffer + offset);
3195 if (retval != ERROR_OK) {
3196 free(buffer);
3197 break;
3199 image_size += length;
3200 command_print(CMD_CTX, "%u bytes written at address 0x%8.8" PRIx32 "",
3201 (unsigned int)length,
3202 image.sections[i].base_address + offset);
3205 free(buffer);
3208 if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK)) {
3209 command_print(CMD_CTX, "downloaded %" PRIu32 " bytes "
3210 "in %fs (%0.3f KiB/s)", image_size,
3211 duration_elapsed(&bench), duration_kbps(&bench, image_size));
3214 image_close(&image);
3216 return retval;
3220 COMMAND_HANDLER(handle_dump_image_command)
3222 struct fileio *fileio;
3223 uint8_t *buffer;
3224 int retval, retvaltemp;
3225 uint32_t address, size;
3226 struct duration bench;
3227 struct target *target = get_current_target(CMD_CTX);
3229 if (CMD_ARGC != 3)
3230 return ERROR_COMMAND_SYNTAX_ERROR;
3232 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], address);
3233 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[2], size);
3235 uint32_t buf_size = (size > 4096) ? 4096 : size;
3236 buffer = malloc(buf_size);
3237 if (!buffer)
3238 return ERROR_FAIL;
3240 retval = fileio_open(&fileio, CMD_ARGV[0], FILEIO_WRITE, FILEIO_BINARY);
3241 if (retval != ERROR_OK) {
3242 free(buffer);
3243 return retval;
3246 duration_start(&bench);
3248 while (size > 0) {
3249 size_t size_written;
3250 uint32_t this_run_size = (size > buf_size) ? buf_size : size;
3251 retval = target_read_buffer(target, address, this_run_size, buffer);
3252 if (retval != ERROR_OK)
3253 break;
3255 retval = fileio_write(fileio, this_run_size, buffer, &size_written);
3256 if (retval != ERROR_OK)
3257 break;
3259 size -= this_run_size;
3260 address += this_run_size;
3263 free(buffer);
3265 if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK)) {
3266 size_t filesize;
3267 retval = fileio_size(fileio, &filesize);
3268 if (retval != ERROR_OK)
3269 return retval;
3270 command_print(CMD_CTX,
3271 "dumped %zu bytes in %fs (%0.3f KiB/s)", filesize,
3272 duration_elapsed(&bench), duration_kbps(&bench, filesize));
3275 retvaltemp = fileio_close(fileio);
3276 if (retvaltemp != ERROR_OK)
3277 return retvaltemp;
3279 return retval;
3282 static COMMAND_HELPER(handle_verify_image_command_internal, int verify)
3284 uint8_t *buffer;
3285 size_t buf_cnt;
3286 uint32_t image_size;
3287 int i;
3288 int retval;
3289 uint32_t checksum = 0;
3290 uint32_t mem_checksum = 0;
3292 struct image image;
3294 struct target *target = get_current_target(CMD_CTX);
3296 if (CMD_ARGC < 1)
3297 return ERROR_COMMAND_SYNTAX_ERROR;
3299 if (!target) {
3300 LOG_ERROR("no target selected");
3301 return ERROR_FAIL;
3304 struct duration bench;
3305 duration_start(&bench);
3307 if (CMD_ARGC >= 2) {
3308 uint32_t addr;
3309 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], addr);
3310 image.base_address = addr;
3311 image.base_address_set = 1;
3312 } else {
3313 image.base_address_set = 0;
3314 image.base_address = 0x0;
3317 image.start_address_set = 0;
3319 retval = image_open(&image, CMD_ARGV[0], (CMD_ARGC == 3) ? CMD_ARGV[2] : NULL);
3320 if (retval != ERROR_OK)
3321 return retval;
3323 image_size = 0x0;
3324 int diffs = 0;
3325 retval = ERROR_OK;
3326 for (i = 0; i < image.num_sections; i++) {
3327 buffer = malloc(image.sections[i].size);
3328 if (buffer == NULL) {
3329 command_print(CMD_CTX,
3330 "error allocating buffer for section (%d bytes)",
3331 (int)(image.sections[i].size));
3332 break;
3334 retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt);
3335 if (retval != ERROR_OK) {
3336 free(buffer);
3337 break;
3340 if (verify) {
3341 /* calculate checksum of image */
3342 retval = image_calculate_checksum(buffer, buf_cnt, &checksum);
3343 if (retval != ERROR_OK) {
3344 free(buffer);
3345 break;
3348 retval = target_checksum_memory(target, image.sections[i].base_address, buf_cnt, &mem_checksum);
3349 if (retval != ERROR_OK) {
3350 free(buffer);
3351 break;
3354 if (checksum != mem_checksum) {
3355 /* failed crc checksum, fall back to a binary compare */
3356 uint8_t *data;
3358 if (diffs == 0)
3359 LOG_ERROR("checksum mismatch - attempting binary compare");
3361 data = malloc(buf_cnt);
3363 /* Can we use 32bit word accesses? */
3364 int size = 1;
3365 int count = buf_cnt;
3366 if ((count % 4) == 0) {
3367 size *= 4;
3368 count /= 4;
3370 retval = target_read_memory(target, image.sections[i].base_address, size, count, data);
3371 if (retval == ERROR_OK) {
3372 uint32_t t;
3373 for (t = 0; t < buf_cnt; t++) {
3374 if (data[t] != buffer[t]) {
3375 command_print(CMD_CTX,
3376 "diff %d address 0x%08x. Was 0x%02x instead of 0x%02x",
3377 diffs,
3378 (unsigned)(t + image.sections[i].base_address),
3379 data[t],
3380 buffer[t]);
3381 if (diffs++ >= 127) {
3382 command_print(CMD_CTX, "More than 128 errors, the rest are not printed.");
3383 free(data);
3384 free(buffer);
3385 goto done;
3388 keep_alive();
3391 free(data);
3393 } else {
3394 command_print(CMD_CTX, "address 0x%08" PRIx32 " length 0x%08zx",
3395 image.sections[i].base_address,
3396 buf_cnt);
3399 free(buffer);
3400 image_size += buf_cnt;
3402 if (diffs > 0)
3403 command_print(CMD_CTX, "No more differences found.");
3404 done:
3405 if (diffs > 0)
3406 retval = ERROR_FAIL;
3407 if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK)) {
3408 command_print(CMD_CTX, "verified %" PRIu32 " bytes "
3409 "in %fs (%0.3f KiB/s)", image_size,
3410 duration_elapsed(&bench), duration_kbps(&bench, image_size));
3413 image_close(&image);
3415 return retval;
3418 COMMAND_HANDLER(handle_verify_image_command)
3420 return CALL_COMMAND_HANDLER(handle_verify_image_command_internal, 1);
3423 COMMAND_HANDLER(handle_test_image_command)
3425 return CALL_COMMAND_HANDLER(handle_verify_image_command_internal, 0);
3428 static int handle_bp_command_list(struct command_context *cmd_ctx)
3430 struct target *target = get_current_target(cmd_ctx);
3431 struct breakpoint *breakpoint = target->breakpoints;
3432 while (breakpoint) {
3433 if (breakpoint->type == BKPT_SOFT) {
3434 char *buf = buf_to_str(breakpoint->orig_instr,
3435 breakpoint->length, 16);
3436 command_print(cmd_ctx, "IVA breakpoint: 0x%8.8" PRIx32 ", 0x%x, %i, 0x%s",
3437 breakpoint->address,
3438 breakpoint->length,
3439 breakpoint->set, buf);
3440 free(buf);
3441 } else {
3442 if ((breakpoint->address == 0) && (breakpoint->asid != 0))
3443 command_print(cmd_ctx, "Context breakpoint: 0x%8.8" PRIx32 ", 0x%x, %i",
3444 breakpoint->asid,
3445 breakpoint->length, breakpoint->set);
3446 else if ((breakpoint->address != 0) && (breakpoint->asid != 0)) {
3447 command_print(cmd_ctx, "Hybrid breakpoint(IVA): 0x%8.8" PRIx32 ", 0x%x, %i",
3448 breakpoint->address,
3449 breakpoint->length, breakpoint->set);
3450 command_print(cmd_ctx, "\t|--->linked with ContextID: 0x%8.8" PRIx32,
3451 breakpoint->asid);
3452 } else
3453 command_print(cmd_ctx, "Breakpoint(IVA): 0x%8.8" PRIx32 ", 0x%x, %i",
3454 breakpoint->address,
3455 breakpoint->length, breakpoint->set);
3458 breakpoint = breakpoint->next;
3460 return ERROR_OK;
3463 static int handle_bp_command_set(struct command_context *cmd_ctx,
3464 uint32_t addr, uint32_t asid, uint32_t length, int hw)
3466 struct target *target = get_current_target(cmd_ctx);
3467 int retval;
3469 if (asid == 0) {
3470 retval = breakpoint_add(target, addr, length, hw);
3471 if (ERROR_OK == retval)
3472 command_print(cmd_ctx, "breakpoint set at 0x%8.8" PRIx32 "", addr);
3473 else {
3474 LOG_ERROR("Failure setting breakpoint, the same address(IVA) is already used");
3475 return retval;
3477 } else if (addr == 0) {
3478 if (target->type->add_context_breakpoint == NULL) {
3479 LOG_WARNING("Context breakpoint not available");
3480 return ERROR_OK;
3482 retval = context_breakpoint_add(target, asid, length, hw);
3483 if (ERROR_OK == retval)
3484 command_print(cmd_ctx, "Context breakpoint set at 0x%8.8" PRIx32 "", asid);
3485 else {
3486 LOG_ERROR("Failure setting breakpoint, the same address(CONTEXTID) is already used");
3487 return retval;
3489 } else {
3490 if (target->type->add_hybrid_breakpoint == NULL) {
3491 LOG_WARNING("Hybrid breakpoint not available");
3492 return ERROR_OK;
3494 retval = hybrid_breakpoint_add(target, addr, asid, length, hw);
3495 if (ERROR_OK == retval)
3496 command_print(cmd_ctx, "Hybrid breakpoint set at 0x%8.8" PRIx32 "", asid);
3497 else {
3498 LOG_ERROR("Failure setting breakpoint, the same address is already used");
3499 return retval;
3502 return ERROR_OK;
3505 COMMAND_HANDLER(handle_bp_command)
3507 uint32_t addr;
3508 uint32_t asid;
3509 uint32_t length;
3510 int hw = BKPT_SOFT;
3512 switch (CMD_ARGC) {
3513 case 0:
3514 return handle_bp_command_list(CMD_CTX);
3516 case 2:
3517 asid = 0;
3518 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3519 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
3520 return handle_bp_command_set(CMD_CTX, addr, asid, length, hw);
3522 case 3:
3523 if (strcmp(CMD_ARGV[2], "hw") == 0) {
3524 hw = BKPT_HARD;
3525 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3527 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
3529 asid = 0;
3530 return handle_bp_command_set(CMD_CTX, addr, asid, length, hw);
3531 } else if (strcmp(CMD_ARGV[2], "hw_ctx") == 0) {
3532 hw = BKPT_HARD;
3533 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], asid);
3534 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
3535 addr = 0;
3536 return handle_bp_command_set(CMD_CTX, addr, asid, length, hw);
3539 case 4:
3540 hw = BKPT_HARD;
3541 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3542 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], asid);
3543 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[2], length);
3544 return handle_bp_command_set(CMD_CTX, addr, asid, length, hw);
3546 default:
3547 return ERROR_COMMAND_SYNTAX_ERROR;
3551 COMMAND_HANDLER(handle_rbp_command)
3553 if (CMD_ARGC != 1)
3554 return ERROR_COMMAND_SYNTAX_ERROR;
3556 uint32_t addr;
3557 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3559 struct target *target = get_current_target(CMD_CTX);
3560 breakpoint_remove(target, addr);
3562 return ERROR_OK;
3565 COMMAND_HANDLER(handle_wp_command)
3567 struct target *target = get_current_target(CMD_CTX);
3569 if (CMD_ARGC == 0) {
3570 struct watchpoint *watchpoint = target->watchpoints;
3572 while (watchpoint) {
3573 command_print(CMD_CTX, "address: 0x%8.8" PRIx32
3574 ", len: 0x%8.8" PRIx32
3575 ", r/w/a: %i, value: 0x%8.8" PRIx32
3576 ", mask: 0x%8.8" PRIx32,
3577 watchpoint->address,
3578 watchpoint->length,
3579 (int)watchpoint->rw,
3580 watchpoint->value,
3581 watchpoint->mask);
3582 watchpoint = watchpoint->next;
3584 return ERROR_OK;
3587 enum watchpoint_rw type = WPT_ACCESS;
3588 uint32_t addr = 0;
3589 uint32_t length = 0;
3590 uint32_t data_value = 0x0;
3591 uint32_t data_mask = 0xffffffff;
3593 switch (CMD_ARGC) {
3594 case 5:
3595 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[4], data_mask);
3596 /* fall through */
3597 case 4:
3598 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[3], data_value);
3599 /* fall through */
3600 case 3:
3601 switch (CMD_ARGV[2][0]) {
3602 case 'r':
3603 type = WPT_READ;
3604 break;
3605 case 'w':
3606 type = WPT_WRITE;
3607 break;
3608 case 'a':
3609 type = WPT_ACCESS;
3610 break;
3611 default:
3612 LOG_ERROR("invalid watchpoint mode ('%c')", CMD_ARGV[2][0]);
3613 return ERROR_COMMAND_SYNTAX_ERROR;
3615 /* fall through */
3616 case 2:
3617 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
3618 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3619 break;
3621 default:
3622 return ERROR_COMMAND_SYNTAX_ERROR;
3625 int retval = watchpoint_add(target, addr, length, type,
3626 data_value, data_mask);
3627 if (ERROR_OK != retval)
3628 LOG_ERROR("Failure setting watchpoints");
3630 return retval;
3633 COMMAND_HANDLER(handle_rwp_command)
3635 if (CMD_ARGC != 1)
3636 return ERROR_COMMAND_SYNTAX_ERROR;
3638 uint32_t addr;
3639 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3641 struct target *target = get_current_target(CMD_CTX);
3642 watchpoint_remove(target, addr);
3644 return ERROR_OK;
3648 * Translate a virtual address to a physical address.
3650 * The low-level target implementation must have logged a detailed error
3651 * which is forwarded to telnet/GDB session.
3653 COMMAND_HANDLER(handle_virt2phys_command)
3655 if (CMD_ARGC != 1)
3656 return ERROR_COMMAND_SYNTAX_ERROR;
3658 uint32_t va;
3659 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], va);
3660 uint32_t pa;
3662 struct target *target = get_current_target(CMD_CTX);
3663 int retval = target->type->virt2phys(target, va, &pa);
3664 if (retval == ERROR_OK)
3665 command_print(CMD_CTX, "Physical address 0x%08" PRIx32 "", pa);
3667 return retval;
3670 static void writeData(FILE *f, const void *data, size_t len)
3672 size_t written = fwrite(data, 1, len, f);
3673 if (written != len)
3674 LOG_ERROR("failed to write %zu bytes: %s", len, strerror(errno));
3677 static void writeLong(FILE *f, int l, struct target *target)
3679 uint8_t val[4];
3681 target_buffer_set_u32(target, val, l);
3682 writeData(f, val, 4);
3685 static void writeString(FILE *f, char *s)
3687 writeData(f, s, strlen(s));
3690 typedef unsigned char UNIT[2]; /* unit of profiling */
3692 /* Dump a gmon.out histogram file. */
3693 static void write_gmon(uint32_t *samples, uint32_t sampleNum, const char *filename, bool with_range,
3694 uint32_t start_address, uint32_t end_address, struct target *target)
3696 uint32_t i;
3697 FILE *f = fopen(filename, "w");
3698 if (f == NULL)
3699 return;
3700 writeString(f, "gmon");
3701 writeLong(f, 0x00000001, target); /* Version */
3702 writeLong(f, 0, target); /* padding */
3703 writeLong(f, 0, target); /* padding */
3704 writeLong(f, 0, target); /* padding */
3706 uint8_t zero = 0; /* GMON_TAG_TIME_HIST */
3707 writeData(f, &zero, 1);
3709 /* figure out bucket size */
3710 uint32_t min;
3711 uint32_t max;
3712 if (with_range) {
3713 min = start_address;
3714 max = end_address;
3715 } else {
3716 min = samples[0];
3717 max = samples[0];
3718 for (i = 0; i < sampleNum; i++) {
3719 if (min > samples[i])
3720 min = samples[i];
3721 if (max < samples[i])
3722 max = samples[i];
3725 /* max should be (largest sample + 1)
3726 * Refer to binutils/gprof/hist.c (find_histogram_for_pc) */
3727 max++;
3730 int addressSpace = max - min;
3731 assert(addressSpace >= 2);
3733 /* FIXME: What is the reasonable number of buckets?
3734 * The profiling result will be more accurate if there are enough buckets. */
3735 static const uint32_t maxBuckets = 128 * 1024; /* maximum buckets. */
3736 uint32_t numBuckets = addressSpace / sizeof(UNIT);
3737 if (numBuckets > maxBuckets)
3738 numBuckets = maxBuckets;
3739 int *buckets = malloc(sizeof(int) * numBuckets);
3740 if (buckets == NULL) {
3741 fclose(f);
3742 return;
3744 memset(buckets, 0, sizeof(int) * numBuckets);
3745 for (i = 0; i < sampleNum; i++) {
3746 uint32_t address = samples[i];
3748 if ((address < min) || (max <= address))
3749 continue;
3751 long long a = address - min;
3752 long long b = numBuckets;
3753 long long c = addressSpace;
3754 int index_t = (a * b) / c; /* danger!!!! int32 overflows */
3755 buckets[index_t]++;
3758 /* append binary memory gmon.out &profile_hist_hdr ((char*)&profile_hist_hdr + sizeof(struct gmon_hist_hdr)) */
3759 writeLong(f, min, target); /* low_pc */
3760 writeLong(f, max, target); /* high_pc */
3761 writeLong(f, numBuckets, target); /* # of buckets */
3762 writeLong(f, 100, target); /* KLUDGE! We lie, ca. 100Hz best case. */
3763 writeString(f, "seconds");
3764 for (i = 0; i < (15-strlen("seconds")); i++)
3765 writeData(f, &zero, 1);
3766 writeString(f, "s");
3768 /*append binary memory gmon.out profile_hist_data (profile_hist_data + profile_hist_hdr.hist_size) */
3770 char *data = malloc(2 * numBuckets);
3771 if (data != NULL) {
3772 for (i = 0; i < numBuckets; i++) {
3773 int val;
3774 val = buckets[i];
3775 if (val > 65535)
3776 val = 65535;
3777 data[i * 2] = val&0xff;
3778 data[i * 2 + 1] = (val >> 8) & 0xff;
3780 free(buckets);
3781 writeData(f, data, numBuckets * 2);
3782 free(data);
3783 } else
3784 free(buckets);
3786 fclose(f);
3789 /* profiling samples the CPU PC as quickly as OpenOCD is able,
3790 * which will be used as a random sampling of PC */
3791 COMMAND_HANDLER(handle_profile_command)
3793 struct target *target = get_current_target(CMD_CTX);
3795 if ((CMD_ARGC != 2) && (CMD_ARGC != 4))
3796 return ERROR_COMMAND_SYNTAX_ERROR;
3798 const uint32_t MAX_PROFILE_SAMPLE_NUM = 10000;
3799 uint32_t offset;
3800 uint32_t num_of_samples;
3801 int retval = ERROR_OK;
3803 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], offset);
3805 uint32_t *samples = malloc(sizeof(uint32_t) * MAX_PROFILE_SAMPLE_NUM);
3806 if (samples == NULL) {
3807 LOG_ERROR("No memory to store samples.");
3808 return ERROR_FAIL;
3812 * Some cores let us sample the PC without the
3813 * annoying halt/resume step; for example, ARMv7 PCSR.
3814 * Provide a way to use that more efficient mechanism.
3816 retval = target_profiling(target, samples, MAX_PROFILE_SAMPLE_NUM,
3817 &num_of_samples, offset);
3818 if (retval != ERROR_OK) {
3819 free(samples);
3820 return retval;
3823 assert(num_of_samples <= MAX_PROFILE_SAMPLE_NUM);
3825 retval = target_poll(target);
3826 if (retval != ERROR_OK) {
3827 free(samples);
3828 return retval;
3830 if (target->state == TARGET_RUNNING) {
3831 retval = target_halt(target);
3832 if (retval != ERROR_OK) {
3833 free(samples);
3834 return retval;
3838 retval = target_poll(target);
3839 if (retval != ERROR_OK) {
3840 free(samples);
3841 return retval;
3844 uint32_t start_address = 0;
3845 uint32_t end_address = 0;
3846 bool with_range = false;
3847 if (CMD_ARGC == 4) {
3848 with_range = true;
3849 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[2], start_address);
3850 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[3], end_address);
3853 write_gmon(samples, num_of_samples, CMD_ARGV[1],
3854 with_range, start_address, end_address, target);
3855 command_print(CMD_CTX, "Wrote %s", CMD_ARGV[1]);
3857 free(samples);
3858 return retval;
3861 static int new_int_array_element(Jim_Interp *interp, const char *varname, int idx, uint32_t val)
3863 char *namebuf;
3864 Jim_Obj *nameObjPtr, *valObjPtr;
3865 int result;
3867 namebuf = alloc_printf("%s(%d)", varname, idx);
3868 if (!namebuf)
3869 return JIM_ERR;
3871 nameObjPtr = Jim_NewStringObj(interp, namebuf, -1);
3872 valObjPtr = Jim_NewIntObj(interp, val);
3873 if (!nameObjPtr || !valObjPtr) {
3874 free(namebuf);
3875 return JIM_ERR;
3878 Jim_IncrRefCount(nameObjPtr);
3879 Jim_IncrRefCount(valObjPtr);
3880 result = Jim_SetVariable(interp, nameObjPtr, valObjPtr);
3881 Jim_DecrRefCount(interp, nameObjPtr);
3882 Jim_DecrRefCount(interp, valObjPtr);
3883 free(namebuf);
3884 /* printf("%s(%d) <= 0%08x\n", varname, idx, val); */
3885 return result;
3888 static int jim_mem2array(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
3890 struct command_context *context;
3891 struct target *target;
3893 context = current_command_context(interp);
3894 assert(context != NULL);
3896 target = get_current_target(context);
3897 if (target == NULL) {
3898 LOG_ERROR("mem2array: no current target");
3899 return JIM_ERR;
3902 return target_mem2array(interp, target, argc - 1, argv + 1);
3905 static int target_mem2array(Jim_Interp *interp, struct target *target, int argc, Jim_Obj *const *argv)
3907 long l;
3908 uint32_t width;
3909 int len;
3910 uint32_t addr;
3911 uint32_t count;
3912 uint32_t v;
3913 const char *varname;
3914 int n, e, retval;
3915 uint32_t i;
3917 /* argv[1] = name of array to receive the data
3918 * argv[2] = desired width
3919 * argv[3] = memory address
3920 * argv[4] = count of times to read
3922 if (argc != 4) {
3923 Jim_WrongNumArgs(interp, 1, argv, "varname width addr nelems");
3924 return JIM_ERR;
3926 varname = Jim_GetString(argv[0], &len);
3927 /* given "foo" get space for worse case "foo(%d)" .. add 20 */
3929 e = Jim_GetLong(interp, argv[1], &l);
3930 width = l;
3931 if (e != JIM_OK)
3932 return e;
3934 e = Jim_GetLong(interp, argv[2], &l);
3935 addr = l;
3936 if (e != JIM_OK)
3937 return e;
3938 e = Jim_GetLong(interp, argv[3], &l);
3939 len = l;
3940 if (e != JIM_OK)
3941 return e;
3942 switch (width) {
3943 case 8:
3944 width = 1;
3945 break;
3946 case 16:
3947 width = 2;
3948 break;
3949 case 32:
3950 width = 4;
3951 break;
3952 default:
3953 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3954 Jim_AppendStrings(interp, Jim_GetResult(interp), "Invalid width param, must be 8/16/32", NULL);
3955 return JIM_ERR;
3957 if (len == 0) {
3958 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3959 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: zero width read?", NULL);
3960 return JIM_ERR;
3962 if ((addr + (len * width)) < addr) {
3963 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3964 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: addr + len - wraps to zero?", NULL);
3965 return JIM_ERR;
3967 /* absurd transfer size? */
3968 if (len > 65536) {
3969 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3970 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: absurd > 64K item request", NULL);
3971 return JIM_ERR;
3974 if ((width == 1) ||
3975 ((width == 2) && ((addr & 1) == 0)) ||
3976 ((width == 4) && ((addr & 3) == 0))) {
3977 /* all is well */
3978 } else {
3979 char buf[100];
3980 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3981 sprintf(buf, "mem2array address: 0x%08" PRIx32 " is not aligned for %" PRId32 " byte reads",
3982 addr,
3983 width);
3984 Jim_AppendStrings(interp, Jim_GetResult(interp), buf , NULL);
3985 return JIM_ERR;
3988 /* Transfer loop */
3990 /* index counter */
3991 n = 0;
3993 size_t buffersize = 4096;
3994 uint8_t *buffer = malloc(buffersize);
3995 if (buffer == NULL)
3996 return JIM_ERR;
3998 /* assume ok */
3999 e = JIM_OK;
4000 while (len) {
4001 /* Slurp... in buffer size chunks */
4003 count = len; /* in objects.. */
4004 if (count > (buffersize / width))
4005 count = (buffersize / width);
4007 retval = target_read_memory(target, addr, width, count, buffer);
4008 if (retval != ERROR_OK) {
4009 /* BOO !*/
4010 LOG_ERROR("mem2array: Read @ 0x%08x, w=%d, cnt=%d, failed",
4011 (unsigned int)addr,
4012 (int)width,
4013 (int)count);
4014 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4015 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: cannot read memory", NULL);
4016 e = JIM_ERR;
4017 break;
4018 } else {
4019 v = 0; /* shut up gcc */
4020 for (i = 0; i < count ; i++, n++) {
4021 switch (width) {
4022 case 4:
4023 v = target_buffer_get_u32(target, &buffer[i*width]);
4024 break;
4025 case 2:
4026 v = target_buffer_get_u16(target, &buffer[i*width]);
4027 break;
4028 case 1:
4029 v = buffer[i] & 0x0ff;
4030 break;
4032 new_int_array_element(interp, varname, n, v);
4034 len -= count;
4035 addr += count * width;
4039 free(buffer);
4041 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4043 return e;
4046 static int get_int_array_element(Jim_Interp *interp, const char *varname, int idx, uint32_t *val)
4048 char *namebuf;
4049 Jim_Obj *nameObjPtr, *valObjPtr;
4050 int result;
4051 long l;
4053 namebuf = alloc_printf("%s(%d)", varname, idx);
4054 if (!namebuf)
4055 return JIM_ERR;
4057 nameObjPtr = Jim_NewStringObj(interp, namebuf, -1);
4058 if (!nameObjPtr) {
4059 free(namebuf);
4060 return JIM_ERR;
4063 Jim_IncrRefCount(nameObjPtr);
4064 valObjPtr = Jim_GetVariable(interp, nameObjPtr, JIM_ERRMSG);
4065 Jim_DecrRefCount(interp, nameObjPtr);
4066 free(namebuf);
4067 if (valObjPtr == NULL)
4068 return JIM_ERR;
4070 result = Jim_GetLong(interp, valObjPtr, &l);
4071 /* printf("%s(%d) => 0%08x\n", varname, idx, val); */
4072 *val = l;
4073 return result;
4076 static int jim_array2mem(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4078 struct command_context *context;
4079 struct target *target;
4081 context = current_command_context(interp);
4082 assert(context != NULL);
4084 target = get_current_target(context);
4085 if (target == NULL) {
4086 LOG_ERROR("array2mem: no current target");
4087 return JIM_ERR;
4090 return target_array2mem(interp, target, argc-1, argv + 1);
4093 static int target_array2mem(Jim_Interp *interp, struct target *target,
4094 int argc, Jim_Obj *const *argv)
4096 long l;
4097 uint32_t width;
4098 int len;
4099 uint32_t addr;
4100 uint32_t count;
4101 uint32_t v;
4102 const char *varname;
4103 int n, e, retval;
4104 uint32_t i;
4106 /* argv[1] = name of array to get the data
4107 * argv[2] = desired width
4108 * argv[3] = memory address
4109 * argv[4] = count to write
4111 if (argc != 4) {
4112 Jim_WrongNumArgs(interp, 0, argv, "varname width addr nelems");
4113 return JIM_ERR;
4115 varname = Jim_GetString(argv[0], &len);
4116 /* given "foo" get space for worse case "foo(%d)" .. add 20 */
4118 e = Jim_GetLong(interp, argv[1], &l);
4119 width = l;
4120 if (e != JIM_OK)
4121 return e;
4123 e = Jim_GetLong(interp, argv[2], &l);
4124 addr = l;
4125 if (e != JIM_OK)
4126 return e;
4127 e = Jim_GetLong(interp, argv[3], &l);
4128 len = l;
4129 if (e != JIM_OK)
4130 return e;
4131 switch (width) {
4132 case 8:
4133 width = 1;
4134 break;
4135 case 16:
4136 width = 2;
4137 break;
4138 case 32:
4139 width = 4;
4140 break;
4141 default:
4142 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4143 Jim_AppendStrings(interp, Jim_GetResult(interp),
4144 "Invalid width param, must be 8/16/32", NULL);
4145 return JIM_ERR;
4147 if (len == 0) {
4148 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4149 Jim_AppendStrings(interp, Jim_GetResult(interp),
4150 "array2mem: zero width read?", NULL);
4151 return JIM_ERR;
4153 if ((addr + (len * width)) < addr) {
4154 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4155 Jim_AppendStrings(interp, Jim_GetResult(interp),
4156 "array2mem: addr + len - wraps to zero?", NULL);
4157 return JIM_ERR;
4159 /* absurd transfer size? */
4160 if (len > 65536) {
4161 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4162 Jim_AppendStrings(interp, Jim_GetResult(interp),
4163 "array2mem: absurd > 64K item request", NULL);
4164 return JIM_ERR;
4167 if ((width == 1) ||
4168 ((width == 2) && ((addr & 1) == 0)) ||
4169 ((width == 4) && ((addr & 3) == 0))) {
4170 /* all is well */
4171 } else {
4172 char buf[100];
4173 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4174 sprintf(buf, "array2mem address: 0x%08x is not aligned for %d byte reads",
4175 (unsigned int)addr,
4176 (int)width);
4177 Jim_AppendStrings(interp, Jim_GetResult(interp), buf , NULL);
4178 return JIM_ERR;
4181 /* Transfer loop */
4183 /* index counter */
4184 n = 0;
4185 /* assume ok */
4186 e = JIM_OK;
4188 size_t buffersize = 4096;
4189 uint8_t *buffer = malloc(buffersize);
4190 if (buffer == NULL)
4191 return JIM_ERR;
4193 while (len) {
4194 /* Slurp... in buffer size chunks */
4196 count = len; /* in objects.. */
4197 if (count > (buffersize / width))
4198 count = (buffersize / width);
4200 v = 0; /* shut up gcc */
4201 for (i = 0; i < count; i++, n++) {
4202 get_int_array_element(interp, varname, n, &v);
4203 switch (width) {
4204 case 4:
4205 target_buffer_set_u32(target, &buffer[i * width], v);
4206 break;
4207 case 2:
4208 target_buffer_set_u16(target, &buffer[i * width], v);
4209 break;
4210 case 1:
4211 buffer[i] = v & 0x0ff;
4212 break;
4215 len -= count;
4217 retval = target_write_memory(target, addr, width, count, buffer);
4218 if (retval != ERROR_OK) {
4219 /* BOO !*/
4220 LOG_ERROR("array2mem: Write @ 0x%08x, w=%d, cnt=%d, failed",
4221 (unsigned int)addr,
4222 (int)width,
4223 (int)count);
4224 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4225 Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: cannot read memory", NULL);
4226 e = JIM_ERR;
4227 break;
4229 addr += count * width;
4232 free(buffer);
4234 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4236 return e;
4239 /* FIX? should we propagate errors here rather than printing them
4240 * and continuing?
4242 void target_handle_event(struct target *target, enum target_event e)
4244 struct target_event_action *teap;
4246 for (teap = target->event_action; teap != NULL; teap = teap->next) {
4247 if (teap->event == e) {
4248 LOG_DEBUG("target: (%d) %s (%s) event: %d (%s) action: %s",
4249 target->target_number,
4250 target_name(target),
4251 target_type_name(target),
4253 Jim_Nvp_value2name_simple(nvp_target_event, e)->name,
4254 Jim_GetString(teap->body, NULL));
4255 if (Jim_EvalObj(teap->interp, teap->body) != JIM_OK) {
4256 Jim_MakeErrorMessage(teap->interp);
4257 command_print(NULL, "%s\n", Jim_GetString(Jim_GetResult(teap->interp), NULL));
4264 * Returns true only if the target has a handler for the specified event.
4266 bool target_has_event_action(struct target *target, enum target_event event)
4268 struct target_event_action *teap;
4270 for (teap = target->event_action; teap != NULL; teap = teap->next) {
4271 if (teap->event == event)
4272 return true;
4274 return false;
4277 enum target_cfg_param {
4278 TCFG_TYPE,
4279 TCFG_EVENT,
4280 TCFG_WORK_AREA_VIRT,
4281 TCFG_WORK_AREA_PHYS,
4282 TCFG_WORK_AREA_SIZE,
4283 TCFG_WORK_AREA_BACKUP,
4284 TCFG_ENDIAN,
4285 TCFG_COREID,
4286 TCFG_CHAIN_POSITION,
4287 TCFG_DBGBASE,
4288 TCFG_RTOS,
4291 static Jim_Nvp nvp_config_opts[] = {
4292 { .name = "-type", .value = TCFG_TYPE },
4293 { .name = "-event", .value = TCFG_EVENT },
4294 { .name = "-work-area-virt", .value = TCFG_WORK_AREA_VIRT },
4295 { .name = "-work-area-phys", .value = TCFG_WORK_AREA_PHYS },
4296 { .name = "-work-area-size", .value = TCFG_WORK_AREA_SIZE },
4297 { .name = "-work-area-backup", .value = TCFG_WORK_AREA_BACKUP },
4298 { .name = "-endian" , .value = TCFG_ENDIAN },
4299 { .name = "-coreid", .value = TCFG_COREID },
4300 { .name = "-chain-position", .value = TCFG_CHAIN_POSITION },
4301 { .name = "-dbgbase", .value = TCFG_DBGBASE },
4302 { .name = "-rtos", .value = TCFG_RTOS },
4303 { .name = NULL, .value = -1 }
4306 static int target_configure(Jim_GetOptInfo *goi, struct target *target)
4308 Jim_Nvp *n;
4309 Jim_Obj *o;
4310 jim_wide w;
4311 int e;
4313 /* parse config or cget options ... */
4314 while (goi->argc > 0) {
4315 Jim_SetEmptyResult(goi->interp);
4316 /* Jim_GetOpt_Debug(goi); */
4318 if (target->type->target_jim_configure) {
4319 /* target defines a configure function */
4320 /* target gets first dibs on parameters */
4321 e = (*(target->type->target_jim_configure))(target, goi);
4322 if (e == JIM_OK) {
4323 /* more? */
4324 continue;
4326 if (e == JIM_ERR) {
4327 /* An error */
4328 return e;
4330 /* otherwise we 'continue' below */
4332 e = Jim_GetOpt_Nvp(goi, nvp_config_opts, &n);
4333 if (e != JIM_OK) {
4334 Jim_GetOpt_NvpUnknown(goi, nvp_config_opts, 0);
4335 return e;
4337 switch (n->value) {
4338 case TCFG_TYPE:
4339 /* not setable */
4340 if (goi->isconfigure) {
4341 Jim_SetResultFormatted(goi->interp,
4342 "not settable: %s", n->name);
4343 return JIM_ERR;
4344 } else {
4345 no_params:
4346 if (goi->argc != 0) {
4347 Jim_WrongNumArgs(goi->interp,
4348 goi->argc, goi->argv,
4349 "NO PARAMS");
4350 return JIM_ERR;
4353 Jim_SetResultString(goi->interp,
4354 target_type_name(target), -1);
4355 /* loop for more */
4356 break;
4357 case TCFG_EVENT:
4358 if (goi->argc == 0) {
4359 Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name? ...");
4360 return JIM_ERR;
4363 e = Jim_GetOpt_Nvp(goi, nvp_target_event, &n);
4364 if (e != JIM_OK) {
4365 Jim_GetOpt_NvpUnknown(goi, nvp_target_event, 1);
4366 return e;
4369 if (goi->isconfigure) {
4370 if (goi->argc != 1) {
4371 Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name? ?EVENT-BODY?");
4372 return JIM_ERR;
4374 } else {
4375 if (goi->argc != 0) {
4376 Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name?");
4377 return JIM_ERR;
4382 struct target_event_action *teap;
4384 teap = target->event_action;
4385 /* replace existing? */
4386 while (teap) {
4387 if (teap->event == (enum target_event)n->value)
4388 break;
4389 teap = teap->next;
4392 if (goi->isconfigure) {
4393 bool replace = true;
4394 if (teap == NULL) {
4395 /* create new */
4396 teap = calloc(1, sizeof(*teap));
4397 replace = false;
4399 teap->event = n->value;
4400 teap->interp = goi->interp;
4401 Jim_GetOpt_Obj(goi, &o);
4402 if (teap->body)
4403 Jim_DecrRefCount(teap->interp, teap->body);
4404 teap->body = Jim_DuplicateObj(goi->interp, o);
4406 * FIXME:
4407 * Tcl/TK - "tk events" have a nice feature.
4408 * See the "BIND" command.
4409 * We should support that here.
4410 * You can specify %X and %Y in the event code.
4411 * The idea is: %T - target name.
4412 * The idea is: %N - target number
4413 * The idea is: %E - event name.
4415 Jim_IncrRefCount(teap->body);
4417 if (!replace) {
4418 /* add to head of event list */
4419 teap->next = target->event_action;
4420 target->event_action = teap;
4422 Jim_SetEmptyResult(goi->interp);
4423 } else {
4424 /* get */
4425 if (teap == NULL)
4426 Jim_SetEmptyResult(goi->interp);
4427 else
4428 Jim_SetResult(goi->interp, Jim_DuplicateObj(goi->interp, teap->body));
4431 /* loop for more */
4432 break;
4434 case TCFG_WORK_AREA_VIRT:
4435 if (goi->isconfigure) {
4436 target_free_all_working_areas(target);
4437 e = Jim_GetOpt_Wide(goi, &w);
4438 if (e != JIM_OK)
4439 return e;
4440 target->working_area_virt = w;
4441 target->working_area_virt_spec = true;
4442 } else {
4443 if (goi->argc != 0)
4444 goto no_params;
4446 Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_virt));
4447 /* loop for more */
4448 break;
4450 case TCFG_WORK_AREA_PHYS:
4451 if (goi->isconfigure) {
4452 target_free_all_working_areas(target);
4453 e = Jim_GetOpt_Wide(goi, &w);
4454 if (e != JIM_OK)
4455 return e;
4456 target->working_area_phys = w;
4457 target->working_area_phys_spec = true;
4458 } else {
4459 if (goi->argc != 0)
4460 goto no_params;
4462 Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_phys));
4463 /* loop for more */
4464 break;
4466 case TCFG_WORK_AREA_SIZE:
4467 if (goi->isconfigure) {
4468 target_free_all_working_areas(target);
4469 e = Jim_GetOpt_Wide(goi, &w);
4470 if (e != JIM_OK)
4471 return e;
4472 target->working_area_size = w;
4473 } else {
4474 if (goi->argc != 0)
4475 goto no_params;
4477 Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_size));
4478 /* loop for more */
4479 break;
4481 case TCFG_WORK_AREA_BACKUP:
4482 if (goi->isconfigure) {
4483 target_free_all_working_areas(target);
4484 e = Jim_GetOpt_Wide(goi, &w);
4485 if (e != JIM_OK)
4486 return e;
4487 /* make this exactly 1 or 0 */
4488 target->backup_working_area = (!!w);
4489 } else {
4490 if (goi->argc != 0)
4491 goto no_params;
4493 Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->backup_working_area));
4494 /* loop for more e*/
4495 break;
4498 case TCFG_ENDIAN:
4499 if (goi->isconfigure) {
4500 e = Jim_GetOpt_Nvp(goi, nvp_target_endian, &n);
4501 if (e != JIM_OK) {
4502 Jim_GetOpt_NvpUnknown(goi, nvp_target_endian, 1);
4503 return e;
4505 target->endianness = n->value;
4506 } else {
4507 if (goi->argc != 0)
4508 goto no_params;
4510 n = Jim_Nvp_value2name_simple(nvp_target_endian, target->endianness);
4511 if (n->name == NULL) {
4512 target->endianness = TARGET_LITTLE_ENDIAN;
4513 n = Jim_Nvp_value2name_simple(nvp_target_endian, target->endianness);
4515 Jim_SetResultString(goi->interp, n->name, -1);
4516 /* loop for more */
4517 break;
4519 case TCFG_COREID:
4520 if (goi->isconfigure) {
4521 e = Jim_GetOpt_Wide(goi, &w);
4522 if (e != JIM_OK)
4523 return e;
4524 target->coreid = (int32_t)w;
4525 } else {
4526 if (goi->argc != 0)
4527 goto no_params;
4529 Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_size));
4530 /* loop for more */
4531 break;
4533 case TCFG_CHAIN_POSITION:
4534 if (goi->isconfigure) {
4535 Jim_Obj *o_t;
4536 struct jtag_tap *tap;
4537 target_free_all_working_areas(target);
4538 e = Jim_GetOpt_Obj(goi, &o_t);
4539 if (e != JIM_OK)
4540 return e;
4541 tap = jtag_tap_by_jim_obj(goi->interp, o_t);
4542 if (tap == NULL)
4543 return JIM_ERR;
4544 /* make this exactly 1 or 0 */
4545 target->tap = tap;
4546 } else {
4547 if (goi->argc != 0)
4548 goto no_params;
4550 Jim_SetResultString(goi->interp, target->tap->dotted_name, -1);
4551 /* loop for more e*/
4552 break;
4553 case TCFG_DBGBASE:
4554 if (goi->isconfigure) {
4555 e = Jim_GetOpt_Wide(goi, &w);
4556 if (e != JIM_OK)
4557 return e;
4558 target->dbgbase = (uint32_t)w;
4559 target->dbgbase_set = true;
4560 } else {
4561 if (goi->argc != 0)
4562 goto no_params;
4564 Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->dbgbase));
4565 /* loop for more */
4566 break;
4568 case TCFG_RTOS:
4569 /* RTOS */
4571 int result = rtos_create(goi, target);
4572 if (result != JIM_OK)
4573 return result;
4575 /* loop for more */
4576 break;
4578 } /* while (goi->argc) */
4581 /* done - we return */
4582 return JIM_OK;
4585 static int jim_target_configure(Jim_Interp *interp, int argc, Jim_Obj * const *argv)
4587 Jim_GetOptInfo goi;
4589 Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4590 goi.isconfigure = !strcmp(Jim_GetString(argv[0], NULL), "configure");
4591 int need_args = 1 + goi.isconfigure;
4592 if (goi.argc < need_args) {
4593 Jim_WrongNumArgs(goi.interp, goi.argc, goi.argv,
4594 goi.isconfigure
4595 ? "missing: -option VALUE ..."
4596 : "missing: -option ...");
4597 return JIM_ERR;
4599 struct target *target = Jim_CmdPrivData(goi.interp);
4600 return target_configure(&goi, target);
4603 static int jim_target_mw(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4605 const char *cmd_name = Jim_GetString(argv[0], NULL);
4607 Jim_GetOptInfo goi;
4608 Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4610 if (goi.argc < 2 || goi.argc > 4) {
4611 Jim_SetResultFormatted(goi.interp,
4612 "usage: %s [phys] <address> <data> [<count>]", cmd_name);
4613 return JIM_ERR;
4616 target_write_fn fn;
4617 fn = target_write_memory;
4619 int e;
4620 if (strcmp(Jim_GetString(argv[1], NULL), "phys") == 0) {
4621 /* consume it */
4622 struct Jim_Obj *obj;
4623 e = Jim_GetOpt_Obj(&goi, &obj);
4624 if (e != JIM_OK)
4625 return e;
4627 fn = target_write_phys_memory;
4630 jim_wide a;
4631 e = Jim_GetOpt_Wide(&goi, &a);
4632 if (e != JIM_OK)
4633 return e;
4635 jim_wide b;
4636 e = Jim_GetOpt_Wide(&goi, &b);
4637 if (e != JIM_OK)
4638 return e;
4640 jim_wide c = 1;
4641 if (goi.argc == 1) {
4642 e = Jim_GetOpt_Wide(&goi, &c);
4643 if (e != JIM_OK)
4644 return e;
4647 /* all args must be consumed */
4648 if (goi.argc != 0)
4649 return JIM_ERR;
4651 struct target *target = Jim_CmdPrivData(goi.interp);
4652 unsigned data_size;
4653 if (strcasecmp(cmd_name, "mww") == 0)
4654 data_size = 4;
4655 else if (strcasecmp(cmd_name, "mwh") == 0)
4656 data_size = 2;
4657 else if (strcasecmp(cmd_name, "mwb") == 0)
4658 data_size = 1;
4659 else {
4660 LOG_ERROR("command '%s' unknown: ", cmd_name);
4661 return JIM_ERR;
4664 return (target_fill_mem(target, a, fn, data_size, b, c) == ERROR_OK) ? JIM_OK : JIM_ERR;
4668 * @brief Reads an array of words/halfwords/bytes from target memory starting at specified address.
4670 * Usage: mdw [phys] <address> [<count>] - for 32 bit reads
4671 * mdh [phys] <address> [<count>] - for 16 bit reads
4672 * mdb [phys] <address> [<count>] - for 8 bit reads
4674 * Count defaults to 1.
4676 * Calls target_read_memory or target_read_phys_memory depending on
4677 * the presence of the "phys" argument
4678 * Reads the target memory in blocks of max. 32 bytes, and returns an array of ints formatted
4679 * to int representation in base16.
4680 * Also outputs read data in a human readable form using command_print
4682 * @param phys if present target_read_phys_memory will be used instead of target_read_memory
4683 * @param address address where to start the read. May be specified in decimal or hex using the standard "0x" prefix
4684 * @param count optional count parameter to read an array of values. If not specified, defaults to 1.
4685 * @returns: JIM_ERR on error or JIM_OK on success and sets the result string to an array of ascii formatted numbers
4686 * on success, with [<count>] number of elements.
4688 * In case of little endian target:
4689 * Example1: "mdw 0x00000000" returns "10123456"
4690 * Exmaple2: "mdh 0x00000000 1" returns "3456"
4691 * Example3: "mdb 0x00000000" returns "56"
4692 * Example4: "mdh 0x00000000 2" returns "3456 1012"
4693 * Example5: "mdb 0x00000000 3" returns "56 34 12"
4695 static int jim_target_md(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4697 const char *cmd_name = Jim_GetString(argv[0], NULL);
4699 Jim_GetOptInfo goi;
4700 Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4702 if ((goi.argc < 1) || (goi.argc > 3)) {
4703 Jim_SetResultFormatted(goi.interp,
4704 "usage: %s [phys] <address> [<count>]", cmd_name);
4705 return JIM_ERR;
4708 int (*fn)(struct target *target,
4709 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer);
4710 fn = target_read_memory;
4712 int e;
4713 if (strcmp(Jim_GetString(argv[1], NULL), "phys") == 0) {
4714 /* consume it */
4715 struct Jim_Obj *obj;
4716 e = Jim_GetOpt_Obj(&goi, &obj);
4717 if (e != JIM_OK)
4718 return e;
4720 fn = target_read_phys_memory;
4723 /* Read address parameter */
4724 jim_wide addr;
4725 e = Jim_GetOpt_Wide(&goi, &addr);
4726 if (e != JIM_OK)
4727 return JIM_ERR;
4729 /* If next parameter exists, read it out as the count parameter, if not, set it to 1 (default) */
4730 jim_wide count;
4731 if (goi.argc == 1) {
4732 e = Jim_GetOpt_Wide(&goi, &count);
4733 if (e != JIM_OK)
4734 return JIM_ERR;
4735 } else
4736 count = 1;
4738 /* all args must be consumed */
4739 if (goi.argc != 0)
4740 return JIM_ERR;
4742 jim_wide dwidth = 1; /* shut up gcc */
4743 if (strcasecmp(cmd_name, "mdw") == 0)
4744 dwidth = 4;
4745 else if (strcasecmp(cmd_name, "mdh") == 0)
4746 dwidth = 2;
4747 else if (strcasecmp(cmd_name, "mdb") == 0)
4748 dwidth = 1;
4749 else {
4750 LOG_ERROR("command '%s' unknown: ", cmd_name);
4751 return JIM_ERR;
4754 /* convert count to "bytes" */
4755 int bytes = count * dwidth;
4757 struct target *target = Jim_CmdPrivData(goi.interp);
4758 uint8_t target_buf[32];
4759 jim_wide x, y, z;
4760 while (bytes > 0) {
4761 y = (bytes < 16) ? bytes : 16; /* y = min(bytes, 16); */
4763 /* Try to read out next block */
4764 e = fn(target, addr, dwidth, y / dwidth, target_buf);
4766 if (e != ERROR_OK) {
4767 Jim_SetResultFormatted(interp, "error reading target @ 0x%08lx", (long)addr);
4768 return JIM_ERR;
4771 command_print_sameline(NULL, "0x%08x ", (int)(addr));
4772 switch (dwidth) {
4773 case 4:
4774 for (x = 0; x < 16 && x < y; x += 4) {
4775 z = target_buffer_get_u32(target, &(target_buf[x]));
4776 command_print_sameline(NULL, "%08x ", (int)(z));
4778 for (; (x < 16) ; x += 4)
4779 command_print_sameline(NULL, " ");
4780 break;
4781 case 2:
4782 for (x = 0; x < 16 && x < y; x += 2) {
4783 z = target_buffer_get_u16(target, &(target_buf[x]));
4784 command_print_sameline(NULL, "%04x ", (int)(z));
4786 for (; (x < 16) ; x += 2)
4787 command_print_sameline(NULL, " ");
4788 break;
4789 case 1:
4790 default:
4791 for (x = 0 ; (x < 16) && (x < y) ; x += 1) {
4792 z = target_buffer_get_u8(target, &(target_buf[x]));
4793 command_print_sameline(NULL, "%02x ", (int)(z));
4795 for (; (x < 16) ; x += 1)
4796 command_print_sameline(NULL, " ");
4797 break;
4799 /* ascii-ify the bytes */
4800 for (x = 0 ; x < y ; x++) {
4801 if ((target_buf[x] >= 0x20) &&
4802 (target_buf[x] <= 0x7e)) {
4803 /* good */
4804 } else {
4805 /* smack it */
4806 target_buf[x] = '.';
4809 /* space pad */
4810 while (x < 16) {
4811 target_buf[x] = ' ';
4812 x++;
4814 /* terminate */
4815 target_buf[16] = 0;
4816 /* print - with a newline */
4817 command_print_sameline(NULL, "%s\n", target_buf);
4818 /* NEXT... */
4819 bytes -= 16;
4820 addr += 16;
4822 return JIM_OK;
4825 static int jim_target_mem2array(Jim_Interp *interp,
4826 int argc, Jim_Obj *const *argv)
4828 struct target *target = Jim_CmdPrivData(interp);
4829 return target_mem2array(interp, target, argc - 1, argv + 1);
4832 static int jim_target_array2mem(Jim_Interp *interp,
4833 int argc, Jim_Obj *const *argv)
4835 struct target *target = Jim_CmdPrivData(interp);
4836 return target_array2mem(interp, target, argc - 1, argv + 1);
4839 static int jim_target_tap_disabled(Jim_Interp *interp)
4841 Jim_SetResultFormatted(interp, "[TAP is disabled]");
4842 return JIM_ERR;
4845 static int jim_target_examine(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4847 if (argc != 1) {
4848 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
4849 return JIM_ERR;
4851 struct target *target = Jim_CmdPrivData(interp);
4852 if (!target->tap->enabled)
4853 return jim_target_tap_disabled(interp);
4855 int e = target->type->examine(target);
4856 if (e != ERROR_OK)
4857 return JIM_ERR;
4858 return JIM_OK;
4861 static int jim_target_halt_gdb(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4863 if (argc != 1) {
4864 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
4865 return JIM_ERR;
4867 struct target *target = Jim_CmdPrivData(interp);
4869 if (target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT) != ERROR_OK)
4870 return JIM_ERR;
4872 return JIM_OK;
4875 static int jim_target_poll(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4877 if (argc != 1) {
4878 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
4879 return JIM_ERR;
4881 struct target *target = Jim_CmdPrivData(interp);
4882 if (!target->tap->enabled)
4883 return jim_target_tap_disabled(interp);
4885 int e;
4886 if (!(target_was_examined(target)))
4887 e = ERROR_TARGET_NOT_EXAMINED;
4888 else
4889 e = target->type->poll(target);
4890 if (e != ERROR_OK)
4891 return JIM_ERR;
4892 return JIM_OK;
4895 static int jim_target_reset(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4897 Jim_GetOptInfo goi;
4898 Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4900 if (goi.argc != 2) {
4901 Jim_WrongNumArgs(interp, 0, argv,
4902 "([tT]|[fF]|assert|deassert) BOOL");
4903 return JIM_ERR;
4906 Jim_Nvp *n;
4907 int e = Jim_GetOpt_Nvp(&goi, nvp_assert, &n);
4908 if (e != JIM_OK) {
4909 Jim_GetOpt_NvpUnknown(&goi, nvp_assert, 1);
4910 return e;
4912 /* the halt or not param */
4913 jim_wide a;
4914 e = Jim_GetOpt_Wide(&goi, &a);
4915 if (e != JIM_OK)
4916 return e;
4918 struct target *target = Jim_CmdPrivData(goi.interp);
4919 if (!target->tap->enabled)
4920 return jim_target_tap_disabled(interp);
4922 if (!target->type->assert_reset || !target->type->deassert_reset) {
4923 Jim_SetResultFormatted(interp,
4924 "No target-specific reset for %s",
4925 target_name(target));
4926 return JIM_ERR;
4928 /* determine if we should halt or not. */
4929 target->reset_halt = !!a;
4930 /* When this happens - all workareas are invalid. */
4931 target_free_all_working_areas_restore(target, 0);
4933 /* do the assert */
4934 if (n->value == NVP_ASSERT)
4935 e = target->type->assert_reset(target);
4936 else
4937 e = target->type->deassert_reset(target);
4938 return (e == ERROR_OK) ? JIM_OK : JIM_ERR;
4941 static int jim_target_halt(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4943 if (argc != 1) {
4944 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
4945 return JIM_ERR;
4947 struct target *target = Jim_CmdPrivData(interp);
4948 if (!target->tap->enabled)
4949 return jim_target_tap_disabled(interp);
4950 int e = target->type->halt(target);
4951 return (e == ERROR_OK) ? JIM_OK : JIM_ERR;
4954 static int jim_target_wait_state(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4956 Jim_GetOptInfo goi;
4957 Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4959 /* params: <name> statename timeoutmsecs */
4960 if (goi.argc != 2) {
4961 const char *cmd_name = Jim_GetString(argv[0], NULL);
4962 Jim_SetResultFormatted(goi.interp,
4963 "%s <state_name> <timeout_in_msec>", cmd_name);
4964 return JIM_ERR;
4967 Jim_Nvp *n;
4968 int e = Jim_GetOpt_Nvp(&goi, nvp_target_state, &n);
4969 if (e != JIM_OK) {
4970 Jim_GetOpt_NvpUnknown(&goi, nvp_target_state, 1);
4971 return e;
4973 jim_wide a;
4974 e = Jim_GetOpt_Wide(&goi, &a);
4975 if (e != JIM_OK)
4976 return e;
4977 struct target *target = Jim_CmdPrivData(interp);
4978 if (!target->tap->enabled)
4979 return jim_target_tap_disabled(interp);
4981 e = target_wait_state(target, n->value, a);
4982 if (e != ERROR_OK) {
4983 Jim_Obj *eObj = Jim_NewIntObj(interp, e);
4984 Jim_SetResultFormatted(goi.interp,
4985 "target: %s wait %s fails (%#s) %s",
4986 target_name(target), n->name,
4987 eObj, target_strerror_safe(e));
4988 Jim_FreeNewObj(interp, eObj);
4989 return JIM_ERR;
4991 return JIM_OK;
4993 /* List for human, Events defined for this target.
4994 * scripts/programs should use 'name cget -event NAME'
4996 static int jim_target_event_list(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4998 struct command_context *cmd_ctx = current_command_context(interp);
4999 assert(cmd_ctx != NULL);
5001 struct target *target = Jim_CmdPrivData(interp);
5002 struct target_event_action *teap = target->event_action;
5003 command_print(cmd_ctx, "Event actions for target (%d) %s\n",
5004 target->target_number,
5005 target_name(target));
5006 command_print(cmd_ctx, "%-25s | Body", "Event");
5007 command_print(cmd_ctx, "------------------------- | "
5008 "----------------------------------------");
5009 while (teap) {
5010 Jim_Nvp *opt = Jim_Nvp_value2name_simple(nvp_target_event, teap->event);
5011 command_print(cmd_ctx, "%-25s | %s",
5012 opt->name, Jim_GetString(teap->body, NULL));
5013 teap = teap->next;
5015 command_print(cmd_ctx, "***END***");
5016 return JIM_OK;
5018 static int jim_target_current_state(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5020 if (argc != 1) {
5021 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
5022 return JIM_ERR;
5024 struct target *target = Jim_CmdPrivData(interp);
5025 Jim_SetResultString(interp, target_state_name(target), -1);
5026 return JIM_OK;
5028 static int jim_target_invoke_event(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5030 Jim_GetOptInfo goi;
5031 Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
5032 if (goi.argc != 1) {
5033 const char *cmd_name = Jim_GetString(argv[0], NULL);
5034 Jim_SetResultFormatted(goi.interp, "%s <eventname>", cmd_name);
5035 return JIM_ERR;
5037 Jim_Nvp *n;
5038 int e = Jim_GetOpt_Nvp(&goi, nvp_target_event, &n);
5039 if (e != JIM_OK) {
5040 Jim_GetOpt_NvpUnknown(&goi, nvp_target_event, 1);
5041 return e;
5043 struct target *target = Jim_CmdPrivData(interp);
5044 target_handle_event(target, n->value);
5045 return JIM_OK;
5048 static const struct command_registration target_instance_command_handlers[] = {
5050 .name = "configure",
5051 .mode = COMMAND_CONFIG,
5052 .jim_handler = jim_target_configure,
5053 .help = "configure a new target for use",
5054 .usage = "[target_attribute ...]",
5057 .name = "cget",
5058 .mode = COMMAND_ANY,
5059 .jim_handler = jim_target_configure,
5060 .help = "returns the specified target attribute",
5061 .usage = "target_attribute",
5064 .name = "mww",
5065 .mode = COMMAND_EXEC,
5066 .jim_handler = jim_target_mw,
5067 .help = "Write 32-bit word(s) to target memory",
5068 .usage = "address data [count]",
5071 .name = "mwh",
5072 .mode = COMMAND_EXEC,
5073 .jim_handler = jim_target_mw,
5074 .help = "Write 16-bit half-word(s) to target memory",
5075 .usage = "address data [count]",
5078 .name = "mwb",
5079 .mode = COMMAND_EXEC,
5080 .jim_handler = jim_target_mw,
5081 .help = "Write byte(s) to target memory",
5082 .usage = "address data [count]",
5085 .name = "mdw",
5086 .mode = COMMAND_EXEC,
5087 .jim_handler = jim_target_md,
5088 .help = "Display target memory as 32-bit words",
5089 .usage = "address [count]",
5092 .name = "mdh",
5093 .mode = COMMAND_EXEC,
5094 .jim_handler = jim_target_md,
5095 .help = "Display target memory as 16-bit half-words",
5096 .usage = "address [count]",
5099 .name = "mdb",
5100 .mode = COMMAND_EXEC,
5101 .jim_handler = jim_target_md,
5102 .help = "Display target memory as 8-bit bytes",
5103 .usage = "address [count]",
5106 .name = "array2mem",
5107 .mode = COMMAND_EXEC,
5108 .jim_handler = jim_target_array2mem,
5109 .help = "Writes Tcl array of 8/16/32 bit numbers "
5110 "to target memory",
5111 .usage = "arrayname bitwidth address count",
5114 .name = "mem2array",
5115 .mode = COMMAND_EXEC,
5116 .jim_handler = jim_target_mem2array,
5117 .help = "Loads Tcl array of 8/16/32 bit numbers "
5118 "from target memory",
5119 .usage = "arrayname bitwidth address count",
5122 .name = "eventlist",
5123 .mode = COMMAND_EXEC,
5124 .jim_handler = jim_target_event_list,
5125 .help = "displays a table of events defined for this target",
5128 .name = "curstate",
5129 .mode = COMMAND_EXEC,
5130 .jim_handler = jim_target_current_state,
5131 .help = "displays the current state of this target",
5134 .name = "arp_examine",
5135 .mode = COMMAND_EXEC,
5136 .jim_handler = jim_target_examine,
5137 .help = "used internally for reset processing",
5140 .name = "arp_halt_gdb",
5141 .mode = COMMAND_EXEC,
5142 .jim_handler = jim_target_halt_gdb,
5143 .help = "used internally for reset processing to halt GDB",
5146 .name = "arp_poll",
5147 .mode = COMMAND_EXEC,
5148 .jim_handler = jim_target_poll,
5149 .help = "used internally for reset processing",
5152 .name = "arp_reset",
5153 .mode = COMMAND_EXEC,
5154 .jim_handler = jim_target_reset,
5155 .help = "used internally for reset processing",
5158 .name = "arp_halt",
5159 .mode = COMMAND_EXEC,
5160 .jim_handler = jim_target_halt,
5161 .help = "used internally for reset processing",
5164 .name = "arp_waitstate",
5165 .mode = COMMAND_EXEC,
5166 .jim_handler = jim_target_wait_state,
5167 .help = "used internally for reset processing",
5170 .name = "invoke-event",
5171 .mode = COMMAND_EXEC,
5172 .jim_handler = jim_target_invoke_event,
5173 .help = "invoke handler for specified event",
5174 .usage = "event_name",
5176 COMMAND_REGISTRATION_DONE
5179 static int target_create(Jim_GetOptInfo *goi)
5181 Jim_Obj *new_cmd;
5182 Jim_Cmd *cmd;
5183 const char *cp;
5184 int e;
5185 int x;
5186 struct target *target;
5187 struct command_context *cmd_ctx;
5189 cmd_ctx = current_command_context(goi->interp);
5190 assert(cmd_ctx != NULL);
5192 if (goi->argc < 3) {
5193 Jim_WrongNumArgs(goi->interp, 1, goi->argv, "?name? ?type? ..options...");
5194 return JIM_ERR;
5197 /* COMMAND */
5198 Jim_GetOpt_Obj(goi, &new_cmd);
5199 /* does this command exist? */
5200 cmd = Jim_GetCommand(goi->interp, new_cmd, JIM_ERRMSG);
5201 if (cmd) {
5202 cp = Jim_GetString(new_cmd, NULL);
5203 Jim_SetResultFormatted(goi->interp, "Command/target: %s Exists", cp);
5204 return JIM_ERR;
5207 /* TYPE */
5208 e = Jim_GetOpt_String(goi, &cp, NULL);
5209 if (e != JIM_OK)
5210 return e;
5211 struct transport *tr = get_current_transport();
5212 if (tr->override_target) {
5213 e = tr->override_target(&cp);
5214 if (e != ERROR_OK) {
5215 LOG_ERROR("The selected transport doesn't support this target");
5216 return JIM_ERR;
5218 LOG_INFO("The selected transport took over low-level target control. The results might differ compared to plain JTAG/SWD");
5220 /* now does target type exist */
5221 for (x = 0 ; target_types[x] ; x++) {
5222 if (0 == strcmp(cp, target_types[x]->name)) {
5223 /* found */
5224 break;
5227 /* check for deprecated name */
5228 if (target_types[x]->deprecated_name) {
5229 if (0 == strcmp(cp, target_types[x]->deprecated_name)) {
5230 /* found */
5231 LOG_WARNING("target name is deprecated use: \'%s\'", target_types[x]->name);
5232 break;
5236 if (target_types[x] == NULL) {
5237 Jim_SetResultFormatted(goi->interp, "Unknown target type %s, try one of ", cp);
5238 for (x = 0 ; target_types[x] ; x++) {
5239 if (target_types[x + 1]) {
5240 Jim_AppendStrings(goi->interp,
5241 Jim_GetResult(goi->interp),
5242 target_types[x]->name,
5243 ", ", NULL);
5244 } else {
5245 Jim_AppendStrings(goi->interp,
5246 Jim_GetResult(goi->interp),
5247 " or ",
5248 target_types[x]->name, NULL);
5251 return JIM_ERR;
5254 /* Create it */
5255 target = calloc(1, sizeof(struct target));
5256 /* set target number */
5257 target->target_number = new_target_number();
5258 cmd_ctx->current_target = target->target_number;
5260 /* allocate memory for each unique target type */
5261 target->type = calloc(1, sizeof(struct target_type));
5263 memcpy(target->type, target_types[x], sizeof(struct target_type));
5265 /* will be set by "-endian" */
5266 target->endianness = TARGET_ENDIAN_UNKNOWN;
5268 /* default to first core, override with -coreid */
5269 target->coreid = 0;
5271 target->working_area = 0x0;
5272 target->working_area_size = 0x0;
5273 target->working_areas = NULL;
5274 target->backup_working_area = 0;
5276 target->state = TARGET_UNKNOWN;
5277 target->debug_reason = DBG_REASON_UNDEFINED;
5278 target->reg_cache = NULL;
5279 target->breakpoints = NULL;
5280 target->watchpoints = NULL;
5281 target->next = NULL;
5282 target->arch_info = NULL;
5284 target->display = 1;
5286 target->halt_issued = false;
5288 /* initialize trace information */
5289 target->trace_info = malloc(sizeof(struct trace));
5290 target->trace_info->num_trace_points = 0;
5291 target->trace_info->trace_points_size = 0;
5292 target->trace_info->trace_points = NULL;
5293 target->trace_info->trace_history_size = 0;
5294 target->trace_info->trace_history = NULL;
5295 target->trace_info->trace_history_pos = 0;
5296 target->trace_info->trace_history_overflowed = 0;
5298 target->dbgmsg = NULL;
5299 target->dbg_msg_enabled = 0;
5301 target->endianness = TARGET_ENDIAN_UNKNOWN;
5303 target->rtos = NULL;
5304 target->rtos_auto_detect = false;
5306 /* Do the rest as "configure" options */
5307 goi->isconfigure = 1;
5308 e = target_configure(goi, target);
5310 if (target->tap == NULL) {
5311 Jim_SetResultString(goi->interp, "-chain-position required when creating target", -1);
5312 e = JIM_ERR;
5315 if (e != JIM_OK) {
5316 free(target->type);
5317 free(target);
5318 return e;
5321 if (target->endianness == TARGET_ENDIAN_UNKNOWN) {
5322 /* default endian to little if not specified */
5323 target->endianness = TARGET_LITTLE_ENDIAN;
5326 cp = Jim_GetString(new_cmd, NULL);
5327 target->cmd_name = strdup(cp);
5329 /* create the target specific commands */
5330 if (target->type->commands) {
5331 e = register_commands(cmd_ctx, NULL, target->type->commands);
5332 if (ERROR_OK != e)
5333 LOG_ERROR("unable to register '%s' commands", cp);
5335 if (target->type->target_create)
5336 (*(target->type->target_create))(target, goi->interp);
5338 /* append to end of list */
5340 struct target **tpp;
5341 tpp = &(all_targets);
5342 while (*tpp)
5343 tpp = &((*tpp)->next);
5344 *tpp = target;
5347 /* now - create the new target name command */
5348 const struct command_registration target_subcommands[] = {
5350 .chain = target_instance_command_handlers,
5353 .chain = target->type->commands,
5355 COMMAND_REGISTRATION_DONE
5357 const struct command_registration target_commands[] = {
5359 .name = cp,
5360 .mode = COMMAND_ANY,
5361 .help = "target command group",
5362 .usage = "",
5363 .chain = target_subcommands,
5365 COMMAND_REGISTRATION_DONE
5367 e = register_commands(cmd_ctx, NULL, target_commands);
5368 if (ERROR_OK != e)
5369 return JIM_ERR;
5371 struct command *c = command_find_in_context(cmd_ctx, cp);
5372 assert(c);
5373 command_set_handler_data(c, target);
5375 return (ERROR_OK == e) ? JIM_OK : JIM_ERR;
5378 static int jim_target_current(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5380 if (argc != 1) {
5381 Jim_WrongNumArgs(interp, 1, argv, "Too many parameters");
5382 return JIM_ERR;
5384 struct command_context *cmd_ctx = current_command_context(interp);
5385 assert(cmd_ctx != NULL);
5387 Jim_SetResultString(interp, target_name(get_current_target(cmd_ctx)), -1);
5388 return JIM_OK;
5391 static int jim_target_types(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5393 if (argc != 1) {
5394 Jim_WrongNumArgs(interp, 1, argv, "Too many parameters");
5395 return JIM_ERR;
5397 Jim_SetResult(interp, Jim_NewListObj(interp, NULL, 0));
5398 for (unsigned x = 0; NULL != target_types[x]; x++) {
5399 Jim_ListAppendElement(interp, Jim_GetResult(interp),
5400 Jim_NewStringObj(interp, target_types[x]->name, -1));
5402 return JIM_OK;
5405 static int jim_target_names(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5407 if (argc != 1) {
5408 Jim_WrongNumArgs(interp, 1, argv, "Too many parameters");
5409 return JIM_ERR;
5411 Jim_SetResult(interp, Jim_NewListObj(interp, NULL, 0));
5412 struct target *target = all_targets;
5413 while (target) {
5414 Jim_ListAppendElement(interp, Jim_GetResult(interp),
5415 Jim_NewStringObj(interp, target_name(target), -1));
5416 target = target->next;
5418 return JIM_OK;
5421 static int jim_target_smp(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5423 int i;
5424 const char *targetname;
5425 int retval, len;
5426 struct target *target = (struct target *) NULL;
5427 struct target_list *head, *curr, *new;
5428 curr = (struct target_list *) NULL;
5429 head = (struct target_list *) NULL;
5431 retval = 0;
5432 LOG_DEBUG("%d", argc);
5433 /* argv[1] = target to associate in smp
5434 * argv[2] = target to assoicate in smp
5435 * argv[3] ...
5438 for (i = 1; i < argc; i++) {
5440 targetname = Jim_GetString(argv[i], &len);
5441 target = get_target(targetname);
5442 LOG_DEBUG("%s ", targetname);
5443 if (target) {
5444 new = malloc(sizeof(struct target_list));
5445 new->target = target;
5446 new->next = (struct target_list *)NULL;
5447 if (head == (struct target_list *)NULL) {
5448 head = new;
5449 curr = head;
5450 } else {
5451 curr->next = new;
5452 curr = new;
5456 /* now parse the list of cpu and put the target in smp mode*/
5457 curr = head;
5459 while (curr != (struct target_list *)NULL) {
5460 target = curr->target;
5461 target->smp = 1;
5462 target->head = head;
5463 curr = curr->next;
5466 if (target && target->rtos)
5467 retval = rtos_smp_init(head->target);
5469 return retval;
5473 static int jim_target_create(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5475 Jim_GetOptInfo goi;
5476 Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
5477 if (goi.argc < 3) {
5478 Jim_WrongNumArgs(goi.interp, goi.argc, goi.argv,
5479 "<name> <target_type> [<target_options> ...]");
5480 return JIM_ERR;
5482 return target_create(&goi);
5485 static const struct command_registration target_subcommand_handlers[] = {
5487 .name = "init",
5488 .mode = COMMAND_CONFIG,
5489 .handler = handle_target_init_command,
5490 .help = "initialize targets",
5493 .name = "create",
5494 /* REVISIT this should be COMMAND_CONFIG ... */
5495 .mode = COMMAND_ANY,
5496 .jim_handler = jim_target_create,
5497 .usage = "name type '-chain-position' name [options ...]",
5498 .help = "Creates and selects a new target",
5501 .name = "current",
5502 .mode = COMMAND_ANY,
5503 .jim_handler = jim_target_current,
5504 .help = "Returns the currently selected target",
5507 .name = "types",
5508 .mode = COMMAND_ANY,
5509 .jim_handler = jim_target_types,
5510 .help = "Returns the available target types as "
5511 "a list of strings",
5514 .name = "names",
5515 .mode = COMMAND_ANY,
5516 .jim_handler = jim_target_names,
5517 .help = "Returns the names of all targets as a list of strings",
5520 .name = "smp",
5521 .mode = COMMAND_ANY,
5522 .jim_handler = jim_target_smp,
5523 .usage = "targetname1 targetname2 ...",
5524 .help = "gather several target in a smp list"
5527 COMMAND_REGISTRATION_DONE
5530 struct FastLoad {
5531 uint32_t address;
5532 uint8_t *data;
5533 int length;
5537 static int fastload_num;
5538 static struct FastLoad *fastload;
5540 static void free_fastload(void)
5542 if (fastload != NULL) {
5543 int i;
5544 for (i = 0; i < fastload_num; i++) {
5545 if (fastload[i].data)
5546 free(fastload[i].data);
5548 free(fastload);
5549 fastload = NULL;
5553 COMMAND_HANDLER(handle_fast_load_image_command)
5555 uint8_t *buffer;
5556 size_t buf_cnt;
5557 uint32_t image_size;
5558 uint32_t min_address = 0;
5559 uint32_t max_address = 0xffffffff;
5560 int i;
5562 struct image image;
5564 int retval = CALL_COMMAND_HANDLER(parse_load_image_command_CMD_ARGV,
5565 &image, &min_address, &max_address);
5566 if (ERROR_OK != retval)
5567 return retval;
5569 struct duration bench;
5570 duration_start(&bench);
5572 retval = image_open(&image, CMD_ARGV[0], (CMD_ARGC >= 3) ? CMD_ARGV[2] : NULL);
5573 if (retval != ERROR_OK)
5574 return retval;
5576 image_size = 0x0;
5577 retval = ERROR_OK;
5578 fastload_num = image.num_sections;
5579 fastload = malloc(sizeof(struct FastLoad)*image.num_sections);
5580 if (fastload == NULL) {
5581 command_print(CMD_CTX, "out of memory");
5582 image_close(&image);
5583 return ERROR_FAIL;
5585 memset(fastload, 0, sizeof(struct FastLoad)*image.num_sections);
5586 for (i = 0; i < image.num_sections; i++) {
5587 buffer = malloc(image.sections[i].size);
5588 if (buffer == NULL) {
5589 command_print(CMD_CTX, "error allocating buffer for section (%d bytes)",
5590 (int)(image.sections[i].size));
5591 retval = ERROR_FAIL;
5592 break;
5595 retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt);
5596 if (retval != ERROR_OK) {
5597 free(buffer);
5598 break;
5601 uint32_t offset = 0;
5602 uint32_t length = buf_cnt;
5604 /* DANGER!!! beware of unsigned comparision here!!! */
5606 if ((image.sections[i].base_address + buf_cnt >= min_address) &&
5607 (image.sections[i].base_address < max_address)) {
5608 if (image.sections[i].base_address < min_address) {
5609 /* clip addresses below */
5610 offset += min_address-image.sections[i].base_address;
5611 length -= offset;
5614 if (image.sections[i].base_address + buf_cnt > max_address)
5615 length -= (image.sections[i].base_address + buf_cnt)-max_address;
5617 fastload[i].address = image.sections[i].base_address + offset;
5618 fastload[i].data = malloc(length);
5619 if (fastload[i].data == NULL) {
5620 free(buffer);
5621 command_print(CMD_CTX, "error allocating buffer for section (%" PRIu32 " bytes)",
5622 length);
5623 retval = ERROR_FAIL;
5624 break;
5626 memcpy(fastload[i].data, buffer + offset, length);
5627 fastload[i].length = length;
5629 image_size += length;
5630 command_print(CMD_CTX, "%u bytes written at address 0x%8.8x",
5631 (unsigned int)length,
5632 ((unsigned int)(image.sections[i].base_address + offset)));
5635 free(buffer);
5638 if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK)) {
5639 command_print(CMD_CTX, "Loaded %" PRIu32 " bytes "
5640 "in %fs (%0.3f KiB/s)", image_size,
5641 duration_elapsed(&bench), duration_kbps(&bench, image_size));
5643 command_print(CMD_CTX,
5644 "WARNING: image has not been loaded to target!"
5645 "You can issue a 'fast_load' to finish loading.");
5648 image_close(&image);
5650 if (retval != ERROR_OK)
5651 free_fastload();
5653 return retval;
5656 COMMAND_HANDLER(handle_fast_load_command)
5658 if (CMD_ARGC > 0)
5659 return ERROR_COMMAND_SYNTAX_ERROR;
5660 if (fastload == NULL) {
5661 LOG_ERROR("No image in memory");
5662 return ERROR_FAIL;
5664 int i;
5665 int ms = timeval_ms();
5666 int size = 0;
5667 int retval = ERROR_OK;
5668 for (i = 0; i < fastload_num; i++) {
5669 struct target *target = get_current_target(CMD_CTX);
5670 command_print(CMD_CTX, "Write to 0x%08x, length 0x%08x",
5671 (unsigned int)(fastload[i].address),
5672 (unsigned int)(fastload[i].length));
5673 retval = target_write_buffer(target, fastload[i].address, fastload[i].length, fastload[i].data);
5674 if (retval != ERROR_OK)
5675 break;
5676 size += fastload[i].length;
5678 if (retval == ERROR_OK) {
5679 int after = timeval_ms();
5680 command_print(CMD_CTX, "Loaded image %f kBytes/s", (float)(size/1024.0)/((float)(after-ms)/1000.0));
5682 return retval;
5685 static const struct command_registration target_command_handlers[] = {
5687 .name = "targets",
5688 .handler = handle_targets_command,
5689 .mode = COMMAND_ANY,
5690 .help = "change current default target (one parameter) "
5691 "or prints table of all targets (no parameters)",
5692 .usage = "[target]",
5695 .name = "target",
5696 .mode = COMMAND_CONFIG,
5697 .help = "configure target",
5699 .chain = target_subcommand_handlers,
5701 COMMAND_REGISTRATION_DONE
5704 int target_register_commands(struct command_context *cmd_ctx)
5706 return register_commands(cmd_ctx, NULL, target_command_handlers);
5709 static bool target_reset_nag = true;
5711 bool get_target_reset_nag(void)
5713 return target_reset_nag;
5716 COMMAND_HANDLER(handle_target_reset_nag)
5718 return CALL_COMMAND_HANDLER(handle_command_parse_bool,
5719 &target_reset_nag, "Nag after each reset about options to improve "
5720 "performance");
5723 COMMAND_HANDLER(handle_ps_command)
5725 struct target *target = get_current_target(CMD_CTX);
5726 char *display;
5727 if (target->state != TARGET_HALTED) {
5728 LOG_INFO("target not halted !!");
5729 return ERROR_OK;
5732 if ((target->rtos) && (target->rtos->type)
5733 && (target->rtos->type->ps_command)) {
5734 display = target->rtos->type->ps_command(target);
5735 command_print(CMD_CTX, "%s", display);
5736 free(display);
5737 return ERROR_OK;
5738 } else {
5739 LOG_INFO("failed");
5740 return ERROR_TARGET_FAILURE;
5744 static void binprint(struct command_context *cmd_ctx, const char *text, const uint8_t *buf, int size)
5746 if (text != NULL)
5747 command_print_sameline(cmd_ctx, "%s", text);
5748 for (int i = 0; i < size; i++)
5749 command_print_sameline(cmd_ctx, " %02x", buf[i]);
5750 command_print(cmd_ctx, " ");
5753 COMMAND_HANDLER(handle_test_mem_access_command)
5755 struct target *target = get_current_target(CMD_CTX);
5756 uint32_t test_size;
5757 int retval = ERROR_OK;
5759 if (target->state != TARGET_HALTED) {
5760 LOG_INFO("target not halted !!");
5761 return ERROR_FAIL;
5764 if (CMD_ARGC != 1)
5765 return ERROR_COMMAND_SYNTAX_ERROR;
5767 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], test_size);
5769 /* Test reads */
5770 size_t num_bytes = test_size + 4;
5772 struct working_area *wa = NULL;
5773 retval = target_alloc_working_area(target, num_bytes, &wa);
5774 if (retval != ERROR_OK) {
5775 LOG_ERROR("Not enough working area");
5776 return ERROR_FAIL;
5779 uint8_t *test_pattern = malloc(num_bytes);
5781 for (size_t i = 0; i < num_bytes; i++)
5782 test_pattern[i] = rand();
5784 retval = target_write_memory(target, wa->address, 1, num_bytes, test_pattern);
5785 if (retval != ERROR_OK) {
5786 LOG_ERROR("Test pattern write failed");
5787 goto out;
5790 for (int host_offset = 0; host_offset <= 1; host_offset++) {
5791 for (int size = 1; size <= 4; size *= 2) {
5792 for (int offset = 0; offset < 4; offset++) {
5793 uint32_t count = test_size / size;
5794 size_t host_bufsiz = (count + 2) * size + host_offset;
5795 uint8_t *read_ref = malloc(host_bufsiz);
5796 uint8_t *read_buf = malloc(host_bufsiz);
5798 for (size_t i = 0; i < host_bufsiz; i++) {
5799 read_ref[i] = rand();
5800 read_buf[i] = read_ref[i];
5802 command_print_sameline(CMD_CTX,
5803 "Test read %" PRIu32 " x %d @ %d to %saligned buffer: ", count,
5804 size, offset, host_offset ? "un" : "");
5806 struct duration bench;
5807 duration_start(&bench);
5809 retval = target_read_memory(target, wa->address + offset, size, count,
5810 read_buf + size + host_offset);
5812 duration_measure(&bench);
5814 if (retval == ERROR_TARGET_UNALIGNED_ACCESS) {
5815 command_print(CMD_CTX, "Unsupported alignment");
5816 goto next;
5817 } else if (retval != ERROR_OK) {
5818 command_print(CMD_CTX, "Memory read failed");
5819 goto next;
5822 /* replay on host */
5823 memcpy(read_ref + size + host_offset, test_pattern + offset, count * size);
5825 /* check result */
5826 int result = memcmp(read_ref, read_buf, host_bufsiz);
5827 if (result == 0) {
5828 command_print(CMD_CTX, "Pass in %fs (%0.3f KiB/s)",
5829 duration_elapsed(&bench),
5830 duration_kbps(&bench, count * size));
5831 } else {
5832 command_print(CMD_CTX, "Compare failed");
5833 binprint(CMD_CTX, "ref:", read_ref, host_bufsiz);
5834 binprint(CMD_CTX, "buf:", read_buf, host_bufsiz);
5836 next:
5837 free(read_ref);
5838 free(read_buf);
5843 out:
5844 free(test_pattern);
5846 if (wa != NULL)
5847 target_free_working_area(target, wa);
5849 /* Test writes */
5850 num_bytes = test_size + 4 + 4 + 4;
5852 retval = target_alloc_working_area(target, num_bytes, &wa);
5853 if (retval != ERROR_OK) {
5854 LOG_ERROR("Not enough working area");
5855 return ERROR_FAIL;
5858 test_pattern = malloc(num_bytes);
5860 for (size_t i = 0; i < num_bytes; i++)
5861 test_pattern[i] = rand();
5863 for (int host_offset = 0; host_offset <= 1; host_offset++) {
5864 for (int size = 1; size <= 4; size *= 2) {
5865 for (int offset = 0; offset < 4; offset++) {
5866 uint32_t count = test_size / size;
5867 size_t host_bufsiz = count * size + host_offset;
5868 uint8_t *read_ref = malloc(num_bytes);
5869 uint8_t *read_buf = malloc(num_bytes);
5870 uint8_t *write_buf = malloc(host_bufsiz);
5872 for (size_t i = 0; i < host_bufsiz; i++)
5873 write_buf[i] = rand();
5874 command_print_sameline(CMD_CTX,
5875 "Test write %" PRIu32 " x %d @ %d from %saligned buffer: ", count,
5876 size, offset, host_offset ? "un" : "");
5878 retval = target_write_memory(target, wa->address, 1, num_bytes, test_pattern);
5879 if (retval != ERROR_OK) {
5880 command_print(CMD_CTX, "Test pattern write failed");
5881 goto nextw;
5884 /* replay on host */
5885 memcpy(read_ref, test_pattern, num_bytes);
5886 memcpy(read_ref + size + offset, write_buf + host_offset, count * size);
5888 struct duration bench;
5889 duration_start(&bench);
5891 retval = target_write_memory(target, wa->address + size + offset, size, count,
5892 write_buf + host_offset);
5894 duration_measure(&bench);
5896 if (retval == ERROR_TARGET_UNALIGNED_ACCESS) {
5897 command_print(CMD_CTX, "Unsupported alignment");
5898 goto nextw;
5899 } else if (retval != ERROR_OK) {
5900 command_print(CMD_CTX, "Memory write failed");
5901 goto nextw;
5904 /* read back */
5905 retval = target_read_memory(target, wa->address, 1, num_bytes, read_buf);
5906 if (retval != ERROR_OK) {
5907 command_print(CMD_CTX, "Test pattern write failed");
5908 goto nextw;
5911 /* check result */
5912 int result = memcmp(read_ref, read_buf, num_bytes);
5913 if (result == 0) {
5914 command_print(CMD_CTX, "Pass in %fs (%0.3f KiB/s)",
5915 duration_elapsed(&bench),
5916 duration_kbps(&bench, count * size));
5917 } else {
5918 command_print(CMD_CTX, "Compare failed");
5919 binprint(CMD_CTX, "ref:", read_ref, num_bytes);
5920 binprint(CMD_CTX, "buf:", read_buf, num_bytes);
5922 nextw:
5923 free(read_ref);
5924 free(read_buf);
5929 free(test_pattern);
5931 if (wa != NULL)
5932 target_free_working_area(target, wa);
5933 return retval;
5936 static const struct command_registration target_exec_command_handlers[] = {
5938 .name = "fast_load_image",
5939 .handler = handle_fast_load_image_command,
5940 .mode = COMMAND_ANY,
5941 .help = "Load image into server memory for later use by "
5942 "fast_load; primarily for profiling",
5943 .usage = "filename address ['bin'|'ihex'|'elf'|'s19'] "
5944 "[min_address [max_length]]",
5947 .name = "fast_load",
5948 .handler = handle_fast_load_command,
5949 .mode = COMMAND_EXEC,
5950 .help = "loads active fast load image to current target "
5951 "- mainly for profiling purposes",
5952 .usage = "",
5955 .name = "profile",
5956 .handler = handle_profile_command,
5957 .mode = COMMAND_EXEC,
5958 .usage = "seconds filename [start end]",
5959 .help = "profiling samples the CPU PC",
5961 /** @todo don't register virt2phys() unless target supports it */
5963 .name = "virt2phys",
5964 .handler = handle_virt2phys_command,
5965 .mode = COMMAND_ANY,
5966 .help = "translate a virtual address into a physical address",
5967 .usage = "virtual_address",
5970 .name = "reg",
5971 .handler = handle_reg_command,
5972 .mode = COMMAND_EXEC,
5973 .help = "display (reread from target with \"force\") or set a register; "
5974 "with no arguments, displays all registers and their values",
5975 .usage = "[(register_number|register_name) [(value|'force')]]",
5978 .name = "poll",
5979 .handler = handle_poll_command,
5980 .mode = COMMAND_EXEC,
5981 .help = "poll target state; or reconfigure background polling",
5982 .usage = "['on'|'off']",
5985 .name = "wait_halt",
5986 .handler = handle_wait_halt_command,
5987 .mode = COMMAND_EXEC,
5988 .help = "wait up to the specified number of milliseconds "
5989 "(default 5000) for a previously requested halt",
5990 .usage = "[milliseconds]",
5993 .name = "halt",
5994 .handler = handle_halt_command,
5995 .mode = COMMAND_EXEC,
5996 .help = "request target to halt, then wait up to the specified"
5997 "number of milliseconds (default 5000) for it to complete",
5998 .usage = "[milliseconds]",
6001 .name = "resume",
6002 .handler = handle_resume_command,
6003 .mode = COMMAND_EXEC,
6004 .help = "resume target execution from current PC or address",
6005 .usage = "[address]",
6008 .name = "reset",
6009 .handler = handle_reset_command,
6010 .mode = COMMAND_EXEC,
6011 .usage = "[run|halt|init]",
6012 .help = "Reset all targets into the specified mode."
6013 "Default reset mode is run, if not given.",
6016 .name = "soft_reset_halt",
6017 .handler = handle_soft_reset_halt_command,
6018 .mode = COMMAND_EXEC,
6019 .usage = "",
6020 .help = "halt the target and do a soft reset",
6023 .name = "step",
6024 .handler = handle_step_command,
6025 .mode = COMMAND_EXEC,
6026 .help = "step one instruction from current PC or address",
6027 .usage = "[address]",
6030 .name = "mdw",
6031 .handler = handle_md_command,
6032 .mode = COMMAND_EXEC,
6033 .help = "display memory words",
6034 .usage = "['phys'] address [count]",
6037 .name = "mdh",
6038 .handler = handle_md_command,
6039 .mode = COMMAND_EXEC,
6040 .help = "display memory half-words",
6041 .usage = "['phys'] address [count]",
6044 .name = "mdb",
6045 .handler = handle_md_command,
6046 .mode = COMMAND_EXEC,
6047 .help = "display memory bytes",
6048 .usage = "['phys'] address [count]",
6051 .name = "mww",
6052 .handler = handle_mw_command,
6053 .mode = COMMAND_EXEC,
6054 .help = "write memory word",
6055 .usage = "['phys'] address value [count]",
6058 .name = "mwh",
6059 .handler = handle_mw_command,
6060 .mode = COMMAND_EXEC,
6061 .help = "write memory half-word",
6062 .usage = "['phys'] address value [count]",
6065 .name = "mwb",
6066 .handler = handle_mw_command,
6067 .mode = COMMAND_EXEC,
6068 .help = "write memory byte",
6069 .usage = "['phys'] address value [count]",
6072 .name = "bp",
6073 .handler = handle_bp_command,
6074 .mode = COMMAND_EXEC,
6075 .help = "list or set hardware or software breakpoint",
6076 .usage = "<address> [<asid>]<length> ['hw'|'hw_ctx']",
6079 .name = "rbp",
6080 .handler = handle_rbp_command,
6081 .mode = COMMAND_EXEC,
6082 .help = "remove breakpoint",
6083 .usage = "address",
6086 .name = "wp",
6087 .handler = handle_wp_command,
6088 .mode = COMMAND_EXEC,
6089 .help = "list (no params) or create watchpoints",
6090 .usage = "[address length [('r'|'w'|'a') value [mask]]]",
6093 .name = "rwp",
6094 .handler = handle_rwp_command,
6095 .mode = COMMAND_EXEC,
6096 .help = "remove watchpoint",
6097 .usage = "address",
6100 .name = "load_image",
6101 .handler = handle_load_image_command,
6102 .mode = COMMAND_EXEC,
6103 .usage = "filename address ['bin'|'ihex'|'elf'|'s19'] "
6104 "[min_address] [max_length]",
6107 .name = "dump_image",
6108 .handler = handle_dump_image_command,
6109 .mode = COMMAND_EXEC,
6110 .usage = "filename address size",
6113 .name = "verify_image",
6114 .handler = handle_verify_image_command,
6115 .mode = COMMAND_EXEC,
6116 .usage = "filename [offset [type]]",
6119 .name = "test_image",
6120 .handler = handle_test_image_command,
6121 .mode = COMMAND_EXEC,
6122 .usage = "filename [offset [type]]",
6125 .name = "mem2array",
6126 .mode = COMMAND_EXEC,
6127 .jim_handler = jim_mem2array,
6128 .help = "read 8/16/32 bit memory and return as a TCL array "
6129 "for script processing",
6130 .usage = "arrayname bitwidth address count",
6133 .name = "array2mem",
6134 .mode = COMMAND_EXEC,
6135 .jim_handler = jim_array2mem,
6136 .help = "convert a TCL array to memory locations "
6137 "and write the 8/16/32 bit values",
6138 .usage = "arrayname bitwidth address count",
6141 .name = "reset_nag",
6142 .handler = handle_target_reset_nag,
6143 .mode = COMMAND_ANY,
6144 .help = "Nag after each reset about options that could have been "
6145 "enabled to improve performance. ",
6146 .usage = "['enable'|'disable']",
6149 .name = "ps",
6150 .handler = handle_ps_command,
6151 .mode = COMMAND_EXEC,
6152 .help = "list all tasks ",
6153 .usage = " ",
6156 .name = "test_mem_access",
6157 .handler = handle_test_mem_access_command,
6158 .mode = COMMAND_EXEC,
6159 .help = "Test the target's memory access functions",
6160 .usage = "size",
6163 COMMAND_REGISTRATION_DONE
6165 static int target_register_user_commands(struct command_context *cmd_ctx)
6167 int retval = ERROR_OK;
6168 retval = target_request_register_commands(cmd_ctx);
6169 if (retval != ERROR_OK)
6170 return retval;
6172 retval = trace_register_commands(cmd_ctx);
6173 if (retval != ERROR_OK)
6174 return retval;
6177 return register_commands(cmd_ctx, NULL, target_exec_command_handlers);