Remove FSF address from GPL notices
[openocd.git] / src / target / cortex_a.c
blobd1590f65f59f77cd67cb13f447e3f8519e313079
1 /***************************************************************************
2 * Copyright (C) 2005 by Dominic Rath *
3 * Dominic.Rath@gmx.de *
4 * *
5 * Copyright (C) 2006 by Magnus Lundin *
6 * lundin@mlu.mine.nu *
7 * *
8 * Copyright (C) 2008 by Spencer Oliver *
9 * spen@spen-soft.co.uk *
10 * *
11 * Copyright (C) 2009 by Dirk Behme *
12 * dirk.behme@gmail.com - copy from cortex_m3 *
13 * *
14 * Copyright (C) 2010 Øyvind Harboe *
15 * oyvind.harboe@zylin.com *
16 * *
17 * Copyright (C) ST-Ericsson SA 2011 *
18 * michel.jaouen@stericsson.com : smp minimum support *
19 * *
20 * Copyright (C) Broadcom 2012 *
21 * ehunter@broadcom.com : Cortex-R4 support *
22 * *
23 * Copyright (C) 2013 Kamal Dasu *
24 * kdasu.kdev@gmail.com *
25 * *
26 * This program is free software; you can redistribute it and/or modify *
27 * it under the terms of the GNU General Public License as published by *
28 * the Free Software Foundation; either version 2 of the License, or *
29 * (at your option) any later version. *
30 * *
31 * This program is distributed in the hope that it will be useful, *
32 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
33 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
34 * GNU General Public License for more details. *
35 * *
36 * You should have received a copy of the GNU General Public License *
37 * along with this program. If not, see <http://www.gnu.org/licenses/>. *
38 * *
39 * Cortex-A8(tm) TRM, ARM DDI 0344H *
40 * Cortex-A9(tm) TRM, ARM DDI 0407F *
41 * Cortex-A4(tm) TRM, ARM DDI 0363E *
42 * Cortex-A15(tm)TRM, ARM DDI 0438C *
43 * *
44 ***************************************************************************/
46 #ifdef HAVE_CONFIG_H
47 #include "config.h"
48 #endif
50 #include "breakpoints.h"
51 #include "cortex_a.h"
52 #include "register.h"
53 #include "target_request.h"
54 #include "target_type.h"
55 #include "arm_opcodes.h"
56 #include <helper/time_support.h>
58 static int cortex_a_poll(struct target *target);
59 static int cortex_a_debug_entry(struct target *target);
60 static int cortex_a_restore_context(struct target *target, bool bpwp);
61 static int cortex_a_set_breakpoint(struct target *target,
62 struct breakpoint *breakpoint, uint8_t matchmode);
63 static int cortex_a_set_context_breakpoint(struct target *target,
64 struct breakpoint *breakpoint, uint8_t matchmode);
65 static int cortex_a_set_hybrid_breakpoint(struct target *target,
66 struct breakpoint *breakpoint);
67 static int cortex_a_unset_breakpoint(struct target *target,
68 struct breakpoint *breakpoint);
69 static int cortex_a_dap_read_coreregister_u32(struct target *target,
70 uint32_t *value, int regnum);
71 static int cortex_a_dap_write_coreregister_u32(struct target *target,
72 uint32_t value, int regnum);
73 static int cortex_a_mmu(struct target *target, int *enabled);
74 static int cortex_a_mmu_modify(struct target *target, int enable);
75 static int cortex_a_virt2phys(struct target *target,
76 uint32_t virt, uint32_t *phys);
77 static int cortex_a_read_cpu_memory(struct target *target,
78 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer);
81 /* restore cp15_control_reg at resume */
82 static int cortex_a_restore_cp15_control_reg(struct target *target)
84 int retval = ERROR_OK;
85 struct cortex_a_common *cortex_a = target_to_cortex_a(target);
86 struct armv7a_common *armv7a = target_to_armv7a(target);
88 if (cortex_a->cp15_control_reg != cortex_a->cp15_control_reg_curr) {
89 cortex_a->cp15_control_reg_curr = cortex_a->cp15_control_reg;
90 /* LOG_INFO("cp15_control_reg: %8.8" PRIx32, cortex_a->cp15_control_reg); */
91 retval = armv7a->arm.mcr(target, 15,
92 0, 0, /* op1, op2 */
93 1, 0, /* CRn, CRm */
94 cortex_a->cp15_control_reg);
96 return retval;
100 * Set up ARM core for memory access.
101 * If !phys_access, switch to SVC mode and make sure MMU is on
102 * If phys_access, switch off mmu
104 static int cortex_a_prep_memaccess(struct target *target, int phys_access)
106 struct armv7a_common *armv7a = target_to_armv7a(target);
107 struct cortex_a_common *cortex_a = target_to_cortex_a(target);
108 int mmu_enabled = 0;
110 if (phys_access == 0) {
111 dpm_modeswitch(&armv7a->dpm, ARM_MODE_SVC);
112 cortex_a_mmu(target, &mmu_enabled);
113 if (mmu_enabled)
114 cortex_a_mmu_modify(target, 1);
115 if (cortex_a->dacrfixup_mode == CORTEX_A_DACRFIXUP_ON) {
116 /* overwrite DACR to all-manager */
117 armv7a->arm.mcr(target, 15,
118 0, 0, 3, 0,
119 0xFFFFFFFF);
121 } else {
122 cortex_a_mmu(target, &mmu_enabled);
123 if (mmu_enabled)
124 cortex_a_mmu_modify(target, 0);
126 return ERROR_OK;
130 * Restore ARM core after memory access.
131 * If !phys_access, switch to previous mode
132 * If phys_access, restore MMU setting
134 static int cortex_a_post_memaccess(struct target *target, int phys_access)
136 struct armv7a_common *armv7a = target_to_armv7a(target);
137 struct cortex_a_common *cortex_a = target_to_cortex_a(target);
139 if (phys_access == 0) {
140 if (cortex_a->dacrfixup_mode == CORTEX_A_DACRFIXUP_ON) {
141 /* restore */
142 armv7a->arm.mcr(target, 15,
143 0, 0, 3, 0,
144 cortex_a->cp15_dacr_reg);
146 dpm_modeswitch(&armv7a->dpm, ARM_MODE_ANY);
147 } else {
148 int mmu_enabled = 0;
149 cortex_a_mmu(target, &mmu_enabled);
150 if (mmu_enabled)
151 cortex_a_mmu_modify(target, 1);
153 return ERROR_OK;
157 /* modify cp15_control_reg in order to enable or disable mmu for :
158 * - virt2phys address conversion
159 * - read or write memory in phys or virt address */
160 static int cortex_a_mmu_modify(struct target *target, int enable)
162 struct cortex_a_common *cortex_a = target_to_cortex_a(target);
163 struct armv7a_common *armv7a = target_to_armv7a(target);
164 int retval = ERROR_OK;
165 int need_write = 0;
167 if (enable) {
168 /* if mmu enabled at target stop and mmu not enable */
169 if (!(cortex_a->cp15_control_reg & 0x1U)) {
170 LOG_ERROR("trying to enable mmu on target stopped with mmu disable");
171 return ERROR_FAIL;
173 if ((cortex_a->cp15_control_reg_curr & 0x1U) == 0) {
174 cortex_a->cp15_control_reg_curr |= 0x1U;
175 need_write = 1;
177 } else {
178 if ((cortex_a->cp15_control_reg_curr & 0x1U) == 0x1U) {
179 cortex_a->cp15_control_reg_curr &= ~0x1U;
180 need_write = 1;
184 if (need_write) {
185 LOG_DEBUG("%s, writing cp15 ctrl: %" PRIx32,
186 enable ? "enable mmu" : "disable mmu",
187 cortex_a->cp15_control_reg_curr);
189 retval = armv7a->arm.mcr(target, 15,
190 0, 0, /* op1, op2 */
191 1, 0, /* CRn, CRm */
192 cortex_a->cp15_control_reg_curr);
194 return retval;
198 * Cortex-A Basic debug access, very low level assumes state is saved
200 static int cortex_a8_init_debug_access(struct target *target)
202 struct armv7a_common *armv7a = target_to_armv7a(target);
203 int retval;
205 LOG_DEBUG(" ");
207 /* Unlocking the debug registers for modification
208 * The debugport might be uninitialised so try twice */
209 retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
210 armv7a->debug_base + CPUDBG_LOCKACCESS, 0xC5ACCE55);
211 if (retval != ERROR_OK) {
212 /* try again */
213 retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
214 armv7a->debug_base + CPUDBG_LOCKACCESS, 0xC5ACCE55);
215 if (retval == ERROR_OK)
216 LOG_USER(
217 "Locking debug access failed on first, but succeeded on second try.");
220 return retval;
224 * Cortex-A Basic debug access, very low level assumes state is saved
226 static int cortex_a_init_debug_access(struct target *target)
228 struct armv7a_common *armv7a = target_to_armv7a(target);
229 int retval;
230 uint32_t dbg_osreg;
231 uint32_t cortex_part_num;
232 struct cortex_a_common *cortex_a = target_to_cortex_a(target);
234 LOG_DEBUG(" ");
235 cortex_part_num = (cortex_a->cpuid & CORTEX_A_MIDR_PARTNUM_MASK) >>
236 CORTEX_A_MIDR_PARTNUM_SHIFT;
238 switch (cortex_part_num) {
239 case CORTEX_A7_PARTNUM:
240 case CORTEX_A15_PARTNUM:
241 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
242 armv7a->debug_base + CPUDBG_OSLSR,
243 &dbg_osreg);
244 if (retval != ERROR_OK)
245 return retval;
247 LOG_DEBUG("DBGOSLSR 0x%" PRIx32, dbg_osreg);
249 if (dbg_osreg & CPUDBG_OSLAR_LK_MASK)
250 /* Unlocking the DEBUG OS registers for modification */
251 retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
252 armv7a->debug_base + CPUDBG_OSLAR,
254 break;
256 case CORTEX_A5_PARTNUM:
257 case CORTEX_A8_PARTNUM:
258 case CORTEX_A9_PARTNUM:
259 default:
260 retval = cortex_a8_init_debug_access(target);
263 if (retval != ERROR_OK)
264 return retval;
265 /* Clear Sticky Power Down status Bit in PRSR to enable access to
266 the registers in the Core Power Domain */
267 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
268 armv7a->debug_base + CPUDBG_PRSR, &dbg_osreg);
269 LOG_DEBUG("target->coreid %" PRId32 " DBGPRSR 0x%" PRIx32, target->coreid, dbg_osreg);
271 if (retval != ERROR_OK)
272 return retval;
274 /* Disable cacheline fills and force cache write-through in debug state */
275 retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
276 armv7a->debug_base + CPUDBG_DSCCR, 0);
277 if (retval != ERROR_OK)
278 return retval;
280 /* Disable TLB lookup and refill/eviction in debug state */
281 retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
282 armv7a->debug_base + CPUDBG_DSMCR, 0);
283 if (retval != ERROR_OK)
284 return retval;
286 /* Enabling of instruction execution in debug mode is done in debug_entry code */
288 /* Resync breakpoint registers */
290 /* Since this is likely called from init or reset, update target state information*/
291 return cortex_a_poll(target);
294 static int cortex_a_wait_instrcmpl(struct target *target, uint32_t *dscr, bool force)
296 /* Waits until InstrCmpl_l becomes 1, indicating instruction is done.
297 * Writes final value of DSCR into *dscr. Pass force to force always
298 * reading DSCR at least once. */
299 struct armv7a_common *armv7a = target_to_armv7a(target);
300 int64_t then = timeval_ms();
301 while ((*dscr & DSCR_INSTR_COMP) == 0 || force) {
302 force = false;
303 int retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
304 armv7a->debug_base + CPUDBG_DSCR, dscr);
305 if (retval != ERROR_OK) {
306 LOG_ERROR("Could not read DSCR register");
307 return retval;
309 if (timeval_ms() > then + 1000) {
310 LOG_ERROR("Timeout waiting for InstrCompl=1");
311 return ERROR_FAIL;
314 return ERROR_OK;
317 /* To reduce needless round-trips, pass in a pointer to the current
318 * DSCR value. Initialize it to zero if you just need to know the
319 * value on return from this function; or DSCR_INSTR_COMP if you
320 * happen to know that no instruction is pending.
322 static int cortex_a_exec_opcode(struct target *target,
323 uint32_t opcode, uint32_t *dscr_p)
325 uint32_t dscr;
326 int retval;
327 struct armv7a_common *armv7a = target_to_armv7a(target);
329 dscr = dscr_p ? *dscr_p : 0;
331 LOG_DEBUG("exec opcode 0x%08" PRIx32, opcode);
333 /* Wait for InstrCompl bit to be set */
334 retval = cortex_a_wait_instrcmpl(target, dscr_p, false);
335 if (retval != ERROR_OK)
336 return retval;
338 retval = mem_ap_write_u32(armv7a->debug_ap,
339 armv7a->debug_base + CPUDBG_ITR, opcode);
340 if (retval != ERROR_OK)
341 return retval;
343 int64_t then = timeval_ms();
344 do {
345 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
346 armv7a->debug_base + CPUDBG_DSCR, &dscr);
347 if (retval != ERROR_OK) {
348 LOG_ERROR("Could not read DSCR register");
349 return retval;
351 if (timeval_ms() > then + 1000) {
352 LOG_ERROR("Timeout waiting for cortex_a_exec_opcode");
353 return ERROR_FAIL;
355 } while ((dscr & DSCR_INSTR_COMP) == 0); /* Wait for InstrCompl bit to be set */
357 if (dscr_p)
358 *dscr_p = dscr;
360 return retval;
363 /**************************************************************************
364 Read core register with very few exec_opcode, fast but needs work_area.
365 This can cause problems with MMU active.
366 **************************************************************************/
367 static int cortex_a_read_regs_through_mem(struct target *target, uint32_t address,
368 uint32_t *regfile)
370 int retval = ERROR_OK;
371 struct armv7a_common *armv7a = target_to_armv7a(target);
373 retval = cortex_a_dap_read_coreregister_u32(target, regfile, 0);
374 if (retval != ERROR_OK)
375 return retval;
376 retval = cortex_a_dap_write_coreregister_u32(target, address, 0);
377 if (retval != ERROR_OK)
378 return retval;
379 retval = cortex_a_exec_opcode(target, ARMV4_5_STMIA(0, 0xFFFE, 0, 0), NULL);
380 if (retval != ERROR_OK)
381 return retval;
383 retval = mem_ap_read_buf(armv7a->memory_ap,
384 (uint8_t *)(&regfile[1]), 4, 15, address);
386 return retval;
389 static int cortex_a_dap_read_coreregister_u32(struct target *target,
390 uint32_t *value, int regnum)
392 int retval = ERROR_OK;
393 uint8_t reg = regnum&0xFF;
394 uint32_t dscr = 0;
395 struct armv7a_common *armv7a = target_to_armv7a(target);
397 if (reg > 17)
398 return retval;
400 if (reg < 15) {
401 /* Rn to DCCTX, "MCR p14, 0, Rn, c0, c5, 0" 0xEE00nE15 */
402 retval = cortex_a_exec_opcode(target,
403 ARMV4_5_MCR(14, 0, reg, 0, 5, 0),
404 &dscr);
405 if (retval != ERROR_OK)
406 return retval;
407 } else if (reg == 15) {
408 /* "MOV r0, r15"; then move r0 to DCCTX */
409 retval = cortex_a_exec_opcode(target, 0xE1A0000F, &dscr);
410 if (retval != ERROR_OK)
411 return retval;
412 retval = cortex_a_exec_opcode(target,
413 ARMV4_5_MCR(14, 0, 0, 0, 5, 0),
414 &dscr);
415 if (retval != ERROR_OK)
416 return retval;
417 } else {
418 /* "MRS r0, CPSR" or "MRS r0, SPSR"
419 * then move r0 to DCCTX
421 retval = cortex_a_exec_opcode(target, ARMV4_5_MRS(0, reg & 1), &dscr);
422 if (retval != ERROR_OK)
423 return retval;
424 retval = cortex_a_exec_opcode(target,
425 ARMV4_5_MCR(14, 0, 0, 0, 5, 0),
426 &dscr);
427 if (retval != ERROR_OK)
428 return retval;
431 /* Wait for DTRRXfull then read DTRRTX */
432 int64_t then = timeval_ms();
433 while ((dscr & DSCR_DTR_TX_FULL) == 0) {
434 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
435 armv7a->debug_base + CPUDBG_DSCR, &dscr);
436 if (retval != ERROR_OK)
437 return retval;
438 if (timeval_ms() > then + 1000) {
439 LOG_ERROR("Timeout waiting for cortex_a_exec_opcode");
440 return ERROR_FAIL;
444 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
445 armv7a->debug_base + CPUDBG_DTRTX, value);
446 LOG_DEBUG("read DCC 0x%08" PRIx32, *value);
448 return retval;
451 static int cortex_a_dap_write_coreregister_u32(struct target *target,
452 uint32_t value, int regnum)
454 int retval = ERROR_OK;
455 uint8_t Rd = regnum&0xFF;
456 uint32_t dscr;
457 struct armv7a_common *armv7a = target_to_armv7a(target);
459 LOG_DEBUG("register %i, value 0x%08" PRIx32, regnum, value);
461 /* Check that DCCRX is not full */
462 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
463 armv7a->debug_base + CPUDBG_DSCR, &dscr);
464 if (retval != ERROR_OK)
465 return retval;
466 if (dscr & DSCR_DTR_RX_FULL) {
467 LOG_ERROR("DSCR_DTR_RX_FULL, dscr 0x%08" PRIx32, dscr);
468 /* Clear DCCRX with MRC(p14, 0, Rd, c0, c5, 0), opcode 0xEE100E15 */
469 retval = cortex_a_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0),
470 &dscr);
471 if (retval != ERROR_OK)
472 return retval;
475 if (Rd > 17)
476 return retval;
478 /* Write DTRRX ... sets DSCR.DTRRXfull but exec_opcode() won't care */
479 LOG_DEBUG("write DCC 0x%08" PRIx32, value);
480 retval = mem_ap_write_u32(armv7a->debug_ap,
481 armv7a->debug_base + CPUDBG_DTRRX, value);
482 if (retval != ERROR_OK)
483 return retval;
485 if (Rd < 15) {
486 /* DCCRX to Rn, "MRC p14, 0, Rn, c0, c5, 0", 0xEE10nE15 */
487 retval = cortex_a_exec_opcode(target, ARMV4_5_MRC(14, 0, Rd, 0, 5, 0),
488 &dscr);
490 if (retval != ERROR_OK)
491 return retval;
492 } else if (Rd == 15) {
493 /* DCCRX to R0, "MRC p14, 0, R0, c0, c5, 0", 0xEE100E15
494 * then "mov r15, r0"
496 retval = cortex_a_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0),
497 &dscr);
498 if (retval != ERROR_OK)
499 return retval;
500 retval = cortex_a_exec_opcode(target, 0xE1A0F000, &dscr);
501 if (retval != ERROR_OK)
502 return retval;
503 } else {
504 /* DCCRX to R0, "MRC p14, 0, R0, c0, c5, 0", 0xEE100E15
505 * then "MSR CPSR_cxsf, r0" or "MSR SPSR_cxsf, r0" (all fields)
507 retval = cortex_a_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0),
508 &dscr);
509 if (retval != ERROR_OK)
510 return retval;
511 retval = cortex_a_exec_opcode(target, ARMV4_5_MSR_GP(0, 0xF, Rd & 1),
512 &dscr);
513 if (retval != ERROR_OK)
514 return retval;
516 /* "Prefetch flush" after modifying execution status in CPSR */
517 if (Rd == 16) {
518 retval = cortex_a_exec_opcode(target,
519 ARMV4_5_MCR(15, 0, 0, 7, 5, 4),
520 &dscr);
521 if (retval != ERROR_OK)
522 return retval;
526 return retval;
529 /* Write to memory mapped registers directly with no cache or mmu handling */
530 static int cortex_a_dap_write_memap_register_u32(struct target *target,
531 uint32_t address,
532 uint32_t value)
534 int retval;
535 struct armv7a_common *armv7a = target_to_armv7a(target);
537 retval = mem_ap_write_atomic_u32(armv7a->debug_ap, address, value);
539 return retval;
543 * Cortex-A implementation of Debug Programmer's Model
545 * NOTE the invariant: these routines return with DSCR_INSTR_COMP set,
546 * so there's no need to poll for it before executing an instruction.
548 * NOTE that in several of these cases the "stall" mode might be useful.
549 * It'd let us queue a few operations together... prepare/finish might
550 * be the places to enable/disable that mode.
553 static inline struct cortex_a_common *dpm_to_a(struct arm_dpm *dpm)
555 return container_of(dpm, struct cortex_a_common, armv7a_common.dpm);
558 static int cortex_a_write_dcc(struct cortex_a_common *a, uint32_t data)
560 LOG_DEBUG("write DCC 0x%08" PRIx32, data);
561 return mem_ap_write_u32(a->armv7a_common.debug_ap,
562 a->armv7a_common.debug_base + CPUDBG_DTRRX, data);
565 static int cortex_a_read_dcc(struct cortex_a_common *a, uint32_t *data,
566 uint32_t *dscr_p)
568 uint32_t dscr = DSCR_INSTR_COMP;
569 int retval;
571 if (dscr_p)
572 dscr = *dscr_p;
574 /* Wait for DTRRXfull */
575 int64_t then = timeval_ms();
576 while ((dscr & DSCR_DTR_TX_FULL) == 0) {
577 retval = mem_ap_read_atomic_u32(a->armv7a_common.debug_ap,
578 a->armv7a_common.debug_base + CPUDBG_DSCR,
579 &dscr);
580 if (retval != ERROR_OK)
581 return retval;
582 if (timeval_ms() > then + 1000) {
583 LOG_ERROR("Timeout waiting for read dcc");
584 return ERROR_FAIL;
588 retval = mem_ap_read_atomic_u32(a->armv7a_common.debug_ap,
589 a->armv7a_common.debug_base + CPUDBG_DTRTX, data);
590 if (retval != ERROR_OK)
591 return retval;
592 /* LOG_DEBUG("read DCC 0x%08" PRIx32, *data); */
594 if (dscr_p)
595 *dscr_p = dscr;
597 return retval;
600 static int cortex_a_dpm_prepare(struct arm_dpm *dpm)
602 struct cortex_a_common *a = dpm_to_a(dpm);
603 uint32_t dscr;
604 int retval;
606 /* set up invariant: INSTR_COMP is set after ever DPM operation */
607 int64_t then = timeval_ms();
608 for (;; ) {
609 retval = mem_ap_read_atomic_u32(a->armv7a_common.debug_ap,
610 a->armv7a_common.debug_base + CPUDBG_DSCR,
611 &dscr);
612 if (retval != ERROR_OK)
613 return retval;
614 if ((dscr & DSCR_INSTR_COMP) != 0)
615 break;
616 if (timeval_ms() > then + 1000) {
617 LOG_ERROR("Timeout waiting for dpm prepare");
618 return ERROR_FAIL;
622 /* this "should never happen" ... */
623 if (dscr & DSCR_DTR_RX_FULL) {
624 LOG_ERROR("DSCR_DTR_RX_FULL, dscr 0x%08" PRIx32, dscr);
625 /* Clear DCCRX */
626 retval = cortex_a_exec_opcode(
627 a->armv7a_common.arm.target,
628 ARMV4_5_MRC(14, 0, 0, 0, 5, 0),
629 &dscr);
630 if (retval != ERROR_OK)
631 return retval;
634 return retval;
637 static int cortex_a_dpm_finish(struct arm_dpm *dpm)
639 /* REVISIT what could be done here? */
640 return ERROR_OK;
643 static int cortex_a_instr_write_data_dcc(struct arm_dpm *dpm,
644 uint32_t opcode, uint32_t data)
646 struct cortex_a_common *a = dpm_to_a(dpm);
647 int retval;
648 uint32_t dscr = DSCR_INSTR_COMP;
650 retval = cortex_a_write_dcc(a, data);
651 if (retval != ERROR_OK)
652 return retval;
654 return cortex_a_exec_opcode(
655 a->armv7a_common.arm.target,
656 opcode,
657 &dscr);
660 static int cortex_a_instr_write_data_r0(struct arm_dpm *dpm,
661 uint32_t opcode, uint32_t data)
663 struct cortex_a_common *a = dpm_to_a(dpm);
664 uint32_t dscr = DSCR_INSTR_COMP;
665 int retval;
667 retval = cortex_a_write_dcc(a, data);
668 if (retval != ERROR_OK)
669 return retval;
671 /* DCCRX to R0, "MCR p14, 0, R0, c0, c5, 0", 0xEE000E15 */
672 retval = cortex_a_exec_opcode(
673 a->armv7a_common.arm.target,
674 ARMV4_5_MRC(14, 0, 0, 0, 5, 0),
675 &dscr);
676 if (retval != ERROR_OK)
677 return retval;
679 /* then the opcode, taking data from R0 */
680 retval = cortex_a_exec_opcode(
681 a->armv7a_common.arm.target,
682 opcode,
683 &dscr);
685 return retval;
688 static int cortex_a_instr_cpsr_sync(struct arm_dpm *dpm)
690 struct target *target = dpm->arm->target;
691 uint32_t dscr = DSCR_INSTR_COMP;
693 /* "Prefetch flush" after modifying execution status in CPSR */
694 return cortex_a_exec_opcode(target,
695 ARMV4_5_MCR(15, 0, 0, 7, 5, 4),
696 &dscr);
699 static int cortex_a_instr_read_data_dcc(struct arm_dpm *dpm,
700 uint32_t opcode, uint32_t *data)
702 struct cortex_a_common *a = dpm_to_a(dpm);
703 int retval;
704 uint32_t dscr = DSCR_INSTR_COMP;
706 /* the opcode, writing data to DCC */
707 retval = cortex_a_exec_opcode(
708 a->armv7a_common.arm.target,
709 opcode,
710 &dscr);
711 if (retval != ERROR_OK)
712 return retval;
714 return cortex_a_read_dcc(a, data, &dscr);
718 static int cortex_a_instr_read_data_r0(struct arm_dpm *dpm,
719 uint32_t opcode, uint32_t *data)
721 struct cortex_a_common *a = dpm_to_a(dpm);
722 uint32_t dscr = DSCR_INSTR_COMP;
723 int retval;
725 /* the opcode, writing data to R0 */
726 retval = cortex_a_exec_opcode(
727 a->armv7a_common.arm.target,
728 opcode,
729 &dscr);
730 if (retval != ERROR_OK)
731 return retval;
733 /* write R0 to DCC */
734 retval = cortex_a_exec_opcode(
735 a->armv7a_common.arm.target,
736 ARMV4_5_MCR(14, 0, 0, 0, 5, 0),
737 &dscr);
738 if (retval != ERROR_OK)
739 return retval;
741 return cortex_a_read_dcc(a, data, &dscr);
744 static int cortex_a_bpwp_enable(struct arm_dpm *dpm, unsigned index_t,
745 uint32_t addr, uint32_t control)
747 struct cortex_a_common *a = dpm_to_a(dpm);
748 uint32_t vr = a->armv7a_common.debug_base;
749 uint32_t cr = a->armv7a_common.debug_base;
750 int retval;
752 switch (index_t) {
753 case 0 ... 15: /* breakpoints */
754 vr += CPUDBG_BVR_BASE;
755 cr += CPUDBG_BCR_BASE;
756 break;
757 case 16 ... 31: /* watchpoints */
758 vr += CPUDBG_WVR_BASE;
759 cr += CPUDBG_WCR_BASE;
760 index_t -= 16;
761 break;
762 default:
763 return ERROR_FAIL;
765 vr += 4 * index_t;
766 cr += 4 * index_t;
768 LOG_DEBUG("A: bpwp enable, vr %08x cr %08x",
769 (unsigned) vr, (unsigned) cr);
771 retval = cortex_a_dap_write_memap_register_u32(dpm->arm->target,
772 vr, addr);
773 if (retval != ERROR_OK)
774 return retval;
775 retval = cortex_a_dap_write_memap_register_u32(dpm->arm->target,
776 cr, control);
777 return retval;
780 static int cortex_a_bpwp_disable(struct arm_dpm *dpm, unsigned index_t)
782 struct cortex_a_common *a = dpm_to_a(dpm);
783 uint32_t cr;
785 switch (index_t) {
786 case 0 ... 15:
787 cr = a->armv7a_common.debug_base + CPUDBG_BCR_BASE;
788 break;
789 case 16 ... 31:
790 cr = a->armv7a_common.debug_base + CPUDBG_WCR_BASE;
791 index_t -= 16;
792 break;
793 default:
794 return ERROR_FAIL;
796 cr += 4 * index_t;
798 LOG_DEBUG("A: bpwp disable, cr %08x", (unsigned) cr);
800 /* clear control register */
801 return cortex_a_dap_write_memap_register_u32(dpm->arm->target, cr, 0);
804 static int cortex_a_dpm_setup(struct cortex_a_common *a, uint32_t didr)
806 struct arm_dpm *dpm = &a->armv7a_common.dpm;
807 int retval;
809 dpm->arm = &a->armv7a_common.arm;
810 dpm->didr = didr;
812 dpm->prepare = cortex_a_dpm_prepare;
813 dpm->finish = cortex_a_dpm_finish;
815 dpm->instr_write_data_dcc = cortex_a_instr_write_data_dcc;
816 dpm->instr_write_data_r0 = cortex_a_instr_write_data_r0;
817 dpm->instr_cpsr_sync = cortex_a_instr_cpsr_sync;
819 dpm->instr_read_data_dcc = cortex_a_instr_read_data_dcc;
820 dpm->instr_read_data_r0 = cortex_a_instr_read_data_r0;
822 dpm->bpwp_enable = cortex_a_bpwp_enable;
823 dpm->bpwp_disable = cortex_a_bpwp_disable;
825 retval = arm_dpm_setup(dpm);
826 if (retval == ERROR_OK)
827 retval = arm_dpm_initialize(dpm);
829 return retval;
831 static struct target *get_cortex_a(struct target *target, int32_t coreid)
833 struct target_list *head;
834 struct target *curr;
836 head = target->head;
837 while (head != (struct target_list *)NULL) {
838 curr = head->target;
839 if ((curr->coreid == coreid) && (curr->state == TARGET_HALTED))
840 return curr;
841 head = head->next;
843 return target;
845 static int cortex_a_halt(struct target *target);
847 static int cortex_a_halt_smp(struct target *target)
849 int retval = 0;
850 struct target_list *head;
851 struct target *curr;
852 head = target->head;
853 while (head != (struct target_list *)NULL) {
854 curr = head->target;
855 if ((curr != target) && (curr->state != TARGET_HALTED))
856 retval += cortex_a_halt(curr);
857 head = head->next;
859 return retval;
862 static int update_halt_gdb(struct target *target)
864 int retval = 0;
865 if (target->gdb_service && target->gdb_service->core[0] == -1) {
866 target->gdb_service->target = target;
867 target->gdb_service->core[0] = target->coreid;
868 retval += cortex_a_halt_smp(target);
870 return retval;
874 * Cortex-A Run control
877 static int cortex_a_poll(struct target *target)
879 int retval = ERROR_OK;
880 uint32_t dscr;
881 struct cortex_a_common *cortex_a = target_to_cortex_a(target);
882 struct armv7a_common *armv7a = &cortex_a->armv7a_common;
883 enum target_state prev_target_state = target->state;
884 /* toggle to another core is done by gdb as follow */
885 /* maint packet J core_id */
886 /* continue */
887 /* the next polling trigger an halt event sent to gdb */
888 if ((target->state == TARGET_HALTED) && (target->smp) &&
889 (target->gdb_service) &&
890 (target->gdb_service->target == NULL)) {
891 target->gdb_service->target =
892 get_cortex_a(target, target->gdb_service->core[1]);
893 target_call_event_callbacks(target, TARGET_EVENT_HALTED);
894 return retval;
896 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
897 armv7a->debug_base + CPUDBG_DSCR, &dscr);
898 if (retval != ERROR_OK)
899 return retval;
900 cortex_a->cpudbg_dscr = dscr;
902 if (DSCR_RUN_MODE(dscr) == (DSCR_CORE_HALTED | DSCR_CORE_RESTARTED)) {
903 if (prev_target_state != TARGET_HALTED) {
904 /* We have a halting debug event */
905 LOG_DEBUG("Target halted");
906 target->state = TARGET_HALTED;
907 if ((prev_target_state == TARGET_RUNNING)
908 || (prev_target_state == TARGET_UNKNOWN)
909 || (prev_target_state == TARGET_RESET)) {
910 retval = cortex_a_debug_entry(target);
911 if (retval != ERROR_OK)
912 return retval;
913 if (target->smp) {
914 retval = update_halt_gdb(target);
915 if (retval != ERROR_OK)
916 return retval;
918 target_call_event_callbacks(target,
919 TARGET_EVENT_HALTED);
921 if (prev_target_state == TARGET_DEBUG_RUNNING) {
922 LOG_DEBUG(" ");
924 retval = cortex_a_debug_entry(target);
925 if (retval != ERROR_OK)
926 return retval;
927 if (target->smp) {
928 retval = update_halt_gdb(target);
929 if (retval != ERROR_OK)
930 return retval;
933 target_call_event_callbacks(target,
934 TARGET_EVENT_DEBUG_HALTED);
937 } else if (DSCR_RUN_MODE(dscr) == DSCR_CORE_RESTARTED)
938 target->state = TARGET_RUNNING;
939 else {
940 LOG_DEBUG("Unknown target state dscr = 0x%08" PRIx32, dscr);
941 target->state = TARGET_UNKNOWN;
944 return retval;
947 static int cortex_a_halt(struct target *target)
949 int retval = ERROR_OK;
950 uint32_t dscr;
951 struct armv7a_common *armv7a = target_to_armv7a(target);
954 * Tell the core to be halted by writing DRCR with 0x1
955 * and then wait for the core to be halted.
957 retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
958 armv7a->debug_base + CPUDBG_DRCR, DRCR_HALT);
959 if (retval != ERROR_OK)
960 return retval;
963 * enter halting debug mode
965 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
966 armv7a->debug_base + CPUDBG_DSCR, &dscr);
967 if (retval != ERROR_OK)
968 return retval;
970 retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
971 armv7a->debug_base + CPUDBG_DSCR, dscr | DSCR_HALT_DBG_MODE);
972 if (retval != ERROR_OK)
973 return retval;
975 int64_t then = timeval_ms();
976 for (;; ) {
977 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
978 armv7a->debug_base + CPUDBG_DSCR, &dscr);
979 if (retval != ERROR_OK)
980 return retval;
981 if ((dscr & DSCR_CORE_HALTED) != 0)
982 break;
983 if (timeval_ms() > then + 1000) {
984 LOG_ERROR("Timeout waiting for halt");
985 return ERROR_FAIL;
989 target->debug_reason = DBG_REASON_DBGRQ;
991 return ERROR_OK;
994 static int cortex_a_internal_restore(struct target *target, int current,
995 uint32_t *address, int handle_breakpoints, int debug_execution)
997 struct armv7a_common *armv7a = target_to_armv7a(target);
998 struct arm *arm = &armv7a->arm;
999 int retval;
1000 uint32_t resume_pc;
1002 if (!debug_execution)
1003 target_free_all_working_areas(target);
1005 #if 0
1006 if (debug_execution) {
1007 /* Disable interrupts */
1008 /* We disable interrupts in the PRIMASK register instead of
1009 * masking with C_MASKINTS,
1010 * This is probably the same issue as Cortex-M3 Errata 377493:
1011 * C_MASKINTS in parallel with disabled interrupts can cause
1012 * local faults to not be taken. */
1013 buf_set_u32(armv7m->core_cache->reg_list[ARMV7M_PRIMASK].value, 0, 32, 1);
1014 armv7m->core_cache->reg_list[ARMV7M_PRIMASK].dirty = 1;
1015 armv7m->core_cache->reg_list[ARMV7M_PRIMASK].valid = 1;
1017 /* Make sure we are in Thumb mode */
1018 buf_set_u32(armv7m->core_cache->reg_list[ARMV7M_xPSR].value, 0, 32,
1019 buf_get_u32(armv7m->core_cache->reg_list[ARMV7M_xPSR].value, 0,
1020 32) | (1 << 24));
1021 armv7m->core_cache->reg_list[ARMV7M_xPSR].dirty = 1;
1022 armv7m->core_cache->reg_list[ARMV7M_xPSR].valid = 1;
1024 #endif
1026 /* current = 1: continue on current pc, otherwise continue at <address> */
1027 resume_pc = buf_get_u32(arm->pc->value, 0, 32);
1028 if (!current)
1029 resume_pc = *address;
1030 else
1031 *address = resume_pc;
1033 /* Make sure that the Armv7 gdb thumb fixups does not
1034 * kill the return address
1036 switch (arm->core_state) {
1037 case ARM_STATE_ARM:
1038 resume_pc &= 0xFFFFFFFC;
1039 break;
1040 case ARM_STATE_THUMB:
1041 case ARM_STATE_THUMB_EE:
1042 /* When the return address is loaded into PC
1043 * bit 0 must be 1 to stay in Thumb state
1045 resume_pc |= 0x1;
1046 break;
1047 case ARM_STATE_JAZELLE:
1048 LOG_ERROR("How do I resume into Jazelle state??");
1049 return ERROR_FAIL;
1051 LOG_DEBUG("resume pc = 0x%08" PRIx32, resume_pc);
1052 buf_set_u32(arm->pc->value, 0, 32, resume_pc);
1053 arm->pc->dirty = 1;
1054 arm->pc->valid = 1;
1056 /* restore dpm_mode at system halt */
1057 dpm_modeswitch(&armv7a->dpm, ARM_MODE_ANY);
1058 /* called it now before restoring context because it uses cpu
1059 * register r0 for restoring cp15 control register */
1060 retval = cortex_a_restore_cp15_control_reg(target);
1061 if (retval != ERROR_OK)
1062 return retval;
1063 retval = cortex_a_restore_context(target, handle_breakpoints);
1064 if (retval != ERROR_OK)
1065 return retval;
1066 target->debug_reason = DBG_REASON_NOTHALTED;
1067 target->state = TARGET_RUNNING;
1069 /* registers are now invalid */
1070 register_cache_invalidate(arm->core_cache);
1072 #if 0
1073 /* the front-end may request us not to handle breakpoints */
1074 if (handle_breakpoints) {
1075 /* Single step past breakpoint at current address */
1076 breakpoint = breakpoint_find(target, resume_pc);
1077 if (breakpoint) {
1078 LOG_DEBUG("unset breakpoint at 0x%8.8x", breakpoint->address);
1079 cortex_m3_unset_breakpoint(target, breakpoint);
1080 cortex_m3_single_step_core(target);
1081 cortex_m3_set_breakpoint(target, breakpoint);
1085 #endif
1086 return retval;
1089 static int cortex_a_internal_restart(struct target *target)
1091 struct armv7a_common *armv7a = target_to_armv7a(target);
1092 struct arm *arm = &armv7a->arm;
1093 int retval;
1094 uint32_t dscr;
1096 * * Restart core and wait for it to be started. Clear ITRen and sticky
1097 * * exception flags: see ARMv7 ARM, C5.9.
1099 * REVISIT: for single stepping, we probably want to
1100 * disable IRQs by default, with optional override...
1103 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
1104 armv7a->debug_base + CPUDBG_DSCR, &dscr);
1105 if (retval != ERROR_OK)
1106 return retval;
1108 if ((dscr & DSCR_INSTR_COMP) == 0)
1109 LOG_ERROR("DSCR InstrCompl must be set before leaving debug!");
1111 retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
1112 armv7a->debug_base + CPUDBG_DSCR, dscr & ~DSCR_ITR_EN);
1113 if (retval != ERROR_OK)
1114 return retval;
1116 retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
1117 armv7a->debug_base + CPUDBG_DRCR, DRCR_RESTART |
1118 DRCR_CLEAR_EXCEPTIONS);
1119 if (retval != ERROR_OK)
1120 return retval;
1122 int64_t then = timeval_ms();
1123 for (;; ) {
1124 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
1125 armv7a->debug_base + CPUDBG_DSCR, &dscr);
1126 if (retval != ERROR_OK)
1127 return retval;
1128 if ((dscr & DSCR_CORE_RESTARTED) != 0)
1129 break;
1130 if (timeval_ms() > then + 1000) {
1131 LOG_ERROR("Timeout waiting for resume");
1132 return ERROR_FAIL;
1136 target->debug_reason = DBG_REASON_NOTHALTED;
1137 target->state = TARGET_RUNNING;
1139 /* registers are now invalid */
1140 register_cache_invalidate(arm->core_cache);
1142 return ERROR_OK;
1145 static int cortex_a_restore_smp(struct target *target, int handle_breakpoints)
1147 int retval = 0;
1148 struct target_list *head;
1149 struct target *curr;
1150 uint32_t address;
1151 head = target->head;
1152 while (head != (struct target_list *)NULL) {
1153 curr = head->target;
1154 if ((curr != target) && (curr->state != TARGET_RUNNING)) {
1155 /* resume current address , not in step mode */
1156 retval += cortex_a_internal_restore(curr, 1, &address,
1157 handle_breakpoints, 0);
1158 retval += cortex_a_internal_restart(curr);
1160 head = head->next;
1163 return retval;
1166 static int cortex_a_resume(struct target *target, int current,
1167 uint32_t address, int handle_breakpoints, int debug_execution)
1169 int retval = 0;
1170 /* dummy resume for smp toggle in order to reduce gdb impact */
1171 if ((target->smp) && (target->gdb_service->core[1] != -1)) {
1172 /* simulate a start and halt of target */
1173 target->gdb_service->target = NULL;
1174 target->gdb_service->core[0] = target->gdb_service->core[1];
1175 /* fake resume at next poll we play the target core[1], see poll*/
1176 target_call_event_callbacks(target, TARGET_EVENT_RESUMED);
1177 return 0;
1179 cortex_a_internal_restore(target, current, &address, handle_breakpoints, debug_execution);
1180 if (target->smp) {
1181 target->gdb_service->core[0] = -1;
1182 retval = cortex_a_restore_smp(target, handle_breakpoints);
1183 if (retval != ERROR_OK)
1184 return retval;
1186 cortex_a_internal_restart(target);
1188 if (!debug_execution) {
1189 target->state = TARGET_RUNNING;
1190 target_call_event_callbacks(target, TARGET_EVENT_RESUMED);
1191 LOG_DEBUG("target resumed at 0x%" PRIx32, address);
1192 } else {
1193 target->state = TARGET_DEBUG_RUNNING;
1194 target_call_event_callbacks(target, TARGET_EVENT_DEBUG_RESUMED);
1195 LOG_DEBUG("target debug resumed at 0x%" PRIx32, address);
1198 return ERROR_OK;
1201 static int cortex_a_debug_entry(struct target *target)
1203 int i;
1204 uint32_t regfile[16], cpsr, dscr;
1205 int retval = ERROR_OK;
1206 struct working_area *regfile_working_area = NULL;
1207 struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1208 struct armv7a_common *armv7a = target_to_armv7a(target);
1209 struct arm *arm = &armv7a->arm;
1210 struct reg *reg;
1212 LOG_DEBUG("dscr = 0x%08" PRIx32, cortex_a->cpudbg_dscr);
1214 /* REVISIT surely we should not re-read DSCR !! */
1215 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
1216 armv7a->debug_base + CPUDBG_DSCR, &dscr);
1217 if (retval != ERROR_OK)
1218 return retval;
1220 /* REVISIT see A TRM 12.11.4 steps 2..3 -- make sure that any
1221 * imprecise data aborts get discarded by issuing a Data
1222 * Synchronization Barrier: ARMV4_5_MCR(15, 0, 0, 7, 10, 4).
1225 /* Enable the ITR execution once we are in debug mode */
1226 dscr |= DSCR_ITR_EN;
1227 retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
1228 armv7a->debug_base + CPUDBG_DSCR, dscr);
1229 if (retval != ERROR_OK)
1230 return retval;
1232 /* Examine debug reason */
1233 arm_dpm_report_dscr(&armv7a->dpm, cortex_a->cpudbg_dscr);
1235 /* save address of instruction that triggered the watchpoint? */
1236 if (target->debug_reason == DBG_REASON_WATCHPOINT) {
1237 uint32_t wfar;
1239 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
1240 armv7a->debug_base + CPUDBG_WFAR,
1241 &wfar);
1242 if (retval != ERROR_OK)
1243 return retval;
1244 arm_dpm_report_wfar(&armv7a->dpm, wfar);
1247 /* REVISIT fast_reg_read is never set ... */
1249 /* Examine target state and mode */
1250 if (cortex_a->fast_reg_read)
1251 target_alloc_working_area(target, 64, &regfile_working_area);
1253 /* First load register acessible through core debug port*/
1254 if (!regfile_working_area)
1255 retval = arm_dpm_read_current_registers(&armv7a->dpm);
1256 else {
1257 retval = cortex_a_read_regs_through_mem(target,
1258 regfile_working_area->address, regfile);
1260 target_free_working_area(target, regfile_working_area);
1261 if (retval != ERROR_OK)
1262 return retval;
1264 /* read Current PSR */
1265 retval = cortex_a_dap_read_coreregister_u32(target, &cpsr, 16);
1266 /* store current cpsr */
1267 if (retval != ERROR_OK)
1268 return retval;
1270 LOG_DEBUG("cpsr: %8.8" PRIx32, cpsr);
1272 arm_set_cpsr(arm, cpsr);
1274 /* update cache */
1275 for (i = 0; i <= ARM_PC; i++) {
1276 reg = arm_reg_current(arm, i);
1278 buf_set_u32(reg->value, 0, 32, regfile[i]);
1279 reg->valid = 1;
1280 reg->dirty = 0;
1283 /* Fixup PC Resume Address */
1284 if (cpsr & (1 << 5)) {
1285 /* T bit set for Thumb or ThumbEE state */
1286 regfile[ARM_PC] -= 4;
1287 } else {
1288 /* ARM state */
1289 regfile[ARM_PC] -= 8;
1292 reg = arm->pc;
1293 buf_set_u32(reg->value, 0, 32, regfile[ARM_PC]);
1294 reg->dirty = reg->valid;
1297 #if 0
1298 /* TODO, Move this */
1299 uint32_t cp15_control_register, cp15_cacr, cp15_nacr;
1300 cortex_a_read_cp(target, &cp15_control_register, 15, 0, 1, 0, 0);
1301 LOG_DEBUG("cp15_control_register = 0x%08x", cp15_control_register);
1303 cortex_a_read_cp(target, &cp15_cacr, 15, 0, 1, 0, 2);
1304 LOG_DEBUG("cp15 Coprocessor Access Control Register = 0x%08x", cp15_cacr);
1306 cortex_a_read_cp(target, &cp15_nacr, 15, 0, 1, 1, 2);
1307 LOG_DEBUG("cp15 Nonsecure Access Control Register = 0x%08x", cp15_nacr);
1308 #endif
1310 /* Are we in an exception handler */
1311 /* armv4_5->exception_number = 0; */
1312 if (armv7a->post_debug_entry) {
1313 retval = armv7a->post_debug_entry(target);
1314 if (retval != ERROR_OK)
1315 return retval;
1318 return retval;
1321 static int cortex_a_post_debug_entry(struct target *target)
1323 struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1324 struct armv7a_common *armv7a = &cortex_a->armv7a_common;
1325 int retval;
1327 /* MRC p15,0,<Rt>,c1,c0,0 ; Read CP15 System Control Register */
1328 retval = armv7a->arm.mrc(target, 15,
1329 0, 0, /* op1, op2 */
1330 1, 0, /* CRn, CRm */
1331 &cortex_a->cp15_control_reg);
1332 if (retval != ERROR_OK)
1333 return retval;
1334 LOG_DEBUG("cp15_control_reg: %8.8" PRIx32, cortex_a->cp15_control_reg);
1335 cortex_a->cp15_control_reg_curr = cortex_a->cp15_control_reg;
1337 if (armv7a->armv7a_mmu.armv7a_cache.info == -1)
1338 armv7a_identify_cache(target);
1340 if (armv7a->is_armv7r) {
1341 armv7a->armv7a_mmu.mmu_enabled = 0;
1342 } else {
1343 armv7a->armv7a_mmu.mmu_enabled =
1344 (cortex_a->cp15_control_reg & 0x1U) ? 1 : 0;
1346 armv7a->armv7a_mmu.armv7a_cache.d_u_cache_enabled =
1347 (cortex_a->cp15_control_reg & 0x4U) ? 1 : 0;
1348 armv7a->armv7a_mmu.armv7a_cache.i_cache_enabled =
1349 (cortex_a->cp15_control_reg & 0x1000U) ? 1 : 0;
1350 cortex_a->curr_mode = armv7a->arm.core_mode;
1352 /* switch to SVC mode to read DACR */
1353 dpm_modeswitch(&armv7a->dpm, ARM_MODE_SVC);
1354 armv7a->arm.mrc(target, 15,
1355 0, 0, 3, 0,
1356 &cortex_a->cp15_dacr_reg);
1358 LOG_DEBUG("cp15_dacr_reg: %8.8" PRIx32,
1359 cortex_a->cp15_dacr_reg);
1361 dpm_modeswitch(&armv7a->dpm, ARM_MODE_ANY);
1362 return ERROR_OK;
1365 int cortex_a_set_dscr_bits(struct target *target, unsigned long bit_mask, unsigned long value)
1367 struct armv7a_common *armv7a = target_to_armv7a(target);
1368 uint32_t dscr;
1370 /* Read DSCR */
1371 int retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
1372 armv7a->debug_base + CPUDBG_DSCR, &dscr);
1373 if (ERROR_OK != retval)
1374 return retval;
1376 /* clear bitfield */
1377 dscr &= ~bit_mask;
1378 /* put new value */
1379 dscr |= value & bit_mask;
1381 /* write new DSCR */
1382 retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
1383 armv7a->debug_base + CPUDBG_DSCR, dscr);
1384 return retval;
1387 static int cortex_a_step(struct target *target, int current, uint32_t address,
1388 int handle_breakpoints)
1390 struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1391 struct armv7a_common *armv7a = target_to_armv7a(target);
1392 struct arm *arm = &armv7a->arm;
1393 struct breakpoint *breakpoint = NULL;
1394 struct breakpoint stepbreakpoint;
1395 struct reg *r;
1396 int retval;
1398 if (target->state != TARGET_HALTED) {
1399 LOG_WARNING("target not halted");
1400 return ERROR_TARGET_NOT_HALTED;
1403 /* current = 1: continue on current pc, otherwise continue at <address> */
1404 r = arm->pc;
1405 if (!current)
1406 buf_set_u32(r->value, 0, 32, address);
1407 else
1408 address = buf_get_u32(r->value, 0, 32);
1410 /* The front-end may request us not to handle breakpoints.
1411 * But since Cortex-A uses breakpoint for single step,
1412 * we MUST handle breakpoints.
1414 handle_breakpoints = 1;
1415 if (handle_breakpoints) {
1416 breakpoint = breakpoint_find(target, address);
1417 if (breakpoint)
1418 cortex_a_unset_breakpoint(target, breakpoint);
1421 /* Setup single step breakpoint */
1422 stepbreakpoint.address = address;
1423 stepbreakpoint.length = (arm->core_state == ARM_STATE_THUMB)
1424 ? 2 : 4;
1425 stepbreakpoint.type = BKPT_HARD;
1426 stepbreakpoint.set = 0;
1428 /* Disable interrupts during single step if requested */
1429 if (cortex_a->isrmasking_mode == CORTEX_A_ISRMASK_ON) {
1430 retval = cortex_a_set_dscr_bits(target, DSCR_INT_DIS, DSCR_INT_DIS);
1431 if (ERROR_OK != retval)
1432 return retval;
1435 /* Break on IVA mismatch */
1436 cortex_a_set_breakpoint(target, &stepbreakpoint, 0x04);
1438 target->debug_reason = DBG_REASON_SINGLESTEP;
1440 retval = cortex_a_resume(target, 1, address, 0, 0);
1441 if (retval != ERROR_OK)
1442 return retval;
1444 int64_t then = timeval_ms();
1445 while (target->state != TARGET_HALTED) {
1446 retval = cortex_a_poll(target);
1447 if (retval != ERROR_OK)
1448 return retval;
1449 if (timeval_ms() > then + 1000) {
1450 LOG_ERROR("timeout waiting for target halt");
1451 return ERROR_FAIL;
1455 cortex_a_unset_breakpoint(target, &stepbreakpoint);
1457 /* Re-enable interrupts if they were disabled */
1458 if (cortex_a->isrmasking_mode == CORTEX_A_ISRMASK_ON) {
1459 retval = cortex_a_set_dscr_bits(target, DSCR_INT_DIS, 0);
1460 if (ERROR_OK != retval)
1461 return retval;
1465 target->debug_reason = DBG_REASON_BREAKPOINT;
1467 if (breakpoint)
1468 cortex_a_set_breakpoint(target, breakpoint, 0);
1470 if (target->state != TARGET_HALTED)
1471 LOG_DEBUG("target stepped");
1473 return ERROR_OK;
1476 static int cortex_a_restore_context(struct target *target, bool bpwp)
1478 struct armv7a_common *armv7a = target_to_armv7a(target);
1480 LOG_DEBUG(" ");
1482 if (armv7a->pre_restore_context)
1483 armv7a->pre_restore_context(target);
1485 return arm_dpm_write_dirty_registers(&armv7a->dpm, bpwp);
1489 * Cortex-A Breakpoint and watchpoint functions
1492 /* Setup hardware Breakpoint Register Pair */
1493 static int cortex_a_set_breakpoint(struct target *target,
1494 struct breakpoint *breakpoint, uint8_t matchmode)
1496 int retval;
1497 int brp_i = 0;
1498 uint32_t control;
1499 uint8_t byte_addr_select = 0x0F;
1500 struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1501 struct armv7a_common *armv7a = &cortex_a->armv7a_common;
1502 struct cortex_a_brp *brp_list = cortex_a->brp_list;
1504 if (breakpoint->set) {
1505 LOG_WARNING("breakpoint already set");
1506 return ERROR_OK;
1509 if (breakpoint->type == BKPT_HARD) {
1510 while (brp_list[brp_i].used && (brp_i < cortex_a->brp_num))
1511 brp_i++;
1512 if (brp_i >= cortex_a->brp_num) {
1513 LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
1514 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1516 breakpoint->set = brp_i + 1;
1517 if (breakpoint->length == 2)
1518 byte_addr_select = (3 << (breakpoint->address & 0x02));
1519 control = ((matchmode & 0x7) << 20)
1520 | (byte_addr_select << 5)
1521 | (3 << 1) | 1;
1522 brp_list[brp_i].used = 1;
1523 brp_list[brp_i].value = (breakpoint->address & 0xFFFFFFFC);
1524 brp_list[brp_i].control = control;
1525 retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1526 + CPUDBG_BVR_BASE + 4 * brp_list[brp_i].BRPn,
1527 brp_list[brp_i].value);
1528 if (retval != ERROR_OK)
1529 return retval;
1530 retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1531 + CPUDBG_BCR_BASE + 4 * brp_list[brp_i].BRPn,
1532 brp_list[brp_i].control);
1533 if (retval != ERROR_OK)
1534 return retval;
1535 LOG_DEBUG("brp %i control 0x%0" PRIx32 " value 0x%0" PRIx32, brp_i,
1536 brp_list[brp_i].control,
1537 brp_list[brp_i].value);
1538 } else if (breakpoint->type == BKPT_SOFT) {
1539 uint8_t code[4];
1540 if (breakpoint->length == 2)
1541 buf_set_u32(code, 0, 32, ARMV5_T_BKPT(0x11));
1542 else
1543 buf_set_u32(code, 0, 32, ARMV5_BKPT(0x11));
1544 retval = target_read_memory(target,
1545 breakpoint->address & 0xFFFFFFFE,
1546 breakpoint->length, 1,
1547 breakpoint->orig_instr);
1548 if (retval != ERROR_OK)
1549 return retval;
1551 /* make sure data cache is cleaned & invalidated down to PoC */
1552 if (!armv7a->armv7a_mmu.armv7a_cache.auto_cache_enabled) {
1553 armv7a_cache_flush_virt(target, breakpoint->address,
1554 breakpoint->length);
1557 retval = target_write_memory(target,
1558 breakpoint->address & 0xFFFFFFFE,
1559 breakpoint->length, 1, code);
1560 if (retval != ERROR_OK)
1561 return retval;
1563 /* update i-cache at breakpoint location */
1564 armv7a_l1_d_cache_inval_virt(target, breakpoint->address,
1565 breakpoint->length);
1566 armv7a_l1_i_cache_inval_virt(target, breakpoint->address,
1567 breakpoint->length);
1569 breakpoint->set = 0x11; /* Any nice value but 0 */
1572 return ERROR_OK;
1575 static int cortex_a_set_context_breakpoint(struct target *target,
1576 struct breakpoint *breakpoint, uint8_t matchmode)
1578 int retval = ERROR_FAIL;
1579 int brp_i = 0;
1580 uint32_t control;
1581 uint8_t byte_addr_select = 0x0F;
1582 struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1583 struct armv7a_common *armv7a = &cortex_a->armv7a_common;
1584 struct cortex_a_brp *brp_list = cortex_a->brp_list;
1586 if (breakpoint->set) {
1587 LOG_WARNING("breakpoint already set");
1588 return retval;
1590 /*check available context BRPs*/
1591 while ((brp_list[brp_i].used ||
1592 (brp_list[brp_i].type != BRP_CONTEXT)) && (brp_i < cortex_a->brp_num))
1593 brp_i++;
1595 if (brp_i >= cortex_a->brp_num) {
1596 LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
1597 return ERROR_FAIL;
1600 breakpoint->set = brp_i + 1;
1601 control = ((matchmode & 0x7) << 20)
1602 | (byte_addr_select << 5)
1603 | (3 << 1) | 1;
1604 brp_list[brp_i].used = 1;
1605 brp_list[brp_i].value = (breakpoint->asid);
1606 brp_list[brp_i].control = control;
1607 retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1608 + CPUDBG_BVR_BASE + 4 * brp_list[brp_i].BRPn,
1609 brp_list[brp_i].value);
1610 if (retval != ERROR_OK)
1611 return retval;
1612 retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1613 + CPUDBG_BCR_BASE + 4 * brp_list[brp_i].BRPn,
1614 brp_list[brp_i].control);
1615 if (retval != ERROR_OK)
1616 return retval;
1617 LOG_DEBUG("brp %i control 0x%0" PRIx32 " value 0x%0" PRIx32, brp_i,
1618 brp_list[brp_i].control,
1619 brp_list[brp_i].value);
1620 return ERROR_OK;
1624 static int cortex_a_set_hybrid_breakpoint(struct target *target, struct breakpoint *breakpoint)
1626 int retval = ERROR_FAIL;
1627 int brp_1 = 0; /* holds the contextID pair */
1628 int brp_2 = 0; /* holds the IVA pair */
1629 uint32_t control_CTX, control_IVA;
1630 uint8_t CTX_byte_addr_select = 0x0F;
1631 uint8_t IVA_byte_addr_select = 0x0F;
1632 uint8_t CTX_machmode = 0x03;
1633 uint8_t IVA_machmode = 0x01;
1634 struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1635 struct armv7a_common *armv7a = &cortex_a->armv7a_common;
1636 struct cortex_a_brp *brp_list = cortex_a->brp_list;
1638 if (breakpoint->set) {
1639 LOG_WARNING("breakpoint already set");
1640 return retval;
1642 /*check available context BRPs*/
1643 while ((brp_list[brp_1].used ||
1644 (brp_list[brp_1].type != BRP_CONTEXT)) && (brp_1 < cortex_a->brp_num))
1645 brp_1++;
1647 printf("brp(CTX) found num: %d\n", brp_1);
1648 if (brp_1 >= cortex_a->brp_num) {
1649 LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
1650 return ERROR_FAIL;
1653 while ((brp_list[brp_2].used ||
1654 (brp_list[brp_2].type != BRP_NORMAL)) && (brp_2 < cortex_a->brp_num))
1655 brp_2++;
1657 printf("brp(IVA) found num: %d\n", brp_2);
1658 if (brp_2 >= cortex_a->brp_num) {
1659 LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
1660 return ERROR_FAIL;
1663 breakpoint->set = brp_1 + 1;
1664 breakpoint->linked_BRP = brp_2;
1665 control_CTX = ((CTX_machmode & 0x7) << 20)
1666 | (brp_2 << 16)
1667 | (0 << 14)
1668 | (CTX_byte_addr_select << 5)
1669 | (3 << 1) | 1;
1670 brp_list[brp_1].used = 1;
1671 brp_list[brp_1].value = (breakpoint->asid);
1672 brp_list[brp_1].control = control_CTX;
1673 retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1674 + CPUDBG_BVR_BASE + 4 * brp_list[brp_1].BRPn,
1675 brp_list[brp_1].value);
1676 if (retval != ERROR_OK)
1677 return retval;
1678 retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1679 + CPUDBG_BCR_BASE + 4 * brp_list[brp_1].BRPn,
1680 brp_list[brp_1].control);
1681 if (retval != ERROR_OK)
1682 return retval;
1684 control_IVA = ((IVA_machmode & 0x7) << 20)
1685 | (brp_1 << 16)
1686 | (IVA_byte_addr_select << 5)
1687 | (3 << 1) | 1;
1688 brp_list[brp_2].used = 1;
1689 brp_list[brp_2].value = (breakpoint->address & 0xFFFFFFFC);
1690 brp_list[brp_2].control = control_IVA;
1691 retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1692 + CPUDBG_BVR_BASE + 4 * brp_list[brp_2].BRPn,
1693 brp_list[brp_2].value);
1694 if (retval != ERROR_OK)
1695 return retval;
1696 retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1697 + CPUDBG_BCR_BASE + 4 * brp_list[brp_2].BRPn,
1698 brp_list[brp_2].control);
1699 if (retval != ERROR_OK)
1700 return retval;
1702 return ERROR_OK;
1705 static int cortex_a_unset_breakpoint(struct target *target, struct breakpoint *breakpoint)
1707 int retval;
1708 struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1709 struct armv7a_common *armv7a = &cortex_a->armv7a_common;
1710 struct cortex_a_brp *brp_list = cortex_a->brp_list;
1712 if (!breakpoint->set) {
1713 LOG_WARNING("breakpoint not set");
1714 return ERROR_OK;
1717 if (breakpoint->type == BKPT_HARD) {
1718 if ((breakpoint->address != 0) && (breakpoint->asid != 0)) {
1719 int brp_i = breakpoint->set - 1;
1720 int brp_j = breakpoint->linked_BRP;
1721 if ((brp_i < 0) || (brp_i >= cortex_a->brp_num)) {
1722 LOG_DEBUG("Invalid BRP number in breakpoint");
1723 return ERROR_OK;
1725 LOG_DEBUG("rbp %i control 0x%0" PRIx32 " value 0x%0" PRIx32, brp_i,
1726 brp_list[brp_i].control, brp_list[brp_i].value);
1727 brp_list[brp_i].used = 0;
1728 brp_list[brp_i].value = 0;
1729 brp_list[brp_i].control = 0;
1730 retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1731 + CPUDBG_BCR_BASE + 4 * brp_list[brp_i].BRPn,
1732 brp_list[brp_i].control);
1733 if (retval != ERROR_OK)
1734 return retval;
1735 retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1736 + CPUDBG_BVR_BASE + 4 * brp_list[brp_i].BRPn,
1737 brp_list[brp_i].value);
1738 if (retval != ERROR_OK)
1739 return retval;
1740 if ((brp_j < 0) || (brp_j >= cortex_a->brp_num)) {
1741 LOG_DEBUG("Invalid BRP number in breakpoint");
1742 return ERROR_OK;
1744 LOG_DEBUG("rbp %i control 0x%0" PRIx32 " value 0x%0" PRIx32, brp_j,
1745 brp_list[brp_j].control, brp_list[brp_j].value);
1746 brp_list[brp_j].used = 0;
1747 brp_list[brp_j].value = 0;
1748 brp_list[brp_j].control = 0;
1749 retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1750 + CPUDBG_BCR_BASE + 4 * brp_list[brp_j].BRPn,
1751 brp_list[brp_j].control);
1752 if (retval != ERROR_OK)
1753 return retval;
1754 retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1755 + CPUDBG_BVR_BASE + 4 * brp_list[brp_j].BRPn,
1756 brp_list[brp_j].value);
1757 if (retval != ERROR_OK)
1758 return retval;
1759 breakpoint->linked_BRP = 0;
1760 breakpoint->set = 0;
1761 return ERROR_OK;
1763 } else {
1764 int brp_i = breakpoint->set - 1;
1765 if ((brp_i < 0) || (brp_i >= cortex_a->brp_num)) {
1766 LOG_DEBUG("Invalid BRP number in breakpoint");
1767 return ERROR_OK;
1769 LOG_DEBUG("rbp %i control 0x%0" PRIx32 " value 0x%0" PRIx32, brp_i,
1770 brp_list[brp_i].control, brp_list[brp_i].value);
1771 brp_list[brp_i].used = 0;
1772 brp_list[brp_i].value = 0;
1773 brp_list[brp_i].control = 0;
1774 retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1775 + CPUDBG_BCR_BASE + 4 * brp_list[brp_i].BRPn,
1776 brp_list[brp_i].control);
1777 if (retval != ERROR_OK)
1778 return retval;
1779 retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1780 + CPUDBG_BVR_BASE + 4 * brp_list[brp_i].BRPn,
1781 brp_list[brp_i].value);
1782 if (retval != ERROR_OK)
1783 return retval;
1784 breakpoint->set = 0;
1785 return ERROR_OK;
1787 } else {
1789 /* make sure data cache is cleaned & invalidated down to PoC */
1790 if (!armv7a->armv7a_mmu.armv7a_cache.auto_cache_enabled) {
1791 armv7a_cache_flush_virt(target, breakpoint->address,
1792 breakpoint->length);
1795 /* restore original instruction (kept in target endianness) */
1796 if (breakpoint->length == 4) {
1797 retval = target_write_memory(target,
1798 breakpoint->address & 0xFFFFFFFE,
1799 4, 1, breakpoint->orig_instr);
1800 if (retval != ERROR_OK)
1801 return retval;
1802 } else {
1803 retval = target_write_memory(target,
1804 breakpoint->address & 0xFFFFFFFE,
1805 2, 1, breakpoint->orig_instr);
1806 if (retval != ERROR_OK)
1807 return retval;
1810 /* update i-cache at breakpoint location */
1811 armv7a_l1_d_cache_inval_virt(target, breakpoint->address,
1812 breakpoint->length);
1813 armv7a_l1_i_cache_inval_virt(target, breakpoint->address,
1814 breakpoint->length);
1816 breakpoint->set = 0;
1818 return ERROR_OK;
1821 static int cortex_a_add_breakpoint(struct target *target,
1822 struct breakpoint *breakpoint)
1824 struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1826 if ((breakpoint->type == BKPT_HARD) && (cortex_a->brp_num_available < 1)) {
1827 LOG_INFO("no hardware breakpoint available");
1828 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1831 if (breakpoint->type == BKPT_HARD)
1832 cortex_a->brp_num_available--;
1834 return cortex_a_set_breakpoint(target, breakpoint, 0x00); /* Exact match */
1837 static int cortex_a_add_context_breakpoint(struct target *target,
1838 struct breakpoint *breakpoint)
1840 struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1842 if ((breakpoint->type == BKPT_HARD) && (cortex_a->brp_num_available < 1)) {
1843 LOG_INFO("no hardware breakpoint available");
1844 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1847 if (breakpoint->type == BKPT_HARD)
1848 cortex_a->brp_num_available--;
1850 return cortex_a_set_context_breakpoint(target, breakpoint, 0x02); /* asid match */
1853 static int cortex_a_add_hybrid_breakpoint(struct target *target,
1854 struct breakpoint *breakpoint)
1856 struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1858 if ((breakpoint->type == BKPT_HARD) && (cortex_a->brp_num_available < 1)) {
1859 LOG_INFO("no hardware breakpoint available");
1860 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1863 if (breakpoint->type == BKPT_HARD)
1864 cortex_a->brp_num_available--;
1866 return cortex_a_set_hybrid_breakpoint(target, breakpoint); /* ??? */
1870 static int cortex_a_remove_breakpoint(struct target *target, struct breakpoint *breakpoint)
1872 struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1874 #if 0
1875 /* It is perfectly possible to remove breakpoints while the target is running */
1876 if (target->state != TARGET_HALTED) {
1877 LOG_WARNING("target not halted");
1878 return ERROR_TARGET_NOT_HALTED;
1880 #endif
1882 if (breakpoint->set) {
1883 cortex_a_unset_breakpoint(target, breakpoint);
1884 if (breakpoint->type == BKPT_HARD)
1885 cortex_a->brp_num_available++;
1889 return ERROR_OK;
1893 * Cortex-A Reset functions
1896 static int cortex_a_assert_reset(struct target *target)
1898 struct armv7a_common *armv7a = target_to_armv7a(target);
1900 LOG_DEBUG(" ");
1902 /* FIXME when halt is requested, make it work somehow... */
1904 /* This function can be called in "target not examined" state */
1906 /* Issue some kind of warm reset. */
1907 if (target_has_event_action(target, TARGET_EVENT_RESET_ASSERT))
1908 target_handle_event(target, TARGET_EVENT_RESET_ASSERT);
1909 else if (jtag_get_reset_config() & RESET_HAS_SRST) {
1910 /* REVISIT handle "pulls" cases, if there's
1911 * hardware that needs them to work.
1913 if (target->reset_halt)
1914 if (jtag_get_reset_config() & RESET_SRST_NO_GATING)
1915 jtag_add_reset(0, 1);
1916 } else {
1917 LOG_ERROR("%s: how to reset?", target_name(target));
1918 return ERROR_FAIL;
1921 /* registers are now invalid */
1922 register_cache_invalidate(armv7a->arm.core_cache);
1924 target->state = TARGET_RESET;
1926 return ERROR_OK;
1929 static int cortex_a_deassert_reset(struct target *target)
1931 int retval;
1933 LOG_DEBUG(" ");
1935 /* be certain SRST is off */
1936 jtag_add_reset(0, 0);
1938 retval = cortex_a_poll(target);
1939 if (retval != ERROR_OK)
1940 return retval;
1942 if (target->reset_halt) {
1943 if (target->state != TARGET_HALTED) {
1944 LOG_WARNING("%s: ran after reset and before halt ...",
1945 target_name(target));
1946 retval = target_halt(target);
1947 if (retval != ERROR_OK)
1948 return retval;
1952 return ERROR_OK;
1955 static int cortex_a_set_dcc_mode(struct target *target, uint32_t mode, uint32_t *dscr)
1957 /* Changes the mode of the DCC between non-blocking, stall, and fast mode.
1958 * New desired mode must be in mode. Current value of DSCR must be in
1959 * *dscr, which is updated with new value.
1961 * This function elides actually sending the mode-change over the debug
1962 * interface if the mode is already set as desired.
1964 uint32_t new_dscr = (*dscr & ~DSCR_EXT_DCC_MASK) | mode;
1965 if (new_dscr != *dscr) {
1966 struct armv7a_common *armv7a = target_to_armv7a(target);
1967 int retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
1968 armv7a->debug_base + CPUDBG_DSCR, new_dscr);
1969 if (retval == ERROR_OK)
1970 *dscr = new_dscr;
1971 return retval;
1972 } else {
1973 return ERROR_OK;
1977 static int cortex_a_wait_dscr_bits(struct target *target, uint32_t mask,
1978 uint32_t value, uint32_t *dscr)
1980 /* Waits until the specified bit(s) of DSCR take on a specified value. */
1981 struct armv7a_common *armv7a = target_to_armv7a(target);
1982 int64_t then = timeval_ms();
1983 int retval;
1985 while ((*dscr & mask) != value) {
1986 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
1987 armv7a->debug_base + CPUDBG_DSCR, dscr);
1988 if (retval != ERROR_OK)
1989 return retval;
1990 if (timeval_ms() > then + 1000) {
1991 LOG_ERROR("timeout waiting for DSCR bit change");
1992 return ERROR_FAIL;
1995 return ERROR_OK;
1998 static int cortex_a_read_copro(struct target *target, uint32_t opcode,
1999 uint32_t *data, uint32_t *dscr)
2001 int retval;
2002 struct armv7a_common *armv7a = target_to_armv7a(target);
2004 /* Move from coprocessor to R0. */
2005 retval = cortex_a_exec_opcode(target, opcode, dscr);
2006 if (retval != ERROR_OK)
2007 return retval;
2009 /* Move from R0 to DTRTX. */
2010 retval = cortex_a_exec_opcode(target, ARMV4_5_MCR(14, 0, 0, 0, 5, 0), dscr);
2011 if (retval != ERROR_OK)
2012 return retval;
2014 /* Wait until DTRTX is full (according to ARMv7-A/-R architecture
2015 * manual section C8.4.3, checking InstrCmpl_l is not sufficient; one
2016 * must also check TXfull_l). Most of the time this will be free
2017 * because TXfull_l will be set immediately and cached in dscr. */
2018 retval = cortex_a_wait_dscr_bits(target, DSCR_DTRTX_FULL_LATCHED,
2019 DSCR_DTRTX_FULL_LATCHED, dscr);
2020 if (retval != ERROR_OK)
2021 return retval;
2023 /* Read the value transferred to DTRTX. */
2024 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2025 armv7a->debug_base + CPUDBG_DTRTX, data);
2026 if (retval != ERROR_OK)
2027 return retval;
2029 return ERROR_OK;
2032 static int cortex_a_read_dfar_dfsr(struct target *target, uint32_t *dfar,
2033 uint32_t *dfsr, uint32_t *dscr)
2035 int retval;
2037 if (dfar) {
2038 retval = cortex_a_read_copro(target, ARMV4_5_MRC(15, 0, 0, 6, 0, 0), dfar, dscr);
2039 if (retval != ERROR_OK)
2040 return retval;
2043 if (dfsr) {
2044 retval = cortex_a_read_copro(target, ARMV4_5_MRC(15, 0, 0, 5, 0, 0), dfsr, dscr);
2045 if (retval != ERROR_OK)
2046 return retval;
2049 return ERROR_OK;
2052 static int cortex_a_write_copro(struct target *target, uint32_t opcode,
2053 uint32_t data, uint32_t *dscr)
2055 int retval;
2056 struct armv7a_common *armv7a = target_to_armv7a(target);
2058 /* Write the value into DTRRX. */
2059 retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
2060 armv7a->debug_base + CPUDBG_DTRRX, data);
2061 if (retval != ERROR_OK)
2062 return retval;
2064 /* Move from DTRRX to R0. */
2065 retval = cortex_a_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0), dscr);
2066 if (retval != ERROR_OK)
2067 return retval;
2069 /* Move from R0 to coprocessor. */
2070 retval = cortex_a_exec_opcode(target, opcode, dscr);
2071 if (retval != ERROR_OK)
2072 return retval;
2074 /* Wait until DTRRX is empty (according to ARMv7-A/-R architecture manual
2075 * section C8.4.3, checking InstrCmpl_l is not sufficient; one must also
2076 * check RXfull_l). Most of the time this will be free because RXfull_l
2077 * will be cleared immediately and cached in dscr. */
2078 retval = cortex_a_wait_dscr_bits(target, DSCR_DTRRX_FULL_LATCHED, 0, dscr);
2079 if (retval != ERROR_OK)
2080 return retval;
2082 return ERROR_OK;
2085 static int cortex_a_write_dfar_dfsr(struct target *target, uint32_t dfar,
2086 uint32_t dfsr, uint32_t *dscr)
2088 int retval;
2090 retval = cortex_a_write_copro(target, ARMV4_5_MCR(15, 0, 0, 6, 0, 0), dfar, dscr);
2091 if (retval != ERROR_OK)
2092 return retval;
2094 retval = cortex_a_write_copro(target, ARMV4_5_MCR(15, 0, 0, 5, 0, 0), dfsr, dscr);
2095 if (retval != ERROR_OK)
2096 return retval;
2098 return ERROR_OK;
2101 static int cortex_a_dfsr_to_error_code(uint32_t dfsr)
2103 uint32_t status, upper4;
2105 if (dfsr & (1 << 9)) {
2106 /* LPAE format. */
2107 status = dfsr & 0x3f;
2108 upper4 = status >> 2;
2109 if (upper4 == 1 || upper4 == 2 || upper4 == 3 || upper4 == 15)
2110 return ERROR_TARGET_TRANSLATION_FAULT;
2111 else if (status == 33)
2112 return ERROR_TARGET_UNALIGNED_ACCESS;
2113 else
2114 return ERROR_TARGET_DATA_ABORT;
2115 } else {
2116 /* Normal format. */
2117 status = ((dfsr >> 6) & 0x10) | (dfsr & 0xf);
2118 if (status == 1)
2119 return ERROR_TARGET_UNALIGNED_ACCESS;
2120 else if (status == 5 || status == 7 || status == 3 || status == 6 ||
2121 status == 9 || status == 11 || status == 13 || status == 15)
2122 return ERROR_TARGET_TRANSLATION_FAULT;
2123 else
2124 return ERROR_TARGET_DATA_ABORT;
2128 static int cortex_a_write_cpu_memory_slow(struct target *target,
2129 uint32_t size, uint32_t count, const uint8_t *buffer, uint32_t *dscr)
2131 /* Writes count objects of size size from *buffer. Old value of DSCR must
2132 * be in *dscr; updated to new value. This is slow because it works for
2133 * non-word-sized objects and (maybe) unaligned accesses. If size == 4 and
2134 * the address is aligned, cortex_a_write_cpu_memory_fast should be
2135 * preferred.
2136 * Preconditions:
2137 * - Address is in R0.
2138 * - R0 is marked dirty.
2140 struct armv7a_common *armv7a = target_to_armv7a(target);
2141 struct arm *arm = &armv7a->arm;
2142 int retval;
2144 /* Mark register R1 as dirty, to use for transferring data. */
2145 arm_reg_current(arm, 1)->dirty = true;
2147 /* Switch to non-blocking mode if not already in that mode. */
2148 retval = cortex_a_set_dcc_mode(target, DSCR_EXT_DCC_NON_BLOCKING, dscr);
2149 if (retval != ERROR_OK)
2150 return retval;
2152 /* Go through the objects. */
2153 while (count) {
2154 /* Write the value to store into DTRRX. */
2155 uint32_t data, opcode;
2156 if (size == 1)
2157 data = *buffer;
2158 else if (size == 2)
2159 data = target_buffer_get_u16(target, buffer);
2160 else
2161 data = target_buffer_get_u32(target, buffer);
2162 retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
2163 armv7a->debug_base + CPUDBG_DTRRX, data);
2164 if (retval != ERROR_OK)
2165 return retval;
2167 /* Transfer the value from DTRRX to R1. */
2168 retval = cortex_a_exec_opcode(target, ARMV4_5_MRC(14, 0, 1, 0, 5, 0), dscr);
2169 if (retval != ERROR_OK)
2170 return retval;
2172 /* Write the value transferred to R1 into memory. */
2173 if (size == 1)
2174 opcode = ARMV4_5_STRB_IP(1, 0);
2175 else if (size == 2)
2176 opcode = ARMV4_5_STRH_IP(1, 0);
2177 else
2178 opcode = ARMV4_5_STRW_IP(1, 0);
2179 retval = cortex_a_exec_opcode(target, opcode, dscr);
2180 if (retval != ERROR_OK)
2181 return retval;
2183 /* Check for faults and return early. */
2184 if (*dscr & (DSCR_STICKY_ABORT_PRECISE | DSCR_STICKY_ABORT_IMPRECISE))
2185 return ERROR_OK; /* A data fault is not considered a system failure. */
2187 /* Wait until DTRRX is empty (according to ARMv7-A/-R architecture
2188 * manual section C8.4.3, checking InstrCmpl_l is not sufficient; one
2189 * must also check RXfull_l). Most of the time this will be free
2190 * because RXfull_l will be cleared immediately and cached in dscr. */
2191 retval = cortex_a_wait_dscr_bits(target, DSCR_DTRRX_FULL_LATCHED, 0, dscr);
2192 if (retval != ERROR_OK)
2193 return retval;
2195 /* Advance. */
2196 buffer += size;
2197 --count;
2200 return ERROR_OK;
2203 static int cortex_a_write_cpu_memory_fast(struct target *target,
2204 uint32_t count, const uint8_t *buffer, uint32_t *dscr)
2206 /* Writes count objects of size 4 from *buffer. Old value of DSCR must be
2207 * in *dscr; updated to new value. This is fast but only works for
2208 * word-sized objects at aligned addresses.
2209 * Preconditions:
2210 * - Address is in R0 and must be a multiple of 4.
2211 * - R0 is marked dirty.
2213 struct armv7a_common *armv7a = target_to_armv7a(target);
2214 int retval;
2216 /* Switch to fast mode if not already in that mode. */
2217 retval = cortex_a_set_dcc_mode(target, DSCR_EXT_DCC_FAST_MODE, dscr);
2218 if (retval != ERROR_OK)
2219 return retval;
2221 /* Latch STC instruction. */
2222 retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
2223 armv7a->debug_base + CPUDBG_ITR, ARMV4_5_STC(0, 1, 0, 1, 14, 5, 0, 4));
2224 if (retval != ERROR_OK)
2225 return retval;
2227 /* Transfer all the data and issue all the instructions. */
2228 return mem_ap_write_buf_noincr(armv7a->debug_ap, buffer,
2229 4, count, armv7a->debug_base + CPUDBG_DTRRX);
2232 static int cortex_a_write_cpu_memory(struct target *target,
2233 uint32_t address, uint32_t size,
2234 uint32_t count, const uint8_t *buffer)
2236 /* Write memory through the CPU. */
2237 int retval, final_retval;
2238 struct armv7a_common *armv7a = target_to_armv7a(target);
2239 struct arm *arm = &armv7a->arm;
2240 uint32_t dscr, orig_dfar, orig_dfsr, fault_dscr, fault_dfar, fault_dfsr;
2242 LOG_DEBUG("Writing CPU memory address 0x%" PRIx32 " size %" PRIu32 " count %" PRIu32,
2243 address, size, count);
2244 if (target->state != TARGET_HALTED) {
2245 LOG_WARNING("target not halted");
2246 return ERROR_TARGET_NOT_HALTED;
2249 if (!count)
2250 return ERROR_OK;
2252 /* Clear any abort. */
2253 retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
2254 armv7a->debug_base + CPUDBG_DRCR, DRCR_CLEAR_EXCEPTIONS);
2255 if (retval != ERROR_OK)
2256 return retval;
2258 /* Read DSCR. */
2259 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2260 armv7a->debug_base + CPUDBG_DSCR, &dscr);
2261 if (retval != ERROR_OK)
2262 return retval;
2264 /* Switch to non-blocking mode if not already in that mode. */
2265 retval = cortex_a_set_dcc_mode(target, DSCR_EXT_DCC_NON_BLOCKING, &dscr);
2266 if (retval != ERROR_OK)
2267 goto out;
2269 /* Mark R0 as dirty. */
2270 arm_reg_current(arm, 0)->dirty = true;
2272 /* Read DFAR and DFSR, as they will be modified in the event of a fault. */
2273 retval = cortex_a_read_dfar_dfsr(target, &orig_dfar, &orig_dfsr, &dscr);
2274 if (retval != ERROR_OK)
2275 goto out;
2277 /* Get the memory address into R0. */
2278 retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
2279 armv7a->debug_base + CPUDBG_DTRRX, address);
2280 if (retval != ERROR_OK)
2281 goto out;
2282 retval = cortex_a_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0), &dscr);
2283 if (retval != ERROR_OK)
2284 goto out;
2286 if (size == 4 && (address % 4) == 0) {
2287 /* We are doing a word-aligned transfer, so use fast mode. */
2288 retval = cortex_a_write_cpu_memory_fast(target, count, buffer, &dscr);
2289 } else {
2290 /* Use slow path. */
2291 retval = cortex_a_write_cpu_memory_slow(target, size, count, buffer, &dscr);
2294 out:
2295 final_retval = retval;
2297 /* Switch to non-blocking mode if not already in that mode. */
2298 retval = cortex_a_set_dcc_mode(target, DSCR_EXT_DCC_NON_BLOCKING, &dscr);
2299 if (final_retval == ERROR_OK)
2300 final_retval = retval;
2302 /* Wait for last issued instruction to complete. */
2303 retval = cortex_a_wait_instrcmpl(target, &dscr, true);
2304 if (final_retval == ERROR_OK)
2305 final_retval = retval;
2307 /* Wait until DTRRX is empty (according to ARMv7-A/-R architecture manual
2308 * section C8.4.3, checking InstrCmpl_l is not sufficient; one must also
2309 * check RXfull_l). Most of the time this will be free because RXfull_l
2310 * will be cleared immediately and cached in dscr. However, don't do this
2311 * if there is fault, because then the instruction might not have completed
2312 * successfully. */
2313 if (!(dscr & DSCR_STICKY_ABORT_PRECISE)) {
2314 retval = cortex_a_wait_dscr_bits(target, DSCR_DTRRX_FULL_LATCHED, 0, &dscr);
2315 if (retval != ERROR_OK)
2316 return retval;
2319 /* If there were any sticky abort flags, clear them. */
2320 if (dscr & (DSCR_STICKY_ABORT_PRECISE | DSCR_STICKY_ABORT_IMPRECISE)) {
2321 fault_dscr = dscr;
2322 mem_ap_write_atomic_u32(armv7a->debug_ap,
2323 armv7a->debug_base + CPUDBG_DRCR, DRCR_CLEAR_EXCEPTIONS);
2324 dscr &= ~(DSCR_STICKY_ABORT_PRECISE | DSCR_STICKY_ABORT_IMPRECISE);
2325 } else {
2326 fault_dscr = 0;
2329 /* Handle synchronous data faults. */
2330 if (fault_dscr & DSCR_STICKY_ABORT_PRECISE) {
2331 if (final_retval == ERROR_OK) {
2332 /* Final return value will reflect cause of fault. */
2333 retval = cortex_a_read_dfar_dfsr(target, &fault_dfar, &fault_dfsr, &dscr);
2334 if (retval == ERROR_OK) {
2335 LOG_ERROR("data abort at 0x%08" PRIx32 ", dfsr = 0x%08" PRIx32, fault_dfar, fault_dfsr);
2336 final_retval = cortex_a_dfsr_to_error_code(fault_dfsr);
2337 } else
2338 final_retval = retval;
2340 /* Fault destroyed DFAR/DFSR; restore them. */
2341 retval = cortex_a_write_dfar_dfsr(target, orig_dfar, orig_dfsr, &dscr);
2342 if (retval != ERROR_OK)
2343 LOG_ERROR("error restoring dfar/dfsr - dscr = 0x%08" PRIx32, dscr);
2346 /* Handle asynchronous data faults. */
2347 if (fault_dscr & DSCR_STICKY_ABORT_IMPRECISE) {
2348 if (final_retval == ERROR_OK)
2349 /* No other error has been recorded so far, so keep this one. */
2350 final_retval = ERROR_TARGET_DATA_ABORT;
2353 /* If the DCC is nonempty, clear it. */
2354 if (dscr & DSCR_DTRTX_FULL_LATCHED) {
2355 uint32_t dummy;
2356 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2357 armv7a->debug_base + CPUDBG_DTRTX, &dummy);
2358 if (final_retval == ERROR_OK)
2359 final_retval = retval;
2361 if (dscr & DSCR_DTRRX_FULL_LATCHED) {
2362 retval = cortex_a_exec_opcode(target, ARMV4_5_MRC(14, 0, 1, 0, 5, 0), &dscr);
2363 if (final_retval == ERROR_OK)
2364 final_retval = retval;
2367 /* Done. */
2368 return final_retval;
2371 static int cortex_a_read_cpu_memory_slow(struct target *target,
2372 uint32_t size, uint32_t count, uint8_t *buffer, uint32_t *dscr)
2374 /* Reads count objects of size size into *buffer. Old value of DSCR must be
2375 * in *dscr; updated to new value. This is slow because it works for
2376 * non-word-sized objects and (maybe) unaligned accesses. If size == 4 and
2377 * the address is aligned, cortex_a_read_cpu_memory_fast should be
2378 * preferred.
2379 * Preconditions:
2380 * - Address is in R0.
2381 * - R0 is marked dirty.
2383 struct armv7a_common *armv7a = target_to_armv7a(target);
2384 struct arm *arm = &armv7a->arm;
2385 int retval;
2387 /* Mark register R1 as dirty, to use for transferring data. */
2388 arm_reg_current(arm, 1)->dirty = true;
2390 /* Switch to non-blocking mode if not already in that mode. */
2391 retval = cortex_a_set_dcc_mode(target, DSCR_EXT_DCC_NON_BLOCKING, dscr);
2392 if (retval != ERROR_OK)
2393 return retval;
2395 /* Go through the objects. */
2396 while (count) {
2397 /* Issue a load of the appropriate size to R1. */
2398 uint32_t opcode, data;
2399 if (size == 1)
2400 opcode = ARMV4_5_LDRB_IP(1, 0);
2401 else if (size == 2)
2402 opcode = ARMV4_5_LDRH_IP(1, 0);
2403 else
2404 opcode = ARMV4_5_LDRW_IP(1, 0);
2405 retval = cortex_a_exec_opcode(target, opcode, dscr);
2406 if (retval != ERROR_OK)
2407 return retval;
2409 /* Issue a write of R1 to DTRTX. */
2410 retval = cortex_a_exec_opcode(target, ARMV4_5_MCR(14, 0, 1, 0, 5, 0), dscr);
2411 if (retval != ERROR_OK)
2412 return retval;
2414 /* Check for faults and return early. */
2415 if (*dscr & (DSCR_STICKY_ABORT_PRECISE | DSCR_STICKY_ABORT_IMPRECISE))
2416 return ERROR_OK; /* A data fault is not considered a system failure. */
2418 /* Wait until DTRTX is full (according to ARMv7-A/-R architecture
2419 * manual section C8.4.3, checking InstrCmpl_l is not sufficient; one
2420 * must also check TXfull_l). Most of the time this will be free
2421 * because TXfull_l will be set immediately and cached in dscr. */
2422 retval = cortex_a_wait_dscr_bits(target, DSCR_DTRTX_FULL_LATCHED,
2423 DSCR_DTRTX_FULL_LATCHED, dscr);
2424 if (retval != ERROR_OK)
2425 return retval;
2427 /* Read the value transferred to DTRTX into the buffer. */
2428 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2429 armv7a->debug_base + CPUDBG_DTRTX, &data);
2430 if (retval != ERROR_OK)
2431 return retval;
2432 if (size == 1)
2433 *buffer = (uint8_t) data;
2434 else if (size == 2)
2435 target_buffer_set_u16(target, buffer, (uint16_t) data);
2436 else
2437 target_buffer_set_u32(target, buffer, data);
2439 /* Advance. */
2440 buffer += size;
2441 --count;
2444 return ERROR_OK;
2447 static int cortex_a_read_cpu_memory_fast(struct target *target,
2448 uint32_t count, uint8_t *buffer, uint32_t *dscr)
2450 /* Reads count objects of size 4 into *buffer. Old value of DSCR must be in
2451 * *dscr; updated to new value. This is fast but only works for word-sized
2452 * objects at aligned addresses.
2453 * Preconditions:
2454 * - Address is in R0 and must be a multiple of 4.
2455 * - R0 is marked dirty.
2457 struct armv7a_common *armv7a = target_to_armv7a(target);
2458 uint32_t u32;
2459 int retval;
2461 /* Switch to non-blocking mode if not already in that mode. */
2462 retval = cortex_a_set_dcc_mode(target, DSCR_EXT_DCC_NON_BLOCKING, dscr);
2463 if (retval != ERROR_OK)
2464 return retval;
2466 /* Issue the LDC instruction via a write to ITR. */
2467 retval = cortex_a_exec_opcode(target, ARMV4_5_LDC(0, 1, 0, 1, 14, 5, 0, 4), dscr);
2468 if (retval != ERROR_OK)
2469 return retval;
2471 count--;
2473 if (count > 0) {
2474 /* Switch to fast mode if not already in that mode. */
2475 retval = cortex_a_set_dcc_mode(target, DSCR_EXT_DCC_FAST_MODE, dscr);
2476 if (retval != ERROR_OK)
2477 return retval;
2479 /* Latch LDC instruction. */
2480 retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
2481 armv7a->debug_base + CPUDBG_ITR, ARMV4_5_LDC(0, 1, 0, 1, 14, 5, 0, 4));
2482 if (retval != ERROR_OK)
2483 return retval;
2485 /* Read the value transferred to DTRTX into the buffer. Due to fast
2486 * mode rules, this blocks until the instruction finishes executing and
2487 * then reissues the read instruction to read the next word from
2488 * memory. The last read of DTRTX in this call reads the second-to-last
2489 * word from memory and issues the read instruction for the last word.
2491 retval = mem_ap_read_buf_noincr(armv7a->debug_ap, buffer,
2492 4, count, armv7a->debug_base + CPUDBG_DTRTX);
2493 if (retval != ERROR_OK)
2494 return retval;
2496 /* Advance. */
2497 buffer += count * 4;
2500 /* Wait for last issued instruction to complete. */
2501 retval = cortex_a_wait_instrcmpl(target, dscr, false);
2502 if (retval != ERROR_OK)
2503 return retval;
2505 /* Switch to non-blocking mode if not already in that mode. */
2506 retval = cortex_a_set_dcc_mode(target, DSCR_EXT_DCC_NON_BLOCKING, dscr);
2507 if (retval != ERROR_OK)
2508 return retval;
2510 /* Check for faults and return early. */
2511 if (*dscr & (DSCR_STICKY_ABORT_PRECISE | DSCR_STICKY_ABORT_IMPRECISE))
2512 return ERROR_OK; /* A data fault is not considered a system failure. */
2514 /* Wait until DTRTX is full (according to ARMv7-A/-R architecture manual
2515 * section C8.4.3, checking InstrCmpl_l is not sufficient; one must also
2516 * check TXfull_l). Most of the time this will be free because TXfull_l
2517 * will be set immediately and cached in dscr. */
2518 retval = cortex_a_wait_dscr_bits(target, DSCR_DTRTX_FULL_LATCHED,
2519 DSCR_DTRTX_FULL_LATCHED, dscr);
2520 if (retval != ERROR_OK)
2521 return retval;
2523 /* Read the value transferred to DTRTX into the buffer. This is the last
2524 * word. */
2525 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2526 armv7a->debug_base + CPUDBG_DTRTX, &u32);
2527 if (retval != ERROR_OK)
2528 return retval;
2529 target_buffer_set_u32(target, buffer, u32);
2531 return ERROR_OK;
2534 static int cortex_a_read_cpu_memory(struct target *target,
2535 uint32_t address, uint32_t size,
2536 uint32_t count, uint8_t *buffer)
2538 /* Read memory through the CPU. */
2539 int retval, final_retval;
2540 struct armv7a_common *armv7a = target_to_armv7a(target);
2541 struct arm *arm = &armv7a->arm;
2542 uint32_t dscr, orig_dfar, orig_dfsr, fault_dscr, fault_dfar, fault_dfsr;
2544 LOG_DEBUG("Reading CPU memory address 0x%" PRIx32 " size %" PRIu32 " count %" PRIu32,
2545 address, size, count);
2546 if (target->state != TARGET_HALTED) {
2547 LOG_WARNING("target not halted");
2548 return ERROR_TARGET_NOT_HALTED;
2551 if (!count)
2552 return ERROR_OK;
2554 /* Clear any abort. */
2555 retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
2556 armv7a->debug_base + CPUDBG_DRCR, DRCR_CLEAR_EXCEPTIONS);
2557 if (retval != ERROR_OK)
2558 return retval;
2560 /* Read DSCR */
2561 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2562 armv7a->debug_base + CPUDBG_DSCR, &dscr);
2563 if (retval != ERROR_OK)
2564 return retval;
2566 /* Switch to non-blocking mode if not already in that mode. */
2567 retval = cortex_a_set_dcc_mode(target, DSCR_EXT_DCC_NON_BLOCKING, &dscr);
2568 if (retval != ERROR_OK)
2569 goto out;
2571 /* Mark R0 as dirty. */
2572 arm_reg_current(arm, 0)->dirty = true;
2574 /* Read DFAR and DFSR, as they will be modified in the event of a fault. */
2575 retval = cortex_a_read_dfar_dfsr(target, &orig_dfar, &orig_dfsr, &dscr);
2576 if (retval != ERROR_OK)
2577 goto out;
2579 /* Get the memory address into R0. */
2580 retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
2581 armv7a->debug_base + CPUDBG_DTRRX, address);
2582 if (retval != ERROR_OK)
2583 goto out;
2584 retval = cortex_a_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0), &dscr);
2585 if (retval != ERROR_OK)
2586 goto out;
2588 if (size == 4 && (address % 4) == 0) {
2589 /* We are doing a word-aligned transfer, so use fast mode. */
2590 retval = cortex_a_read_cpu_memory_fast(target, count, buffer, &dscr);
2591 } else {
2592 /* Use slow path. */
2593 retval = cortex_a_read_cpu_memory_slow(target, size, count, buffer, &dscr);
2596 out:
2597 final_retval = retval;
2599 /* Switch to non-blocking mode if not already in that mode. */
2600 retval = cortex_a_set_dcc_mode(target, DSCR_EXT_DCC_NON_BLOCKING, &dscr);
2601 if (final_retval == ERROR_OK)
2602 final_retval = retval;
2604 /* Wait for last issued instruction to complete. */
2605 retval = cortex_a_wait_instrcmpl(target, &dscr, true);
2606 if (final_retval == ERROR_OK)
2607 final_retval = retval;
2609 /* If there were any sticky abort flags, clear them. */
2610 if (dscr & (DSCR_STICKY_ABORT_PRECISE | DSCR_STICKY_ABORT_IMPRECISE)) {
2611 fault_dscr = dscr;
2612 mem_ap_write_atomic_u32(armv7a->debug_ap,
2613 armv7a->debug_base + CPUDBG_DRCR, DRCR_CLEAR_EXCEPTIONS);
2614 dscr &= ~(DSCR_STICKY_ABORT_PRECISE | DSCR_STICKY_ABORT_IMPRECISE);
2615 } else {
2616 fault_dscr = 0;
2619 /* Handle synchronous data faults. */
2620 if (fault_dscr & DSCR_STICKY_ABORT_PRECISE) {
2621 if (final_retval == ERROR_OK) {
2622 /* Final return value will reflect cause of fault. */
2623 retval = cortex_a_read_dfar_dfsr(target, &fault_dfar, &fault_dfsr, &dscr);
2624 if (retval == ERROR_OK) {
2625 LOG_ERROR("data abort at 0x%08" PRIx32 ", dfsr = 0x%08" PRIx32, fault_dfar, fault_dfsr);
2626 final_retval = cortex_a_dfsr_to_error_code(fault_dfsr);
2627 } else
2628 final_retval = retval;
2630 /* Fault destroyed DFAR/DFSR; restore them. */
2631 retval = cortex_a_write_dfar_dfsr(target, orig_dfar, orig_dfsr, &dscr);
2632 if (retval != ERROR_OK)
2633 LOG_ERROR("error restoring dfar/dfsr - dscr = 0x%08" PRIx32, dscr);
2636 /* Handle asynchronous data faults. */
2637 if (fault_dscr & DSCR_STICKY_ABORT_IMPRECISE) {
2638 if (final_retval == ERROR_OK)
2639 /* No other error has been recorded so far, so keep this one. */
2640 final_retval = ERROR_TARGET_DATA_ABORT;
2643 /* If the DCC is nonempty, clear it. */
2644 if (dscr & DSCR_DTRTX_FULL_LATCHED) {
2645 uint32_t dummy;
2646 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2647 armv7a->debug_base + CPUDBG_DTRTX, &dummy);
2648 if (final_retval == ERROR_OK)
2649 final_retval = retval;
2651 if (dscr & DSCR_DTRRX_FULL_LATCHED) {
2652 retval = cortex_a_exec_opcode(target, ARMV4_5_MRC(14, 0, 1, 0, 5, 0), &dscr);
2653 if (final_retval == ERROR_OK)
2654 final_retval = retval;
2657 /* Done. */
2658 return final_retval;
2663 * Cortex-A Memory access
2665 * This is same Cortex-M3 but we must also use the correct
2666 * ap number for every access.
2669 static int cortex_a_read_phys_memory(struct target *target,
2670 uint32_t address, uint32_t size,
2671 uint32_t count, uint8_t *buffer)
2673 struct armv7a_common *armv7a = target_to_armv7a(target);
2674 struct adiv5_dap *swjdp = armv7a->arm.dap;
2675 uint8_t apsel = swjdp->apsel;
2676 int retval;
2678 if (!count || !buffer)
2679 return ERROR_COMMAND_SYNTAX_ERROR;
2681 LOG_DEBUG("Reading memory at real address 0x%" PRIx32 "; size %" PRId32 "; count %" PRId32,
2682 address, size, count);
2684 if (armv7a->memory_ap_available && (apsel == armv7a->memory_ap->ap_num))
2685 return mem_ap_read_buf(armv7a->memory_ap, buffer, size, count, address);
2687 /* read memory through the CPU */
2688 cortex_a_prep_memaccess(target, 1);
2689 retval = cortex_a_read_cpu_memory(target, address, size, count, buffer);
2690 cortex_a_post_memaccess(target, 1);
2692 return retval;
2695 static int cortex_a_read_memory(struct target *target, uint32_t address,
2696 uint32_t size, uint32_t count, uint8_t *buffer)
2698 int retval;
2700 /* cortex_a handles unaligned memory access */
2701 LOG_DEBUG("Reading memory at address 0x%" PRIx32 "; size %" PRId32 "; count %" PRId32, address,
2702 size, count);
2704 cortex_a_prep_memaccess(target, 0);
2705 retval = cortex_a_read_cpu_memory(target, address, size, count, buffer);
2706 cortex_a_post_memaccess(target, 0);
2708 return retval;
2711 static int cortex_a_read_memory_ahb(struct target *target, uint32_t address,
2712 uint32_t size, uint32_t count, uint8_t *buffer)
2714 int mmu_enabled = 0;
2715 uint32_t virt, phys;
2716 int retval;
2717 struct armv7a_common *armv7a = target_to_armv7a(target);
2718 struct adiv5_dap *swjdp = armv7a->arm.dap;
2719 uint8_t apsel = swjdp->apsel;
2721 if (!armv7a->memory_ap_available || (apsel != armv7a->memory_ap->ap_num))
2722 return target_read_memory(target, address, size, count, buffer);
2724 /* cortex_a handles unaligned memory access */
2725 LOG_DEBUG("Reading memory at address 0x%" PRIx32 "; size %" PRId32 "; count %" PRId32, address,
2726 size, count);
2728 /* determine if MMU was enabled on target stop */
2729 if (!armv7a->is_armv7r) {
2730 retval = cortex_a_mmu(target, &mmu_enabled);
2731 if (retval != ERROR_OK)
2732 return retval;
2735 if (mmu_enabled) {
2736 virt = address;
2737 retval = cortex_a_virt2phys(target, virt, &phys);
2738 if (retval != ERROR_OK)
2739 return retval;
2741 LOG_DEBUG("Reading at virtual address. Translating v:0x%" PRIx32 " to r:0x%" PRIx32,
2742 virt, phys);
2743 address = phys;
2746 if (!count || !buffer)
2747 return ERROR_COMMAND_SYNTAX_ERROR;
2749 retval = mem_ap_read_buf(armv7a->memory_ap, buffer, size, count, address);
2751 return retval;
2754 static int cortex_a_write_phys_memory(struct target *target,
2755 uint32_t address, uint32_t size,
2756 uint32_t count, const uint8_t *buffer)
2758 struct armv7a_common *armv7a = target_to_armv7a(target);
2759 struct adiv5_dap *swjdp = armv7a->arm.dap;
2760 uint8_t apsel = swjdp->apsel;
2761 int retval;
2763 if (!count || !buffer)
2764 return ERROR_COMMAND_SYNTAX_ERROR;
2766 LOG_DEBUG("Writing memory to real address 0x%" PRIx32 "; size %" PRId32 "; count %" PRId32, address,
2767 size, count);
2769 if (armv7a->memory_ap_available && (apsel == armv7a->memory_ap->ap_num))
2770 return mem_ap_write_buf(armv7a->memory_ap, buffer, size, count, address);
2772 /* write memory through the CPU */
2773 cortex_a_prep_memaccess(target, 1);
2774 retval = cortex_a_write_cpu_memory(target, address, size, count, buffer);
2775 cortex_a_post_memaccess(target, 1);
2777 return retval;
2780 static int cortex_a_write_memory(struct target *target, uint32_t address,
2781 uint32_t size, uint32_t count, const uint8_t *buffer)
2783 int retval;
2785 /* cortex_a handles unaligned memory access */
2786 LOG_DEBUG("Writing memory at address 0x%" PRIx32 "; size %" PRId32 "; count %" PRId32, address,
2787 size, count);
2789 /* memory writes bypass the caches, must flush before writing */
2790 armv7a_cache_auto_flush_on_write(target, address, size * count);
2792 cortex_a_prep_memaccess(target, 0);
2793 retval = cortex_a_write_cpu_memory(target, address, size, count, buffer);
2794 cortex_a_post_memaccess(target, 0);
2795 return retval;
2798 static int cortex_a_write_memory_ahb(struct target *target, uint32_t address,
2799 uint32_t size, uint32_t count, const uint8_t *buffer)
2801 int mmu_enabled = 0;
2802 uint32_t virt, phys;
2803 int retval;
2804 struct armv7a_common *armv7a = target_to_armv7a(target);
2805 struct adiv5_dap *swjdp = armv7a->arm.dap;
2806 uint8_t apsel = swjdp->apsel;
2808 if (!armv7a->memory_ap_available || (apsel != armv7a->memory_ap->ap_num))
2809 return target_write_memory(target, address, size, count, buffer);
2811 /* cortex_a handles unaligned memory access */
2812 LOG_DEBUG("Writing memory at address 0x%" PRIx32 "; size %" PRId32 "; count %" PRId32, address,
2813 size, count);
2815 /* determine if MMU was enabled on target stop */
2816 if (!armv7a->is_armv7r) {
2817 retval = cortex_a_mmu(target, &mmu_enabled);
2818 if (retval != ERROR_OK)
2819 return retval;
2822 if (mmu_enabled) {
2823 virt = address;
2824 retval = cortex_a_virt2phys(target, virt, &phys);
2825 if (retval != ERROR_OK)
2826 return retval;
2828 LOG_DEBUG("Writing to virtual address. Translating v:0x%" PRIx32 " to r:0x%" PRIx32,
2829 virt,
2830 phys);
2831 address = phys;
2834 if (!count || !buffer)
2835 return ERROR_COMMAND_SYNTAX_ERROR;
2837 retval = mem_ap_write_buf(armv7a->memory_ap, buffer, size, count, address);
2839 return retval;
2842 static int cortex_a_read_buffer(struct target *target, uint32_t address,
2843 uint32_t count, uint8_t *buffer)
2845 uint32_t size;
2847 /* Align up to maximum 4 bytes. The loop condition makes sure the next pass
2848 * will have something to do with the size we leave to it. */
2849 for (size = 1; size < 4 && count >= size * 2 + (address & size); size *= 2) {
2850 if (address & size) {
2851 int retval = cortex_a_read_memory_ahb(target, address, size, 1, buffer);
2852 if (retval != ERROR_OK)
2853 return retval;
2854 address += size;
2855 count -= size;
2856 buffer += size;
2860 /* Read the data with as large access size as possible. */
2861 for (; size > 0; size /= 2) {
2862 uint32_t aligned = count - count % size;
2863 if (aligned > 0) {
2864 int retval = cortex_a_read_memory_ahb(target, address, size, aligned / size, buffer);
2865 if (retval != ERROR_OK)
2866 return retval;
2867 address += aligned;
2868 count -= aligned;
2869 buffer += aligned;
2873 return ERROR_OK;
2876 static int cortex_a_write_buffer(struct target *target, uint32_t address,
2877 uint32_t count, const uint8_t *buffer)
2879 uint32_t size;
2881 /* Align up to maximum 4 bytes. The loop condition makes sure the next pass
2882 * will have something to do with the size we leave to it. */
2883 for (size = 1; size < 4 && count >= size * 2 + (address & size); size *= 2) {
2884 if (address & size) {
2885 int retval = cortex_a_write_memory_ahb(target, address, size, 1, buffer);
2886 if (retval != ERROR_OK)
2887 return retval;
2888 address += size;
2889 count -= size;
2890 buffer += size;
2894 /* Write the data with as large access size as possible. */
2895 for (; size > 0; size /= 2) {
2896 uint32_t aligned = count - count % size;
2897 if (aligned > 0) {
2898 int retval = cortex_a_write_memory_ahb(target, address, size, aligned / size, buffer);
2899 if (retval != ERROR_OK)
2900 return retval;
2901 address += aligned;
2902 count -= aligned;
2903 buffer += aligned;
2907 return ERROR_OK;
2910 static int cortex_a_handle_target_request(void *priv)
2912 struct target *target = priv;
2913 struct armv7a_common *armv7a = target_to_armv7a(target);
2914 int retval;
2916 if (!target_was_examined(target))
2917 return ERROR_OK;
2918 if (!target->dbg_msg_enabled)
2919 return ERROR_OK;
2921 if (target->state == TARGET_RUNNING) {
2922 uint32_t request;
2923 uint32_t dscr;
2924 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2925 armv7a->debug_base + CPUDBG_DSCR, &dscr);
2927 /* check if we have data */
2928 int64_t then = timeval_ms();
2929 while ((dscr & DSCR_DTR_TX_FULL) && (retval == ERROR_OK)) {
2930 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2931 armv7a->debug_base + CPUDBG_DTRTX, &request);
2932 if (retval == ERROR_OK) {
2933 target_request(target, request);
2934 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2935 armv7a->debug_base + CPUDBG_DSCR, &dscr);
2937 if (timeval_ms() > then + 1000) {
2938 LOG_ERROR("Timeout waiting for dtr tx full");
2939 return ERROR_FAIL;
2944 return ERROR_OK;
2948 * Cortex-A target information and configuration
2951 static int cortex_a_examine_first(struct target *target)
2953 struct cortex_a_common *cortex_a = target_to_cortex_a(target);
2954 struct armv7a_common *armv7a = &cortex_a->armv7a_common;
2955 struct adiv5_dap *swjdp = armv7a->arm.dap;
2956 int i;
2957 int retval = ERROR_OK;
2958 uint32_t didr, ctypr, ttypr, cpuid, dbg_osreg;
2960 retval = dap_dp_init(swjdp);
2961 if (retval != ERROR_OK) {
2962 LOG_ERROR("Could not initialize the debug port");
2963 return retval;
2966 /* Search for the APB-AP - it is needed for access to debug registers */
2967 retval = dap_find_ap(swjdp, AP_TYPE_APB_AP, &armv7a->debug_ap);
2968 if (retval != ERROR_OK) {
2969 LOG_ERROR("Could not find APB-AP for debug access");
2970 return retval;
2973 retval = mem_ap_init(armv7a->debug_ap);
2974 if (retval != ERROR_OK) {
2975 LOG_ERROR("Could not initialize the APB-AP");
2976 return retval;
2979 armv7a->debug_ap->memaccess_tck = 80;
2981 /* Search for the AHB-AB.
2982 * REVISIT: We should search for AXI-AP as well and make sure the AP's MEMTYPE says it
2983 * can access system memory. */
2984 armv7a->memory_ap_available = false;
2985 retval = dap_find_ap(swjdp, AP_TYPE_AHB_AP, &armv7a->memory_ap);
2986 if (retval == ERROR_OK) {
2987 retval = mem_ap_init(armv7a->memory_ap);
2988 if (retval == ERROR_OK)
2989 armv7a->memory_ap_available = true;
2991 if (retval != ERROR_OK) {
2992 /* AHB-AP not found or unavailable - use the CPU */
2993 LOG_DEBUG("No AHB-AP available for memory access");
2996 if (!target->dbgbase_set) {
2997 uint32_t dbgbase;
2998 /* Get ROM Table base */
2999 uint32_t apid;
3000 int32_t coreidx = target->coreid;
3001 LOG_DEBUG("%s's dbgbase is not set, trying to detect using the ROM table",
3002 target->cmd_name);
3003 retval = dap_get_debugbase(armv7a->debug_ap, &dbgbase, &apid);
3004 if (retval != ERROR_OK)
3005 return retval;
3006 /* Lookup 0x15 -- Processor DAP */
3007 retval = dap_lookup_cs_component(armv7a->debug_ap, dbgbase, 0x15,
3008 &armv7a->debug_base, &coreidx);
3009 if (retval != ERROR_OK) {
3010 LOG_ERROR("Can't detect %s's dbgbase from the ROM table; you need to specify it explicitly.",
3011 target->cmd_name);
3012 return retval;
3014 LOG_DEBUG("Detected core %" PRId32 " dbgbase: %08" PRIx32,
3015 target->coreid, armv7a->debug_base);
3016 } else
3017 armv7a->debug_base = target->dbgbase;
3019 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
3020 armv7a->debug_base + CPUDBG_CPUID, &cpuid);
3021 if (retval != ERROR_OK)
3022 return retval;
3024 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
3025 armv7a->debug_base + CPUDBG_CPUID, &cpuid);
3026 if (retval != ERROR_OK) {
3027 LOG_DEBUG("Examine %s failed", "CPUID");
3028 return retval;
3031 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
3032 armv7a->debug_base + CPUDBG_CTYPR, &ctypr);
3033 if (retval != ERROR_OK) {
3034 LOG_DEBUG("Examine %s failed", "CTYPR");
3035 return retval;
3038 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
3039 armv7a->debug_base + CPUDBG_TTYPR, &ttypr);
3040 if (retval != ERROR_OK) {
3041 LOG_DEBUG("Examine %s failed", "TTYPR");
3042 return retval;
3045 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
3046 armv7a->debug_base + CPUDBG_DIDR, &didr);
3047 if (retval != ERROR_OK) {
3048 LOG_DEBUG("Examine %s failed", "DIDR");
3049 return retval;
3052 LOG_DEBUG("cpuid = 0x%08" PRIx32, cpuid);
3053 LOG_DEBUG("ctypr = 0x%08" PRIx32, ctypr);
3054 LOG_DEBUG("ttypr = 0x%08" PRIx32, ttypr);
3055 LOG_DEBUG("didr = 0x%08" PRIx32, didr);
3057 cortex_a->cpuid = cpuid;
3058 cortex_a->ctypr = ctypr;
3059 cortex_a->ttypr = ttypr;
3060 cortex_a->didr = didr;
3062 /* Unlocking the debug registers */
3063 if ((cpuid & CORTEX_A_MIDR_PARTNUM_MASK) >> CORTEX_A_MIDR_PARTNUM_SHIFT ==
3064 CORTEX_A15_PARTNUM) {
3066 retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
3067 armv7a->debug_base + CPUDBG_OSLAR,
3070 if (retval != ERROR_OK)
3071 return retval;
3074 /* Unlocking the debug registers */
3075 if ((cpuid & CORTEX_A_MIDR_PARTNUM_MASK) >> CORTEX_A_MIDR_PARTNUM_SHIFT ==
3076 CORTEX_A7_PARTNUM) {
3078 retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
3079 armv7a->debug_base + CPUDBG_OSLAR,
3082 if (retval != ERROR_OK)
3083 return retval;
3086 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
3087 armv7a->debug_base + CPUDBG_PRSR, &dbg_osreg);
3089 if (retval != ERROR_OK)
3090 return retval;
3092 LOG_DEBUG("target->coreid %" PRId32 " DBGPRSR 0x%" PRIx32, target->coreid, dbg_osreg);
3094 armv7a->arm.core_type = ARM_MODE_MON;
3096 /* Avoid recreating the registers cache */
3097 if (!target_was_examined(target)) {
3098 retval = cortex_a_dpm_setup(cortex_a, didr);
3099 if (retval != ERROR_OK)
3100 return retval;
3103 /* Setup Breakpoint Register Pairs */
3104 cortex_a->brp_num = ((didr >> 24) & 0x0F) + 1;
3105 cortex_a->brp_num_context = ((didr >> 20) & 0x0F) + 1;
3106 cortex_a->brp_num_available = cortex_a->brp_num;
3107 free(cortex_a->brp_list);
3108 cortex_a->brp_list = calloc(cortex_a->brp_num, sizeof(struct cortex_a_brp));
3109 /* cortex_a->brb_enabled = ????; */
3110 for (i = 0; i < cortex_a->brp_num; i++) {
3111 cortex_a->brp_list[i].used = 0;
3112 if (i < (cortex_a->brp_num-cortex_a->brp_num_context))
3113 cortex_a->brp_list[i].type = BRP_NORMAL;
3114 else
3115 cortex_a->brp_list[i].type = BRP_CONTEXT;
3116 cortex_a->brp_list[i].value = 0;
3117 cortex_a->brp_list[i].control = 0;
3118 cortex_a->brp_list[i].BRPn = i;
3121 LOG_DEBUG("Configured %i hw breakpoints", cortex_a->brp_num);
3123 /* select debug_ap as default */
3124 swjdp->apsel = armv7a->debug_ap->ap_num;
3126 target_set_examined(target);
3127 return ERROR_OK;
3130 static int cortex_a_examine(struct target *target)
3132 int retval = ERROR_OK;
3134 /* Reestablish communication after target reset */
3135 retval = cortex_a_examine_first(target);
3137 /* Configure core debug access */
3138 if (retval == ERROR_OK)
3139 retval = cortex_a_init_debug_access(target);
3141 return retval;
3145 * Cortex-A target creation and initialization
3148 static int cortex_a_init_target(struct command_context *cmd_ctx,
3149 struct target *target)
3151 /* examine_first() does a bunch of this */
3152 return ERROR_OK;
3155 static int cortex_a_init_arch_info(struct target *target,
3156 struct cortex_a_common *cortex_a, struct jtag_tap *tap)
3158 struct armv7a_common *armv7a = &cortex_a->armv7a_common;
3160 /* Setup struct cortex_a_common */
3161 cortex_a->common_magic = CORTEX_A_COMMON_MAGIC;
3163 /* tap has no dap initialized */
3164 if (!tap->dap) {
3165 tap->dap = dap_init();
3167 /* Leave (only) generic DAP stuff for debugport_init() */
3168 tap->dap->tap = tap;
3171 armv7a->arm.dap = tap->dap;
3173 cortex_a->fast_reg_read = 0;
3175 /* register arch-specific functions */
3176 armv7a->examine_debug_reason = NULL;
3178 armv7a->post_debug_entry = cortex_a_post_debug_entry;
3180 armv7a->pre_restore_context = NULL;
3182 armv7a->armv7a_mmu.read_physical_memory = cortex_a_read_phys_memory;
3185 /* arm7_9->handle_target_request = cortex_a_handle_target_request; */
3187 /* REVISIT v7a setup should be in a v7a-specific routine */
3188 armv7a_init_arch_info(target, armv7a);
3189 target_register_timer_callback(cortex_a_handle_target_request, 1, 1, target);
3191 return ERROR_OK;
3194 static int cortex_a_target_create(struct target *target, Jim_Interp *interp)
3196 struct cortex_a_common *cortex_a = calloc(1, sizeof(struct cortex_a_common));
3198 cortex_a->armv7a_common.is_armv7r = false;
3200 return cortex_a_init_arch_info(target, cortex_a, target->tap);
3203 static int cortex_r4_target_create(struct target *target, Jim_Interp *interp)
3205 struct cortex_a_common *cortex_a = calloc(1, sizeof(struct cortex_a_common));
3207 cortex_a->armv7a_common.is_armv7r = true;
3209 return cortex_a_init_arch_info(target, cortex_a, target->tap);
3212 static void cortex_a_deinit_target(struct target *target)
3214 struct cortex_a_common *cortex_a = target_to_cortex_a(target);
3215 struct arm_dpm *dpm = &cortex_a->armv7a_common.dpm;
3217 free(cortex_a->brp_list);
3218 free(dpm->dbp);
3219 free(dpm->dwp);
3220 free(cortex_a);
3223 static int cortex_a_mmu(struct target *target, int *enabled)
3225 struct armv7a_common *armv7a = target_to_armv7a(target);
3227 if (target->state != TARGET_HALTED) {
3228 LOG_ERROR("%s: target not halted", __func__);
3229 return ERROR_TARGET_INVALID;
3232 if (armv7a->is_armv7r)
3233 *enabled = 0;
3234 else
3235 *enabled = target_to_cortex_a(target)->armv7a_common.armv7a_mmu.mmu_enabled;
3237 return ERROR_OK;
3240 static int cortex_a_virt2phys(struct target *target,
3241 uint32_t virt, uint32_t *phys)
3243 int retval = ERROR_FAIL;
3244 struct armv7a_common *armv7a = target_to_armv7a(target);
3245 struct adiv5_dap *swjdp = armv7a->arm.dap;
3246 uint8_t apsel = swjdp->apsel;
3247 if (armv7a->memory_ap_available && (apsel == armv7a->memory_ap->ap_num)) {
3248 uint32_t ret;
3249 retval = armv7a_mmu_translate_va(target,
3250 virt, &ret);
3251 if (retval != ERROR_OK)
3252 goto done;
3253 *phys = ret;
3254 } else {/* use this method if armv7a->memory_ap not selected
3255 * mmu must be enable in order to get a correct translation */
3256 retval = cortex_a_mmu_modify(target, 1);
3257 if (retval != ERROR_OK)
3258 goto done;
3259 retval = armv7a_mmu_translate_va_pa(target, virt, phys, 1);
3261 done:
3262 return retval;
3265 COMMAND_HANDLER(cortex_a_handle_cache_info_command)
3267 struct target *target = get_current_target(CMD_CTX);
3268 struct armv7a_common *armv7a = target_to_armv7a(target);
3270 return armv7a_handle_cache_info_command(CMD_CTX,
3271 &armv7a->armv7a_mmu.armv7a_cache);
3275 COMMAND_HANDLER(cortex_a_handle_dbginit_command)
3277 struct target *target = get_current_target(CMD_CTX);
3278 if (!target_was_examined(target)) {
3279 LOG_ERROR("target not examined yet");
3280 return ERROR_FAIL;
3283 return cortex_a_init_debug_access(target);
3285 COMMAND_HANDLER(cortex_a_handle_smp_off_command)
3287 struct target *target = get_current_target(CMD_CTX);
3288 /* check target is an smp target */
3289 struct target_list *head;
3290 struct target *curr;
3291 head = target->head;
3292 target->smp = 0;
3293 if (head != (struct target_list *)NULL) {
3294 while (head != (struct target_list *)NULL) {
3295 curr = head->target;
3296 curr->smp = 0;
3297 head = head->next;
3299 /* fixes the target display to the debugger */
3300 target->gdb_service->target = target;
3302 return ERROR_OK;
3305 COMMAND_HANDLER(cortex_a_handle_smp_on_command)
3307 struct target *target = get_current_target(CMD_CTX);
3308 struct target_list *head;
3309 struct target *curr;
3310 head = target->head;
3311 if (head != (struct target_list *)NULL) {
3312 target->smp = 1;
3313 while (head != (struct target_list *)NULL) {
3314 curr = head->target;
3315 curr->smp = 1;
3316 head = head->next;
3319 return ERROR_OK;
3322 COMMAND_HANDLER(cortex_a_handle_smp_gdb_command)
3324 struct target *target = get_current_target(CMD_CTX);
3325 int retval = ERROR_OK;
3326 struct target_list *head;
3327 head = target->head;
3328 if (head != (struct target_list *)NULL) {
3329 if (CMD_ARGC == 1) {
3330 int coreid = 0;
3331 COMMAND_PARSE_NUMBER(int, CMD_ARGV[0], coreid);
3332 if (ERROR_OK != retval)
3333 return retval;
3334 target->gdb_service->core[1] = coreid;
3337 command_print(CMD_CTX, "gdb coreid %" PRId32 " -> %" PRId32, target->gdb_service->core[0]
3338 , target->gdb_service->core[1]);
3340 return ERROR_OK;
3343 COMMAND_HANDLER(handle_cortex_a_mask_interrupts_command)
3345 struct target *target = get_current_target(CMD_CTX);
3346 struct cortex_a_common *cortex_a = target_to_cortex_a(target);
3348 static const Jim_Nvp nvp_maskisr_modes[] = {
3349 { .name = "off", .value = CORTEX_A_ISRMASK_OFF },
3350 { .name = "on", .value = CORTEX_A_ISRMASK_ON },
3351 { .name = NULL, .value = -1 },
3353 const Jim_Nvp *n;
3355 if (CMD_ARGC > 0) {
3356 n = Jim_Nvp_name2value_simple(nvp_maskisr_modes, CMD_ARGV[0]);
3357 if (n->name == NULL) {
3358 LOG_ERROR("Unknown parameter: %s - should be off or on", CMD_ARGV[0]);
3359 return ERROR_COMMAND_SYNTAX_ERROR;
3362 cortex_a->isrmasking_mode = n->value;
3365 n = Jim_Nvp_value2name_simple(nvp_maskisr_modes, cortex_a->isrmasking_mode);
3366 command_print(CMD_CTX, "cortex_a interrupt mask %s", n->name);
3368 return ERROR_OK;
3371 COMMAND_HANDLER(handle_cortex_a_dacrfixup_command)
3373 struct target *target = get_current_target(CMD_CTX);
3374 struct cortex_a_common *cortex_a = target_to_cortex_a(target);
3376 static const Jim_Nvp nvp_dacrfixup_modes[] = {
3377 { .name = "off", .value = CORTEX_A_DACRFIXUP_OFF },
3378 { .name = "on", .value = CORTEX_A_DACRFIXUP_ON },
3379 { .name = NULL, .value = -1 },
3381 const Jim_Nvp *n;
3383 if (CMD_ARGC > 0) {
3384 n = Jim_Nvp_name2value_simple(nvp_dacrfixup_modes, CMD_ARGV[0]);
3385 if (n->name == NULL)
3386 return ERROR_COMMAND_SYNTAX_ERROR;
3387 cortex_a->dacrfixup_mode = n->value;
3391 n = Jim_Nvp_value2name_simple(nvp_dacrfixup_modes, cortex_a->dacrfixup_mode);
3392 command_print(CMD_CTX, "cortex_a domain access control fixup %s", n->name);
3394 return ERROR_OK;
3397 static const struct command_registration cortex_a_exec_command_handlers[] = {
3399 .name = "cache_info",
3400 .handler = cortex_a_handle_cache_info_command,
3401 .mode = COMMAND_EXEC,
3402 .help = "display information about target caches",
3403 .usage = "",
3406 .name = "dbginit",
3407 .handler = cortex_a_handle_dbginit_command,
3408 .mode = COMMAND_EXEC,
3409 .help = "Initialize core debug",
3410 .usage = "",
3412 { .name = "smp_off",
3413 .handler = cortex_a_handle_smp_off_command,
3414 .mode = COMMAND_EXEC,
3415 .help = "Stop smp handling",
3416 .usage = "",},
3418 .name = "smp_on",
3419 .handler = cortex_a_handle_smp_on_command,
3420 .mode = COMMAND_EXEC,
3421 .help = "Restart smp handling",
3422 .usage = "",
3425 .name = "smp_gdb",
3426 .handler = cortex_a_handle_smp_gdb_command,
3427 .mode = COMMAND_EXEC,
3428 .help = "display/fix current core played to gdb",
3429 .usage = "",
3432 .name = "maskisr",
3433 .handler = handle_cortex_a_mask_interrupts_command,
3434 .mode = COMMAND_ANY,
3435 .help = "mask cortex_a interrupts",
3436 .usage = "['on'|'off']",
3439 .name = "dacrfixup",
3440 .handler = handle_cortex_a_dacrfixup_command,
3441 .mode = COMMAND_EXEC,
3442 .help = "set domain access control (DACR) to all-manager "
3443 "on memory access",
3444 .usage = "['on'|'off']",
3447 COMMAND_REGISTRATION_DONE
3449 static const struct command_registration cortex_a_command_handlers[] = {
3451 .chain = arm_command_handlers,
3454 .chain = armv7a_command_handlers,
3457 .name = "cortex_a",
3458 .mode = COMMAND_ANY,
3459 .help = "Cortex-A command group",
3460 .usage = "",
3461 .chain = cortex_a_exec_command_handlers,
3463 COMMAND_REGISTRATION_DONE
3466 struct target_type cortexa_target = {
3467 .name = "cortex_a",
3468 .deprecated_name = "cortex_a8",
3470 .poll = cortex_a_poll,
3471 .arch_state = armv7a_arch_state,
3473 .halt = cortex_a_halt,
3474 .resume = cortex_a_resume,
3475 .step = cortex_a_step,
3477 .assert_reset = cortex_a_assert_reset,
3478 .deassert_reset = cortex_a_deassert_reset,
3480 /* REVISIT allow exporting VFP3 registers ... */
3481 .get_gdb_reg_list = arm_get_gdb_reg_list,
3483 .read_memory = cortex_a_read_memory,
3484 .write_memory = cortex_a_write_memory,
3486 .read_buffer = cortex_a_read_buffer,
3487 .write_buffer = cortex_a_write_buffer,
3489 .checksum_memory = arm_checksum_memory,
3490 .blank_check_memory = arm_blank_check_memory,
3492 .run_algorithm = armv4_5_run_algorithm,
3494 .add_breakpoint = cortex_a_add_breakpoint,
3495 .add_context_breakpoint = cortex_a_add_context_breakpoint,
3496 .add_hybrid_breakpoint = cortex_a_add_hybrid_breakpoint,
3497 .remove_breakpoint = cortex_a_remove_breakpoint,
3498 .add_watchpoint = NULL,
3499 .remove_watchpoint = NULL,
3501 .commands = cortex_a_command_handlers,
3502 .target_create = cortex_a_target_create,
3503 .init_target = cortex_a_init_target,
3504 .examine = cortex_a_examine,
3505 .deinit_target = cortex_a_deinit_target,
3507 .read_phys_memory = cortex_a_read_phys_memory,
3508 .write_phys_memory = cortex_a_write_phys_memory,
3509 .mmu = cortex_a_mmu,
3510 .virt2phys = cortex_a_virt2phys,
3513 static const struct command_registration cortex_r4_exec_command_handlers[] = {
3515 .name = "cache_info",
3516 .handler = cortex_a_handle_cache_info_command,
3517 .mode = COMMAND_EXEC,
3518 .help = "display information about target caches",
3519 .usage = "",
3522 .name = "dbginit",
3523 .handler = cortex_a_handle_dbginit_command,
3524 .mode = COMMAND_EXEC,
3525 .help = "Initialize core debug",
3526 .usage = "",
3529 .name = "maskisr",
3530 .handler = handle_cortex_a_mask_interrupts_command,
3531 .mode = COMMAND_EXEC,
3532 .help = "mask cortex_r4 interrupts",
3533 .usage = "['on'|'off']",
3536 COMMAND_REGISTRATION_DONE
3538 static const struct command_registration cortex_r4_command_handlers[] = {
3540 .chain = arm_command_handlers,
3543 .chain = armv7a_command_handlers,
3546 .name = "cortex_r4",
3547 .mode = COMMAND_ANY,
3548 .help = "Cortex-R4 command group",
3549 .usage = "",
3550 .chain = cortex_r4_exec_command_handlers,
3552 COMMAND_REGISTRATION_DONE
3555 struct target_type cortexr4_target = {
3556 .name = "cortex_r4",
3558 .poll = cortex_a_poll,
3559 .arch_state = armv7a_arch_state,
3561 .halt = cortex_a_halt,
3562 .resume = cortex_a_resume,
3563 .step = cortex_a_step,
3565 .assert_reset = cortex_a_assert_reset,
3566 .deassert_reset = cortex_a_deassert_reset,
3568 /* REVISIT allow exporting VFP3 registers ... */
3569 .get_gdb_reg_list = arm_get_gdb_reg_list,
3571 .read_memory = cortex_a_read_memory,
3572 .write_memory = cortex_a_write_memory,
3574 .checksum_memory = arm_checksum_memory,
3575 .blank_check_memory = arm_blank_check_memory,
3577 .run_algorithm = armv4_5_run_algorithm,
3579 .add_breakpoint = cortex_a_add_breakpoint,
3580 .add_context_breakpoint = cortex_a_add_context_breakpoint,
3581 .add_hybrid_breakpoint = cortex_a_add_hybrid_breakpoint,
3582 .remove_breakpoint = cortex_a_remove_breakpoint,
3583 .add_watchpoint = NULL,
3584 .remove_watchpoint = NULL,
3586 .commands = cortex_r4_command_handlers,
3587 .target_create = cortex_r4_target_create,
3588 .init_target = cortex_a_init_target,
3589 .examine = cortex_a_examine,
3590 .deinit_target = cortex_a_deinit_target,