target/image: fix undefined behaviour when loading with GDB
[openocd.git] / src / target / image.c
blobb1b7e3a6af723eeeb330d0526bafb4e7ae3827ed
1 /***************************************************************************
2 * Copyright (C) 2007 by Dominic Rath *
3 * Dominic.Rath@gmx.de *
4 * *
5 * Copyright (C) 2007,2008 Øyvind Harboe *
6 * oyvind.harboe@zylin.com *
7 * *
8 * Copyright (C) 2008 by Spencer Oliver *
9 * spen@spen-soft.co.uk *
10 * *
11 * Copyright (C) 2009 by Franck Hereson *
12 * franck.hereson@secad.fr *
13 * *
14 * This program is free software; you can redistribute it and/or modify *
15 * it under the terms of the GNU General Public License as published by *
16 * the Free Software Foundation; either version 2 of the License, or *
17 * (at your option) any later version. *
18 * *
19 * This program is distributed in the hope that it will be useful, *
20 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
21 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
22 * GNU General Public License for more details. *
23 * *
24 * You should have received a copy of the GNU General Public License *
25 * along with this program; if not, write to the *
26 * Free Software Foundation, Inc., *
27 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. *
28 ***************************************************************************/
30 #ifdef HAVE_CONFIG_H
31 #include "config.h"
32 #endif
34 #include "image.h"
35 #include "target.h"
36 #include <helper/log.h>
38 /* convert ELF header field to host endianness */
39 #define field16(elf, field) \
40 ((elf->endianness == ELFDATA2LSB) ? \
41 le_to_h_u16((uint8_t *)&field) : be_to_h_u16((uint8_t *)&field))
43 #define field32(elf, field) \
44 ((elf->endianness == ELFDATA2LSB) ? \
45 le_to_h_u32((uint8_t *)&field) : be_to_h_u32((uint8_t *)&field))
47 static int autodetect_image_type(struct image *image, const char *url)
49 int retval;
50 struct fileio fileio;
51 size_t read_bytes;
52 uint8_t buffer[9];
54 /* read the first 4 bytes of image */
55 retval = fileio_open(&fileio, url, FILEIO_READ, FILEIO_BINARY);
56 if (retval != ERROR_OK)
57 return retval;
58 retval = fileio_read(&fileio, 9, buffer, &read_bytes);
60 if (retval == ERROR_OK) {
61 if (read_bytes != 9)
62 retval = ERROR_FILEIO_OPERATION_FAILED;
64 fileio_close(&fileio);
66 if (retval != ERROR_OK)
67 return retval;
69 /* check header against known signatures */
70 if (strncmp((char *)buffer, ELFMAG, SELFMAG) == 0) {
71 LOG_DEBUG("ELF image detected.");
72 image->type = IMAGE_ELF;
73 } else if ((buffer[0] == ':') /* record start byte */
74 && (isxdigit(buffer[1]))
75 && (isxdigit(buffer[2]))
76 && (isxdigit(buffer[3]))
77 && (isxdigit(buffer[4]))
78 && (isxdigit(buffer[5]))
79 && (isxdigit(buffer[6]))
80 && (buffer[7] == '0') /* record type : 00 -> 05 */
81 && (buffer[8] >= '0') && (buffer[8] < '6')) {
82 LOG_DEBUG("IHEX image detected.");
83 image->type = IMAGE_IHEX;
84 } else if ((buffer[0] == 'S') /* record start byte */
85 && (isxdigit(buffer[1]))
86 && (isxdigit(buffer[2]))
87 && (isxdigit(buffer[3]))
88 && (buffer[1] >= '0') && (buffer[1] < '9')) {
89 LOG_DEBUG("S19 image detected.");
90 image->type = IMAGE_SRECORD;
91 } else
92 image->type = IMAGE_BINARY;
94 return ERROR_OK;
97 static int identify_image_type(struct image *image, const char *type_string, const char *url)
99 if (type_string) {
100 if (!strcmp(type_string, "bin"))
101 image->type = IMAGE_BINARY;
102 else if (!strcmp(type_string, "ihex"))
103 image->type = IMAGE_IHEX;
104 else if (!strcmp(type_string, "elf"))
105 image->type = IMAGE_ELF;
106 else if (!strcmp(type_string, "mem"))
107 image->type = IMAGE_MEMORY;
108 else if (!strcmp(type_string, "s19"))
109 image->type = IMAGE_SRECORD;
110 else if (!strcmp(type_string, "build"))
111 image->type = IMAGE_BUILDER;
112 else
113 return ERROR_IMAGE_TYPE_UNKNOWN;
114 } else
115 return autodetect_image_type(image, url);
117 return ERROR_OK;
120 static int image_ihex_buffer_complete_inner(struct image *image,
121 char *lpszLine,
122 struct imagesection *section)
124 struct image_ihex *ihex = image->type_private;
125 struct fileio *fileio = &ihex->fileio;
126 uint32_t full_address = 0x0;
127 uint32_t cooked_bytes;
128 int i;
130 /* we can't determine the number of sections that we'll have to create ahead of time,
131 * so we locally hold them until parsing is finished */
133 int filesize;
134 int retval;
135 retval = fileio_size(fileio, &filesize);
136 if (retval != ERROR_OK)
137 return retval;
139 ihex->buffer = malloc(filesize >> 1);
140 cooked_bytes = 0x0;
141 image->num_sections = 0;
142 section[image->num_sections].private = &ihex->buffer[cooked_bytes];
143 section[image->num_sections].base_address = 0x0;
144 section[image->num_sections].size = 0x0;
145 section[image->num_sections].flags = 0;
147 while (fileio_fgets(fileio, 1023, lpszLine) == ERROR_OK) {
148 uint32_t count;
149 uint32_t address;
150 uint32_t record_type;
151 uint32_t checksum;
152 uint8_t cal_checksum = 0;
153 size_t bytes_read = 0;
155 if (lpszLine[0] == '#')
156 continue;
158 if (sscanf(&lpszLine[bytes_read], ":%2" SCNx32 "%4" SCNx32 "%2" SCNx32, &count,
159 &address, &record_type) != 3)
160 return ERROR_IMAGE_FORMAT_ERROR;
161 bytes_read += 9;
163 cal_checksum += (uint8_t)count;
164 cal_checksum += (uint8_t)(address >> 8);
165 cal_checksum += (uint8_t)address;
166 cal_checksum += (uint8_t)record_type;
168 if (record_type == 0) { /* Data Record */
169 if ((full_address & 0xffff) != address) {
170 /* we encountered a nonconsecutive location, create a new section,
171 * unless the current section has zero size, in which case this specifies
172 * the current section's base address
174 if (section[image->num_sections].size != 0) {
175 image->num_sections++;
176 if (image->num_sections >= IMAGE_MAX_SECTIONS) {
177 /* too many sections */
178 LOG_ERROR("Too many sections found in IHEX file");
179 return ERROR_IMAGE_FORMAT_ERROR;
181 section[image->num_sections].size = 0x0;
182 section[image->num_sections].flags = 0;
183 section[image->num_sections].private =
184 &ihex->buffer[cooked_bytes];
186 section[image->num_sections].base_address =
187 (full_address & 0xffff0000) | address;
188 full_address = (full_address & 0xffff0000) | address;
191 while (count-- > 0) {
192 unsigned value;
193 sscanf(&lpszLine[bytes_read], "%2x", &value);
194 ihex->buffer[cooked_bytes] = (uint8_t)value;
195 cal_checksum += (uint8_t)ihex->buffer[cooked_bytes];
196 bytes_read += 2;
197 cooked_bytes += 1;
198 section[image->num_sections].size += 1;
199 full_address++;
201 } else if (record_type == 1) { /* End of File Record */
202 /* finish the current section */
203 image->num_sections++;
205 /* copy section information */
206 image->sections = malloc(sizeof(struct imagesection) * image->num_sections);
207 for (i = 0; i < image->num_sections; i++) {
208 image->sections[i].private = section[i].private;
209 image->sections[i].base_address = section[i].base_address;
210 image->sections[i].size = section[i].size;
211 image->sections[i].flags = section[i].flags;
214 return ERROR_OK;
215 } else if (record_type == 2) { /* Linear Address Record */
216 uint16_t upper_address;
218 sscanf(&lpszLine[bytes_read], "%4hx", &upper_address);
219 cal_checksum += (uint8_t)(upper_address >> 8);
220 cal_checksum += (uint8_t)upper_address;
221 bytes_read += 4;
223 if ((full_address >> 4) != upper_address) {
224 /* we encountered a nonconsecutive location, create a new section,
225 * unless the current section has zero size, in which case this specifies
226 * the current section's base address
228 if (section[image->num_sections].size != 0) {
229 image->num_sections++;
230 if (image->num_sections >= IMAGE_MAX_SECTIONS) {
231 /* too many sections */
232 LOG_ERROR("Too many sections found in IHEX file");
233 return ERROR_IMAGE_FORMAT_ERROR;
235 section[image->num_sections].size = 0x0;
236 section[image->num_sections].flags = 0;
237 section[image->num_sections].private =
238 &ihex->buffer[cooked_bytes];
240 section[image->num_sections].base_address =
241 (full_address & 0xffff) | (upper_address << 4);
242 full_address = (full_address & 0xffff) | (upper_address << 4);
244 } else if (record_type == 3) { /* Start Segment Address Record */
245 uint32_t dummy;
247 /* "Start Segment Address Record" will not be supported
248 * but we must consume it, and do not create an error. */
249 while (count-- > 0) {
250 sscanf(&lpszLine[bytes_read], "%2" SCNx32, &dummy);
251 cal_checksum += (uint8_t)dummy;
252 bytes_read += 2;
254 } else if (record_type == 4) { /* Extended Linear Address Record */
255 uint16_t upper_address;
257 sscanf(&lpszLine[bytes_read], "%4hx", &upper_address);
258 cal_checksum += (uint8_t)(upper_address >> 8);
259 cal_checksum += (uint8_t)upper_address;
260 bytes_read += 4;
262 if ((full_address >> 16) != upper_address) {
263 /* we encountered a nonconsecutive location, create a new section,
264 * unless the current section has zero size, in which case this specifies
265 * the current section's base address
267 if (section[image->num_sections].size != 0) {
268 image->num_sections++;
269 if (image->num_sections >= IMAGE_MAX_SECTIONS) {
270 /* too many sections */
271 LOG_ERROR("Too many sections found in IHEX file");
272 return ERROR_IMAGE_FORMAT_ERROR;
274 section[image->num_sections].size = 0x0;
275 section[image->num_sections].flags = 0;
276 section[image->num_sections].private =
277 &ihex->buffer[cooked_bytes];
279 section[image->num_sections].base_address =
280 (full_address & 0xffff) | (upper_address << 16);
281 full_address = (full_address & 0xffff) | (upper_address << 16);
283 } else if (record_type == 5) { /* Start Linear Address Record */
284 uint32_t start_address;
286 sscanf(&lpszLine[bytes_read], "%8" SCNx32, &start_address);
287 cal_checksum += (uint8_t)(start_address >> 24);
288 cal_checksum += (uint8_t)(start_address >> 16);
289 cal_checksum += (uint8_t)(start_address >> 8);
290 cal_checksum += (uint8_t)start_address;
291 bytes_read += 8;
293 image->start_address_set = 1;
294 image->start_address = be_to_h_u32((uint8_t *)&start_address);
295 } else {
296 LOG_ERROR("unhandled IHEX record type: %i", (int)record_type);
297 return ERROR_IMAGE_FORMAT_ERROR;
300 sscanf(&lpszLine[bytes_read], "%2" SCNx32, &checksum);
302 if ((uint8_t)checksum != (uint8_t)(~cal_checksum + 1)) {
303 /* checksum failed */
304 LOG_ERROR("incorrect record checksum found in IHEX file");
305 return ERROR_IMAGE_CHECKSUM;
309 LOG_ERROR("premature end of IHEX file, no end-of-file record found");
310 return ERROR_IMAGE_FORMAT_ERROR;
314 * Allocate memory dynamically instead of on the stack. This
315 * is important w/embedded hosts.
317 static int image_ihex_buffer_complete(struct image *image)
319 char *lpszLine = malloc(1023);
320 if (lpszLine == NULL) {
321 LOG_ERROR("Out of memory");
322 return ERROR_FAIL;
324 struct imagesection *section = malloc(sizeof(struct imagesection) * IMAGE_MAX_SECTIONS);
325 if (section == NULL) {
326 free(lpszLine);
327 LOG_ERROR("Out of memory");
328 return ERROR_FAIL;
330 int retval;
332 retval = image_ihex_buffer_complete_inner(image, lpszLine, section);
334 free(section);
335 free(lpszLine);
337 return retval;
340 static int image_elf_read_headers(struct image *image)
342 struct image_elf *elf = image->type_private;
343 size_t read_bytes;
344 uint32_t i, j;
345 int retval;
346 uint32_t nload, load_to_vaddr = 0;
348 elf->header = malloc(sizeof(Elf32_Ehdr));
350 if (elf->header == NULL) {
351 LOG_ERROR("insufficient memory to perform operation ");
352 return ERROR_FILEIO_OPERATION_FAILED;
355 retval = fileio_read(&elf->fileio, sizeof(Elf32_Ehdr), (uint8_t *)elf->header, &read_bytes);
356 if (retval != ERROR_OK) {
357 LOG_ERROR("cannot read ELF file header, read failed");
358 return ERROR_FILEIO_OPERATION_FAILED;
360 if (read_bytes != sizeof(Elf32_Ehdr)) {
361 LOG_ERROR("cannot read ELF file header, only partially read");
362 return ERROR_FILEIO_OPERATION_FAILED;
365 if (strncmp((char *)elf->header->e_ident, ELFMAG, SELFMAG) != 0) {
366 LOG_ERROR("invalid ELF file, bad magic number");
367 return ERROR_IMAGE_FORMAT_ERROR;
369 if (elf->header->e_ident[EI_CLASS] != ELFCLASS32) {
370 LOG_ERROR("invalid ELF file, only 32bits files are supported");
371 return ERROR_IMAGE_FORMAT_ERROR;
374 elf->endianness = elf->header->e_ident[EI_DATA];
375 if ((elf->endianness != ELFDATA2LSB)
376 && (elf->endianness != ELFDATA2MSB)) {
377 LOG_ERROR("invalid ELF file, unknown endianness setting");
378 return ERROR_IMAGE_FORMAT_ERROR;
381 elf->segment_count = field16(elf, elf->header->e_phnum);
382 if (elf->segment_count == 0) {
383 LOG_ERROR("invalid ELF file, no program headers");
384 return ERROR_IMAGE_FORMAT_ERROR;
387 retval = fileio_seek(&elf->fileio, field32(elf, elf->header->e_phoff));
388 if (retval != ERROR_OK) {
389 LOG_ERROR("cannot seek to ELF program header table, read failed");
390 return retval;
393 elf->segments = malloc(elf->segment_count*sizeof(Elf32_Phdr));
394 if (elf->segments == NULL) {
395 LOG_ERROR("insufficient memory to perform operation ");
396 return ERROR_FILEIO_OPERATION_FAILED;
399 retval = fileio_read(&elf->fileio, elf->segment_count*sizeof(Elf32_Phdr),
400 (uint8_t *)elf->segments, &read_bytes);
401 if (retval != ERROR_OK) {
402 LOG_ERROR("cannot read ELF segment headers, read failed");
403 return retval;
405 if (read_bytes != elf->segment_count*sizeof(Elf32_Phdr)) {
406 LOG_ERROR("cannot read ELF segment headers, only partially read");
407 return ERROR_FILEIO_OPERATION_FAILED;
410 /* count useful segments (loadable), ignore BSS section */
411 image->num_sections = 0;
412 for (i = 0; i < elf->segment_count; i++)
413 if ((field32(elf,
414 elf->segments[i].p_type) == PT_LOAD) &&
415 (field32(elf, elf->segments[i].p_filesz) != 0))
416 image->num_sections++;
418 assert(image->num_sections > 0);
421 * some ELF linkers produce binaries with *all* the program header
422 * p_paddr fields zero (there can be however one loadable segment
423 * that has valid physical address 0x0).
424 * If we have such a binary with more than
425 * one PT_LOAD header, then use p_vaddr instead of p_paddr
426 * (ARM ELF standard demands p_paddr = 0 anyway, and BFD
427 * library uses this approach to workaround zero-initialized p_paddrs
428 * when obtaining lma - look at elf.c of BDF)
430 for (nload = 0, i = 0; i < elf->segment_count; i++)
431 if (elf->segments[i].p_paddr != 0)
432 break;
433 else if ((field32(elf,
434 elf->segments[i].p_type) == PT_LOAD) &&
435 (field32(elf, elf->segments[i].p_memsz) != 0))
436 ++nload;
438 if (i >= elf->segment_count && nload > 1)
439 load_to_vaddr = 1;
441 /* alloc and fill sections array with loadable segments */
442 image->sections = malloc(image->num_sections * sizeof(struct imagesection));
443 for (i = 0, j = 0; i < elf->segment_count; i++) {
444 if ((field32(elf,
445 elf->segments[i].p_type) == PT_LOAD) &&
446 (field32(elf, elf->segments[i].p_filesz) != 0)) {
447 image->sections[j].size = field32(elf, elf->segments[i].p_filesz);
448 if (load_to_vaddr)
449 image->sections[j].base_address = field32(elf,
450 elf->segments[i].p_vaddr);
451 else
452 image->sections[j].base_address = field32(elf,
453 elf->segments[i].p_paddr);
454 image->sections[j].private = &elf->segments[i];
455 image->sections[j].flags = field32(elf, elf->segments[i].p_flags);
456 j++;
460 image->start_address_set = 1;
461 image->start_address = field32(elf, elf->header->e_entry);
463 return ERROR_OK;
466 static int image_elf_read_section(struct image *image,
467 int section,
468 uint32_t offset,
469 uint32_t size,
470 uint8_t *buffer,
471 size_t *size_read)
473 struct image_elf *elf = image->type_private;
474 Elf32_Phdr *segment = (Elf32_Phdr *)image->sections[section].private;
475 size_t read_size, really_read;
476 int retval;
478 *size_read = 0;
480 LOG_DEBUG("load segment %d at 0x%" PRIx32 " (sz = 0x%" PRIx32 ")", section, offset, size);
482 /* read initialized data in current segment if any */
483 if (offset < field32(elf, segment->p_filesz)) {
484 /* maximal size present in file for the current segment */
485 read_size = MIN(size, field32(elf, segment->p_filesz) - offset);
486 LOG_DEBUG("read elf: size = 0x%zu at 0x%" PRIx32 "", read_size,
487 field32(elf, segment->p_offset) + offset);
488 /* read initialized area of the segment */
489 retval = fileio_seek(&elf->fileio, field32(elf, segment->p_offset) + offset);
490 if (retval != ERROR_OK) {
491 LOG_ERROR("cannot find ELF segment content, seek failed");
492 return retval;
494 retval = fileio_read(&elf->fileio, read_size, buffer, &really_read);
495 if (retval != ERROR_OK) {
496 LOG_ERROR("cannot read ELF segment content, read failed");
497 return retval;
499 size -= read_size;
500 *size_read += read_size;
501 /* need more data ? */
502 if (!size)
503 return ERROR_OK;
506 return ERROR_OK;
509 static int image_mot_buffer_complete_inner(struct image *image,
510 char *lpszLine,
511 struct imagesection *section)
513 struct image_mot *mot = image->type_private;
514 struct fileio *fileio = &mot->fileio;
515 uint32_t full_address = 0x0;
516 uint32_t cooked_bytes;
517 int i;
519 /* we can't determine the number of sections that we'll have to create ahead of time,
520 * so we locally hold them until parsing is finished */
522 int retval;
523 int filesize;
524 retval = fileio_size(fileio, &filesize);
525 if (retval != ERROR_OK)
526 return retval;
528 mot->buffer = malloc(filesize >> 1);
529 cooked_bytes = 0x0;
530 image->num_sections = 0;
531 section[image->num_sections].private = &mot->buffer[cooked_bytes];
532 section[image->num_sections].base_address = 0x0;
533 section[image->num_sections].size = 0x0;
534 section[image->num_sections].flags = 0;
536 while (fileio_fgets(fileio, 1023, lpszLine) == ERROR_OK) {
537 uint32_t count;
538 uint32_t address;
539 uint32_t record_type;
540 uint32_t checksum;
541 uint8_t cal_checksum = 0;
542 uint32_t bytes_read = 0;
544 /* get record type and record length */
545 if (sscanf(&lpszLine[bytes_read], "S%1" SCNx32 "%2" SCNx32, &record_type,
546 &count) != 2)
547 return ERROR_IMAGE_FORMAT_ERROR;
549 bytes_read += 4;
550 cal_checksum += (uint8_t)count;
552 /* skip checksum byte */
553 count -= 1;
555 if (record_type == 0) {
556 /* S0 - starting record (optional) */
557 int iValue;
559 while (count-- > 0) {
560 sscanf(&lpszLine[bytes_read], "%2x", &iValue);
561 cal_checksum += (uint8_t)iValue;
562 bytes_read += 2;
564 } else if (record_type >= 1 && record_type <= 3) {
565 switch (record_type) {
566 case 1:
567 /* S1 - 16 bit address data record */
568 sscanf(&lpszLine[bytes_read], "%4" SCNx32, &address);
569 cal_checksum += (uint8_t)(address >> 8);
570 cal_checksum += (uint8_t)address;
571 bytes_read += 4;
572 count -= 2;
573 break;
575 case 2:
576 /* S2 - 24 bit address data record */
577 sscanf(&lpszLine[bytes_read], "%6" SCNx32, &address);
578 cal_checksum += (uint8_t)(address >> 16);
579 cal_checksum += (uint8_t)(address >> 8);
580 cal_checksum += (uint8_t)address;
581 bytes_read += 6;
582 count -= 3;
583 break;
585 case 3:
586 /* S3 - 32 bit address data record */
587 sscanf(&lpszLine[bytes_read], "%8" SCNx32, &address);
588 cal_checksum += (uint8_t)(address >> 24);
589 cal_checksum += (uint8_t)(address >> 16);
590 cal_checksum += (uint8_t)(address >> 8);
591 cal_checksum += (uint8_t)address;
592 bytes_read += 8;
593 count -= 4;
594 break;
598 if (full_address != address) {
599 /* we encountered a nonconsecutive location, create a new section,
600 * unless the current section has zero size, in which case this specifies
601 * the current section's base address
603 if (section[image->num_sections].size != 0) {
604 image->num_sections++;
605 section[image->num_sections].size = 0x0;
606 section[image->num_sections].flags = 0;
607 section[image->num_sections].private =
608 &mot->buffer[cooked_bytes];
610 section[image->num_sections].base_address = address;
611 full_address = address;
614 while (count-- > 0) {
615 unsigned value;
616 sscanf(&lpszLine[bytes_read], "%2x", &value);
617 mot->buffer[cooked_bytes] = (uint8_t)value;
618 cal_checksum += (uint8_t)mot->buffer[cooked_bytes];
619 bytes_read += 2;
620 cooked_bytes += 1;
621 section[image->num_sections].size += 1;
622 full_address++;
624 } else if (record_type == 5) {
625 /* S5 is the data count record, we ignore it */
626 uint32_t dummy;
628 while (count-- > 0) {
629 sscanf(&lpszLine[bytes_read], "%2" SCNx32, &dummy);
630 cal_checksum += (uint8_t)dummy;
631 bytes_read += 2;
633 } else if (record_type >= 7 && record_type <= 9) {
634 /* S7, S8, S9 - ending records for 32, 24 and 16bit */
635 image->num_sections++;
637 /* copy section information */
638 image->sections = malloc(sizeof(struct imagesection) * image->num_sections);
639 for (i = 0; i < image->num_sections; i++) {
640 image->sections[i].private = section[i].private;
641 image->sections[i].base_address = section[i].base_address;
642 image->sections[i].size = section[i].size;
643 image->sections[i].flags = section[i].flags;
646 return ERROR_OK;
647 } else {
648 LOG_ERROR("unhandled S19 record type: %i", (int)(record_type));
649 return ERROR_IMAGE_FORMAT_ERROR;
652 /* account for checksum, will always be 0xFF */
653 sscanf(&lpszLine[bytes_read], "%2" SCNx32, &checksum);
654 cal_checksum += (uint8_t)checksum;
656 if (cal_checksum != 0xFF) {
657 /* checksum failed */
658 LOG_ERROR("incorrect record checksum found in S19 file");
659 return ERROR_IMAGE_CHECKSUM;
663 LOG_ERROR("premature end of S19 file, no end-of-file record found");
664 return ERROR_IMAGE_FORMAT_ERROR;
668 * Allocate memory dynamically instead of on the stack. This
669 * is important w/embedded hosts.
671 static int image_mot_buffer_complete(struct image *image)
673 char *lpszLine = malloc(1023);
674 if (lpszLine == NULL) {
675 LOG_ERROR("Out of memory");
676 return ERROR_FAIL;
678 struct imagesection *section = malloc(sizeof(struct imagesection) * IMAGE_MAX_SECTIONS);
679 if (section == NULL) {
680 free(lpszLine);
681 LOG_ERROR("Out of memory");
682 return ERROR_FAIL;
684 int retval;
686 retval = image_mot_buffer_complete_inner(image, lpszLine, section);
688 free(section);
689 free(lpszLine);
691 return retval;
694 int image_open(struct image *image, const char *url, const char *type_string)
696 int retval = ERROR_OK;
698 retval = identify_image_type(image, type_string, url);
699 if (retval != ERROR_OK)
700 return retval;
702 if (image->type == IMAGE_BINARY) {
703 struct image_binary *image_binary;
705 image_binary = image->type_private = malloc(sizeof(struct image_binary));
707 retval = fileio_open(&image_binary->fileio, url, FILEIO_READ, FILEIO_BINARY);
708 if (retval != ERROR_OK)
709 return retval;
710 int filesize;
711 retval = fileio_size(&image_binary->fileio, &filesize);
712 if (retval != ERROR_OK) {
713 fileio_close(&image_binary->fileio);
714 return retval;
717 image->num_sections = 1;
718 image->sections = malloc(sizeof(struct imagesection));
719 image->sections[0].base_address = 0x0;
720 image->sections[0].size = filesize;
721 image->sections[0].flags = 0;
722 } else if (image->type == IMAGE_IHEX) {
723 struct image_ihex *image_ihex;
725 image_ihex = image->type_private = malloc(sizeof(struct image_ihex));
727 retval = fileio_open(&image_ihex->fileio, url, FILEIO_READ, FILEIO_TEXT);
728 if (retval != ERROR_OK)
729 return retval;
731 retval = image_ihex_buffer_complete(image);
732 if (retval != ERROR_OK) {
733 LOG_ERROR(
734 "failed buffering IHEX image, check daemon output for additional information");
735 fileio_close(&image_ihex->fileio);
736 return retval;
738 } else if (image->type == IMAGE_ELF) {
739 struct image_elf *image_elf;
741 image_elf = image->type_private = malloc(sizeof(struct image_elf));
743 retval = fileio_open(&image_elf->fileio, url, FILEIO_READ, FILEIO_BINARY);
744 if (retval != ERROR_OK)
745 return retval;
747 retval = image_elf_read_headers(image);
748 if (retval != ERROR_OK) {
749 fileio_close(&image_elf->fileio);
750 return retval;
752 } else if (image->type == IMAGE_MEMORY) {
753 struct target *target = get_target(url);
755 if (target == NULL) {
756 LOG_ERROR("target '%s' not defined", url);
757 return ERROR_FAIL;
760 struct image_memory *image_memory;
762 image->num_sections = 1;
763 image->sections = malloc(sizeof(struct imagesection));
764 image->sections[0].base_address = 0x0;
765 image->sections[0].size = 0xffffffff;
766 image->sections[0].flags = 0;
768 image_memory = image->type_private = malloc(sizeof(struct image_memory));
770 image_memory->target = target;
771 image_memory->cache = NULL;
772 image_memory->cache_address = 0x0;
773 } else if (image->type == IMAGE_SRECORD) {
774 struct image_mot *image_mot;
776 image_mot = image->type_private = malloc(sizeof(struct image_mot));
778 retval = fileio_open(&image_mot->fileio, url, FILEIO_READ, FILEIO_TEXT);
779 if (retval != ERROR_OK)
780 return retval;
782 retval = image_mot_buffer_complete(image);
783 if (retval != ERROR_OK) {
784 LOG_ERROR(
785 "failed buffering S19 image, check daemon output for additional information");
786 fileio_close(&image_mot->fileio);
787 return retval;
789 } else if (image->type == IMAGE_BUILDER) {
790 image->num_sections = 0;
791 image->base_address_set = 0;
792 image->sections = NULL;
793 image->type_private = NULL;
796 if (image->base_address_set) {
797 /* relocate */
798 int section;
799 for (section = 0; section < image->num_sections; section++)
800 image->sections[section].base_address += image->base_address;
801 /* we're done relocating. The two statements below are mainly
802 * for documenation purposes: stop anyone from empirically
803 * thinking they should use these values henceforth. */
804 image->base_address = 0;
805 image->base_address_set = 0;
808 return retval;
811 int image_read_section(struct image *image,
812 int section,
813 uint32_t offset,
814 uint32_t size,
815 uint8_t *buffer,
816 size_t *size_read)
818 int retval;
820 /* don't read past the end of a section */
821 if (offset + size > image->sections[section].size) {
822 LOG_DEBUG(
823 "read past end of section: 0x%8.8" PRIx32 " + 0x%8.8" PRIx32 " > 0x%8.8" PRIx32 "",
824 offset,
825 size,
826 image->sections[section].size);
827 return ERROR_COMMAND_SYNTAX_ERROR;
830 if (image->type == IMAGE_BINARY) {
831 struct image_binary *image_binary = image->type_private;
833 /* only one section in a plain binary */
834 if (section != 0)
835 return ERROR_COMMAND_SYNTAX_ERROR;
837 /* seek to offset */
838 retval = fileio_seek(&image_binary->fileio, offset);
839 if (retval != ERROR_OK)
840 return retval;
842 /* return requested bytes */
843 retval = fileio_read(&image_binary->fileio, size, buffer, size_read);
844 if (retval != ERROR_OK)
845 return retval;
846 } else if (image->type == IMAGE_IHEX) {
847 memcpy(buffer, (uint8_t *)image->sections[section].private + offset, size);
848 *size_read = size;
850 return ERROR_OK;
851 } else if (image->type == IMAGE_ELF)
852 return image_elf_read_section(image, section, offset, size, buffer, size_read);
853 else if (image->type == IMAGE_MEMORY) {
854 struct image_memory *image_memory = image->type_private;
855 uint32_t address = image->sections[section].base_address + offset;
857 *size_read = 0;
859 while ((size - *size_read) > 0) {
860 uint32_t size_in_cache;
862 if (!image_memory->cache
863 || (address < image_memory->cache_address)
864 || (address >=
865 (image_memory->cache_address + IMAGE_MEMORY_CACHE_SIZE))) {
866 if (!image_memory->cache)
867 image_memory->cache = malloc(IMAGE_MEMORY_CACHE_SIZE);
869 if (target_read_buffer(image_memory->target, address &
870 ~(IMAGE_MEMORY_CACHE_SIZE - 1),
871 IMAGE_MEMORY_CACHE_SIZE, image_memory->cache) != ERROR_OK) {
872 free(image_memory->cache);
873 image_memory->cache = NULL;
874 return ERROR_IMAGE_TEMPORARILY_UNAVAILABLE;
876 image_memory->cache_address = address &
877 ~(IMAGE_MEMORY_CACHE_SIZE - 1);
880 size_in_cache =
881 (image_memory->cache_address + IMAGE_MEMORY_CACHE_SIZE) - address;
883 memcpy(buffer + *size_read,
884 image_memory->cache + (address - image_memory->cache_address),
885 (size_in_cache > size) ? size : size_in_cache
888 *size_read += (size_in_cache > size) ? size : size_in_cache;
889 address += (size_in_cache > size) ? size : size_in_cache;
891 } else if (image->type == IMAGE_SRECORD) {
892 memcpy(buffer, (uint8_t *)image->sections[section].private + offset, size);
893 *size_read = size;
895 return ERROR_OK;
896 } else if (image->type == IMAGE_BUILDER) {
897 memcpy(buffer, (uint8_t *)image->sections[section].private + offset, size);
898 *size_read = size;
900 return ERROR_OK;
903 return ERROR_OK;
906 int image_add_section(struct image *image, uint32_t base, uint32_t size, int flags, uint8_t const *data)
908 struct imagesection *section;
910 /* only image builder supports adding sections */
911 if (image->type != IMAGE_BUILDER)
912 return ERROR_COMMAND_SYNTAX_ERROR;
914 /* see if there's a previous section */
915 if (image->num_sections) {
916 section = &image->sections[image->num_sections - 1];
918 /* see if it's enough to extend the last section,
919 * adding data to previous sections or merging is not supported */
920 if (((section->base_address + section->size) == base) &&
921 (section->flags == flags)) {
922 section->private = realloc(section->private, section->size + size);
923 memcpy((uint8_t *)section->private + section->size, data, size);
924 section->size += size;
925 return ERROR_OK;
929 /* allocate new section */
930 image->num_sections++;
931 image->sections =
932 realloc(image->sections, sizeof(struct imagesection) * image->num_sections);
933 section = &image->sections[image->num_sections - 1];
934 section->base_address = base;
935 section->size = size;
936 section->flags = flags;
937 section->private = malloc(sizeof(uint8_t) * size);
938 memcpy((uint8_t *)section->private, data, size);
940 return ERROR_OK;
943 void image_close(struct image *image)
945 if (image->type == IMAGE_BINARY) {
946 struct image_binary *image_binary = image->type_private;
948 fileio_close(&image_binary->fileio);
949 } else if (image->type == IMAGE_IHEX) {
950 struct image_ihex *image_ihex = image->type_private;
952 fileio_close(&image_ihex->fileio);
954 if (image_ihex->buffer) {
955 free(image_ihex->buffer);
956 image_ihex->buffer = NULL;
958 } else if (image->type == IMAGE_ELF) {
959 struct image_elf *image_elf = image->type_private;
961 fileio_close(&image_elf->fileio);
963 if (image_elf->header) {
964 free(image_elf->header);
965 image_elf->header = NULL;
968 if (image_elf->segments) {
969 free(image_elf->segments);
970 image_elf->segments = NULL;
972 } else if (image->type == IMAGE_MEMORY) {
973 struct image_memory *image_memory = image->type_private;
975 if (image_memory->cache) {
976 free(image_memory->cache);
977 image_memory->cache = NULL;
979 } else if (image->type == IMAGE_SRECORD) {
980 struct image_mot *image_mot = image->type_private;
982 fileio_close(&image_mot->fileio);
984 if (image_mot->buffer) {
985 free(image_mot->buffer);
986 image_mot->buffer = NULL;
988 } else if (image->type == IMAGE_BUILDER) {
989 int i;
991 for (i = 0; i < image->num_sections; i++) {
992 free(image->sections[i].private);
993 image->sections[i].private = NULL;
997 if (image->type_private) {
998 free(image->type_private);
999 image->type_private = NULL;
1002 if (image->sections) {
1003 free(image->sections);
1004 image->sections = NULL;
1008 int image_calculate_checksum(uint8_t *buffer, uint32_t nbytes, uint32_t *checksum)
1010 uint32_t crc = 0xffffffff;
1011 LOG_DEBUG("Calculating checksum");
1013 static uint32_t crc32_table[256];
1015 static bool first_init;
1016 if (!first_init) {
1017 /* Initialize the CRC table and the decoding table. */
1018 int i, j;
1019 unsigned int c;
1020 for (i = 0; i < 256; i++) {
1021 /* as per gdb */
1022 for (c = i << 24, j = 8; j > 0; --j)
1023 c = c & 0x80000000 ? (c << 1) ^ 0x04c11db7 : (c << 1);
1024 crc32_table[i] = c;
1027 first_init = true;
1030 while (nbytes > 0) {
1031 int run = nbytes;
1032 if (run > 32768)
1033 run = 32768;
1034 nbytes -= run;
1035 while (run--) {
1036 /* as per gdb */
1037 crc = (crc << 8) ^ crc32_table[((crc >> 24) ^ *buffer++) & 255];
1039 keep_alive();
1042 LOG_DEBUG("Calculating checksum done");
1044 *checksum = crc;
1045 return ERROR_OK;