armv7m: add generic trace support (TPIU, ITM, etc.)
[openocd.git] / src / target / target.c
bloba8d3cba96f1fc536eb364f4f0c5c4998e66b5eba
1 /***************************************************************************
2 * Copyright (C) 2005 by Dominic Rath *
3 * Dominic.Rath@gmx.de *
4 * *
5 * Copyright (C) 2007-2010 Øyvind Harboe *
6 * oyvind.harboe@zylin.com *
7 * *
8 * Copyright (C) 2008, Duane Ellis *
9 * openocd@duaneeellis.com *
10 * *
11 * Copyright (C) 2008 by Spencer Oliver *
12 * spen@spen-soft.co.uk *
13 * *
14 * Copyright (C) 2008 by Rick Altherr *
15 * kc8apf@kc8apf.net> *
16 * *
17 * Copyright (C) 2011 by Broadcom Corporation *
18 * Evan Hunter - ehunter@broadcom.com *
19 * *
20 * Copyright (C) ST-Ericsson SA 2011 *
21 * michel.jaouen@stericsson.com : smp minimum support *
22 * *
23 * Copyright (C) 2011 Andreas Fritiofson *
24 * andreas.fritiofson@gmail.com *
25 * *
26 * This program is free software; you can redistribute it and/or modify *
27 * it under the terms of the GNU General Public License as published by *
28 * the Free Software Foundation; either version 2 of the License, or *
29 * (at your option) any later version. *
30 * *
31 * This program is distributed in the hope that it will be useful, *
32 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
33 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
34 * GNU General Public License for more details. *
35 * *
36 * You should have received a copy of the GNU General Public License *
37 * along with this program; if not, write to the *
38 * Free Software Foundation, Inc., *
39 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. *
40 ***************************************************************************/
42 #ifdef HAVE_CONFIG_H
43 #include "config.h"
44 #endif
46 #include <helper/time_support.h>
47 #include <jtag/jtag.h>
48 #include <flash/nor/core.h>
50 #include "target.h"
51 #include "target_type.h"
52 #include "target_request.h"
53 #include "breakpoints.h"
54 #include "register.h"
55 #include "trace.h"
56 #include "image.h"
57 #include "rtos/rtos.h"
58 #include "transport/transport.h"
60 /* default halt wait timeout (ms) */
61 #define DEFAULT_HALT_TIMEOUT 5000
63 static int target_read_buffer_default(struct target *target, uint32_t address,
64 uint32_t count, uint8_t *buffer);
65 static int target_write_buffer_default(struct target *target, uint32_t address,
66 uint32_t count, const uint8_t *buffer);
67 static int target_array2mem(Jim_Interp *interp, struct target *target,
68 int argc, Jim_Obj * const *argv);
69 static int target_mem2array(Jim_Interp *interp, struct target *target,
70 int argc, Jim_Obj * const *argv);
71 static int target_register_user_commands(struct command_context *cmd_ctx);
72 static int target_get_gdb_fileio_info_default(struct target *target,
73 struct gdb_fileio_info *fileio_info);
74 static int target_gdb_fileio_end_default(struct target *target, int retcode,
75 int fileio_errno, bool ctrl_c);
76 static int target_profiling_default(struct target *target, uint32_t *samples,
77 uint32_t max_num_samples, uint32_t *num_samples, uint32_t seconds);
79 /* targets */
80 extern struct target_type arm7tdmi_target;
81 extern struct target_type arm720t_target;
82 extern struct target_type arm9tdmi_target;
83 extern struct target_type arm920t_target;
84 extern struct target_type arm966e_target;
85 extern struct target_type arm946e_target;
86 extern struct target_type arm926ejs_target;
87 extern struct target_type fa526_target;
88 extern struct target_type feroceon_target;
89 extern struct target_type dragonite_target;
90 extern struct target_type xscale_target;
91 extern struct target_type cortexm_target;
92 extern struct target_type cortexa_target;
93 extern struct target_type cortexr4_target;
94 extern struct target_type arm11_target;
95 extern struct target_type mips_m4k_target;
96 extern struct target_type avr_target;
97 extern struct target_type dsp563xx_target;
98 extern struct target_type dsp5680xx_target;
99 extern struct target_type testee_target;
100 extern struct target_type avr32_ap7k_target;
101 extern struct target_type hla_target;
102 extern struct target_type nds32_v2_target;
103 extern struct target_type nds32_v3_target;
104 extern struct target_type nds32_v3m_target;
105 extern struct target_type or1k_target;
106 extern struct target_type quark_x10xx_target;
108 static struct target_type *target_types[] = {
109 &arm7tdmi_target,
110 &arm9tdmi_target,
111 &arm920t_target,
112 &arm720t_target,
113 &arm966e_target,
114 &arm946e_target,
115 &arm926ejs_target,
116 &fa526_target,
117 &feroceon_target,
118 &dragonite_target,
119 &xscale_target,
120 &cortexm_target,
121 &cortexa_target,
122 &cortexr4_target,
123 &arm11_target,
124 &mips_m4k_target,
125 &avr_target,
126 &dsp563xx_target,
127 &dsp5680xx_target,
128 &testee_target,
129 &avr32_ap7k_target,
130 &hla_target,
131 &nds32_v2_target,
132 &nds32_v3_target,
133 &nds32_v3m_target,
134 &or1k_target,
135 &quark_x10xx_target,
136 NULL,
139 struct target *all_targets;
140 static struct target_event_callback *target_event_callbacks;
141 static struct target_timer_callback *target_timer_callbacks;
142 LIST_HEAD(target_reset_callback_list);
143 static const int polling_interval = 100;
145 static const Jim_Nvp nvp_assert[] = {
146 { .name = "assert", NVP_ASSERT },
147 { .name = "deassert", NVP_DEASSERT },
148 { .name = "T", NVP_ASSERT },
149 { .name = "F", NVP_DEASSERT },
150 { .name = "t", NVP_ASSERT },
151 { .name = "f", NVP_DEASSERT },
152 { .name = NULL, .value = -1 }
155 static const Jim_Nvp nvp_error_target[] = {
156 { .value = ERROR_TARGET_INVALID, .name = "err-invalid" },
157 { .value = ERROR_TARGET_INIT_FAILED, .name = "err-init-failed" },
158 { .value = ERROR_TARGET_TIMEOUT, .name = "err-timeout" },
159 { .value = ERROR_TARGET_NOT_HALTED, .name = "err-not-halted" },
160 { .value = ERROR_TARGET_FAILURE, .name = "err-failure" },
161 { .value = ERROR_TARGET_UNALIGNED_ACCESS , .name = "err-unaligned-access" },
162 { .value = ERROR_TARGET_DATA_ABORT , .name = "err-data-abort" },
163 { .value = ERROR_TARGET_RESOURCE_NOT_AVAILABLE , .name = "err-resource-not-available" },
164 { .value = ERROR_TARGET_TRANSLATION_FAULT , .name = "err-translation-fault" },
165 { .value = ERROR_TARGET_NOT_RUNNING, .name = "err-not-running" },
166 { .value = ERROR_TARGET_NOT_EXAMINED, .name = "err-not-examined" },
167 { .value = -1, .name = NULL }
170 static const char *target_strerror_safe(int err)
172 const Jim_Nvp *n;
174 n = Jim_Nvp_value2name_simple(nvp_error_target, err);
175 if (n->name == NULL)
176 return "unknown";
177 else
178 return n->name;
181 static const Jim_Nvp nvp_target_event[] = {
183 { .value = TARGET_EVENT_GDB_HALT, .name = "gdb-halt" },
184 { .value = TARGET_EVENT_HALTED, .name = "halted" },
185 { .value = TARGET_EVENT_RESUMED, .name = "resumed" },
186 { .value = TARGET_EVENT_RESUME_START, .name = "resume-start" },
187 { .value = TARGET_EVENT_RESUME_END, .name = "resume-end" },
189 { .name = "gdb-start", .value = TARGET_EVENT_GDB_START },
190 { .name = "gdb-end", .value = TARGET_EVENT_GDB_END },
192 { .value = TARGET_EVENT_RESET_START, .name = "reset-start" },
193 { .value = TARGET_EVENT_RESET_ASSERT_PRE, .name = "reset-assert-pre" },
194 { .value = TARGET_EVENT_RESET_ASSERT, .name = "reset-assert" },
195 { .value = TARGET_EVENT_RESET_ASSERT_POST, .name = "reset-assert-post" },
196 { .value = TARGET_EVENT_RESET_DEASSERT_PRE, .name = "reset-deassert-pre" },
197 { .value = TARGET_EVENT_RESET_DEASSERT_POST, .name = "reset-deassert-post" },
198 { .value = TARGET_EVENT_RESET_HALT_PRE, .name = "reset-halt-pre" },
199 { .value = TARGET_EVENT_RESET_HALT_POST, .name = "reset-halt-post" },
200 { .value = TARGET_EVENT_RESET_WAIT_PRE, .name = "reset-wait-pre" },
201 { .value = TARGET_EVENT_RESET_WAIT_POST, .name = "reset-wait-post" },
202 { .value = TARGET_EVENT_RESET_INIT, .name = "reset-init" },
203 { .value = TARGET_EVENT_RESET_END, .name = "reset-end" },
205 { .value = TARGET_EVENT_EXAMINE_START, .name = "examine-start" },
206 { .value = TARGET_EVENT_EXAMINE_END, .name = "examine-end" },
208 { .value = TARGET_EVENT_DEBUG_HALTED, .name = "debug-halted" },
209 { .value = TARGET_EVENT_DEBUG_RESUMED, .name = "debug-resumed" },
211 { .value = TARGET_EVENT_GDB_ATTACH, .name = "gdb-attach" },
212 { .value = TARGET_EVENT_GDB_DETACH, .name = "gdb-detach" },
214 { .value = TARGET_EVENT_GDB_FLASH_WRITE_START, .name = "gdb-flash-write-start" },
215 { .value = TARGET_EVENT_GDB_FLASH_WRITE_END , .name = "gdb-flash-write-end" },
217 { .value = TARGET_EVENT_GDB_FLASH_ERASE_START, .name = "gdb-flash-erase-start" },
218 { .value = TARGET_EVENT_GDB_FLASH_ERASE_END , .name = "gdb-flash-erase-end" },
220 { .value = TARGET_EVENT_TRACE_CONFIG, .name = "trace-config" },
222 { .name = NULL, .value = -1 }
225 static const Jim_Nvp nvp_target_state[] = {
226 { .name = "unknown", .value = TARGET_UNKNOWN },
227 { .name = "running", .value = TARGET_RUNNING },
228 { .name = "halted", .value = TARGET_HALTED },
229 { .name = "reset", .value = TARGET_RESET },
230 { .name = "debug-running", .value = TARGET_DEBUG_RUNNING },
231 { .name = NULL, .value = -1 },
234 static const Jim_Nvp nvp_target_debug_reason[] = {
235 { .name = "debug-request" , .value = DBG_REASON_DBGRQ },
236 { .name = "breakpoint" , .value = DBG_REASON_BREAKPOINT },
237 { .name = "watchpoint" , .value = DBG_REASON_WATCHPOINT },
238 { .name = "watchpoint-and-breakpoint", .value = DBG_REASON_WPTANDBKPT },
239 { .name = "single-step" , .value = DBG_REASON_SINGLESTEP },
240 { .name = "target-not-halted" , .value = DBG_REASON_NOTHALTED },
241 { .name = "program-exit" , .value = DBG_REASON_EXIT },
242 { .name = "undefined" , .value = DBG_REASON_UNDEFINED },
243 { .name = NULL, .value = -1 },
246 static const Jim_Nvp nvp_target_endian[] = {
247 { .name = "big", .value = TARGET_BIG_ENDIAN },
248 { .name = "little", .value = TARGET_LITTLE_ENDIAN },
249 { .name = "be", .value = TARGET_BIG_ENDIAN },
250 { .name = "le", .value = TARGET_LITTLE_ENDIAN },
251 { .name = NULL, .value = -1 },
254 static const Jim_Nvp nvp_reset_modes[] = {
255 { .name = "unknown", .value = RESET_UNKNOWN },
256 { .name = "run" , .value = RESET_RUN },
257 { .name = "halt" , .value = RESET_HALT },
258 { .name = "init" , .value = RESET_INIT },
259 { .name = NULL , .value = -1 },
262 const char *debug_reason_name(struct target *t)
264 const char *cp;
266 cp = Jim_Nvp_value2name_simple(nvp_target_debug_reason,
267 t->debug_reason)->name;
268 if (!cp) {
269 LOG_ERROR("Invalid debug reason: %d", (int)(t->debug_reason));
270 cp = "(*BUG*unknown*BUG*)";
272 return cp;
275 const char *target_state_name(struct target *t)
277 const char *cp;
278 cp = Jim_Nvp_value2name_simple(nvp_target_state, t->state)->name;
279 if (!cp) {
280 LOG_ERROR("Invalid target state: %d", (int)(t->state));
281 cp = "(*BUG*unknown*BUG*)";
283 return cp;
286 const char *target_event_name(enum target_event event)
288 const char *cp;
289 cp = Jim_Nvp_value2name_simple(nvp_target_event, event)->name;
290 if (!cp) {
291 LOG_ERROR("Invalid target event: %d", (int)(event));
292 cp = "(*BUG*unknown*BUG*)";
294 return cp;
297 const char *target_reset_mode_name(enum target_reset_mode reset_mode)
299 const char *cp;
300 cp = Jim_Nvp_value2name_simple(nvp_reset_modes, reset_mode)->name;
301 if (!cp) {
302 LOG_ERROR("Invalid target reset mode: %d", (int)(reset_mode));
303 cp = "(*BUG*unknown*BUG*)";
305 return cp;
308 /* determine the number of the new target */
309 static int new_target_number(void)
311 struct target *t;
312 int x;
314 /* number is 0 based */
315 x = -1;
316 t = all_targets;
317 while (t) {
318 if (x < t->target_number)
319 x = t->target_number;
320 t = t->next;
322 return x + 1;
325 /* read a uint64_t from a buffer in target memory endianness */
326 uint64_t target_buffer_get_u64(struct target *target, const uint8_t *buffer)
328 if (target->endianness == TARGET_LITTLE_ENDIAN)
329 return le_to_h_u64(buffer);
330 else
331 return be_to_h_u64(buffer);
334 /* read a uint32_t from a buffer in target memory endianness */
335 uint32_t target_buffer_get_u32(struct target *target, const uint8_t *buffer)
337 if (target->endianness == TARGET_LITTLE_ENDIAN)
338 return le_to_h_u32(buffer);
339 else
340 return be_to_h_u32(buffer);
343 /* read a uint24_t from a buffer in target memory endianness */
344 uint32_t target_buffer_get_u24(struct target *target, const uint8_t *buffer)
346 if (target->endianness == TARGET_LITTLE_ENDIAN)
347 return le_to_h_u24(buffer);
348 else
349 return be_to_h_u24(buffer);
352 /* read a uint16_t from a buffer in target memory endianness */
353 uint16_t target_buffer_get_u16(struct target *target, const uint8_t *buffer)
355 if (target->endianness == TARGET_LITTLE_ENDIAN)
356 return le_to_h_u16(buffer);
357 else
358 return be_to_h_u16(buffer);
361 /* read a uint8_t from a buffer in target memory endianness */
362 static uint8_t target_buffer_get_u8(struct target *target, const uint8_t *buffer)
364 return *buffer & 0x0ff;
367 /* write a uint64_t to a buffer in target memory endianness */
368 void target_buffer_set_u64(struct target *target, uint8_t *buffer, uint64_t value)
370 if (target->endianness == TARGET_LITTLE_ENDIAN)
371 h_u64_to_le(buffer, value);
372 else
373 h_u64_to_be(buffer, value);
376 /* write a uint32_t to a buffer in target memory endianness */
377 void target_buffer_set_u32(struct target *target, uint8_t *buffer, uint32_t value)
379 if (target->endianness == TARGET_LITTLE_ENDIAN)
380 h_u32_to_le(buffer, value);
381 else
382 h_u32_to_be(buffer, value);
385 /* write a uint24_t to a buffer in target memory endianness */
386 void target_buffer_set_u24(struct target *target, uint8_t *buffer, uint32_t value)
388 if (target->endianness == TARGET_LITTLE_ENDIAN)
389 h_u24_to_le(buffer, value);
390 else
391 h_u24_to_be(buffer, value);
394 /* write a uint16_t to a buffer in target memory endianness */
395 void target_buffer_set_u16(struct target *target, uint8_t *buffer, uint16_t value)
397 if (target->endianness == TARGET_LITTLE_ENDIAN)
398 h_u16_to_le(buffer, value);
399 else
400 h_u16_to_be(buffer, value);
403 /* write a uint8_t to a buffer in target memory endianness */
404 static void target_buffer_set_u8(struct target *target, uint8_t *buffer, uint8_t value)
406 *buffer = value;
409 /* write a uint64_t array to a buffer in target memory endianness */
410 void target_buffer_get_u64_array(struct target *target, const uint8_t *buffer, uint32_t count, uint64_t *dstbuf)
412 uint32_t i;
413 for (i = 0; i < count; i++)
414 dstbuf[i] = target_buffer_get_u64(target, &buffer[i * 8]);
417 /* write a uint32_t array to a buffer in target memory endianness */
418 void target_buffer_get_u32_array(struct target *target, const uint8_t *buffer, uint32_t count, uint32_t *dstbuf)
420 uint32_t i;
421 for (i = 0; i < count; i++)
422 dstbuf[i] = target_buffer_get_u32(target, &buffer[i * 4]);
425 /* write a uint16_t array to a buffer in target memory endianness */
426 void target_buffer_get_u16_array(struct target *target, const uint8_t *buffer, uint32_t count, uint16_t *dstbuf)
428 uint32_t i;
429 for (i = 0; i < count; i++)
430 dstbuf[i] = target_buffer_get_u16(target, &buffer[i * 2]);
433 /* write a uint64_t array to a buffer in target memory endianness */
434 void target_buffer_set_u64_array(struct target *target, uint8_t *buffer, uint32_t count, const uint64_t *srcbuf)
436 uint32_t i;
437 for (i = 0; i < count; i++)
438 target_buffer_set_u64(target, &buffer[i * 8], srcbuf[i]);
441 /* write a uint32_t array to a buffer in target memory endianness */
442 void target_buffer_set_u32_array(struct target *target, uint8_t *buffer, uint32_t count, const uint32_t *srcbuf)
444 uint32_t i;
445 for (i = 0; i < count; i++)
446 target_buffer_set_u32(target, &buffer[i * 4], srcbuf[i]);
449 /* write a uint16_t array to a buffer in target memory endianness */
450 void target_buffer_set_u16_array(struct target *target, uint8_t *buffer, uint32_t count, const uint16_t *srcbuf)
452 uint32_t i;
453 for (i = 0; i < count; i++)
454 target_buffer_set_u16(target, &buffer[i * 2], srcbuf[i]);
457 /* return a pointer to a configured target; id is name or number */
458 struct target *get_target(const char *id)
460 struct target *target;
462 /* try as tcltarget name */
463 for (target = all_targets; target; target = target->next) {
464 if (target_name(target) == NULL)
465 continue;
466 if (strcmp(id, target_name(target)) == 0)
467 return target;
470 /* It's OK to remove this fallback sometime after August 2010 or so */
472 /* no match, try as number */
473 unsigned num;
474 if (parse_uint(id, &num) != ERROR_OK)
475 return NULL;
477 for (target = all_targets; target; target = target->next) {
478 if (target->target_number == (int)num) {
479 LOG_WARNING("use '%s' as target identifier, not '%u'",
480 target_name(target), num);
481 return target;
485 return NULL;
488 /* returns a pointer to the n-th configured target */
489 static struct target *get_target_by_num(int num)
491 struct target *target = all_targets;
493 while (target) {
494 if (target->target_number == num)
495 return target;
496 target = target->next;
499 return NULL;
502 struct target *get_current_target(struct command_context *cmd_ctx)
504 struct target *target = get_target_by_num(cmd_ctx->current_target);
506 if (target == NULL) {
507 LOG_ERROR("BUG: current_target out of bounds");
508 exit(-1);
511 return target;
514 int target_poll(struct target *target)
516 int retval;
518 /* We can't poll until after examine */
519 if (!target_was_examined(target)) {
520 /* Fail silently lest we pollute the log */
521 return ERROR_FAIL;
524 retval = target->type->poll(target);
525 if (retval != ERROR_OK)
526 return retval;
528 if (target->halt_issued) {
529 if (target->state == TARGET_HALTED)
530 target->halt_issued = false;
531 else {
532 long long t = timeval_ms() - target->halt_issued_time;
533 if (t > DEFAULT_HALT_TIMEOUT) {
534 target->halt_issued = false;
535 LOG_INFO("Halt timed out, wake up GDB.");
536 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
541 return ERROR_OK;
544 int target_halt(struct target *target)
546 int retval;
547 /* We can't poll until after examine */
548 if (!target_was_examined(target)) {
549 LOG_ERROR("Target not examined yet");
550 return ERROR_FAIL;
553 retval = target->type->halt(target);
554 if (retval != ERROR_OK)
555 return retval;
557 target->halt_issued = true;
558 target->halt_issued_time = timeval_ms();
560 return ERROR_OK;
564 * Make the target (re)start executing using its saved execution
565 * context (possibly with some modifications).
567 * @param target Which target should start executing.
568 * @param current True to use the target's saved program counter instead
569 * of the address parameter
570 * @param address Optionally used as the program counter.
571 * @param handle_breakpoints True iff breakpoints at the resumption PC
572 * should be skipped. (For example, maybe execution was stopped by
573 * such a breakpoint, in which case it would be counterprodutive to
574 * let it re-trigger.
575 * @param debug_execution False if all working areas allocated by OpenOCD
576 * should be released and/or restored to their original contents.
577 * (This would for example be true to run some downloaded "helper"
578 * algorithm code, which resides in one such working buffer and uses
579 * another for data storage.)
581 * @todo Resolve the ambiguity about what the "debug_execution" flag
582 * signifies. For example, Target implementations don't agree on how
583 * it relates to invalidation of the register cache, or to whether
584 * breakpoints and watchpoints should be enabled. (It would seem wrong
585 * to enable breakpoints when running downloaded "helper" algorithms
586 * (debug_execution true), since the breakpoints would be set to match
587 * target firmware being debugged, not the helper algorithm.... and
588 * enabling them could cause such helpers to malfunction (for example,
589 * by overwriting data with a breakpoint instruction. On the other
590 * hand the infrastructure for running such helpers might use this
591 * procedure but rely on hardware breakpoint to detect termination.)
593 int target_resume(struct target *target, int current, uint32_t address, int handle_breakpoints, int debug_execution)
595 int retval;
597 /* We can't poll until after examine */
598 if (!target_was_examined(target)) {
599 LOG_ERROR("Target not examined yet");
600 return ERROR_FAIL;
603 target_call_event_callbacks(target, TARGET_EVENT_RESUME_START);
605 /* note that resume *must* be asynchronous. The CPU can halt before
606 * we poll. The CPU can even halt at the current PC as a result of
607 * a software breakpoint being inserted by (a bug?) the application.
609 retval = target->type->resume(target, current, address, handle_breakpoints, debug_execution);
610 if (retval != ERROR_OK)
611 return retval;
613 target_call_event_callbacks(target, TARGET_EVENT_RESUME_END);
615 return retval;
618 static int target_process_reset(struct command_context *cmd_ctx, enum target_reset_mode reset_mode)
620 char buf[100];
621 int retval;
622 Jim_Nvp *n;
623 n = Jim_Nvp_value2name_simple(nvp_reset_modes, reset_mode);
624 if (n->name == NULL) {
625 LOG_ERROR("invalid reset mode");
626 return ERROR_FAIL;
629 struct target *target;
630 for (target = all_targets; target; target = target->next)
631 target_call_reset_callbacks(target, reset_mode);
633 /* disable polling during reset to make reset event scripts
634 * more predictable, i.e. dr/irscan & pathmove in events will
635 * not have JTAG operations injected into the middle of a sequence.
637 bool save_poll = jtag_poll_get_enabled();
639 jtag_poll_set_enabled(false);
641 sprintf(buf, "ocd_process_reset %s", n->name);
642 retval = Jim_Eval(cmd_ctx->interp, buf);
644 jtag_poll_set_enabled(save_poll);
646 if (retval != JIM_OK) {
647 Jim_MakeErrorMessage(cmd_ctx->interp);
648 command_print(NULL, "%s\n", Jim_GetString(Jim_GetResult(cmd_ctx->interp), NULL));
649 return ERROR_FAIL;
652 /* We want any events to be processed before the prompt */
653 retval = target_call_timer_callbacks_now();
655 for (target = all_targets; target; target = target->next) {
656 target->type->check_reset(target);
657 target->running_alg = false;
660 return retval;
663 static int identity_virt2phys(struct target *target,
664 uint32_t virtual, uint32_t *physical)
666 *physical = virtual;
667 return ERROR_OK;
670 static int no_mmu(struct target *target, int *enabled)
672 *enabled = 0;
673 return ERROR_OK;
676 static int default_examine(struct target *target)
678 target_set_examined(target);
679 return ERROR_OK;
682 /* no check by default */
683 static int default_check_reset(struct target *target)
685 return ERROR_OK;
688 int target_examine_one(struct target *target)
690 target_call_event_callbacks(target, TARGET_EVENT_EXAMINE_START);
692 int retval = target->type->examine(target);
693 if (retval != ERROR_OK)
694 return retval;
696 target_call_event_callbacks(target, TARGET_EVENT_EXAMINE_END);
698 return ERROR_OK;
701 static int jtag_enable_callback(enum jtag_event event, void *priv)
703 struct target *target = priv;
705 if (event != JTAG_TAP_EVENT_ENABLE || !target->tap->enabled)
706 return ERROR_OK;
708 jtag_unregister_event_callback(jtag_enable_callback, target);
710 return target_examine_one(target);
713 /* Targets that correctly implement init + examine, i.e.
714 * no communication with target during init:
716 * XScale
718 int target_examine(void)
720 int retval = ERROR_OK;
721 struct target *target;
723 for (target = all_targets; target; target = target->next) {
724 /* defer examination, but don't skip it */
725 if (!target->tap->enabled) {
726 jtag_register_event_callback(jtag_enable_callback,
727 target);
728 continue;
731 retval = target_examine_one(target);
732 if (retval != ERROR_OK)
733 return retval;
735 return retval;
738 const char *target_type_name(struct target *target)
740 return target->type->name;
743 static int target_soft_reset_halt(struct target *target)
745 if (!target_was_examined(target)) {
746 LOG_ERROR("Target not examined yet");
747 return ERROR_FAIL;
749 if (!target->type->soft_reset_halt) {
750 LOG_ERROR("Target %s does not support soft_reset_halt",
751 target_name(target));
752 return ERROR_FAIL;
754 return target->type->soft_reset_halt(target);
758 * Downloads a target-specific native code algorithm to the target,
759 * and executes it. * Note that some targets may need to set up, enable,
760 * and tear down a breakpoint (hard or * soft) to detect algorithm
761 * termination, while others may support lower overhead schemes where
762 * soft breakpoints embedded in the algorithm automatically terminate the
763 * algorithm.
765 * @param target used to run the algorithm
766 * @param arch_info target-specific description of the algorithm.
768 int target_run_algorithm(struct target *target,
769 int num_mem_params, struct mem_param *mem_params,
770 int num_reg_params, struct reg_param *reg_param,
771 uint32_t entry_point, uint32_t exit_point,
772 int timeout_ms, void *arch_info)
774 int retval = ERROR_FAIL;
776 if (!target_was_examined(target)) {
777 LOG_ERROR("Target not examined yet");
778 goto done;
780 if (!target->type->run_algorithm) {
781 LOG_ERROR("Target type '%s' does not support %s",
782 target_type_name(target), __func__);
783 goto done;
786 target->running_alg = true;
787 retval = target->type->run_algorithm(target,
788 num_mem_params, mem_params,
789 num_reg_params, reg_param,
790 entry_point, exit_point, timeout_ms, arch_info);
791 target->running_alg = false;
793 done:
794 return retval;
798 * Downloads a target-specific native code algorithm to the target,
799 * executes and leaves it running.
801 * @param target used to run the algorithm
802 * @param arch_info target-specific description of the algorithm.
804 int target_start_algorithm(struct target *target,
805 int num_mem_params, struct mem_param *mem_params,
806 int num_reg_params, struct reg_param *reg_params,
807 uint32_t entry_point, uint32_t exit_point,
808 void *arch_info)
810 int retval = ERROR_FAIL;
812 if (!target_was_examined(target)) {
813 LOG_ERROR("Target not examined yet");
814 goto done;
816 if (!target->type->start_algorithm) {
817 LOG_ERROR("Target type '%s' does not support %s",
818 target_type_name(target), __func__);
819 goto done;
821 if (target->running_alg) {
822 LOG_ERROR("Target is already running an algorithm");
823 goto done;
826 target->running_alg = true;
827 retval = target->type->start_algorithm(target,
828 num_mem_params, mem_params,
829 num_reg_params, reg_params,
830 entry_point, exit_point, arch_info);
832 done:
833 return retval;
837 * Waits for an algorithm started with target_start_algorithm() to complete.
839 * @param target used to run the algorithm
840 * @param arch_info target-specific description of the algorithm.
842 int target_wait_algorithm(struct target *target,
843 int num_mem_params, struct mem_param *mem_params,
844 int num_reg_params, struct reg_param *reg_params,
845 uint32_t exit_point, int timeout_ms,
846 void *arch_info)
848 int retval = ERROR_FAIL;
850 if (!target->type->wait_algorithm) {
851 LOG_ERROR("Target type '%s' does not support %s",
852 target_type_name(target), __func__);
853 goto done;
855 if (!target->running_alg) {
856 LOG_ERROR("Target is not running an algorithm");
857 goto done;
860 retval = target->type->wait_algorithm(target,
861 num_mem_params, mem_params,
862 num_reg_params, reg_params,
863 exit_point, timeout_ms, arch_info);
864 if (retval != ERROR_TARGET_TIMEOUT)
865 target->running_alg = false;
867 done:
868 return retval;
872 * Executes a target-specific native code algorithm in the target.
873 * It differs from target_run_algorithm in that the algorithm is asynchronous.
874 * Because of this it requires an compliant algorithm:
875 * see contrib/loaders/flash/stm32f1x.S for example.
877 * @param target used to run the algorithm
880 int target_run_flash_async_algorithm(struct target *target,
881 const uint8_t *buffer, uint32_t count, int block_size,
882 int num_mem_params, struct mem_param *mem_params,
883 int num_reg_params, struct reg_param *reg_params,
884 uint32_t buffer_start, uint32_t buffer_size,
885 uint32_t entry_point, uint32_t exit_point, void *arch_info)
887 int retval;
888 int timeout = 0;
890 const uint8_t *buffer_orig = buffer;
892 /* Set up working area. First word is write pointer, second word is read pointer,
893 * rest is fifo data area. */
894 uint32_t wp_addr = buffer_start;
895 uint32_t rp_addr = buffer_start + 4;
896 uint32_t fifo_start_addr = buffer_start + 8;
897 uint32_t fifo_end_addr = buffer_start + buffer_size;
899 uint32_t wp = fifo_start_addr;
900 uint32_t rp = fifo_start_addr;
902 /* validate block_size is 2^n */
903 assert(!block_size || !(block_size & (block_size - 1)));
905 retval = target_write_u32(target, wp_addr, wp);
906 if (retval != ERROR_OK)
907 return retval;
908 retval = target_write_u32(target, rp_addr, rp);
909 if (retval != ERROR_OK)
910 return retval;
912 /* Start up algorithm on target and let it idle while writing the first chunk */
913 retval = target_start_algorithm(target, num_mem_params, mem_params,
914 num_reg_params, reg_params,
915 entry_point,
916 exit_point,
917 arch_info);
919 if (retval != ERROR_OK) {
920 LOG_ERROR("error starting target flash write algorithm");
921 return retval;
924 while (count > 0) {
926 retval = target_read_u32(target, rp_addr, &rp);
927 if (retval != ERROR_OK) {
928 LOG_ERROR("failed to get read pointer");
929 break;
932 LOG_DEBUG("offs 0x%zx count 0x%" PRIx32 " wp 0x%" PRIx32 " rp 0x%" PRIx32,
933 (size_t) (buffer - buffer_orig), count, wp, rp);
935 if (rp == 0) {
936 LOG_ERROR("flash write algorithm aborted by target");
937 retval = ERROR_FLASH_OPERATION_FAILED;
938 break;
941 if ((rp & (block_size - 1)) || rp < fifo_start_addr || rp >= fifo_end_addr) {
942 LOG_ERROR("corrupted fifo read pointer 0x%" PRIx32, rp);
943 break;
946 /* Count the number of bytes available in the fifo without
947 * crossing the wrap around. Make sure to not fill it completely,
948 * because that would make wp == rp and that's the empty condition. */
949 uint32_t thisrun_bytes;
950 if (rp > wp)
951 thisrun_bytes = rp - wp - block_size;
952 else if (rp > fifo_start_addr)
953 thisrun_bytes = fifo_end_addr - wp;
954 else
955 thisrun_bytes = fifo_end_addr - wp - block_size;
957 if (thisrun_bytes == 0) {
958 /* Throttle polling a bit if transfer is (much) faster than flash
959 * programming. The exact delay shouldn't matter as long as it's
960 * less than buffer size / flash speed. This is very unlikely to
961 * run when using high latency connections such as USB. */
962 alive_sleep(10);
964 /* to stop an infinite loop on some targets check and increment a timeout
965 * this issue was observed on a stellaris using the new ICDI interface */
966 if (timeout++ >= 500) {
967 LOG_ERROR("timeout waiting for algorithm, a target reset is recommended");
968 return ERROR_FLASH_OPERATION_FAILED;
970 continue;
973 /* reset our timeout */
974 timeout = 0;
976 /* Limit to the amount of data we actually want to write */
977 if (thisrun_bytes > count * block_size)
978 thisrun_bytes = count * block_size;
980 /* Write data to fifo */
981 retval = target_write_buffer(target, wp, thisrun_bytes, buffer);
982 if (retval != ERROR_OK)
983 break;
985 /* Update counters and wrap write pointer */
986 buffer += thisrun_bytes;
987 count -= thisrun_bytes / block_size;
988 wp += thisrun_bytes;
989 if (wp >= fifo_end_addr)
990 wp = fifo_start_addr;
992 /* Store updated write pointer to target */
993 retval = target_write_u32(target, wp_addr, wp);
994 if (retval != ERROR_OK)
995 break;
998 if (retval != ERROR_OK) {
999 /* abort flash write algorithm on target */
1000 target_write_u32(target, wp_addr, 0);
1003 int retval2 = target_wait_algorithm(target, num_mem_params, mem_params,
1004 num_reg_params, reg_params,
1005 exit_point,
1006 10000,
1007 arch_info);
1009 if (retval2 != ERROR_OK) {
1010 LOG_ERROR("error waiting for target flash write algorithm");
1011 retval = retval2;
1014 return retval;
1017 int target_read_memory(struct target *target,
1018 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
1020 if (!target_was_examined(target)) {
1021 LOG_ERROR("Target not examined yet");
1022 return ERROR_FAIL;
1024 return target->type->read_memory(target, address, size, count, buffer);
1027 int target_read_phys_memory(struct target *target,
1028 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
1030 if (!target_was_examined(target)) {
1031 LOG_ERROR("Target not examined yet");
1032 return ERROR_FAIL;
1034 return target->type->read_phys_memory(target, address, size, count, buffer);
1037 int target_write_memory(struct target *target,
1038 uint32_t address, uint32_t size, uint32_t count, const uint8_t *buffer)
1040 if (!target_was_examined(target)) {
1041 LOG_ERROR("Target not examined yet");
1042 return ERROR_FAIL;
1044 return target->type->write_memory(target, address, size, count, buffer);
1047 int target_write_phys_memory(struct target *target,
1048 uint32_t address, uint32_t size, uint32_t count, const uint8_t *buffer)
1050 if (!target_was_examined(target)) {
1051 LOG_ERROR("Target not examined yet");
1052 return ERROR_FAIL;
1054 return target->type->write_phys_memory(target, address, size, count, buffer);
1057 int target_add_breakpoint(struct target *target,
1058 struct breakpoint *breakpoint)
1060 if ((target->state != TARGET_HALTED) && (breakpoint->type != BKPT_HARD)) {
1061 LOG_WARNING("target %s is not halted", target_name(target));
1062 return ERROR_TARGET_NOT_HALTED;
1064 return target->type->add_breakpoint(target, breakpoint);
1067 int target_add_context_breakpoint(struct target *target,
1068 struct breakpoint *breakpoint)
1070 if (target->state != TARGET_HALTED) {
1071 LOG_WARNING("target %s is not halted", target_name(target));
1072 return ERROR_TARGET_NOT_HALTED;
1074 return target->type->add_context_breakpoint(target, breakpoint);
1077 int target_add_hybrid_breakpoint(struct target *target,
1078 struct breakpoint *breakpoint)
1080 if (target->state != TARGET_HALTED) {
1081 LOG_WARNING("target %s is not halted", target_name(target));
1082 return ERROR_TARGET_NOT_HALTED;
1084 return target->type->add_hybrid_breakpoint(target, breakpoint);
1087 int target_remove_breakpoint(struct target *target,
1088 struct breakpoint *breakpoint)
1090 return target->type->remove_breakpoint(target, breakpoint);
1093 int target_add_watchpoint(struct target *target,
1094 struct watchpoint *watchpoint)
1096 if (target->state != TARGET_HALTED) {
1097 LOG_WARNING("target %s is not halted", target_name(target));
1098 return ERROR_TARGET_NOT_HALTED;
1100 return target->type->add_watchpoint(target, watchpoint);
1102 int target_remove_watchpoint(struct target *target,
1103 struct watchpoint *watchpoint)
1105 return target->type->remove_watchpoint(target, watchpoint);
1107 int target_hit_watchpoint(struct target *target,
1108 struct watchpoint **hit_watchpoint)
1110 if (target->state != TARGET_HALTED) {
1111 LOG_WARNING("target %s is not halted", target->cmd_name);
1112 return ERROR_TARGET_NOT_HALTED;
1115 if (target->type->hit_watchpoint == NULL) {
1116 /* For backward compatible, if hit_watchpoint is not implemented,
1117 * return ERROR_FAIL such that gdb_server will not take the nonsense
1118 * information. */
1119 return ERROR_FAIL;
1122 return target->type->hit_watchpoint(target, hit_watchpoint);
1125 int target_get_gdb_reg_list(struct target *target,
1126 struct reg **reg_list[], int *reg_list_size,
1127 enum target_register_class reg_class)
1129 return target->type->get_gdb_reg_list(target, reg_list, reg_list_size, reg_class);
1131 int target_step(struct target *target,
1132 int current, uint32_t address, int handle_breakpoints)
1134 return target->type->step(target, current, address, handle_breakpoints);
1137 int target_get_gdb_fileio_info(struct target *target, struct gdb_fileio_info *fileio_info)
1139 if (target->state != TARGET_HALTED) {
1140 LOG_WARNING("target %s is not halted", target->cmd_name);
1141 return ERROR_TARGET_NOT_HALTED;
1143 return target->type->get_gdb_fileio_info(target, fileio_info);
1146 int target_gdb_fileio_end(struct target *target, int retcode, int fileio_errno, bool ctrl_c)
1148 if (target->state != TARGET_HALTED) {
1149 LOG_WARNING("target %s is not halted", target->cmd_name);
1150 return ERROR_TARGET_NOT_HALTED;
1152 return target->type->gdb_fileio_end(target, retcode, fileio_errno, ctrl_c);
1155 int target_profiling(struct target *target, uint32_t *samples,
1156 uint32_t max_num_samples, uint32_t *num_samples, uint32_t seconds)
1158 if (target->state != TARGET_HALTED) {
1159 LOG_WARNING("target %s is not halted", target->cmd_name);
1160 return ERROR_TARGET_NOT_HALTED;
1162 return target->type->profiling(target, samples, max_num_samples,
1163 num_samples, seconds);
1167 * Reset the @c examined flag for the given target.
1168 * Pure paranoia -- targets are zeroed on allocation.
1170 static void target_reset_examined(struct target *target)
1172 target->examined = false;
1175 static int err_read_phys_memory(struct target *target, uint32_t address,
1176 uint32_t size, uint32_t count, uint8_t *buffer)
1178 LOG_ERROR("Not implemented: %s", __func__);
1179 return ERROR_FAIL;
1182 static int err_write_phys_memory(struct target *target, uint32_t address,
1183 uint32_t size, uint32_t count, const uint8_t *buffer)
1185 LOG_ERROR("Not implemented: %s", __func__);
1186 return ERROR_FAIL;
1189 static int handle_target(void *priv);
1191 static int target_init_one(struct command_context *cmd_ctx,
1192 struct target *target)
1194 target_reset_examined(target);
1196 struct target_type *type = target->type;
1197 if (type->examine == NULL)
1198 type->examine = default_examine;
1200 if (type->check_reset == NULL)
1201 type->check_reset = default_check_reset;
1203 assert(type->init_target != NULL);
1205 int retval = type->init_target(cmd_ctx, target);
1206 if (ERROR_OK != retval) {
1207 LOG_ERROR("target '%s' init failed", target_name(target));
1208 return retval;
1211 /* Sanity-check MMU support ... stub in what we must, to help
1212 * implement it in stages, but warn if we need to do so.
1214 if (type->mmu) {
1215 if (type->write_phys_memory == NULL) {
1216 LOG_ERROR("type '%s' is missing write_phys_memory",
1217 type->name);
1218 type->write_phys_memory = err_write_phys_memory;
1220 if (type->read_phys_memory == NULL) {
1221 LOG_ERROR("type '%s' is missing read_phys_memory",
1222 type->name);
1223 type->read_phys_memory = err_read_phys_memory;
1225 if (type->virt2phys == NULL) {
1226 LOG_ERROR("type '%s' is missing virt2phys", type->name);
1227 type->virt2phys = identity_virt2phys;
1229 } else {
1230 /* Make sure no-MMU targets all behave the same: make no
1231 * distinction between physical and virtual addresses, and
1232 * ensure that virt2phys() is always an identity mapping.
1234 if (type->write_phys_memory || type->read_phys_memory || type->virt2phys)
1235 LOG_WARNING("type '%s' has bad MMU hooks", type->name);
1237 type->mmu = no_mmu;
1238 type->write_phys_memory = type->write_memory;
1239 type->read_phys_memory = type->read_memory;
1240 type->virt2phys = identity_virt2phys;
1243 if (target->type->read_buffer == NULL)
1244 target->type->read_buffer = target_read_buffer_default;
1246 if (target->type->write_buffer == NULL)
1247 target->type->write_buffer = target_write_buffer_default;
1249 if (target->type->get_gdb_fileio_info == NULL)
1250 target->type->get_gdb_fileio_info = target_get_gdb_fileio_info_default;
1252 if (target->type->gdb_fileio_end == NULL)
1253 target->type->gdb_fileio_end = target_gdb_fileio_end_default;
1255 if (target->type->profiling == NULL)
1256 target->type->profiling = target_profiling_default;
1258 return ERROR_OK;
1261 static int target_init(struct command_context *cmd_ctx)
1263 struct target *target;
1264 int retval;
1266 for (target = all_targets; target; target = target->next) {
1267 retval = target_init_one(cmd_ctx, target);
1268 if (ERROR_OK != retval)
1269 return retval;
1272 if (!all_targets)
1273 return ERROR_OK;
1275 retval = target_register_user_commands(cmd_ctx);
1276 if (ERROR_OK != retval)
1277 return retval;
1279 retval = target_register_timer_callback(&handle_target,
1280 polling_interval, 1, cmd_ctx->interp);
1281 if (ERROR_OK != retval)
1282 return retval;
1284 return ERROR_OK;
1287 COMMAND_HANDLER(handle_target_init_command)
1289 int retval;
1291 if (CMD_ARGC != 0)
1292 return ERROR_COMMAND_SYNTAX_ERROR;
1294 static bool target_initialized;
1295 if (target_initialized) {
1296 LOG_INFO("'target init' has already been called");
1297 return ERROR_OK;
1299 target_initialized = true;
1301 retval = command_run_line(CMD_CTX, "init_targets");
1302 if (ERROR_OK != retval)
1303 return retval;
1305 retval = command_run_line(CMD_CTX, "init_target_events");
1306 if (ERROR_OK != retval)
1307 return retval;
1309 retval = command_run_line(CMD_CTX, "init_board");
1310 if (ERROR_OK != retval)
1311 return retval;
1313 LOG_DEBUG("Initializing targets...");
1314 return target_init(CMD_CTX);
1317 int target_register_event_callback(int (*callback)(struct target *target,
1318 enum target_event event, void *priv), void *priv)
1320 struct target_event_callback **callbacks_p = &target_event_callbacks;
1322 if (callback == NULL)
1323 return ERROR_COMMAND_SYNTAX_ERROR;
1325 if (*callbacks_p) {
1326 while ((*callbacks_p)->next)
1327 callbacks_p = &((*callbacks_p)->next);
1328 callbacks_p = &((*callbacks_p)->next);
1331 (*callbacks_p) = malloc(sizeof(struct target_event_callback));
1332 (*callbacks_p)->callback = callback;
1333 (*callbacks_p)->priv = priv;
1334 (*callbacks_p)->next = NULL;
1336 return ERROR_OK;
1339 int target_register_reset_callback(int (*callback)(struct target *target,
1340 enum target_reset_mode reset_mode, void *priv), void *priv)
1342 struct target_reset_callback *entry;
1344 if (callback == NULL)
1345 return ERROR_COMMAND_SYNTAX_ERROR;
1347 entry = malloc(sizeof(struct target_reset_callback));
1348 if (entry == NULL) {
1349 LOG_ERROR("error allocating buffer for reset callback entry");
1350 return ERROR_COMMAND_SYNTAX_ERROR;
1353 entry->callback = callback;
1354 entry->priv = priv;
1355 list_add(&entry->list, &target_reset_callback_list);
1358 return ERROR_OK;
1361 int target_register_timer_callback(int (*callback)(void *priv), int time_ms, int periodic, void *priv)
1363 struct target_timer_callback **callbacks_p = &target_timer_callbacks;
1364 struct timeval now;
1366 if (callback == NULL)
1367 return ERROR_COMMAND_SYNTAX_ERROR;
1369 if (*callbacks_p) {
1370 while ((*callbacks_p)->next)
1371 callbacks_p = &((*callbacks_p)->next);
1372 callbacks_p = &((*callbacks_p)->next);
1375 (*callbacks_p) = malloc(sizeof(struct target_timer_callback));
1376 (*callbacks_p)->callback = callback;
1377 (*callbacks_p)->periodic = periodic;
1378 (*callbacks_p)->time_ms = time_ms;
1379 (*callbacks_p)->removed = false;
1381 gettimeofday(&now, NULL);
1382 (*callbacks_p)->when.tv_usec = now.tv_usec + (time_ms % 1000) * 1000;
1383 time_ms -= (time_ms % 1000);
1384 (*callbacks_p)->when.tv_sec = now.tv_sec + (time_ms / 1000);
1385 if ((*callbacks_p)->when.tv_usec > 1000000) {
1386 (*callbacks_p)->when.tv_usec = (*callbacks_p)->when.tv_usec - 1000000;
1387 (*callbacks_p)->when.tv_sec += 1;
1390 (*callbacks_p)->priv = priv;
1391 (*callbacks_p)->next = NULL;
1393 return ERROR_OK;
1396 int target_unregister_event_callback(int (*callback)(struct target *target,
1397 enum target_event event, void *priv), void *priv)
1399 struct target_event_callback **p = &target_event_callbacks;
1400 struct target_event_callback *c = target_event_callbacks;
1402 if (callback == NULL)
1403 return ERROR_COMMAND_SYNTAX_ERROR;
1405 while (c) {
1406 struct target_event_callback *next = c->next;
1407 if ((c->callback == callback) && (c->priv == priv)) {
1408 *p = next;
1409 free(c);
1410 return ERROR_OK;
1411 } else
1412 p = &(c->next);
1413 c = next;
1416 return ERROR_OK;
1419 int target_unregister_reset_callback(int (*callback)(struct target *target,
1420 enum target_reset_mode reset_mode, void *priv), void *priv)
1422 struct target_reset_callback *entry;
1424 if (callback == NULL)
1425 return ERROR_COMMAND_SYNTAX_ERROR;
1427 list_for_each_entry(entry, &target_reset_callback_list, list) {
1428 if (entry->callback == callback && entry->priv == priv) {
1429 list_del(&entry->list);
1430 free(entry);
1431 break;
1435 return ERROR_OK;
1438 int target_unregister_timer_callback(int (*callback)(void *priv), void *priv)
1440 if (callback == NULL)
1441 return ERROR_COMMAND_SYNTAX_ERROR;
1443 for (struct target_timer_callback *c = target_timer_callbacks;
1444 c; c = c->next) {
1445 if ((c->callback == callback) && (c->priv == priv)) {
1446 c->removed = true;
1447 return ERROR_OK;
1451 return ERROR_FAIL;
1454 int target_call_event_callbacks(struct target *target, enum target_event event)
1456 struct target_event_callback *callback = target_event_callbacks;
1457 struct target_event_callback *next_callback;
1459 if (event == TARGET_EVENT_HALTED) {
1460 /* execute early halted first */
1461 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
1464 LOG_DEBUG("target event %i (%s)", event,
1465 Jim_Nvp_value2name_simple(nvp_target_event, event)->name);
1467 target_handle_event(target, event);
1469 while (callback) {
1470 next_callback = callback->next;
1471 callback->callback(target, event, callback->priv);
1472 callback = next_callback;
1475 return ERROR_OK;
1478 int target_call_reset_callbacks(struct target *target, enum target_reset_mode reset_mode)
1480 struct target_reset_callback *callback;
1482 LOG_DEBUG("target reset %i (%s)", reset_mode,
1483 Jim_Nvp_value2name_simple(nvp_reset_modes, reset_mode)->name);
1485 list_for_each_entry(callback, &target_reset_callback_list, list)
1486 callback->callback(target, reset_mode, callback->priv);
1488 return ERROR_OK;
1491 static int target_timer_callback_periodic_restart(
1492 struct target_timer_callback *cb, struct timeval *now)
1494 int time_ms = cb->time_ms;
1495 cb->when.tv_usec = now->tv_usec + (time_ms % 1000) * 1000;
1496 time_ms -= (time_ms % 1000);
1497 cb->when.tv_sec = now->tv_sec + time_ms / 1000;
1498 if (cb->when.tv_usec > 1000000) {
1499 cb->when.tv_usec = cb->when.tv_usec - 1000000;
1500 cb->when.tv_sec += 1;
1502 return ERROR_OK;
1505 static int target_call_timer_callback(struct target_timer_callback *cb,
1506 struct timeval *now)
1508 cb->callback(cb->priv);
1510 if (cb->periodic)
1511 return target_timer_callback_periodic_restart(cb, now);
1513 return target_unregister_timer_callback(cb->callback, cb->priv);
1516 static int target_call_timer_callbacks_check_time(int checktime)
1518 static bool callback_processing;
1520 /* Do not allow nesting */
1521 if (callback_processing)
1522 return ERROR_OK;
1524 callback_processing = true;
1526 keep_alive();
1528 struct timeval now;
1529 gettimeofday(&now, NULL);
1531 /* Store an address of the place containing a pointer to the
1532 * next item; initially, that's a standalone "root of the
1533 * list" variable. */
1534 struct target_timer_callback **callback = &target_timer_callbacks;
1535 while (*callback) {
1536 if ((*callback)->removed) {
1537 struct target_timer_callback *p = *callback;
1538 *callback = (*callback)->next;
1539 free(p);
1540 continue;
1543 bool call_it = (*callback)->callback &&
1544 ((!checktime && (*callback)->periodic) ||
1545 now.tv_sec > (*callback)->when.tv_sec ||
1546 (now.tv_sec == (*callback)->when.tv_sec &&
1547 now.tv_usec >= (*callback)->when.tv_usec));
1549 if (call_it)
1550 target_call_timer_callback(*callback, &now);
1552 callback = &(*callback)->next;
1555 callback_processing = false;
1556 return ERROR_OK;
1559 int target_call_timer_callbacks(void)
1561 return target_call_timer_callbacks_check_time(1);
1564 /* invoke periodic callbacks immediately */
1565 int target_call_timer_callbacks_now(void)
1567 return target_call_timer_callbacks_check_time(0);
1570 /* Prints the working area layout for debug purposes */
1571 static void print_wa_layout(struct target *target)
1573 struct working_area *c = target->working_areas;
1575 while (c) {
1576 LOG_DEBUG("%c%c 0x%08"PRIx32"-0x%08"PRIx32" (%"PRIu32" bytes)",
1577 c->backup ? 'b' : ' ', c->free ? ' ' : '*',
1578 c->address, c->address + c->size - 1, c->size);
1579 c = c->next;
1583 /* Reduce area to size bytes, create a new free area from the remaining bytes, if any. */
1584 static void target_split_working_area(struct working_area *area, uint32_t size)
1586 assert(area->free); /* Shouldn't split an allocated area */
1587 assert(size <= area->size); /* Caller should guarantee this */
1589 /* Split only if not already the right size */
1590 if (size < area->size) {
1591 struct working_area *new_wa = malloc(sizeof(*new_wa));
1593 if (new_wa == NULL)
1594 return;
1596 new_wa->next = area->next;
1597 new_wa->size = area->size - size;
1598 new_wa->address = area->address + size;
1599 new_wa->backup = NULL;
1600 new_wa->user = NULL;
1601 new_wa->free = true;
1603 area->next = new_wa;
1604 area->size = size;
1606 /* If backup memory was allocated to this area, it has the wrong size
1607 * now so free it and it will be reallocated if/when needed */
1608 if (area->backup) {
1609 free(area->backup);
1610 area->backup = NULL;
1615 /* Merge all adjacent free areas into one */
1616 static void target_merge_working_areas(struct target *target)
1618 struct working_area *c = target->working_areas;
1620 while (c && c->next) {
1621 assert(c->next->address == c->address + c->size); /* This is an invariant */
1623 /* Find two adjacent free areas */
1624 if (c->free && c->next->free) {
1625 /* Merge the last into the first */
1626 c->size += c->next->size;
1628 /* Remove the last */
1629 struct working_area *to_be_freed = c->next;
1630 c->next = c->next->next;
1631 if (to_be_freed->backup)
1632 free(to_be_freed->backup);
1633 free(to_be_freed);
1635 /* If backup memory was allocated to the remaining area, it's has
1636 * the wrong size now */
1637 if (c->backup) {
1638 free(c->backup);
1639 c->backup = NULL;
1641 } else {
1642 c = c->next;
1647 int target_alloc_working_area_try(struct target *target, uint32_t size, struct working_area **area)
1649 /* Reevaluate working area address based on MMU state*/
1650 if (target->working_areas == NULL) {
1651 int retval;
1652 int enabled;
1654 retval = target->type->mmu(target, &enabled);
1655 if (retval != ERROR_OK)
1656 return retval;
1658 if (!enabled) {
1659 if (target->working_area_phys_spec) {
1660 LOG_DEBUG("MMU disabled, using physical "
1661 "address for working memory 0x%08"PRIx32,
1662 target->working_area_phys);
1663 target->working_area = target->working_area_phys;
1664 } else {
1665 LOG_ERROR("No working memory available. "
1666 "Specify -work-area-phys to target.");
1667 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1669 } else {
1670 if (target->working_area_virt_spec) {
1671 LOG_DEBUG("MMU enabled, using virtual "
1672 "address for working memory 0x%08"PRIx32,
1673 target->working_area_virt);
1674 target->working_area = target->working_area_virt;
1675 } else {
1676 LOG_ERROR("No working memory available. "
1677 "Specify -work-area-virt to target.");
1678 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1682 /* Set up initial working area on first call */
1683 struct working_area *new_wa = malloc(sizeof(*new_wa));
1684 if (new_wa) {
1685 new_wa->next = NULL;
1686 new_wa->size = target->working_area_size & ~3UL; /* 4-byte align */
1687 new_wa->address = target->working_area;
1688 new_wa->backup = NULL;
1689 new_wa->user = NULL;
1690 new_wa->free = true;
1693 target->working_areas = new_wa;
1696 /* only allocate multiples of 4 byte */
1697 if (size % 4)
1698 size = (size + 3) & (~3UL);
1700 struct working_area *c = target->working_areas;
1702 /* Find the first large enough working area */
1703 while (c) {
1704 if (c->free && c->size >= size)
1705 break;
1706 c = c->next;
1709 if (c == NULL)
1710 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1712 /* Split the working area into the requested size */
1713 target_split_working_area(c, size);
1715 LOG_DEBUG("allocated new working area of %"PRIu32" bytes at address 0x%08"PRIx32, size, c->address);
1717 if (target->backup_working_area) {
1718 if (c->backup == NULL) {
1719 c->backup = malloc(c->size);
1720 if (c->backup == NULL)
1721 return ERROR_FAIL;
1724 int retval = target_read_memory(target, c->address, 4, c->size / 4, c->backup);
1725 if (retval != ERROR_OK)
1726 return retval;
1729 /* mark as used, and return the new (reused) area */
1730 c->free = false;
1731 *area = c;
1733 /* user pointer */
1734 c->user = area;
1736 print_wa_layout(target);
1738 return ERROR_OK;
1741 int target_alloc_working_area(struct target *target, uint32_t size, struct working_area **area)
1743 int retval;
1745 retval = target_alloc_working_area_try(target, size, area);
1746 if (retval == ERROR_TARGET_RESOURCE_NOT_AVAILABLE)
1747 LOG_WARNING("not enough working area available(requested %"PRIu32")", size);
1748 return retval;
1752 static int target_restore_working_area(struct target *target, struct working_area *area)
1754 int retval = ERROR_OK;
1756 if (target->backup_working_area && area->backup != NULL) {
1757 retval = target_write_memory(target, area->address, 4, area->size / 4, area->backup);
1758 if (retval != ERROR_OK)
1759 LOG_ERROR("failed to restore %"PRIu32" bytes of working area at address 0x%08"PRIx32,
1760 area->size, area->address);
1763 return retval;
1766 /* Restore the area's backup memory, if any, and return the area to the allocation pool */
1767 static int target_free_working_area_restore(struct target *target, struct working_area *area, int restore)
1769 int retval = ERROR_OK;
1771 if (area->free)
1772 return retval;
1774 if (restore) {
1775 retval = target_restore_working_area(target, area);
1776 /* REVISIT: Perhaps the area should be freed even if restoring fails. */
1777 if (retval != ERROR_OK)
1778 return retval;
1781 area->free = true;
1783 LOG_DEBUG("freed %"PRIu32" bytes of working area at address 0x%08"PRIx32,
1784 area->size, area->address);
1786 /* mark user pointer invalid */
1787 /* TODO: Is this really safe? It points to some previous caller's memory.
1788 * How could we know that the area pointer is still in that place and not
1789 * some other vital data? What's the purpose of this, anyway? */
1790 *area->user = NULL;
1791 area->user = NULL;
1793 target_merge_working_areas(target);
1795 print_wa_layout(target);
1797 return retval;
1800 int target_free_working_area(struct target *target, struct working_area *area)
1802 return target_free_working_area_restore(target, area, 1);
1805 void target_quit(void)
1807 struct target_event_callback *pe = target_event_callbacks;
1808 while (pe) {
1809 struct target_event_callback *t = pe->next;
1810 free(pe);
1811 pe = t;
1813 target_event_callbacks = NULL;
1815 struct target_timer_callback *pt = target_timer_callbacks;
1816 while (pt) {
1817 struct target_timer_callback *t = pt->next;
1818 free(pt);
1819 pt = t;
1821 target_timer_callbacks = NULL;
1823 for (struct target *target = all_targets;
1824 target; target = target->next) {
1825 if (target->type->deinit_target)
1826 target->type->deinit_target(target);
1830 /* free resources and restore memory, if restoring memory fails,
1831 * free up resources anyway
1833 static void target_free_all_working_areas_restore(struct target *target, int restore)
1835 struct working_area *c = target->working_areas;
1837 LOG_DEBUG("freeing all working areas");
1839 /* Loop through all areas, restoring the allocated ones and marking them as free */
1840 while (c) {
1841 if (!c->free) {
1842 if (restore)
1843 target_restore_working_area(target, c);
1844 c->free = true;
1845 *c->user = NULL; /* Same as above */
1846 c->user = NULL;
1848 c = c->next;
1851 /* Run a merge pass to combine all areas into one */
1852 target_merge_working_areas(target);
1854 print_wa_layout(target);
1857 void target_free_all_working_areas(struct target *target)
1859 target_free_all_working_areas_restore(target, 1);
1862 /* Find the largest number of bytes that can be allocated */
1863 uint32_t target_get_working_area_avail(struct target *target)
1865 struct working_area *c = target->working_areas;
1866 uint32_t max_size = 0;
1868 if (c == NULL)
1869 return target->working_area_size;
1871 while (c) {
1872 if (c->free && max_size < c->size)
1873 max_size = c->size;
1875 c = c->next;
1878 return max_size;
1881 int target_arch_state(struct target *target)
1883 int retval;
1884 if (target == NULL) {
1885 LOG_USER("No target has been configured");
1886 return ERROR_OK;
1889 LOG_USER("target state: %s", target_state_name(target));
1891 if (target->state != TARGET_HALTED)
1892 return ERROR_OK;
1894 retval = target->type->arch_state(target);
1895 return retval;
1898 static int target_get_gdb_fileio_info_default(struct target *target,
1899 struct gdb_fileio_info *fileio_info)
1901 /* If target does not support semi-hosting function, target
1902 has no need to provide .get_gdb_fileio_info callback.
1903 It just return ERROR_FAIL and gdb_server will return "Txx"
1904 as target halted every time. */
1905 return ERROR_FAIL;
1908 static int target_gdb_fileio_end_default(struct target *target,
1909 int retcode, int fileio_errno, bool ctrl_c)
1911 return ERROR_OK;
1914 static int target_profiling_default(struct target *target, uint32_t *samples,
1915 uint32_t max_num_samples, uint32_t *num_samples, uint32_t seconds)
1917 struct timeval timeout, now;
1919 gettimeofday(&timeout, NULL);
1920 timeval_add_time(&timeout, seconds, 0);
1922 LOG_INFO("Starting profiling. Halting and resuming the"
1923 " target as often as we can...");
1925 uint32_t sample_count = 0;
1926 /* hopefully it is safe to cache! We want to stop/restart as quickly as possible. */
1927 struct reg *reg = register_get_by_name(target->reg_cache, "pc", 1);
1929 int retval = ERROR_OK;
1930 for (;;) {
1931 target_poll(target);
1932 if (target->state == TARGET_HALTED) {
1933 uint32_t t = buf_get_u32(reg->value, 0, 32);
1934 samples[sample_count++] = t;
1935 /* current pc, addr = 0, do not handle breakpoints, not debugging */
1936 retval = target_resume(target, 1, 0, 0, 0);
1937 target_poll(target);
1938 alive_sleep(10); /* sleep 10ms, i.e. <100 samples/second. */
1939 } else if (target->state == TARGET_RUNNING) {
1940 /* We want to quickly sample the PC. */
1941 retval = target_halt(target);
1942 } else {
1943 LOG_INFO("Target not halted or running");
1944 retval = ERROR_OK;
1945 break;
1948 if (retval != ERROR_OK)
1949 break;
1951 gettimeofday(&now, NULL);
1952 if ((sample_count >= max_num_samples) ||
1953 ((now.tv_sec >= timeout.tv_sec) && (now.tv_usec >= timeout.tv_usec))) {
1954 LOG_INFO("Profiling completed. %" PRIu32 " samples.", sample_count);
1955 break;
1959 *num_samples = sample_count;
1960 return retval;
1963 /* Single aligned words are guaranteed to use 16 or 32 bit access
1964 * mode respectively, otherwise data is handled as quickly as
1965 * possible
1967 int target_write_buffer(struct target *target, uint32_t address, uint32_t size, const uint8_t *buffer)
1969 LOG_DEBUG("writing buffer of %i byte at 0x%8.8x",
1970 (int)size, (unsigned)address);
1972 if (!target_was_examined(target)) {
1973 LOG_ERROR("Target not examined yet");
1974 return ERROR_FAIL;
1977 if (size == 0)
1978 return ERROR_OK;
1980 if ((address + size - 1) < address) {
1981 /* GDB can request this when e.g. PC is 0xfffffffc*/
1982 LOG_ERROR("address + size wrapped(0x%08x, 0x%08x)",
1983 (unsigned)address,
1984 (unsigned)size);
1985 return ERROR_FAIL;
1988 return target->type->write_buffer(target, address, size, buffer);
1991 static int target_write_buffer_default(struct target *target, uint32_t address, uint32_t count, const uint8_t *buffer)
1993 uint32_t size;
1995 /* Align up to maximum 4 bytes. The loop condition makes sure the next pass
1996 * will have something to do with the size we leave to it. */
1997 for (size = 1; size < 4 && count >= size * 2 + (address & size); size *= 2) {
1998 if (address & size) {
1999 int retval = target_write_memory(target, address, size, 1, buffer);
2000 if (retval != ERROR_OK)
2001 return retval;
2002 address += size;
2003 count -= size;
2004 buffer += size;
2008 /* Write the data with as large access size as possible. */
2009 for (; size > 0; size /= 2) {
2010 uint32_t aligned = count - count % size;
2011 if (aligned > 0) {
2012 int retval = target_write_memory(target, address, size, aligned / size, buffer);
2013 if (retval != ERROR_OK)
2014 return retval;
2015 address += aligned;
2016 count -= aligned;
2017 buffer += aligned;
2021 return ERROR_OK;
2024 /* Single aligned words are guaranteed to use 16 or 32 bit access
2025 * mode respectively, otherwise data is handled as quickly as
2026 * possible
2028 int target_read_buffer(struct target *target, uint32_t address, uint32_t size, uint8_t *buffer)
2030 LOG_DEBUG("reading buffer of %i byte at 0x%8.8x",
2031 (int)size, (unsigned)address);
2033 if (!target_was_examined(target)) {
2034 LOG_ERROR("Target not examined yet");
2035 return ERROR_FAIL;
2038 if (size == 0)
2039 return ERROR_OK;
2041 if ((address + size - 1) < address) {
2042 /* GDB can request this when e.g. PC is 0xfffffffc*/
2043 LOG_ERROR("address + size wrapped(0x%08" PRIx32 ", 0x%08" PRIx32 ")",
2044 address,
2045 size);
2046 return ERROR_FAIL;
2049 return target->type->read_buffer(target, address, size, buffer);
2052 static int target_read_buffer_default(struct target *target, uint32_t address, uint32_t count, uint8_t *buffer)
2054 uint32_t size;
2056 /* Align up to maximum 4 bytes. The loop condition makes sure the next pass
2057 * will have something to do with the size we leave to it. */
2058 for (size = 1; size < 4 && count >= size * 2 + (address & size); size *= 2) {
2059 if (address & size) {
2060 int retval = target_read_memory(target, address, size, 1, buffer);
2061 if (retval != ERROR_OK)
2062 return retval;
2063 address += size;
2064 count -= size;
2065 buffer += size;
2069 /* Read the data with as large access size as possible. */
2070 for (; size > 0; size /= 2) {
2071 uint32_t aligned = count - count % size;
2072 if (aligned > 0) {
2073 int retval = target_read_memory(target, address, size, aligned / size, buffer);
2074 if (retval != ERROR_OK)
2075 return retval;
2076 address += aligned;
2077 count -= aligned;
2078 buffer += aligned;
2082 return ERROR_OK;
2085 int target_checksum_memory(struct target *target, uint32_t address, uint32_t size, uint32_t* crc)
2087 uint8_t *buffer;
2088 int retval;
2089 uint32_t i;
2090 uint32_t checksum = 0;
2091 if (!target_was_examined(target)) {
2092 LOG_ERROR("Target not examined yet");
2093 return ERROR_FAIL;
2096 retval = target->type->checksum_memory(target, address, size, &checksum);
2097 if (retval != ERROR_OK) {
2098 buffer = malloc(size);
2099 if (buffer == NULL) {
2100 LOG_ERROR("error allocating buffer for section (%d bytes)", (int)size);
2101 return ERROR_COMMAND_SYNTAX_ERROR;
2103 retval = target_read_buffer(target, address, size, buffer);
2104 if (retval != ERROR_OK) {
2105 free(buffer);
2106 return retval;
2109 /* convert to target endianness */
2110 for (i = 0; i < (size/sizeof(uint32_t)); i++) {
2111 uint32_t target_data;
2112 target_data = target_buffer_get_u32(target, &buffer[i*sizeof(uint32_t)]);
2113 target_buffer_set_u32(target, &buffer[i*sizeof(uint32_t)], target_data);
2116 retval = image_calculate_checksum(buffer, size, &checksum);
2117 free(buffer);
2120 *crc = checksum;
2122 return retval;
2125 int target_blank_check_memory(struct target *target, uint32_t address, uint32_t size, uint32_t* blank)
2127 int retval;
2128 if (!target_was_examined(target)) {
2129 LOG_ERROR("Target not examined yet");
2130 return ERROR_FAIL;
2133 if (target->type->blank_check_memory == 0)
2134 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
2136 retval = target->type->blank_check_memory(target, address, size, blank);
2138 return retval;
2141 int target_read_u64(struct target *target, uint64_t address, uint64_t *value)
2143 uint8_t value_buf[8];
2144 if (!target_was_examined(target)) {
2145 LOG_ERROR("Target not examined yet");
2146 return ERROR_FAIL;
2149 int retval = target_read_memory(target, address, 8, 1, value_buf);
2151 if (retval == ERROR_OK) {
2152 *value = target_buffer_get_u64(target, value_buf);
2153 LOG_DEBUG("address: 0x%" PRIx64 ", value: 0x%16.16" PRIx64 "",
2154 address,
2155 *value);
2156 } else {
2157 *value = 0x0;
2158 LOG_DEBUG("address: 0x%" PRIx64 " failed",
2159 address);
2162 return retval;
2165 int target_read_u32(struct target *target, uint32_t address, uint32_t *value)
2167 uint8_t value_buf[4];
2168 if (!target_was_examined(target)) {
2169 LOG_ERROR("Target not examined yet");
2170 return ERROR_FAIL;
2173 int retval = target_read_memory(target, address, 4, 1, value_buf);
2175 if (retval == ERROR_OK) {
2176 *value = target_buffer_get_u32(target, value_buf);
2177 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%8.8" PRIx32 "",
2178 address,
2179 *value);
2180 } else {
2181 *value = 0x0;
2182 LOG_DEBUG("address: 0x%8.8" PRIx32 " failed",
2183 address);
2186 return retval;
2189 int target_read_u16(struct target *target, uint32_t address, uint16_t *value)
2191 uint8_t value_buf[2];
2192 if (!target_was_examined(target)) {
2193 LOG_ERROR("Target not examined yet");
2194 return ERROR_FAIL;
2197 int retval = target_read_memory(target, address, 2, 1, value_buf);
2199 if (retval == ERROR_OK) {
2200 *value = target_buffer_get_u16(target, value_buf);
2201 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%4.4x",
2202 address,
2203 *value);
2204 } else {
2205 *value = 0x0;
2206 LOG_DEBUG("address: 0x%8.8" PRIx32 " failed",
2207 address);
2210 return retval;
2213 int target_read_u8(struct target *target, uint32_t address, uint8_t *value)
2215 if (!target_was_examined(target)) {
2216 LOG_ERROR("Target not examined yet");
2217 return ERROR_FAIL;
2220 int retval = target_read_memory(target, address, 1, 1, value);
2222 if (retval == ERROR_OK) {
2223 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%2.2x",
2224 address,
2225 *value);
2226 } else {
2227 *value = 0x0;
2228 LOG_DEBUG("address: 0x%8.8" PRIx32 " failed",
2229 address);
2232 return retval;
2235 int target_write_u64(struct target *target, uint64_t address, uint64_t value)
2237 int retval;
2238 uint8_t value_buf[8];
2239 if (!target_was_examined(target)) {
2240 LOG_ERROR("Target not examined yet");
2241 return ERROR_FAIL;
2244 LOG_DEBUG("address: 0x%" PRIx64 ", value: 0x%16.16" PRIx64 "",
2245 address,
2246 value);
2248 target_buffer_set_u64(target, value_buf, value);
2249 retval = target_write_memory(target, address, 8, 1, value_buf);
2250 if (retval != ERROR_OK)
2251 LOG_DEBUG("failed: %i", retval);
2253 return retval;
2256 int target_write_u32(struct target *target, uint32_t address, uint32_t value)
2258 int retval;
2259 uint8_t value_buf[4];
2260 if (!target_was_examined(target)) {
2261 LOG_ERROR("Target not examined yet");
2262 return ERROR_FAIL;
2265 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%8.8" PRIx32 "",
2266 address,
2267 value);
2269 target_buffer_set_u32(target, value_buf, value);
2270 retval = target_write_memory(target, address, 4, 1, value_buf);
2271 if (retval != ERROR_OK)
2272 LOG_DEBUG("failed: %i", retval);
2274 return retval;
2277 int target_write_u16(struct target *target, uint32_t address, uint16_t value)
2279 int retval;
2280 uint8_t value_buf[2];
2281 if (!target_was_examined(target)) {
2282 LOG_ERROR("Target not examined yet");
2283 return ERROR_FAIL;
2286 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%8.8x",
2287 address,
2288 value);
2290 target_buffer_set_u16(target, value_buf, value);
2291 retval = target_write_memory(target, address, 2, 1, value_buf);
2292 if (retval != ERROR_OK)
2293 LOG_DEBUG("failed: %i", retval);
2295 return retval;
2298 int target_write_u8(struct target *target, uint32_t address, uint8_t value)
2300 int retval;
2301 if (!target_was_examined(target)) {
2302 LOG_ERROR("Target not examined yet");
2303 return ERROR_FAIL;
2306 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%2.2x",
2307 address, value);
2309 retval = target_write_memory(target, address, 1, 1, &value);
2310 if (retval != ERROR_OK)
2311 LOG_DEBUG("failed: %i", retval);
2313 return retval;
2316 static int find_target(struct command_context *cmd_ctx, const char *name)
2318 struct target *target = get_target(name);
2319 if (target == NULL) {
2320 LOG_ERROR("Target: %s is unknown, try one of:\n", name);
2321 return ERROR_FAIL;
2323 if (!target->tap->enabled) {
2324 LOG_USER("Target: TAP %s is disabled, "
2325 "can't be the current target\n",
2326 target->tap->dotted_name);
2327 return ERROR_FAIL;
2330 cmd_ctx->current_target = target->target_number;
2331 return ERROR_OK;
2335 COMMAND_HANDLER(handle_targets_command)
2337 int retval = ERROR_OK;
2338 if (CMD_ARGC == 1) {
2339 retval = find_target(CMD_CTX, CMD_ARGV[0]);
2340 if (retval == ERROR_OK) {
2341 /* we're done! */
2342 return retval;
2346 struct target *target = all_targets;
2347 command_print(CMD_CTX, " TargetName Type Endian TapName State ");
2348 command_print(CMD_CTX, "-- ------------------ ---------- ------ ------------------ ------------");
2349 while (target) {
2350 const char *state;
2351 char marker = ' ';
2353 if (target->tap->enabled)
2354 state = target_state_name(target);
2355 else
2356 state = "tap-disabled";
2358 if (CMD_CTX->current_target == target->target_number)
2359 marker = '*';
2361 /* keep columns lined up to match the headers above */
2362 command_print(CMD_CTX,
2363 "%2d%c %-18s %-10s %-6s %-18s %s",
2364 target->target_number,
2365 marker,
2366 target_name(target),
2367 target_type_name(target),
2368 Jim_Nvp_value2name_simple(nvp_target_endian,
2369 target->endianness)->name,
2370 target->tap->dotted_name,
2371 state);
2372 target = target->next;
2375 return retval;
2378 /* every 300ms we check for reset & powerdropout and issue a "reset halt" if so. */
2380 static int powerDropout;
2381 static int srstAsserted;
2383 static int runPowerRestore;
2384 static int runPowerDropout;
2385 static int runSrstAsserted;
2386 static int runSrstDeasserted;
2388 static int sense_handler(void)
2390 static int prevSrstAsserted;
2391 static int prevPowerdropout;
2393 int retval = jtag_power_dropout(&powerDropout);
2394 if (retval != ERROR_OK)
2395 return retval;
2397 int powerRestored;
2398 powerRestored = prevPowerdropout && !powerDropout;
2399 if (powerRestored)
2400 runPowerRestore = 1;
2402 long long current = timeval_ms();
2403 static long long lastPower;
2404 int waitMore = lastPower + 2000 > current;
2405 if (powerDropout && !waitMore) {
2406 runPowerDropout = 1;
2407 lastPower = current;
2410 retval = jtag_srst_asserted(&srstAsserted);
2411 if (retval != ERROR_OK)
2412 return retval;
2414 int srstDeasserted;
2415 srstDeasserted = prevSrstAsserted && !srstAsserted;
2417 static long long lastSrst;
2418 waitMore = lastSrst + 2000 > current;
2419 if (srstDeasserted && !waitMore) {
2420 runSrstDeasserted = 1;
2421 lastSrst = current;
2424 if (!prevSrstAsserted && srstAsserted)
2425 runSrstAsserted = 1;
2427 prevSrstAsserted = srstAsserted;
2428 prevPowerdropout = powerDropout;
2430 if (srstDeasserted || powerRestored) {
2431 /* Other than logging the event we can't do anything here.
2432 * Issuing a reset is a particularly bad idea as we might
2433 * be inside a reset already.
2437 return ERROR_OK;
2440 /* process target state changes */
2441 static int handle_target(void *priv)
2443 Jim_Interp *interp = (Jim_Interp *)priv;
2444 int retval = ERROR_OK;
2446 if (!is_jtag_poll_safe()) {
2447 /* polling is disabled currently */
2448 return ERROR_OK;
2451 /* we do not want to recurse here... */
2452 static int recursive;
2453 if (!recursive) {
2454 recursive = 1;
2455 sense_handler();
2456 /* danger! running these procedures can trigger srst assertions and power dropouts.
2457 * We need to avoid an infinite loop/recursion here and we do that by
2458 * clearing the flags after running these events.
2460 int did_something = 0;
2461 if (runSrstAsserted) {
2462 LOG_INFO("srst asserted detected, running srst_asserted proc.");
2463 Jim_Eval(interp, "srst_asserted");
2464 did_something = 1;
2466 if (runSrstDeasserted) {
2467 Jim_Eval(interp, "srst_deasserted");
2468 did_something = 1;
2470 if (runPowerDropout) {
2471 LOG_INFO("Power dropout detected, running power_dropout proc.");
2472 Jim_Eval(interp, "power_dropout");
2473 did_something = 1;
2475 if (runPowerRestore) {
2476 Jim_Eval(interp, "power_restore");
2477 did_something = 1;
2480 if (did_something) {
2481 /* clear detect flags */
2482 sense_handler();
2485 /* clear action flags */
2487 runSrstAsserted = 0;
2488 runSrstDeasserted = 0;
2489 runPowerRestore = 0;
2490 runPowerDropout = 0;
2492 recursive = 0;
2495 /* Poll targets for state changes unless that's globally disabled.
2496 * Skip targets that are currently disabled.
2498 for (struct target *target = all_targets;
2499 is_jtag_poll_safe() && target;
2500 target = target->next) {
2502 if (!target_was_examined(target))
2503 continue;
2505 if (!target->tap->enabled)
2506 continue;
2508 if (target->backoff.times > target->backoff.count) {
2509 /* do not poll this time as we failed previously */
2510 target->backoff.count++;
2511 continue;
2513 target->backoff.count = 0;
2515 /* only poll target if we've got power and srst isn't asserted */
2516 if (!powerDropout && !srstAsserted) {
2517 /* polling may fail silently until the target has been examined */
2518 retval = target_poll(target);
2519 if (retval != ERROR_OK) {
2520 /* 100ms polling interval. Increase interval between polling up to 5000ms */
2521 if (target->backoff.times * polling_interval < 5000) {
2522 target->backoff.times *= 2;
2523 target->backoff.times++;
2525 LOG_USER("Polling target %s failed, GDB will be halted. Polling again in %dms",
2526 target_name(target),
2527 target->backoff.times * polling_interval);
2529 /* Tell GDB to halt the debugger. This allows the user to
2530 * run monitor commands to handle the situation.
2532 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
2533 return retval;
2535 /* Since we succeeded, we reset backoff count */
2536 if (target->backoff.times > 0) {
2537 LOG_USER("Polling target %s succeeded again, trying to reexamine", target_name(target));
2538 target_reset_examined(target);
2539 retval = target_examine_one(target);
2540 /* Target examination could have failed due to unstable connection,
2541 * but we set the examined flag anyway to repoll it later */
2542 if (retval != ERROR_OK) {
2543 target->examined = true;
2544 return retval;
2548 target->backoff.times = 0;
2552 return retval;
2555 COMMAND_HANDLER(handle_reg_command)
2557 struct target *target;
2558 struct reg *reg = NULL;
2559 unsigned count = 0;
2560 char *value;
2562 LOG_DEBUG("-");
2564 target = get_current_target(CMD_CTX);
2566 /* list all available registers for the current target */
2567 if (CMD_ARGC == 0) {
2568 struct reg_cache *cache = target->reg_cache;
2570 count = 0;
2571 while (cache) {
2572 unsigned i;
2574 command_print(CMD_CTX, "===== %s", cache->name);
2576 for (i = 0, reg = cache->reg_list;
2577 i < cache->num_regs;
2578 i++, reg++, count++) {
2579 /* only print cached values if they are valid */
2580 if (reg->valid) {
2581 value = buf_to_str(reg->value,
2582 reg->size, 16);
2583 command_print(CMD_CTX,
2584 "(%i) %s (/%" PRIu32 "): 0x%s%s",
2585 count, reg->name,
2586 reg->size, value,
2587 reg->dirty
2588 ? " (dirty)"
2589 : "");
2590 free(value);
2591 } else {
2592 command_print(CMD_CTX, "(%i) %s (/%" PRIu32 ")",
2593 count, reg->name,
2594 reg->size) ;
2597 cache = cache->next;
2600 return ERROR_OK;
2603 /* access a single register by its ordinal number */
2604 if ((CMD_ARGV[0][0] >= '0') && (CMD_ARGV[0][0] <= '9')) {
2605 unsigned num;
2606 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[0], num);
2608 struct reg_cache *cache = target->reg_cache;
2609 count = 0;
2610 while (cache) {
2611 unsigned i;
2612 for (i = 0; i < cache->num_regs; i++) {
2613 if (count++ == num) {
2614 reg = &cache->reg_list[i];
2615 break;
2618 if (reg)
2619 break;
2620 cache = cache->next;
2623 if (!reg) {
2624 command_print(CMD_CTX, "%i is out of bounds, the current target "
2625 "has only %i registers (0 - %i)", num, count, count - 1);
2626 return ERROR_OK;
2628 } else {
2629 /* access a single register by its name */
2630 reg = register_get_by_name(target->reg_cache, CMD_ARGV[0], 1);
2632 if (!reg) {
2633 command_print(CMD_CTX, "register %s not found in current target", CMD_ARGV[0]);
2634 return ERROR_OK;
2638 assert(reg != NULL); /* give clang a hint that we *know* reg is != NULL here */
2640 /* display a register */
2641 if ((CMD_ARGC == 1) || ((CMD_ARGC == 2) && !((CMD_ARGV[1][0] >= '0')
2642 && (CMD_ARGV[1][0] <= '9')))) {
2643 if ((CMD_ARGC == 2) && (strcmp(CMD_ARGV[1], "force") == 0))
2644 reg->valid = 0;
2646 if (reg->valid == 0)
2647 reg->type->get(reg);
2648 value = buf_to_str(reg->value, reg->size, 16);
2649 command_print(CMD_CTX, "%s (/%i): 0x%s", reg->name, (int)(reg->size), value);
2650 free(value);
2651 return ERROR_OK;
2654 /* set register value */
2655 if (CMD_ARGC == 2) {
2656 uint8_t *buf = malloc(DIV_ROUND_UP(reg->size, 8));
2657 if (buf == NULL)
2658 return ERROR_FAIL;
2659 str_to_buf(CMD_ARGV[1], strlen(CMD_ARGV[1]), buf, reg->size, 0);
2661 reg->type->set(reg, buf);
2663 value = buf_to_str(reg->value, reg->size, 16);
2664 command_print(CMD_CTX, "%s (/%i): 0x%s", reg->name, (int)(reg->size), value);
2665 free(value);
2667 free(buf);
2669 return ERROR_OK;
2672 return ERROR_COMMAND_SYNTAX_ERROR;
2675 COMMAND_HANDLER(handle_poll_command)
2677 int retval = ERROR_OK;
2678 struct target *target = get_current_target(CMD_CTX);
2680 if (CMD_ARGC == 0) {
2681 command_print(CMD_CTX, "background polling: %s",
2682 jtag_poll_get_enabled() ? "on" : "off");
2683 command_print(CMD_CTX, "TAP: %s (%s)",
2684 target->tap->dotted_name,
2685 target->tap->enabled ? "enabled" : "disabled");
2686 if (!target->tap->enabled)
2687 return ERROR_OK;
2688 retval = target_poll(target);
2689 if (retval != ERROR_OK)
2690 return retval;
2691 retval = target_arch_state(target);
2692 if (retval != ERROR_OK)
2693 return retval;
2694 } else if (CMD_ARGC == 1) {
2695 bool enable;
2696 COMMAND_PARSE_ON_OFF(CMD_ARGV[0], enable);
2697 jtag_poll_set_enabled(enable);
2698 } else
2699 return ERROR_COMMAND_SYNTAX_ERROR;
2701 return retval;
2704 COMMAND_HANDLER(handle_wait_halt_command)
2706 if (CMD_ARGC > 1)
2707 return ERROR_COMMAND_SYNTAX_ERROR;
2709 unsigned ms = DEFAULT_HALT_TIMEOUT;
2710 if (1 == CMD_ARGC) {
2711 int retval = parse_uint(CMD_ARGV[0], &ms);
2712 if (ERROR_OK != retval)
2713 return ERROR_COMMAND_SYNTAX_ERROR;
2716 struct target *target = get_current_target(CMD_CTX);
2717 return target_wait_state(target, TARGET_HALTED, ms);
2720 /* wait for target state to change. The trick here is to have a low
2721 * latency for short waits and not to suck up all the CPU time
2722 * on longer waits.
2724 * After 500ms, keep_alive() is invoked
2726 int target_wait_state(struct target *target, enum target_state state, int ms)
2728 int retval;
2729 long long then = 0, cur;
2730 int once = 1;
2732 for (;;) {
2733 retval = target_poll(target);
2734 if (retval != ERROR_OK)
2735 return retval;
2736 if (target->state == state)
2737 break;
2738 cur = timeval_ms();
2739 if (once) {
2740 once = 0;
2741 then = timeval_ms();
2742 LOG_DEBUG("waiting for target %s...",
2743 Jim_Nvp_value2name_simple(nvp_target_state, state)->name);
2746 if (cur-then > 500)
2747 keep_alive();
2749 if ((cur-then) > ms) {
2750 LOG_ERROR("timed out while waiting for target %s",
2751 Jim_Nvp_value2name_simple(nvp_target_state, state)->name);
2752 return ERROR_FAIL;
2756 return ERROR_OK;
2759 COMMAND_HANDLER(handle_halt_command)
2761 LOG_DEBUG("-");
2763 struct target *target = get_current_target(CMD_CTX);
2764 int retval = target_halt(target);
2765 if (ERROR_OK != retval)
2766 return retval;
2768 if (CMD_ARGC == 1) {
2769 unsigned wait_local;
2770 retval = parse_uint(CMD_ARGV[0], &wait_local);
2771 if (ERROR_OK != retval)
2772 return ERROR_COMMAND_SYNTAX_ERROR;
2773 if (!wait_local)
2774 return ERROR_OK;
2777 return CALL_COMMAND_HANDLER(handle_wait_halt_command);
2780 COMMAND_HANDLER(handle_soft_reset_halt_command)
2782 struct target *target = get_current_target(CMD_CTX);
2784 LOG_USER("requesting target halt and executing a soft reset");
2786 target_soft_reset_halt(target);
2788 return ERROR_OK;
2791 COMMAND_HANDLER(handle_reset_command)
2793 if (CMD_ARGC > 1)
2794 return ERROR_COMMAND_SYNTAX_ERROR;
2796 enum target_reset_mode reset_mode = RESET_RUN;
2797 if (CMD_ARGC == 1) {
2798 const Jim_Nvp *n;
2799 n = Jim_Nvp_name2value_simple(nvp_reset_modes, CMD_ARGV[0]);
2800 if ((n->name == NULL) || (n->value == RESET_UNKNOWN))
2801 return ERROR_COMMAND_SYNTAX_ERROR;
2802 reset_mode = n->value;
2805 /* reset *all* targets */
2806 return target_process_reset(CMD_CTX, reset_mode);
2810 COMMAND_HANDLER(handle_resume_command)
2812 int current = 1;
2813 if (CMD_ARGC > 1)
2814 return ERROR_COMMAND_SYNTAX_ERROR;
2816 struct target *target = get_current_target(CMD_CTX);
2818 /* with no CMD_ARGV, resume from current pc, addr = 0,
2819 * with one arguments, addr = CMD_ARGV[0],
2820 * handle breakpoints, not debugging */
2821 uint32_t addr = 0;
2822 if (CMD_ARGC == 1) {
2823 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
2824 current = 0;
2827 return target_resume(target, current, addr, 1, 0);
2830 COMMAND_HANDLER(handle_step_command)
2832 if (CMD_ARGC > 1)
2833 return ERROR_COMMAND_SYNTAX_ERROR;
2835 LOG_DEBUG("-");
2837 /* with no CMD_ARGV, step from current pc, addr = 0,
2838 * with one argument addr = CMD_ARGV[0],
2839 * handle breakpoints, debugging */
2840 uint32_t addr = 0;
2841 int current_pc = 1;
2842 if (CMD_ARGC == 1) {
2843 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
2844 current_pc = 0;
2847 struct target *target = get_current_target(CMD_CTX);
2849 return target->type->step(target, current_pc, addr, 1);
2852 static void handle_md_output(struct command_context *cmd_ctx,
2853 struct target *target, uint32_t address, unsigned size,
2854 unsigned count, const uint8_t *buffer)
2856 const unsigned line_bytecnt = 32;
2857 unsigned line_modulo = line_bytecnt / size;
2859 char output[line_bytecnt * 4 + 1];
2860 unsigned output_len = 0;
2862 const char *value_fmt;
2863 switch (size) {
2864 case 4:
2865 value_fmt = "%8.8x ";
2866 break;
2867 case 2:
2868 value_fmt = "%4.4x ";
2869 break;
2870 case 1:
2871 value_fmt = "%2.2x ";
2872 break;
2873 default:
2874 /* "can't happen", caller checked */
2875 LOG_ERROR("invalid memory read size: %u", size);
2876 return;
2879 for (unsigned i = 0; i < count; i++) {
2880 if (i % line_modulo == 0) {
2881 output_len += snprintf(output + output_len,
2882 sizeof(output) - output_len,
2883 "0x%8.8x: ",
2884 (unsigned)(address + (i*size)));
2887 uint32_t value = 0;
2888 const uint8_t *value_ptr = buffer + i * size;
2889 switch (size) {
2890 case 4:
2891 value = target_buffer_get_u32(target, value_ptr);
2892 break;
2893 case 2:
2894 value = target_buffer_get_u16(target, value_ptr);
2895 break;
2896 case 1:
2897 value = *value_ptr;
2899 output_len += snprintf(output + output_len,
2900 sizeof(output) - output_len,
2901 value_fmt, value);
2903 if ((i % line_modulo == line_modulo - 1) || (i == count - 1)) {
2904 command_print(cmd_ctx, "%s", output);
2905 output_len = 0;
2910 COMMAND_HANDLER(handle_md_command)
2912 if (CMD_ARGC < 1)
2913 return ERROR_COMMAND_SYNTAX_ERROR;
2915 unsigned size = 0;
2916 switch (CMD_NAME[2]) {
2917 case 'w':
2918 size = 4;
2919 break;
2920 case 'h':
2921 size = 2;
2922 break;
2923 case 'b':
2924 size = 1;
2925 break;
2926 default:
2927 return ERROR_COMMAND_SYNTAX_ERROR;
2930 bool physical = strcmp(CMD_ARGV[0], "phys") == 0;
2931 int (*fn)(struct target *target,
2932 uint32_t address, uint32_t size_value, uint32_t count, uint8_t *buffer);
2933 if (physical) {
2934 CMD_ARGC--;
2935 CMD_ARGV++;
2936 fn = target_read_phys_memory;
2937 } else
2938 fn = target_read_memory;
2939 if ((CMD_ARGC < 1) || (CMD_ARGC > 2))
2940 return ERROR_COMMAND_SYNTAX_ERROR;
2942 uint32_t address;
2943 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], address);
2945 unsigned count = 1;
2946 if (CMD_ARGC == 2)
2947 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[1], count);
2949 uint8_t *buffer = calloc(count, size);
2951 struct target *target = get_current_target(CMD_CTX);
2952 int retval = fn(target, address, size, count, buffer);
2953 if (ERROR_OK == retval)
2954 handle_md_output(CMD_CTX, target, address, size, count, buffer);
2956 free(buffer);
2958 return retval;
2961 typedef int (*target_write_fn)(struct target *target,
2962 uint32_t address, uint32_t size, uint32_t count, const uint8_t *buffer);
2964 static int target_fill_mem(struct target *target,
2965 uint32_t address,
2966 target_write_fn fn,
2967 unsigned data_size,
2968 /* value */
2969 uint32_t b,
2970 /* count */
2971 unsigned c)
2973 /* We have to write in reasonably large chunks to be able
2974 * to fill large memory areas with any sane speed */
2975 const unsigned chunk_size = 16384;
2976 uint8_t *target_buf = malloc(chunk_size * data_size);
2977 if (target_buf == NULL) {
2978 LOG_ERROR("Out of memory");
2979 return ERROR_FAIL;
2982 for (unsigned i = 0; i < chunk_size; i++) {
2983 switch (data_size) {
2984 case 4:
2985 target_buffer_set_u32(target, target_buf + i * data_size, b);
2986 break;
2987 case 2:
2988 target_buffer_set_u16(target, target_buf + i * data_size, b);
2989 break;
2990 case 1:
2991 target_buffer_set_u8(target, target_buf + i * data_size, b);
2992 break;
2993 default:
2994 exit(-1);
2998 int retval = ERROR_OK;
3000 for (unsigned x = 0; x < c; x += chunk_size) {
3001 unsigned current;
3002 current = c - x;
3003 if (current > chunk_size)
3004 current = chunk_size;
3005 retval = fn(target, address + x * data_size, data_size, current, target_buf);
3006 if (retval != ERROR_OK)
3007 break;
3008 /* avoid GDB timeouts */
3009 keep_alive();
3011 free(target_buf);
3013 return retval;
3017 COMMAND_HANDLER(handle_mw_command)
3019 if (CMD_ARGC < 2)
3020 return ERROR_COMMAND_SYNTAX_ERROR;
3021 bool physical = strcmp(CMD_ARGV[0], "phys") == 0;
3022 target_write_fn fn;
3023 if (physical) {
3024 CMD_ARGC--;
3025 CMD_ARGV++;
3026 fn = target_write_phys_memory;
3027 } else
3028 fn = target_write_memory;
3029 if ((CMD_ARGC < 2) || (CMD_ARGC > 3))
3030 return ERROR_COMMAND_SYNTAX_ERROR;
3032 uint32_t address;
3033 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], address);
3035 uint32_t value;
3036 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], value);
3038 unsigned count = 1;
3039 if (CMD_ARGC == 3)
3040 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[2], count);
3042 struct target *target = get_current_target(CMD_CTX);
3043 unsigned wordsize;
3044 switch (CMD_NAME[2]) {
3045 case 'w':
3046 wordsize = 4;
3047 break;
3048 case 'h':
3049 wordsize = 2;
3050 break;
3051 case 'b':
3052 wordsize = 1;
3053 break;
3054 default:
3055 return ERROR_COMMAND_SYNTAX_ERROR;
3058 return target_fill_mem(target, address, fn, wordsize, value, count);
3061 static COMMAND_HELPER(parse_load_image_command_CMD_ARGV, struct image *image,
3062 uint32_t *min_address, uint32_t *max_address)
3064 if (CMD_ARGC < 1 || CMD_ARGC > 5)
3065 return ERROR_COMMAND_SYNTAX_ERROR;
3067 /* a base address isn't always necessary,
3068 * default to 0x0 (i.e. don't relocate) */
3069 if (CMD_ARGC >= 2) {
3070 uint32_t addr;
3071 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], addr);
3072 image->base_address = addr;
3073 image->base_address_set = 1;
3074 } else
3075 image->base_address_set = 0;
3077 image->start_address_set = 0;
3079 if (CMD_ARGC >= 4)
3080 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[3], *min_address);
3081 if (CMD_ARGC == 5) {
3082 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[4], *max_address);
3083 /* use size (given) to find max (required) */
3084 *max_address += *min_address;
3087 if (*min_address > *max_address)
3088 return ERROR_COMMAND_SYNTAX_ERROR;
3090 return ERROR_OK;
3093 COMMAND_HANDLER(handle_load_image_command)
3095 uint8_t *buffer;
3096 size_t buf_cnt;
3097 uint32_t image_size;
3098 uint32_t min_address = 0;
3099 uint32_t max_address = 0xffffffff;
3100 int i;
3101 struct image image;
3103 int retval = CALL_COMMAND_HANDLER(parse_load_image_command_CMD_ARGV,
3104 &image, &min_address, &max_address);
3105 if (ERROR_OK != retval)
3106 return retval;
3108 struct target *target = get_current_target(CMD_CTX);
3110 struct duration bench;
3111 duration_start(&bench);
3113 if (image_open(&image, CMD_ARGV[0], (CMD_ARGC >= 3) ? CMD_ARGV[2] : NULL) != ERROR_OK)
3114 return ERROR_OK;
3116 image_size = 0x0;
3117 retval = ERROR_OK;
3118 for (i = 0; i < image.num_sections; i++) {
3119 buffer = malloc(image.sections[i].size);
3120 if (buffer == NULL) {
3121 command_print(CMD_CTX,
3122 "error allocating buffer for section (%d bytes)",
3123 (int)(image.sections[i].size));
3124 break;
3127 retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt);
3128 if (retval != ERROR_OK) {
3129 free(buffer);
3130 break;
3133 uint32_t offset = 0;
3134 uint32_t length = buf_cnt;
3136 /* DANGER!!! beware of unsigned comparision here!!! */
3138 if ((image.sections[i].base_address + buf_cnt >= min_address) &&
3139 (image.sections[i].base_address < max_address)) {
3141 if (image.sections[i].base_address < min_address) {
3142 /* clip addresses below */
3143 offset += min_address-image.sections[i].base_address;
3144 length -= offset;
3147 if (image.sections[i].base_address + buf_cnt > max_address)
3148 length -= (image.sections[i].base_address + buf_cnt)-max_address;
3150 retval = target_write_buffer(target,
3151 image.sections[i].base_address + offset, length, buffer + offset);
3152 if (retval != ERROR_OK) {
3153 free(buffer);
3154 break;
3156 image_size += length;
3157 command_print(CMD_CTX, "%u bytes written at address 0x%8.8" PRIx32 "",
3158 (unsigned int)length,
3159 image.sections[i].base_address + offset);
3162 free(buffer);
3165 if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK)) {
3166 command_print(CMD_CTX, "downloaded %" PRIu32 " bytes "
3167 "in %fs (%0.3f KiB/s)", image_size,
3168 duration_elapsed(&bench), duration_kbps(&bench, image_size));
3171 image_close(&image);
3173 return retval;
3177 COMMAND_HANDLER(handle_dump_image_command)
3179 struct fileio fileio;
3180 uint8_t *buffer;
3181 int retval, retvaltemp;
3182 uint32_t address, size;
3183 struct duration bench;
3184 struct target *target = get_current_target(CMD_CTX);
3186 if (CMD_ARGC != 3)
3187 return ERROR_COMMAND_SYNTAX_ERROR;
3189 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], address);
3190 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[2], size);
3192 uint32_t buf_size = (size > 4096) ? 4096 : size;
3193 buffer = malloc(buf_size);
3194 if (!buffer)
3195 return ERROR_FAIL;
3197 retval = fileio_open(&fileio, CMD_ARGV[0], FILEIO_WRITE, FILEIO_BINARY);
3198 if (retval != ERROR_OK) {
3199 free(buffer);
3200 return retval;
3203 duration_start(&bench);
3205 while (size > 0) {
3206 size_t size_written;
3207 uint32_t this_run_size = (size > buf_size) ? buf_size : size;
3208 retval = target_read_buffer(target, address, this_run_size, buffer);
3209 if (retval != ERROR_OK)
3210 break;
3212 retval = fileio_write(&fileio, this_run_size, buffer, &size_written);
3213 if (retval != ERROR_OK)
3214 break;
3216 size -= this_run_size;
3217 address += this_run_size;
3220 free(buffer);
3222 if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK)) {
3223 int filesize;
3224 retval = fileio_size(&fileio, &filesize);
3225 if (retval != ERROR_OK)
3226 return retval;
3227 command_print(CMD_CTX,
3228 "dumped %ld bytes in %fs (%0.3f KiB/s)", (long)filesize,
3229 duration_elapsed(&bench), duration_kbps(&bench, filesize));
3232 retvaltemp = fileio_close(&fileio);
3233 if (retvaltemp != ERROR_OK)
3234 return retvaltemp;
3236 return retval;
3239 static COMMAND_HELPER(handle_verify_image_command_internal, int verify)
3241 uint8_t *buffer;
3242 size_t buf_cnt;
3243 uint32_t image_size;
3244 int i;
3245 int retval;
3246 uint32_t checksum = 0;
3247 uint32_t mem_checksum = 0;
3249 struct image image;
3251 struct target *target = get_current_target(CMD_CTX);
3253 if (CMD_ARGC < 1)
3254 return ERROR_COMMAND_SYNTAX_ERROR;
3256 if (!target) {
3257 LOG_ERROR("no target selected");
3258 return ERROR_FAIL;
3261 struct duration bench;
3262 duration_start(&bench);
3264 if (CMD_ARGC >= 2) {
3265 uint32_t addr;
3266 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], addr);
3267 image.base_address = addr;
3268 image.base_address_set = 1;
3269 } else {
3270 image.base_address_set = 0;
3271 image.base_address = 0x0;
3274 image.start_address_set = 0;
3276 retval = image_open(&image, CMD_ARGV[0], (CMD_ARGC == 3) ? CMD_ARGV[2] : NULL);
3277 if (retval != ERROR_OK)
3278 return retval;
3280 image_size = 0x0;
3281 int diffs = 0;
3282 retval = ERROR_OK;
3283 for (i = 0; i < image.num_sections; i++) {
3284 buffer = malloc(image.sections[i].size);
3285 if (buffer == NULL) {
3286 command_print(CMD_CTX,
3287 "error allocating buffer for section (%d bytes)",
3288 (int)(image.sections[i].size));
3289 break;
3291 retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt);
3292 if (retval != ERROR_OK) {
3293 free(buffer);
3294 break;
3297 if (verify) {
3298 /* calculate checksum of image */
3299 retval = image_calculate_checksum(buffer, buf_cnt, &checksum);
3300 if (retval != ERROR_OK) {
3301 free(buffer);
3302 break;
3305 retval = target_checksum_memory(target, image.sections[i].base_address, buf_cnt, &mem_checksum);
3306 if (retval != ERROR_OK) {
3307 free(buffer);
3308 break;
3311 if (checksum != mem_checksum) {
3312 /* failed crc checksum, fall back to a binary compare */
3313 uint8_t *data;
3315 if (diffs == 0)
3316 LOG_ERROR("checksum mismatch - attempting binary compare");
3318 data = malloc(buf_cnt);
3320 /* Can we use 32bit word accesses? */
3321 int size = 1;
3322 int count = buf_cnt;
3323 if ((count % 4) == 0) {
3324 size *= 4;
3325 count /= 4;
3327 retval = target_read_memory(target, image.sections[i].base_address, size, count, data);
3328 if (retval == ERROR_OK) {
3329 uint32_t t;
3330 for (t = 0; t < buf_cnt; t++) {
3331 if (data[t] != buffer[t]) {
3332 command_print(CMD_CTX,
3333 "diff %d address 0x%08x. Was 0x%02x instead of 0x%02x",
3334 diffs,
3335 (unsigned)(t + image.sections[i].base_address),
3336 data[t],
3337 buffer[t]);
3338 if (diffs++ >= 127) {
3339 command_print(CMD_CTX, "More than 128 errors, the rest are not printed.");
3340 free(data);
3341 free(buffer);
3342 goto done;
3345 keep_alive();
3348 free(data);
3350 } else {
3351 command_print(CMD_CTX, "address 0x%08" PRIx32 " length 0x%08zx",
3352 image.sections[i].base_address,
3353 buf_cnt);
3356 free(buffer);
3357 image_size += buf_cnt;
3359 if (diffs > 0)
3360 command_print(CMD_CTX, "No more differences found.");
3361 done:
3362 if (diffs > 0)
3363 retval = ERROR_FAIL;
3364 if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK)) {
3365 command_print(CMD_CTX, "verified %" PRIu32 " bytes "
3366 "in %fs (%0.3f KiB/s)", image_size,
3367 duration_elapsed(&bench), duration_kbps(&bench, image_size));
3370 image_close(&image);
3372 return retval;
3375 COMMAND_HANDLER(handle_verify_image_command)
3377 return CALL_COMMAND_HANDLER(handle_verify_image_command_internal, 1);
3380 COMMAND_HANDLER(handle_test_image_command)
3382 return CALL_COMMAND_HANDLER(handle_verify_image_command_internal, 0);
3385 static int handle_bp_command_list(struct command_context *cmd_ctx)
3387 struct target *target = get_current_target(cmd_ctx);
3388 struct breakpoint *breakpoint = target->breakpoints;
3389 while (breakpoint) {
3390 if (breakpoint->type == BKPT_SOFT) {
3391 char *buf = buf_to_str(breakpoint->orig_instr,
3392 breakpoint->length, 16);
3393 command_print(cmd_ctx, "IVA breakpoint: 0x%8.8" PRIx32 ", 0x%x, %i, 0x%s",
3394 breakpoint->address,
3395 breakpoint->length,
3396 breakpoint->set, buf);
3397 free(buf);
3398 } else {
3399 if ((breakpoint->address == 0) && (breakpoint->asid != 0))
3400 command_print(cmd_ctx, "Context breakpoint: 0x%8.8" PRIx32 ", 0x%x, %i",
3401 breakpoint->asid,
3402 breakpoint->length, breakpoint->set);
3403 else if ((breakpoint->address != 0) && (breakpoint->asid != 0)) {
3404 command_print(cmd_ctx, "Hybrid breakpoint(IVA): 0x%8.8" PRIx32 ", 0x%x, %i",
3405 breakpoint->address,
3406 breakpoint->length, breakpoint->set);
3407 command_print(cmd_ctx, "\t|--->linked with ContextID: 0x%8.8" PRIx32,
3408 breakpoint->asid);
3409 } else
3410 command_print(cmd_ctx, "Breakpoint(IVA): 0x%8.8" PRIx32 ", 0x%x, %i",
3411 breakpoint->address,
3412 breakpoint->length, breakpoint->set);
3415 breakpoint = breakpoint->next;
3417 return ERROR_OK;
3420 static int handle_bp_command_set(struct command_context *cmd_ctx,
3421 uint32_t addr, uint32_t asid, uint32_t length, int hw)
3423 struct target *target = get_current_target(cmd_ctx);
3424 int retval;
3426 if (asid == 0) {
3427 retval = breakpoint_add(target, addr, length, hw);
3428 if (ERROR_OK == retval)
3429 command_print(cmd_ctx, "breakpoint set at 0x%8.8" PRIx32 "", addr);
3430 else {
3431 LOG_ERROR("Failure setting breakpoint, the same address(IVA) is already used");
3432 return retval;
3434 } else if (addr == 0) {
3435 if (target->type->add_context_breakpoint == NULL) {
3436 LOG_WARNING("Context breakpoint not available");
3437 return ERROR_OK;
3439 retval = context_breakpoint_add(target, asid, length, hw);
3440 if (ERROR_OK == retval)
3441 command_print(cmd_ctx, "Context breakpoint set at 0x%8.8" PRIx32 "", asid);
3442 else {
3443 LOG_ERROR("Failure setting breakpoint, the same address(CONTEXTID) is already used");
3444 return retval;
3446 } else {
3447 if (target->type->add_hybrid_breakpoint == NULL) {
3448 LOG_WARNING("Hybrid breakpoint not available");
3449 return ERROR_OK;
3451 retval = hybrid_breakpoint_add(target, addr, asid, length, hw);
3452 if (ERROR_OK == retval)
3453 command_print(cmd_ctx, "Hybrid breakpoint set at 0x%8.8" PRIx32 "", asid);
3454 else {
3455 LOG_ERROR("Failure setting breakpoint, the same address is already used");
3456 return retval;
3459 return ERROR_OK;
3462 COMMAND_HANDLER(handle_bp_command)
3464 uint32_t addr;
3465 uint32_t asid;
3466 uint32_t length;
3467 int hw = BKPT_SOFT;
3469 switch (CMD_ARGC) {
3470 case 0:
3471 return handle_bp_command_list(CMD_CTX);
3473 case 2:
3474 asid = 0;
3475 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3476 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
3477 return handle_bp_command_set(CMD_CTX, addr, asid, length, hw);
3479 case 3:
3480 if (strcmp(CMD_ARGV[2], "hw") == 0) {
3481 hw = BKPT_HARD;
3482 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3484 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
3486 asid = 0;
3487 return handle_bp_command_set(CMD_CTX, addr, asid, length, hw);
3488 } else if (strcmp(CMD_ARGV[2], "hw_ctx") == 0) {
3489 hw = BKPT_HARD;
3490 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], asid);
3491 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
3492 addr = 0;
3493 return handle_bp_command_set(CMD_CTX, addr, asid, length, hw);
3496 case 4:
3497 hw = BKPT_HARD;
3498 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3499 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], asid);
3500 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[2], length);
3501 return handle_bp_command_set(CMD_CTX, addr, asid, length, hw);
3503 default:
3504 return ERROR_COMMAND_SYNTAX_ERROR;
3508 COMMAND_HANDLER(handle_rbp_command)
3510 if (CMD_ARGC != 1)
3511 return ERROR_COMMAND_SYNTAX_ERROR;
3513 uint32_t addr;
3514 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3516 struct target *target = get_current_target(CMD_CTX);
3517 breakpoint_remove(target, addr);
3519 return ERROR_OK;
3522 COMMAND_HANDLER(handle_wp_command)
3524 struct target *target = get_current_target(CMD_CTX);
3526 if (CMD_ARGC == 0) {
3527 struct watchpoint *watchpoint = target->watchpoints;
3529 while (watchpoint) {
3530 command_print(CMD_CTX, "address: 0x%8.8" PRIx32
3531 ", len: 0x%8.8" PRIx32
3532 ", r/w/a: %i, value: 0x%8.8" PRIx32
3533 ", mask: 0x%8.8" PRIx32,
3534 watchpoint->address,
3535 watchpoint->length,
3536 (int)watchpoint->rw,
3537 watchpoint->value,
3538 watchpoint->mask);
3539 watchpoint = watchpoint->next;
3541 return ERROR_OK;
3544 enum watchpoint_rw type = WPT_ACCESS;
3545 uint32_t addr = 0;
3546 uint32_t length = 0;
3547 uint32_t data_value = 0x0;
3548 uint32_t data_mask = 0xffffffff;
3550 switch (CMD_ARGC) {
3551 case 5:
3552 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[4], data_mask);
3553 /* fall through */
3554 case 4:
3555 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[3], data_value);
3556 /* fall through */
3557 case 3:
3558 switch (CMD_ARGV[2][0]) {
3559 case 'r':
3560 type = WPT_READ;
3561 break;
3562 case 'w':
3563 type = WPT_WRITE;
3564 break;
3565 case 'a':
3566 type = WPT_ACCESS;
3567 break;
3568 default:
3569 LOG_ERROR("invalid watchpoint mode ('%c')", CMD_ARGV[2][0]);
3570 return ERROR_COMMAND_SYNTAX_ERROR;
3572 /* fall through */
3573 case 2:
3574 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
3575 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3576 break;
3578 default:
3579 return ERROR_COMMAND_SYNTAX_ERROR;
3582 int retval = watchpoint_add(target, addr, length, type,
3583 data_value, data_mask);
3584 if (ERROR_OK != retval)
3585 LOG_ERROR("Failure setting watchpoints");
3587 return retval;
3590 COMMAND_HANDLER(handle_rwp_command)
3592 if (CMD_ARGC != 1)
3593 return ERROR_COMMAND_SYNTAX_ERROR;
3595 uint32_t addr;
3596 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3598 struct target *target = get_current_target(CMD_CTX);
3599 watchpoint_remove(target, addr);
3601 return ERROR_OK;
3605 * Translate a virtual address to a physical address.
3607 * The low-level target implementation must have logged a detailed error
3608 * which is forwarded to telnet/GDB session.
3610 COMMAND_HANDLER(handle_virt2phys_command)
3612 if (CMD_ARGC != 1)
3613 return ERROR_COMMAND_SYNTAX_ERROR;
3615 uint32_t va;
3616 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], va);
3617 uint32_t pa;
3619 struct target *target = get_current_target(CMD_CTX);
3620 int retval = target->type->virt2phys(target, va, &pa);
3621 if (retval == ERROR_OK)
3622 command_print(CMD_CTX, "Physical address 0x%08" PRIx32 "", pa);
3624 return retval;
3627 static void writeData(FILE *f, const void *data, size_t len)
3629 size_t written = fwrite(data, 1, len, f);
3630 if (written != len)
3631 LOG_ERROR("failed to write %zu bytes: %s", len, strerror(errno));
3634 static void writeLong(FILE *f, int l, struct target *target)
3636 uint8_t val[4];
3638 target_buffer_set_u32(target, val, l);
3639 writeData(f, val, 4);
3642 static void writeString(FILE *f, char *s)
3644 writeData(f, s, strlen(s));
3647 typedef unsigned char UNIT[2]; /* unit of profiling */
3649 /* Dump a gmon.out histogram file. */
3650 static void write_gmon(uint32_t *samples, uint32_t sampleNum, const char *filename, bool with_range,
3651 uint32_t start_address, uint32_t end_address, struct target *target)
3653 uint32_t i;
3654 FILE *f = fopen(filename, "w");
3655 if (f == NULL)
3656 return;
3657 writeString(f, "gmon");
3658 writeLong(f, 0x00000001, target); /* Version */
3659 writeLong(f, 0, target); /* padding */
3660 writeLong(f, 0, target); /* padding */
3661 writeLong(f, 0, target); /* padding */
3663 uint8_t zero = 0; /* GMON_TAG_TIME_HIST */
3664 writeData(f, &zero, 1);
3666 /* figure out bucket size */
3667 uint32_t min;
3668 uint32_t max;
3669 if (with_range) {
3670 min = start_address;
3671 max = end_address;
3672 } else {
3673 min = samples[0];
3674 max = samples[0];
3675 for (i = 0; i < sampleNum; i++) {
3676 if (min > samples[i])
3677 min = samples[i];
3678 if (max < samples[i])
3679 max = samples[i];
3682 /* max should be (largest sample + 1)
3683 * Refer to binutils/gprof/hist.c (find_histogram_for_pc) */
3684 max++;
3687 int addressSpace = max - min;
3688 assert(addressSpace >= 2);
3690 /* FIXME: What is the reasonable number of buckets?
3691 * The profiling result will be more accurate if there are enough buckets. */
3692 static const uint32_t maxBuckets = 128 * 1024; /* maximum buckets. */
3693 uint32_t numBuckets = addressSpace / sizeof(UNIT);
3694 if (numBuckets > maxBuckets)
3695 numBuckets = maxBuckets;
3696 int *buckets = malloc(sizeof(int) * numBuckets);
3697 if (buckets == NULL) {
3698 fclose(f);
3699 return;
3701 memset(buckets, 0, sizeof(int) * numBuckets);
3702 for (i = 0; i < sampleNum; i++) {
3703 uint32_t address = samples[i];
3705 if ((address < min) || (max <= address))
3706 continue;
3708 long long a = address - min;
3709 long long b = numBuckets;
3710 long long c = addressSpace;
3711 int index_t = (a * b) / c; /* danger!!!! int32 overflows */
3712 buckets[index_t]++;
3715 /* append binary memory gmon.out &profile_hist_hdr ((char*)&profile_hist_hdr + sizeof(struct gmon_hist_hdr)) */
3716 writeLong(f, min, target); /* low_pc */
3717 writeLong(f, max, target); /* high_pc */
3718 writeLong(f, numBuckets, target); /* # of buckets */
3719 writeLong(f, 100, target); /* KLUDGE! We lie, ca. 100Hz best case. */
3720 writeString(f, "seconds");
3721 for (i = 0; i < (15-strlen("seconds")); i++)
3722 writeData(f, &zero, 1);
3723 writeString(f, "s");
3725 /*append binary memory gmon.out profile_hist_data (profile_hist_data + profile_hist_hdr.hist_size) */
3727 char *data = malloc(2 * numBuckets);
3728 if (data != NULL) {
3729 for (i = 0; i < numBuckets; i++) {
3730 int val;
3731 val = buckets[i];
3732 if (val > 65535)
3733 val = 65535;
3734 data[i * 2] = val&0xff;
3735 data[i * 2 + 1] = (val >> 8) & 0xff;
3737 free(buckets);
3738 writeData(f, data, numBuckets * 2);
3739 free(data);
3740 } else
3741 free(buckets);
3743 fclose(f);
3746 /* profiling samples the CPU PC as quickly as OpenOCD is able,
3747 * which will be used as a random sampling of PC */
3748 COMMAND_HANDLER(handle_profile_command)
3750 struct target *target = get_current_target(CMD_CTX);
3752 if ((CMD_ARGC != 2) && (CMD_ARGC != 4))
3753 return ERROR_COMMAND_SYNTAX_ERROR;
3755 const uint32_t MAX_PROFILE_SAMPLE_NUM = 10000;
3756 uint32_t offset;
3757 uint32_t num_of_samples;
3758 int retval = ERROR_OK;
3760 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], offset);
3762 uint32_t *samples = malloc(sizeof(uint32_t) * MAX_PROFILE_SAMPLE_NUM);
3763 if (samples == NULL) {
3764 LOG_ERROR("No memory to store samples.");
3765 return ERROR_FAIL;
3769 * Some cores let us sample the PC without the
3770 * annoying halt/resume step; for example, ARMv7 PCSR.
3771 * Provide a way to use that more efficient mechanism.
3773 retval = target_profiling(target, samples, MAX_PROFILE_SAMPLE_NUM,
3774 &num_of_samples, offset);
3775 if (retval != ERROR_OK) {
3776 free(samples);
3777 return retval;
3780 assert(num_of_samples <= MAX_PROFILE_SAMPLE_NUM);
3782 retval = target_poll(target);
3783 if (retval != ERROR_OK) {
3784 free(samples);
3785 return retval;
3787 if (target->state == TARGET_RUNNING) {
3788 retval = target_halt(target);
3789 if (retval != ERROR_OK) {
3790 free(samples);
3791 return retval;
3795 retval = target_poll(target);
3796 if (retval != ERROR_OK) {
3797 free(samples);
3798 return retval;
3801 uint32_t start_address = 0;
3802 uint32_t end_address = 0;
3803 bool with_range = false;
3804 if (CMD_ARGC == 4) {
3805 with_range = true;
3806 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[2], start_address);
3807 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[3], end_address);
3810 write_gmon(samples, num_of_samples, CMD_ARGV[1],
3811 with_range, start_address, end_address, target);
3812 command_print(CMD_CTX, "Wrote %s", CMD_ARGV[1]);
3814 free(samples);
3815 return retval;
3818 static int new_int_array_element(Jim_Interp *interp, const char *varname, int idx, uint32_t val)
3820 char *namebuf;
3821 Jim_Obj *nameObjPtr, *valObjPtr;
3822 int result;
3824 namebuf = alloc_printf("%s(%d)", varname, idx);
3825 if (!namebuf)
3826 return JIM_ERR;
3828 nameObjPtr = Jim_NewStringObj(interp, namebuf, -1);
3829 valObjPtr = Jim_NewIntObj(interp, val);
3830 if (!nameObjPtr || !valObjPtr) {
3831 free(namebuf);
3832 return JIM_ERR;
3835 Jim_IncrRefCount(nameObjPtr);
3836 Jim_IncrRefCount(valObjPtr);
3837 result = Jim_SetVariable(interp, nameObjPtr, valObjPtr);
3838 Jim_DecrRefCount(interp, nameObjPtr);
3839 Jim_DecrRefCount(interp, valObjPtr);
3840 free(namebuf);
3841 /* printf("%s(%d) <= 0%08x\n", varname, idx, val); */
3842 return result;
3845 static int jim_mem2array(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
3847 struct command_context *context;
3848 struct target *target;
3850 context = current_command_context(interp);
3851 assert(context != NULL);
3853 target = get_current_target(context);
3854 if (target == NULL) {
3855 LOG_ERROR("mem2array: no current target");
3856 return JIM_ERR;
3859 return target_mem2array(interp, target, argc - 1, argv + 1);
3862 static int target_mem2array(Jim_Interp *interp, struct target *target, int argc, Jim_Obj *const *argv)
3864 long l;
3865 uint32_t width;
3866 int len;
3867 uint32_t addr;
3868 uint32_t count;
3869 uint32_t v;
3870 const char *varname;
3871 int n, e, retval;
3872 uint32_t i;
3874 /* argv[1] = name of array to receive the data
3875 * argv[2] = desired width
3876 * argv[3] = memory address
3877 * argv[4] = count of times to read
3879 if (argc != 4) {
3880 Jim_WrongNumArgs(interp, 1, argv, "varname width addr nelems");
3881 return JIM_ERR;
3883 varname = Jim_GetString(argv[0], &len);
3884 /* given "foo" get space for worse case "foo(%d)" .. add 20 */
3886 e = Jim_GetLong(interp, argv[1], &l);
3887 width = l;
3888 if (e != JIM_OK)
3889 return e;
3891 e = Jim_GetLong(interp, argv[2], &l);
3892 addr = l;
3893 if (e != JIM_OK)
3894 return e;
3895 e = Jim_GetLong(interp, argv[3], &l);
3896 len = l;
3897 if (e != JIM_OK)
3898 return e;
3899 switch (width) {
3900 case 8:
3901 width = 1;
3902 break;
3903 case 16:
3904 width = 2;
3905 break;
3906 case 32:
3907 width = 4;
3908 break;
3909 default:
3910 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3911 Jim_AppendStrings(interp, Jim_GetResult(interp), "Invalid width param, must be 8/16/32", NULL);
3912 return JIM_ERR;
3914 if (len == 0) {
3915 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3916 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: zero width read?", NULL);
3917 return JIM_ERR;
3919 if ((addr + (len * width)) < addr) {
3920 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3921 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: addr + len - wraps to zero?", NULL);
3922 return JIM_ERR;
3924 /* absurd transfer size? */
3925 if (len > 65536) {
3926 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3927 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: absurd > 64K item request", NULL);
3928 return JIM_ERR;
3931 if ((width == 1) ||
3932 ((width == 2) && ((addr & 1) == 0)) ||
3933 ((width == 4) && ((addr & 3) == 0))) {
3934 /* all is well */
3935 } else {
3936 char buf[100];
3937 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3938 sprintf(buf, "mem2array address: 0x%08" PRIx32 " is not aligned for %" PRId32 " byte reads",
3939 addr,
3940 width);
3941 Jim_AppendStrings(interp, Jim_GetResult(interp), buf , NULL);
3942 return JIM_ERR;
3945 /* Transfer loop */
3947 /* index counter */
3948 n = 0;
3950 size_t buffersize = 4096;
3951 uint8_t *buffer = malloc(buffersize);
3952 if (buffer == NULL)
3953 return JIM_ERR;
3955 /* assume ok */
3956 e = JIM_OK;
3957 while (len) {
3958 /* Slurp... in buffer size chunks */
3960 count = len; /* in objects.. */
3961 if (count > (buffersize / width))
3962 count = (buffersize / width);
3964 retval = target_read_memory(target, addr, width, count, buffer);
3965 if (retval != ERROR_OK) {
3966 /* BOO !*/
3967 LOG_ERROR("mem2array: Read @ 0x%08x, w=%d, cnt=%d, failed",
3968 (unsigned int)addr,
3969 (int)width,
3970 (int)count);
3971 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3972 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: cannot read memory", NULL);
3973 e = JIM_ERR;
3974 break;
3975 } else {
3976 v = 0; /* shut up gcc */
3977 for (i = 0; i < count ; i++, n++) {
3978 switch (width) {
3979 case 4:
3980 v = target_buffer_get_u32(target, &buffer[i*width]);
3981 break;
3982 case 2:
3983 v = target_buffer_get_u16(target, &buffer[i*width]);
3984 break;
3985 case 1:
3986 v = buffer[i] & 0x0ff;
3987 break;
3989 new_int_array_element(interp, varname, n, v);
3991 len -= count;
3992 addr += count * width;
3996 free(buffer);
3998 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4000 return e;
4003 static int get_int_array_element(Jim_Interp *interp, const char *varname, int idx, uint32_t *val)
4005 char *namebuf;
4006 Jim_Obj *nameObjPtr, *valObjPtr;
4007 int result;
4008 long l;
4010 namebuf = alloc_printf("%s(%d)", varname, idx);
4011 if (!namebuf)
4012 return JIM_ERR;
4014 nameObjPtr = Jim_NewStringObj(interp, namebuf, -1);
4015 if (!nameObjPtr) {
4016 free(namebuf);
4017 return JIM_ERR;
4020 Jim_IncrRefCount(nameObjPtr);
4021 valObjPtr = Jim_GetVariable(interp, nameObjPtr, JIM_ERRMSG);
4022 Jim_DecrRefCount(interp, nameObjPtr);
4023 free(namebuf);
4024 if (valObjPtr == NULL)
4025 return JIM_ERR;
4027 result = Jim_GetLong(interp, valObjPtr, &l);
4028 /* printf("%s(%d) => 0%08x\n", varname, idx, val); */
4029 *val = l;
4030 return result;
4033 static int jim_array2mem(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4035 struct command_context *context;
4036 struct target *target;
4038 context = current_command_context(interp);
4039 assert(context != NULL);
4041 target = get_current_target(context);
4042 if (target == NULL) {
4043 LOG_ERROR("array2mem: no current target");
4044 return JIM_ERR;
4047 return target_array2mem(interp, target, argc-1, argv + 1);
4050 static int target_array2mem(Jim_Interp *interp, struct target *target,
4051 int argc, Jim_Obj *const *argv)
4053 long l;
4054 uint32_t width;
4055 int len;
4056 uint32_t addr;
4057 uint32_t count;
4058 uint32_t v;
4059 const char *varname;
4060 int n, e, retval;
4061 uint32_t i;
4063 /* argv[1] = name of array to get the data
4064 * argv[2] = desired width
4065 * argv[3] = memory address
4066 * argv[4] = count to write
4068 if (argc != 4) {
4069 Jim_WrongNumArgs(interp, 0, argv, "varname width addr nelems");
4070 return JIM_ERR;
4072 varname = Jim_GetString(argv[0], &len);
4073 /* given "foo" get space for worse case "foo(%d)" .. add 20 */
4075 e = Jim_GetLong(interp, argv[1], &l);
4076 width = l;
4077 if (e != JIM_OK)
4078 return e;
4080 e = Jim_GetLong(interp, argv[2], &l);
4081 addr = l;
4082 if (e != JIM_OK)
4083 return e;
4084 e = Jim_GetLong(interp, argv[3], &l);
4085 len = l;
4086 if (e != JIM_OK)
4087 return e;
4088 switch (width) {
4089 case 8:
4090 width = 1;
4091 break;
4092 case 16:
4093 width = 2;
4094 break;
4095 case 32:
4096 width = 4;
4097 break;
4098 default:
4099 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4100 Jim_AppendStrings(interp, Jim_GetResult(interp),
4101 "Invalid width param, must be 8/16/32", NULL);
4102 return JIM_ERR;
4104 if (len == 0) {
4105 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4106 Jim_AppendStrings(interp, Jim_GetResult(interp),
4107 "array2mem: zero width read?", NULL);
4108 return JIM_ERR;
4110 if ((addr + (len * width)) < addr) {
4111 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4112 Jim_AppendStrings(interp, Jim_GetResult(interp),
4113 "array2mem: addr + len - wraps to zero?", NULL);
4114 return JIM_ERR;
4116 /* absurd transfer size? */
4117 if (len > 65536) {
4118 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4119 Jim_AppendStrings(interp, Jim_GetResult(interp),
4120 "array2mem: absurd > 64K item request", NULL);
4121 return JIM_ERR;
4124 if ((width == 1) ||
4125 ((width == 2) && ((addr & 1) == 0)) ||
4126 ((width == 4) && ((addr & 3) == 0))) {
4127 /* all is well */
4128 } else {
4129 char buf[100];
4130 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4131 sprintf(buf, "array2mem address: 0x%08x is not aligned for %d byte reads",
4132 (unsigned int)addr,
4133 (int)width);
4134 Jim_AppendStrings(interp, Jim_GetResult(interp), buf , NULL);
4135 return JIM_ERR;
4138 /* Transfer loop */
4140 /* index counter */
4141 n = 0;
4142 /* assume ok */
4143 e = JIM_OK;
4145 size_t buffersize = 4096;
4146 uint8_t *buffer = malloc(buffersize);
4147 if (buffer == NULL)
4148 return JIM_ERR;
4150 while (len) {
4151 /* Slurp... in buffer size chunks */
4153 count = len; /* in objects.. */
4154 if (count > (buffersize / width))
4155 count = (buffersize / width);
4157 v = 0; /* shut up gcc */
4158 for (i = 0; i < count; i++, n++) {
4159 get_int_array_element(interp, varname, n, &v);
4160 switch (width) {
4161 case 4:
4162 target_buffer_set_u32(target, &buffer[i * width], v);
4163 break;
4164 case 2:
4165 target_buffer_set_u16(target, &buffer[i * width], v);
4166 break;
4167 case 1:
4168 buffer[i] = v & 0x0ff;
4169 break;
4172 len -= count;
4174 retval = target_write_memory(target, addr, width, count, buffer);
4175 if (retval != ERROR_OK) {
4176 /* BOO !*/
4177 LOG_ERROR("array2mem: Write @ 0x%08x, w=%d, cnt=%d, failed",
4178 (unsigned int)addr,
4179 (int)width,
4180 (int)count);
4181 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4182 Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: cannot read memory", NULL);
4183 e = JIM_ERR;
4184 break;
4186 addr += count * width;
4189 free(buffer);
4191 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4193 return e;
4196 /* FIX? should we propagate errors here rather than printing them
4197 * and continuing?
4199 void target_handle_event(struct target *target, enum target_event e)
4201 struct target_event_action *teap;
4203 for (teap = target->event_action; teap != NULL; teap = teap->next) {
4204 if (teap->event == e) {
4205 LOG_DEBUG("target: (%d) %s (%s) event: %d (%s) action: %s",
4206 target->target_number,
4207 target_name(target),
4208 target_type_name(target),
4210 Jim_Nvp_value2name_simple(nvp_target_event, e)->name,
4211 Jim_GetString(teap->body, NULL));
4212 if (Jim_EvalObj(teap->interp, teap->body) != JIM_OK) {
4213 Jim_MakeErrorMessage(teap->interp);
4214 command_print(NULL, "%s\n", Jim_GetString(Jim_GetResult(teap->interp), NULL));
4221 * Returns true only if the target has a handler for the specified event.
4223 bool target_has_event_action(struct target *target, enum target_event event)
4225 struct target_event_action *teap;
4227 for (teap = target->event_action; teap != NULL; teap = teap->next) {
4228 if (teap->event == event)
4229 return true;
4231 return false;
4234 enum target_cfg_param {
4235 TCFG_TYPE,
4236 TCFG_EVENT,
4237 TCFG_WORK_AREA_VIRT,
4238 TCFG_WORK_AREA_PHYS,
4239 TCFG_WORK_AREA_SIZE,
4240 TCFG_WORK_AREA_BACKUP,
4241 TCFG_ENDIAN,
4242 TCFG_COREID,
4243 TCFG_CHAIN_POSITION,
4244 TCFG_DBGBASE,
4245 TCFG_RTOS,
4248 static Jim_Nvp nvp_config_opts[] = {
4249 { .name = "-type", .value = TCFG_TYPE },
4250 { .name = "-event", .value = TCFG_EVENT },
4251 { .name = "-work-area-virt", .value = TCFG_WORK_AREA_VIRT },
4252 { .name = "-work-area-phys", .value = TCFG_WORK_AREA_PHYS },
4253 { .name = "-work-area-size", .value = TCFG_WORK_AREA_SIZE },
4254 { .name = "-work-area-backup", .value = TCFG_WORK_AREA_BACKUP },
4255 { .name = "-endian" , .value = TCFG_ENDIAN },
4256 { .name = "-coreid", .value = TCFG_COREID },
4257 { .name = "-chain-position", .value = TCFG_CHAIN_POSITION },
4258 { .name = "-dbgbase", .value = TCFG_DBGBASE },
4259 { .name = "-rtos", .value = TCFG_RTOS },
4260 { .name = NULL, .value = -1 }
4263 static int target_configure(Jim_GetOptInfo *goi, struct target *target)
4265 Jim_Nvp *n;
4266 Jim_Obj *o;
4267 jim_wide w;
4268 int e;
4270 /* parse config or cget options ... */
4271 while (goi->argc > 0) {
4272 Jim_SetEmptyResult(goi->interp);
4273 /* Jim_GetOpt_Debug(goi); */
4275 if (target->type->target_jim_configure) {
4276 /* target defines a configure function */
4277 /* target gets first dibs on parameters */
4278 e = (*(target->type->target_jim_configure))(target, goi);
4279 if (e == JIM_OK) {
4280 /* more? */
4281 continue;
4283 if (e == JIM_ERR) {
4284 /* An error */
4285 return e;
4287 /* otherwise we 'continue' below */
4289 e = Jim_GetOpt_Nvp(goi, nvp_config_opts, &n);
4290 if (e != JIM_OK) {
4291 Jim_GetOpt_NvpUnknown(goi, nvp_config_opts, 0);
4292 return e;
4294 switch (n->value) {
4295 case TCFG_TYPE:
4296 /* not setable */
4297 if (goi->isconfigure) {
4298 Jim_SetResultFormatted(goi->interp,
4299 "not settable: %s", n->name);
4300 return JIM_ERR;
4301 } else {
4302 no_params:
4303 if (goi->argc != 0) {
4304 Jim_WrongNumArgs(goi->interp,
4305 goi->argc, goi->argv,
4306 "NO PARAMS");
4307 return JIM_ERR;
4310 Jim_SetResultString(goi->interp,
4311 target_type_name(target), -1);
4312 /* loop for more */
4313 break;
4314 case TCFG_EVENT:
4315 if (goi->argc == 0) {
4316 Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name? ...");
4317 return JIM_ERR;
4320 e = Jim_GetOpt_Nvp(goi, nvp_target_event, &n);
4321 if (e != JIM_OK) {
4322 Jim_GetOpt_NvpUnknown(goi, nvp_target_event, 1);
4323 return e;
4326 if (goi->isconfigure) {
4327 if (goi->argc != 1) {
4328 Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name? ?EVENT-BODY?");
4329 return JIM_ERR;
4331 } else {
4332 if (goi->argc != 0) {
4333 Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name?");
4334 return JIM_ERR;
4339 struct target_event_action *teap;
4341 teap = target->event_action;
4342 /* replace existing? */
4343 while (teap) {
4344 if (teap->event == (enum target_event)n->value)
4345 break;
4346 teap = teap->next;
4349 if (goi->isconfigure) {
4350 bool replace = true;
4351 if (teap == NULL) {
4352 /* create new */
4353 teap = calloc(1, sizeof(*teap));
4354 replace = false;
4356 teap->event = n->value;
4357 teap->interp = goi->interp;
4358 Jim_GetOpt_Obj(goi, &o);
4359 if (teap->body)
4360 Jim_DecrRefCount(teap->interp, teap->body);
4361 teap->body = Jim_DuplicateObj(goi->interp, o);
4363 * FIXME:
4364 * Tcl/TK - "tk events" have a nice feature.
4365 * See the "BIND" command.
4366 * We should support that here.
4367 * You can specify %X and %Y in the event code.
4368 * The idea is: %T - target name.
4369 * The idea is: %N - target number
4370 * The idea is: %E - event name.
4372 Jim_IncrRefCount(teap->body);
4374 if (!replace) {
4375 /* add to head of event list */
4376 teap->next = target->event_action;
4377 target->event_action = teap;
4379 Jim_SetEmptyResult(goi->interp);
4380 } else {
4381 /* get */
4382 if (teap == NULL)
4383 Jim_SetEmptyResult(goi->interp);
4384 else
4385 Jim_SetResult(goi->interp, Jim_DuplicateObj(goi->interp, teap->body));
4388 /* loop for more */
4389 break;
4391 case TCFG_WORK_AREA_VIRT:
4392 if (goi->isconfigure) {
4393 target_free_all_working_areas(target);
4394 e = Jim_GetOpt_Wide(goi, &w);
4395 if (e != JIM_OK)
4396 return e;
4397 target->working_area_virt = w;
4398 target->working_area_virt_spec = true;
4399 } else {
4400 if (goi->argc != 0)
4401 goto no_params;
4403 Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_virt));
4404 /* loop for more */
4405 break;
4407 case TCFG_WORK_AREA_PHYS:
4408 if (goi->isconfigure) {
4409 target_free_all_working_areas(target);
4410 e = Jim_GetOpt_Wide(goi, &w);
4411 if (e != JIM_OK)
4412 return e;
4413 target->working_area_phys = w;
4414 target->working_area_phys_spec = true;
4415 } else {
4416 if (goi->argc != 0)
4417 goto no_params;
4419 Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_phys));
4420 /* loop for more */
4421 break;
4423 case TCFG_WORK_AREA_SIZE:
4424 if (goi->isconfigure) {
4425 target_free_all_working_areas(target);
4426 e = Jim_GetOpt_Wide(goi, &w);
4427 if (e != JIM_OK)
4428 return e;
4429 target->working_area_size = w;
4430 } else {
4431 if (goi->argc != 0)
4432 goto no_params;
4434 Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_size));
4435 /* loop for more */
4436 break;
4438 case TCFG_WORK_AREA_BACKUP:
4439 if (goi->isconfigure) {
4440 target_free_all_working_areas(target);
4441 e = Jim_GetOpt_Wide(goi, &w);
4442 if (e != JIM_OK)
4443 return e;
4444 /* make this exactly 1 or 0 */
4445 target->backup_working_area = (!!w);
4446 } else {
4447 if (goi->argc != 0)
4448 goto no_params;
4450 Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->backup_working_area));
4451 /* loop for more e*/
4452 break;
4455 case TCFG_ENDIAN:
4456 if (goi->isconfigure) {
4457 e = Jim_GetOpt_Nvp(goi, nvp_target_endian, &n);
4458 if (e != JIM_OK) {
4459 Jim_GetOpt_NvpUnknown(goi, nvp_target_endian, 1);
4460 return e;
4462 target->endianness = n->value;
4463 } else {
4464 if (goi->argc != 0)
4465 goto no_params;
4467 n = Jim_Nvp_value2name_simple(nvp_target_endian, target->endianness);
4468 if (n->name == NULL) {
4469 target->endianness = TARGET_LITTLE_ENDIAN;
4470 n = Jim_Nvp_value2name_simple(nvp_target_endian, target->endianness);
4472 Jim_SetResultString(goi->interp, n->name, -1);
4473 /* loop for more */
4474 break;
4476 case TCFG_COREID:
4477 if (goi->isconfigure) {
4478 e = Jim_GetOpt_Wide(goi, &w);
4479 if (e != JIM_OK)
4480 return e;
4481 target->coreid = (int32_t)w;
4482 } else {
4483 if (goi->argc != 0)
4484 goto no_params;
4486 Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_size));
4487 /* loop for more */
4488 break;
4490 case TCFG_CHAIN_POSITION:
4491 if (goi->isconfigure) {
4492 Jim_Obj *o_t;
4493 struct jtag_tap *tap;
4494 target_free_all_working_areas(target);
4495 e = Jim_GetOpt_Obj(goi, &o_t);
4496 if (e != JIM_OK)
4497 return e;
4498 tap = jtag_tap_by_jim_obj(goi->interp, o_t);
4499 if (tap == NULL)
4500 return JIM_ERR;
4501 /* make this exactly 1 or 0 */
4502 target->tap = tap;
4503 } else {
4504 if (goi->argc != 0)
4505 goto no_params;
4507 Jim_SetResultString(goi->interp, target->tap->dotted_name, -1);
4508 /* loop for more e*/
4509 break;
4510 case TCFG_DBGBASE:
4511 if (goi->isconfigure) {
4512 e = Jim_GetOpt_Wide(goi, &w);
4513 if (e != JIM_OK)
4514 return e;
4515 target->dbgbase = (uint32_t)w;
4516 target->dbgbase_set = true;
4517 } else {
4518 if (goi->argc != 0)
4519 goto no_params;
4521 Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->dbgbase));
4522 /* loop for more */
4523 break;
4525 case TCFG_RTOS:
4526 /* RTOS */
4528 int result = rtos_create(goi, target);
4529 if (result != JIM_OK)
4530 return result;
4532 /* loop for more */
4533 break;
4535 } /* while (goi->argc) */
4538 /* done - we return */
4539 return JIM_OK;
4542 static int jim_target_configure(Jim_Interp *interp, int argc, Jim_Obj * const *argv)
4544 Jim_GetOptInfo goi;
4546 Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4547 goi.isconfigure = !strcmp(Jim_GetString(argv[0], NULL), "configure");
4548 int need_args = 1 + goi.isconfigure;
4549 if (goi.argc < need_args) {
4550 Jim_WrongNumArgs(goi.interp, goi.argc, goi.argv,
4551 goi.isconfigure
4552 ? "missing: -option VALUE ..."
4553 : "missing: -option ...");
4554 return JIM_ERR;
4556 struct target *target = Jim_CmdPrivData(goi.interp);
4557 return target_configure(&goi, target);
4560 static int jim_target_mw(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4562 const char *cmd_name = Jim_GetString(argv[0], NULL);
4564 Jim_GetOptInfo goi;
4565 Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4567 if (goi.argc < 2 || goi.argc > 4) {
4568 Jim_SetResultFormatted(goi.interp,
4569 "usage: %s [phys] <address> <data> [<count>]", cmd_name);
4570 return JIM_ERR;
4573 target_write_fn fn;
4574 fn = target_write_memory;
4576 int e;
4577 if (strcmp(Jim_GetString(argv[1], NULL), "phys") == 0) {
4578 /* consume it */
4579 struct Jim_Obj *obj;
4580 e = Jim_GetOpt_Obj(&goi, &obj);
4581 if (e != JIM_OK)
4582 return e;
4584 fn = target_write_phys_memory;
4587 jim_wide a;
4588 e = Jim_GetOpt_Wide(&goi, &a);
4589 if (e != JIM_OK)
4590 return e;
4592 jim_wide b;
4593 e = Jim_GetOpt_Wide(&goi, &b);
4594 if (e != JIM_OK)
4595 return e;
4597 jim_wide c = 1;
4598 if (goi.argc == 1) {
4599 e = Jim_GetOpt_Wide(&goi, &c);
4600 if (e != JIM_OK)
4601 return e;
4604 /* all args must be consumed */
4605 if (goi.argc != 0)
4606 return JIM_ERR;
4608 struct target *target = Jim_CmdPrivData(goi.interp);
4609 unsigned data_size;
4610 if (strcasecmp(cmd_name, "mww") == 0)
4611 data_size = 4;
4612 else if (strcasecmp(cmd_name, "mwh") == 0)
4613 data_size = 2;
4614 else if (strcasecmp(cmd_name, "mwb") == 0)
4615 data_size = 1;
4616 else {
4617 LOG_ERROR("command '%s' unknown: ", cmd_name);
4618 return JIM_ERR;
4621 return (target_fill_mem(target, a, fn, data_size, b, c) == ERROR_OK) ? JIM_OK : JIM_ERR;
4625 * @brief Reads an array of words/halfwords/bytes from target memory starting at specified address.
4627 * Usage: mdw [phys] <address> [<count>] - for 32 bit reads
4628 * mdh [phys] <address> [<count>] - for 16 bit reads
4629 * mdb [phys] <address> [<count>] - for 8 bit reads
4631 * Count defaults to 1.
4633 * Calls target_read_memory or target_read_phys_memory depending on
4634 * the presence of the "phys" argument
4635 * Reads the target memory in blocks of max. 32 bytes, and returns an array of ints formatted
4636 * to int representation in base16.
4637 * Also outputs read data in a human readable form using command_print
4639 * @param phys if present target_read_phys_memory will be used instead of target_read_memory
4640 * @param address address where to start the read. May be specified in decimal or hex using the standard "0x" prefix
4641 * @param count optional count parameter to read an array of values. If not specified, defaults to 1.
4642 * @returns: JIM_ERR on error or JIM_OK on success and sets the result string to an array of ascii formatted numbers
4643 * on success, with [<count>] number of elements.
4645 * In case of little endian target:
4646 * Example1: "mdw 0x00000000" returns "10123456"
4647 * Exmaple2: "mdh 0x00000000 1" returns "3456"
4648 * Example3: "mdb 0x00000000" returns "56"
4649 * Example4: "mdh 0x00000000 2" returns "3456 1012"
4650 * Example5: "mdb 0x00000000 3" returns "56 34 12"
4652 static int jim_target_md(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4654 const char *cmd_name = Jim_GetString(argv[0], NULL);
4656 Jim_GetOptInfo goi;
4657 Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4659 if ((goi.argc < 1) || (goi.argc > 3)) {
4660 Jim_SetResultFormatted(goi.interp,
4661 "usage: %s [phys] <address> [<count>]", cmd_name);
4662 return JIM_ERR;
4665 int (*fn)(struct target *target,
4666 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer);
4667 fn = target_read_memory;
4669 int e;
4670 if (strcmp(Jim_GetString(argv[1], NULL), "phys") == 0) {
4671 /* consume it */
4672 struct Jim_Obj *obj;
4673 e = Jim_GetOpt_Obj(&goi, &obj);
4674 if (e != JIM_OK)
4675 return e;
4677 fn = target_read_phys_memory;
4680 /* Read address parameter */
4681 jim_wide addr;
4682 e = Jim_GetOpt_Wide(&goi, &addr);
4683 if (e != JIM_OK)
4684 return JIM_ERR;
4686 /* If next parameter exists, read it out as the count parameter, if not, set it to 1 (default) */
4687 jim_wide count;
4688 if (goi.argc == 1) {
4689 e = Jim_GetOpt_Wide(&goi, &count);
4690 if (e != JIM_OK)
4691 return JIM_ERR;
4692 } else
4693 count = 1;
4695 /* all args must be consumed */
4696 if (goi.argc != 0)
4697 return JIM_ERR;
4699 jim_wide dwidth = 1; /* shut up gcc */
4700 if (strcasecmp(cmd_name, "mdw") == 0)
4701 dwidth = 4;
4702 else if (strcasecmp(cmd_name, "mdh") == 0)
4703 dwidth = 2;
4704 else if (strcasecmp(cmd_name, "mdb") == 0)
4705 dwidth = 1;
4706 else {
4707 LOG_ERROR("command '%s' unknown: ", cmd_name);
4708 return JIM_ERR;
4711 /* convert count to "bytes" */
4712 int bytes = count * dwidth;
4714 struct target *target = Jim_CmdPrivData(goi.interp);
4715 uint8_t target_buf[32];
4716 jim_wide x, y, z;
4717 while (bytes > 0) {
4718 y = (bytes < 16) ? bytes : 16; /* y = min(bytes, 16); */
4720 /* Try to read out next block */
4721 e = fn(target, addr, dwidth, y / dwidth, target_buf);
4723 if (e != ERROR_OK) {
4724 Jim_SetResultFormatted(interp, "error reading target @ 0x%08lx", (long)addr);
4725 return JIM_ERR;
4728 command_print_sameline(NULL, "0x%08x ", (int)(addr));
4729 switch (dwidth) {
4730 case 4:
4731 for (x = 0; x < 16 && x < y; x += 4) {
4732 z = target_buffer_get_u32(target, &(target_buf[x]));
4733 command_print_sameline(NULL, "%08x ", (int)(z));
4735 for (; (x < 16) ; x += 4)
4736 command_print_sameline(NULL, " ");
4737 break;
4738 case 2:
4739 for (x = 0; x < 16 && x < y; x += 2) {
4740 z = target_buffer_get_u16(target, &(target_buf[x]));
4741 command_print_sameline(NULL, "%04x ", (int)(z));
4743 for (; (x < 16) ; x += 2)
4744 command_print_sameline(NULL, " ");
4745 break;
4746 case 1:
4747 default:
4748 for (x = 0 ; (x < 16) && (x < y) ; x += 1) {
4749 z = target_buffer_get_u8(target, &(target_buf[x]));
4750 command_print_sameline(NULL, "%02x ", (int)(z));
4752 for (; (x < 16) ; x += 1)
4753 command_print_sameline(NULL, " ");
4754 break;
4756 /* ascii-ify the bytes */
4757 for (x = 0 ; x < y ; x++) {
4758 if ((target_buf[x] >= 0x20) &&
4759 (target_buf[x] <= 0x7e)) {
4760 /* good */
4761 } else {
4762 /* smack it */
4763 target_buf[x] = '.';
4766 /* space pad */
4767 while (x < 16) {
4768 target_buf[x] = ' ';
4769 x++;
4771 /* terminate */
4772 target_buf[16] = 0;
4773 /* print - with a newline */
4774 command_print_sameline(NULL, "%s\n", target_buf);
4775 /* NEXT... */
4776 bytes -= 16;
4777 addr += 16;
4779 return JIM_OK;
4782 static int jim_target_mem2array(Jim_Interp *interp,
4783 int argc, Jim_Obj *const *argv)
4785 struct target *target = Jim_CmdPrivData(interp);
4786 return target_mem2array(interp, target, argc - 1, argv + 1);
4789 static int jim_target_array2mem(Jim_Interp *interp,
4790 int argc, Jim_Obj *const *argv)
4792 struct target *target = Jim_CmdPrivData(interp);
4793 return target_array2mem(interp, target, argc - 1, argv + 1);
4796 static int jim_target_tap_disabled(Jim_Interp *interp)
4798 Jim_SetResultFormatted(interp, "[TAP is disabled]");
4799 return JIM_ERR;
4802 static int jim_target_examine(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4804 if (argc != 1) {
4805 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
4806 return JIM_ERR;
4808 struct target *target = Jim_CmdPrivData(interp);
4809 if (!target->tap->enabled)
4810 return jim_target_tap_disabled(interp);
4812 int e = target->type->examine(target);
4813 if (e != ERROR_OK)
4814 return JIM_ERR;
4815 return JIM_OK;
4818 static int jim_target_halt_gdb(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4820 if (argc != 1) {
4821 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
4822 return JIM_ERR;
4824 struct target *target = Jim_CmdPrivData(interp);
4826 if (target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT) != ERROR_OK)
4827 return JIM_ERR;
4829 return JIM_OK;
4832 static int jim_target_poll(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4834 if (argc != 1) {
4835 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
4836 return JIM_ERR;
4838 struct target *target = Jim_CmdPrivData(interp);
4839 if (!target->tap->enabled)
4840 return jim_target_tap_disabled(interp);
4842 int e;
4843 if (!(target_was_examined(target)))
4844 e = ERROR_TARGET_NOT_EXAMINED;
4845 else
4846 e = target->type->poll(target);
4847 if (e != ERROR_OK)
4848 return JIM_ERR;
4849 return JIM_OK;
4852 static int jim_target_reset(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4854 Jim_GetOptInfo goi;
4855 Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4857 if (goi.argc != 2) {
4858 Jim_WrongNumArgs(interp, 0, argv,
4859 "([tT]|[fF]|assert|deassert) BOOL");
4860 return JIM_ERR;
4863 Jim_Nvp *n;
4864 int e = Jim_GetOpt_Nvp(&goi, nvp_assert, &n);
4865 if (e != JIM_OK) {
4866 Jim_GetOpt_NvpUnknown(&goi, nvp_assert, 1);
4867 return e;
4869 /* the halt or not param */
4870 jim_wide a;
4871 e = Jim_GetOpt_Wide(&goi, &a);
4872 if (e != JIM_OK)
4873 return e;
4875 struct target *target = Jim_CmdPrivData(goi.interp);
4876 if (!target->tap->enabled)
4877 return jim_target_tap_disabled(interp);
4878 if (!(target_was_examined(target))) {
4879 LOG_ERROR("Target not examined yet");
4880 return ERROR_TARGET_NOT_EXAMINED;
4882 if (!target->type->assert_reset || !target->type->deassert_reset) {
4883 Jim_SetResultFormatted(interp,
4884 "No target-specific reset for %s",
4885 target_name(target));
4886 return JIM_ERR;
4888 /* determine if we should halt or not. */
4889 target->reset_halt = !!a;
4890 /* When this happens - all workareas are invalid. */
4891 target_free_all_working_areas_restore(target, 0);
4893 /* do the assert */
4894 if (n->value == NVP_ASSERT)
4895 e = target->type->assert_reset(target);
4896 else
4897 e = target->type->deassert_reset(target);
4898 return (e == ERROR_OK) ? JIM_OK : JIM_ERR;
4901 static int jim_target_halt(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4903 if (argc != 1) {
4904 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
4905 return JIM_ERR;
4907 struct target *target = Jim_CmdPrivData(interp);
4908 if (!target->tap->enabled)
4909 return jim_target_tap_disabled(interp);
4910 int e = target->type->halt(target);
4911 return (e == ERROR_OK) ? JIM_OK : JIM_ERR;
4914 static int jim_target_wait_state(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4916 Jim_GetOptInfo goi;
4917 Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4919 /* params: <name> statename timeoutmsecs */
4920 if (goi.argc != 2) {
4921 const char *cmd_name = Jim_GetString(argv[0], NULL);
4922 Jim_SetResultFormatted(goi.interp,
4923 "%s <state_name> <timeout_in_msec>", cmd_name);
4924 return JIM_ERR;
4927 Jim_Nvp *n;
4928 int e = Jim_GetOpt_Nvp(&goi, nvp_target_state, &n);
4929 if (e != JIM_OK) {
4930 Jim_GetOpt_NvpUnknown(&goi, nvp_target_state, 1);
4931 return e;
4933 jim_wide a;
4934 e = Jim_GetOpt_Wide(&goi, &a);
4935 if (e != JIM_OK)
4936 return e;
4937 struct target *target = Jim_CmdPrivData(interp);
4938 if (!target->tap->enabled)
4939 return jim_target_tap_disabled(interp);
4941 e = target_wait_state(target, n->value, a);
4942 if (e != ERROR_OK) {
4943 Jim_Obj *eObj = Jim_NewIntObj(interp, e);
4944 Jim_SetResultFormatted(goi.interp,
4945 "target: %s wait %s fails (%#s) %s",
4946 target_name(target), n->name,
4947 eObj, target_strerror_safe(e));
4948 Jim_FreeNewObj(interp, eObj);
4949 return JIM_ERR;
4951 return JIM_OK;
4953 /* List for human, Events defined for this target.
4954 * scripts/programs should use 'name cget -event NAME'
4956 static int jim_target_event_list(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4958 struct command_context *cmd_ctx = current_command_context(interp);
4959 assert(cmd_ctx != NULL);
4961 struct target *target = Jim_CmdPrivData(interp);
4962 struct target_event_action *teap = target->event_action;
4963 command_print(cmd_ctx, "Event actions for target (%d) %s\n",
4964 target->target_number,
4965 target_name(target));
4966 command_print(cmd_ctx, "%-25s | Body", "Event");
4967 command_print(cmd_ctx, "------------------------- | "
4968 "----------------------------------------");
4969 while (teap) {
4970 Jim_Nvp *opt = Jim_Nvp_value2name_simple(nvp_target_event, teap->event);
4971 command_print(cmd_ctx, "%-25s | %s",
4972 opt->name, Jim_GetString(teap->body, NULL));
4973 teap = teap->next;
4975 command_print(cmd_ctx, "***END***");
4976 return JIM_OK;
4978 static int jim_target_current_state(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4980 if (argc != 1) {
4981 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
4982 return JIM_ERR;
4984 struct target *target = Jim_CmdPrivData(interp);
4985 Jim_SetResultString(interp, target_state_name(target), -1);
4986 return JIM_OK;
4988 static int jim_target_invoke_event(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4990 Jim_GetOptInfo goi;
4991 Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4992 if (goi.argc != 1) {
4993 const char *cmd_name = Jim_GetString(argv[0], NULL);
4994 Jim_SetResultFormatted(goi.interp, "%s <eventname>", cmd_name);
4995 return JIM_ERR;
4997 Jim_Nvp *n;
4998 int e = Jim_GetOpt_Nvp(&goi, nvp_target_event, &n);
4999 if (e != JIM_OK) {
5000 Jim_GetOpt_NvpUnknown(&goi, nvp_target_event, 1);
5001 return e;
5003 struct target *target = Jim_CmdPrivData(interp);
5004 target_handle_event(target, n->value);
5005 return JIM_OK;
5008 static const struct command_registration target_instance_command_handlers[] = {
5010 .name = "configure",
5011 .mode = COMMAND_CONFIG,
5012 .jim_handler = jim_target_configure,
5013 .help = "configure a new target for use",
5014 .usage = "[target_attribute ...]",
5017 .name = "cget",
5018 .mode = COMMAND_ANY,
5019 .jim_handler = jim_target_configure,
5020 .help = "returns the specified target attribute",
5021 .usage = "target_attribute",
5024 .name = "mww",
5025 .mode = COMMAND_EXEC,
5026 .jim_handler = jim_target_mw,
5027 .help = "Write 32-bit word(s) to target memory",
5028 .usage = "address data [count]",
5031 .name = "mwh",
5032 .mode = COMMAND_EXEC,
5033 .jim_handler = jim_target_mw,
5034 .help = "Write 16-bit half-word(s) to target memory",
5035 .usage = "address data [count]",
5038 .name = "mwb",
5039 .mode = COMMAND_EXEC,
5040 .jim_handler = jim_target_mw,
5041 .help = "Write byte(s) to target memory",
5042 .usage = "address data [count]",
5045 .name = "mdw",
5046 .mode = COMMAND_EXEC,
5047 .jim_handler = jim_target_md,
5048 .help = "Display target memory as 32-bit words",
5049 .usage = "address [count]",
5052 .name = "mdh",
5053 .mode = COMMAND_EXEC,
5054 .jim_handler = jim_target_md,
5055 .help = "Display target memory as 16-bit half-words",
5056 .usage = "address [count]",
5059 .name = "mdb",
5060 .mode = COMMAND_EXEC,
5061 .jim_handler = jim_target_md,
5062 .help = "Display target memory as 8-bit bytes",
5063 .usage = "address [count]",
5066 .name = "array2mem",
5067 .mode = COMMAND_EXEC,
5068 .jim_handler = jim_target_array2mem,
5069 .help = "Writes Tcl array of 8/16/32 bit numbers "
5070 "to target memory",
5071 .usage = "arrayname bitwidth address count",
5074 .name = "mem2array",
5075 .mode = COMMAND_EXEC,
5076 .jim_handler = jim_target_mem2array,
5077 .help = "Loads Tcl array of 8/16/32 bit numbers "
5078 "from target memory",
5079 .usage = "arrayname bitwidth address count",
5082 .name = "eventlist",
5083 .mode = COMMAND_EXEC,
5084 .jim_handler = jim_target_event_list,
5085 .help = "displays a table of events defined for this target",
5088 .name = "curstate",
5089 .mode = COMMAND_EXEC,
5090 .jim_handler = jim_target_current_state,
5091 .help = "displays the current state of this target",
5094 .name = "arp_examine",
5095 .mode = COMMAND_EXEC,
5096 .jim_handler = jim_target_examine,
5097 .help = "used internally for reset processing",
5100 .name = "arp_halt_gdb",
5101 .mode = COMMAND_EXEC,
5102 .jim_handler = jim_target_halt_gdb,
5103 .help = "used internally for reset processing to halt GDB",
5106 .name = "arp_poll",
5107 .mode = COMMAND_EXEC,
5108 .jim_handler = jim_target_poll,
5109 .help = "used internally for reset processing",
5112 .name = "arp_reset",
5113 .mode = COMMAND_EXEC,
5114 .jim_handler = jim_target_reset,
5115 .help = "used internally for reset processing",
5118 .name = "arp_halt",
5119 .mode = COMMAND_EXEC,
5120 .jim_handler = jim_target_halt,
5121 .help = "used internally for reset processing",
5124 .name = "arp_waitstate",
5125 .mode = COMMAND_EXEC,
5126 .jim_handler = jim_target_wait_state,
5127 .help = "used internally for reset processing",
5130 .name = "invoke-event",
5131 .mode = COMMAND_EXEC,
5132 .jim_handler = jim_target_invoke_event,
5133 .help = "invoke handler for specified event",
5134 .usage = "event_name",
5136 COMMAND_REGISTRATION_DONE
5139 static int target_create(Jim_GetOptInfo *goi)
5141 Jim_Obj *new_cmd;
5142 Jim_Cmd *cmd;
5143 const char *cp;
5144 char *cp2;
5145 int e;
5146 int x;
5147 struct target *target;
5148 struct command_context *cmd_ctx;
5150 cmd_ctx = current_command_context(goi->interp);
5151 assert(cmd_ctx != NULL);
5153 if (goi->argc < 3) {
5154 Jim_WrongNumArgs(goi->interp, 1, goi->argv, "?name? ?type? ..options...");
5155 return JIM_ERR;
5158 /* COMMAND */
5159 Jim_GetOpt_Obj(goi, &new_cmd);
5160 /* does this command exist? */
5161 cmd = Jim_GetCommand(goi->interp, new_cmd, JIM_ERRMSG);
5162 if (cmd) {
5163 cp = Jim_GetString(new_cmd, NULL);
5164 Jim_SetResultFormatted(goi->interp, "Command/target: %s Exists", cp);
5165 return JIM_ERR;
5168 /* TYPE */
5169 e = Jim_GetOpt_String(goi, &cp2, NULL);
5170 if (e != JIM_OK)
5171 return e;
5172 cp = cp2;
5173 struct transport *tr = get_current_transport();
5174 if (tr->override_target) {
5175 e = tr->override_target(&cp);
5176 if (e != ERROR_OK) {
5177 LOG_ERROR("The selected transport doesn't support this target");
5178 return JIM_ERR;
5180 LOG_INFO("The selected transport took over low-level target control. The results might differ compared to plain JTAG/SWD");
5182 /* now does target type exist */
5183 for (x = 0 ; target_types[x] ; x++) {
5184 if (0 == strcmp(cp, target_types[x]->name)) {
5185 /* found */
5186 break;
5189 /* check for deprecated name */
5190 if (target_types[x]->deprecated_name) {
5191 if (0 == strcmp(cp, target_types[x]->deprecated_name)) {
5192 /* found */
5193 LOG_WARNING("target name is deprecated use: \'%s\'", target_types[x]->name);
5194 break;
5198 if (target_types[x] == NULL) {
5199 Jim_SetResultFormatted(goi->interp, "Unknown target type %s, try one of ", cp);
5200 for (x = 0 ; target_types[x] ; x++) {
5201 if (target_types[x + 1]) {
5202 Jim_AppendStrings(goi->interp,
5203 Jim_GetResult(goi->interp),
5204 target_types[x]->name,
5205 ", ", NULL);
5206 } else {
5207 Jim_AppendStrings(goi->interp,
5208 Jim_GetResult(goi->interp),
5209 " or ",
5210 target_types[x]->name, NULL);
5213 return JIM_ERR;
5216 /* Create it */
5217 target = calloc(1, sizeof(struct target));
5218 /* set target number */
5219 target->target_number = new_target_number();
5220 cmd_ctx->current_target = target->target_number;
5222 /* allocate memory for each unique target type */
5223 target->type = calloc(1, sizeof(struct target_type));
5225 memcpy(target->type, target_types[x], sizeof(struct target_type));
5227 /* will be set by "-endian" */
5228 target->endianness = TARGET_ENDIAN_UNKNOWN;
5230 /* default to first core, override with -coreid */
5231 target->coreid = 0;
5233 target->working_area = 0x0;
5234 target->working_area_size = 0x0;
5235 target->working_areas = NULL;
5236 target->backup_working_area = 0;
5238 target->state = TARGET_UNKNOWN;
5239 target->debug_reason = DBG_REASON_UNDEFINED;
5240 target->reg_cache = NULL;
5241 target->breakpoints = NULL;
5242 target->watchpoints = NULL;
5243 target->next = NULL;
5244 target->arch_info = NULL;
5246 target->display = 1;
5248 target->halt_issued = false;
5250 /* initialize trace information */
5251 target->trace_info = malloc(sizeof(struct trace));
5252 target->trace_info->num_trace_points = 0;
5253 target->trace_info->trace_points_size = 0;
5254 target->trace_info->trace_points = NULL;
5255 target->trace_info->trace_history_size = 0;
5256 target->trace_info->trace_history = NULL;
5257 target->trace_info->trace_history_pos = 0;
5258 target->trace_info->trace_history_overflowed = 0;
5260 target->dbgmsg = NULL;
5261 target->dbg_msg_enabled = 0;
5263 target->endianness = TARGET_ENDIAN_UNKNOWN;
5265 target->rtos = NULL;
5266 target->rtos_auto_detect = false;
5268 /* Do the rest as "configure" options */
5269 goi->isconfigure = 1;
5270 e = target_configure(goi, target);
5272 if (target->tap == NULL) {
5273 Jim_SetResultString(goi->interp, "-chain-position required when creating target", -1);
5274 e = JIM_ERR;
5277 if (e != JIM_OK) {
5278 free(target->type);
5279 free(target);
5280 return e;
5283 if (target->endianness == TARGET_ENDIAN_UNKNOWN) {
5284 /* default endian to little if not specified */
5285 target->endianness = TARGET_LITTLE_ENDIAN;
5288 cp = Jim_GetString(new_cmd, NULL);
5289 target->cmd_name = strdup(cp);
5291 /* create the target specific commands */
5292 if (target->type->commands) {
5293 e = register_commands(cmd_ctx, NULL, target->type->commands);
5294 if (ERROR_OK != e)
5295 LOG_ERROR("unable to register '%s' commands", cp);
5297 if (target->type->target_create)
5298 (*(target->type->target_create))(target, goi->interp);
5300 /* append to end of list */
5302 struct target **tpp;
5303 tpp = &(all_targets);
5304 while (*tpp)
5305 tpp = &((*tpp)->next);
5306 *tpp = target;
5309 /* now - create the new target name command */
5310 const struct command_registration target_subcommands[] = {
5312 .chain = target_instance_command_handlers,
5315 .chain = target->type->commands,
5317 COMMAND_REGISTRATION_DONE
5319 const struct command_registration target_commands[] = {
5321 .name = cp,
5322 .mode = COMMAND_ANY,
5323 .help = "target command group",
5324 .usage = "",
5325 .chain = target_subcommands,
5327 COMMAND_REGISTRATION_DONE
5329 e = register_commands(cmd_ctx, NULL, target_commands);
5330 if (ERROR_OK != e)
5331 return JIM_ERR;
5333 struct command *c = command_find_in_context(cmd_ctx, cp);
5334 assert(c);
5335 command_set_handler_data(c, target);
5337 return (ERROR_OK == e) ? JIM_OK : JIM_ERR;
5340 static int jim_target_current(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5342 if (argc != 1) {
5343 Jim_WrongNumArgs(interp, 1, argv, "Too many parameters");
5344 return JIM_ERR;
5346 struct command_context *cmd_ctx = current_command_context(interp);
5347 assert(cmd_ctx != NULL);
5349 Jim_SetResultString(interp, target_name(get_current_target(cmd_ctx)), -1);
5350 return JIM_OK;
5353 static int jim_target_types(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5355 if (argc != 1) {
5356 Jim_WrongNumArgs(interp, 1, argv, "Too many parameters");
5357 return JIM_ERR;
5359 Jim_SetResult(interp, Jim_NewListObj(interp, NULL, 0));
5360 for (unsigned x = 0; NULL != target_types[x]; x++) {
5361 Jim_ListAppendElement(interp, Jim_GetResult(interp),
5362 Jim_NewStringObj(interp, target_types[x]->name, -1));
5364 return JIM_OK;
5367 static int jim_target_names(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5369 if (argc != 1) {
5370 Jim_WrongNumArgs(interp, 1, argv, "Too many parameters");
5371 return JIM_ERR;
5373 Jim_SetResult(interp, Jim_NewListObj(interp, NULL, 0));
5374 struct target *target = all_targets;
5375 while (target) {
5376 Jim_ListAppendElement(interp, Jim_GetResult(interp),
5377 Jim_NewStringObj(interp, target_name(target), -1));
5378 target = target->next;
5380 return JIM_OK;
5383 static int jim_target_smp(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5385 int i;
5386 const char *targetname;
5387 int retval, len;
5388 struct target *target = (struct target *) NULL;
5389 struct target_list *head, *curr, *new;
5390 curr = (struct target_list *) NULL;
5391 head = (struct target_list *) NULL;
5393 retval = 0;
5394 LOG_DEBUG("%d", argc);
5395 /* argv[1] = target to associate in smp
5396 * argv[2] = target to assoicate in smp
5397 * argv[3] ...
5400 for (i = 1; i < argc; i++) {
5402 targetname = Jim_GetString(argv[i], &len);
5403 target = get_target(targetname);
5404 LOG_DEBUG("%s ", targetname);
5405 if (target) {
5406 new = malloc(sizeof(struct target_list));
5407 new->target = target;
5408 new->next = (struct target_list *)NULL;
5409 if (head == (struct target_list *)NULL) {
5410 head = new;
5411 curr = head;
5412 } else {
5413 curr->next = new;
5414 curr = new;
5418 /* now parse the list of cpu and put the target in smp mode*/
5419 curr = head;
5421 while (curr != (struct target_list *)NULL) {
5422 target = curr->target;
5423 target->smp = 1;
5424 target->head = head;
5425 curr = curr->next;
5428 if (target && target->rtos)
5429 retval = rtos_smp_init(head->target);
5431 return retval;
5435 static int jim_target_create(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5437 Jim_GetOptInfo goi;
5438 Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
5439 if (goi.argc < 3) {
5440 Jim_WrongNumArgs(goi.interp, goi.argc, goi.argv,
5441 "<name> <target_type> [<target_options> ...]");
5442 return JIM_ERR;
5444 return target_create(&goi);
5447 static const struct command_registration target_subcommand_handlers[] = {
5449 .name = "init",
5450 .mode = COMMAND_CONFIG,
5451 .handler = handle_target_init_command,
5452 .help = "initialize targets",
5455 .name = "create",
5456 /* REVISIT this should be COMMAND_CONFIG ... */
5457 .mode = COMMAND_ANY,
5458 .jim_handler = jim_target_create,
5459 .usage = "name type '-chain-position' name [options ...]",
5460 .help = "Creates and selects a new target",
5463 .name = "current",
5464 .mode = COMMAND_ANY,
5465 .jim_handler = jim_target_current,
5466 .help = "Returns the currently selected target",
5469 .name = "types",
5470 .mode = COMMAND_ANY,
5471 .jim_handler = jim_target_types,
5472 .help = "Returns the available target types as "
5473 "a list of strings",
5476 .name = "names",
5477 .mode = COMMAND_ANY,
5478 .jim_handler = jim_target_names,
5479 .help = "Returns the names of all targets as a list of strings",
5482 .name = "smp",
5483 .mode = COMMAND_ANY,
5484 .jim_handler = jim_target_smp,
5485 .usage = "targetname1 targetname2 ...",
5486 .help = "gather several target in a smp list"
5489 COMMAND_REGISTRATION_DONE
5492 struct FastLoad {
5493 uint32_t address;
5494 uint8_t *data;
5495 int length;
5499 static int fastload_num;
5500 static struct FastLoad *fastload;
5502 static void free_fastload(void)
5504 if (fastload != NULL) {
5505 int i;
5506 for (i = 0; i < fastload_num; i++) {
5507 if (fastload[i].data)
5508 free(fastload[i].data);
5510 free(fastload);
5511 fastload = NULL;
5515 COMMAND_HANDLER(handle_fast_load_image_command)
5517 uint8_t *buffer;
5518 size_t buf_cnt;
5519 uint32_t image_size;
5520 uint32_t min_address = 0;
5521 uint32_t max_address = 0xffffffff;
5522 int i;
5524 struct image image;
5526 int retval = CALL_COMMAND_HANDLER(parse_load_image_command_CMD_ARGV,
5527 &image, &min_address, &max_address);
5528 if (ERROR_OK != retval)
5529 return retval;
5531 struct duration bench;
5532 duration_start(&bench);
5534 retval = image_open(&image, CMD_ARGV[0], (CMD_ARGC >= 3) ? CMD_ARGV[2] : NULL);
5535 if (retval != ERROR_OK)
5536 return retval;
5538 image_size = 0x0;
5539 retval = ERROR_OK;
5540 fastload_num = image.num_sections;
5541 fastload = malloc(sizeof(struct FastLoad)*image.num_sections);
5542 if (fastload == NULL) {
5543 command_print(CMD_CTX, "out of memory");
5544 image_close(&image);
5545 return ERROR_FAIL;
5547 memset(fastload, 0, sizeof(struct FastLoad)*image.num_sections);
5548 for (i = 0; i < image.num_sections; i++) {
5549 buffer = malloc(image.sections[i].size);
5550 if (buffer == NULL) {
5551 command_print(CMD_CTX, "error allocating buffer for section (%d bytes)",
5552 (int)(image.sections[i].size));
5553 retval = ERROR_FAIL;
5554 break;
5557 retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt);
5558 if (retval != ERROR_OK) {
5559 free(buffer);
5560 break;
5563 uint32_t offset = 0;
5564 uint32_t length = buf_cnt;
5566 /* DANGER!!! beware of unsigned comparision here!!! */
5568 if ((image.sections[i].base_address + buf_cnt >= min_address) &&
5569 (image.sections[i].base_address < max_address)) {
5570 if (image.sections[i].base_address < min_address) {
5571 /* clip addresses below */
5572 offset += min_address-image.sections[i].base_address;
5573 length -= offset;
5576 if (image.sections[i].base_address + buf_cnt > max_address)
5577 length -= (image.sections[i].base_address + buf_cnt)-max_address;
5579 fastload[i].address = image.sections[i].base_address + offset;
5580 fastload[i].data = malloc(length);
5581 if (fastload[i].data == NULL) {
5582 free(buffer);
5583 command_print(CMD_CTX, "error allocating buffer for section (%" PRIu32 " bytes)",
5584 length);
5585 retval = ERROR_FAIL;
5586 break;
5588 memcpy(fastload[i].data, buffer + offset, length);
5589 fastload[i].length = length;
5591 image_size += length;
5592 command_print(CMD_CTX, "%u bytes written at address 0x%8.8x",
5593 (unsigned int)length,
5594 ((unsigned int)(image.sections[i].base_address + offset)));
5597 free(buffer);
5600 if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK)) {
5601 command_print(CMD_CTX, "Loaded %" PRIu32 " bytes "
5602 "in %fs (%0.3f KiB/s)", image_size,
5603 duration_elapsed(&bench), duration_kbps(&bench, image_size));
5605 command_print(CMD_CTX,
5606 "WARNING: image has not been loaded to target!"
5607 "You can issue a 'fast_load' to finish loading.");
5610 image_close(&image);
5612 if (retval != ERROR_OK)
5613 free_fastload();
5615 return retval;
5618 COMMAND_HANDLER(handle_fast_load_command)
5620 if (CMD_ARGC > 0)
5621 return ERROR_COMMAND_SYNTAX_ERROR;
5622 if (fastload == NULL) {
5623 LOG_ERROR("No image in memory");
5624 return ERROR_FAIL;
5626 int i;
5627 int ms = timeval_ms();
5628 int size = 0;
5629 int retval = ERROR_OK;
5630 for (i = 0; i < fastload_num; i++) {
5631 struct target *target = get_current_target(CMD_CTX);
5632 command_print(CMD_CTX, "Write to 0x%08x, length 0x%08x",
5633 (unsigned int)(fastload[i].address),
5634 (unsigned int)(fastload[i].length));
5635 retval = target_write_buffer(target, fastload[i].address, fastload[i].length, fastload[i].data);
5636 if (retval != ERROR_OK)
5637 break;
5638 size += fastload[i].length;
5640 if (retval == ERROR_OK) {
5641 int after = timeval_ms();
5642 command_print(CMD_CTX, "Loaded image %f kBytes/s", (float)(size/1024.0)/((float)(after-ms)/1000.0));
5644 return retval;
5647 static const struct command_registration target_command_handlers[] = {
5649 .name = "targets",
5650 .handler = handle_targets_command,
5651 .mode = COMMAND_ANY,
5652 .help = "change current default target (one parameter) "
5653 "or prints table of all targets (no parameters)",
5654 .usage = "[target]",
5657 .name = "target",
5658 .mode = COMMAND_CONFIG,
5659 .help = "configure target",
5661 .chain = target_subcommand_handlers,
5663 COMMAND_REGISTRATION_DONE
5666 int target_register_commands(struct command_context *cmd_ctx)
5668 return register_commands(cmd_ctx, NULL, target_command_handlers);
5671 static bool target_reset_nag = true;
5673 bool get_target_reset_nag(void)
5675 return target_reset_nag;
5678 COMMAND_HANDLER(handle_target_reset_nag)
5680 return CALL_COMMAND_HANDLER(handle_command_parse_bool,
5681 &target_reset_nag, "Nag after each reset about options to improve "
5682 "performance");
5685 COMMAND_HANDLER(handle_ps_command)
5687 struct target *target = get_current_target(CMD_CTX);
5688 char *display;
5689 if (target->state != TARGET_HALTED) {
5690 LOG_INFO("target not halted !!");
5691 return ERROR_OK;
5694 if ((target->rtos) && (target->rtos->type)
5695 && (target->rtos->type->ps_command)) {
5696 display = target->rtos->type->ps_command(target);
5697 command_print(CMD_CTX, "%s", display);
5698 free(display);
5699 return ERROR_OK;
5700 } else {
5701 LOG_INFO("failed");
5702 return ERROR_TARGET_FAILURE;
5706 static void binprint(struct command_context *cmd_ctx, const char *text, const uint8_t *buf, int size)
5708 if (text != NULL)
5709 command_print_sameline(cmd_ctx, "%s", text);
5710 for (int i = 0; i < size; i++)
5711 command_print_sameline(cmd_ctx, " %02x", buf[i]);
5712 command_print(cmd_ctx, " ");
5715 COMMAND_HANDLER(handle_test_mem_access_command)
5717 struct target *target = get_current_target(CMD_CTX);
5718 uint32_t test_size;
5719 int retval = ERROR_OK;
5721 if (target->state != TARGET_HALTED) {
5722 LOG_INFO("target not halted !!");
5723 return ERROR_FAIL;
5726 if (CMD_ARGC != 1)
5727 return ERROR_COMMAND_SYNTAX_ERROR;
5729 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], test_size);
5731 /* Test reads */
5732 size_t num_bytes = test_size + 4;
5734 struct working_area *wa = NULL;
5735 retval = target_alloc_working_area(target, num_bytes, &wa);
5736 if (retval != ERROR_OK) {
5737 LOG_ERROR("Not enough working area");
5738 return ERROR_FAIL;
5741 uint8_t *test_pattern = malloc(num_bytes);
5743 for (size_t i = 0; i < num_bytes; i++)
5744 test_pattern[i] = rand();
5746 retval = target_write_memory(target, wa->address, 1, num_bytes, test_pattern);
5747 if (retval != ERROR_OK) {
5748 LOG_ERROR("Test pattern write failed");
5749 goto out;
5752 for (int host_offset = 0; host_offset <= 1; host_offset++) {
5753 for (int size = 1; size <= 4; size *= 2) {
5754 for (int offset = 0; offset < 4; offset++) {
5755 uint32_t count = test_size / size;
5756 size_t host_bufsiz = (count + 2) * size + host_offset;
5757 uint8_t *read_ref = malloc(host_bufsiz);
5758 uint8_t *read_buf = malloc(host_bufsiz);
5760 for (size_t i = 0; i < host_bufsiz; i++) {
5761 read_ref[i] = rand();
5762 read_buf[i] = read_ref[i];
5764 command_print_sameline(CMD_CTX,
5765 "Test read %" PRIu32 " x %d @ %d to %saligned buffer: ", count,
5766 size, offset, host_offset ? "un" : "");
5768 struct duration bench;
5769 duration_start(&bench);
5771 retval = target_read_memory(target, wa->address + offset, size, count,
5772 read_buf + size + host_offset);
5774 duration_measure(&bench);
5776 if (retval == ERROR_TARGET_UNALIGNED_ACCESS) {
5777 command_print(CMD_CTX, "Unsupported alignment");
5778 goto next;
5779 } else if (retval != ERROR_OK) {
5780 command_print(CMD_CTX, "Memory read failed");
5781 goto next;
5784 /* replay on host */
5785 memcpy(read_ref + size + host_offset, test_pattern + offset, count * size);
5787 /* check result */
5788 int result = memcmp(read_ref, read_buf, host_bufsiz);
5789 if (result == 0) {
5790 command_print(CMD_CTX, "Pass in %fs (%0.3f KiB/s)",
5791 duration_elapsed(&bench),
5792 duration_kbps(&bench, count * size));
5793 } else {
5794 command_print(CMD_CTX, "Compare failed");
5795 binprint(CMD_CTX, "ref:", read_ref, host_bufsiz);
5796 binprint(CMD_CTX, "buf:", read_buf, host_bufsiz);
5798 next:
5799 free(read_ref);
5800 free(read_buf);
5805 out:
5806 free(test_pattern);
5808 if (wa != NULL)
5809 target_free_working_area(target, wa);
5811 /* Test writes */
5812 num_bytes = test_size + 4 + 4 + 4;
5814 retval = target_alloc_working_area(target, num_bytes, &wa);
5815 if (retval != ERROR_OK) {
5816 LOG_ERROR("Not enough working area");
5817 return ERROR_FAIL;
5820 test_pattern = malloc(num_bytes);
5822 for (size_t i = 0; i < num_bytes; i++)
5823 test_pattern[i] = rand();
5825 for (int host_offset = 0; host_offset <= 1; host_offset++) {
5826 for (int size = 1; size <= 4; size *= 2) {
5827 for (int offset = 0; offset < 4; offset++) {
5828 uint32_t count = test_size / size;
5829 size_t host_bufsiz = count * size + host_offset;
5830 uint8_t *read_ref = malloc(num_bytes);
5831 uint8_t *read_buf = malloc(num_bytes);
5832 uint8_t *write_buf = malloc(host_bufsiz);
5834 for (size_t i = 0; i < host_bufsiz; i++)
5835 write_buf[i] = rand();
5836 command_print_sameline(CMD_CTX,
5837 "Test write %" PRIu32 " x %d @ %d from %saligned buffer: ", count,
5838 size, offset, host_offset ? "un" : "");
5840 retval = target_write_memory(target, wa->address, 1, num_bytes, test_pattern);
5841 if (retval != ERROR_OK) {
5842 command_print(CMD_CTX, "Test pattern write failed");
5843 goto nextw;
5846 /* replay on host */
5847 memcpy(read_ref, test_pattern, num_bytes);
5848 memcpy(read_ref + size + offset, write_buf + host_offset, count * size);
5850 struct duration bench;
5851 duration_start(&bench);
5853 retval = target_write_memory(target, wa->address + size + offset, size, count,
5854 write_buf + host_offset);
5856 duration_measure(&bench);
5858 if (retval == ERROR_TARGET_UNALIGNED_ACCESS) {
5859 command_print(CMD_CTX, "Unsupported alignment");
5860 goto nextw;
5861 } else if (retval != ERROR_OK) {
5862 command_print(CMD_CTX, "Memory write failed");
5863 goto nextw;
5866 /* read back */
5867 retval = target_read_memory(target, wa->address, 1, num_bytes, read_buf);
5868 if (retval != ERROR_OK) {
5869 command_print(CMD_CTX, "Test pattern write failed");
5870 goto nextw;
5873 /* check result */
5874 int result = memcmp(read_ref, read_buf, num_bytes);
5875 if (result == 0) {
5876 command_print(CMD_CTX, "Pass in %fs (%0.3f KiB/s)",
5877 duration_elapsed(&bench),
5878 duration_kbps(&bench, count * size));
5879 } else {
5880 command_print(CMD_CTX, "Compare failed");
5881 binprint(CMD_CTX, "ref:", read_ref, num_bytes);
5882 binprint(CMD_CTX, "buf:", read_buf, num_bytes);
5884 nextw:
5885 free(read_ref);
5886 free(read_buf);
5891 free(test_pattern);
5893 if (wa != NULL)
5894 target_free_working_area(target, wa);
5895 return retval;
5898 static const struct command_registration target_exec_command_handlers[] = {
5900 .name = "fast_load_image",
5901 .handler = handle_fast_load_image_command,
5902 .mode = COMMAND_ANY,
5903 .help = "Load image into server memory for later use by "
5904 "fast_load; primarily for profiling",
5905 .usage = "filename address ['bin'|'ihex'|'elf'|'s19'] "
5906 "[min_address [max_length]]",
5909 .name = "fast_load",
5910 .handler = handle_fast_load_command,
5911 .mode = COMMAND_EXEC,
5912 .help = "loads active fast load image to current target "
5913 "- mainly for profiling purposes",
5914 .usage = "",
5917 .name = "profile",
5918 .handler = handle_profile_command,
5919 .mode = COMMAND_EXEC,
5920 .usage = "seconds filename [start end]",
5921 .help = "profiling samples the CPU PC",
5923 /** @todo don't register virt2phys() unless target supports it */
5925 .name = "virt2phys",
5926 .handler = handle_virt2phys_command,
5927 .mode = COMMAND_ANY,
5928 .help = "translate a virtual address into a physical address",
5929 .usage = "virtual_address",
5932 .name = "reg",
5933 .handler = handle_reg_command,
5934 .mode = COMMAND_EXEC,
5935 .help = "display (reread from target with \"force\") or set a register; "
5936 "with no arguments, displays all registers and their values",
5937 .usage = "[(register_number|register_name) [(value|'force')]]",
5940 .name = "poll",
5941 .handler = handle_poll_command,
5942 .mode = COMMAND_EXEC,
5943 .help = "poll target state; or reconfigure background polling",
5944 .usage = "['on'|'off']",
5947 .name = "wait_halt",
5948 .handler = handle_wait_halt_command,
5949 .mode = COMMAND_EXEC,
5950 .help = "wait up to the specified number of milliseconds "
5951 "(default 5000) for a previously requested halt",
5952 .usage = "[milliseconds]",
5955 .name = "halt",
5956 .handler = handle_halt_command,
5957 .mode = COMMAND_EXEC,
5958 .help = "request target to halt, then wait up to the specified"
5959 "number of milliseconds (default 5000) for it to complete",
5960 .usage = "[milliseconds]",
5963 .name = "resume",
5964 .handler = handle_resume_command,
5965 .mode = COMMAND_EXEC,
5966 .help = "resume target execution from current PC or address",
5967 .usage = "[address]",
5970 .name = "reset",
5971 .handler = handle_reset_command,
5972 .mode = COMMAND_EXEC,
5973 .usage = "[run|halt|init]",
5974 .help = "Reset all targets into the specified mode."
5975 "Default reset mode is run, if not given.",
5978 .name = "soft_reset_halt",
5979 .handler = handle_soft_reset_halt_command,
5980 .mode = COMMAND_EXEC,
5981 .usage = "",
5982 .help = "halt the target and do a soft reset",
5985 .name = "step",
5986 .handler = handle_step_command,
5987 .mode = COMMAND_EXEC,
5988 .help = "step one instruction from current PC or address",
5989 .usage = "[address]",
5992 .name = "mdw",
5993 .handler = handle_md_command,
5994 .mode = COMMAND_EXEC,
5995 .help = "display memory words",
5996 .usage = "['phys'] address [count]",
5999 .name = "mdh",
6000 .handler = handle_md_command,
6001 .mode = COMMAND_EXEC,
6002 .help = "display memory half-words",
6003 .usage = "['phys'] address [count]",
6006 .name = "mdb",
6007 .handler = handle_md_command,
6008 .mode = COMMAND_EXEC,
6009 .help = "display memory bytes",
6010 .usage = "['phys'] address [count]",
6013 .name = "mww",
6014 .handler = handle_mw_command,
6015 .mode = COMMAND_EXEC,
6016 .help = "write memory word",
6017 .usage = "['phys'] address value [count]",
6020 .name = "mwh",
6021 .handler = handle_mw_command,
6022 .mode = COMMAND_EXEC,
6023 .help = "write memory half-word",
6024 .usage = "['phys'] address value [count]",
6027 .name = "mwb",
6028 .handler = handle_mw_command,
6029 .mode = COMMAND_EXEC,
6030 .help = "write memory byte",
6031 .usage = "['phys'] address value [count]",
6034 .name = "bp",
6035 .handler = handle_bp_command,
6036 .mode = COMMAND_EXEC,
6037 .help = "list or set hardware or software breakpoint",
6038 .usage = "<address> [<asid>]<length> ['hw'|'hw_ctx']",
6041 .name = "rbp",
6042 .handler = handle_rbp_command,
6043 .mode = COMMAND_EXEC,
6044 .help = "remove breakpoint",
6045 .usage = "address",
6048 .name = "wp",
6049 .handler = handle_wp_command,
6050 .mode = COMMAND_EXEC,
6051 .help = "list (no params) or create watchpoints",
6052 .usage = "[address length [('r'|'w'|'a') value [mask]]]",
6055 .name = "rwp",
6056 .handler = handle_rwp_command,
6057 .mode = COMMAND_EXEC,
6058 .help = "remove watchpoint",
6059 .usage = "address",
6062 .name = "load_image",
6063 .handler = handle_load_image_command,
6064 .mode = COMMAND_EXEC,
6065 .usage = "filename address ['bin'|'ihex'|'elf'|'s19'] "
6066 "[min_address] [max_length]",
6069 .name = "dump_image",
6070 .handler = handle_dump_image_command,
6071 .mode = COMMAND_EXEC,
6072 .usage = "filename address size",
6075 .name = "verify_image",
6076 .handler = handle_verify_image_command,
6077 .mode = COMMAND_EXEC,
6078 .usage = "filename [offset [type]]",
6081 .name = "test_image",
6082 .handler = handle_test_image_command,
6083 .mode = COMMAND_EXEC,
6084 .usage = "filename [offset [type]]",
6087 .name = "mem2array",
6088 .mode = COMMAND_EXEC,
6089 .jim_handler = jim_mem2array,
6090 .help = "read 8/16/32 bit memory and return as a TCL array "
6091 "for script processing",
6092 .usage = "arrayname bitwidth address count",
6095 .name = "array2mem",
6096 .mode = COMMAND_EXEC,
6097 .jim_handler = jim_array2mem,
6098 .help = "convert a TCL array to memory locations "
6099 "and write the 8/16/32 bit values",
6100 .usage = "arrayname bitwidth address count",
6103 .name = "reset_nag",
6104 .handler = handle_target_reset_nag,
6105 .mode = COMMAND_ANY,
6106 .help = "Nag after each reset about options that could have been "
6107 "enabled to improve performance. ",
6108 .usage = "['enable'|'disable']",
6111 .name = "ps",
6112 .handler = handle_ps_command,
6113 .mode = COMMAND_EXEC,
6114 .help = "list all tasks ",
6115 .usage = " ",
6118 .name = "test_mem_access",
6119 .handler = handle_test_mem_access_command,
6120 .mode = COMMAND_EXEC,
6121 .help = "Test the target's memory access functions",
6122 .usage = "size",
6125 COMMAND_REGISTRATION_DONE
6127 static int target_register_user_commands(struct command_context *cmd_ctx)
6129 int retval = ERROR_OK;
6130 retval = target_request_register_commands(cmd_ctx);
6131 if (retval != ERROR_OK)
6132 return retval;
6134 retval = trace_register_commands(cmd_ctx);
6135 if (retval != ERROR_OK)
6136 return retval;
6139 return register_commands(cmd_ctx, NULL, target_exec_command_handlers);