jtag: linuxgpiod: drop extra parenthesis
[openocd.git] / src / target / armv4_5.c
blob1886d5e1f6a612847402446d7dd40cfe44e2e12a
1 // SPDX-License-Identifier: GPL-2.0-or-later
3 /***************************************************************************
4 * Copyright (C) 2005 by Dominic Rath *
5 * Dominic.Rath@gmx.de *
6 * *
7 * Copyright (C) 2008 by Spencer Oliver *
8 * spen@spen-soft.co.uk *
9 * *
10 * Copyright (C) 2008 by Oyvind Harboe *
11 * oyvind.harboe@zylin.com *
12 * *
13 * Copyright (C) 2018 by Liviu Ionescu *
14 * <ilg@livius.net> *
15 ***************************************************************************/
17 #ifdef HAVE_CONFIG_H
18 #include "config.h"
19 #endif
21 #include "arm.h"
22 #include "armv4_5.h"
23 #include "arm_jtag.h"
24 #include "breakpoints.h"
25 #include "arm_disassembler.h"
26 #include <helper/binarybuffer.h>
27 #include "algorithm.h"
28 #include "register.h"
29 #include "semihosting_common.h"
31 /* offsets into armv4_5 core register cache */
32 enum {
33 /* ARMV4_5_CPSR = 31, */
34 ARMV4_5_SPSR_FIQ = 32,
35 ARMV4_5_SPSR_IRQ = 33,
36 ARMV4_5_SPSR_SVC = 34,
37 ARMV4_5_SPSR_ABT = 35,
38 ARMV4_5_SPSR_UND = 36,
39 ARM_SPSR_MON = 41,
40 ARM_SPSR_HYP = 43,
43 static const uint8_t arm_usr_indices[17] = {
44 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, ARMV4_5_CPSR,
47 static const uint8_t arm_fiq_indices[8] = {
48 16, 17, 18, 19, 20, 21, 22, ARMV4_5_SPSR_FIQ,
51 static const uint8_t arm_irq_indices[3] = {
52 23, 24, ARMV4_5_SPSR_IRQ,
55 static const uint8_t arm_svc_indices[3] = {
56 25, 26, ARMV4_5_SPSR_SVC,
59 static const uint8_t arm_abt_indices[3] = {
60 27, 28, ARMV4_5_SPSR_ABT,
63 static const uint8_t arm_und_indices[3] = {
64 29, 30, ARMV4_5_SPSR_UND,
67 static const uint8_t arm_mon_indices[3] = {
68 39, 40, ARM_SPSR_MON,
71 static const uint8_t arm_hyp_indices[2] = {
72 42, ARM_SPSR_HYP,
75 static const struct {
76 const char *name;
77 unsigned short psr;
78 /* For user and system modes, these list indices for all registers.
79 * otherwise they're just indices for the shadow registers and SPSR.
81 unsigned short n_indices;
82 const uint8_t *indices;
83 } arm_mode_data[] = {
84 /* Seven modes are standard from ARM7 on. "System" and "User" share
85 * the same registers; other modes shadow from 3 to 8 registers.
88 .name = "User",
89 .psr = ARM_MODE_USR,
90 .n_indices = ARRAY_SIZE(arm_usr_indices),
91 .indices = arm_usr_indices,
94 .name = "FIQ",
95 .psr = ARM_MODE_FIQ,
96 .n_indices = ARRAY_SIZE(arm_fiq_indices),
97 .indices = arm_fiq_indices,
100 .name = "Supervisor",
101 .psr = ARM_MODE_SVC,
102 .n_indices = ARRAY_SIZE(arm_svc_indices),
103 .indices = arm_svc_indices,
106 .name = "Abort",
107 .psr = ARM_MODE_ABT,
108 .n_indices = ARRAY_SIZE(arm_abt_indices),
109 .indices = arm_abt_indices,
112 .name = "IRQ",
113 .psr = ARM_MODE_IRQ,
114 .n_indices = ARRAY_SIZE(arm_irq_indices),
115 .indices = arm_irq_indices,
118 .name = "Undefined instruction",
119 .psr = ARM_MODE_UND,
120 .n_indices = ARRAY_SIZE(arm_und_indices),
121 .indices = arm_und_indices,
124 .name = "System",
125 .psr = ARM_MODE_SYS,
126 .n_indices = ARRAY_SIZE(arm_usr_indices),
127 .indices = arm_usr_indices,
129 /* TrustZone "Security Extensions" add a secure monitor mode.
130 * This is distinct from a "debug monitor" which can support
131 * non-halting debug, in conjunction with some debuggers.
134 .name = "Secure Monitor",
135 .psr = ARM_MODE_MON,
136 .n_indices = ARRAY_SIZE(arm_mon_indices),
137 .indices = arm_mon_indices,
140 .name = "Secure Monitor ARM1176JZF-S",
141 .psr = ARM_MODE_1176_MON,
142 .n_indices = ARRAY_SIZE(arm_mon_indices),
143 .indices = arm_mon_indices,
146 /* These special modes are currently only supported
147 * by ARMv6M and ARMv7M profiles */
149 .name = "Thread",
150 .psr = ARM_MODE_THREAD,
153 .name = "Thread (User)",
154 .psr = ARM_MODE_USER_THREAD,
157 .name = "Handler",
158 .psr = ARM_MODE_HANDLER,
161 /* armv7-a with virtualization extension */
163 .name = "Hypervisor",
164 .psr = ARM_MODE_HYP,
165 .n_indices = ARRAY_SIZE(arm_hyp_indices),
166 .indices = arm_hyp_indices,
170 /** Map PSR mode bits to the name of an ARM processor operating mode. */
171 const char *arm_mode_name(unsigned psr_mode)
173 for (unsigned i = 0; i < ARRAY_SIZE(arm_mode_data); i++) {
174 if (arm_mode_data[i].psr == psr_mode)
175 return arm_mode_data[i].name;
177 LOG_ERROR("unrecognized psr mode: %#02x", psr_mode);
178 return "UNRECOGNIZED";
181 /** Return true iff the parameter denotes a valid ARM processor mode. */
182 bool is_arm_mode(unsigned psr_mode)
184 for (unsigned i = 0; i < ARRAY_SIZE(arm_mode_data); i++) {
185 if (arm_mode_data[i].psr == psr_mode)
186 return true;
188 return false;
191 /** Map PSR mode bits to linear number indexing armv4_5_core_reg_map */
192 int arm_mode_to_number(enum arm_mode mode)
194 switch (mode) {
195 case ARM_MODE_ANY:
196 /* map MODE_ANY to user mode */
197 case ARM_MODE_USR:
198 return 0;
199 case ARM_MODE_FIQ:
200 return 1;
201 case ARM_MODE_IRQ:
202 return 2;
203 case ARM_MODE_SVC:
204 return 3;
205 case ARM_MODE_ABT:
206 return 4;
207 case ARM_MODE_UND:
208 return 5;
209 case ARM_MODE_SYS:
210 return 6;
211 case ARM_MODE_MON:
212 case ARM_MODE_1176_MON:
213 return 7;
214 case ARM_MODE_HYP:
215 return 8;
216 default:
217 LOG_ERROR("invalid mode value encountered %d", mode);
218 return -1;
222 /** Map linear number indexing armv4_5_core_reg_map to PSR mode bits. */
223 enum arm_mode armv4_5_number_to_mode(int number)
225 switch (number) {
226 case 0:
227 return ARM_MODE_USR;
228 case 1:
229 return ARM_MODE_FIQ;
230 case 2:
231 return ARM_MODE_IRQ;
232 case 3:
233 return ARM_MODE_SVC;
234 case 4:
235 return ARM_MODE_ABT;
236 case 5:
237 return ARM_MODE_UND;
238 case 6:
239 return ARM_MODE_SYS;
240 case 7:
241 return ARM_MODE_MON;
242 case 8:
243 return ARM_MODE_HYP;
244 default:
245 LOG_ERROR("mode index out of bounds %d", number);
246 return ARM_MODE_ANY;
250 static const char *arm_state_strings[] = {
251 "ARM", "Thumb", "Jazelle", "ThumbEE",
254 /* Templates for ARM core registers.
256 * NOTE: offsets in this table are coupled to the arm_mode_data
257 * table above, the armv4_5_core_reg_map array below, and also to
258 * the ARMV4_5_CPSR symbol (which should vanish after ARM11 updates).
260 static const struct {
261 /* The name is used for e.g. the "regs" command. */
262 const char *name;
264 /* The {cookie, mode} tuple uniquely identifies one register.
265 * In a given mode, cookies 0..15 map to registers R0..R15,
266 * with R13..R15 usually called SP, LR, PC.
268 * MODE_ANY is used as *input* to the mapping, and indicates
269 * various special cases (sigh) and errors.
271 * Cookie 16 is (currently) confusing, since it indicates
272 * CPSR -or- SPSR depending on whether 'mode' is MODE_ANY.
273 * (Exception modes have both CPSR and SPSR registers ...)
275 unsigned cookie;
276 unsigned gdb_index;
277 enum arm_mode mode;
278 } arm_core_regs[] = {
279 /* IMPORTANT: we guarantee that the first eight cached registers
280 * correspond to r0..r7, and the fifteenth to PC, so that callers
281 * don't need to map them.
283 [0] = { .name = "r0", .cookie = 0, .mode = ARM_MODE_ANY, .gdb_index = 0, },
284 [1] = { .name = "r1", .cookie = 1, .mode = ARM_MODE_ANY, .gdb_index = 1, },
285 [2] = { .name = "r2", .cookie = 2, .mode = ARM_MODE_ANY, .gdb_index = 2, },
286 [3] = { .name = "r3", .cookie = 3, .mode = ARM_MODE_ANY, .gdb_index = 3, },
287 [4] = { .name = "r4", .cookie = 4, .mode = ARM_MODE_ANY, .gdb_index = 4, },
288 [5] = { .name = "r5", .cookie = 5, .mode = ARM_MODE_ANY, .gdb_index = 5, },
289 [6] = { .name = "r6", .cookie = 6, .mode = ARM_MODE_ANY, .gdb_index = 6, },
290 [7] = { .name = "r7", .cookie = 7, .mode = ARM_MODE_ANY, .gdb_index = 7, },
292 /* NOTE: regs 8..12 might be shadowed by FIQ ... flagging
293 * them as MODE_ANY creates special cases. (ANY means
294 * "not mapped" elsewhere; here it's "everything but FIQ".)
296 [8] = { .name = "r8", .cookie = 8, .mode = ARM_MODE_ANY, .gdb_index = 8, },
297 [9] = { .name = "r9", .cookie = 9, .mode = ARM_MODE_ANY, .gdb_index = 9, },
298 [10] = { .name = "r10", .cookie = 10, .mode = ARM_MODE_ANY, .gdb_index = 10, },
299 [11] = { .name = "r11", .cookie = 11, .mode = ARM_MODE_ANY, .gdb_index = 11, },
300 [12] = { .name = "r12", .cookie = 12, .mode = ARM_MODE_ANY, .gdb_index = 12, },
302 /* Historical GDB mapping of indices:
303 * - 13-14 are sp and lr, but banked counterparts are used
304 * - 16-24 are left for deprecated 8 FPA + 1 FPS
305 * - 25 is the cpsr
308 /* NOTE all MODE_USR registers are equivalent to MODE_SYS ones */
309 [13] = { .name = "sp_usr", .cookie = 13, .mode = ARM_MODE_USR, .gdb_index = 26, },
310 [14] = { .name = "lr_usr", .cookie = 14, .mode = ARM_MODE_USR, .gdb_index = 27, },
312 /* guaranteed to be at index 15 */
313 [15] = { .name = "pc", .cookie = 15, .mode = ARM_MODE_ANY, .gdb_index = 15, },
314 [16] = { .name = "r8_fiq", .cookie = 8, .mode = ARM_MODE_FIQ, .gdb_index = 28, },
315 [17] = { .name = "r9_fiq", .cookie = 9, .mode = ARM_MODE_FIQ, .gdb_index = 29, },
316 [18] = { .name = "r10_fiq", .cookie = 10, .mode = ARM_MODE_FIQ, .gdb_index = 30, },
317 [19] = { .name = "r11_fiq", .cookie = 11, .mode = ARM_MODE_FIQ, .gdb_index = 31, },
318 [20] = { .name = "r12_fiq", .cookie = 12, .mode = ARM_MODE_FIQ, .gdb_index = 32, },
320 [21] = { .name = "sp_fiq", .cookie = 13, .mode = ARM_MODE_FIQ, .gdb_index = 33, },
321 [22] = { .name = "lr_fiq", .cookie = 14, .mode = ARM_MODE_FIQ, .gdb_index = 34, },
323 [23] = { .name = "sp_irq", .cookie = 13, .mode = ARM_MODE_IRQ, .gdb_index = 35, },
324 [24] = { .name = "lr_irq", .cookie = 14, .mode = ARM_MODE_IRQ, .gdb_index = 36, },
326 [25] = { .name = "sp_svc", .cookie = 13, .mode = ARM_MODE_SVC, .gdb_index = 37, },
327 [26] = { .name = "lr_svc", .cookie = 14, .mode = ARM_MODE_SVC, .gdb_index = 38, },
329 [27] = { .name = "sp_abt", .cookie = 13, .mode = ARM_MODE_ABT, .gdb_index = 39, },
330 [28] = { .name = "lr_abt", .cookie = 14, .mode = ARM_MODE_ABT, .gdb_index = 40, },
332 [29] = { .name = "sp_und", .cookie = 13, .mode = ARM_MODE_UND, .gdb_index = 41, },
333 [30] = { .name = "lr_und", .cookie = 14, .mode = ARM_MODE_UND, .gdb_index = 42, },
335 [31] = { .name = "cpsr", .cookie = 16, .mode = ARM_MODE_ANY, .gdb_index = 25, },
336 [32] = { .name = "spsr_fiq", .cookie = 16, .mode = ARM_MODE_FIQ, .gdb_index = 43, },
337 [33] = { .name = "spsr_irq", .cookie = 16, .mode = ARM_MODE_IRQ, .gdb_index = 44, },
338 [34] = { .name = "spsr_svc", .cookie = 16, .mode = ARM_MODE_SVC, .gdb_index = 45, },
339 [35] = { .name = "spsr_abt", .cookie = 16, .mode = ARM_MODE_ABT, .gdb_index = 46, },
340 [36] = { .name = "spsr_und", .cookie = 16, .mode = ARM_MODE_UND, .gdb_index = 47, },
342 /* These are only used for GDB target description, banked registers are accessed instead */
343 [37] = { .name = "sp", .cookie = 13, .mode = ARM_MODE_ANY, .gdb_index = 13, },
344 [38] = { .name = "lr", .cookie = 14, .mode = ARM_MODE_ANY, .gdb_index = 14, },
346 /* These exist only when the Security Extension (TrustZone) is present */
347 [39] = { .name = "sp_mon", .cookie = 13, .mode = ARM_MODE_MON, .gdb_index = 48, },
348 [40] = { .name = "lr_mon", .cookie = 14, .mode = ARM_MODE_MON, .gdb_index = 49, },
349 [41] = { .name = "spsr_mon", .cookie = 16, .mode = ARM_MODE_MON, .gdb_index = 50, },
351 /* These exist only when the Virtualization Extensions is present */
352 [42] = { .name = "sp_hyp", .cookie = 13, .mode = ARM_MODE_HYP, .gdb_index = 51, },
353 [43] = { .name = "spsr_hyp", .cookie = 16, .mode = ARM_MODE_HYP, .gdb_index = 52, },
356 static const struct {
357 unsigned int id;
358 const char *name;
359 uint32_t bits;
360 enum arm_mode mode;
361 enum reg_type type;
362 const char *group;
363 const char *feature;
364 } arm_vfp_v3_regs[] = {
365 { ARM_VFP_V3_D0, "d0", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
366 { ARM_VFP_V3_D1, "d1", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
367 { ARM_VFP_V3_D2, "d2", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
368 { ARM_VFP_V3_D3, "d3", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
369 { ARM_VFP_V3_D4, "d4", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
370 { ARM_VFP_V3_D5, "d5", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
371 { ARM_VFP_V3_D6, "d6", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
372 { ARM_VFP_V3_D7, "d7", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
373 { ARM_VFP_V3_D8, "d8", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
374 { ARM_VFP_V3_D9, "d9", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
375 { ARM_VFP_V3_D10, "d10", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
376 { ARM_VFP_V3_D11, "d11", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
377 { ARM_VFP_V3_D12, "d12", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
378 { ARM_VFP_V3_D13, "d13", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
379 { ARM_VFP_V3_D14, "d14", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
380 { ARM_VFP_V3_D15, "d15", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
381 { ARM_VFP_V3_D16, "d16", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
382 { ARM_VFP_V3_D17, "d17", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
383 { ARM_VFP_V3_D18, "d18", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
384 { ARM_VFP_V3_D19, "d19", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
385 { ARM_VFP_V3_D20, "d20", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
386 { ARM_VFP_V3_D21, "d21", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
387 { ARM_VFP_V3_D22, "d22", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
388 { ARM_VFP_V3_D23, "d23", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
389 { ARM_VFP_V3_D24, "d24", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
390 { ARM_VFP_V3_D25, "d25", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
391 { ARM_VFP_V3_D26, "d26", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
392 { ARM_VFP_V3_D27, "d27", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
393 { ARM_VFP_V3_D28, "d28", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
394 { ARM_VFP_V3_D29, "d29", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
395 { ARM_VFP_V3_D30, "d30", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
396 { ARM_VFP_V3_D31, "d31", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
397 { ARM_VFP_V3_FPSCR, "fpscr", 32, ARM_MODE_ANY, REG_TYPE_INT, "float", "org.gnu.gdb.arm.vfp"},
400 /* map core mode (USR, FIQ, ...) and register number to
401 * indices into the register cache
403 const int armv4_5_core_reg_map[9][17] = {
404 { /* USR */
405 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 31
407 { /* FIQ (8 shadows of USR, vs normal 3) */
408 0, 1, 2, 3, 4, 5, 6, 7, 16, 17, 18, 19, 20, 21, 22, 15, 32
410 { /* IRQ */
411 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 23, 24, 15, 33
413 { /* SVC */
414 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 25, 26, 15, 34
416 { /* ABT */
417 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 27, 28, 15, 35
419 { /* UND */
420 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 29, 30, 15, 36
422 { /* SYS (same registers as USR) */
423 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 31
425 { /* MON */
426 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 39, 40, 15, 41,
428 { /* HYP */
429 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 42, 14, 15, 43,
434 * Configures host-side ARM records to reflect the specified CPSR.
435 * Later, code can use arm_reg_current() to map register numbers
436 * according to how they are exposed by this mode.
438 void arm_set_cpsr(struct arm *arm, uint32_t cpsr)
440 enum arm_mode mode = cpsr & 0x1f;
441 int num;
443 /* NOTE: this may be called very early, before the register
444 * cache is set up. We can't defend against many errors, in
445 * particular against CPSRs that aren't valid *here* ...
447 if (arm->cpsr) {
448 buf_set_u32(arm->cpsr->value, 0, 32, cpsr);
449 arm->cpsr->valid = true;
450 arm->cpsr->dirty = false;
453 arm->core_mode = mode;
455 /* mode_to_number() warned; set up a somewhat-sane mapping */
456 num = arm_mode_to_number(mode);
457 if (num < 0) {
458 mode = ARM_MODE_USR;
459 num = 0;
462 arm->map = &armv4_5_core_reg_map[num][0];
463 arm->spsr = (mode == ARM_MODE_USR || mode == ARM_MODE_SYS)
464 ? NULL
465 : arm->core_cache->reg_list + arm->map[16];
467 /* Older ARMs won't have the J bit */
468 enum arm_state state;
470 if (cpsr & (1 << 5)) { /* T */
471 if (cpsr & (1 << 24)) { /* J */
472 LOG_WARNING("ThumbEE -- incomplete support");
473 state = ARM_STATE_THUMB_EE;
474 } else
475 state = ARM_STATE_THUMB;
476 } else {
477 if (cpsr & (1 << 24)) { /* J */
478 LOG_ERROR("Jazelle state handling is BROKEN!");
479 state = ARM_STATE_JAZELLE;
480 } else
481 state = ARM_STATE_ARM;
483 arm->core_state = state;
485 LOG_DEBUG("set CPSR %#8.8x: %s mode, %s state", (unsigned) cpsr,
486 arm_mode_name(mode),
487 arm_state_strings[arm->core_state]);
491 * Returns handle to the register currently mapped to a given number.
492 * Someone must have called arm_set_cpsr() before.
494 * \param arm This core's state and registers are used.
495 * \param regnum From 0..15 corresponding to R0..R14 and PC.
496 * Note that R0..R7 don't require mapping; you may access those
497 * as the first eight entries in the register cache. Likewise
498 * R15 (PC) doesn't need mapping; you may also access it directly.
499 * However, R8..R14, and SPSR (arm->spsr) *must* be mapped.
500 * CPSR (arm->cpsr) is also not mapped.
502 struct reg *arm_reg_current(struct arm *arm, unsigned regnum)
504 struct reg *r;
506 if (regnum > 16)
507 return NULL;
509 if (!arm->map) {
510 LOG_ERROR("Register map is not available yet, the target is not fully initialised");
511 r = arm->core_cache->reg_list + regnum;
512 } else
513 r = arm->core_cache->reg_list + arm->map[regnum];
515 /* e.g. invalid CPSR said "secure monitor" mode on a core
516 * that doesn't support it...
518 if (!r) {
519 LOG_ERROR("Invalid CPSR mode");
520 r = arm->core_cache->reg_list + regnum;
523 return r;
526 static const uint8_t arm_gdb_dummy_fp_value[12];
528 static struct reg_feature arm_gdb_dummy_fp_features = {
529 .name = "net.sourceforge.openocd.fake_fpa"
533 * Dummy FPA registers are required to support GDB on ARM.
534 * Register packets require eight obsolete FPA register values.
535 * Modern ARM cores use Vector Floating Point (VFP), if they
536 * have any floating point support. VFP is not FPA-compatible.
538 static struct reg arm_gdb_dummy_fp_reg = {
539 .name = "GDB dummy FPA register",
540 .value = (uint8_t *) arm_gdb_dummy_fp_value,
541 .valid = true,
542 .size = 96,
543 .exist = false,
544 .number = 16,
545 .feature = &arm_gdb_dummy_fp_features,
546 .group = "fake_fpa",
549 static const uint8_t arm_gdb_dummy_fps_value[4];
552 * Dummy FPA status registers are required to support GDB on ARM.
553 * Register packets require an obsolete FPA status register.
555 static struct reg arm_gdb_dummy_fps_reg = {
556 .name = "GDB dummy FPA status register",
557 .value = (uint8_t *) arm_gdb_dummy_fps_value,
558 .valid = true,
559 .size = 32,
560 .exist = false,
561 .number = 24,
562 .feature = &arm_gdb_dummy_fp_features,
563 .group = "fake_fpa",
566 static void arm_gdb_dummy_init(void) __attribute__ ((constructor));
568 static void arm_gdb_dummy_init(void)
570 register_init_dummy(&arm_gdb_dummy_fp_reg);
571 register_init_dummy(&arm_gdb_dummy_fps_reg);
574 static int armv4_5_get_core_reg(struct reg *reg)
576 int retval;
577 struct arm_reg *reg_arch_info = reg->arch_info;
578 struct target *target = reg_arch_info->target;
580 if (target->state != TARGET_HALTED) {
581 LOG_TARGET_ERROR(target, "not halted");
582 return ERROR_TARGET_NOT_HALTED;
585 retval = reg_arch_info->arm->read_core_reg(target, reg,
586 reg_arch_info->num, reg_arch_info->mode);
587 if (retval == ERROR_OK) {
588 reg->valid = true;
589 reg->dirty = false;
592 return retval;
595 static int armv4_5_set_core_reg(struct reg *reg, uint8_t *buf)
597 struct arm_reg *reg_arch_info = reg->arch_info;
598 struct target *target = reg_arch_info->target;
599 struct arm *armv4_5_target = target_to_arm(target);
600 uint32_t value = buf_get_u32(buf, 0, 32);
602 if (target->state != TARGET_HALTED) {
603 LOG_TARGET_ERROR(target, "not halted");
604 return ERROR_TARGET_NOT_HALTED;
607 /* Except for CPSR, the "reg" command exposes a writeback model
608 * for the register cache.
610 if (reg == armv4_5_target->cpsr) {
611 arm_set_cpsr(armv4_5_target, value);
613 /* Older cores need help to be in ARM mode during halt
614 * mode debug, so we clear the J and T bits if we flush.
615 * For newer cores (v6/v7a/v7r) we don't need that, but
616 * it won't hurt since CPSR is always flushed anyway.
618 if (armv4_5_target->core_mode !=
619 (enum arm_mode)(value & 0x1f)) {
620 LOG_DEBUG("changing ARM core mode to '%s'",
621 arm_mode_name(value & 0x1f));
622 value &= ~((1 << 24) | (1 << 5));
623 uint8_t t[4];
624 buf_set_u32(t, 0, 32, value);
625 armv4_5_target->write_core_reg(target, reg,
626 16, ARM_MODE_ANY, t);
628 } else {
629 buf_set_u32(reg->value, 0, 32, value);
630 if (reg->size == 64) {
631 value = buf_get_u32(buf + 4, 0, 32);
632 buf_set_u32(reg->value + 4, 0, 32, value);
634 reg->valid = true;
636 reg->dirty = true;
638 return ERROR_OK;
641 static const struct reg_arch_type arm_reg_type = {
642 .get = armv4_5_get_core_reg,
643 .set = armv4_5_set_core_reg,
646 struct reg_cache *arm_build_reg_cache(struct target *target, struct arm *arm)
648 int num_regs = ARRAY_SIZE(arm_core_regs);
649 int num_core_regs = num_regs;
650 if (arm->arm_vfp_version == ARM_VFP_V3)
651 num_regs += ARRAY_SIZE(arm_vfp_v3_regs);
653 struct reg_cache *cache = malloc(sizeof(struct reg_cache));
654 struct reg *reg_list = calloc(num_regs, sizeof(struct reg));
655 struct arm_reg *reg_arch_info = calloc(num_regs, sizeof(struct arm_reg));
656 int i;
658 if (!cache || !reg_list || !reg_arch_info) {
659 free(cache);
660 free(reg_list);
661 free(reg_arch_info);
662 return NULL;
665 cache->name = "ARM registers";
666 cache->next = NULL;
667 cache->reg_list = reg_list;
668 cache->num_regs = 0;
670 for (i = 0; i < num_core_regs; i++) {
671 /* Skip registers this core doesn't expose */
672 if (arm_core_regs[i].mode == ARM_MODE_MON
673 && arm->core_type != ARM_CORE_TYPE_SEC_EXT
674 && arm->core_type != ARM_CORE_TYPE_VIRT_EXT)
675 continue;
676 if (arm_core_regs[i].mode == ARM_MODE_HYP
677 && arm->core_type != ARM_CORE_TYPE_VIRT_EXT)
678 continue;
680 /* REVISIT handle Cortex-M, which only shadows R13/SP */
682 reg_arch_info[i].num = arm_core_regs[i].cookie;
683 reg_arch_info[i].mode = arm_core_regs[i].mode;
684 reg_arch_info[i].target = target;
685 reg_arch_info[i].arm = arm;
687 reg_list[i].name = arm_core_regs[i].name;
688 reg_list[i].number = arm_core_regs[i].gdb_index;
689 reg_list[i].size = 32;
690 reg_list[i].value = reg_arch_info[i].value;
691 reg_list[i].type = &arm_reg_type;
692 reg_list[i].arch_info = &reg_arch_info[i];
693 reg_list[i].exist = true;
695 /* This really depends on the calling convention in use */
696 reg_list[i].caller_save = false;
698 /* Registers data type, as used by GDB target description */
699 reg_list[i].reg_data_type = malloc(sizeof(struct reg_data_type));
700 switch (arm_core_regs[i].cookie) {
701 case 13:
702 reg_list[i].reg_data_type->type = REG_TYPE_DATA_PTR;
703 break;
704 case 14:
705 case 15:
706 reg_list[i].reg_data_type->type = REG_TYPE_CODE_PTR;
707 break;
708 default:
709 reg_list[i].reg_data_type->type = REG_TYPE_UINT32;
710 break;
713 /* let GDB shows banked registers only in "info all-reg" */
714 reg_list[i].feature = malloc(sizeof(struct reg_feature));
715 if (reg_list[i].number <= 15 || reg_list[i].number == 25) {
716 reg_list[i].feature->name = "org.gnu.gdb.arm.core";
717 reg_list[i].group = "general";
718 } else {
719 reg_list[i].feature->name = "net.sourceforge.openocd.banked";
720 reg_list[i].group = "banked";
723 cache->num_regs++;
726 int j;
727 for (i = num_core_regs, j = 0; i < num_regs; i++, j++) {
728 reg_arch_info[i].num = arm_vfp_v3_regs[j].id;
729 reg_arch_info[i].mode = arm_vfp_v3_regs[j].mode;
730 reg_arch_info[i].target = target;
731 reg_arch_info[i].arm = arm;
733 reg_list[i].name = arm_vfp_v3_regs[j].name;
734 reg_list[i].number = arm_vfp_v3_regs[j].id;
735 reg_list[i].size = arm_vfp_v3_regs[j].bits;
736 reg_list[i].value = reg_arch_info[i].value;
737 reg_list[i].type = &arm_reg_type;
738 reg_list[i].arch_info = &reg_arch_info[i];
739 reg_list[i].exist = true;
741 reg_list[i].caller_save = false;
743 reg_list[i].reg_data_type = malloc(sizeof(struct reg_data_type));
744 reg_list[i].reg_data_type->type = arm_vfp_v3_regs[j].type;
746 reg_list[i].feature = malloc(sizeof(struct reg_feature));
747 reg_list[i].feature->name = arm_vfp_v3_regs[j].feature;
749 reg_list[i].group = arm_vfp_v3_regs[j].group;
751 cache->num_regs++;
754 arm->pc = reg_list + 15;
755 arm->cpsr = reg_list + ARMV4_5_CPSR;
756 arm->core_cache = cache;
758 return cache;
761 void arm_free_reg_cache(struct arm *arm)
763 if (!arm || !arm->core_cache)
764 return;
766 struct reg_cache *cache = arm->core_cache;
768 for (unsigned int i = 0; i < cache->num_regs; i++) {
769 struct reg *reg = &cache->reg_list[i];
771 free(reg->feature);
772 free(reg->reg_data_type);
775 free(cache->reg_list[0].arch_info);
776 free(cache->reg_list);
777 free(cache);
779 arm->core_cache = NULL;
782 int arm_arch_state(struct target *target)
784 struct arm *arm = target_to_arm(target);
786 if (arm->common_magic != ARM_COMMON_MAGIC) {
787 LOG_ERROR("BUG: called for a non-ARM target");
788 return ERROR_FAIL;
791 /* avoid filling log waiting for fileio reply */
792 if (target->semihosting && target->semihosting->hit_fileio)
793 return ERROR_OK;
795 LOG_USER("target halted in %s state due to %s, current mode: %s\n"
796 "cpsr: 0x%8.8" PRIx32 " pc: 0x%8.8" PRIx32 "%s%s",
797 arm_state_strings[arm->core_state],
798 debug_reason_name(target),
799 arm_mode_name(arm->core_mode),
800 buf_get_u32(arm->cpsr->value, 0, 32),
801 buf_get_u32(arm->pc->value, 0, 32),
802 (target->semihosting && target->semihosting->is_active) ? ", semihosting" : "",
803 (target->semihosting && target->semihosting->is_fileio) ? " fileio" : "");
805 return ERROR_OK;
808 COMMAND_HANDLER(handle_armv4_5_reg_command)
810 struct target *target = get_current_target(CMD_CTX);
811 struct arm *arm = target_to_arm(target);
812 struct reg *regs;
814 if (!is_arm(arm)) {
815 command_print(CMD, "current target isn't an ARM");
816 return ERROR_FAIL;
819 if (target->state != TARGET_HALTED) {
820 command_print(CMD, "Error: target must be halted for register accesses");
821 return ERROR_TARGET_NOT_HALTED;
824 if (arm->core_type != ARM_CORE_TYPE_STD) {
825 command_print(CMD,
826 "Microcontroller Profile not supported - use standard reg cmd");
827 return ERROR_OK;
830 if (!is_arm_mode(arm->core_mode)) {
831 LOG_ERROR("not a valid arm core mode - communication failure?");
832 return ERROR_FAIL;
835 if (!arm->full_context) {
836 command_print(CMD, "Error: target doesn't support %s",
837 CMD_NAME);
838 return ERROR_FAIL;
841 regs = arm->core_cache->reg_list;
843 for (unsigned mode = 0; mode < ARRAY_SIZE(arm_mode_data); mode++) {
844 const char *name;
845 char *sep = "\n";
846 char *shadow = "";
848 if (!arm_mode_data[mode].n_indices)
849 continue;
851 /* label this bank of registers (or shadows) */
852 switch (arm_mode_data[mode].psr) {
853 case ARM_MODE_SYS:
854 continue;
855 case ARM_MODE_USR:
856 name = "System and User";
857 sep = "";
858 break;
859 case ARM_MODE_HYP:
860 if (arm->core_type != ARM_CORE_TYPE_VIRT_EXT)
861 continue;
862 /* FALLTHROUGH */
863 case ARM_MODE_MON:
864 case ARM_MODE_1176_MON:
865 if (arm->core_type != ARM_CORE_TYPE_SEC_EXT
866 && arm->core_type != ARM_CORE_TYPE_VIRT_EXT)
867 continue;
868 /* FALLTHROUGH */
869 default:
870 name = arm_mode_data[mode].name;
871 shadow = "shadow ";
872 break;
874 command_print(CMD, "%s%s mode %sregisters",
875 sep, name, shadow);
877 /* display N rows of up to 4 registers each */
878 for (unsigned i = 0; i < arm_mode_data[mode].n_indices; ) {
879 char output[80];
880 int output_len = 0;
882 for (unsigned j = 0; j < 4; j++, i++) {
883 uint32_t value;
884 struct reg *reg = regs;
886 if (i >= arm_mode_data[mode].n_indices)
887 break;
889 reg += arm_mode_data[mode].indices[i];
891 /* REVISIT be smarter about faults... */
892 if (!reg->valid)
893 arm->full_context(target);
895 value = buf_get_u32(reg->value, 0, 32);
896 output_len += snprintf(output + output_len,
897 sizeof(output) - output_len,
898 "%8s: %8.8" PRIx32 " ",
899 reg->name, value);
901 command_print(CMD, "%s", output);
905 return ERROR_OK;
908 COMMAND_HANDLER(handle_arm_core_state_command)
910 struct target *target = get_current_target(CMD_CTX);
911 struct arm *arm = target_to_arm(target);
912 int ret = ERROR_OK;
914 if (!is_arm(arm)) {
915 command_print(CMD, "current target isn't an ARM");
916 return ERROR_FAIL;
919 if (CMD_ARGC > 0) {
920 if (strcmp(CMD_ARGV[0], "arm") == 0) {
921 if (arm->core_type == ARM_CORE_TYPE_M_PROFILE) {
922 command_print(CMD, "arm mode not supported on Cortex-M");
923 ret = ERROR_FAIL;
924 } else {
925 arm->core_state = ARM_STATE_ARM;
928 if (strcmp(CMD_ARGV[0], "thumb") == 0)
929 arm->core_state = ARM_STATE_THUMB;
932 command_print(CMD, "core state: %s", arm_state_strings[arm->core_state]);
934 return ret;
937 COMMAND_HANDLER(handle_arm_disassemble_command)
939 #if HAVE_CAPSTONE
940 struct target *target = get_current_target(CMD_CTX);
942 if (!target) {
943 LOG_ERROR("No target selected");
944 return ERROR_FAIL;
947 struct arm *arm = target_to_arm(target);
948 target_addr_t address;
949 unsigned int count = 1;
950 bool thumb = false;
952 if (!is_arm(arm)) {
953 command_print(CMD, "current target isn't an ARM");
954 return ERROR_FAIL;
957 if (arm->core_type == ARM_CORE_TYPE_M_PROFILE) {
958 /* armv7m is always thumb mode */
959 thumb = true;
962 switch (CMD_ARGC) {
963 case 3:
964 if (strcmp(CMD_ARGV[2], "thumb") != 0)
965 return ERROR_COMMAND_SYNTAX_ERROR;
966 thumb = true;
967 /* FALL THROUGH */
968 case 2:
969 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[1], count);
970 /* FALL THROUGH */
971 case 1:
972 COMMAND_PARSE_ADDRESS(CMD_ARGV[0], address);
973 if (address & 0x01) {
974 if (!thumb) {
975 command_print(CMD, "Disassemble as Thumb");
976 thumb = true;
978 address &= ~1;
980 break;
981 default:
982 return ERROR_COMMAND_SYNTAX_ERROR;
985 return arm_disassemble(CMD, target, address, count, thumb);
986 #else
987 command_print(CMD, "capstone disassembly framework required");
988 return ERROR_FAIL;
989 #endif
992 COMMAND_HANDLER(handle_armv4_5_mcrmrc)
994 bool is_mcr = false;
995 unsigned int arg_cnt = 5;
997 if (!strcmp(CMD_NAME, "mcr")) {
998 is_mcr = true;
999 arg_cnt = 6;
1002 if (arg_cnt != CMD_ARGC)
1003 return ERROR_COMMAND_SYNTAX_ERROR;
1005 struct target *target = get_current_target(CMD_CTX);
1006 if (!target) {
1007 command_print(CMD, "no current target");
1008 return ERROR_FAIL;
1010 if (!target_was_examined(target)) {
1011 command_print(CMD, "%s: not yet examined", target_name(target));
1012 return ERROR_TARGET_NOT_EXAMINED;
1015 struct arm *arm = target_to_arm(target);
1016 if (!is_arm(arm)) {
1017 command_print(CMD, "%s: not an ARM", target_name(target));
1018 return ERROR_FAIL;
1021 if (target->state != TARGET_HALTED) {
1022 command_print(CMD, "Error: [%s] not halted", target_name(target));
1023 return ERROR_TARGET_NOT_HALTED;
1026 int cpnum;
1027 uint32_t op1;
1028 uint32_t op2;
1029 uint32_t crn;
1030 uint32_t crm;
1031 uint32_t value;
1033 /* NOTE: parameter sequence matches ARM instruction set usage:
1034 * MCR pNUM, op1, rX, CRn, CRm, op2 ; write CP from rX
1035 * MRC pNUM, op1, rX, CRn, CRm, op2 ; read CP into rX
1036 * The "rX" is necessarily omitted; it uses Tcl mechanisms.
1038 COMMAND_PARSE_NUMBER(int, CMD_ARGV[0], cpnum);
1039 if (cpnum & ~0xf) {
1040 command_print(CMD, "coprocessor %d out of range", cpnum);
1041 return ERROR_COMMAND_ARGUMENT_INVALID;
1044 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], op1);
1045 if (op1 & ~0x7) {
1046 command_print(CMD, "op1 %d out of range", op1);
1047 return ERROR_COMMAND_ARGUMENT_INVALID;
1050 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[2], crn);
1051 if (crn & ~0xf) {
1052 command_print(CMD, "CRn %d out of range", crn);
1053 return ERROR_COMMAND_ARGUMENT_INVALID;
1056 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[3], crm);
1057 if (crm & ~0xf) {
1058 command_print(CMD, "CRm %d out of range", crm);
1059 return ERROR_COMMAND_ARGUMENT_INVALID;
1062 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[4], op2);
1063 if (op2 & ~0x7) {
1064 command_print(CMD, "op2 %d out of range", op2);
1065 return ERROR_COMMAND_ARGUMENT_INVALID;
1069 * FIXME change the call syntax here ... simplest to just pass
1070 * the MRC() or MCR() instruction to be executed. That will also
1071 * let us support the "mrc2" and "mcr2" opcodes (toggling one bit)
1072 * if that's ever needed.
1074 if (is_mcr) {
1075 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[5], value);
1077 /* NOTE: parameters reordered! */
1078 /* ARMV4_5_MCR(cpnum, op1, 0, crn, crm, op2) */
1079 int retval = arm->mcr(target, cpnum, op1, op2, crn, crm, value);
1080 if (retval != ERROR_OK)
1081 return retval;
1082 } else {
1083 value = 0;
1084 /* NOTE: parameters reordered! */
1085 /* ARMV4_5_MRC(cpnum, op1, 0, crn, crm, op2) */
1086 int retval = arm->mrc(target, cpnum, op1, op2, crn, crm, &value);
1087 if (retval != ERROR_OK)
1088 return retval;
1090 command_print(CMD, "0x%" PRIx32, value);
1093 return ERROR_OK;
1096 COMMAND_HANDLER(handle_armv4_5_mcrrmrrc)
1098 bool is_mcrr = false;
1099 unsigned int arg_cnt = 3;
1101 if (!strcmp(CMD_NAME, "mcrr")) {
1102 is_mcrr = true;
1103 arg_cnt = 4;
1106 if (arg_cnt != CMD_ARGC)
1107 return ERROR_COMMAND_SYNTAX_ERROR;
1109 struct target *target = get_current_target(CMD_CTX);
1110 if (!target) {
1111 command_print(CMD, "no current target");
1112 return ERROR_FAIL;
1114 if (!target_was_examined(target)) {
1115 command_print(CMD, "%s: not yet examined", target_name(target));
1116 return ERROR_TARGET_NOT_EXAMINED;
1119 struct arm *arm = target_to_arm(target);
1120 if (!is_arm(arm)) {
1121 command_print(CMD, "%s: not an ARM", target_name(target));
1122 return ERROR_FAIL;
1125 if (target->state != TARGET_HALTED)
1126 return ERROR_TARGET_NOT_HALTED;
1128 int cpnum;
1129 uint32_t op1;
1130 uint32_t crm;
1131 uint64_t value;
1133 /* NOTE: parameter sequence matches ARM instruction set usage:
1134 * MCRR pNUM, op1, rX1, rX2, CRm ; write CP from rX1 and rX2
1135 * MREC pNUM, op1, rX1, rX2, CRm ; read CP into rX1 and rX2
1136 * The "rXn" are necessarily omitted; they use Tcl mechanisms.
1138 COMMAND_PARSE_NUMBER(int, CMD_ARGV[0], cpnum);
1139 if (cpnum & ~0xf) {
1140 command_print(CMD, "coprocessor %d out of range", cpnum);
1141 return ERROR_COMMAND_ARGUMENT_INVALID;
1144 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], op1);
1145 if (op1 & ~0xf) {
1146 command_print(CMD, "op1 %d out of range", op1);
1147 return ERROR_COMMAND_ARGUMENT_INVALID;
1150 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[2], crm);
1151 if (crm & ~0xf) {
1152 command_print(CMD, "CRm %d out of range", crm);
1153 return ERROR_COMMAND_ARGUMENT_INVALID;
1157 * FIXME change the call syntax here ... simplest to just pass
1158 * the MRC() or MCR() instruction to be executed. That will also
1159 * let us support the "mrrc2" and "mcrr2" opcodes (toggling one bit)
1160 * if that's ever needed.
1162 if (is_mcrr) {
1163 COMMAND_PARSE_NUMBER(u64, CMD_ARGV[3], value);
1165 /* NOTE: parameters reordered! */
1166 /* ARMV5_T_MCRR(cpnum, op1, crm) */
1167 int retval = arm->mcrr(target, cpnum, op1, crm, value);
1168 if (retval != ERROR_OK)
1169 return retval;
1170 } else {
1171 value = 0;
1172 /* NOTE: parameters reordered! */
1173 /* ARMV5_T_MRRC(cpnum, op1, crm) */
1174 int retval = arm->mrrc(target, cpnum, op1, crm, &value);
1175 if (retval != ERROR_OK)
1176 return retval;
1178 command_print(CMD, "0x%" PRIx64, value);
1181 return ERROR_OK;
1184 static const struct command_registration arm_exec_command_handlers[] = {
1186 .name = "reg",
1187 .handler = handle_armv4_5_reg_command,
1188 .mode = COMMAND_EXEC,
1189 .help = "display ARM core registers",
1190 .usage = "",
1193 .name = "mcr",
1194 .mode = COMMAND_EXEC,
1195 .handler = handle_armv4_5_mcrmrc,
1196 .help = "write coprocessor register",
1197 .usage = "cpnum op1 CRn CRm op2 value",
1200 .name = "mrc",
1201 .mode = COMMAND_EXEC,
1202 .handler = handle_armv4_5_mcrmrc,
1203 .help = "read coprocessor register",
1204 .usage = "cpnum op1 CRn CRm op2",
1207 .name = "mcrr",
1208 .mode = COMMAND_EXEC,
1209 .handler = handle_armv4_5_mcrrmrrc,
1210 .help = "write coprocessor 64-bit register",
1211 .usage = "cpnum op1 CRm value",
1214 .name = "mrrc",
1215 .mode = COMMAND_EXEC,
1216 .handler = handle_armv4_5_mcrrmrrc,
1217 .help = "read coprocessor 64-bit register",
1218 .usage = "cpnum op1 CRm",
1221 .chain = arm_all_profiles_command_handlers,
1223 COMMAND_REGISTRATION_DONE
1226 const struct command_registration arm_all_profiles_command_handlers[] = {
1228 .name = "core_state",
1229 .handler = handle_arm_core_state_command,
1230 .mode = COMMAND_EXEC,
1231 .usage = "['arm'|'thumb']",
1232 .help = "display/change ARM core state",
1235 .name = "disassemble",
1236 .handler = handle_arm_disassemble_command,
1237 .mode = COMMAND_EXEC,
1238 .usage = "address [count ['thumb']]",
1239 .help = "disassemble instructions",
1242 .chain = semihosting_common_handlers,
1244 COMMAND_REGISTRATION_DONE
1247 const struct command_registration arm_command_handlers[] = {
1249 .name = "arm",
1250 .mode = COMMAND_ANY,
1251 .help = "ARM command group",
1252 .usage = "",
1253 .chain = arm_exec_command_handlers,
1255 COMMAND_REGISTRATION_DONE
1259 * gdb for arm targets (e.g. arm-none-eabi-gdb) supports several variants
1260 * of arm architecture. You can list them using the autocompletion of gdb
1261 * command prompt by typing "set architecture " and then press TAB key.
1262 * The default, selected automatically, is "arm".
1263 * Let's use the default value, here, to make gdb-multiarch behave in the
1264 * same way as a gdb for arm. This can be changed later on. User can still
1265 * set the specific architecture variant with the gdb command.
1267 const char *arm_get_gdb_arch(const struct target *target)
1269 return "arm";
1272 int arm_get_gdb_reg_list(struct target *target,
1273 struct reg **reg_list[], int *reg_list_size,
1274 enum target_register_class reg_class)
1276 struct arm *arm = target_to_arm(target);
1277 unsigned int i;
1279 if (!is_arm_mode(arm->core_mode)) {
1280 LOG_ERROR("not a valid arm core mode - communication failure?");
1281 return ERROR_FAIL;
1284 switch (reg_class) {
1285 case REG_CLASS_GENERAL:
1286 *reg_list_size = 26;
1287 *reg_list = malloc(sizeof(struct reg *) * (*reg_list_size));
1289 for (i = 0; i < 16; i++)
1290 (*reg_list)[i] = arm_reg_current(arm, i);
1292 /* For GDB compatibility, take FPA registers size into account and zero-fill it*/
1293 for (i = 16; i < 24; i++)
1294 (*reg_list)[i] = &arm_gdb_dummy_fp_reg;
1295 (*reg_list)[24] = &arm_gdb_dummy_fps_reg;
1297 (*reg_list)[25] = arm->cpsr;
1299 return ERROR_OK;
1301 case REG_CLASS_ALL:
1302 switch (arm->core_type) {
1303 case ARM_CORE_TYPE_SEC_EXT:
1304 *reg_list_size = 51;
1305 break;
1306 case ARM_CORE_TYPE_VIRT_EXT:
1307 *reg_list_size = 53;
1308 break;
1309 default:
1310 *reg_list_size = 48;
1312 unsigned int list_size_core = *reg_list_size;
1313 if (arm->arm_vfp_version == ARM_VFP_V3)
1314 *reg_list_size += 33;
1316 *reg_list = malloc(sizeof(struct reg *) * (*reg_list_size));
1318 for (i = 0; i < 16; i++)
1319 (*reg_list)[i] = arm_reg_current(arm, i);
1321 for (i = 13; i < ARRAY_SIZE(arm_core_regs); i++) {
1322 int reg_index = arm->core_cache->reg_list[i].number;
1324 if (arm_core_regs[i].mode == ARM_MODE_MON
1325 && arm->core_type != ARM_CORE_TYPE_SEC_EXT
1326 && arm->core_type != ARM_CORE_TYPE_VIRT_EXT)
1327 continue;
1328 if (arm_core_regs[i].mode == ARM_MODE_HYP
1329 && arm->core_type != ARM_CORE_TYPE_VIRT_EXT)
1330 continue;
1331 (*reg_list)[reg_index] = &(arm->core_cache->reg_list[i]);
1334 /* When we supply the target description, there is no need for fake FPA */
1335 for (i = 16; i < 24; i++) {
1336 (*reg_list)[i] = &arm_gdb_dummy_fp_reg;
1337 (*reg_list)[i]->size = 0;
1339 (*reg_list)[24] = &arm_gdb_dummy_fps_reg;
1340 (*reg_list)[24]->size = 0;
1342 if (arm->arm_vfp_version == ARM_VFP_V3) {
1343 unsigned int num_core_regs = ARRAY_SIZE(arm_core_regs);
1344 for (i = 0; i < 33; i++)
1345 (*reg_list)[list_size_core + i] = &(arm->core_cache->reg_list[num_core_regs + i]);
1348 return ERROR_OK;
1350 default:
1351 LOG_ERROR("not a valid register class type in query.");
1352 return ERROR_FAIL;
1356 /* wait for execution to complete and check exit point */
1357 static int armv4_5_run_algorithm_completion(struct target *target,
1358 uint32_t exit_point,
1359 unsigned int timeout_ms,
1360 void *arch_info)
1362 int retval;
1363 struct arm *arm = target_to_arm(target);
1365 retval = target_wait_state(target, TARGET_HALTED, timeout_ms);
1366 if (retval != ERROR_OK)
1367 return retval;
1368 if (target->state != TARGET_HALTED) {
1369 retval = target_halt(target);
1370 if (retval != ERROR_OK)
1371 return retval;
1372 retval = target_wait_state(target, TARGET_HALTED, 500);
1373 if (retval != ERROR_OK)
1374 return retval;
1375 return ERROR_TARGET_TIMEOUT;
1378 /* fast exit: ARMv5+ code can use BKPT */
1379 if (exit_point && buf_get_u32(arm->pc->value, 0, 32) != exit_point) {
1380 LOG_WARNING(
1381 "target reentered debug state, but not at the desired exit point: 0x%4.4" PRIx32 "",
1382 buf_get_u32(arm->pc->value, 0, 32));
1383 return ERROR_TARGET_TIMEOUT;
1386 return ERROR_OK;
1389 int armv4_5_run_algorithm_inner(struct target *target,
1390 int num_mem_params, struct mem_param *mem_params,
1391 int num_reg_params, struct reg_param *reg_params,
1392 uint32_t entry_point, uint32_t exit_point,
1393 unsigned int timeout_ms, void *arch_info,
1394 int (*run_it)(struct target *target, uint32_t exit_point,
1395 unsigned int timeout_ms, void *arch_info))
1397 struct arm *arm = target_to_arm(target);
1398 struct arm_algorithm *arm_algorithm_info = arch_info;
1399 enum arm_state core_state = arm->core_state;
1400 uint32_t context[17];
1401 uint32_t cpsr;
1402 int exit_breakpoint_size = 0;
1403 int i;
1404 int retval = ERROR_OK;
1406 LOG_DEBUG("Running algorithm");
1408 if (arm_algorithm_info->common_magic != ARM_COMMON_MAGIC) {
1409 LOG_ERROR("current target isn't an ARMV4/5 target");
1410 return ERROR_TARGET_INVALID;
1413 if (target->state != TARGET_HALTED) {
1414 LOG_TARGET_ERROR(target, "not halted (run target algo)");
1415 return ERROR_TARGET_NOT_HALTED;
1418 if (!is_arm_mode(arm->core_mode)) {
1419 LOG_ERROR("not a valid arm core mode - communication failure?");
1420 return ERROR_FAIL;
1423 /* armv5 and later can terminate with BKPT instruction; less overhead */
1424 if (!exit_point && arm->arch == ARM_ARCH_V4) {
1425 LOG_ERROR("ARMv4 target needs HW breakpoint location");
1426 return ERROR_FAIL;
1429 /* save r0..pc, cpsr-or-spsr, and then cpsr-for-sure;
1430 * they'll be restored later.
1432 for (i = 0; i <= 16; i++) {
1433 struct reg *r;
1435 r = &ARMV4_5_CORE_REG_MODE(arm->core_cache,
1436 arm_algorithm_info->core_mode, i);
1437 if (!r->valid)
1438 arm->read_core_reg(target, r, i,
1439 arm_algorithm_info->core_mode);
1440 context[i] = buf_get_u32(r->value, 0, 32);
1442 cpsr = buf_get_u32(arm->cpsr->value, 0, 32);
1444 for (i = 0; i < num_mem_params; i++) {
1445 if (mem_params[i].direction == PARAM_IN)
1446 continue;
1447 retval = target_write_buffer(target, mem_params[i].address, mem_params[i].size,
1448 mem_params[i].value);
1449 if (retval != ERROR_OK)
1450 return retval;
1453 for (i = 0; i < num_reg_params; i++) {
1454 if (reg_params[i].direction == PARAM_IN)
1455 continue;
1457 struct reg *reg = register_get_by_name(arm->core_cache, reg_params[i].reg_name, false);
1458 if (!reg) {
1459 LOG_ERROR("BUG: register '%s' not found", reg_params[i].reg_name);
1460 return ERROR_COMMAND_SYNTAX_ERROR;
1463 if (reg->size != reg_params[i].size) {
1464 LOG_ERROR("BUG: register '%s' size doesn't match reg_params[i].size",
1465 reg_params[i].reg_name);
1466 return ERROR_COMMAND_SYNTAX_ERROR;
1469 retval = armv4_5_set_core_reg(reg, reg_params[i].value);
1470 if (retval != ERROR_OK)
1471 return retval;
1474 arm->core_state = arm_algorithm_info->core_state;
1475 if (arm->core_state == ARM_STATE_ARM)
1476 exit_breakpoint_size = 4;
1477 else if (arm->core_state == ARM_STATE_THUMB)
1478 exit_breakpoint_size = 2;
1479 else {
1480 LOG_ERROR("BUG: can't execute algorithms when not in ARM or Thumb state");
1481 return ERROR_COMMAND_SYNTAX_ERROR;
1484 if (arm_algorithm_info->core_mode != ARM_MODE_ANY) {
1485 LOG_DEBUG("setting core_mode: 0x%2.2x",
1486 arm_algorithm_info->core_mode);
1487 buf_set_u32(arm->cpsr->value, 0, 5,
1488 arm_algorithm_info->core_mode);
1489 arm->cpsr->dirty = true;
1490 arm->cpsr->valid = true;
1493 /* terminate using a hardware or (ARMv5+) software breakpoint */
1494 if (exit_point) {
1495 retval = breakpoint_add(target, exit_point,
1496 exit_breakpoint_size, BKPT_HARD);
1497 if (retval != ERROR_OK) {
1498 LOG_ERROR("can't add HW breakpoint to terminate algorithm");
1499 return ERROR_TARGET_FAILURE;
1503 retval = target_resume(target, 0, entry_point, 1, 1);
1504 if (retval != ERROR_OK)
1505 return retval;
1506 retval = run_it(target, exit_point, timeout_ms, arch_info);
1508 if (exit_point)
1509 breakpoint_remove(target, exit_point);
1511 if (retval != ERROR_OK)
1512 return retval;
1514 for (i = 0; i < num_mem_params; i++) {
1515 if (mem_params[i].direction != PARAM_OUT) {
1516 int retvaltemp = target_read_buffer(target, mem_params[i].address,
1517 mem_params[i].size,
1518 mem_params[i].value);
1519 if (retvaltemp != ERROR_OK)
1520 retval = retvaltemp;
1524 for (i = 0; i < num_reg_params; i++) {
1525 if (reg_params[i].direction != PARAM_OUT) {
1527 struct reg *reg = register_get_by_name(arm->core_cache,
1528 reg_params[i].reg_name,
1529 false);
1530 if (!reg) {
1531 LOG_ERROR("BUG: register '%s' not found", reg_params[i].reg_name);
1532 retval = ERROR_COMMAND_SYNTAX_ERROR;
1533 continue;
1536 if (reg->size != reg_params[i].size) {
1537 LOG_ERROR(
1538 "BUG: register '%s' size doesn't match reg_params[i].size",
1539 reg_params[i].reg_name);
1540 retval = ERROR_COMMAND_SYNTAX_ERROR;
1541 continue;
1544 buf_set_u32(reg_params[i].value, 0, 32, buf_get_u32(reg->value, 0, 32));
1548 /* restore everything we saved before (17 or 18 registers) */
1549 for (i = 0; i <= 16; i++) {
1550 uint32_t regvalue;
1551 regvalue = buf_get_u32(ARMV4_5_CORE_REG_MODE(arm->core_cache,
1552 arm_algorithm_info->core_mode, i).value, 0, 32);
1553 if (regvalue != context[i]) {
1554 LOG_DEBUG("restoring register %s with value 0x%8.8" PRIx32 "",
1555 ARMV4_5_CORE_REG_MODE(arm->core_cache,
1556 arm_algorithm_info->core_mode, i).name, context[i]);
1557 buf_set_u32(ARMV4_5_CORE_REG_MODE(arm->core_cache,
1558 arm_algorithm_info->core_mode, i).value, 0, 32, context[i]);
1559 ARMV4_5_CORE_REG_MODE(arm->core_cache, arm_algorithm_info->core_mode,
1560 i).valid = true;
1561 ARMV4_5_CORE_REG_MODE(arm->core_cache, arm_algorithm_info->core_mode,
1562 i).dirty = true;
1566 arm_set_cpsr(arm, cpsr);
1567 arm->cpsr->dirty = true;
1569 arm->core_state = core_state;
1571 return retval;
1574 int armv4_5_run_algorithm(struct target *target,
1575 int num_mem_params,
1576 struct mem_param *mem_params,
1577 int num_reg_params,
1578 struct reg_param *reg_params,
1579 target_addr_t entry_point,
1580 target_addr_t exit_point,
1581 unsigned int timeout_ms,
1582 void *arch_info)
1584 return armv4_5_run_algorithm_inner(target,
1585 num_mem_params,
1586 mem_params,
1587 num_reg_params,
1588 reg_params,
1589 (uint32_t)entry_point,
1590 (uint32_t)exit_point,
1591 timeout_ms,
1592 arch_info,
1593 armv4_5_run_algorithm_completion);
1597 * Runs ARM code in the target to calculate a CRC32 checksum.
1600 int arm_checksum_memory(struct target *target,
1601 target_addr_t address, uint32_t count, uint32_t *checksum)
1603 struct working_area *crc_algorithm;
1604 struct arm_algorithm arm_algo;
1605 struct arm *arm = target_to_arm(target);
1606 struct reg_param reg_params[2];
1607 int retval;
1608 uint32_t i;
1609 uint32_t exit_var = 0;
1611 static const uint8_t arm_crc_code_le[] = {
1612 #include "../../contrib/loaders/checksum/armv4_5_crc.inc"
1615 assert(sizeof(arm_crc_code_le) % 4 == 0);
1617 retval = target_alloc_working_area(target,
1618 sizeof(arm_crc_code_le), &crc_algorithm);
1619 if (retval != ERROR_OK)
1620 return retval;
1622 /* convert code into a buffer in target endianness */
1623 for (i = 0; i < ARRAY_SIZE(arm_crc_code_le) / 4; i++) {
1624 retval = target_write_u32(target,
1625 crc_algorithm->address + i * sizeof(uint32_t),
1626 le_to_h_u32(&arm_crc_code_le[i * 4]));
1627 if (retval != ERROR_OK)
1628 goto cleanup;
1631 arm_algo.common_magic = ARM_COMMON_MAGIC;
1632 arm_algo.core_mode = ARM_MODE_SVC;
1633 arm_algo.core_state = ARM_STATE_ARM;
1635 init_reg_param(&reg_params[0], "r0", 32, PARAM_IN_OUT);
1636 init_reg_param(&reg_params[1], "r1", 32, PARAM_OUT);
1638 buf_set_u32(reg_params[0].value, 0, 32, address);
1639 buf_set_u32(reg_params[1].value, 0, 32, count);
1641 /* 20 second timeout/megabyte */
1642 unsigned int timeout = 20000 * (1 + (count / (1024 * 1024)));
1644 /* armv4 must exit using a hardware breakpoint */
1645 if (arm->arch == ARM_ARCH_V4)
1646 exit_var = crc_algorithm->address + sizeof(arm_crc_code_le) - 8;
1648 retval = target_run_algorithm(target, 0, NULL, 2, reg_params,
1649 crc_algorithm->address,
1650 exit_var,
1651 timeout, &arm_algo);
1653 if (retval == ERROR_OK)
1654 *checksum = buf_get_u32(reg_params[0].value, 0, 32);
1655 else
1656 LOG_ERROR("error executing ARM crc algorithm");
1658 destroy_reg_param(&reg_params[0]);
1659 destroy_reg_param(&reg_params[1]);
1661 cleanup:
1662 target_free_working_area(target, crc_algorithm);
1664 return retval;
1668 * Runs ARM code in the target to check whether a memory block holds
1669 * all ones. NOR flash which has been erased, and thus may be written,
1670 * holds all ones.
1673 int arm_blank_check_memory(struct target *target,
1674 struct target_memory_check_block *blocks, int num_blocks, uint8_t erased_value)
1676 struct working_area *check_algorithm;
1677 struct reg_param reg_params[3];
1678 struct arm_algorithm arm_algo;
1679 struct arm *arm = target_to_arm(target);
1680 int retval;
1681 uint32_t i;
1682 uint32_t exit_var = 0;
1684 static const uint8_t check_code_le[] = {
1685 #include "../../contrib/loaders/erase_check/armv4_5_erase_check.inc"
1688 assert(sizeof(check_code_le) % 4 == 0);
1690 if (erased_value != 0xff) {
1691 LOG_ERROR("Erase value 0x%02" PRIx8 " not yet supported for ARMv4/v5 targets",
1692 erased_value);
1693 return ERROR_FAIL;
1696 /* make sure we have a working area */
1697 retval = target_alloc_working_area(target,
1698 sizeof(check_code_le), &check_algorithm);
1699 if (retval != ERROR_OK)
1700 return retval;
1702 /* convert code into a buffer in target endianness */
1703 for (i = 0; i < ARRAY_SIZE(check_code_le) / 4; i++) {
1704 retval = target_write_u32(target,
1705 check_algorithm->address
1706 + i * sizeof(uint32_t),
1707 le_to_h_u32(&check_code_le[i * 4]));
1708 if (retval != ERROR_OK)
1709 goto cleanup;
1712 arm_algo.common_magic = ARM_COMMON_MAGIC;
1713 arm_algo.core_mode = ARM_MODE_SVC;
1714 arm_algo.core_state = ARM_STATE_ARM;
1716 init_reg_param(&reg_params[0], "r0", 32, PARAM_OUT);
1717 buf_set_u32(reg_params[0].value, 0, 32, blocks[0].address);
1719 init_reg_param(&reg_params[1], "r1", 32, PARAM_OUT);
1720 buf_set_u32(reg_params[1].value, 0, 32, blocks[0].size);
1722 init_reg_param(&reg_params[2], "r2", 32, PARAM_IN_OUT);
1723 buf_set_u32(reg_params[2].value, 0, 32, erased_value);
1725 /* armv4 must exit using a hardware breakpoint */
1726 if (arm->arch == ARM_ARCH_V4)
1727 exit_var = check_algorithm->address + sizeof(check_code_le) - 4;
1729 retval = target_run_algorithm(target, 0, NULL, 3, reg_params,
1730 check_algorithm->address,
1731 exit_var,
1732 10000, &arm_algo);
1734 if (retval == ERROR_OK)
1735 blocks[0].result = buf_get_u32(reg_params[2].value, 0, 32);
1737 destroy_reg_param(&reg_params[0]);
1738 destroy_reg_param(&reg_params[1]);
1739 destroy_reg_param(&reg_params[2]);
1741 cleanup:
1742 target_free_working_area(target, check_algorithm);
1744 if (retval != ERROR_OK)
1745 return retval;
1747 return 1; /* only one block has been checked */
1750 static int arm_full_context(struct target *target)
1752 struct arm *arm = target_to_arm(target);
1753 unsigned num_regs = arm->core_cache->num_regs;
1754 struct reg *reg = arm->core_cache->reg_list;
1755 int retval = ERROR_OK;
1757 for (; num_regs && retval == ERROR_OK; num_regs--, reg++) {
1758 if (!reg->exist || reg->valid)
1759 continue;
1760 retval = armv4_5_get_core_reg(reg);
1762 return retval;
1765 static int arm_default_mrc(struct target *target, int cpnum,
1766 uint32_t op1, uint32_t op2,
1767 uint32_t crn, uint32_t crm,
1768 uint32_t *value)
1770 LOG_ERROR("%s doesn't implement MRC", target_type_name(target));
1771 return ERROR_FAIL;
1774 static int arm_default_mrrc(struct target *target, int cpnum,
1775 uint32_t op, uint32_t crm,
1776 uint64_t *value)
1778 LOG_ERROR("%s doesn't implement MRRC", target_type_name(target));
1779 return ERROR_FAIL;
1782 static int arm_default_mcr(struct target *target, int cpnum,
1783 uint32_t op1, uint32_t op2,
1784 uint32_t crn, uint32_t crm,
1785 uint32_t value)
1787 LOG_ERROR("%s doesn't implement MCR", target_type_name(target));
1788 return ERROR_FAIL;
1791 static int arm_default_mcrr(struct target *target, int cpnum,
1792 uint32_t op, uint32_t crm,
1793 uint64_t value)
1795 LOG_ERROR("%s doesn't implement MCRR", target_type_name(target));
1796 return ERROR_FAIL;
1799 int arm_init_arch_info(struct target *target, struct arm *arm)
1801 target->arch_info = arm;
1802 arm->target = target;
1804 arm->common_magic = ARM_COMMON_MAGIC;
1806 /* core_type may be overridden by subtype logic */
1807 if (arm->core_type != ARM_CORE_TYPE_M_PROFILE) {
1808 arm->core_type = ARM_CORE_TYPE_STD;
1809 arm_set_cpsr(arm, ARM_MODE_USR);
1812 /* default full_context() has no core-specific optimizations */
1813 if (!arm->full_context && arm->read_core_reg)
1814 arm->full_context = arm_full_context;
1816 if (!arm->mrc)
1817 arm->mrc = arm_default_mrc;
1818 if (!arm->mrrc)
1819 arm->mrrc = arm_default_mrrc;
1820 if (!arm->mcr)
1821 arm->mcr = arm_default_mcr;
1822 if (!arm->mcrr)
1823 arm->mcrr = arm_default_mcrr;
1825 return ERROR_OK;