target/xtensa: avoid IHI for writes to non-executable memory
[openocd.git] / src / flash / nor / at91samd.c
blob36298f19d0ac54062467050ef76b4c20af2ed68d
1 // SPDX-License-Identifier: GPL-2.0-or-later
3 /***************************************************************************
4 * Copyright (C) 2013 by Andrey Yurovsky *
5 * Andrey Yurovsky <yurovsky@gmail.com> *
6 ***************************************************************************/
8 #ifdef HAVE_CONFIG_H
9 #include "config.h"
10 #endif
12 #include "imp.h"
13 #include "helper/binarybuffer.h"
15 #include <helper/time_support.h>
16 #include <jtag/jtag.h>
17 #include <target/cortex_m.h>
19 #define SAMD_NUM_PROT_BLOCKS 16
20 #define SAMD_PAGE_SIZE_MAX 1024
22 #define SAMD_FLASH ((uint32_t)0x00000000) /* physical Flash memory */
23 #define SAMD_USER_ROW ((uint32_t)0x00804000) /* User Row of Flash */
24 #define SAMD_PAC1 0x41000000 /* Peripheral Access Control 1 */
25 #define SAMD_DSU 0x41002000 /* Device Service Unit */
26 #define SAMD_NVMCTRL 0x41004000 /* Non-volatile memory controller */
28 #define SAMD_DSU_STATUSA 1 /* DSU status register */
29 #define SAMD_DSU_DID 0x18 /* Device ID register */
30 #define SAMD_DSU_CTRL_EXT 0x100 /* CTRL register, external access */
32 #define SAMD_NVMCTRL_CTRLA 0x00 /* NVM control A register */
33 #define SAMD_NVMCTRL_CTRLB 0x04 /* NVM control B register */
34 #define SAMD_NVMCTRL_PARAM 0x08 /* NVM parameters register */
35 #define SAMD_NVMCTRL_INTFLAG 0x14 /* NVM Interrupt Flag Status & Clear */
36 #define SAMD_NVMCTRL_STATUS 0x18 /* NVM status register */
37 #define SAMD_NVMCTRL_ADDR 0x1C /* NVM address register */
38 #define SAMD_NVMCTRL_LOCK 0x20 /* NVM Lock section register */
40 #define SAMD_CMDEX_KEY 0xA5UL
41 #define SAMD_NVM_CMD(n) ((SAMD_CMDEX_KEY << 8) | (n & 0x7F))
43 /* NVMCTRL commands. See Table 20-4 in 42129F–SAM–10/2013 */
44 #define SAMD_NVM_CMD_ER 0x02 /* Erase Row */
45 #define SAMD_NVM_CMD_WP 0x04 /* Write Page */
46 #define SAMD_NVM_CMD_EAR 0x05 /* Erase Auxiliary Row */
47 #define SAMD_NVM_CMD_WAP 0x06 /* Write Auxiliary Page */
48 #define SAMD_NVM_CMD_LR 0x40 /* Lock Region */
49 #define SAMD_NVM_CMD_UR 0x41 /* Unlock Region */
50 #define SAMD_NVM_CMD_SPRM 0x42 /* Set Power Reduction Mode */
51 #define SAMD_NVM_CMD_CPRM 0x43 /* Clear Power Reduction Mode */
52 #define SAMD_NVM_CMD_PBC 0x44 /* Page Buffer Clear */
53 #define SAMD_NVM_CMD_SSB 0x45 /* Set Security Bit */
54 #define SAMD_NVM_CMD_INVALL 0x46 /* Invalidate all caches */
56 /* NVMCTRL bits */
57 #define SAMD_NVM_CTRLB_MANW 0x80
59 /* NVMCTRL_INTFLAG bits */
60 #define SAMD_NVM_INTFLAG_READY 0x01
62 /* Known identifiers */
63 #define SAMD_PROCESSOR_M0 0x01
64 #define SAMD_FAMILY_D 0x00
65 #define SAMD_FAMILY_L 0x01
66 #define SAMD_FAMILY_C 0x02
67 #define SAMD_SERIES_20 0x00
68 #define SAMD_SERIES_21 0x01
69 #define SAMD_SERIES_22 0x02
70 #define SAMD_SERIES_10 0x02
71 #define SAMD_SERIES_11 0x03
72 #define SAMD_SERIES_09 0x04
74 /* Device ID macros */
75 #define SAMD_GET_PROCESSOR(id) (id >> 28)
76 #define SAMD_GET_FAMILY(id) (((id >> 23) & 0x1F))
77 #define SAMD_GET_SERIES(id) (((id >> 16) & 0x3F))
78 #define SAMD_GET_DEVSEL(id) (id & 0xFF)
80 /* Bits to mask out lockbits in user row */
81 #define NVMUSERROW_LOCKBIT_MASK 0x0000FFFFFFFFFFFFULL
83 struct samd_part {
84 uint8_t id;
85 const char *name;
86 uint32_t flash_kb;
87 uint32_t ram_kb;
90 /* Known SAMD09 parts. DID reset values missing in RM, see
91 * https://github.com/avrxml/asf/blob/master/sam0/utils/cmsis/samd09/include/ */
92 static const struct samd_part samd09_parts[] = {
93 { 0x0, "SAMD09D14A", 16, 4 },
94 { 0x7, "SAMD09C13A", 8, 4 },
97 /* Known SAMD10 parts */
98 static const struct samd_part samd10_parts[] = {
99 { 0x0, "SAMD10D14AMU", 16, 4 },
100 { 0x1, "SAMD10D13AMU", 8, 4 },
101 { 0x2, "SAMD10D12AMU", 4, 4 },
102 { 0x3, "SAMD10D14ASU", 16, 4 },
103 { 0x4, "SAMD10D13ASU", 8, 4 },
104 { 0x5, "SAMD10D12ASU", 4, 4 },
105 { 0x6, "SAMD10C14A", 16, 4 },
106 { 0x7, "SAMD10C13A", 8, 4 },
107 { 0x8, "SAMD10C12A", 4, 4 },
110 /* Known SAMD11 parts */
111 static const struct samd_part samd11_parts[] = {
112 { 0x0, "SAMD11D14AM", 16, 4 },
113 { 0x1, "SAMD11D13AMU", 8, 4 },
114 { 0x2, "SAMD11D12AMU", 4, 4 },
115 { 0x3, "SAMD11D14ASS", 16, 4 },
116 { 0x4, "SAMD11D13ASU", 8, 4 },
117 { 0x5, "SAMD11D12ASU", 4, 4 },
118 { 0x6, "SAMD11C14A", 16, 4 },
119 { 0x7, "SAMD11C13A", 8, 4 },
120 { 0x8, "SAMD11C12A", 4, 4 },
121 { 0x9, "SAMD11D14AU", 16, 4 },
124 /* Known SAMD20 parts. See Table 12-8 in 42129F–SAM–10/2013 */
125 static const struct samd_part samd20_parts[] = {
126 { 0x0, "SAMD20J18A", 256, 32 },
127 { 0x1, "SAMD20J17A", 128, 16 },
128 { 0x2, "SAMD20J16A", 64, 8 },
129 { 0x3, "SAMD20J15A", 32, 4 },
130 { 0x4, "SAMD20J14A", 16, 2 },
131 { 0x5, "SAMD20G18A", 256, 32 },
132 { 0x6, "SAMD20G17A", 128, 16 },
133 { 0x7, "SAMD20G16A", 64, 8 },
134 { 0x8, "SAMD20G15A", 32, 4 },
135 { 0x9, "SAMD20G14A", 16, 2 },
136 { 0xA, "SAMD20E18A", 256, 32 },
137 { 0xB, "SAMD20E17A", 128, 16 },
138 { 0xC, "SAMD20E16A", 64, 8 },
139 { 0xD, "SAMD20E15A", 32, 4 },
140 { 0xE, "SAMD20E14A", 16, 2 },
143 /* Known SAMD21 parts. */
144 static const struct samd_part samd21_parts[] = {
145 { 0x0, "SAMD21J18A", 256, 32 },
146 { 0x1, "SAMD21J17A", 128, 16 },
147 { 0x2, "SAMD21J16A", 64, 8 },
148 { 0x3, "SAMD21J15A", 32, 4 },
149 { 0x4, "SAMD21J14A", 16, 2 },
150 { 0x5, "SAMD21G18A", 256, 32 },
151 { 0x6, "SAMD21G17A", 128, 16 },
152 { 0x7, "SAMD21G16A", 64, 8 },
153 { 0x8, "SAMD21G15A", 32, 4 },
154 { 0x9, "SAMD21G14A", 16, 2 },
155 { 0xA, "SAMD21E18A", 256, 32 },
156 { 0xB, "SAMD21E17A", 128, 16 },
157 { 0xC, "SAMD21E16A", 64, 8 },
158 { 0xD, "SAMD21E15A", 32, 4 },
159 { 0xE, "SAMD21E14A", 16, 2 },
161 /* SAMR21 parts have integrated SAMD21 with a radio */
162 { 0x18, "SAMR21G19A", 256, 32 }, /* with 512k of serial flash */
163 { 0x19, "SAMR21G18A", 256, 32 },
164 { 0x1A, "SAMR21G17A", 128, 32 },
165 { 0x1B, "SAMR21G16A", 64, 16 },
166 { 0x1C, "SAMR21E18A", 256, 32 },
167 { 0x1D, "SAMR21E17A", 128, 32 },
168 { 0x1E, "SAMR21E16A", 64, 16 },
170 /* SAMD21 B Variants (Table 3-7 from rev I of datasheet) */
171 { 0x20, "SAMD21J16B", 64, 8 },
172 { 0x21, "SAMD21J15B", 32, 4 },
173 { 0x23, "SAMD21G16B", 64, 8 },
174 { 0x24, "SAMD21G15B", 32, 4 },
175 { 0x26, "SAMD21E16B", 64, 8 },
176 { 0x27, "SAMD21E15B", 32, 4 },
178 /* SAMD21 D and L Variants (from Errata)
179 http://ww1.microchip.com/downloads/en/DeviceDoc/
180 SAM-D21-Family-Silicon-Errata-and-DataSheet-Clarification-DS80000760D.pdf */
181 { 0x55, "SAMD21E16BU", 64, 8 },
182 { 0x56, "SAMD21E15BU", 32, 4 },
183 { 0x57, "SAMD21G16L", 64, 8 },
184 { 0x3E, "SAMD21E16L", 64, 8 },
185 { 0x3F, "SAMD21E15L", 32, 4 },
186 { 0x62, "SAMD21E16CU", 64, 8 },
187 { 0x63, "SAMD21E15CU", 32, 4 },
188 { 0x92, "SAMD21J17D", 128, 16 },
189 { 0x93, "SAMD21G17D", 128, 16 },
190 { 0x94, "SAMD21E17D", 128, 16 },
191 { 0x95, "SAMD21E17DU", 128, 16 },
192 { 0x96, "SAMD21G17L", 128, 16 },
193 { 0x97, "SAMD21E17L", 128, 16 },
195 /* Known SAMDA1 parts.
196 SAMD-A1 series uses the same series identifier like the SAMD21
197 taken from http://ww1.microchip.com/downloads/en/DeviceDoc/40001895A.pdf (pages 14-17) */
198 { 0x29, "SAMDA1J16A", 64, 8 },
199 { 0x2A, "SAMDA1J15A", 32, 4 },
200 { 0x2B, "SAMDA1J14A", 16, 4 },
201 { 0x2C, "SAMDA1G16A", 64, 8 },
202 { 0x2D, "SAMDA1G15A", 32, 4 },
203 { 0x2E, "SAMDA1G14A", 16, 4 },
204 { 0x2F, "SAMDA1E16A", 64, 8 },
205 { 0x30, "SAMDA1E15A", 32, 4 },
206 { 0x31, "SAMDA1E14A", 16, 4 },
207 { 0x64, "SAMDA1J16B", 64, 8 },
208 { 0x65, "SAMDA1J15B", 32, 4 },
209 { 0x66, "SAMDA1J14B", 16, 4 },
210 { 0x67, "SAMDA1G16B", 64, 8 },
211 { 0x68, "SAMDA1G15B", 32, 4 },
212 { 0x69, "SAMDA1G14B", 16, 4 },
213 { 0x6A, "SAMDA1E16B", 64, 8 },
214 { 0x6B, "SAMDA1E15B", 32, 4 },
215 { 0x6C, "SAMDA1E14B", 16, 4 },
218 /* Known SAML21 parts. */
219 static const struct samd_part saml21_parts[] = {
220 { 0x00, "SAML21J18A", 256, 32 },
221 { 0x01, "SAML21J17A", 128, 16 },
222 { 0x02, "SAML21J16A", 64, 8 },
223 { 0x05, "SAML21G18A", 256, 32 },
224 { 0x06, "SAML21G17A", 128, 16 },
225 { 0x07, "SAML21G16A", 64, 8 },
226 { 0x0A, "SAML21E18A", 256, 32 },
227 { 0x0B, "SAML21E17A", 128, 16 },
228 { 0x0C, "SAML21E16A", 64, 8 },
229 { 0x0D, "SAML21E15A", 32, 4 },
230 { 0x0F, "SAML21J18B", 256, 32 },
231 { 0x10, "SAML21J17B", 128, 16 },
232 { 0x11, "SAML21J16B", 64, 8 },
233 { 0x14, "SAML21G18B", 256, 32 },
234 { 0x15, "SAML21G17B", 128, 16 },
235 { 0x16, "SAML21G16B", 64, 8 },
236 { 0x19, "SAML21E18B", 256, 32 },
237 { 0x1A, "SAML21E17B", 128, 16 },
238 { 0x1B, "SAML21E16B", 64, 8 },
239 { 0x1C, "SAML21E15B", 32, 4 },
241 /* SAMR30 parts have integrated SAML21 with a radio */
242 { 0x1E, "SAMR30G18A", 256, 32 },
243 { 0x1F, "SAMR30E18A", 256, 32 },
245 /* SAMR34/R35 parts have integrated SAML21 with a lora radio */
246 { 0x28, "SAMR34J18", 256, 40 },
247 { 0x29, "SAMR34J17", 128, 24 },
248 { 0x2A, "SAMR34J16", 64, 12 },
249 { 0x2B, "SAMR35J18", 256, 40 },
250 { 0x2C, "SAMR35J17", 128, 24 },
251 { 0x2D, "SAMR35J16", 64, 12 },
254 /* Known SAML22 parts. */
255 static const struct samd_part saml22_parts[] = {
256 { 0x00, "SAML22N18A", 256, 32 },
257 { 0x01, "SAML22N17A", 128, 16 },
258 { 0x02, "SAML22N16A", 64, 8 },
259 { 0x05, "SAML22J18A", 256, 32 },
260 { 0x06, "SAML22J17A", 128, 16 },
261 { 0x07, "SAML22J16A", 64, 8 },
262 { 0x0A, "SAML22G18A", 256, 32 },
263 { 0x0B, "SAML22G17A", 128, 16 },
264 { 0x0C, "SAML22G16A", 64, 8 },
267 /* Known SAMC20 parts. */
268 static const struct samd_part samc20_parts[] = {
269 { 0x00, "SAMC20J18A", 256, 32 },
270 { 0x01, "SAMC20J17A", 128, 16 },
271 { 0x02, "SAMC20J16A", 64, 8 },
272 { 0x03, "SAMC20J15A", 32, 4 },
273 { 0x05, "SAMC20G18A", 256, 32 },
274 { 0x06, "SAMC20G17A", 128, 16 },
275 { 0x07, "SAMC20G16A", 64, 8 },
276 { 0x08, "SAMC20G15A", 32, 4 },
277 { 0x0A, "SAMC20E18A", 256, 32 },
278 { 0x0B, "SAMC20E17A", 128, 16 },
279 { 0x0C, "SAMC20E16A", 64, 8 },
280 { 0x0D, "SAMC20E15A", 32, 4 },
281 { 0x20, "SAMC20N18A", 256, 32 },
282 { 0x21, "SAMC20N17A", 128, 16 },
285 /* Known SAMC21 parts. */
286 static const struct samd_part samc21_parts[] = {
287 { 0x00, "SAMC21J18A", 256, 32 },
288 { 0x01, "SAMC21J17A", 128, 16 },
289 { 0x02, "SAMC21J16A", 64, 8 },
290 { 0x03, "SAMC21J15A", 32, 4 },
291 { 0x05, "SAMC21G18A", 256, 32 },
292 { 0x06, "SAMC21G17A", 128, 16 },
293 { 0x07, "SAMC21G16A", 64, 8 },
294 { 0x08, "SAMC21G15A", 32, 4 },
295 { 0x0A, "SAMC21E18A", 256, 32 },
296 { 0x0B, "SAMC21E17A", 128, 16 },
297 { 0x0C, "SAMC21E16A", 64, 8 },
298 { 0x0D, "SAMC21E15A", 32, 4 },
299 { 0x20, "SAMC21N18A", 256, 32 },
300 { 0x21, "SAMC21N17A", 128, 16 },
303 /* Each family of parts contains a parts table in the DEVSEL field of DID. The
304 * processor ID, family ID, and series ID are used to determine which exact
305 * family this is and then we can use the corresponding table. */
306 struct samd_family {
307 uint8_t processor;
308 uint8_t family;
309 uint8_t series;
310 const struct samd_part *parts;
311 size_t num_parts;
312 uint64_t nvm_userrow_res_mask; /* protect bits which are reserved, 0 -> protect */
315 /* Known SAMD families */
316 static const struct samd_family samd_families[] = {
317 { SAMD_PROCESSOR_M0, SAMD_FAMILY_D, SAMD_SERIES_20,
318 samd20_parts, ARRAY_SIZE(samd20_parts),
319 0xFFFF01FFFE01FF77ULL },
320 { SAMD_PROCESSOR_M0, SAMD_FAMILY_D, SAMD_SERIES_21,
321 samd21_parts, ARRAY_SIZE(samd21_parts),
322 0xFFFF01FFFE01FF77ULL },
323 { SAMD_PROCESSOR_M0, SAMD_FAMILY_D, SAMD_SERIES_09,
324 samd09_parts, ARRAY_SIZE(samd09_parts),
325 0xFFFF01FFFE01FF77ULL },
326 { SAMD_PROCESSOR_M0, SAMD_FAMILY_D, SAMD_SERIES_10,
327 samd10_parts, ARRAY_SIZE(samd10_parts),
328 0xFFFF01FFFE01FF77ULL },
329 { SAMD_PROCESSOR_M0, SAMD_FAMILY_D, SAMD_SERIES_11,
330 samd11_parts, ARRAY_SIZE(samd11_parts),
331 0xFFFF01FFFE01FF77ULL },
332 { SAMD_PROCESSOR_M0, SAMD_FAMILY_L, SAMD_SERIES_21,
333 saml21_parts, ARRAY_SIZE(saml21_parts),
334 0xFFFF03FFFC01FF77ULL },
335 { SAMD_PROCESSOR_M0, SAMD_FAMILY_L, SAMD_SERIES_22,
336 saml22_parts, ARRAY_SIZE(saml22_parts),
337 0xFFFF03FFFC01FF77ULL },
338 { SAMD_PROCESSOR_M0, SAMD_FAMILY_C, SAMD_SERIES_20,
339 samc20_parts, ARRAY_SIZE(samc20_parts),
340 0xFFFF03FFFC01FF77ULL },
341 { SAMD_PROCESSOR_M0, SAMD_FAMILY_C, SAMD_SERIES_21,
342 samc21_parts, ARRAY_SIZE(samc21_parts),
343 0xFFFF03FFFC01FF77ULL },
346 struct samd_info {
347 uint32_t page_size;
348 int num_pages;
349 int sector_size;
350 int prot_block_size;
352 bool probed;
353 struct target *target;
358 * Gives the family structure to specific device id.
359 * @param id The id of the device.
360 * @return On failure NULL, otherwise a pointer to the structure.
362 static const struct samd_family *samd_find_family(uint32_t id)
364 uint8_t processor = SAMD_GET_PROCESSOR(id);
365 uint8_t family = SAMD_GET_FAMILY(id);
366 uint8_t series = SAMD_GET_SERIES(id);
368 for (unsigned i = 0; i < ARRAY_SIZE(samd_families); i++) {
369 if (samd_families[i].processor == processor &&
370 samd_families[i].series == series &&
371 samd_families[i].family == family)
372 return &samd_families[i];
375 return NULL;
379 * Gives the part structure to specific device id.
380 * @param id The id of the device.
381 * @return On failure NULL, otherwise a pointer to the structure.
383 static const struct samd_part *samd_find_part(uint32_t id)
385 uint8_t devsel = SAMD_GET_DEVSEL(id);
386 const struct samd_family *family = samd_find_family(id);
387 if (!family)
388 return NULL;
390 for (unsigned i = 0; i < family->num_parts; i++) {
391 if (family->parts[i].id == devsel)
392 return &family->parts[i];
395 return NULL;
398 static int samd_protect_check(struct flash_bank *bank)
400 int res;
401 uint16_t lock;
403 res = target_read_u16(bank->target,
404 SAMD_NVMCTRL + SAMD_NVMCTRL_LOCK, &lock);
405 if (res != ERROR_OK)
406 return res;
408 /* Lock bits are active-low */
409 for (unsigned int prot_block = 0; prot_block < bank->num_prot_blocks; prot_block++)
410 bank->prot_blocks[prot_block].is_protected = !(lock & (1u<<prot_block));
412 return ERROR_OK;
415 static int samd_get_flash_page_info(struct target *target,
416 uint32_t *sizep, int *nump)
418 int res;
419 uint32_t param;
421 res = target_read_u32(target, SAMD_NVMCTRL + SAMD_NVMCTRL_PARAM, &param);
422 if (res == ERROR_OK) {
423 /* The PSZ field (bits 18:16) indicate the page size bytes as 2^(3+n)
424 * so 0 is 8KB and 7 is 1024KB. */
425 if (sizep)
426 *sizep = (8 << ((param >> 16) & 0x7));
427 /* The NVMP field (bits 15:0) indicates the total number of pages */
428 if (nump)
429 *nump = param & 0xFFFF;
430 } else {
431 LOG_ERROR("Couldn't read NVM Parameters register");
434 return res;
437 static int samd_probe(struct flash_bank *bank)
439 uint32_t id;
440 int res;
441 struct samd_info *chip = (struct samd_info *)bank->driver_priv;
442 const struct samd_part *part;
444 if (chip->probed)
445 return ERROR_OK;
447 res = target_read_u32(bank->target, SAMD_DSU + SAMD_DSU_DID, &id);
448 if (res != ERROR_OK) {
449 LOG_ERROR("Couldn't read Device ID register");
450 return res;
453 part = samd_find_part(id);
454 if (!part) {
455 LOG_ERROR("Couldn't find part corresponding to DID %08" PRIx32, id);
456 return ERROR_FAIL;
459 bank->size = part->flash_kb * 1024;
461 res = samd_get_flash_page_info(bank->target, &chip->page_size,
462 &chip->num_pages);
463 if (res != ERROR_OK) {
464 LOG_ERROR("Couldn't determine Flash page size");
465 return res;
468 /* Sanity check: the total flash size in the DSU should match the page size
469 * multiplied by the number of pages. */
470 if (bank->size != chip->num_pages * chip->page_size) {
471 LOG_WARNING("SAMD: bank size doesn't match NVM parameters. "
472 "Identified %" PRIu32 "KB Flash but NVMCTRL reports %u %" PRIu32 "B pages",
473 part->flash_kb, chip->num_pages, chip->page_size);
476 /* Erase granularity = 1 row = 4 pages */
477 chip->sector_size = chip->page_size * 4;
479 /* Allocate the sector table */
480 bank->num_sectors = chip->num_pages / 4;
481 bank->sectors = alloc_block_array(0, chip->sector_size, bank->num_sectors);
482 if (!bank->sectors)
483 return ERROR_FAIL;
485 /* 16 protection blocks per device */
486 chip->prot_block_size = bank->size / SAMD_NUM_PROT_BLOCKS;
488 /* Allocate the table of protection blocks */
489 bank->num_prot_blocks = SAMD_NUM_PROT_BLOCKS;
490 bank->prot_blocks = alloc_block_array(0, chip->prot_block_size, bank->num_prot_blocks);
491 if (!bank->prot_blocks)
492 return ERROR_FAIL;
494 samd_protect_check(bank);
496 /* Done */
497 chip->probed = true;
499 LOG_INFO("SAMD MCU: %s (%" PRIu32 "KB Flash, %" PRIu32 "KB RAM)", part->name,
500 part->flash_kb, part->ram_kb);
502 return ERROR_OK;
505 static int samd_check_error(struct target *target)
507 int ret, ret2;
508 uint8_t intflag;
509 uint16_t status;
510 int timeout_ms = 1000;
511 int64_t ts_start = timeval_ms();
513 do {
514 ret = target_read_u8(target,
515 SAMD_NVMCTRL + SAMD_NVMCTRL_INTFLAG, &intflag);
516 if (ret != ERROR_OK) {
517 LOG_ERROR("Can't read NVM intflag");
518 return ret;
520 if (intflag & SAMD_NVM_INTFLAG_READY)
521 break;
522 keep_alive();
523 } while (timeval_ms() - ts_start < timeout_ms);
525 if (!(intflag & SAMD_NVM_INTFLAG_READY)) {
526 LOG_ERROR("SAMD: NVM programming timed out");
527 return ERROR_FLASH_OPERATION_FAILED;
530 ret = target_read_u16(target,
531 SAMD_NVMCTRL + SAMD_NVMCTRL_STATUS, &status);
532 if (ret != ERROR_OK) {
533 LOG_ERROR("Can't read NVM status");
534 return ret;
537 if ((status & 0x001C) == 0)
538 return ERROR_OK;
540 if (status & (1 << 4)) { /* NVME */
541 LOG_ERROR("SAMD: NVM Error");
542 ret = ERROR_FLASH_OPERATION_FAILED;
545 if (status & (1 << 3)) { /* LOCKE */
546 LOG_ERROR("SAMD: NVM lock error");
547 ret = ERROR_FLASH_PROTECTED;
550 if (status & (1 << 2)) { /* PROGE */
551 LOG_ERROR("SAMD: NVM programming error");
552 ret = ERROR_FLASH_OPER_UNSUPPORTED;
555 /* Clear the error conditions by writing a one to them */
556 ret2 = target_write_u16(target,
557 SAMD_NVMCTRL + SAMD_NVMCTRL_STATUS, status);
558 if (ret2 != ERROR_OK)
559 LOG_ERROR("Can't clear NVM error conditions");
561 return ret;
564 static int samd_issue_nvmctrl_command(struct target *target, uint16_t cmd)
566 int res;
568 if (target->state != TARGET_HALTED) {
569 LOG_ERROR("Target not halted");
570 return ERROR_TARGET_NOT_HALTED;
573 /* Issue the NVM command */
574 /* 32-bit write is used to ensure atomic operation on ST-Link */
575 res = target_write_u32(target,
576 SAMD_NVMCTRL + SAMD_NVMCTRL_CTRLA, SAMD_NVM_CMD(cmd));
577 if (res != ERROR_OK)
578 return res;
580 /* Check to see if the NVM command resulted in an error condition. */
581 return samd_check_error(target);
585 * Erases a flash-row at the given address.
586 * @param target Pointer to the target structure.
587 * @param address The address of the row.
588 * @return On success ERROR_OK, on failure an errorcode.
590 static int samd_erase_row(struct target *target, uint32_t address)
592 int res;
594 /* Set an address contained in the row to be erased */
595 res = target_write_u32(target,
596 SAMD_NVMCTRL + SAMD_NVMCTRL_ADDR, address >> 1);
598 /* Issue the Erase Row command to erase that row. */
599 if (res == ERROR_OK)
600 res = samd_issue_nvmctrl_command(target,
601 address == SAMD_USER_ROW ? SAMD_NVM_CMD_EAR : SAMD_NVM_CMD_ER);
603 if (res != ERROR_OK) {
604 LOG_ERROR("Failed to erase row containing %08" PRIx32, address);
605 return ERROR_FAIL;
608 return ERROR_OK;
612 * Returns the bitmask of reserved bits in register.
613 * @param target Pointer to the target structure.
614 * @param mask Bitmask, 0 -> value stays untouched.
615 * @return On success ERROR_OK, on failure an errorcode.
617 static int samd_get_reservedmask(struct target *target, uint64_t *mask)
619 int res;
620 /* Get the devicetype */
621 uint32_t id;
622 res = target_read_u32(target, SAMD_DSU + SAMD_DSU_DID, &id);
623 if (res != ERROR_OK) {
624 LOG_ERROR("Couldn't read Device ID register");
625 return res;
627 const struct samd_family *family;
628 family = samd_find_family(id);
629 if (!family) {
630 LOG_ERROR("Couldn't determine device family");
631 return ERROR_FAIL;
633 *mask = family->nvm_userrow_res_mask;
634 return ERROR_OK;
637 static int read_userrow(struct target *target, uint64_t *userrow)
639 int res;
640 uint8_t buffer[8];
642 res = target_read_memory(target, SAMD_USER_ROW, 4, 2, buffer);
643 if (res != ERROR_OK)
644 return res;
646 *userrow = target_buffer_get_u64(target, buffer);
647 return ERROR_OK;
651 * Modify the contents of the User Row in Flash. The User Row itself
652 * has a size of one page and contains a combination of "fuses" and
653 * calibration data. Bits which have a value of zero in the mask will
654 * not be changed. Up to now devices only use the first 64 bits.
655 * @param target Pointer to the target structure.
656 * @param value_input The value to write.
657 * @param value_mask Bitmask, 0 -> value stays untouched.
658 * @return On success ERROR_OK, on failure an errorcode.
660 static int samd_modify_user_row_masked(struct target *target,
661 uint64_t value_input, uint64_t value_mask)
663 int res;
664 uint32_t nvm_ctrlb;
665 bool manual_wp = true;
667 /* Retrieve the MCU's page size, in bytes. This is also the size of the
668 * entire User Row. */
669 uint32_t page_size;
670 res = samd_get_flash_page_info(target, &page_size, NULL);
671 if (res != ERROR_OK) {
672 LOG_ERROR("Couldn't determine Flash page size");
673 return res;
676 /* Make sure the size is sane. */
677 assert(page_size <= SAMD_PAGE_SIZE_MAX &&
678 page_size >= sizeof(value_input));
680 uint8_t buf[SAMD_PAGE_SIZE_MAX];
681 /* Read the user row (comprising one page) by words. */
682 res = target_read_memory(target, SAMD_USER_ROW, 4, page_size / 4, buf);
683 if (res != ERROR_OK)
684 return res;
686 uint64_t value_device;
687 res = read_userrow(target, &value_device);
688 if (res != ERROR_OK)
689 return res;
690 uint64_t value_new = (value_input & value_mask) | (value_device & ~value_mask);
692 /* We will need to erase before writing if the new value needs a '1' in any
693 * position for which the current value had a '0'. Otherwise we can avoid
694 * erasing. */
695 if ((~value_device) & value_new) {
696 res = samd_erase_row(target, SAMD_USER_ROW);
697 if (res != ERROR_OK) {
698 LOG_ERROR("Couldn't erase user row");
699 return res;
703 /* Modify */
704 target_buffer_set_u64(target, buf, value_new);
706 /* Write the page buffer back out to the target. */
707 res = target_write_memory(target, SAMD_USER_ROW, 4, page_size / 4, buf);
708 if (res != ERROR_OK)
709 return res;
711 /* Check if we need to do manual page write commands */
712 res = target_read_u32(target, SAMD_NVMCTRL + SAMD_NVMCTRL_CTRLB, &nvm_ctrlb);
713 if (res == ERROR_OK)
714 manual_wp = (nvm_ctrlb & SAMD_NVM_CTRLB_MANW) != 0;
715 else {
716 LOG_ERROR("Read of NVM register CTRKB failed.");
717 return ERROR_FAIL;
719 if (manual_wp) {
720 /* Trigger flash write */
721 res = samd_issue_nvmctrl_command(target, SAMD_NVM_CMD_WAP);
722 } else {
723 res = samd_check_error(target);
726 return res;
730 * Modifies the user row register to the given value.
731 * @param target Pointer to the target structure.
732 * @param value The value to write.
733 * @param startb The bit-offset by which the given value is shifted.
734 * @param endb The bit-offset of the last bit in value to write.
735 * @return On success ERROR_OK, on failure an errorcode.
737 static int samd_modify_user_row(struct target *target, uint64_t value,
738 uint8_t startb, uint8_t endb)
740 uint64_t mask = 0;
741 int i;
742 for (i = startb ; i <= endb ; i++)
743 mask |= ((uint64_t)1) << i;
745 return samd_modify_user_row_masked(target, value << startb, mask);
748 static int samd_protect(struct flash_bank *bank, int set,
749 unsigned int first, unsigned int last)
751 int res = ERROR_OK;
753 /* We can issue lock/unlock region commands with the target running but
754 * the settings won't persist unless we're able to modify the LOCK regions
755 * and that requires the target to be halted. */
756 if (bank->target->state != TARGET_HALTED) {
757 LOG_ERROR("Target not halted");
758 return ERROR_TARGET_NOT_HALTED;
761 for (unsigned int prot_block = first; prot_block <= last; prot_block++) {
762 if (set != bank->prot_blocks[prot_block].is_protected) {
763 /* Load an address that is within this protection block (we use offset 0) */
764 res = target_write_u32(bank->target,
765 SAMD_NVMCTRL + SAMD_NVMCTRL_ADDR,
766 bank->prot_blocks[prot_block].offset >> 1);
767 if (res != ERROR_OK)
768 goto exit;
770 /* Tell the controller to lock that block */
771 res = samd_issue_nvmctrl_command(bank->target,
772 set ? SAMD_NVM_CMD_LR : SAMD_NVM_CMD_UR);
773 if (res != ERROR_OK)
774 goto exit;
778 /* We've now applied our changes, however they will be undone by the next
779 * reset unless we also apply them to the LOCK bits in the User Page. The
780 * LOCK bits start at bit 48, corresponding to Sector 0 and end with bit 63,
781 * corresponding to Sector 15. A '1' means unlocked and a '0' means
782 * locked. See Table 9-3 in the SAMD20 datasheet for more details. */
784 res = samd_modify_user_row(bank->target,
785 set ? (uint64_t)0 : (uint64_t)UINT64_MAX,
786 48 + first, 48 + last);
787 if (res != ERROR_OK)
788 LOG_WARNING("SAMD: protect settings were not made persistent!");
790 res = ERROR_OK;
792 exit:
793 samd_protect_check(bank);
795 return res;
798 static int samd_erase(struct flash_bank *bank, unsigned int first,
799 unsigned int last)
801 int res;
802 struct samd_info *chip = (struct samd_info *)bank->driver_priv;
804 if (bank->target->state != TARGET_HALTED) {
805 LOG_ERROR("Target not halted");
807 return ERROR_TARGET_NOT_HALTED;
810 if (!chip->probed) {
811 if (samd_probe(bank) != ERROR_OK)
812 return ERROR_FLASH_BANK_NOT_PROBED;
815 /* For each sector to be erased */
816 for (unsigned int s = first; s <= last; s++) {
817 res = samd_erase_row(bank->target, bank->sectors[s].offset);
818 if (res != ERROR_OK) {
819 LOG_ERROR("SAMD: failed to erase sector %d at 0x%08" PRIx32, s, bank->sectors[s].offset);
820 return res;
824 return ERROR_OK;
828 static int samd_write(struct flash_bank *bank, const uint8_t *buffer,
829 uint32_t offset, uint32_t count)
831 int res;
832 uint32_t nvm_ctrlb;
833 uint32_t address;
834 uint32_t pg_offset;
835 uint32_t nb;
836 uint32_t nw;
837 struct samd_info *chip = (struct samd_info *)bank->driver_priv;
838 uint8_t *pb = NULL;
839 bool manual_wp;
841 if (bank->target->state != TARGET_HALTED) {
842 LOG_ERROR("Target not halted");
843 return ERROR_TARGET_NOT_HALTED;
846 if (!chip->probed) {
847 if (samd_probe(bank) != ERROR_OK)
848 return ERROR_FLASH_BANK_NOT_PROBED;
851 /* Check if we need to do manual page write commands */
852 res = target_read_u32(bank->target, SAMD_NVMCTRL + SAMD_NVMCTRL_CTRLB, &nvm_ctrlb);
854 if (res != ERROR_OK)
855 return res;
857 if (nvm_ctrlb & SAMD_NVM_CTRLB_MANW)
858 manual_wp = true;
859 else
860 manual_wp = false;
862 res = samd_issue_nvmctrl_command(bank->target, SAMD_NVM_CMD_PBC);
863 if (res != ERROR_OK) {
864 LOG_ERROR("%s: %d", __func__, __LINE__);
865 return res;
868 while (count) {
869 nb = chip->page_size - offset % chip->page_size;
870 if (count < nb)
871 nb = count;
873 address = bank->base + offset;
874 pg_offset = offset % chip->page_size;
876 if (offset % 4 || (offset + nb) % 4) {
877 /* Either start or end of write is not word aligned */
878 if (!pb) {
879 pb = malloc(chip->page_size);
880 if (!pb)
881 return ERROR_FAIL;
884 /* Set temporary page buffer to 0xff and overwrite the relevant part */
885 memset(pb, 0xff, chip->page_size);
886 memcpy(pb + pg_offset, buffer, nb);
888 /* Align start address to a word boundary */
889 address -= offset % 4;
890 pg_offset -= offset % 4;
891 assert(pg_offset % 4 == 0);
893 /* Extend length to whole words */
894 nw = (nb + offset % 4 + 3) / 4;
895 assert(pg_offset + 4 * nw <= chip->page_size);
897 /* Now we have original data extended by 0xff bytes
898 * to the nearest word boundary on both start and end */
899 res = target_write_memory(bank->target, address, 4, nw, pb + pg_offset);
900 } else {
901 assert(nb % 4 == 0);
902 nw = nb / 4;
903 assert(pg_offset + 4 * nw <= chip->page_size);
905 /* Word aligned data, use direct write from buffer */
906 res = target_write_memory(bank->target, address, 4, nw, buffer);
908 if (res != ERROR_OK) {
909 LOG_ERROR("%s: %d", __func__, __LINE__);
910 goto free_pb;
913 /* Devices with errata 13134 have automatic page write enabled by default
914 * For other devices issue a write page CMD to the NVM
915 * If the page has not been written up to the last word
916 * then issue CMD_WP always */
917 if (manual_wp || pg_offset + 4 * nw < chip->page_size) {
918 res = samd_issue_nvmctrl_command(bank->target, SAMD_NVM_CMD_WP);
919 } else {
920 /* Access through AHB is stalled while flash is being programmed */
921 usleep(200);
923 res = samd_check_error(bank->target);
926 if (res != ERROR_OK) {
927 LOG_ERROR("%s: write failed at address 0x%08" PRIx32, __func__, address);
928 goto free_pb;
931 /* We're done with the page contents */
932 count -= nb;
933 offset += nb;
934 buffer += nb;
937 free_pb:
938 free(pb);
939 return res;
942 FLASH_BANK_COMMAND_HANDLER(samd_flash_bank_command)
944 if (bank->base != SAMD_FLASH) {
945 LOG_ERROR("Address " TARGET_ADDR_FMT
946 " invalid bank address (try 0x%08" PRIx32
947 "[at91samd series] )",
948 bank->base, SAMD_FLASH);
949 return ERROR_FAIL;
952 struct samd_info *chip;
953 chip = calloc(1, sizeof(*chip));
954 if (!chip) {
955 LOG_ERROR("No memory for flash bank chip info");
956 return ERROR_FAIL;
959 chip->target = bank->target;
960 chip->probed = false;
962 bank->driver_priv = chip;
964 return ERROR_OK;
967 COMMAND_HANDLER(samd_handle_chip_erase_command)
969 struct target *target = get_current_target(CMD_CTX);
970 int res = ERROR_FAIL;
972 if (target) {
973 /* Enable access to the DSU by disabling the write protect bit */
974 target_write_u32(target, SAMD_PAC1, (1<<1));
975 /* intentionally without error checking - not accessible on secured chip */
977 /* Tell the DSU to perform a full chip erase. It takes about 240ms to
978 * perform the erase. */
979 res = target_write_u8(target, SAMD_DSU + SAMD_DSU_CTRL_EXT, (1<<4));
980 if (res == ERROR_OK)
981 command_print(CMD, "chip erase started");
982 else
983 command_print(CMD, "write to DSU CTRL failed");
986 return res;
989 COMMAND_HANDLER(samd_handle_set_security_command)
991 int res = ERROR_OK;
992 struct target *target = get_current_target(CMD_CTX);
994 if (CMD_ARGC < 1 || (CMD_ARGC >= 1 && (strcmp(CMD_ARGV[0], "enable")))) {
995 command_print(CMD, "supply the \"enable\" argument to proceed.");
996 return ERROR_COMMAND_SYNTAX_ERROR;
999 if (target) {
1000 if (target->state != TARGET_HALTED) {
1001 LOG_ERROR("Target not halted");
1002 return ERROR_TARGET_NOT_HALTED;
1005 res = samd_issue_nvmctrl_command(target, SAMD_NVM_CMD_SSB);
1007 /* Check (and clear) error conditions */
1008 if (res == ERROR_OK)
1009 command_print(CMD, "chip secured on next power-cycle");
1010 else
1011 command_print(CMD, "failed to secure chip");
1014 return res;
1017 COMMAND_HANDLER(samd_handle_eeprom_command)
1019 int res = ERROR_OK;
1020 struct target *target = get_current_target(CMD_CTX);
1022 if (target) {
1023 if (target->state != TARGET_HALTED) {
1024 LOG_ERROR("Target not halted");
1025 return ERROR_TARGET_NOT_HALTED;
1028 if (CMD_ARGC >= 1) {
1029 int val = atoi(CMD_ARGV[0]);
1030 uint32_t code;
1032 if (val == 0)
1033 code = 7;
1034 else {
1035 /* Try to match size in bytes with corresponding size code */
1036 for (code = 0; code <= 6; code++) {
1037 if (val == (2 << (13 - code)))
1038 break;
1041 if (code > 6) {
1042 command_print(CMD, "Invalid EEPROM size. Please see "
1043 "datasheet for a list valid sizes.");
1044 return ERROR_COMMAND_SYNTAX_ERROR;
1048 res = samd_modify_user_row(target, code, 4, 6);
1049 } else {
1050 uint16_t val;
1051 res = target_read_u16(target, SAMD_USER_ROW, &val);
1052 if (res == ERROR_OK) {
1053 uint32_t size = ((val >> 4) & 0x7); /* grab size code */
1055 if (size == 0x7)
1056 command_print(CMD, "EEPROM is disabled");
1057 else {
1058 /* Otherwise, 6 is 256B, 0 is 16KB */
1059 command_print(CMD, "EEPROM size is %u bytes",
1060 (2 << (13 - size)));
1066 return res;
1069 COMMAND_HANDLER(samd_handle_nvmuserrow_command)
1071 int res = ERROR_OK;
1072 struct target *target = get_current_target(CMD_CTX);
1074 if (target) {
1075 if (CMD_ARGC > 2) {
1076 command_print(CMD, "Too much Arguments given.");
1077 return ERROR_COMMAND_SYNTAX_ERROR;
1080 if (CMD_ARGC > 0) {
1081 if (target->state != TARGET_HALTED) {
1082 LOG_ERROR("Target not halted.");
1083 return ERROR_TARGET_NOT_HALTED;
1086 uint64_t mask;
1087 res = samd_get_reservedmask(target, &mask);
1088 if (res != ERROR_OK) {
1089 LOG_ERROR("Couldn't determine the mask for reserved bits.");
1090 return ERROR_FAIL;
1092 mask &= NVMUSERROW_LOCKBIT_MASK;
1094 uint64_t value;
1095 COMMAND_PARSE_NUMBER(u64, CMD_ARGV[0], value);
1097 if (CMD_ARGC == 2) {
1098 uint64_t mask_temp;
1099 COMMAND_PARSE_NUMBER(u64, CMD_ARGV[1], mask_temp);
1101 mask &= mask_temp;
1103 res = samd_modify_user_row_masked(target, value, mask);
1104 if (res != ERROR_OK)
1105 return res;
1108 /* read register */
1109 uint64_t value;
1110 res = read_userrow(target, &value);
1111 if (res == ERROR_OK)
1112 command_print(CMD, "NVMUSERROW: 0x%016"PRIX64, value);
1113 else
1114 LOG_ERROR("NVMUSERROW could not be read.");
1116 return res;
1119 COMMAND_HANDLER(samd_handle_bootloader_command)
1121 int res = ERROR_OK;
1122 struct target *target = get_current_target(CMD_CTX);
1124 if (target) {
1125 if (target->state != TARGET_HALTED) {
1126 LOG_ERROR("Target not halted");
1127 return ERROR_TARGET_NOT_HALTED;
1130 /* Retrieve the MCU's page size, in bytes. */
1131 uint32_t page_size;
1132 res = samd_get_flash_page_info(target, &page_size, NULL);
1133 if (res != ERROR_OK) {
1134 LOG_ERROR("Couldn't determine Flash page size");
1135 return res;
1138 if (CMD_ARGC >= 1) {
1139 int val = atoi(CMD_ARGV[0]);
1140 uint32_t code;
1142 if (val == 0)
1143 code = 7;
1144 else {
1145 /* Try to match size in bytes with corresponding size code */
1146 for (code = 0; code <= 6; code++) {
1147 if ((unsigned int)val == (2UL << (8UL - code)) * page_size)
1148 break;
1151 if (code > 6) {
1152 command_print(CMD, "Invalid bootloader size. Please "
1153 "see datasheet for a list valid sizes.");
1154 return ERROR_COMMAND_SYNTAX_ERROR;
1159 res = samd_modify_user_row(target, code, 0, 2);
1160 } else {
1161 uint16_t val;
1162 res = target_read_u16(target, SAMD_USER_ROW, &val);
1163 if (res == ERROR_OK) {
1164 uint32_t size = (val & 0x7); /* grab size code */
1165 uint32_t nb;
1167 if (size == 0x7)
1168 nb = 0;
1169 else
1170 nb = (2 << (8 - size)) * page_size;
1172 /* There are 4 pages per row */
1173 command_print(CMD, "Bootloader size is %" PRIu32 " bytes (%" PRIu32 " rows)",
1174 nb, (uint32_t)(nb / (page_size * 4)));
1179 return res;
1184 COMMAND_HANDLER(samd_handle_reset_deassert)
1186 struct target *target = get_current_target(CMD_CTX);
1187 int retval = ERROR_OK;
1188 enum reset_types jtag_reset_config = jtag_get_reset_config();
1190 /* If the target has been unresponsive before, try to re-establish
1191 * communication now - CPU is held in reset by DSU, DAP is working */
1192 if (!target_was_examined(target))
1193 target_examine_one(target);
1194 target_poll(target);
1196 /* In case of sysresetreq, debug retains state set in cortex_m_assert_reset()
1197 * so we just release reset held by DSU
1199 * n_RESET (srst) clears the DP, so reenable debug and set vector catch here
1201 * After vectreset DSU release is not needed however makes no harm
1203 if (target->reset_halt && (jtag_reset_config & RESET_HAS_SRST)) {
1204 retval = target_write_u32(target, DCB_DHCSR, DBGKEY | C_HALT | C_DEBUGEN);
1205 if (retval == ERROR_OK)
1206 retval = target_write_u32(target, DCB_DEMCR,
1207 TRCENA | VC_HARDERR | VC_BUSERR | VC_CORERESET);
1208 /* do not return on error here, releasing DSU reset is more important */
1211 /* clear CPU Reset Phase Extension bit */
1212 int retval2 = target_write_u8(target, SAMD_DSU + SAMD_DSU_STATUSA, (1<<1));
1213 if (retval2 != ERROR_OK)
1214 return retval2;
1216 return retval;
1219 static const struct command_registration at91samd_exec_command_handlers[] = {
1221 .name = "dsu_reset_deassert",
1222 .handler = samd_handle_reset_deassert,
1223 .mode = COMMAND_EXEC,
1224 .help = "Deassert internal reset held by DSU.",
1225 .usage = "",
1228 .name = "chip-erase",
1229 .handler = samd_handle_chip_erase_command,
1230 .mode = COMMAND_EXEC,
1231 .help = "Erase the entire Flash by using the Chip-"
1232 "Erase feature in the Device Service Unit (DSU).",
1233 .usage = "",
1236 .name = "set-security",
1237 .handler = samd_handle_set_security_command,
1238 .mode = COMMAND_EXEC,
1239 .help = "Secure the chip's Flash by setting the Security Bit. "
1240 "This makes it impossible to read the Flash contents. "
1241 "The only way to undo this is to issue the chip-erase "
1242 "command.",
1243 .usage = "'enable'",
1246 .name = "eeprom",
1247 .usage = "[size_in_bytes]",
1248 .handler = samd_handle_eeprom_command,
1249 .mode = COMMAND_EXEC,
1250 .help = "Show or set the EEPROM size setting, stored in the User Row. "
1251 "Please see Table 20-3 of the SAMD20 datasheet for allowed values. "
1252 "Changes are stored immediately but take affect after the MCU is "
1253 "reset.",
1256 .name = "bootloader",
1257 .usage = "[size_in_bytes]",
1258 .handler = samd_handle_bootloader_command,
1259 .mode = COMMAND_EXEC,
1260 .help = "Show or set the bootloader size, stored in the User Row. "
1261 "Please see Table 20-2 of the SAMD20 datasheet for allowed values. "
1262 "Changes are stored immediately but take affect after the MCU is "
1263 "reset.",
1266 .name = "nvmuserrow",
1267 .usage = "[value] [mask]",
1268 .handler = samd_handle_nvmuserrow_command,
1269 .mode = COMMAND_EXEC,
1270 .help = "Show or set the nvmuserrow register. It is 64 bit wide "
1271 "and located at address 0x804000. Use the optional mask argument "
1272 "to prevent changes at positions where the bitvalue is zero. "
1273 "For security reasons the lock- and reserved-bits are masked out "
1274 "in background and therefore cannot be changed.",
1276 COMMAND_REGISTRATION_DONE
1279 static const struct command_registration at91samd_command_handlers[] = {
1281 .name = "at91samd",
1282 .mode = COMMAND_ANY,
1283 .help = "at91samd flash command group",
1284 .usage = "",
1285 .chain = at91samd_exec_command_handlers,
1287 COMMAND_REGISTRATION_DONE
1290 const struct flash_driver at91samd_flash = {
1291 .name = "at91samd",
1292 .commands = at91samd_command_handlers,
1293 .flash_bank_command = samd_flash_bank_command,
1294 .erase = samd_erase,
1295 .protect = samd_protect,
1296 .write = samd_write,
1297 .read = default_flash_read,
1298 .probe = samd_probe,
1299 .auto_probe = samd_probe,
1300 .erase_check = default_flash_blank_check,
1301 .protect_check = samd_protect_check,
1302 .free_driver_priv = default_flash_free_driver_priv,