Comment and doxygen fixes
[openocd.git] / src / target / embeddedice.c
bloba705d7dd15f911567d3fc4f12ca419bf77c52827
1 /***************************************************************************
2 * Copyright (C) 2005 by Dominic Rath *
3 * Dominic.Rath@gmx.de *
4 * *
5 * Copyright (C) 2007,2008,2009 Øyvind Harboe *
6 * oyvind.harboe@zylin.com *
7 * *
8 * Copyright (C) 2008 by Spencer Oliver *
9 * spen@spen-soft.co.uk *
10 * *
11 * This program is free software; you can redistribute it and/or modify *
12 * it under the terms of the GNU General Public License as published by *
13 * the Free Software Foundation; either version 2 of the License, or *
14 * (at your option) any later version. *
15 * *
16 * This program is distributed in the hope that it will be useful, *
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
19 * GNU General Public License for more details. *
20 * *
21 * You should have received a copy of the GNU General Public License *
22 * along with this program; if not, write to the *
23 * Free Software Foundation, Inc., *
24 * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
25 ***************************************************************************/
26 #ifdef HAVE_CONFIG_H
27 #include "config.h"
28 #endif
30 #include "embeddedice.h"
31 #include "register.h"
33 /**
34 * @file
36 * This provides lowlevel glue to the EmbeddedICE (or EmbeddedICE-RT)
37 * module found on scan chain 2 in ARM7, ARM9, and some other families
38 * of ARM cores. The module is called "EmbeddedICE-RT" if it has
39 * monitor mode support.
41 * EmbeddedICE provides basic watchpoint/breakpoint hardware and a Debug
42 * Communications Channel (DCC) used to read or write 32-bit words to
43 * OpenOCD-aware code running on the target CPU.
44 * Newer modules also include vector catch hardware. Some versions
45 * support hardware single-stepping, "monitor mode" debug (which is not
46 * currently supported by OpenOCD), or extended reporting on why the
47 * core entered debug mode.
51 * From: ARM9E-S TRM, DDI 0165, table C-4 (and similar, for other cores)
53 static const struct {
54 char *name;
55 unsigned short addr;
56 unsigned short width;
57 } eice_regs[] = {
58 [EICE_DBG_CTRL] = {
59 .name = "debug_ctrl",
60 .addr = 0,
61 /* width is assigned based on EICE version */
63 [EICE_DBG_STAT] = {
64 .name = "debug_status",
65 .addr = 1,
66 /* width is assigned based on EICE version */
68 [EICE_COMMS_CTRL] = {
69 .name = "comms_ctrl",
70 .addr = 4,
71 .width = 6,
73 [EICE_COMMS_DATA] = {
74 .name = "comms_data",
75 .addr = 5,
76 .width = 32,
78 [EICE_W0_ADDR_VALUE] = {
79 .name = "watch_0_addr_value",
80 .addr = 8,
81 .width = 32,
83 [EICE_W0_ADDR_MASK] = {
84 .name = "watch_0_addr_mask",
85 .addr = 9,
86 .width = 32,
88 [EICE_W0_DATA_VALUE ] = {
89 .name = "watch_0_data_value",
90 .addr = 10,
91 .width = 32,
93 [EICE_W0_DATA_MASK] = {
94 .name = "watch_0_data_mask",
95 .addr = 11,
96 .width = 32,
98 [EICE_W0_CONTROL_VALUE] = {
99 .name = "watch_0_control_value",
100 .addr = 12,
101 .width = 9,
103 [EICE_W0_CONTROL_MASK] = {
104 .name = "watch_0_control_mask",
105 .addr = 13,
106 .width = 8,
108 [EICE_W1_ADDR_VALUE] = {
109 .name = "watch_1_addr_value",
110 .addr = 16,
111 .width = 32,
113 [EICE_W1_ADDR_MASK] = {
114 .name = "watch_1_addr_mask",
115 .addr = 17,
116 .width = 32,
118 [EICE_W1_DATA_VALUE] = {
119 .name = "watch_1_data_value",
120 .addr = 18,
121 .width = 32,
123 [EICE_W1_DATA_MASK] = {
124 .name = "watch_1_data_mask",
125 .addr = 19,
126 .width = 32,
128 [EICE_W1_CONTROL_VALUE] = {
129 .name = "watch_1_control_value",
130 .addr = 20,
131 .width = 9,
133 [EICE_W1_CONTROL_MASK] = {
134 .name = "watch_1_control_mask",
135 .addr = 21,
136 .width = 8,
138 /* vector_catch isn't always present */
139 [EICE_VEC_CATCH] = {
140 .name = "vector_catch",
141 .addr = 2,
142 .width = 8,
147 static int embeddedice_get_reg(struct reg *reg)
149 int retval;
151 if ((retval = embeddedice_read_reg(reg)) != ERROR_OK)
152 LOG_ERROR("error queueing EmbeddedICE register read");
153 else if ((retval = jtag_execute_queue()) != ERROR_OK)
154 LOG_ERROR("EmbeddedICE register read failed");
156 return retval;
159 static const struct reg_arch_type eice_reg_type = {
160 .get = embeddedice_get_reg,
161 .set = embeddedice_set_reg_w_exec,
165 * Probe EmbeddedICE module and set up local records of its registers.
166 * Different versions of the modules have different capabilities, such as
167 * hardware support for vector_catch, single stepping, and monitor mode.
169 struct reg_cache *
170 embeddedice_build_reg_cache(struct target *target, struct arm7_9_common *arm7_9)
172 int retval;
173 struct reg_cache *reg_cache = malloc(sizeof(struct reg_cache));
174 struct reg *reg_list = NULL;
175 struct embeddedice_reg *arch_info = NULL;
176 struct arm_jtag *jtag_info = &arm7_9->jtag_info;
177 int num_regs = ARRAY_SIZE(eice_regs);
178 int i;
179 int eice_version = 0;
181 /* vector_catch isn't always present */
182 if (!arm7_9->has_vector_catch)
183 num_regs--;
185 /* the actual registers are kept in two arrays */
186 reg_list = calloc(num_regs, sizeof(struct reg));
187 arch_info = calloc(num_regs, sizeof(struct embeddedice_reg));
189 /* fill in values for the reg cache */
190 reg_cache->name = "EmbeddedICE registers";
191 reg_cache->next = NULL;
192 reg_cache->reg_list = reg_list;
193 reg_cache->num_regs = num_regs;
195 /* set up registers */
196 for (i = 0; i < num_regs; i++)
198 reg_list[i].name = eice_regs[i].name;
199 reg_list[i].size = eice_regs[i].width;
200 reg_list[i].dirty = 0;
201 reg_list[i].valid = 0;
202 reg_list[i].value = calloc(1, 4);
203 reg_list[i].arch_info = &arch_info[i];
204 reg_list[i].type = &eice_reg_type;
205 arch_info[i].addr = eice_regs[i].addr;
206 arch_info[i].jtag_info = jtag_info;
209 /* identify EmbeddedICE version by reading DCC control register */
210 embeddedice_read_reg(&reg_list[EICE_COMMS_CTRL]);
211 if ((retval = jtag_execute_queue()) != ERROR_OK)
213 for (i = 0; i < num_regs; i++)
215 free(reg_list[i].value);
217 free(reg_list);
218 free(reg_cache);
219 free(arch_info);
220 return NULL;
223 eice_version = buf_get_u32(reg_list[EICE_COMMS_CTRL].value, 28, 4);
224 LOG_INFO("Embedded ICE version %d", eice_version);
226 switch (eice_version)
228 case 1:
229 /* ARM7TDMI r3, ARM7TDMI-S r3
231 * REVISIT docs say ARM7TDMI-S r4 uses version 1 but
232 * that it has 6-bit CTRL and 5-bit STAT... doc bug?
233 * ARM7TDMI r4 docs say EICE v4.
235 reg_list[EICE_DBG_CTRL].size = 3;
236 reg_list[EICE_DBG_STAT].size = 5;
237 break;
238 case 2:
239 /* ARM9TDMI */
240 reg_list[EICE_DBG_CTRL].size = 4;
241 reg_list[EICE_DBG_STAT].size = 5;
242 arm7_9->has_single_step = 1;
243 break;
244 case 3:
245 LOG_ERROR("EmbeddedICE v%d handling might be broken",
246 eice_version);
247 reg_list[EICE_DBG_CTRL].size = 6;
248 reg_list[EICE_DBG_STAT].size = 5;
249 arm7_9->has_single_step = 1;
250 arm7_9->has_monitor_mode = 1;
251 break;
252 case 4:
253 /* ARM7TDMI r4 */
254 reg_list[EICE_DBG_CTRL].size = 6;
255 reg_list[EICE_DBG_STAT].size = 5;
256 arm7_9->has_monitor_mode = 1;
257 break;
258 case 5:
259 /* ARM9E-S rev 1 */
260 reg_list[EICE_DBG_CTRL].size = 6;
261 reg_list[EICE_DBG_STAT].size = 5;
262 arm7_9->has_single_step = 1;
263 arm7_9->has_monitor_mode = 1;
264 break;
265 case 6:
266 /* ARM7EJ-S, ARM9E-S rev 2, ARM9EJ-S */
267 reg_list[EICE_DBG_CTRL].size = 6;
268 reg_list[EICE_DBG_STAT].size = 10;
269 /* DBG_STAT has MOE bits */
270 arm7_9->has_monitor_mode = 1;
271 break;
272 case 7:
273 LOG_ERROR("EmbeddedICE v%d handling might be broken",
274 eice_version);
275 reg_list[EICE_DBG_CTRL].size = 6;
276 reg_list[EICE_DBG_STAT].size = 5;
277 arm7_9->has_monitor_mode = 1;
278 break;
279 default:
281 * The Feroceon implementation has the version number
282 * in some unusual bits. Let feroceon.c validate it
283 * and do the appropriate setup itself.
285 if (strcmp(target_type_name(target), "feroceon") == 0 ||
286 strcmp(target_type_name(target), "dragonite") == 0)
287 break;
288 LOG_ERROR("unknown EmbeddedICE version "
289 "(comms ctrl: 0x%8.8" PRIx32 ")",
290 buf_get_u32(reg_list[EICE_COMMS_CTRL].value, 0, 32));
293 LOG_INFO("%s: hardware has 2 breakpoints or watchpoints",
294 target_name(target));
296 return reg_cache;
300 * Initialize EmbeddedICE module, if needed.
302 int embeddedice_setup(struct target *target)
304 int retval;
305 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
307 /* Explicitly disable monitor mode. For now we only support halting
308 * debug ... we don't know how to talk with a resident debug monitor
309 * that manages break requests. ARM's "Angel Debug Monitor" is one
310 * common example of such code.
312 if (arm7_9->has_monitor_mode)
314 struct reg *dbg_ctrl = &arm7_9->eice_cache->reg_list[EICE_DBG_CTRL];
316 embeddedice_read_reg(dbg_ctrl);
317 if ((retval = jtag_execute_queue()) != ERROR_OK)
318 return retval;
319 buf_set_u32(dbg_ctrl->value, 4, 1, 0);
320 embeddedice_set_reg_w_exec(dbg_ctrl, dbg_ctrl->value);
322 return jtag_execute_queue();
326 * Queue a read for an EmbeddedICE register into the register cache,
327 * optionally checking the value read.
328 * Note that at this level, all registers are 32 bits wide.
330 int embeddedice_read_reg_w_check(struct reg *reg,
331 uint8_t *check_value, uint8_t *check_mask)
333 struct embeddedice_reg *ice_reg = reg->arch_info;
334 uint8_t reg_addr = ice_reg->addr & 0x1f;
335 struct scan_field fields[3];
336 uint8_t field1_out[1];
337 uint8_t field2_out[1];
339 jtag_set_end_state(TAP_IDLE);
340 arm_jtag_scann(ice_reg->jtag_info, 0x2);
342 arm_jtag_set_instr(ice_reg->jtag_info, ice_reg->jtag_info->intest_instr, NULL);
344 /* bits 31:0 -- data (ignored here) */
345 fields[0].tap = ice_reg->jtag_info->tap;
346 fields[0].num_bits = 32;
347 fields[0].out_value = reg->value;
348 fields[0].in_value = NULL;
349 fields[0].check_value = NULL;
350 fields[0].check_mask = NULL;
352 /* bits 36:32 -- register */
353 fields[1].tap = ice_reg->jtag_info->tap;
354 fields[1].num_bits = 5;
355 fields[1].out_value = field1_out;
356 fields[1].out_value[0] = reg_addr;
357 fields[1].in_value = NULL;
358 fields[1].check_value = NULL;
359 fields[1].check_mask = NULL;
361 /* bit 37 -- 0/read */
362 fields[2].tap = ice_reg->jtag_info->tap;
363 fields[2].num_bits = 1;
364 fields[2].out_value = field2_out;
365 fields[2].out_value[0] = 0;
366 fields[2].in_value = NULL;
367 fields[2].check_value = NULL;
368 fields[2].check_mask = NULL;
370 /* traverse Update-DR, setting address for the next read */
371 jtag_add_dr_scan(3, fields, jtag_get_end_state());
373 /* bits 31:0 -- the data we're reading (and maybe checking) */
374 fields[0].in_value = reg->value;
375 fields[0].check_value = check_value;
376 fields[0].check_mask = check_mask;
378 /* when reading the DCC data register, leaving the address field set to
379 * EICE_COMMS_DATA would read the register twice
380 * reading the control register is safe
382 fields[1].out_value[0] = eice_regs[EICE_COMMS_CTRL].addr;
384 /* traverse Update-DR, reading but with no other side effects */
385 jtag_add_dr_scan_check(3, fields, jtag_get_end_state());
387 return ERROR_OK;
391 * Receive a block of size 32-bit words from the DCC.
392 * We assume the target is always going to be fast enough (relative to
393 * the JTAG clock) that the debugger won't need to poll the handshake
394 * bit. The JTAG clock is usually at least six times slower than the
395 * functional clock, so the 50+ JTAG clocks needed to receive the word
396 * allow hundreds of instruction cycles (per word) in the target.
398 int embeddedice_receive(struct arm_jtag *jtag_info, uint32_t *data, uint32_t size)
400 struct scan_field fields[3];
401 uint8_t field1_out[1];
402 uint8_t field2_out[1];
404 jtag_set_end_state(TAP_IDLE);
405 arm_jtag_scann(jtag_info, 0x2);
406 arm_jtag_set_instr(jtag_info, jtag_info->intest_instr, NULL);
408 fields[0].tap = jtag_info->tap;
409 fields[0].num_bits = 32;
410 fields[0].out_value = NULL;
411 fields[0].in_value = NULL;
413 fields[1].tap = jtag_info->tap;
414 fields[1].num_bits = 5;
415 fields[1].out_value = field1_out;
416 fields[1].out_value[0] = eice_regs[EICE_COMMS_DATA].addr;
417 fields[1].in_value = NULL;
419 fields[2].tap = jtag_info->tap;
420 fields[2].num_bits = 1;
421 fields[2].out_value = field2_out;
422 fields[2].out_value[0] = 0;
423 fields[2].in_value = NULL;
425 jtag_add_dr_scan(3, fields, jtag_get_end_state());
427 while (size > 0)
429 /* when reading the last item, set the register address to the DCC control reg,
430 * to avoid reading additional data from the DCC data reg
432 if (size == 1)
433 fields[1].out_value[0] = eice_regs[EICE_COMMS_CTRL].addr;
435 fields[0].in_value = (uint8_t *)data;
436 jtag_add_dr_scan(3, fields, jtag_get_end_state());
437 jtag_add_callback(arm_le_to_h_u32, (jtag_callback_data_t)data);
439 data++;
440 size--;
443 return jtag_execute_queue();
447 * Queue a read for an EmbeddedICE register into the register cache,
448 * not checking the value read.
450 int embeddedice_read_reg(struct reg *reg)
452 return embeddedice_read_reg_w_check(reg, NULL, NULL);
456 * Queue a write for an EmbeddedICE register, updating the register cache.
457 * Uses embeddedice_write_reg().
459 void embeddedice_set_reg(struct reg *reg, uint32_t value)
461 embeddedice_write_reg(reg, value);
463 buf_set_u32(reg->value, 0, reg->size, value);
464 reg->valid = 1;
465 reg->dirty = 0;
470 * Write an EmbeddedICE register, updating the register cache.
471 * Uses embeddedice_set_reg(); not queued.
473 int embeddedice_set_reg_w_exec(struct reg *reg, uint8_t *buf)
475 int retval;
477 embeddedice_set_reg(reg, buf_get_u32(buf, 0, reg->size));
478 if ((retval = jtag_execute_queue()) != ERROR_OK)
479 LOG_ERROR("register write failed");
480 return retval;
484 * Queue a write for an EmbeddedICE register, bypassing the register cache.
486 void embeddedice_write_reg(struct reg *reg, uint32_t value)
488 struct embeddedice_reg *ice_reg = reg->arch_info;
490 LOG_DEBUG("%i: 0x%8.8" PRIx32 "", ice_reg->addr, value);
492 jtag_set_end_state(TAP_IDLE);
493 arm_jtag_scann(ice_reg->jtag_info, 0x2);
495 arm_jtag_set_instr(ice_reg->jtag_info, ice_reg->jtag_info->intest_instr, NULL);
497 uint8_t reg_addr = ice_reg->addr & 0x1f;
498 embeddedice_write_reg_inner(ice_reg->jtag_info->tap, reg_addr, value);
502 * Queue a write for an EmbeddedICE register, using cached value.
503 * Uses embeddedice_write_reg().
505 void embeddedice_store_reg(struct reg *reg)
507 embeddedice_write_reg(reg, buf_get_u32(reg->value, 0, reg->size));
511 * Send a block of size 32-bit words to the DCC.
512 * We assume the target is always going to be fast enough (relative to
513 * the JTAG clock) that the debugger won't need to poll the handshake
514 * bit. The JTAG clock is usually at least six times slower than the
515 * functional clock, so the 50+ JTAG clocks needed to receive the word
516 * allow hundreds of instruction cycles (per word) in the target.
518 int embeddedice_send(struct arm_jtag *jtag_info, uint32_t *data, uint32_t size)
520 struct scan_field fields[3];
521 uint8_t field0_out[4];
522 uint8_t field1_out[1];
523 uint8_t field2_out[1];
525 jtag_set_end_state(TAP_IDLE);
526 arm_jtag_scann(jtag_info, 0x2);
527 arm_jtag_set_instr(jtag_info, jtag_info->intest_instr, NULL);
529 fields[0].tap = jtag_info->tap;
530 fields[0].num_bits = 32;
531 fields[0].out_value = field0_out;
532 fields[0].in_value = NULL;
534 fields[1].tap = jtag_info->tap;
535 fields[1].num_bits = 5;
536 fields[1].out_value = field1_out;
537 fields[1].out_value[0] = eice_regs[EICE_COMMS_DATA].addr;
538 fields[1].in_value = NULL;
540 fields[2].tap = jtag_info->tap;
541 fields[2].num_bits = 1;
542 fields[2].out_value = field2_out;
543 fields[2].out_value[0] = 1;
545 fields[2].in_value = NULL;
547 while (size > 0)
549 buf_set_u32(fields[0].out_value, 0, 32, *data);
550 jtag_add_dr_scan(3, fields, jtag_get_end_state());
552 data++;
553 size--;
556 /* call to jtag_execute_queue() intentionally omitted */
557 return ERROR_OK;
561 * Poll DCC control register until read or write handshake completes.
563 int embeddedice_handshake(struct arm_jtag *jtag_info, int hsbit, uint32_t timeout)
565 struct scan_field fields[3];
566 uint8_t field0_in[4];
567 uint8_t field1_out[1];
568 uint8_t field2_out[1];
569 int retval;
570 uint32_t hsact;
571 struct timeval lap;
572 struct timeval now;
574 if (hsbit == EICE_COMM_CTRL_WBIT)
575 hsact = 1;
576 else if (hsbit == EICE_COMM_CTRL_RBIT)
577 hsact = 0;
578 else
579 return ERROR_INVALID_ARGUMENTS;
581 jtag_set_end_state(TAP_IDLE);
582 arm_jtag_scann(jtag_info, 0x2);
583 arm_jtag_set_instr(jtag_info, jtag_info->intest_instr, NULL);
585 fields[0].tap = jtag_info->tap;
586 fields[0].num_bits = 32;
587 fields[0].out_value = NULL;
588 fields[0].in_value = field0_in;
590 fields[1].tap = jtag_info->tap;
591 fields[1].num_bits = 5;
592 fields[1].out_value = field1_out;
593 fields[1].out_value[0] = eice_regs[EICE_COMMS_DATA].addr;
594 fields[1].in_value = NULL;
596 fields[2].tap = jtag_info->tap;
597 fields[2].num_bits = 1;
598 fields[2].out_value = field2_out;
599 fields[2].out_value[0] = 0;
600 fields[2].in_value = NULL;
602 jtag_add_dr_scan(3, fields, jtag_get_end_state());
603 gettimeofday(&lap, NULL);
604 do {
605 jtag_add_dr_scan(3, fields, jtag_get_end_state());
606 if ((retval = jtag_execute_queue()) != ERROR_OK)
607 return retval;
609 if (buf_get_u32(field0_in, hsbit, 1) == hsact)
610 return ERROR_OK;
612 gettimeofday(&now, NULL);
613 } while ((uint32_t)((now.tv_sec - lap.tv_sec) * 1000
614 + (now.tv_usec - lap.tv_usec) / 1000) <= timeout);
616 return ERROR_TARGET_TIMEOUT;
619 #ifndef HAVE_JTAG_MINIDRIVER_H
621 * This is an inner loop of the open loop DCC write of data to target
623 void embeddedice_write_dcc(struct jtag_tap *tap,
624 int reg_addr, uint8_t *buffer, int little, int count)
626 int i;
628 for (i = 0; i < count; i++)
630 embeddedice_write_reg_inner(tap, reg_addr,
631 fast_target_buffer_get_u32(buffer, little));
632 buffer += 4;
635 #else
636 /* provided by minidriver */
637 #endif