target/cortex_m: allow setting the type of a breakpoint
[openocd.git] / src / target / cortex_m.c
blob30439f458f907de2d9884ba9f935c8b78334bc56
1 /***************************************************************************
2 * Copyright (C) 2005 by Dominic Rath *
3 * Dominic.Rath@gmx.de *
4 * *
5 * Copyright (C) 2006 by Magnus Lundin *
6 * lundin@mlu.mine.nu *
7 * *
8 * Copyright (C) 2008 by Spencer Oliver *
9 * spen@spen-soft.co.uk *
10 * *
11 * This program is free software; you can redistribute it and/or modify *
12 * it under the terms of the GNU General Public License as published by *
13 * the Free Software Foundation; either version 2 of the License, or *
14 * (at your option) any later version. *
15 * *
16 * This program is distributed in the hope that it will be useful, *
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
19 * GNU General Public License for more details. *
20 * *
21 * You should have received a copy of the GNU General Public License *
22 * along with this program. If not, see <http://www.gnu.org/licenses/>. *
23 * *
24 * *
25 * Cortex-M3(tm) TRM, ARM DDI 0337E (r1p1) and 0337G (r2p0) *
26 * *
27 ***************************************************************************/
28 #ifdef HAVE_CONFIG_H
29 #include "config.h"
30 #endif
32 #include "jtag/interface.h"
33 #include "breakpoints.h"
34 #include "cortex_m.h"
35 #include "target_request.h"
36 #include "target_type.h"
37 #include "arm_disassembler.h"
38 #include "register.h"
39 #include "arm_opcodes.h"
40 #include "arm_semihosting.h"
41 #include <helper/time_support.h>
43 /* NOTE: most of this should work fine for the Cortex-M1 and
44 * Cortex-M0 cores too, although they're ARMv6-M not ARMv7-M.
45 * Some differences: M0/M1 doesn't have FBP remapping or the
46 * DWT tracing/profiling support. (So the cycle counter will
47 * not be usable; the other stuff isn't currently used here.)
49 * Although there are some workarounds for errata seen only in r0p0
50 * silicon, such old parts are hard to find and thus not much tested
51 * any longer.
54 /* forward declarations */
55 static int cortex_m_store_core_reg_u32(struct target *target,
56 uint32_t num, uint32_t value);
57 static void cortex_m_dwt_free(struct target *target);
59 static int cortexm_dap_read_coreregister_u32(struct target *target,
60 uint32_t *value, int regnum)
62 struct armv7m_common *armv7m = target_to_armv7m(target);
63 int retval;
64 uint32_t dcrdr;
66 /* because the DCB_DCRDR is used for the emulated dcc channel
67 * we have to save/restore the DCB_DCRDR when used */
68 if (target->dbg_msg_enabled) {
69 retval = mem_ap_read_u32(armv7m->debug_ap, DCB_DCRDR, &dcrdr);
70 if (retval != ERROR_OK)
71 return retval;
74 retval = mem_ap_write_u32(armv7m->debug_ap, DCB_DCRSR, regnum);
75 if (retval != ERROR_OK)
76 return retval;
78 retval = mem_ap_read_atomic_u32(armv7m->debug_ap, DCB_DCRDR, value);
79 if (retval != ERROR_OK)
80 return retval;
82 if (target->dbg_msg_enabled) {
83 /* restore DCB_DCRDR - this needs to be in a separate
84 * transaction otherwise the emulated DCC channel breaks */
85 if (retval == ERROR_OK)
86 retval = mem_ap_write_atomic_u32(armv7m->debug_ap, DCB_DCRDR, dcrdr);
89 return retval;
92 static int cortexm_dap_write_coreregister_u32(struct target *target,
93 uint32_t value, int regnum)
95 struct armv7m_common *armv7m = target_to_armv7m(target);
96 int retval;
97 uint32_t dcrdr;
99 /* because the DCB_DCRDR is used for the emulated dcc channel
100 * we have to save/restore the DCB_DCRDR when used */
101 if (target->dbg_msg_enabled) {
102 retval = mem_ap_read_u32(armv7m->debug_ap, DCB_DCRDR, &dcrdr);
103 if (retval != ERROR_OK)
104 return retval;
107 retval = mem_ap_write_u32(armv7m->debug_ap, DCB_DCRDR, value);
108 if (retval != ERROR_OK)
109 return retval;
111 retval = mem_ap_write_atomic_u32(armv7m->debug_ap, DCB_DCRSR, regnum | DCRSR_WnR);
112 if (retval != ERROR_OK)
113 return retval;
115 if (target->dbg_msg_enabled) {
116 /* restore DCB_DCRDR - this needs to be in a seperate
117 * transaction otherwise the emulated DCC channel breaks */
118 if (retval == ERROR_OK)
119 retval = mem_ap_write_atomic_u32(armv7m->debug_ap, DCB_DCRDR, dcrdr);
122 return retval;
125 static int cortex_m_write_debug_halt_mask(struct target *target,
126 uint32_t mask_on, uint32_t mask_off)
128 struct cortex_m_common *cortex_m = target_to_cm(target);
129 struct armv7m_common *armv7m = &cortex_m->armv7m;
131 /* mask off status bits */
132 cortex_m->dcb_dhcsr &= ~((0xFFFF << 16) | mask_off);
133 /* create new register mask */
134 cortex_m->dcb_dhcsr |= DBGKEY | C_DEBUGEN | mask_on;
136 return mem_ap_write_atomic_u32(armv7m->debug_ap, DCB_DHCSR, cortex_m->dcb_dhcsr);
139 static int cortex_m_clear_halt(struct target *target)
141 struct cortex_m_common *cortex_m = target_to_cm(target);
142 struct armv7m_common *armv7m = &cortex_m->armv7m;
143 int retval;
145 /* clear step if any */
146 cortex_m_write_debug_halt_mask(target, C_HALT, C_STEP);
148 /* Read Debug Fault Status Register */
149 retval = mem_ap_read_atomic_u32(armv7m->debug_ap, NVIC_DFSR, &cortex_m->nvic_dfsr);
150 if (retval != ERROR_OK)
151 return retval;
153 /* Clear Debug Fault Status */
154 retval = mem_ap_write_atomic_u32(armv7m->debug_ap, NVIC_DFSR, cortex_m->nvic_dfsr);
155 if (retval != ERROR_OK)
156 return retval;
157 LOG_DEBUG(" NVIC_DFSR 0x%" PRIx32 "", cortex_m->nvic_dfsr);
159 return ERROR_OK;
162 static int cortex_m_single_step_core(struct target *target)
164 struct cortex_m_common *cortex_m = target_to_cm(target);
165 struct armv7m_common *armv7m = &cortex_m->armv7m;
166 int retval;
168 /* Mask interrupts before clearing halt, if done already. This avoids
169 * Erratum 377497 (fixed in r1p0) where setting MASKINTS while clearing
170 * HALT can put the core into an unknown state.
172 if (!(cortex_m->dcb_dhcsr & C_MASKINTS)) {
173 retval = mem_ap_write_atomic_u32(armv7m->debug_ap, DCB_DHCSR,
174 DBGKEY | C_MASKINTS | C_HALT | C_DEBUGEN);
175 if (retval != ERROR_OK)
176 return retval;
178 retval = mem_ap_write_atomic_u32(armv7m->debug_ap, DCB_DHCSR,
179 DBGKEY | C_MASKINTS | C_STEP | C_DEBUGEN);
180 if (retval != ERROR_OK)
181 return retval;
182 LOG_DEBUG(" ");
184 /* restore dhcsr reg */
185 cortex_m_clear_halt(target);
187 return ERROR_OK;
190 static int cortex_m_enable_fpb(struct target *target)
192 int retval = target_write_u32(target, FP_CTRL, 3);
193 if (retval != ERROR_OK)
194 return retval;
196 /* check the fpb is actually enabled */
197 uint32_t fpctrl;
198 retval = target_read_u32(target, FP_CTRL, &fpctrl);
199 if (retval != ERROR_OK)
200 return retval;
202 if (fpctrl & 1)
203 return ERROR_OK;
205 return ERROR_FAIL;
208 static int cortex_m_endreset_event(struct target *target)
210 int i;
211 int retval;
212 uint32_t dcb_demcr;
213 struct cortex_m_common *cortex_m = target_to_cm(target);
214 struct armv7m_common *armv7m = &cortex_m->armv7m;
215 struct adiv5_dap *swjdp = cortex_m->armv7m.arm.dap;
216 struct cortex_m_fp_comparator *fp_list = cortex_m->fp_comparator_list;
217 struct cortex_m_dwt_comparator *dwt_list = cortex_m->dwt_comparator_list;
219 /* REVISIT The four debug monitor bits are currently ignored... */
220 retval = mem_ap_read_atomic_u32(armv7m->debug_ap, DCB_DEMCR, &dcb_demcr);
221 if (retval != ERROR_OK)
222 return retval;
223 LOG_DEBUG("DCB_DEMCR = 0x%8.8" PRIx32 "", dcb_demcr);
225 /* this register is used for emulated dcc channel */
226 retval = mem_ap_write_u32(armv7m->debug_ap, DCB_DCRDR, 0);
227 if (retval != ERROR_OK)
228 return retval;
230 /* Enable debug requests */
231 retval = mem_ap_read_atomic_u32(armv7m->debug_ap, DCB_DHCSR, &cortex_m->dcb_dhcsr);
232 if (retval != ERROR_OK)
233 return retval;
234 if (!(cortex_m->dcb_dhcsr & C_DEBUGEN)) {
235 retval = cortex_m_write_debug_halt_mask(target, 0, C_HALT | C_STEP | C_MASKINTS);
236 if (retval != ERROR_OK)
237 return retval;
240 /* clear any interrupt masking */
241 cortex_m_write_debug_halt_mask(target, 0, C_MASKINTS);
243 /* Enable features controlled by ITM and DWT blocks, and catch only
244 * the vectors we were told to pay attention to.
246 * Target firmware is responsible for all fault handling policy
247 * choices *EXCEPT* explicitly scripted overrides like "vector_catch"
248 * or manual updates to the NVIC SHCSR and CCR registers.
250 retval = mem_ap_write_u32(armv7m->debug_ap, DCB_DEMCR, TRCENA | armv7m->demcr);
251 if (retval != ERROR_OK)
252 return retval;
254 /* Paranoia: evidently some (early?) chips don't preserve all the
255 * debug state (including FBP, DWT, etc) across reset...
258 /* Enable FPB */
259 retval = cortex_m_enable_fpb(target);
260 if (retval != ERROR_OK) {
261 LOG_ERROR("Failed to enable the FPB");
262 return retval;
265 cortex_m->fpb_enabled = 1;
267 /* Restore FPB registers */
268 for (i = 0; i < cortex_m->fp_num_code + cortex_m->fp_num_lit; i++) {
269 retval = target_write_u32(target, fp_list[i].fpcr_address, fp_list[i].fpcr_value);
270 if (retval != ERROR_OK)
271 return retval;
274 /* Restore DWT registers */
275 for (i = 0; i < cortex_m->dwt_num_comp; i++) {
276 retval = target_write_u32(target, dwt_list[i].dwt_comparator_address + 0,
277 dwt_list[i].comp);
278 if (retval != ERROR_OK)
279 return retval;
280 retval = target_write_u32(target, dwt_list[i].dwt_comparator_address + 4,
281 dwt_list[i].mask);
282 if (retval != ERROR_OK)
283 return retval;
284 retval = target_write_u32(target, dwt_list[i].dwt_comparator_address + 8,
285 dwt_list[i].function);
286 if (retval != ERROR_OK)
287 return retval;
289 retval = dap_run(swjdp);
290 if (retval != ERROR_OK)
291 return retval;
293 register_cache_invalidate(armv7m->arm.core_cache);
295 /* make sure we have latest dhcsr flags */
296 retval = mem_ap_read_atomic_u32(armv7m->debug_ap, DCB_DHCSR, &cortex_m->dcb_dhcsr);
298 return retval;
301 static int cortex_m_examine_debug_reason(struct target *target)
303 struct cortex_m_common *cortex_m = target_to_cm(target);
305 /* THIS IS NOT GOOD, TODO - better logic for detection of debug state reason
306 * only check the debug reason if we don't know it already */
308 if ((target->debug_reason != DBG_REASON_DBGRQ)
309 && (target->debug_reason != DBG_REASON_SINGLESTEP)) {
310 if (cortex_m->nvic_dfsr & DFSR_BKPT) {
311 target->debug_reason = DBG_REASON_BREAKPOINT;
312 if (cortex_m->nvic_dfsr & DFSR_DWTTRAP)
313 target->debug_reason = DBG_REASON_WPTANDBKPT;
314 } else if (cortex_m->nvic_dfsr & DFSR_DWTTRAP)
315 target->debug_reason = DBG_REASON_WATCHPOINT;
316 else if (cortex_m->nvic_dfsr & DFSR_VCATCH)
317 target->debug_reason = DBG_REASON_BREAKPOINT;
318 else /* EXTERNAL, HALTED */
319 target->debug_reason = DBG_REASON_UNDEFINED;
322 return ERROR_OK;
325 static int cortex_m_examine_exception_reason(struct target *target)
327 uint32_t shcsr = 0, except_sr = 0, cfsr = -1, except_ar = -1;
328 struct armv7m_common *armv7m = target_to_armv7m(target);
329 struct adiv5_dap *swjdp = armv7m->arm.dap;
330 int retval;
332 retval = mem_ap_read_u32(armv7m->debug_ap, NVIC_SHCSR, &shcsr);
333 if (retval != ERROR_OK)
334 return retval;
335 switch (armv7m->exception_number) {
336 case 2: /* NMI */
337 break;
338 case 3: /* Hard Fault */
339 retval = mem_ap_read_atomic_u32(armv7m->debug_ap, NVIC_HFSR, &except_sr);
340 if (retval != ERROR_OK)
341 return retval;
342 if (except_sr & 0x40000000) {
343 retval = mem_ap_read_u32(armv7m->debug_ap, NVIC_CFSR, &cfsr);
344 if (retval != ERROR_OK)
345 return retval;
347 break;
348 case 4: /* Memory Management */
349 retval = mem_ap_read_u32(armv7m->debug_ap, NVIC_CFSR, &except_sr);
350 if (retval != ERROR_OK)
351 return retval;
352 retval = mem_ap_read_u32(armv7m->debug_ap, NVIC_MMFAR, &except_ar);
353 if (retval != ERROR_OK)
354 return retval;
355 break;
356 case 5: /* Bus Fault */
357 retval = mem_ap_read_u32(armv7m->debug_ap, NVIC_CFSR, &except_sr);
358 if (retval != ERROR_OK)
359 return retval;
360 retval = mem_ap_read_u32(armv7m->debug_ap, NVIC_BFAR, &except_ar);
361 if (retval != ERROR_OK)
362 return retval;
363 break;
364 case 6: /* Usage Fault */
365 retval = mem_ap_read_u32(armv7m->debug_ap, NVIC_CFSR, &except_sr);
366 if (retval != ERROR_OK)
367 return retval;
368 break;
369 case 11: /* SVCall */
370 break;
371 case 12: /* Debug Monitor */
372 retval = mem_ap_read_u32(armv7m->debug_ap, NVIC_DFSR, &except_sr);
373 if (retval != ERROR_OK)
374 return retval;
375 break;
376 case 14: /* PendSV */
377 break;
378 case 15: /* SysTick */
379 break;
380 default:
381 except_sr = 0;
382 break;
384 retval = dap_run(swjdp);
385 if (retval == ERROR_OK)
386 LOG_DEBUG("%s SHCSR 0x%" PRIx32 ", SR 0x%" PRIx32
387 ", CFSR 0x%" PRIx32 ", AR 0x%" PRIx32,
388 armv7m_exception_string(armv7m->exception_number),
389 shcsr, except_sr, cfsr, except_ar);
390 return retval;
393 static int cortex_m_debug_entry(struct target *target)
395 int i;
396 uint32_t xPSR;
397 int retval;
398 struct cortex_m_common *cortex_m = target_to_cm(target);
399 struct armv7m_common *armv7m = &cortex_m->armv7m;
400 struct arm *arm = &armv7m->arm;
401 struct reg *r;
403 LOG_DEBUG(" ");
405 cortex_m_clear_halt(target);
406 retval = mem_ap_read_atomic_u32(armv7m->debug_ap, DCB_DHCSR, &cortex_m->dcb_dhcsr);
407 if (retval != ERROR_OK)
408 return retval;
410 retval = armv7m->examine_debug_reason(target);
411 if (retval != ERROR_OK)
412 return retval;
414 /* Examine target state and mode
415 * First load register accessible through core debug port */
416 int num_regs = arm->core_cache->num_regs;
418 for (i = 0; i < num_regs; i++) {
419 r = &armv7m->arm.core_cache->reg_list[i];
420 if (!r->valid)
421 arm->read_core_reg(target, r, i, ARM_MODE_ANY);
424 r = arm->cpsr;
425 xPSR = buf_get_u32(r->value, 0, 32);
427 /* For IT instructions xPSR must be reloaded on resume and clear on debug exec */
428 if (xPSR & 0xf00) {
429 r->dirty = r->valid;
430 cortex_m_store_core_reg_u32(target, 16, xPSR & ~0xff);
433 /* Are we in an exception handler */
434 if (xPSR & 0x1FF) {
435 armv7m->exception_number = (xPSR & 0x1FF);
437 arm->core_mode = ARM_MODE_HANDLER;
438 arm->map = armv7m_msp_reg_map;
439 } else {
440 unsigned control = buf_get_u32(arm->core_cache
441 ->reg_list[ARMV7M_CONTROL].value, 0, 2);
443 /* is this thread privileged? */
444 arm->core_mode = control & 1
445 ? ARM_MODE_USER_THREAD
446 : ARM_MODE_THREAD;
448 /* which stack is it using? */
449 if (control & 2)
450 arm->map = armv7m_psp_reg_map;
451 else
452 arm->map = armv7m_msp_reg_map;
454 armv7m->exception_number = 0;
457 if (armv7m->exception_number)
458 cortex_m_examine_exception_reason(target);
460 LOG_DEBUG("entered debug state in core mode: %s at PC 0x%" PRIx32 ", target->state: %s",
461 arm_mode_name(arm->core_mode),
462 buf_get_u32(arm->pc->value, 0, 32),
463 target_state_name(target));
465 if (armv7m->post_debug_entry) {
466 retval = armv7m->post_debug_entry(target);
467 if (retval != ERROR_OK)
468 return retval;
471 return ERROR_OK;
474 static int cortex_m_poll(struct target *target)
476 int detected_failure = ERROR_OK;
477 int retval = ERROR_OK;
478 enum target_state prev_target_state = target->state;
479 struct cortex_m_common *cortex_m = target_to_cm(target);
480 struct armv7m_common *armv7m = &cortex_m->armv7m;
482 /* Read from Debug Halting Control and Status Register */
483 retval = mem_ap_read_atomic_u32(armv7m->debug_ap, DCB_DHCSR, &cortex_m->dcb_dhcsr);
484 if (retval != ERROR_OK) {
485 target->state = TARGET_UNKNOWN;
486 return retval;
489 /* Recover from lockup. See ARMv7-M architecture spec,
490 * section B1.5.15 "Unrecoverable exception cases".
492 if (cortex_m->dcb_dhcsr & S_LOCKUP) {
493 LOG_ERROR("%s -- clearing lockup after double fault",
494 target_name(target));
495 cortex_m_write_debug_halt_mask(target, C_HALT, 0);
496 target->debug_reason = DBG_REASON_DBGRQ;
498 /* We have to execute the rest (the "finally" equivalent, but
499 * still throw this exception again).
501 detected_failure = ERROR_FAIL;
503 /* refresh status bits */
504 retval = mem_ap_read_atomic_u32(armv7m->debug_ap, DCB_DHCSR, &cortex_m->dcb_dhcsr);
505 if (retval != ERROR_OK)
506 return retval;
509 if (cortex_m->dcb_dhcsr & S_RESET_ST) {
510 target->state = TARGET_RESET;
511 return ERROR_OK;
514 if (target->state == TARGET_RESET) {
515 /* Cannot switch context while running so endreset is
516 * called with target->state == TARGET_RESET
518 LOG_DEBUG("Exit from reset with dcb_dhcsr 0x%" PRIx32,
519 cortex_m->dcb_dhcsr);
520 retval = cortex_m_endreset_event(target);
521 if (retval != ERROR_OK) {
522 target->state = TARGET_UNKNOWN;
523 return retval;
525 target->state = TARGET_RUNNING;
526 prev_target_state = TARGET_RUNNING;
529 if (cortex_m->dcb_dhcsr & S_HALT) {
530 target->state = TARGET_HALTED;
532 if ((prev_target_state == TARGET_RUNNING) || (prev_target_state == TARGET_RESET)) {
533 retval = cortex_m_debug_entry(target);
534 if (retval != ERROR_OK)
535 return retval;
537 if (arm_semihosting(target, &retval) != 0)
538 return retval;
540 target_call_event_callbacks(target, TARGET_EVENT_HALTED);
542 if (prev_target_state == TARGET_DEBUG_RUNNING) {
543 LOG_DEBUG(" ");
544 retval = cortex_m_debug_entry(target);
545 if (retval != ERROR_OK)
546 return retval;
548 target_call_event_callbacks(target, TARGET_EVENT_DEBUG_HALTED);
552 /* REVISIT when S_SLEEP is set, it's in a Sleep or DeepSleep state.
553 * How best to model low power modes?
556 if (target->state == TARGET_UNKNOWN) {
557 /* check if processor is retiring instructions */
558 if (cortex_m->dcb_dhcsr & S_RETIRE_ST) {
559 target->state = TARGET_RUNNING;
560 retval = ERROR_OK;
564 /* Did we detect a failure condition that we cleared? */
565 if (detected_failure != ERROR_OK)
566 retval = detected_failure;
567 return retval;
570 static int cortex_m_halt(struct target *target)
572 LOG_DEBUG("target->state: %s",
573 target_state_name(target));
575 if (target->state == TARGET_HALTED) {
576 LOG_DEBUG("target was already halted");
577 return ERROR_OK;
580 if (target->state == TARGET_UNKNOWN)
581 LOG_WARNING("target was in unknown state when halt was requested");
583 if (target->state == TARGET_RESET) {
584 if ((jtag_get_reset_config() & RESET_SRST_PULLS_TRST) && jtag_get_srst()) {
585 LOG_ERROR("can't request a halt while in reset if nSRST pulls nTRST");
586 return ERROR_TARGET_FAILURE;
587 } else {
588 /* we came here in a reset_halt or reset_init sequence
589 * debug entry was already prepared in cortex_m3_assert_reset()
591 target->debug_reason = DBG_REASON_DBGRQ;
593 return ERROR_OK;
597 /* Write to Debug Halting Control and Status Register */
598 cortex_m_write_debug_halt_mask(target, C_HALT, 0);
600 target->debug_reason = DBG_REASON_DBGRQ;
602 return ERROR_OK;
605 static int cortex_m_soft_reset_halt(struct target *target)
607 struct cortex_m_common *cortex_m = target_to_cm(target);
608 struct armv7m_common *armv7m = &cortex_m->armv7m;
609 uint32_t dcb_dhcsr = 0;
610 int retval, timeout = 0;
612 /* soft_reset_halt is deprecated on cortex_m as the same functionality
613 * can be obtained by using 'reset halt' and 'cortex_m reset_config vectreset'
614 * As this reset only used VC_CORERESET it would only ever reset the cortex_m
615 * core, not the peripherals */
616 LOG_WARNING("soft_reset_halt is deprecated, please use 'reset halt' instead.");
618 /* Enter debug state on reset; restore DEMCR in endreset_event() */
619 retval = mem_ap_write_u32(armv7m->debug_ap, DCB_DEMCR,
620 TRCENA | VC_HARDERR | VC_BUSERR | VC_CORERESET);
621 if (retval != ERROR_OK)
622 return retval;
624 /* Request a core-only reset */
625 retval = mem_ap_write_atomic_u32(armv7m->debug_ap, NVIC_AIRCR,
626 AIRCR_VECTKEY | AIRCR_VECTRESET);
627 if (retval != ERROR_OK)
628 return retval;
629 target->state = TARGET_RESET;
631 /* registers are now invalid */
632 register_cache_invalidate(cortex_m->armv7m.arm.core_cache);
634 while (timeout < 100) {
635 retval = mem_ap_read_atomic_u32(armv7m->debug_ap, DCB_DHCSR, &dcb_dhcsr);
636 if (retval == ERROR_OK) {
637 retval = mem_ap_read_atomic_u32(armv7m->debug_ap, NVIC_DFSR,
638 &cortex_m->nvic_dfsr);
639 if (retval != ERROR_OK)
640 return retval;
641 if ((dcb_dhcsr & S_HALT)
642 && (cortex_m->nvic_dfsr & DFSR_VCATCH)) {
643 LOG_DEBUG("system reset-halted, DHCSR 0x%08x, "
644 "DFSR 0x%08x",
645 (unsigned) dcb_dhcsr,
646 (unsigned) cortex_m->nvic_dfsr);
647 cortex_m_poll(target);
648 /* FIXME restore user's vector catch config */
649 return ERROR_OK;
650 } else
651 LOG_DEBUG("waiting for system reset-halt, "
652 "DHCSR 0x%08x, %d ms",
653 (unsigned) dcb_dhcsr, timeout);
655 timeout++;
656 alive_sleep(1);
659 return ERROR_OK;
662 void cortex_m_enable_breakpoints(struct target *target)
664 struct breakpoint *breakpoint = target->breakpoints;
666 /* set any pending breakpoints */
667 while (breakpoint) {
668 if (!breakpoint->set)
669 cortex_m_set_breakpoint(target, breakpoint);
670 breakpoint = breakpoint->next;
674 static int cortex_m_resume(struct target *target, int current,
675 target_addr_t address, int handle_breakpoints, int debug_execution)
677 struct armv7m_common *armv7m = target_to_armv7m(target);
678 struct breakpoint *breakpoint = NULL;
679 uint32_t resume_pc;
680 struct reg *r;
682 if (target->state != TARGET_HALTED) {
683 LOG_WARNING("target not halted");
684 return ERROR_TARGET_NOT_HALTED;
687 if (!debug_execution) {
688 target_free_all_working_areas(target);
689 cortex_m_enable_breakpoints(target);
690 cortex_m_enable_watchpoints(target);
693 if (debug_execution) {
694 r = armv7m->arm.core_cache->reg_list + ARMV7M_PRIMASK;
696 /* Disable interrupts */
697 /* We disable interrupts in the PRIMASK register instead of
698 * masking with C_MASKINTS. This is probably the same issue
699 * as Cortex-M3 Erratum 377493 (fixed in r1p0): C_MASKINTS
700 * in parallel with disabled interrupts can cause local faults
701 * to not be taken.
703 * REVISIT this clearly breaks non-debug execution, since the
704 * PRIMASK register state isn't saved/restored... workaround
705 * by never resuming app code after debug execution.
707 buf_set_u32(r->value, 0, 1, 1);
708 r->dirty = true;
709 r->valid = true;
711 /* Make sure we are in Thumb mode */
712 r = armv7m->arm.cpsr;
713 buf_set_u32(r->value, 24, 1, 1);
714 r->dirty = true;
715 r->valid = true;
718 /* current = 1: continue on current pc, otherwise continue at <address> */
719 r = armv7m->arm.pc;
720 if (!current) {
721 buf_set_u32(r->value, 0, 32, address);
722 r->dirty = true;
723 r->valid = true;
726 /* if we halted last time due to a bkpt instruction
727 * then we have to manually step over it, otherwise
728 * the core will break again */
730 if (!breakpoint_find(target, buf_get_u32(r->value, 0, 32))
731 && !debug_execution)
732 armv7m_maybe_skip_bkpt_inst(target, NULL);
734 resume_pc = buf_get_u32(r->value, 0, 32);
736 armv7m_restore_context(target);
738 /* the front-end may request us not to handle breakpoints */
739 if (handle_breakpoints) {
740 /* Single step past breakpoint at current address */
741 breakpoint = breakpoint_find(target, resume_pc);
742 if (breakpoint) {
743 LOG_DEBUG("unset breakpoint at " TARGET_ADDR_FMT " (ID: %" PRIu32 ")",
744 breakpoint->address,
745 breakpoint->unique_id);
746 cortex_m_unset_breakpoint(target, breakpoint);
747 cortex_m_single_step_core(target);
748 cortex_m_set_breakpoint(target, breakpoint);
752 /* Restart core */
753 cortex_m_write_debug_halt_mask(target, 0, C_HALT);
755 target->debug_reason = DBG_REASON_NOTHALTED;
757 /* registers are now invalid */
758 register_cache_invalidate(armv7m->arm.core_cache);
760 if (!debug_execution) {
761 target->state = TARGET_RUNNING;
762 target_call_event_callbacks(target, TARGET_EVENT_RESUMED);
763 LOG_DEBUG("target resumed at 0x%" PRIx32 "", resume_pc);
764 } else {
765 target->state = TARGET_DEBUG_RUNNING;
766 target_call_event_callbacks(target, TARGET_EVENT_DEBUG_RESUMED);
767 LOG_DEBUG("target debug resumed at 0x%" PRIx32 "", resume_pc);
770 return ERROR_OK;
773 /* int irqstepcount = 0; */
774 static int cortex_m_step(struct target *target, int current,
775 target_addr_t address, int handle_breakpoints)
777 struct cortex_m_common *cortex_m = target_to_cm(target);
778 struct armv7m_common *armv7m = &cortex_m->armv7m;
779 struct breakpoint *breakpoint = NULL;
780 struct reg *pc = armv7m->arm.pc;
781 bool bkpt_inst_found = false;
782 int retval;
783 bool isr_timed_out = false;
785 if (target->state != TARGET_HALTED) {
786 LOG_WARNING("target not halted");
787 return ERROR_TARGET_NOT_HALTED;
790 /* current = 1: continue on current pc, otherwise continue at <address> */
791 if (!current)
792 buf_set_u32(pc->value, 0, 32, address);
794 uint32_t pc_value = buf_get_u32(pc->value, 0, 32);
796 /* the front-end may request us not to handle breakpoints */
797 if (handle_breakpoints) {
798 breakpoint = breakpoint_find(target, pc_value);
799 if (breakpoint)
800 cortex_m_unset_breakpoint(target, breakpoint);
803 armv7m_maybe_skip_bkpt_inst(target, &bkpt_inst_found);
805 target->debug_reason = DBG_REASON_SINGLESTEP;
807 armv7m_restore_context(target);
809 target_call_event_callbacks(target, TARGET_EVENT_RESUMED);
811 /* if no bkpt instruction is found at pc then we can perform
812 * a normal step, otherwise we have to manually step over the bkpt
813 * instruction - as such simulate a step */
814 if (bkpt_inst_found == false) {
815 /* Automatic ISR masking mode off: Just step over the next instruction */
816 if ((cortex_m->isrmasking_mode != CORTEX_M_ISRMASK_AUTO))
817 cortex_m_write_debug_halt_mask(target, C_STEP, C_HALT);
818 else {
819 /* Process interrupts during stepping in a way they don't interfere
820 * debugging.
822 * Principle:
824 * Set a temporary break point at the current pc and let the core run
825 * with interrupts enabled. Pending interrupts get served and we run
826 * into the breakpoint again afterwards. Then we step over the next
827 * instruction with interrupts disabled.
829 * If the pending interrupts don't complete within time, we leave the
830 * core running. This may happen if the interrupts trigger faster
831 * than the core can process them or the handler doesn't return.
833 * If no more breakpoints are available we simply do a step with
834 * interrupts enabled.
838 /* 2012-09-29 ph
840 * If a break point is already set on the lower half word then a break point on
841 * the upper half word will not break again when the core is restarted. So we
842 * just step over the instruction with interrupts disabled.
844 * The documentation has no information about this, it was found by observation
845 * on STM32F1 and STM32F2. Proper explanation welcome. STM32F0 dosen't seem to
846 * suffer from this problem.
848 * To add some confusion: pc_value has bit 0 always set, while the breakpoint
849 * address has it always cleared. The former is done to indicate thumb mode
850 * to gdb.
853 if ((pc_value & 0x02) && breakpoint_find(target, pc_value & ~0x03)) {
854 LOG_DEBUG("Stepping over next instruction with interrupts disabled");
855 cortex_m_write_debug_halt_mask(target, C_HALT | C_MASKINTS, 0);
856 cortex_m_write_debug_halt_mask(target, C_STEP, C_HALT);
857 /* Re-enable interrupts */
858 cortex_m_write_debug_halt_mask(target, C_HALT, C_MASKINTS);
860 else {
862 /* Set a temporary break point */
863 if (breakpoint)
864 retval = cortex_m_set_breakpoint(target, breakpoint);
865 else
866 retval = breakpoint_add(target, pc_value, 2, BKPT_HARD);
867 bool tmp_bp_set = (retval == ERROR_OK);
869 /* No more breakpoints left, just do a step */
870 if (!tmp_bp_set)
871 cortex_m_write_debug_halt_mask(target, C_STEP, C_HALT);
872 else {
873 /* Start the core */
874 LOG_DEBUG("Starting core to serve pending interrupts");
875 int64_t t_start = timeval_ms();
876 cortex_m_write_debug_halt_mask(target, 0, C_HALT | C_STEP);
878 /* Wait for pending handlers to complete or timeout */
879 do {
880 retval = mem_ap_read_atomic_u32(armv7m->debug_ap,
881 DCB_DHCSR,
882 &cortex_m->dcb_dhcsr);
883 if (retval != ERROR_OK) {
884 target->state = TARGET_UNKNOWN;
885 return retval;
887 isr_timed_out = ((timeval_ms() - t_start) > 500);
888 } while (!((cortex_m->dcb_dhcsr & S_HALT) || isr_timed_out));
890 /* only remove breakpoint if we created it */
891 if (breakpoint)
892 cortex_m_unset_breakpoint(target, breakpoint);
893 else {
894 /* Remove the temporary breakpoint */
895 breakpoint_remove(target, pc_value);
898 if (isr_timed_out) {
899 LOG_DEBUG("Interrupt handlers didn't complete within time, "
900 "leaving target running");
901 } else {
902 /* Step over next instruction with interrupts disabled */
903 cortex_m_write_debug_halt_mask(target,
904 C_HALT | C_MASKINTS,
906 cortex_m_write_debug_halt_mask(target, C_STEP, C_HALT);
907 /* Re-enable interrupts */
908 cortex_m_write_debug_halt_mask(target, C_HALT, C_MASKINTS);
915 retval = mem_ap_read_atomic_u32(armv7m->debug_ap, DCB_DHCSR, &cortex_m->dcb_dhcsr);
916 if (retval != ERROR_OK)
917 return retval;
919 /* registers are now invalid */
920 register_cache_invalidate(armv7m->arm.core_cache);
922 if (breakpoint)
923 cortex_m_set_breakpoint(target, breakpoint);
925 if (isr_timed_out) {
926 /* Leave the core running. The user has to stop execution manually. */
927 target->debug_reason = DBG_REASON_NOTHALTED;
928 target->state = TARGET_RUNNING;
929 return ERROR_OK;
932 LOG_DEBUG("target stepped dcb_dhcsr = 0x%" PRIx32
933 " nvic_icsr = 0x%" PRIx32,
934 cortex_m->dcb_dhcsr, cortex_m->nvic_icsr);
936 retval = cortex_m_debug_entry(target);
937 if (retval != ERROR_OK)
938 return retval;
939 target_call_event_callbacks(target, TARGET_EVENT_HALTED);
941 LOG_DEBUG("target stepped dcb_dhcsr = 0x%" PRIx32
942 " nvic_icsr = 0x%" PRIx32,
943 cortex_m->dcb_dhcsr, cortex_m->nvic_icsr);
945 return ERROR_OK;
948 static int cortex_m_assert_reset(struct target *target)
950 struct cortex_m_common *cortex_m = target_to_cm(target);
951 struct armv7m_common *armv7m = &cortex_m->armv7m;
952 enum cortex_m_soft_reset_config reset_config = cortex_m->soft_reset_config;
954 LOG_DEBUG("target->state: %s",
955 target_state_name(target));
957 enum reset_types jtag_reset_config = jtag_get_reset_config();
959 if (target_has_event_action(target, TARGET_EVENT_RESET_ASSERT)) {
960 /* allow scripts to override the reset event */
962 target_handle_event(target, TARGET_EVENT_RESET_ASSERT);
963 register_cache_invalidate(cortex_m->armv7m.arm.core_cache);
964 target->state = TARGET_RESET;
966 return ERROR_OK;
969 /* some cores support connecting while srst is asserted
970 * use that mode is it has been configured */
972 bool srst_asserted = false;
974 if (!target_was_examined(target)) {
975 if (jtag_reset_config & RESET_HAS_SRST) {
976 adapter_assert_reset();
977 if (target->reset_halt)
978 LOG_ERROR("Target not examined, will not halt after reset!");
979 return ERROR_OK;
980 } else {
981 LOG_ERROR("Target not examined, reset NOT asserted!");
982 return ERROR_FAIL;
986 if ((jtag_reset_config & RESET_HAS_SRST) &&
987 (jtag_reset_config & RESET_SRST_NO_GATING)) {
988 adapter_assert_reset();
989 srst_asserted = true;
992 /* Enable debug requests */
993 int retval;
994 retval = mem_ap_read_atomic_u32(armv7m->debug_ap, DCB_DHCSR, &cortex_m->dcb_dhcsr);
995 /* Store important errors instead of failing and proceed to reset assert */
997 if (retval != ERROR_OK || !(cortex_m->dcb_dhcsr & C_DEBUGEN))
998 retval = cortex_m_write_debug_halt_mask(target, 0, C_HALT | C_STEP | C_MASKINTS);
1000 /* If the processor is sleeping in a WFI or WFE instruction, the
1001 * C_HALT bit must be asserted to regain control */
1002 if (retval == ERROR_OK && (cortex_m->dcb_dhcsr & S_SLEEP))
1003 retval = cortex_m_write_debug_halt_mask(target, C_HALT, 0);
1005 mem_ap_write_u32(armv7m->debug_ap, DCB_DCRDR, 0);
1006 /* Ignore less important errors */
1008 if (!target->reset_halt) {
1009 /* Set/Clear C_MASKINTS in a separate operation */
1010 if (cortex_m->dcb_dhcsr & C_MASKINTS)
1011 cortex_m_write_debug_halt_mask(target, 0, C_MASKINTS);
1013 /* clear any debug flags before resuming */
1014 cortex_m_clear_halt(target);
1016 /* clear C_HALT in dhcsr reg */
1017 cortex_m_write_debug_halt_mask(target, 0, C_HALT);
1018 } else {
1019 /* Halt in debug on reset; endreset_event() restores DEMCR.
1021 * REVISIT catching BUSERR presumably helps to defend against
1022 * bad vector table entries. Should this include MMERR or
1023 * other flags too?
1025 int retval2;
1026 retval2 = mem_ap_write_atomic_u32(armv7m->debug_ap, DCB_DEMCR,
1027 TRCENA | VC_HARDERR | VC_BUSERR | VC_CORERESET);
1028 if (retval != ERROR_OK || retval2 != ERROR_OK)
1029 LOG_INFO("AP write error, reset will not halt");
1032 if (jtag_reset_config & RESET_HAS_SRST) {
1033 /* default to asserting srst */
1034 if (!srst_asserted)
1035 adapter_assert_reset();
1037 /* srst is asserted, ignore AP access errors */
1038 retval = ERROR_OK;
1039 } else {
1040 /* Use a standard Cortex-M3 software reset mechanism.
1041 * We default to using VECRESET as it is supported on all current cores.
1042 * This has the disadvantage of not resetting the peripherals, so a
1043 * reset-init event handler is needed to perform any peripheral resets.
1045 LOG_DEBUG("Using Cortex-M %s", (reset_config == CORTEX_M_RESET_SYSRESETREQ)
1046 ? "SYSRESETREQ" : "VECTRESET");
1048 if (reset_config == CORTEX_M_RESET_VECTRESET) {
1049 LOG_WARNING("Only resetting the Cortex-M core, use a reset-init event "
1050 "handler to reset any peripherals or configure hardware srst support.");
1053 int retval3;
1054 retval3 = mem_ap_write_atomic_u32(armv7m->debug_ap, NVIC_AIRCR,
1055 AIRCR_VECTKEY | ((reset_config == CORTEX_M_RESET_SYSRESETREQ)
1056 ? AIRCR_SYSRESETREQ : AIRCR_VECTRESET));
1057 if (retval3 != ERROR_OK)
1058 LOG_DEBUG("Ignoring AP write error right after reset");
1060 retval3 = dap_dp_init(armv7m->debug_ap->dap);
1061 if (retval3 != ERROR_OK)
1062 LOG_ERROR("DP initialisation failed");
1064 else {
1065 /* I do not know why this is necessary, but it
1066 * fixes strange effects (step/resume cause NMI
1067 * after reset) on LM3S6918 -- Michael Schwingen
1069 uint32_t tmp;
1070 mem_ap_read_atomic_u32(armv7m->debug_ap, NVIC_AIRCR, &tmp);
1074 target->state = TARGET_RESET;
1075 jtag_add_sleep(50000);
1077 register_cache_invalidate(cortex_m->armv7m.arm.core_cache);
1079 /* now return stored error code if any */
1080 if (retval != ERROR_OK)
1081 return retval;
1083 if (target->reset_halt) {
1084 retval = target_halt(target);
1085 if (retval != ERROR_OK)
1086 return retval;
1089 return ERROR_OK;
1092 static int cortex_m_deassert_reset(struct target *target)
1094 struct armv7m_common *armv7m = &target_to_cm(target)->armv7m;
1096 LOG_DEBUG("target->state: %s",
1097 target_state_name(target));
1099 /* deassert reset lines */
1100 adapter_deassert_reset();
1102 enum reset_types jtag_reset_config = jtag_get_reset_config();
1104 if ((jtag_reset_config & RESET_HAS_SRST) &&
1105 !(jtag_reset_config & RESET_SRST_NO_GATING) &&
1106 target_was_examined(target)) {
1107 int retval = dap_dp_init(armv7m->debug_ap->dap);
1108 if (retval != ERROR_OK) {
1109 LOG_ERROR("DP initialisation failed");
1110 return retval;
1114 return ERROR_OK;
1117 int cortex_m_set_breakpoint(struct target *target, struct breakpoint *breakpoint)
1119 int retval;
1120 int fp_num = 0;
1121 struct cortex_m_common *cortex_m = target_to_cm(target);
1122 struct cortex_m_fp_comparator *comparator_list = cortex_m->fp_comparator_list;
1124 if (breakpoint->set) {
1125 LOG_WARNING("breakpoint (BPID: %" PRIu32 ") already set", breakpoint->unique_id);
1126 return ERROR_OK;
1129 if (breakpoint->type == BKPT_HARD) {
1130 uint32_t fpcr_value;
1131 while (comparator_list[fp_num].used && (fp_num < cortex_m->fp_num_code))
1132 fp_num++;
1133 if (fp_num >= cortex_m->fp_num_code) {
1134 LOG_ERROR("Can not find free FPB Comparator!");
1135 return ERROR_FAIL;
1137 breakpoint->set = fp_num + 1;
1138 fpcr_value = breakpoint->address | 1;
1139 if (cortex_m->fp_rev == 0) {
1140 uint32_t hilo;
1141 hilo = (breakpoint->address & 0x2) ? FPCR_REPLACE_BKPT_HIGH : FPCR_REPLACE_BKPT_LOW;
1142 fpcr_value = (fpcr_value & 0x1FFFFFFC) | hilo | 1;
1143 } else if (cortex_m->fp_rev > 1) {
1144 LOG_ERROR("Unhandled Cortex-M Flash Patch Breakpoint architecture revision");
1145 return ERROR_FAIL;
1147 comparator_list[fp_num].used = 1;
1148 comparator_list[fp_num].fpcr_value = fpcr_value;
1149 target_write_u32(target, comparator_list[fp_num].fpcr_address,
1150 comparator_list[fp_num].fpcr_value);
1151 LOG_DEBUG("fpc_num %i fpcr_value 0x%" PRIx32 "",
1152 fp_num,
1153 comparator_list[fp_num].fpcr_value);
1154 if (!cortex_m->fpb_enabled) {
1155 LOG_DEBUG("FPB wasn't enabled, do it now");
1156 retval = cortex_m_enable_fpb(target);
1157 if (retval != ERROR_OK) {
1158 LOG_ERROR("Failed to enable the FPB");
1159 return retval;
1162 cortex_m->fpb_enabled = 1;
1164 } else if (breakpoint->type == BKPT_SOFT) {
1165 uint8_t code[4];
1167 /* NOTE: on ARMv6-M and ARMv7-M, BKPT(0xab) is used for
1168 * semihosting; don't use that. Otherwise the BKPT
1169 * parameter is arbitrary.
1171 buf_set_u32(code, 0, 32, ARMV5_T_BKPT(0x11));
1172 retval = target_read_memory(target,
1173 breakpoint->address & 0xFFFFFFFE,
1174 breakpoint->length, 1,
1175 breakpoint->orig_instr);
1176 if (retval != ERROR_OK)
1177 return retval;
1178 retval = target_write_memory(target,
1179 breakpoint->address & 0xFFFFFFFE,
1180 breakpoint->length, 1,
1181 code);
1182 if (retval != ERROR_OK)
1183 return retval;
1184 breakpoint->set = true;
1187 LOG_DEBUG("BPID: %" PRIu32 ", Type: %d, Address: " TARGET_ADDR_FMT " Length: %d (set=%d)",
1188 breakpoint->unique_id,
1189 (int)(breakpoint->type),
1190 breakpoint->address,
1191 breakpoint->length,
1192 breakpoint->set);
1194 return ERROR_OK;
1197 int cortex_m_unset_breakpoint(struct target *target, struct breakpoint *breakpoint)
1199 int retval;
1200 struct cortex_m_common *cortex_m = target_to_cm(target);
1201 struct cortex_m_fp_comparator *comparator_list = cortex_m->fp_comparator_list;
1203 if (!breakpoint->set) {
1204 LOG_WARNING("breakpoint not set");
1205 return ERROR_OK;
1208 LOG_DEBUG("BPID: %" PRIu32 ", Type: %d, Address: " TARGET_ADDR_FMT " Length: %d (set=%d)",
1209 breakpoint->unique_id,
1210 (int)(breakpoint->type),
1211 breakpoint->address,
1212 breakpoint->length,
1213 breakpoint->set);
1215 if (breakpoint->type == BKPT_HARD) {
1216 int fp_num = breakpoint->set - 1;
1217 if ((fp_num < 0) || (fp_num >= cortex_m->fp_num_code)) {
1218 LOG_DEBUG("Invalid FP Comparator number in breakpoint");
1219 return ERROR_OK;
1221 comparator_list[fp_num].used = 0;
1222 comparator_list[fp_num].fpcr_value = 0;
1223 target_write_u32(target, comparator_list[fp_num].fpcr_address,
1224 comparator_list[fp_num].fpcr_value);
1225 } else {
1226 /* restore original instruction (kept in target endianness) */
1227 if (breakpoint->length == 4) {
1228 retval = target_write_memory(target, breakpoint->address & 0xFFFFFFFE, 4, 1,
1229 breakpoint->orig_instr);
1230 if (retval != ERROR_OK)
1231 return retval;
1232 } else {
1233 retval = target_write_memory(target, breakpoint->address & 0xFFFFFFFE, 2, 1,
1234 breakpoint->orig_instr);
1235 if (retval != ERROR_OK)
1236 return retval;
1239 breakpoint->set = false;
1241 return ERROR_OK;
1244 int cortex_m_add_breakpoint(struct target *target, struct breakpoint *breakpoint)
1246 struct cortex_m_common *cortex_m = target_to_cm(target);
1248 if ((breakpoint->type == BKPT_HARD) && (cortex_m->fp_code_available < 1)) {
1249 LOG_INFO("no flash patch comparator unit available for hardware breakpoint");
1250 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1253 if (breakpoint->length == 3) {
1254 LOG_DEBUG("Using a two byte breakpoint for 32bit Thumb-2 request");
1255 breakpoint->length = 2;
1258 if ((breakpoint->length != 2)) {
1259 LOG_INFO("only breakpoints of two bytes length supported");
1260 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1263 if (breakpoint->type == BKPT_HARD)
1264 cortex_m->fp_code_available--;
1266 return cortex_m_set_breakpoint(target, breakpoint);
1269 int cortex_m_remove_breakpoint(struct target *target, struct breakpoint *breakpoint)
1271 struct cortex_m_common *cortex_m = target_to_cm(target);
1273 /* REVISIT why check? FBP can be updated with core running ... */
1274 if (target->state != TARGET_HALTED) {
1275 LOG_WARNING("target not halted");
1276 return ERROR_TARGET_NOT_HALTED;
1279 if (breakpoint->set)
1280 cortex_m_unset_breakpoint(target, breakpoint);
1282 if (breakpoint->type == BKPT_HARD)
1283 cortex_m->fp_code_available++;
1285 return ERROR_OK;
1288 int cortex_m_set_watchpoint(struct target *target, struct watchpoint *watchpoint)
1290 int dwt_num = 0;
1291 uint32_t mask, temp;
1292 struct cortex_m_common *cortex_m = target_to_cm(target);
1294 /* watchpoint params were validated earlier */
1295 mask = 0;
1296 temp = watchpoint->length;
1297 while (temp) {
1298 temp >>= 1;
1299 mask++;
1301 mask--;
1303 /* REVISIT Don't fully trust these "not used" records ... users
1304 * may set up breakpoints by hand, e.g. dual-address data value
1305 * watchpoint using comparator #1; comparator #0 matching cycle
1306 * count; send data trace info through ITM and TPIU; etc
1308 struct cortex_m_dwt_comparator *comparator;
1310 for (comparator = cortex_m->dwt_comparator_list;
1311 comparator->used && dwt_num < cortex_m->dwt_num_comp;
1312 comparator++, dwt_num++)
1313 continue;
1314 if (dwt_num >= cortex_m->dwt_num_comp) {
1315 LOG_ERROR("Can not find free DWT Comparator");
1316 return ERROR_FAIL;
1318 comparator->used = 1;
1319 watchpoint->set = dwt_num + 1;
1321 comparator->comp = watchpoint->address;
1322 target_write_u32(target, comparator->dwt_comparator_address + 0,
1323 comparator->comp);
1325 comparator->mask = mask;
1326 target_write_u32(target, comparator->dwt_comparator_address + 4,
1327 comparator->mask);
1329 switch (watchpoint->rw) {
1330 case WPT_READ:
1331 comparator->function = 5;
1332 break;
1333 case WPT_WRITE:
1334 comparator->function = 6;
1335 break;
1336 case WPT_ACCESS:
1337 comparator->function = 7;
1338 break;
1340 target_write_u32(target, comparator->dwt_comparator_address + 8,
1341 comparator->function);
1343 LOG_DEBUG("Watchpoint (ID %d) DWT%d 0x%08x 0x%x 0x%05x",
1344 watchpoint->unique_id, dwt_num,
1345 (unsigned) comparator->comp,
1346 (unsigned) comparator->mask,
1347 (unsigned) comparator->function);
1348 return ERROR_OK;
1351 int cortex_m_unset_watchpoint(struct target *target, struct watchpoint *watchpoint)
1353 struct cortex_m_common *cortex_m = target_to_cm(target);
1354 struct cortex_m_dwt_comparator *comparator;
1355 int dwt_num;
1357 if (!watchpoint->set) {
1358 LOG_WARNING("watchpoint (wpid: %d) not set",
1359 watchpoint->unique_id);
1360 return ERROR_OK;
1363 dwt_num = watchpoint->set - 1;
1365 LOG_DEBUG("Watchpoint (ID %d) DWT%d address: 0x%08x clear",
1366 watchpoint->unique_id, dwt_num,
1367 (unsigned) watchpoint->address);
1369 if ((dwt_num < 0) || (dwt_num >= cortex_m->dwt_num_comp)) {
1370 LOG_DEBUG("Invalid DWT Comparator number in watchpoint");
1371 return ERROR_OK;
1374 comparator = cortex_m->dwt_comparator_list + dwt_num;
1375 comparator->used = 0;
1376 comparator->function = 0;
1377 target_write_u32(target, comparator->dwt_comparator_address + 8,
1378 comparator->function);
1380 watchpoint->set = false;
1382 return ERROR_OK;
1385 int cortex_m_add_watchpoint(struct target *target, struct watchpoint *watchpoint)
1387 struct cortex_m_common *cortex_m = target_to_cm(target);
1389 if (cortex_m->dwt_comp_available < 1) {
1390 LOG_DEBUG("no comparators?");
1391 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1394 /* hardware doesn't support data value masking */
1395 if (watchpoint->mask != ~(uint32_t)0) {
1396 LOG_DEBUG("watchpoint value masks not supported");
1397 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1400 /* hardware allows address masks of up to 32K */
1401 unsigned mask;
1403 for (mask = 0; mask < 16; mask++) {
1404 if ((1u << mask) == watchpoint->length)
1405 break;
1407 if (mask == 16) {
1408 LOG_DEBUG("unsupported watchpoint length");
1409 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1411 if (watchpoint->address & ((1 << mask) - 1)) {
1412 LOG_DEBUG("watchpoint address is unaligned");
1413 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1416 /* Caller doesn't seem to be able to describe watching for data
1417 * values of zero; that flags "no value".
1419 * REVISIT This DWT may well be able to watch for specific data
1420 * values. Requires comparator #1 to set DATAVMATCH and match
1421 * the data, and another comparator (DATAVADDR0) matching addr.
1423 if (watchpoint->value) {
1424 LOG_DEBUG("data value watchpoint not YET supported");
1425 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1428 cortex_m->dwt_comp_available--;
1429 LOG_DEBUG("dwt_comp_available: %d", cortex_m->dwt_comp_available);
1431 return ERROR_OK;
1434 int cortex_m_remove_watchpoint(struct target *target, struct watchpoint *watchpoint)
1436 struct cortex_m_common *cortex_m = target_to_cm(target);
1438 /* REVISIT why check? DWT can be updated with core running ... */
1439 if (target->state != TARGET_HALTED) {
1440 LOG_WARNING("target not halted");
1441 return ERROR_TARGET_NOT_HALTED;
1444 if (watchpoint->set)
1445 cortex_m_unset_watchpoint(target, watchpoint);
1447 cortex_m->dwt_comp_available++;
1448 LOG_DEBUG("dwt_comp_available: %d", cortex_m->dwt_comp_available);
1450 return ERROR_OK;
1453 void cortex_m_enable_watchpoints(struct target *target)
1455 struct watchpoint *watchpoint = target->watchpoints;
1457 /* set any pending watchpoints */
1458 while (watchpoint) {
1459 if (!watchpoint->set)
1460 cortex_m_set_watchpoint(target, watchpoint);
1461 watchpoint = watchpoint->next;
1465 static int cortex_m_load_core_reg_u32(struct target *target,
1466 uint32_t num, uint32_t *value)
1468 int retval;
1470 /* NOTE: we "know" here that the register identifiers used
1471 * in the v7m header match the Cortex-M3 Debug Core Register
1472 * Selector values for R0..R15, xPSR, MSP, and PSP.
1474 switch (num) {
1475 case 0 ... 18:
1476 /* read a normal core register */
1477 retval = cortexm_dap_read_coreregister_u32(target, value, num);
1479 if (retval != ERROR_OK) {
1480 LOG_ERROR("JTAG failure %i", retval);
1481 return ERROR_JTAG_DEVICE_ERROR;
1483 LOG_DEBUG("load from core reg %i value 0x%" PRIx32 "", (int)num, *value);
1484 break;
1486 case ARMV7M_FPSCR:
1487 /* Floating-point Status and Registers */
1488 retval = target_write_u32(target, DCB_DCRSR, 0x21);
1489 if (retval != ERROR_OK)
1490 return retval;
1491 retval = target_read_u32(target, DCB_DCRDR, value);
1492 if (retval != ERROR_OK)
1493 return retval;
1494 LOG_DEBUG("load from FPSCR value 0x%" PRIx32, *value);
1495 break;
1497 case ARMV7M_S0 ... ARMV7M_S31:
1498 /* Floating-point Status and Registers */
1499 retval = target_write_u32(target, DCB_DCRSR, num - ARMV7M_S0 + 0x40);
1500 if (retval != ERROR_OK)
1501 return retval;
1502 retval = target_read_u32(target, DCB_DCRDR, value);
1503 if (retval != ERROR_OK)
1504 return retval;
1505 LOG_DEBUG("load from FPU reg S%d value 0x%" PRIx32,
1506 (int)(num - ARMV7M_S0), *value);
1507 break;
1509 case ARMV7M_PRIMASK:
1510 case ARMV7M_BASEPRI:
1511 case ARMV7M_FAULTMASK:
1512 case ARMV7M_CONTROL:
1513 /* Cortex-M3 packages these four registers as bitfields
1514 * in one Debug Core register. So say r0 and r2 docs;
1515 * it was removed from r1 docs, but still works.
1517 cortexm_dap_read_coreregister_u32(target, value, 20);
1519 switch (num) {
1520 case ARMV7M_PRIMASK:
1521 *value = buf_get_u32((uint8_t *)value, 0, 1);
1522 break;
1524 case ARMV7M_BASEPRI:
1525 *value = buf_get_u32((uint8_t *)value, 8, 8);
1526 break;
1528 case ARMV7M_FAULTMASK:
1529 *value = buf_get_u32((uint8_t *)value, 16, 1);
1530 break;
1532 case ARMV7M_CONTROL:
1533 *value = buf_get_u32((uint8_t *)value, 24, 2);
1534 break;
1537 LOG_DEBUG("load from special reg %i value 0x%" PRIx32 "", (int)num, *value);
1538 break;
1540 default:
1541 return ERROR_COMMAND_SYNTAX_ERROR;
1544 return ERROR_OK;
1547 static int cortex_m_store_core_reg_u32(struct target *target,
1548 uint32_t num, uint32_t value)
1550 int retval;
1551 uint32_t reg;
1552 struct armv7m_common *armv7m = target_to_armv7m(target);
1554 /* NOTE: we "know" here that the register identifiers used
1555 * in the v7m header match the Cortex-M3 Debug Core Register
1556 * Selector values for R0..R15, xPSR, MSP, and PSP.
1558 switch (num) {
1559 case 0 ... 18:
1560 retval = cortexm_dap_write_coreregister_u32(target, value, num);
1561 if (retval != ERROR_OK) {
1562 struct reg *r;
1564 LOG_ERROR("JTAG failure");
1565 r = armv7m->arm.core_cache->reg_list + num;
1566 r->dirty = r->valid;
1567 return ERROR_JTAG_DEVICE_ERROR;
1569 LOG_DEBUG("write core reg %i value 0x%" PRIx32 "", (int)num, value);
1570 break;
1572 case ARMV7M_FPSCR:
1573 /* Floating-point Status and Registers */
1574 retval = target_write_u32(target, DCB_DCRDR, value);
1575 if (retval != ERROR_OK)
1576 return retval;
1577 retval = target_write_u32(target, DCB_DCRSR, 0x21 | (1<<16));
1578 if (retval != ERROR_OK)
1579 return retval;
1580 LOG_DEBUG("write FPSCR value 0x%" PRIx32, value);
1581 break;
1583 case ARMV7M_S0 ... ARMV7M_S31:
1584 /* Floating-point Status and Registers */
1585 retval = target_write_u32(target, DCB_DCRDR, value);
1586 if (retval != ERROR_OK)
1587 return retval;
1588 retval = target_write_u32(target, DCB_DCRSR, (num - ARMV7M_S0 + 0x40) | (1<<16));
1589 if (retval != ERROR_OK)
1590 return retval;
1591 LOG_DEBUG("write FPU reg S%d value 0x%" PRIx32,
1592 (int)(num - ARMV7M_S0), value);
1593 break;
1595 case ARMV7M_PRIMASK:
1596 case ARMV7M_BASEPRI:
1597 case ARMV7M_FAULTMASK:
1598 case ARMV7M_CONTROL:
1599 /* Cortex-M3 packages these four registers as bitfields
1600 * in one Debug Core register. So say r0 and r2 docs;
1601 * it was removed from r1 docs, but still works.
1603 cortexm_dap_read_coreregister_u32(target, &reg, 20);
1605 switch (num) {
1606 case ARMV7M_PRIMASK:
1607 buf_set_u32((uint8_t *)&reg, 0, 1, value);
1608 break;
1610 case ARMV7M_BASEPRI:
1611 buf_set_u32((uint8_t *)&reg, 8, 8, value);
1612 break;
1614 case ARMV7M_FAULTMASK:
1615 buf_set_u32((uint8_t *)&reg, 16, 1, value);
1616 break;
1618 case ARMV7M_CONTROL:
1619 buf_set_u32((uint8_t *)&reg, 24, 2, value);
1620 break;
1623 cortexm_dap_write_coreregister_u32(target, reg, 20);
1625 LOG_DEBUG("write special reg %i value 0x%" PRIx32 " ", (int)num, value);
1626 break;
1628 default:
1629 return ERROR_COMMAND_SYNTAX_ERROR;
1632 return ERROR_OK;
1635 static int cortex_m_read_memory(struct target *target, target_addr_t address,
1636 uint32_t size, uint32_t count, uint8_t *buffer)
1638 struct armv7m_common *armv7m = target_to_armv7m(target);
1640 if (armv7m->arm.is_armv6m) {
1641 /* armv6m does not handle unaligned memory access */
1642 if (((size == 4) && (address & 0x3u)) || ((size == 2) && (address & 0x1u)))
1643 return ERROR_TARGET_UNALIGNED_ACCESS;
1646 return mem_ap_read_buf(armv7m->debug_ap, buffer, size, count, address);
1649 static int cortex_m_write_memory(struct target *target, target_addr_t address,
1650 uint32_t size, uint32_t count, const uint8_t *buffer)
1652 struct armv7m_common *armv7m = target_to_armv7m(target);
1654 if (armv7m->arm.is_armv6m) {
1655 /* armv6m does not handle unaligned memory access */
1656 if (((size == 4) && (address & 0x3u)) || ((size == 2) && (address & 0x1u)))
1657 return ERROR_TARGET_UNALIGNED_ACCESS;
1660 return mem_ap_write_buf(armv7m->debug_ap, buffer, size, count, address);
1663 static int cortex_m_init_target(struct command_context *cmd_ctx,
1664 struct target *target)
1666 armv7m_build_reg_cache(target);
1667 arm_semihosting_init(target);
1668 return ERROR_OK;
1671 void cortex_m_deinit_target(struct target *target)
1673 struct cortex_m_common *cortex_m = target_to_cm(target);
1675 free(cortex_m->fp_comparator_list);
1677 cortex_m_dwt_free(target);
1678 armv7m_free_reg_cache(target);
1680 free(target->private_config);
1681 free(cortex_m);
1684 int cortex_m_profiling(struct target *target, uint32_t *samples,
1685 uint32_t max_num_samples, uint32_t *num_samples, uint32_t seconds)
1687 struct timeval timeout, now;
1688 struct armv7m_common *armv7m = target_to_armv7m(target);
1689 uint32_t reg_value;
1690 bool use_pcsr = false;
1691 int retval = ERROR_OK;
1692 struct reg *reg;
1694 gettimeofday(&timeout, NULL);
1695 timeval_add_time(&timeout, seconds, 0);
1697 retval = target_read_u32(target, DWT_PCSR, &reg_value);
1698 if (retval != ERROR_OK) {
1699 LOG_ERROR("Error while reading PCSR");
1700 return retval;
1703 if (reg_value != 0) {
1704 use_pcsr = true;
1705 LOG_INFO("Starting Cortex-M profiling. Sampling DWT_PCSR as fast as we can...");
1706 } else {
1707 LOG_INFO("Starting profiling. Halting and resuming the"
1708 " target as often as we can...");
1709 reg = register_get_by_name(target->reg_cache, "pc", 1);
1712 /* Make sure the target is running */
1713 target_poll(target);
1714 if (target->state == TARGET_HALTED)
1715 retval = target_resume(target, 1, 0, 0, 0);
1717 if (retval != ERROR_OK) {
1718 LOG_ERROR("Error while resuming target");
1719 return retval;
1722 uint32_t sample_count = 0;
1724 for (;;) {
1725 if (use_pcsr) {
1726 if (armv7m && armv7m->debug_ap) {
1727 uint32_t read_count = max_num_samples - sample_count;
1728 if (read_count > 1024)
1729 read_count = 1024;
1731 retval = mem_ap_read_buf_noincr(armv7m->debug_ap,
1732 (void *)&samples[sample_count],
1733 4, read_count, DWT_PCSR);
1734 sample_count += read_count;
1735 } else {
1736 target_read_u32(target, DWT_PCSR, &samples[sample_count++]);
1738 } else {
1739 target_poll(target);
1740 if (target->state == TARGET_HALTED) {
1741 reg_value = buf_get_u32(reg->value, 0, 32);
1742 /* current pc, addr = 0, do not handle breakpoints, not debugging */
1743 retval = target_resume(target, 1, 0, 0, 0);
1744 samples[sample_count++] = reg_value;
1745 target_poll(target);
1746 alive_sleep(10); /* sleep 10ms, i.e. <100 samples/second. */
1747 } else if (target->state == TARGET_RUNNING) {
1748 /* We want to quickly sample the PC. */
1749 retval = target_halt(target);
1750 } else {
1751 LOG_INFO("Target not halted or running");
1752 retval = ERROR_OK;
1753 break;
1757 if (retval != ERROR_OK) {
1758 LOG_ERROR("Error while reading %s", use_pcsr ? "PCSR" : "target pc");
1759 return retval;
1763 gettimeofday(&now, NULL);
1764 if (sample_count >= max_num_samples || timeval_compare(&now, &timeout) > 0) {
1765 LOG_INFO("Profiling completed. %" PRIu32 " samples.", sample_count);
1766 break;
1770 *num_samples = sample_count;
1771 return retval;
1775 /* REVISIT cache valid/dirty bits are unmaintained. We could set "valid"
1776 * on r/w if the core is not running, and clear on resume or reset ... or
1777 * at least, in a post_restore_context() method.
1780 struct dwt_reg_state {
1781 struct target *target;
1782 uint32_t addr;
1783 uint8_t value[4]; /* scratch/cache */
1786 static int cortex_m_dwt_get_reg(struct reg *reg)
1788 struct dwt_reg_state *state = reg->arch_info;
1790 uint32_t tmp;
1791 int retval = target_read_u32(state->target, state->addr, &tmp);
1792 if (retval != ERROR_OK)
1793 return retval;
1795 buf_set_u32(state->value, 0, 32, tmp);
1796 return ERROR_OK;
1799 static int cortex_m_dwt_set_reg(struct reg *reg, uint8_t *buf)
1801 struct dwt_reg_state *state = reg->arch_info;
1803 return target_write_u32(state->target, state->addr,
1804 buf_get_u32(buf, 0, reg->size));
1807 struct dwt_reg {
1808 uint32_t addr;
1809 char *name;
1810 unsigned size;
1813 static struct dwt_reg dwt_base_regs[] = {
1814 { DWT_CTRL, "dwt_ctrl", 32, },
1815 /* NOTE that Erratum 532314 (fixed r2p0) affects CYCCNT: it wrongly
1816 * increments while the core is asleep.
1818 { DWT_CYCCNT, "dwt_cyccnt", 32, },
1819 /* plus some 8 bit counters, useful for profiling with TPIU */
1822 static struct dwt_reg dwt_comp[] = {
1823 #define DWT_COMPARATOR(i) \
1824 { DWT_COMP0 + 0x10 * (i), "dwt_" #i "_comp", 32, }, \
1825 { DWT_MASK0 + 0x10 * (i), "dwt_" #i "_mask", 4, }, \
1826 { DWT_FUNCTION0 + 0x10 * (i), "dwt_" #i "_function", 32, }
1827 DWT_COMPARATOR(0),
1828 DWT_COMPARATOR(1),
1829 DWT_COMPARATOR(2),
1830 DWT_COMPARATOR(3),
1831 DWT_COMPARATOR(4),
1832 DWT_COMPARATOR(5),
1833 DWT_COMPARATOR(6),
1834 DWT_COMPARATOR(7),
1835 DWT_COMPARATOR(8),
1836 DWT_COMPARATOR(9),
1837 DWT_COMPARATOR(10),
1838 DWT_COMPARATOR(11),
1839 DWT_COMPARATOR(12),
1840 DWT_COMPARATOR(13),
1841 DWT_COMPARATOR(14),
1842 DWT_COMPARATOR(15),
1843 #undef DWT_COMPARATOR
1846 static const struct reg_arch_type dwt_reg_type = {
1847 .get = cortex_m_dwt_get_reg,
1848 .set = cortex_m_dwt_set_reg,
1851 static void cortex_m_dwt_addreg(struct target *t, struct reg *r, struct dwt_reg *d)
1853 struct dwt_reg_state *state;
1855 state = calloc(1, sizeof *state);
1856 if (!state)
1857 return;
1858 state->addr = d->addr;
1859 state->target = t;
1861 r->name = d->name;
1862 r->size = d->size;
1863 r->value = state->value;
1864 r->arch_info = state;
1865 r->type = &dwt_reg_type;
1868 void cortex_m_dwt_setup(struct cortex_m_common *cm, struct target *target)
1870 uint32_t dwtcr;
1871 struct reg_cache *cache;
1872 struct cortex_m_dwt_comparator *comparator;
1873 int reg, i;
1875 target_read_u32(target, DWT_CTRL, &dwtcr);
1876 LOG_DEBUG("DWT_CTRL: 0x%" PRIx32, dwtcr);
1877 if (!dwtcr) {
1878 LOG_DEBUG("no DWT");
1879 return;
1882 cm->dwt_num_comp = (dwtcr >> 28) & 0xF;
1883 cm->dwt_comp_available = cm->dwt_num_comp;
1884 cm->dwt_comparator_list = calloc(cm->dwt_num_comp,
1885 sizeof(struct cortex_m_dwt_comparator));
1886 if (!cm->dwt_comparator_list) {
1887 fail0:
1888 cm->dwt_num_comp = 0;
1889 LOG_ERROR("out of mem");
1890 return;
1893 cache = calloc(1, sizeof *cache);
1894 if (!cache) {
1895 fail1:
1896 free(cm->dwt_comparator_list);
1897 goto fail0;
1899 cache->name = "Cortex-M DWT registers";
1900 cache->num_regs = 2 + cm->dwt_num_comp * 3;
1901 cache->reg_list = calloc(cache->num_regs, sizeof *cache->reg_list);
1902 if (!cache->reg_list) {
1903 free(cache);
1904 goto fail1;
1907 for (reg = 0; reg < 2; reg++)
1908 cortex_m_dwt_addreg(target, cache->reg_list + reg,
1909 dwt_base_regs + reg);
1911 comparator = cm->dwt_comparator_list;
1912 for (i = 0; i < cm->dwt_num_comp; i++, comparator++) {
1913 int j;
1915 comparator->dwt_comparator_address = DWT_COMP0 + 0x10 * i;
1916 for (j = 0; j < 3; j++, reg++)
1917 cortex_m_dwt_addreg(target, cache->reg_list + reg,
1918 dwt_comp + 3 * i + j);
1920 /* make sure we clear any watchpoints enabled on the target */
1921 target_write_u32(target, comparator->dwt_comparator_address + 8, 0);
1924 *register_get_last_cache_p(&target->reg_cache) = cache;
1925 cm->dwt_cache = cache;
1927 LOG_DEBUG("DWT dwtcr 0x%" PRIx32 ", comp %d, watch%s",
1928 dwtcr, cm->dwt_num_comp,
1929 (dwtcr & (0xf << 24)) ? " only" : "/trigger");
1931 /* REVISIT: if num_comp > 1, check whether comparator #1 can
1932 * implement single-address data value watchpoints ... so we
1933 * won't need to check it later, when asked to set one up.
1937 static void cortex_m_dwt_free(struct target *target)
1939 struct cortex_m_common *cm = target_to_cm(target);
1940 struct reg_cache *cache = cm->dwt_cache;
1942 free(cm->dwt_comparator_list);
1943 cm->dwt_comparator_list = NULL;
1944 cm->dwt_num_comp = 0;
1946 if (cache) {
1947 register_unlink_cache(&target->reg_cache, cache);
1949 if (cache->reg_list) {
1950 for (size_t i = 0; i < cache->num_regs; i++)
1951 free(cache->reg_list[i].arch_info);
1952 free(cache->reg_list);
1954 free(cache);
1956 cm->dwt_cache = NULL;
1959 #define MVFR0 0xe000ef40
1960 #define MVFR1 0xe000ef44
1962 #define MVFR0_DEFAULT_M4 0x10110021
1963 #define MVFR1_DEFAULT_M4 0x11000011
1965 #define MVFR0_DEFAULT_M7_SP 0x10110021
1966 #define MVFR0_DEFAULT_M7_DP 0x10110221
1967 #define MVFR1_DEFAULT_M7_SP 0x11000011
1968 #define MVFR1_DEFAULT_M7_DP 0x12000011
1970 int cortex_m_examine(struct target *target)
1972 int retval;
1973 uint32_t cpuid, fpcr, mvfr0, mvfr1;
1974 int i;
1975 struct cortex_m_common *cortex_m = target_to_cm(target);
1976 struct adiv5_dap *swjdp = cortex_m->armv7m.arm.dap;
1977 struct armv7m_common *armv7m = target_to_armv7m(target);
1979 /* stlink shares the examine handler but does not support
1980 * all its calls */
1981 if (!armv7m->stlink) {
1982 if (cortex_m->apsel < 0) {
1983 /* Search for the MEM-AP */
1984 retval = dap_find_ap(swjdp, AP_TYPE_AHB_AP, &armv7m->debug_ap);
1985 if (retval != ERROR_OK) {
1986 LOG_ERROR("Could not find MEM-AP to control the core");
1987 return retval;
1989 } else {
1990 armv7m->debug_ap = dap_ap(swjdp, cortex_m->apsel);
1993 /* Leave (only) generic DAP stuff for debugport_init(); */
1994 armv7m->debug_ap->memaccess_tck = 8;
1996 retval = mem_ap_init(armv7m->debug_ap);
1997 if (retval != ERROR_OK)
1998 return retval;
2001 if (!target_was_examined(target)) {
2002 target_set_examined(target);
2004 /* Read from Device Identification Registers */
2005 retval = target_read_u32(target, CPUID, &cpuid);
2006 if (retval != ERROR_OK)
2007 return retval;
2009 /* Get CPU Type */
2010 i = (cpuid >> 4) & 0xf;
2012 LOG_DEBUG("Cortex-M%d r%" PRId8 "p%" PRId8 " processor detected",
2013 i, (uint8_t)((cpuid >> 20) & 0xf), (uint8_t)((cpuid >> 0) & 0xf));
2014 if (i == 7) {
2015 uint8_t rev, patch;
2016 rev = (cpuid >> 20) & 0xf;
2017 patch = (cpuid >> 0) & 0xf;
2018 if ((rev == 0) && (patch < 2))
2019 LOG_WARNING("Silicon bug: single stepping will enter pending exception handler!");
2021 LOG_DEBUG("cpuid: 0x%8.8" PRIx32 "", cpuid);
2023 if (i == 4) {
2024 target_read_u32(target, MVFR0, &mvfr0);
2025 target_read_u32(target, MVFR1, &mvfr1);
2027 /* test for floating point feature on Cortex-M4 */
2028 if ((mvfr0 == MVFR0_DEFAULT_M4) && (mvfr1 == MVFR1_DEFAULT_M4)) {
2029 LOG_DEBUG("Cortex-M%d floating point feature FPv4_SP found", i);
2030 armv7m->fp_feature = FPv4_SP;
2032 } else if (i == 7) {
2033 target_read_u32(target, MVFR0, &mvfr0);
2034 target_read_u32(target, MVFR1, &mvfr1);
2036 /* test for floating point features on Cortex-M7 */
2037 if ((mvfr0 == MVFR0_DEFAULT_M7_SP) && (mvfr1 == MVFR1_DEFAULT_M7_SP)) {
2038 LOG_DEBUG("Cortex-M%d floating point feature FPv5_SP found", i);
2039 armv7m->fp_feature = FPv5_SP;
2040 } else if ((mvfr0 == MVFR0_DEFAULT_M7_DP) && (mvfr1 == MVFR1_DEFAULT_M7_DP)) {
2041 LOG_DEBUG("Cortex-M%d floating point feature FPv5_DP found", i);
2042 armv7m->fp_feature = FPv5_DP;
2044 } else if (i == 0) {
2045 /* Cortex-M0 does not support unaligned memory access */
2046 armv7m->arm.is_armv6m = true;
2049 if (armv7m->fp_feature == FP_NONE &&
2050 armv7m->arm.core_cache->num_regs > ARMV7M_NUM_CORE_REGS_NOFP) {
2051 /* free unavailable FPU registers */
2052 size_t idx;
2054 for (idx = ARMV7M_NUM_CORE_REGS_NOFP;
2055 idx < armv7m->arm.core_cache->num_regs;
2056 idx++) {
2057 free(armv7m->arm.core_cache->reg_list[idx].value);
2058 free(armv7m->arm.core_cache->reg_list[idx].feature);
2059 free(armv7m->arm.core_cache->reg_list[idx].reg_data_type);
2061 armv7m->arm.core_cache->num_regs = ARMV7M_NUM_CORE_REGS_NOFP;
2064 if (!armv7m->stlink) {
2065 if (i == 3 || i == 4)
2066 /* Cortex-M3/M4 have 4096 bytes autoincrement range,
2067 * s. ARM IHI 0031C: MEM-AP 7.2.2 */
2068 armv7m->debug_ap->tar_autoincr_block = (1 << 12);
2069 else if (i == 7)
2070 /* Cortex-M7 has only 1024 bytes autoincrement range */
2071 armv7m->debug_ap->tar_autoincr_block = (1 << 10);
2074 /* Configure trace modules */
2075 retval = target_write_u32(target, DCB_DEMCR, TRCENA | armv7m->demcr);
2076 if (retval != ERROR_OK)
2077 return retval;
2079 if (armv7m->trace_config.config_type != DISABLED) {
2080 armv7m_trace_tpiu_config(target);
2081 armv7m_trace_itm_config(target);
2084 /* NOTE: FPB and DWT are both optional. */
2086 /* Setup FPB */
2087 target_read_u32(target, FP_CTRL, &fpcr);
2088 /* bits [14:12] and [7:4] */
2089 cortex_m->fp_num_code = ((fpcr >> 8) & 0x70) | ((fpcr >> 4) & 0xF);
2090 cortex_m->fp_num_lit = (fpcr >> 8) & 0xF;
2091 cortex_m->fp_code_available = cortex_m->fp_num_code;
2092 /* Detect flash patch revision, see RM DDI 0403E.b page C1-817.
2093 Revision is zero base, fp_rev == 1 means Rev.2 ! */
2094 cortex_m->fp_rev = (fpcr >> 28) & 0xf;
2095 free(cortex_m->fp_comparator_list);
2096 cortex_m->fp_comparator_list = calloc(
2097 cortex_m->fp_num_code + cortex_m->fp_num_lit,
2098 sizeof(struct cortex_m_fp_comparator));
2099 cortex_m->fpb_enabled = fpcr & 1;
2100 for (i = 0; i < cortex_m->fp_num_code + cortex_m->fp_num_lit; i++) {
2101 cortex_m->fp_comparator_list[i].type =
2102 (i < cortex_m->fp_num_code) ? FPCR_CODE : FPCR_LITERAL;
2103 cortex_m->fp_comparator_list[i].fpcr_address = FP_COMP0 + 4 * i;
2105 /* make sure we clear any breakpoints enabled on the target */
2106 target_write_u32(target, cortex_m->fp_comparator_list[i].fpcr_address, 0);
2108 LOG_DEBUG("FPB fpcr 0x%" PRIx32 ", numcode %i, numlit %i",
2109 fpcr,
2110 cortex_m->fp_num_code,
2111 cortex_m->fp_num_lit);
2113 /* Setup DWT */
2114 cortex_m_dwt_free(target);
2115 cortex_m_dwt_setup(cortex_m, target);
2117 /* These hardware breakpoints only work for code in flash! */
2118 LOG_INFO("%s: hardware has %d breakpoints, %d watchpoints",
2119 target_name(target),
2120 cortex_m->fp_num_code,
2121 cortex_m->dwt_num_comp);
2124 return ERROR_OK;
2127 static int cortex_m_dcc_read(struct target *target, uint8_t *value, uint8_t *ctrl)
2129 struct armv7m_common *armv7m = target_to_armv7m(target);
2130 uint16_t dcrdr;
2131 uint8_t buf[2];
2132 int retval;
2134 retval = mem_ap_read_buf_noincr(armv7m->debug_ap, buf, 2, 1, DCB_DCRDR);
2135 if (retval != ERROR_OK)
2136 return retval;
2138 dcrdr = target_buffer_get_u16(target, buf);
2139 *ctrl = (uint8_t)dcrdr;
2140 *value = (uint8_t)(dcrdr >> 8);
2142 LOG_DEBUG("data 0x%x ctrl 0x%x", *value, *ctrl);
2144 /* write ack back to software dcc register
2145 * signify we have read data */
2146 if (dcrdr & (1 << 0)) {
2147 target_buffer_set_u16(target, buf, 0);
2148 retval = mem_ap_write_buf_noincr(armv7m->debug_ap, buf, 2, 1, DCB_DCRDR);
2149 if (retval != ERROR_OK)
2150 return retval;
2153 return ERROR_OK;
2156 static int cortex_m_target_request_data(struct target *target,
2157 uint32_t size, uint8_t *buffer)
2159 uint8_t data;
2160 uint8_t ctrl;
2161 uint32_t i;
2163 for (i = 0; i < (size * 4); i++) {
2164 int retval = cortex_m_dcc_read(target, &data, &ctrl);
2165 if (retval != ERROR_OK)
2166 return retval;
2167 buffer[i] = data;
2170 return ERROR_OK;
2173 static int cortex_m_handle_target_request(void *priv)
2175 struct target *target = priv;
2176 if (!target_was_examined(target))
2177 return ERROR_OK;
2179 if (!target->dbg_msg_enabled)
2180 return ERROR_OK;
2182 if (target->state == TARGET_RUNNING) {
2183 uint8_t data;
2184 uint8_t ctrl;
2185 int retval;
2187 retval = cortex_m_dcc_read(target, &data, &ctrl);
2188 if (retval != ERROR_OK)
2189 return retval;
2191 /* check if we have data */
2192 if (ctrl & (1 << 0)) {
2193 uint32_t request;
2195 /* we assume target is quick enough */
2196 request = data;
2197 for (int i = 1; i <= 3; i++) {
2198 retval = cortex_m_dcc_read(target, &data, &ctrl);
2199 if (retval != ERROR_OK)
2200 return retval;
2201 request |= ((uint32_t)data << (i * 8));
2203 target_request(target, request);
2207 return ERROR_OK;
2210 static int cortex_m_init_arch_info(struct target *target,
2211 struct cortex_m_common *cortex_m, struct adiv5_dap *dap)
2213 struct armv7m_common *armv7m = &cortex_m->armv7m;
2215 armv7m_init_arch_info(target, armv7m);
2217 /* default reset mode is to use srst if fitted
2218 * if not it will use CORTEX_M3_RESET_VECTRESET */
2219 cortex_m->soft_reset_config = CORTEX_M_RESET_VECTRESET;
2221 armv7m->arm.dap = dap;
2223 /* register arch-specific functions */
2224 armv7m->examine_debug_reason = cortex_m_examine_debug_reason;
2226 armv7m->post_debug_entry = NULL;
2228 armv7m->pre_restore_context = NULL;
2230 armv7m->load_core_reg_u32 = cortex_m_load_core_reg_u32;
2231 armv7m->store_core_reg_u32 = cortex_m_store_core_reg_u32;
2233 target_register_timer_callback(cortex_m_handle_target_request, 1, 1, target);
2235 return ERROR_OK;
2238 static int cortex_m_target_create(struct target *target, Jim_Interp *interp)
2240 struct cortex_m_common *cortex_m = calloc(1, sizeof(struct cortex_m_common));
2241 cortex_m->common_magic = CORTEX_M_COMMON_MAGIC;
2242 struct adiv5_private_config *pc;
2244 pc = (struct adiv5_private_config *)target->private_config;
2245 if (adiv5_verify_config(pc) != ERROR_OK)
2246 return ERROR_FAIL;
2248 cortex_m->apsel = pc->ap_num;
2250 cortex_m_init_arch_info(target, cortex_m, pc->dap);
2252 return ERROR_OK;
2255 /*--------------------------------------------------------------------------*/
2257 static int cortex_m_verify_pointer(struct command_context *cmd_ctx,
2258 struct cortex_m_common *cm)
2260 if (cm->common_magic != CORTEX_M_COMMON_MAGIC) {
2261 command_print(cmd_ctx, "target is not a Cortex-M");
2262 return ERROR_TARGET_INVALID;
2264 return ERROR_OK;
2268 * Only stuff below this line should need to verify that its target
2269 * is a Cortex-M3. Everything else should have indirected through the
2270 * cortexm3_target structure, which is only used with CM3 targets.
2273 static const struct {
2274 char name[10];
2275 unsigned mask;
2276 } vec_ids[] = {
2277 { "hard_err", VC_HARDERR, },
2278 { "int_err", VC_INTERR, },
2279 { "bus_err", VC_BUSERR, },
2280 { "state_err", VC_STATERR, },
2281 { "chk_err", VC_CHKERR, },
2282 { "nocp_err", VC_NOCPERR, },
2283 { "mm_err", VC_MMERR, },
2284 { "reset", VC_CORERESET, },
2287 COMMAND_HANDLER(handle_cortex_m_vector_catch_command)
2289 struct target *target = get_current_target(CMD_CTX);
2290 struct cortex_m_common *cortex_m = target_to_cm(target);
2291 struct armv7m_common *armv7m = &cortex_m->armv7m;
2292 uint32_t demcr = 0;
2293 int retval;
2295 retval = cortex_m_verify_pointer(CMD_CTX, cortex_m);
2296 if (retval != ERROR_OK)
2297 return retval;
2299 retval = mem_ap_read_atomic_u32(armv7m->debug_ap, DCB_DEMCR, &demcr);
2300 if (retval != ERROR_OK)
2301 return retval;
2303 if (CMD_ARGC > 0) {
2304 unsigned catch = 0;
2306 if (CMD_ARGC == 1) {
2307 if (strcmp(CMD_ARGV[0], "all") == 0) {
2308 catch = VC_HARDERR | VC_INTERR | VC_BUSERR
2309 | VC_STATERR | VC_CHKERR | VC_NOCPERR
2310 | VC_MMERR | VC_CORERESET;
2311 goto write;
2312 } else if (strcmp(CMD_ARGV[0], "none") == 0)
2313 goto write;
2315 while (CMD_ARGC-- > 0) {
2316 unsigned i;
2317 for (i = 0; i < ARRAY_SIZE(vec_ids); i++) {
2318 if (strcmp(CMD_ARGV[CMD_ARGC], vec_ids[i].name) != 0)
2319 continue;
2320 catch |= vec_ids[i].mask;
2321 break;
2323 if (i == ARRAY_SIZE(vec_ids)) {
2324 LOG_ERROR("No CM3 vector '%s'", CMD_ARGV[CMD_ARGC]);
2325 return ERROR_COMMAND_SYNTAX_ERROR;
2328 write:
2329 /* For now, armv7m->demcr only stores vector catch flags. */
2330 armv7m->demcr = catch;
2332 demcr &= ~0xffff;
2333 demcr |= catch;
2335 /* write, but don't assume it stuck (why not??) */
2336 retval = mem_ap_write_u32(armv7m->debug_ap, DCB_DEMCR, demcr);
2337 if (retval != ERROR_OK)
2338 return retval;
2339 retval = mem_ap_read_atomic_u32(armv7m->debug_ap, DCB_DEMCR, &demcr);
2340 if (retval != ERROR_OK)
2341 return retval;
2343 /* FIXME be sure to clear DEMCR on clean server shutdown.
2344 * Otherwise the vector catch hardware could fire when there's
2345 * no debugger hooked up, causing much confusion...
2349 for (unsigned i = 0; i < ARRAY_SIZE(vec_ids); i++) {
2350 command_print(CMD_CTX, "%9s: %s", vec_ids[i].name,
2351 (demcr & vec_ids[i].mask) ? "catch" : "ignore");
2354 return ERROR_OK;
2357 COMMAND_HANDLER(handle_cortex_m_mask_interrupts_command)
2359 struct target *target = get_current_target(CMD_CTX);
2360 struct cortex_m_common *cortex_m = target_to_cm(target);
2361 int retval;
2363 static const Jim_Nvp nvp_maskisr_modes[] = {
2364 { .name = "auto", .value = CORTEX_M_ISRMASK_AUTO },
2365 { .name = "off", .value = CORTEX_M_ISRMASK_OFF },
2366 { .name = "on", .value = CORTEX_M_ISRMASK_ON },
2367 { .name = NULL, .value = -1 },
2369 const Jim_Nvp *n;
2372 retval = cortex_m_verify_pointer(CMD_CTX, cortex_m);
2373 if (retval != ERROR_OK)
2374 return retval;
2376 if (target->state != TARGET_HALTED) {
2377 command_print(CMD_CTX, "target must be stopped for \"%s\" command", CMD_NAME);
2378 return ERROR_OK;
2381 if (CMD_ARGC > 0) {
2382 n = Jim_Nvp_name2value_simple(nvp_maskisr_modes, CMD_ARGV[0]);
2383 if (n->name == NULL)
2384 return ERROR_COMMAND_SYNTAX_ERROR;
2385 cortex_m->isrmasking_mode = n->value;
2388 if (cortex_m->isrmasking_mode == CORTEX_M_ISRMASK_ON)
2389 cortex_m_write_debug_halt_mask(target, C_HALT | C_MASKINTS, 0);
2390 else
2391 cortex_m_write_debug_halt_mask(target, C_HALT, C_MASKINTS);
2394 n = Jim_Nvp_value2name_simple(nvp_maskisr_modes, cortex_m->isrmasking_mode);
2395 command_print(CMD_CTX, "cortex_m interrupt mask %s", n->name);
2397 return ERROR_OK;
2400 COMMAND_HANDLER(handle_cortex_m_reset_config_command)
2402 struct target *target = get_current_target(CMD_CTX);
2403 struct cortex_m_common *cortex_m = target_to_cm(target);
2404 int retval;
2405 char *reset_config;
2407 retval = cortex_m_verify_pointer(CMD_CTX, cortex_m);
2408 if (retval != ERROR_OK)
2409 return retval;
2411 if (CMD_ARGC > 0) {
2412 if (strcmp(*CMD_ARGV, "sysresetreq") == 0)
2413 cortex_m->soft_reset_config = CORTEX_M_RESET_SYSRESETREQ;
2414 else if (strcmp(*CMD_ARGV, "vectreset") == 0)
2415 cortex_m->soft_reset_config = CORTEX_M_RESET_VECTRESET;
2418 switch (cortex_m->soft_reset_config) {
2419 case CORTEX_M_RESET_SYSRESETREQ:
2420 reset_config = "sysresetreq";
2421 break;
2423 case CORTEX_M_RESET_VECTRESET:
2424 reset_config = "vectreset";
2425 break;
2427 default:
2428 reset_config = "unknown";
2429 break;
2432 command_print(CMD_CTX, "cortex_m reset_config %s", reset_config);
2434 return ERROR_OK;
2437 static const struct command_registration cortex_m_exec_command_handlers[] = {
2439 .name = "maskisr",
2440 .handler = handle_cortex_m_mask_interrupts_command,
2441 .mode = COMMAND_EXEC,
2442 .help = "mask cortex_m interrupts",
2443 .usage = "['auto'|'on'|'off']",
2446 .name = "vector_catch",
2447 .handler = handle_cortex_m_vector_catch_command,
2448 .mode = COMMAND_EXEC,
2449 .help = "configure hardware vectors to trigger debug entry",
2450 .usage = "['all'|'none'|('bus_err'|'chk_err'|...)*]",
2453 .name = "reset_config",
2454 .handler = handle_cortex_m_reset_config_command,
2455 .mode = COMMAND_ANY,
2456 .help = "configure software reset handling",
2457 .usage = "['srst'|'sysresetreq'|'vectreset']",
2459 COMMAND_REGISTRATION_DONE
2461 static const struct command_registration cortex_m_command_handlers[] = {
2463 .chain = armv7m_command_handlers,
2466 .chain = armv7m_trace_command_handlers,
2469 .name = "cortex_m",
2470 .mode = COMMAND_EXEC,
2471 .help = "Cortex-M command group",
2472 .usage = "",
2473 .chain = cortex_m_exec_command_handlers,
2475 COMMAND_REGISTRATION_DONE
2478 struct target_type cortexm_target = {
2479 .name = "cortex_m",
2480 .deprecated_name = "cortex_m3",
2482 .poll = cortex_m_poll,
2483 .arch_state = armv7m_arch_state,
2485 .target_request_data = cortex_m_target_request_data,
2487 .halt = cortex_m_halt,
2488 .resume = cortex_m_resume,
2489 .step = cortex_m_step,
2491 .assert_reset = cortex_m_assert_reset,
2492 .deassert_reset = cortex_m_deassert_reset,
2493 .soft_reset_halt = cortex_m_soft_reset_halt,
2495 .get_gdb_reg_list = armv7m_get_gdb_reg_list,
2497 .read_memory = cortex_m_read_memory,
2498 .write_memory = cortex_m_write_memory,
2499 .checksum_memory = armv7m_checksum_memory,
2500 .blank_check_memory = armv7m_blank_check_memory,
2502 .run_algorithm = armv7m_run_algorithm,
2503 .start_algorithm = armv7m_start_algorithm,
2504 .wait_algorithm = armv7m_wait_algorithm,
2506 .add_breakpoint = cortex_m_add_breakpoint,
2507 .remove_breakpoint = cortex_m_remove_breakpoint,
2508 .add_watchpoint = cortex_m_add_watchpoint,
2509 .remove_watchpoint = cortex_m_remove_watchpoint,
2511 .commands = cortex_m_command_handlers,
2512 .target_create = cortex_m_target_create,
2513 .target_jim_configure = adiv5_jim_configure,
2514 .init_target = cortex_m_init_target,
2515 .examine = cortex_m_examine,
2516 .deinit_target = cortex_m_deinit_target,
2518 .profiling = cortex_m_profiling,