armv7m: remove gdb register hacks
[openocd.git] / src / target / cortex_m.c
blob5892a0e88ac4ee647daed2e6d05ade40e0cc321a
1 /***************************************************************************
2 * Copyright (C) 2005 by Dominic Rath *
3 * Dominic.Rath@gmx.de *
4 * *
5 * Copyright (C) 2006 by Magnus Lundin *
6 * lundin@mlu.mine.nu *
7 * *
8 * Copyright (C) 2008 by Spencer Oliver *
9 * spen@spen-soft.co.uk *
10 * *
11 * This program is free software; you can redistribute it and/or modify *
12 * it under the terms of the GNU General Public License as published by *
13 * the Free Software Foundation; either version 2 of the License, or *
14 * (at your option) any later version. *
15 * *
16 * This program is distributed in the hope that it will be useful, *
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
19 * GNU General Public License for more details. *
20 * *
21 * You should have received a copy of the GNU General Public License *
22 * along with this program; if not, write to the *
23 * Free Software Foundation, Inc., *
24 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. *
25 * *
26 * *
27 * Cortex-M3(tm) TRM, ARM DDI 0337E (r1p1) and 0337G (r2p0) *
28 * *
29 ***************************************************************************/
30 #ifdef HAVE_CONFIG_H
31 #include "config.h"
32 #endif
34 #include "jtag/interface.h"
35 #include "breakpoints.h"
36 #include "cortex_m.h"
37 #include "target_request.h"
38 #include "target_type.h"
39 #include "arm_disassembler.h"
40 #include "register.h"
41 #include "arm_opcodes.h"
42 #include "arm_semihosting.h"
43 #include <helper/time_support.h>
45 /* NOTE: most of this should work fine for the Cortex-M1 and
46 * Cortex-M0 cores too, although they're ARMv6-M not ARMv7-M.
47 * Some differences: M0/M1 doesn't have FBP remapping or the
48 * DWT tracing/profiling support. (So the cycle counter will
49 * not be usable; the other stuff isn't currently used here.)
51 * Although there are some workarounds for errata seen only in r0p0
52 * silicon, such old parts are hard to find and thus not much tested
53 * any longer.
56 /**
57 * Returns the type of a break point required by address location
59 #define BKPT_TYPE_BY_ADDR(addr) ((addr) < 0x20000000 ? BKPT_HARD : BKPT_SOFT)
62 /* forward declarations */
63 static int cortex_m3_store_core_reg_u32(struct target *target,
64 uint32_t num, uint32_t value);
66 static int cortexm3_dap_read_coreregister_u32(struct adiv5_dap *swjdp,
67 uint32_t *value, int regnum)
69 int retval;
70 uint32_t dcrdr;
72 /* because the DCB_DCRDR is used for the emulated dcc channel
73 * we have to save/restore the DCB_DCRDR when used */
75 retval = mem_ap_read_u32(swjdp, DCB_DCRDR, &dcrdr);
76 if (retval != ERROR_OK)
77 return retval;
79 /* mem_ap_write_u32(swjdp, DCB_DCRSR, regnum); */
80 retval = dap_setup_accessport(swjdp, CSW_32BIT | CSW_ADDRINC_OFF, DCB_DCRSR & 0xFFFFFFF0);
81 if (retval != ERROR_OK)
82 return retval;
83 retval = dap_queue_ap_write(swjdp, AP_REG_BD0 | (DCB_DCRSR & 0xC), regnum);
84 if (retval != ERROR_OK)
85 return retval;
87 /* mem_ap_read_u32(swjdp, DCB_DCRDR, value); */
88 retval = dap_setup_accessport(swjdp, CSW_32BIT | CSW_ADDRINC_OFF, DCB_DCRDR & 0xFFFFFFF0);
89 if (retval != ERROR_OK)
90 return retval;
91 retval = dap_queue_ap_read(swjdp, AP_REG_BD0 | (DCB_DCRDR & 0xC), value);
92 if (retval != ERROR_OK)
93 return retval;
95 retval = dap_run(swjdp);
96 if (retval != ERROR_OK)
97 return retval;
99 /* restore DCB_DCRDR - this needs to be in a seperate
100 * transaction otherwise the emulated DCC channel breaks */
101 if (retval == ERROR_OK)
102 retval = mem_ap_write_atomic_u32(swjdp, DCB_DCRDR, dcrdr);
104 return retval;
107 static int cortexm3_dap_write_coreregister_u32(struct adiv5_dap *swjdp,
108 uint32_t value, int regnum)
110 int retval;
111 uint32_t dcrdr;
113 /* because the DCB_DCRDR is used for the emulated dcc channel
114 * we have to save/restore the DCB_DCRDR when used */
116 retval = mem_ap_read_u32(swjdp, DCB_DCRDR, &dcrdr);
117 if (retval != ERROR_OK)
118 return retval;
120 /* mem_ap_write_u32(swjdp, DCB_DCRDR, core_regs[i]); */
121 retval = dap_setup_accessport(swjdp, CSW_32BIT | CSW_ADDRINC_OFF, DCB_DCRDR & 0xFFFFFFF0);
122 if (retval != ERROR_OK)
123 return retval;
124 retval = dap_queue_ap_write(swjdp, AP_REG_BD0 | (DCB_DCRDR & 0xC), value);
125 if (retval != ERROR_OK)
126 return retval;
128 /* mem_ap_write_u32(swjdp, DCB_DCRSR, i | DCRSR_WnR); */
129 retval = dap_setup_accessport(swjdp, CSW_32BIT | CSW_ADDRINC_OFF, DCB_DCRSR & 0xFFFFFFF0);
130 if (retval != ERROR_OK)
131 return retval;
132 retval = dap_queue_ap_write(swjdp, AP_REG_BD0 | (DCB_DCRSR & 0xC), regnum | DCRSR_WnR);
133 if (retval != ERROR_OK)
134 return retval;
136 retval = dap_run(swjdp);
137 if (retval != ERROR_OK)
138 return retval;
140 /* restore DCB_DCRDR - this needs to be in a seperate
141 * transaction otherwise the emulated DCC channel breaks */
142 if (retval == ERROR_OK)
143 retval = mem_ap_write_atomic_u32(swjdp, DCB_DCRDR, dcrdr);
145 return retval;
148 static int cortex_m3_write_debug_halt_mask(struct target *target,
149 uint32_t mask_on, uint32_t mask_off)
151 struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
152 struct adiv5_dap *swjdp = cortex_m3->armv7m.arm.dap;
154 /* mask off status bits */
155 cortex_m3->dcb_dhcsr &= ~((0xFFFF << 16) | mask_off);
156 /* create new register mask */
157 cortex_m3->dcb_dhcsr |= DBGKEY | C_DEBUGEN | mask_on;
159 return mem_ap_write_atomic_u32(swjdp, DCB_DHCSR, cortex_m3->dcb_dhcsr);
162 static int cortex_m3_clear_halt(struct target *target)
164 struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
165 struct adiv5_dap *swjdp = cortex_m3->armv7m.arm.dap;
166 int retval;
168 /* clear step if any */
169 cortex_m3_write_debug_halt_mask(target, C_HALT, C_STEP);
171 /* Read Debug Fault Status Register */
172 retval = mem_ap_read_atomic_u32(swjdp, NVIC_DFSR, &cortex_m3->nvic_dfsr);
173 if (retval != ERROR_OK)
174 return retval;
176 /* Clear Debug Fault Status */
177 retval = mem_ap_write_atomic_u32(swjdp, NVIC_DFSR, cortex_m3->nvic_dfsr);
178 if (retval != ERROR_OK)
179 return retval;
180 LOG_DEBUG(" NVIC_DFSR 0x%" PRIx32 "", cortex_m3->nvic_dfsr);
182 return ERROR_OK;
185 static int cortex_m3_single_step_core(struct target *target)
187 struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
188 struct adiv5_dap *swjdp = cortex_m3->armv7m.arm.dap;
189 uint32_t dhcsr_save;
190 int retval;
192 /* backup dhcsr reg */
193 dhcsr_save = cortex_m3->dcb_dhcsr;
195 /* Mask interrupts before clearing halt, if done already. This avoids
196 * Erratum 377497 (fixed in r1p0) where setting MASKINTS while clearing
197 * HALT can put the core into an unknown state.
199 if (!(cortex_m3->dcb_dhcsr & C_MASKINTS)) {
200 retval = mem_ap_write_atomic_u32(swjdp, DCB_DHCSR,
201 DBGKEY | C_MASKINTS | C_HALT | C_DEBUGEN);
202 if (retval != ERROR_OK)
203 return retval;
205 retval = mem_ap_write_atomic_u32(swjdp, DCB_DHCSR,
206 DBGKEY | C_MASKINTS | C_STEP | C_DEBUGEN);
207 if (retval != ERROR_OK)
208 return retval;
209 LOG_DEBUG(" ");
211 /* restore dhcsr reg */
212 cortex_m3->dcb_dhcsr = dhcsr_save;
213 cortex_m3_clear_halt(target);
215 return ERROR_OK;
218 static int cortex_m3_endreset_event(struct target *target)
220 int i;
221 int retval;
222 uint32_t dcb_demcr;
223 struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
224 struct armv7m_common *armv7m = &cortex_m3->armv7m;
225 struct adiv5_dap *swjdp = cortex_m3->armv7m.arm.dap;
226 struct cortex_m3_fp_comparator *fp_list = cortex_m3->fp_comparator_list;
227 struct cortex_m3_dwt_comparator *dwt_list = cortex_m3->dwt_comparator_list;
229 /* REVISIT The four debug monitor bits are currently ignored... */
230 retval = mem_ap_read_atomic_u32(swjdp, DCB_DEMCR, &dcb_demcr);
231 if (retval != ERROR_OK)
232 return retval;
233 LOG_DEBUG("DCB_DEMCR = 0x%8.8" PRIx32 "", dcb_demcr);
235 /* this register is used for emulated dcc channel */
236 retval = mem_ap_write_u32(swjdp, DCB_DCRDR, 0);
237 if (retval != ERROR_OK)
238 return retval;
240 /* Enable debug requests */
241 retval = mem_ap_read_atomic_u32(swjdp, DCB_DHCSR, &cortex_m3->dcb_dhcsr);
242 if (retval != ERROR_OK)
243 return retval;
244 if (!(cortex_m3->dcb_dhcsr & C_DEBUGEN)) {
245 retval = mem_ap_write_u32(swjdp, DCB_DHCSR, DBGKEY | C_DEBUGEN);
246 if (retval != ERROR_OK)
247 return retval;
250 /* clear any interrupt masking */
251 cortex_m3_write_debug_halt_mask(target, 0, C_MASKINTS);
253 /* Enable features controlled by ITM and DWT blocks, and catch only
254 * the vectors we were told to pay attention to.
256 * Target firmware is responsible for all fault handling policy
257 * choices *EXCEPT* explicitly scripted overrides like "vector_catch"
258 * or manual updates to the NVIC SHCSR and CCR registers.
260 retval = mem_ap_write_u32(swjdp, DCB_DEMCR, TRCENA | armv7m->demcr);
261 if (retval != ERROR_OK)
262 return retval;
264 /* Paranoia: evidently some (early?) chips don't preserve all the
265 * debug state (including FBP, DWT, etc) across reset...
268 /* Enable FPB */
269 retval = target_write_u32(target, FP_CTRL, 3);
270 if (retval != ERROR_OK)
271 return retval;
273 cortex_m3->fpb_enabled = 1;
275 /* Restore FPB registers */
276 for (i = 0; i < cortex_m3->fp_num_code + cortex_m3->fp_num_lit; i++) {
277 retval = target_write_u32(target, fp_list[i].fpcr_address, fp_list[i].fpcr_value);
278 if (retval != ERROR_OK)
279 return retval;
282 /* Restore DWT registers */
283 for (i = 0; i < cortex_m3->dwt_num_comp; i++) {
284 retval = target_write_u32(target, dwt_list[i].dwt_comparator_address + 0,
285 dwt_list[i].comp);
286 if (retval != ERROR_OK)
287 return retval;
288 retval = target_write_u32(target, dwt_list[i].dwt_comparator_address + 4,
289 dwt_list[i].mask);
290 if (retval != ERROR_OK)
291 return retval;
292 retval = target_write_u32(target, dwt_list[i].dwt_comparator_address + 8,
293 dwt_list[i].function);
294 if (retval != ERROR_OK)
295 return retval;
297 retval = dap_run(swjdp);
298 if (retval != ERROR_OK)
299 return retval;
301 register_cache_invalidate(armv7m->arm.core_cache);
303 /* make sure we have latest dhcsr flags */
304 retval = mem_ap_read_atomic_u32(swjdp, DCB_DHCSR, &cortex_m3->dcb_dhcsr);
306 return retval;
309 static int cortex_m3_examine_debug_reason(struct target *target)
311 struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
313 /* THIS IS NOT GOOD, TODO - better logic for detection of debug state reason
314 * only check the debug reason if we don't know it already */
316 if ((target->debug_reason != DBG_REASON_DBGRQ)
317 && (target->debug_reason != DBG_REASON_SINGLESTEP)) {
318 if (cortex_m3->nvic_dfsr & DFSR_BKPT) {
319 target->debug_reason = DBG_REASON_BREAKPOINT;
320 if (cortex_m3->nvic_dfsr & DFSR_DWTTRAP)
321 target->debug_reason = DBG_REASON_WPTANDBKPT;
322 } else if (cortex_m3->nvic_dfsr & DFSR_DWTTRAP)
323 target->debug_reason = DBG_REASON_WATCHPOINT;
324 else if (cortex_m3->nvic_dfsr & DFSR_VCATCH)
325 target->debug_reason = DBG_REASON_BREAKPOINT;
326 else /* EXTERNAL, HALTED */
327 target->debug_reason = DBG_REASON_UNDEFINED;
330 return ERROR_OK;
333 static int cortex_m3_examine_exception_reason(struct target *target)
335 uint32_t shcsr = 0, except_sr = 0, cfsr = -1, except_ar = -1;
336 struct armv7m_common *armv7m = target_to_armv7m(target);
337 struct adiv5_dap *swjdp = armv7m->arm.dap;
338 int retval;
340 retval = mem_ap_read_u32(swjdp, NVIC_SHCSR, &shcsr);
341 if (retval != ERROR_OK)
342 return retval;
343 switch (armv7m->exception_number) {
344 case 2: /* NMI */
345 break;
346 case 3: /* Hard Fault */
347 retval = mem_ap_read_atomic_u32(swjdp, NVIC_HFSR, &except_sr);
348 if (retval != ERROR_OK)
349 return retval;
350 if (except_sr & 0x40000000) {
351 retval = mem_ap_read_u32(swjdp, NVIC_CFSR, &cfsr);
352 if (retval != ERROR_OK)
353 return retval;
355 break;
356 case 4: /* Memory Management */
357 retval = mem_ap_read_u32(swjdp, NVIC_CFSR, &except_sr);
358 if (retval != ERROR_OK)
359 return retval;
360 retval = mem_ap_read_u32(swjdp, NVIC_MMFAR, &except_ar);
361 if (retval != ERROR_OK)
362 return retval;
363 break;
364 case 5: /* Bus Fault */
365 retval = mem_ap_read_u32(swjdp, NVIC_CFSR, &except_sr);
366 if (retval != ERROR_OK)
367 return retval;
368 retval = mem_ap_read_u32(swjdp, NVIC_BFAR, &except_ar);
369 if (retval != ERROR_OK)
370 return retval;
371 break;
372 case 6: /* Usage Fault */
373 retval = mem_ap_read_u32(swjdp, NVIC_CFSR, &except_sr);
374 if (retval != ERROR_OK)
375 return retval;
376 break;
377 case 11: /* SVCall */
378 break;
379 case 12: /* Debug Monitor */
380 retval = mem_ap_read_u32(swjdp, NVIC_DFSR, &except_sr);
381 if (retval != ERROR_OK)
382 return retval;
383 break;
384 case 14: /* PendSV */
385 break;
386 case 15: /* SysTick */
387 break;
388 default:
389 except_sr = 0;
390 break;
392 retval = dap_run(swjdp);
393 if (retval == ERROR_OK)
394 LOG_DEBUG("%s SHCSR 0x%" PRIx32 ", SR 0x%" PRIx32
395 ", CFSR 0x%" PRIx32 ", AR 0x%" PRIx32,
396 armv7m_exception_string(armv7m->exception_number),
397 shcsr, except_sr, cfsr, except_ar);
398 return retval;
401 static int cortex_m3_debug_entry(struct target *target)
403 int i;
404 uint32_t xPSR;
405 int retval;
406 struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
407 struct armv7m_common *armv7m = &cortex_m3->armv7m;
408 struct arm *arm = &armv7m->arm;
409 struct adiv5_dap *swjdp = armv7m->arm.dap;
410 struct reg *r;
412 LOG_DEBUG(" ");
414 cortex_m3_clear_halt(target);
415 retval = mem_ap_read_atomic_u32(swjdp, DCB_DHCSR, &cortex_m3->dcb_dhcsr);
416 if (retval != ERROR_OK)
417 return retval;
419 retval = armv7m->examine_debug_reason(target);
420 if (retval != ERROR_OK)
421 return retval;
423 /* Examine target state and mode
424 * First load register accessible through core debug port */
425 int num_regs = arm->core_cache->num_regs;
427 for (i = 0; i < num_regs; i++) {
428 r = &armv7m->arm.core_cache->reg_list[i];
429 if (!r->valid)
430 arm->read_core_reg(target, r, i, ARM_MODE_ANY);
433 r = arm->cpsr;
434 xPSR = buf_get_u32(r->value, 0, 32);
436 /* For IT instructions xPSR must be reloaded on resume and clear on debug exec */
437 if (xPSR & 0xf00) {
438 r->dirty = r->valid;
439 cortex_m3_store_core_reg_u32(target, 16, xPSR & ~0xff);
442 /* Are we in an exception handler */
443 if (xPSR & 0x1FF) {
444 armv7m->exception_number = (xPSR & 0x1FF);
446 arm->core_mode = ARM_MODE_HANDLER;
447 arm->map = armv7m_msp_reg_map;
448 } else {
449 unsigned control = buf_get_u32(arm->core_cache
450 ->reg_list[ARMV7M_CONTROL].value, 0, 2);
452 /* is this thread privileged? */
453 arm->core_mode = control & 1
454 ? ARM_MODE_USER_THREAD
455 : ARM_MODE_THREAD;
457 /* which stack is it using? */
458 if (control & 2)
459 arm->map = armv7m_psp_reg_map;
460 else
461 arm->map = armv7m_msp_reg_map;
463 armv7m->exception_number = 0;
466 if (armv7m->exception_number)
467 cortex_m3_examine_exception_reason(target);
469 LOG_DEBUG("entered debug state in core mode: %s at PC 0x%" PRIx32 ", target->state: %s",
470 arm_mode_name(arm->core_mode),
471 *(uint32_t *)(arm->pc->value),
472 target_state_name(target));
474 if (armv7m->post_debug_entry) {
475 retval = armv7m->post_debug_entry(target);
476 if (retval != ERROR_OK)
477 return retval;
480 return ERROR_OK;
483 static int cortex_m3_poll(struct target *target)
485 int detected_failure = ERROR_OK;
486 int retval = ERROR_OK;
487 enum target_state prev_target_state = target->state;
488 struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
489 struct adiv5_dap *swjdp = cortex_m3->armv7m.arm.dap;
491 /* Read from Debug Halting Control and Status Register */
492 retval = mem_ap_read_atomic_u32(swjdp, DCB_DHCSR, &cortex_m3->dcb_dhcsr);
493 if (retval != ERROR_OK) {
494 target->state = TARGET_UNKNOWN;
495 return retval;
498 /* Recover from lockup. See ARMv7-M architecture spec,
499 * section B1.5.15 "Unrecoverable exception cases".
501 if (cortex_m3->dcb_dhcsr & S_LOCKUP) {
502 LOG_ERROR("%s -- clearing lockup after double fault",
503 target_name(target));
504 cortex_m3_write_debug_halt_mask(target, C_HALT, 0);
505 target->debug_reason = DBG_REASON_DBGRQ;
507 /* We have to execute the rest (the "finally" equivalent, but
508 * still throw this exception again).
510 detected_failure = ERROR_FAIL;
512 /* refresh status bits */
513 retval = mem_ap_read_atomic_u32(swjdp, DCB_DHCSR, &cortex_m3->dcb_dhcsr);
514 if (retval != ERROR_OK)
515 return retval;
518 if (cortex_m3->dcb_dhcsr & S_RESET_ST) {
519 /* check if still in reset */
520 retval = mem_ap_read_atomic_u32(swjdp, DCB_DHCSR, &cortex_m3->dcb_dhcsr);
521 if (retval != ERROR_OK)
522 return retval;
524 if (cortex_m3->dcb_dhcsr & S_RESET_ST) {
525 target->state = TARGET_RESET;
526 return ERROR_OK;
530 if (target->state == TARGET_RESET) {
531 /* Cannot switch context while running so endreset is
532 * called with target->state == TARGET_RESET
534 LOG_DEBUG("Exit from reset with dcb_dhcsr 0x%" PRIx32,
535 cortex_m3->dcb_dhcsr);
536 cortex_m3_endreset_event(target);
537 target->state = TARGET_RUNNING;
538 prev_target_state = TARGET_RUNNING;
541 if (cortex_m3->dcb_dhcsr & S_HALT) {
542 target->state = TARGET_HALTED;
544 if ((prev_target_state == TARGET_RUNNING) || (prev_target_state == TARGET_RESET)) {
545 retval = cortex_m3_debug_entry(target);
546 if (retval != ERROR_OK)
547 return retval;
549 if (arm_semihosting(target, &retval) != 0)
550 return retval;
552 target_call_event_callbacks(target, TARGET_EVENT_HALTED);
554 if (prev_target_state == TARGET_DEBUG_RUNNING) {
555 LOG_DEBUG(" ");
556 retval = cortex_m3_debug_entry(target);
557 if (retval != ERROR_OK)
558 return retval;
560 target_call_event_callbacks(target, TARGET_EVENT_DEBUG_HALTED);
564 /* REVISIT when S_SLEEP is set, it's in a Sleep or DeepSleep state.
565 * How best to model low power modes?
568 if (target->state == TARGET_UNKNOWN) {
569 /* check if processor is retiring instructions */
570 if (cortex_m3->dcb_dhcsr & S_RETIRE_ST) {
571 target->state = TARGET_RUNNING;
572 retval = ERROR_OK;
576 /* Did we detect a failure condition that we cleared? */
577 if (detected_failure != ERROR_OK)
578 retval = detected_failure;
579 return retval;
582 static int cortex_m3_halt(struct target *target)
584 LOG_DEBUG("target->state: %s",
585 target_state_name(target));
587 if (target->state == TARGET_HALTED) {
588 LOG_DEBUG("target was already halted");
589 return ERROR_OK;
592 if (target->state == TARGET_UNKNOWN)
593 LOG_WARNING("target was in unknown state when halt was requested");
595 if (target->state == TARGET_RESET) {
596 if ((jtag_get_reset_config() & RESET_SRST_PULLS_TRST) && jtag_get_srst()) {
597 LOG_ERROR("can't request a halt while in reset if nSRST pulls nTRST");
598 return ERROR_TARGET_FAILURE;
599 } else {
600 /* we came here in a reset_halt or reset_init sequence
601 * debug entry was already prepared in cortex_m3_assert_reset()
603 target->debug_reason = DBG_REASON_DBGRQ;
605 return ERROR_OK;
609 /* Write to Debug Halting Control and Status Register */
610 cortex_m3_write_debug_halt_mask(target, C_HALT, 0);
612 target->debug_reason = DBG_REASON_DBGRQ;
614 return ERROR_OK;
617 static int cortex_m3_soft_reset_halt(struct target *target)
619 struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
620 struct adiv5_dap *swjdp = cortex_m3->armv7m.arm.dap;
621 uint32_t dcb_dhcsr = 0;
622 int retval, timeout = 0;
624 /* soft_reset_halt is deprecated on cortex_m as the same functionality
625 * can be obtained by using 'reset halt' and 'cortex_m reset_config vectreset'
626 * As this reset only used VC_CORERESET it would only ever reset the cortex_m
627 * core, not the peripherals */
628 LOG_WARNING("soft_reset_halt is deprecated, please use 'reset halt' instead.");
630 /* Enter debug state on reset; restore DEMCR in endreset_event() */
631 retval = mem_ap_write_u32(swjdp, DCB_DEMCR,
632 TRCENA | VC_HARDERR | VC_BUSERR | VC_CORERESET);
633 if (retval != ERROR_OK)
634 return retval;
636 /* Request a core-only reset */
637 retval = mem_ap_write_atomic_u32(swjdp, NVIC_AIRCR,
638 AIRCR_VECTKEY | AIRCR_VECTRESET);
639 if (retval != ERROR_OK)
640 return retval;
641 target->state = TARGET_RESET;
643 /* registers are now invalid */
644 register_cache_invalidate(cortex_m3->armv7m.arm.core_cache);
646 while (timeout < 100) {
647 retval = mem_ap_read_atomic_u32(swjdp, DCB_DHCSR, &dcb_dhcsr);
648 if (retval == ERROR_OK) {
649 retval = mem_ap_read_atomic_u32(swjdp, NVIC_DFSR,
650 &cortex_m3->nvic_dfsr);
651 if (retval != ERROR_OK)
652 return retval;
653 if ((dcb_dhcsr & S_HALT)
654 && (cortex_m3->nvic_dfsr & DFSR_VCATCH)) {
655 LOG_DEBUG("system reset-halted, DHCSR 0x%08x, "
656 "DFSR 0x%08x",
657 (unsigned) dcb_dhcsr,
658 (unsigned) cortex_m3->nvic_dfsr);
659 cortex_m3_poll(target);
660 /* FIXME restore user's vector catch config */
661 return ERROR_OK;
662 } else
663 LOG_DEBUG("waiting for system reset-halt, "
664 "DHCSR 0x%08x, %d ms",
665 (unsigned) dcb_dhcsr, timeout);
667 timeout++;
668 alive_sleep(1);
671 return ERROR_OK;
674 void cortex_m3_enable_breakpoints(struct target *target)
676 struct breakpoint *breakpoint = target->breakpoints;
678 /* set any pending breakpoints */
679 while (breakpoint) {
680 if (!breakpoint->set)
681 cortex_m3_set_breakpoint(target, breakpoint);
682 breakpoint = breakpoint->next;
686 static int cortex_m3_resume(struct target *target, int current,
687 uint32_t address, int handle_breakpoints, int debug_execution)
689 struct armv7m_common *armv7m = target_to_armv7m(target);
690 struct breakpoint *breakpoint = NULL;
691 uint32_t resume_pc;
692 struct reg *r;
694 if (target->state != TARGET_HALTED) {
695 LOG_WARNING("target not halted");
696 return ERROR_TARGET_NOT_HALTED;
699 if (!debug_execution) {
700 target_free_all_working_areas(target);
701 cortex_m3_enable_breakpoints(target);
702 cortex_m3_enable_watchpoints(target);
705 if (debug_execution) {
706 r = armv7m->arm.core_cache->reg_list + ARMV7M_PRIMASK;
708 /* Disable interrupts */
709 /* We disable interrupts in the PRIMASK register instead of
710 * masking with C_MASKINTS. This is probably the same issue
711 * as Cortex-M3 Erratum 377493 (fixed in r1p0): C_MASKINTS
712 * in parallel with disabled interrupts can cause local faults
713 * to not be taken.
715 * REVISIT this clearly breaks non-debug execution, since the
716 * PRIMASK register state isn't saved/restored... workaround
717 * by never resuming app code after debug execution.
719 buf_set_u32(r->value, 0, 1, 1);
720 r->dirty = true;
721 r->valid = true;
723 /* Make sure we are in Thumb mode */
724 r = armv7m->arm.cpsr;
725 buf_set_u32(r->value, 24, 1, 1);
726 r->dirty = true;
727 r->valid = true;
730 /* current = 1: continue on current pc, otherwise continue at <address> */
731 r = armv7m->arm.pc;
732 if (!current) {
733 buf_set_u32(r->value, 0, 32, address);
734 r->dirty = true;
735 r->valid = true;
738 /* if we halted last time due to a bkpt instruction
739 * then we have to manually step over it, otherwise
740 * the core will break again */
742 if (!breakpoint_find(target, buf_get_u32(r->value, 0, 32))
743 && !debug_execution)
744 armv7m_maybe_skip_bkpt_inst(target, NULL);
746 resume_pc = buf_get_u32(r->value, 0, 32);
748 armv7m_restore_context(target);
750 /* the front-end may request us not to handle breakpoints */
751 if (handle_breakpoints) {
752 /* Single step past breakpoint at current address */
753 breakpoint = breakpoint_find(target, resume_pc);
754 if (breakpoint) {
755 LOG_DEBUG("unset breakpoint at 0x%8.8" PRIx32 " (ID: %d)",
756 breakpoint->address,
757 breakpoint->unique_id);
758 cortex_m3_unset_breakpoint(target, breakpoint);
759 cortex_m3_single_step_core(target);
760 cortex_m3_set_breakpoint(target, breakpoint);
764 /* Restart core */
765 cortex_m3_write_debug_halt_mask(target, 0, C_HALT);
767 target->debug_reason = DBG_REASON_NOTHALTED;
769 /* registers are now invalid */
770 register_cache_invalidate(armv7m->arm.core_cache);
772 if (!debug_execution) {
773 target->state = TARGET_RUNNING;
774 target_call_event_callbacks(target, TARGET_EVENT_RESUMED);
775 LOG_DEBUG("target resumed at 0x%" PRIx32 "", resume_pc);
776 } else {
777 target->state = TARGET_DEBUG_RUNNING;
778 target_call_event_callbacks(target, TARGET_EVENT_DEBUG_RESUMED);
779 LOG_DEBUG("target debug resumed at 0x%" PRIx32 "", resume_pc);
782 return ERROR_OK;
785 /* int irqstepcount = 0; */
786 static int cortex_m3_step(struct target *target, int current,
787 uint32_t address, int handle_breakpoints)
789 struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
790 struct armv7m_common *armv7m = &cortex_m3->armv7m;
791 struct adiv5_dap *swjdp = armv7m->arm.dap;
792 struct breakpoint *breakpoint = NULL;
793 struct reg *pc = armv7m->arm.pc;
794 bool bkpt_inst_found = false;
795 int retval;
796 bool isr_timed_out = false;
798 if (target->state != TARGET_HALTED) {
799 LOG_WARNING("target not halted");
800 return ERROR_TARGET_NOT_HALTED;
803 /* current = 1: continue on current pc, otherwise continue at <address> */
804 if (!current)
805 buf_set_u32(pc->value, 0, 32, address);
807 uint32_t pc_value = buf_get_u32(pc->value, 0, 32);
809 /* the front-end may request us not to handle breakpoints */
810 if (handle_breakpoints) {
811 breakpoint = breakpoint_find(target, pc_value);
812 if (breakpoint)
813 cortex_m3_unset_breakpoint(target, breakpoint);
816 armv7m_maybe_skip_bkpt_inst(target, &bkpt_inst_found);
818 target->debug_reason = DBG_REASON_SINGLESTEP;
820 armv7m_restore_context(target);
822 target_call_event_callbacks(target, TARGET_EVENT_RESUMED);
824 /* if no bkpt instruction is found at pc then we can perform
825 * a normal step, otherwise we have to manually step over the bkpt
826 * instruction - as such simulate a step */
827 if (bkpt_inst_found == false) {
828 /* Automatic ISR masking mode off: Just step over the next instruction */
829 if ((cortex_m3->isrmasking_mode != CORTEX_M3_ISRMASK_AUTO))
830 cortex_m3_write_debug_halt_mask(target, C_STEP, C_HALT);
831 else {
832 /* Process interrupts during stepping in a way they don't interfere
833 * debugging.
835 * Principle:
837 * Set a temporary break point at the current pc and let the core run
838 * with interrupts enabled. Pending interrupts get served and we run
839 * into the breakpoint again afterwards. Then we step over the next
840 * instruction with interrupts disabled.
842 * If the pending interrupts don't complete within time, we leave the
843 * core running. This may happen if the interrupts trigger faster
844 * than the core can process them or the handler doesn't return.
846 * If no more breakpoints are available we simply do a step with
847 * interrupts enabled.
851 /* 2012-09-29 ph
853 * If a break point is already set on the lower half word then a break point on
854 * the upper half word will not break again when the core is restarted. So we
855 * just step over the instruction with interrupts disabled.
857 * The documentation has no information about this, it was found by observation
858 * on STM32F1 and STM32F2. Proper explanation welcome. STM32F0 dosen't seem to
859 * suffer from this problem.
861 * To add some confusion: pc_value has bit 0 always set, while the breakpoint
862 * address has it always cleared. The former is done to indicate thumb mode
863 * to gdb.
866 if ((pc_value & 0x02) && breakpoint_find(target, pc_value & ~0x03)) {
867 LOG_DEBUG("Stepping over next instruction with interrupts disabled");
868 cortex_m3_write_debug_halt_mask(target, C_HALT | C_MASKINTS, 0);
869 cortex_m3_write_debug_halt_mask(target, C_STEP, C_HALT);
870 /* Re-enable interrupts */
871 cortex_m3_write_debug_halt_mask(target, C_HALT, C_MASKINTS);
873 else {
875 /* Set a temporary break point */
876 if (breakpoint)
877 retval = cortex_m3_set_breakpoint(target, breakpoint);
878 else
879 retval = breakpoint_add(target, pc_value, 2, BKPT_TYPE_BY_ADDR(pc_value));
880 bool tmp_bp_set = (retval == ERROR_OK);
882 /* No more breakpoints left, just do a step */
883 if (!tmp_bp_set)
884 cortex_m3_write_debug_halt_mask(target, C_STEP, C_HALT);
885 else {
886 /* Start the core */
887 LOG_DEBUG("Starting core to serve pending interrupts");
888 int64_t t_start = timeval_ms();
889 cortex_m3_write_debug_halt_mask(target, 0, C_HALT | C_STEP);
891 /* Wait for pending handlers to complete or timeout */
892 do {
893 retval = mem_ap_read_atomic_u32(swjdp,
894 DCB_DHCSR,
895 &cortex_m3->dcb_dhcsr);
896 if (retval != ERROR_OK) {
897 target->state = TARGET_UNKNOWN;
898 return retval;
900 isr_timed_out = ((timeval_ms() - t_start) > 500);
901 } while (!((cortex_m3->dcb_dhcsr & S_HALT) || isr_timed_out));
903 /* only remove breakpoint if we created it */
904 if (breakpoint)
905 cortex_m3_unset_breakpoint(target, breakpoint);
906 else {
907 /* Remove the temporary breakpoint */
908 breakpoint_remove(target, pc_value);
911 if (isr_timed_out) {
912 LOG_DEBUG("Interrupt handlers didn't complete within time, "
913 "leaving target running");
914 } else {
915 /* Step over next instruction with interrupts disabled */
916 cortex_m3_write_debug_halt_mask(target,
917 C_HALT | C_MASKINTS,
919 cortex_m3_write_debug_halt_mask(target, C_STEP, C_HALT);
920 /* Re-enable interrupts */
921 cortex_m3_write_debug_halt_mask(target, C_HALT, C_MASKINTS);
928 retval = mem_ap_read_atomic_u32(swjdp, DCB_DHCSR, &cortex_m3->dcb_dhcsr);
929 if (retval != ERROR_OK)
930 return retval;
932 /* registers are now invalid */
933 register_cache_invalidate(armv7m->arm.core_cache);
935 if (breakpoint)
936 cortex_m3_set_breakpoint(target, breakpoint);
938 if (isr_timed_out) {
939 /* Leave the core running. The user has to stop execution manually. */
940 target->debug_reason = DBG_REASON_NOTHALTED;
941 target->state = TARGET_RUNNING;
942 return ERROR_OK;
945 LOG_DEBUG("target stepped dcb_dhcsr = 0x%" PRIx32
946 " nvic_icsr = 0x%" PRIx32,
947 cortex_m3->dcb_dhcsr, cortex_m3->nvic_icsr);
949 retval = cortex_m3_debug_entry(target);
950 if (retval != ERROR_OK)
951 return retval;
952 target_call_event_callbacks(target, TARGET_EVENT_HALTED);
954 LOG_DEBUG("target stepped dcb_dhcsr = 0x%" PRIx32
955 " nvic_icsr = 0x%" PRIx32,
956 cortex_m3->dcb_dhcsr, cortex_m3->nvic_icsr);
958 return ERROR_OK;
961 static int cortex_m3_assert_reset(struct target *target)
963 struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
964 struct adiv5_dap *swjdp = cortex_m3->armv7m.arm.dap;
965 enum cortex_m3_soft_reset_config reset_config = cortex_m3->soft_reset_config;
967 LOG_DEBUG("target->state: %s",
968 target_state_name(target));
970 enum reset_types jtag_reset_config = jtag_get_reset_config();
972 if (target_has_event_action(target, TARGET_EVENT_RESET_ASSERT)) {
973 /* allow scripts to override the reset event */
975 target_handle_event(target, TARGET_EVENT_RESET_ASSERT);
976 register_cache_invalidate(cortex_m3->armv7m.arm.core_cache);
977 target->state = TARGET_RESET;
979 return ERROR_OK;
982 /* some cores support connecting while srst is asserted
983 * use that mode is it has been configured */
985 bool srst_asserted = false;
987 if ((jtag_reset_config & RESET_HAS_SRST) &&
988 (jtag_reset_config & RESET_SRST_NO_GATING)) {
989 adapter_assert_reset();
990 srst_asserted = true;
993 /* Enable debug requests */
994 int retval;
995 retval = mem_ap_read_atomic_u32(swjdp, DCB_DHCSR, &cortex_m3->dcb_dhcsr);
996 if (retval != ERROR_OK)
997 return retval;
998 if (!(cortex_m3->dcb_dhcsr & C_DEBUGEN)) {
999 retval = mem_ap_write_u32(swjdp, DCB_DHCSR, DBGKEY | C_DEBUGEN);
1000 if (retval != ERROR_OK)
1001 return retval;
1004 /* If the processor is sleeping in a WFI or WFE instruction, the
1005 * C_HALT bit must be asserted to regain control */
1006 if (cortex_m3->dcb_dhcsr & S_SLEEP) {
1007 retval = mem_ap_write_u32(swjdp, DCB_DHCSR, DBGKEY | C_HALT | C_DEBUGEN);
1008 if (retval != ERROR_OK)
1009 return retval;
1012 retval = mem_ap_write_u32(swjdp, DCB_DCRDR, 0);
1013 if (retval != ERROR_OK)
1014 return retval;
1016 if (!target->reset_halt) {
1017 /* Set/Clear C_MASKINTS in a separate operation */
1018 if (cortex_m3->dcb_dhcsr & C_MASKINTS) {
1019 retval = mem_ap_write_atomic_u32(swjdp, DCB_DHCSR,
1020 DBGKEY | C_DEBUGEN | C_HALT);
1021 if (retval != ERROR_OK)
1022 return retval;
1025 /* clear any debug flags before resuming */
1026 cortex_m3_clear_halt(target);
1028 /* clear C_HALT in dhcsr reg */
1029 cortex_m3_write_debug_halt_mask(target, 0, C_HALT);
1030 } else {
1031 /* Halt in debug on reset; endreset_event() restores DEMCR.
1033 * REVISIT catching BUSERR presumably helps to defend against
1034 * bad vector table entries. Should this include MMERR or
1035 * other flags too?
1037 retval = mem_ap_write_atomic_u32(swjdp, DCB_DEMCR,
1038 TRCENA | VC_HARDERR | VC_BUSERR | VC_CORERESET);
1039 if (retval != ERROR_OK)
1040 return retval;
1043 if (jtag_reset_config & RESET_HAS_SRST) {
1044 /* default to asserting srst */
1045 if (!srst_asserted)
1046 adapter_assert_reset();
1047 } else {
1048 /* Use a standard Cortex-M3 software reset mechanism.
1049 * We default to using VECRESET as it is supported on all current cores.
1050 * This has the disadvantage of not resetting the peripherals, so a
1051 * reset-init event handler is needed to perform any peripheral resets.
1053 retval = mem_ap_write_atomic_u32(swjdp, NVIC_AIRCR,
1054 AIRCR_VECTKEY | ((reset_config == CORTEX_M3_RESET_SYSRESETREQ)
1055 ? AIRCR_SYSRESETREQ : AIRCR_VECTRESET));
1056 if (retval != ERROR_OK)
1057 return retval;
1059 LOG_DEBUG("Using Cortex-M %s", (reset_config == CORTEX_M3_RESET_SYSRESETREQ)
1060 ? "SYSRESETREQ" : "VECTRESET");
1062 if (reset_config == CORTEX_M3_RESET_VECTRESET) {
1063 LOG_WARNING("Only resetting the Cortex-M core, use a reset-init event "
1064 "handler to reset any peripherals or configure hardware srst support.");
1068 /* I do not know why this is necessary, but it
1069 * fixes strange effects (step/resume cause NMI
1070 * after reset) on LM3S6918 -- Michael Schwingen
1072 uint32_t tmp;
1073 retval = mem_ap_read_atomic_u32(swjdp, NVIC_AIRCR, &tmp);
1074 if (retval != ERROR_OK)
1075 return retval;
1079 target->state = TARGET_RESET;
1080 jtag_add_sleep(50000);
1082 register_cache_invalidate(cortex_m3->armv7m.arm.core_cache);
1084 if (target->reset_halt) {
1085 retval = target_halt(target);
1086 if (retval != ERROR_OK)
1087 return retval;
1090 return ERROR_OK;
1093 static int cortex_m3_deassert_reset(struct target *target)
1095 LOG_DEBUG("target->state: %s",
1096 target_state_name(target));
1098 /* deassert reset lines */
1099 adapter_deassert_reset();
1101 return ERROR_OK;
1104 int cortex_m3_set_breakpoint(struct target *target, struct breakpoint *breakpoint)
1106 int retval;
1107 int fp_num = 0;
1108 uint32_t hilo;
1109 struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
1110 struct cortex_m3_fp_comparator *comparator_list = cortex_m3->fp_comparator_list;
1112 if (breakpoint->set) {
1113 LOG_WARNING("breakpoint (BPID: %d) already set", breakpoint->unique_id);
1114 return ERROR_OK;
1117 if (cortex_m3->auto_bp_type)
1118 breakpoint->type = BKPT_TYPE_BY_ADDR(breakpoint->address);
1120 if (breakpoint->type == BKPT_HARD) {
1121 while (comparator_list[fp_num].used && (fp_num < cortex_m3->fp_num_code))
1122 fp_num++;
1123 if (fp_num >= cortex_m3->fp_num_code) {
1124 LOG_ERROR("Can not find free FPB Comparator!");
1125 return ERROR_FAIL;
1127 breakpoint->set = fp_num + 1;
1128 hilo = (breakpoint->address & 0x2) ? FPCR_REPLACE_BKPT_HIGH : FPCR_REPLACE_BKPT_LOW;
1129 comparator_list[fp_num].used = 1;
1130 comparator_list[fp_num].fpcr_value = (breakpoint->address & 0x1FFFFFFC) | hilo | 1;
1131 target_write_u32(target, comparator_list[fp_num].fpcr_address,
1132 comparator_list[fp_num].fpcr_value);
1133 LOG_DEBUG("fpc_num %i fpcr_value 0x%" PRIx32 "",
1134 fp_num,
1135 comparator_list[fp_num].fpcr_value);
1136 if (!cortex_m3->fpb_enabled) {
1137 LOG_DEBUG("FPB wasn't enabled, do it now");
1138 target_write_u32(target, FP_CTRL, 3);
1140 } else if (breakpoint->type == BKPT_SOFT) {
1141 uint8_t code[4];
1143 /* NOTE: on ARMv6-M and ARMv7-M, BKPT(0xab) is used for
1144 * semihosting; don't use that. Otherwise the BKPT
1145 * parameter is arbitrary.
1147 buf_set_u32(code, 0, 32, ARMV5_T_BKPT(0x11));
1148 retval = target_read_memory(target,
1149 breakpoint->address & 0xFFFFFFFE,
1150 breakpoint->length, 1,
1151 breakpoint->orig_instr);
1152 if (retval != ERROR_OK)
1153 return retval;
1154 retval = target_write_memory(target,
1155 breakpoint->address & 0xFFFFFFFE,
1156 breakpoint->length, 1,
1157 code);
1158 if (retval != ERROR_OK)
1159 return retval;
1160 breakpoint->set = true;
1163 LOG_DEBUG("BPID: %d, Type: %d, Address: 0x%08" PRIx32 " Length: %d (set=%d)",
1164 breakpoint->unique_id,
1165 (int)(breakpoint->type),
1166 breakpoint->address,
1167 breakpoint->length,
1168 breakpoint->set);
1170 return ERROR_OK;
1173 int cortex_m3_unset_breakpoint(struct target *target, struct breakpoint *breakpoint)
1175 int retval;
1176 struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
1177 struct cortex_m3_fp_comparator *comparator_list = cortex_m3->fp_comparator_list;
1179 if (!breakpoint->set) {
1180 LOG_WARNING("breakpoint not set");
1181 return ERROR_OK;
1184 LOG_DEBUG("BPID: %d, Type: %d, Address: 0x%08" PRIx32 " Length: %d (set=%d)",
1185 breakpoint->unique_id,
1186 (int)(breakpoint->type),
1187 breakpoint->address,
1188 breakpoint->length,
1189 breakpoint->set);
1191 if (breakpoint->type == BKPT_HARD) {
1192 int fp_num = breakpoint->set - 1;
1193 if ((fp_num < 0) || (fp_num >= cortex_m3->fp_num_code)) {
1194 LOG_DEBUG("Invalid FP Comparator number in breakpoint");
1195 return ERROR_OK;
1197 comparator_list[fp_num].used = 0;
1198 comparator_list[fp_num].fpcr_value = 0;
1199 target_write_u32(target, comparator_list[fp_num].fpcr_address,
1200 comparator_list[fp_num].fpcr_value);
1201 } else {
1202 /* restore original instruction (kept in target endianness) */
1203 if (breakpoint->length == 4) {
1204 retval = target_write_memory(target, breakpoint->address & 0xFFFFFFFE, 4, 1,
1205 breakpoint->orig_instr);
1206 if (retval != ERROR_OK)
1207 return retval;
1208 } else {
1209 retval = target_write_memory(target, breakpoint->address & 0xFFFFFFFE, 2, 1,
1210 breakpoint->orig_instr);
1211 if (retval != ERROR_OK)
1212 return retval;
1215 breakpoint->set = false;
1217 return ERROR_OK;
1220 int cortex_m3_add_breakpoint(struct target *target, struct breakpoint *breakpoint)
1222 struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
1224 if (cortex_m3->auto_bp_type)
1225 breakpoint->type = BKPT_TYPE_BY_ADDR(breakpoint->address);
1227 if (breakpoint->type != BKPT_TYPE_BY_ADDR(breakpoint->address)) {
1228 if (breakpoint->type == BKPT_HARD) {
1229 LOG_INFO("flash patch comparator requested outside code memory region");
1230 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1233 if (breakpoint->type == BKPT_SOFT) {
1234 LOG_INFO("soft breakpoint requested in code (flash) memory region");
1235 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1239 if ((breakpoint->type == BKPT_HARD) && (cortex_m3->fp_code_available < 1)) {
1240 LOG_INFO("no flash patch comparator unit available for hardware breakpoint");
1241 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1244 if ((breakpoint->length != 2)) {
1245 LOG_INFO("only breakpoints of two bytes length supported");
1246 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1249 if (breakpoint->type == BKPT_HARD)
1250 cortex_m3->fp_code_available--;
1252 return cortex_m3_set_breakpoint(target, breakpoint);
1255 int cortex_m3_remove_breakpoint(struct target *target, struct breakpoint *breakpoint)
1257 struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
1259 /* REVISIT why check? FBP can be updated with core running ... */
1260 if (target->state != TARGET_HALTED) {
1261 LOG_WARNING("target not halted");
1262 return ERROR_TARGET_NOT_HALTED;
1265 if (cortex_m3->auto_bp_type)
1266 breakpoint->type = BKPT_TYPE_BY_ADDR(breakpoint->address);
1268 if (breakpoint->set)
1269 cortex_m3_unset_breakpoint(target, breakpoint);
1271 if (breakpoint->type == BKPT_HARD)
1272 cortex_m3->fp_code_available++;
1274 return ERROR_OK;
1277 int cortex_m3_set_watchpoint(struct target *target, struct watchpoint *watchpoint)
1279 int dwt_num = 0;
1280 uint32_t mask, temp;
1281 struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
1283 /* watchpoint params were validated earlier */
1284 mask = 0;
1285 temp = watchpoint->length;
1286 while (temp) {
1287 temp >>= 1;
1288 mask++;
1290 mask--;
1292 /* REVISIT Don't fully trust these "not used" records ... users
1293 * may set up breakpoints by hand, e.g. dual-address data value
1294 * watchpoint using comparator #1; comparator #0 matching cycle
1295 * count; send data trace info through ITM and TPIU; etc
1297 struct cortex_m3_dwt_comparator *comparator;
1299 for (comparator = cortex_m3->dwt_comparator_list;
1300 comparator->used && dwt_num < cortex_m3->dwt_num_comp;
1301 comparator++, dwt_num++)
1302 continue;
1303 if (dwt_num >= cortex_m3->dwt_num_comp) {
1304 LOG_ERROR("Can not find free DWT Comparator");
1305 return ERROR_FAIL;
1307 comparator->used = 1;
1308 watchpoint->set = dwt_num + 1;
1310 comparator->comp = watchpoint->address;
1311 target_write_u32(target, comparator->dwt_comparator_address + 0,
1312 comparator->comp);
1314 comparator->mask = mask;
1315 target_write_u32(target, comparator->dwt_comparator_address + 4,
1316 comparator->mask);
1318 switch (watchpoint->rw) {
1319 case WPT_READ:
1320 comparator->function = 5;
1321 break;
1322 case WPT_WRITE:
1323 comparator->function = 6;
1324 break;
1325 case WPT_ACCESS:
1326 comparator->function = 7;
1327 break;
1329 target_write_u32(target, comparator->dwt_comparator_address + 8,
1330 comparator->function);
1332 LOG_DEBUG("Watchpoint (ID %d) DWT%d 0x%08x 0x%x 0x%05x",
1333 watchpoint->unique_id, dwt_num,
1334 (unsigned) comparator->comp,
1335 (unsigned) comparator->mask,
1336 (unsigned) comparator->function);
1337 return ERROR_OK;
1340 int cortex_m3_unset_watchpoint(struct target *target, struct watchpoint *watchpoint)
1342 struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
1343 struct cortex_m3_dwt_comparator *comparator;
1344 int dwt_num;
1346 if (!watchpoint->set) {
1347 LOG_WARNING("watchpoint (wpid: %d) not set",
1348 watchpoint->unique_id);
1349 return ERROR_OK;
1352 dwt_num = watchpoint->set - 1;
1354 LOG_DEBUG("Watchpoint (ID %d) DWT%d address: 0x%08x clear",
1355 watchpoint->unique_id, dwt_num,
1356 (unsigned) watchpoint->address);
1358 if ((dwt_num < 0) || (dwt_num >= cortex_m3->dwt_num_comp)) {
1359 LOG_DEBUG("Invalid DWT Comparator number in watchpoint");
1360 return ERROR_OK;
1363 comparator = cortex_m3->dwt_comparator_list + dwt_num;
1364 comparator->used = 0;
1365 comparator->function = 0;
1366 target_write_u32(target, comparator->dwt_comparator_address + 8,
1367 comparator->function);
1369 watchpoint->set = false;
1371 return ERROR_OK;
1374 int cortex_m3_add_watchpoint(struct target *target, struct watchpoint *watchpoint)
1376 struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
1378 if (cortex_m3->dwt_comp_available < 1) {
1379 LOG_DEBUG("no comparators?");
1380 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1383 /* hardware doesn't support data value masking */
1384 if (watchpoint->mask != ~(uint32_t)0) {
1385 LOG_DEBUG("watchpoint value masks not supported");
1386 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1389 /* hardware allows address masks of up to 32K */
1390 unsigned mask;
1392 for (mask = 0; mask < 16; mask++) {
1393 if ((1u << mask) == watchpoint->length)
1394 break;
1396 if (mask == 16) {
1397 LOG_DEBUG("unsupported watchpoint length");
1398 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1400 if (watchpoint->address & ((1 << mask) - 1)) {
1401 LOG_DEBUG("watchpoint address is unaligned");
1402 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1405 /* Caller doesn't seem to be able to describe watching for data
1406 * values of zero; that flags "no value".
1408 * REVISIT This DWT may well be able to watch for specific data
1409 * values. Requires comparator #1 to set DATAVMATCH and match
1410 * the data, and another comparator (DATAVADDR0) matching addr.
1412 if (watchpoint->value) {
1413 LOG_DEBUG("data value watchpoint not YET supported");
1414 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1417 cortex_m3->dwt_comp_available--;
1418 LOG_DEBUG("dwt_comp_available: %d", cortex_m3->dwt_comp_available);
1420 return ERROR_OK;
1423 int cortex_m3_remove_watchpoint(struct target *target, struct watchpoint *watchpoint)
1425 struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
1427 /* REVISIT why check? DWT can be updated with core running ... */
1428 if (target->state != TARGET_HALTED) {
1429 LOG_WARNING("target not halted");
1430 return ERROR_TARGET_NOT_HALTED;
1433 if (watchpoint->set)
1434 cortex_m3_unset_watchpoint(target, watchpoint);
1436 cortex_m3->dwt_comp_available++;
1437 LOG_DEBUG("dwt_comp_available: %d", cortex_m3->dwt_comp_available);
1439 return ERROR_OK;
1442 void cortex_m3_enable_watchpoints(struct target *target)
1444 struct watchpoint *watchpoint = target->watchpoints;
1446 /* set any pending watchpoints */
1447 while (watchpoint) {
1448 if (!watchpoint->set)
1449 cortex_m3_set_watchpoint(target, watchpoint);
1450 watchpoint = watchpoint->next;
1454 static int cortex_m3_load_core_reg_u32(struct target *target,
1455 uint32_t num, uint32_t *value)
1457 int retval;
1458 struct armv7m_common *armv7m = target_to_armv7m(target);
1459 struct adiv5_dap *swjdp = armv7m->arm.dap;
1461 /* NOTE: we "know" here that the register identifiers used
1462 * in the v7m header match the Cortex-M3 Debug Core Register
1463 * Selector values for R0..R15, xPSR, MSP, and PSP.
1465 switch (num) {
1466 case 0 ... 18:
1467 /* read a normal core register */
1468 retval = cortexm3_dap_read_coreregister_u32(swjdp, value, num);
1470 if (retval != ERROR_OK) {
1471 LOG_ERROR("JTAG failure %i", retval);
1472 return ERROR_JTAG_DEVICE_ERROR;
1474 LOG_DEBUG("load from core reg %i value 0x%" PRIx32 "", (int)num, *value);
1475 break;
1477 case ARMV7M_PRIMASK:
1478 case ARMV7M_BASEPRI:
1479 case ARMV7M_FAULTMASK:
1480 case ARMV7M_CONTROL:
1481 /* Cortex-M3 packages these four registers as bitfields
1482 * in one Debug Core register. So say r0 and r2 docs;
1483 * it was removed from r1 docs, but still works.
1485 cortexm3_dap_read_coreregister_u32(swjdp, value, 20);
1487 switch (num) {
1488 case ARMV7M_PRIMASK:
1489 *value = buf_get_u32((uint8_t *)value, 0, 1);
1490 break;
1492 case ARMV7M_BASEPRI:
1493 *value = buf_get_u32((uint8_t *)value, 8, 8);
1494 break;
1496 case ARMV7M_FAULTMASK:
1497 *value = buf_get_u32((uint8_t *)value, 16, 1);
1498 break;
1500 case ARMV7M_CONTROL:
1501 *value = buf_get_u32((uint8_t *)value, 24, 2);
1502 break;
1505 LOG_DEBUG("load from special reg %i value 0x%" PRIx32 "", (int)num, *value);
1506 break;
1508 default:
1509 return ERROR_COMMAND_SYNTAX_ERROR;
1512 return ERROR_OK;
1515 static int cortex_m3_store_core_reg_u32(struct target *target,
1516 uint32_t num, uint32_t value)
1518 int retval;
1519 uint32_t reg;
1520 struct armv7m_common *armv7m = target_to_armv7m(target);
1521 struct adiv5_dap *swjdp = armv7m->arm.dap;
1523 /* NOTE: we "know" here that the register identifiers used
1524 * in the v7m header match the Cortex-M3 Debug Core Register
1525 * Selector values for R0..R15, xPSR, MSP, and PSP.
1527 switch (num) {
1528 case 0 ... 18:
1529 retval = cortexm3_dap_write_coreregister_u32(swjdp, value, num);
1530 if (retval != ERROR_OK) {
1531 struct reg *r;
1533 LOG_ERROR("JTAG failure");
1534 r = armv7m->arm.core_cache->reg_list + num;
1535 r->dirty = r->valid;
1536 return ERROR_JTAG_DEVICE_ERROR;
1538 LOG_DEBUG("write core reg %i value 0x%" PRIx32 "", (int)num, value);
1539 break;
1541 case ARMV7M_PRIMASK:
1542 case ARMV7M_BASEPRI:
1543 case ARMV7M_FAULTMASK:
1544 case ARMV7M_CONTROL:
1545 /* Cortex-M3 packages these four registers as bitfields
1546 * in one Debug Core register. So say r0 and r2 docs;
1547 * it was removed from r1 docs, but still works.
1549 cortexm3_dap_read_coreregister_u32(swjdp, &reg, 20);
1551 switch (num) {
1552 case ARMV7M_PRIMASK:
1553 buf_set_u32((uint8_t *)&reg, 0, 1, value);
1554 break;
1556 case ARMV7M_BASEPRI:
1557 buf_set_u32((uint8_t *)&reg, 8, 8, value);
1558 break;
1560 case ARMV7M_FAULTMASK:
1561 buf_set_u32((uint8_t *)&reg, 16, 1, value);
1562 break;
1564 case ARMV7M_CONTROL:
1565 buf_set_u32((uint8_t *)&reg, 24, 2, value);
1566 break;
1569 cortexm3_dap_write_coreregister_u32(swjdp, reg, 20);
1571 LOG_DEBUG("write special reg %i value 0x%" PRIx32 " ", (int)num, value);
1572 break;
1574 default:
1575 return ERROR_COMMAND_SYNTAX_ERROR;
1578 return ERROR_OK;
1581 static int cortex_m3_read_memory(struct target *target, uint32_t address,
1582 uint32_t size, uint32_t count, uint8_t *buffer)
1584 struct armv7m_common *armv7m = target_to_armv7m(target);
1585 struct adiv5_dap *swjdp = armv7m->arm.dap;
1586 int retval = ERROR_COMMAND_SYNTAX_ERROR;
1588 if (armv7m->arm.is_armv6m) {
1589 /* armv6m does not handle unaligned memory access */
1590 if (((size == 4) && (address & 0x3u)) || ((size == 2) && (address & 0x1u)))
1591 return ERROR_TARGET_UNALIGNED_ACCESS;
1594 /* cortex_m3 handles unaligned memory access */
1595 if (count && buffer) {
1596 switch (size) {
1597 case 4:
1598 retval = mem_ap_read_buf_u32(swjdp, buffer, 4 * count, address, true);
1599 break;
1600 case 2:
1601 retval = mem_ap_read_buf_u16(swjdp, buffer, 2 * count, address);
1602 break;
1603 case 1:
1604 retval = mem_ap_read_buf_u8(swjdp, buffer, count, address);
1605 break;
1609 return retval;
1612 static int cortex_m3_write_memory(struct target *target, uint32_t address,
1613 uint32_t size, uint32_t count, const uint8_t *buffer)
1615 struct armv7m_common *armv7m = target_to_armv7m(target);
1616 struct adiv5_dap *swjdp = armv7m->arm.dap;
1617 int retval = ERROR_COMMAND_SYNTAX_ERROR;
1619 if (armv7m->arm.is_armv6m) {
1620 /* armv6m does not handle unaligned memory access */
1621 if (((size == 4) && (address & 0x3u)) || ((size == 2) && (address & 0x1u)))
1622 return ERROR_TARGET_UNALIGNED_ACCESS;
1625 if (count && buffer) {
1626 switch (size) {
1627 case 4:
1628 retval = mem_ap_write_buf_u32(swjdp, buffer, 4 * count, address, true);
1629 break;
1630 case 2:
1631 retval = mem_ap_write_buf_u16(swjdp, buffer, 2 * count, address);
1632 break;
1633 case 1:
1634 retval = mem_ap_write_buf_u8(swjdp, buffer, count, address);
1635 break;
1639 return retval;
1642 static int cortex_m3_init_target(struct command_context *cmd_ctx,
1643 struct target *target)
1645 armv7m_build_reg_cache(target);
1646 return ERROR_OK;
1649 /* REVISIT cache valid/dirty bits are unmaintained. We could set "valid"
1650 * on r/w if the core is not running, and clear on resume or reset ... or
1651 * at least, in a post_restore_context() method.
1654 struct dwt_reg_state {
1655 struct target *target;
1656 uint32_t addr;
1657 uint32_t value; /* scratch/cache */
1660 static int cortex_m3_dwt_get_reg(struct reg *reg)
1662 struct dwt_reg_state *state = reg->arch_info;
1664 return target_read_u32(state->target, state->addr, &state->value);
1667 static int cortex_m3_dwt_set_reg(struct reg *reg, uint8_t *buf)
1669 struct dwt_reg_state *state = reg->arch_info;
1671 return target_write_u32(state->target, state->addr,
1672 buf_get_u32(buf, 0, reg->size));
1675 struct dwt_reg {
1676 uint32_t addr;
1677 char *name;
1678 unsigned size;
1681 static struct dwt_reg dwt_base_regs[] = {
1682 { DWT_CTRL, "dwt_ctrl", 32, },
1683 /* NOTE that Erratum 532314 (fixed r2p0) affects CYCCNT: it wrongly
1684 * increments while the core is asleep.
1686 { DWT_CYCCNT, "dwt_cyccnt", 32, },
1687 /* plus some 8 bit counters, useful for profiling with TPIU */
1690 static struct dwt_reg dwt_comp[] = {
1691 #define DWT_COMPARATOR(i) \
1692 { DWT_COMP0 + 0x10 * (i), "dwt_" #i "_comp", 32, }, \
1693 { DWT_MASK0 + 0x10 * (i), "dwt_" #i "_mask", 4, }, \
1694 { DWT_FUNCTION0 + 0x10 * (i), "dwt_" #i "_function", 32, }
1695 DWT_COMPARATOR(0),
1696 DWT_COMPARATOR(1),
1697 DWT_COMPARATOR(2),
1698 DWT_COMPARATOR(3),
1699 #undef DWT_COMPARATOR
1702 static const struct reg_arch_type dwt_reg_type = {
1703 .get = cortex_m3_dwt_get_reg,
1704 .set = cortex_m3_dwt_set_reg,
1707 static void cortex_m3_dwt_addreg(struct target *t, struct reg *r, struct dwt_reg *d)
1709 struct dwt_reg_state *state;
1711 state = calloc(1, sizeof *state);
1712 if (!state)
1713 return;
1714 state->addr = d->addr;
1715 state->target = t;
1717 r->name = d->name;
1718 r->size = d->size;
1719 r->value = &state->value;
1720 r->arch_info = state;
1721 r->type = &dwt_reg_type;
1724 void cortex_m3_dwt_setup(struct cortex_m3_common *cm3, struct target *target)
1726 uint32_t dwtcr;
1727 struct reg_cache *cache;
1728 struct cortex_m3_dwt_comparator *comparator;
1729 int reg, i;
1731 target_read_u32(target, DWT_CTRL, &dwtcr);
1732 if (!dwtcr) {
1733 LOG_DEBUG("no DWT");
1734 return;
1737 cm3->dwt_num_comp = (dwtcr >> 28) & 0xF;
1738 cm3->dwt_comp_available = cm3->dwt_num_comp;
1739 cm3->dwt_comparator_list = calloc(cm3->dwt_num_comp,
1740 sizeof(struct cortex_m3_dwt_comparator));
1741 if (!cm3->dwt_comparator_list) {
1742 fail0:
1743 cm3->dwt_num_comp = 0;
1744 LOG_ERROR("out of mem");
1745 return;
1748 cache = calloc(1, sizeof *cache);
1749 if (!cache) {
1750 fail1:
1751 free(cm3->dwt_comparator_list);
1752 goto fail0;
1754 cache->name = "cortex-m3 dwt registers";
1755 cache->num_regs = 2 + cm3->dwt_num_comp * 3;
1756 cache->reg_list = calloc(cache->num_regs, sizeof *cache->reg_list);
1757 if (!cache->reg_list) {
1758 free(cache);
1759 goto fail1;
1762 for (reg = 0; reg < 2; reg++)
1763 cortex_m3_dwt_addreg(target, cache->reg_list + reg,
1764 dwt_base_regs + reg);
1766 comparator = cm3->dwt_comparator_list;
1767 for (i = 0; i < cm3->dwt_num_comp; i++, comparator++) {
1768 int j;
1770 comparator->dwt_comparator_address = DWT_COMP0 + 0x10 * i;
1771 for (j = 0; j < 3; j++, reg++)
1772 cortex_m3_dwt_addreg(target, cache->reg_list + reg,
1773 dwt_comp + 3 * i + j);
1775 /* make sure we clear any watchpoints enabled on the target */
1776 target_write_u32(target, comparator->dwt_comparator_address + 8, 0);
1779 *register_get_last_cache_p(&target->reg_cache) = cache;
1780 cm3->dwt_cache = cache;
1782 LOG_DEBUG("DWT dwtcr 0x%" PRIx32 ", comp %d, watch%s",
1783 dwtcr, cm3->dwt_num_comp,
1784 (dwtcr & (0xf << 24)) ? " only" : "/trigger");
1786 /* REVISIT: if num_comp > 1, check whether comparator #1 can
1787 * implement single-address data value watchpoints ... so we
1788 * won't need to check it later, when asked to set one up.
1792 #define MVFR0 0xe000ef40
1793 #define MVFR1 0xe000ef44
1795 #define MVFR0_DEFAULT_M4 0x10110021
1796 #define MVFR1_DEFAULT_M4 0x11000011
1798 int cortex_m3_examine(struct target *target)
1800 int retval;
1801 uint32_t cpuid, fpcr, mvfr0, mvfr1;
1802 int i;
1803 struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
1804 struct adiv5_dap *swjdp = cortex_m3->armv7m.arm.dap;
1805 struct armv7m_common *armv7m = target_to_armv7m(target);
1807 /* stlink shares the examine handler but does not support
1808 * all its calls */
1809 if (!armv7m->stlink) {
1810 retval = ahbap_debugport_init(swjdp);
1811 if (retval != ERROR_OK)
1812 return retval;
1815 if (!target_was_examined(target)) {
1816 target_set_examined(target);
1818 /* Read from Device Identification Registers */
1819 retval = target_read_u32(target, CPUID, &cpuid);
1820 if (retval != ERROR_OK)
1821 return retval;
1823 /* Get CPU Type */
1824 i = (cpuid >> 4) & 0xf;
1826 LOG_DEBUG("Cortex-M%d r%" PRId8 "p%" PRId8 " processor detected",
1827 i, (uint8_t)((cpuid >> 20) & 0xf), (uint8_t)((cpuid >> 0) & 0xf));
1828 LOG_DEBUG("cpuid: 0x%8.8" PRIx32 "", cpuid);
1830 /* test for floating point feature on cortex-m4 */
1831 if (i == 4) {
1832 target_read_u32(target, MVFR0, &mvfr0);
1833 target_read_u32(target, MVFR1, &mvfr1);
1835 if ((mvfr0 == MVFR0_DEFAULT_M4) && (mvfr1 == MVFR1_DEFAULT_M4)) {
1836 LOG_DEBUG("Cortex-M%d floating point feature FPv4_SP found", i);
1837 armv7m->fp_feature = FPv4_SP;
1839 } else if (i == 0) {
1840 /* Cortex-M0 does not support unaligned memory access */
1841 armv7m->arm.is_armv6m = true;
1844 if (i == 4 || i == 3) {
1845 /* Cortex-M3/M4 has 4096 bytes autoincrement range */
1846 armv7m->dap.tar_autoincr_block = (1 << 12);
1849 /* NOTE: FPB and DWT are both optional. */
1851 /* Setup FPB */
1852 target_read_u32(target, FP_CTRL, &fpcr);
1853 cortex_m3->auto_bp_type = 1;
1854 cortex_m3->fp_num_code = ((fpcr >> 8) & 0x70) | ((fpcr >> 4) & 0xF); /* bits
1855 *[14:12]
1856 *and [7:4]
1858 cortex_m3->fp_num_lit = (fpcr >> 8) & 0xF;
1859 cortex_m3->fp_code_available = cortex_m3->fp_num_code;
1860 cortex_m3->fp_comparator_list = calloc(
1861 cortex_m3->fp_num_code + cortex_m3->fp_num_lit,
1862 sizeof(struct cortex_m3_fp_comparator));
1863 cortex_m3->fpb_enabled = fpcr & 1;
1864 for (i = 0; i < cortex_m3->fp_num_code + cortex_m3->fp_num_lit; i++) {
1865 cortex_m3->fp_comparator_list[i].type =
1866 (i < cortex_m3->fp_num_code) ? FPCR_CODE : FPCR_LITERAL;
1867 cortex_m3->fp_comparator_list[i].fpcr_address = FP_COMP0 + 4 * i;
1869 /* make sure we clear any breakpoints enabled on the target */
1870 target_write_u32(target, cortex_m3->fp_comparator_list[i].fpcr_address, 0);
1872 LOG_DEBUG("FPB fpcr 0x%" PRIx32 ", numcode %i, numlit %i",
1873 fpcr,
1874 cortex_m3->fp_num_code,
1875 cortex_m3->fp_num_lit);
1877 /* Setup DWT */
1878 cortex_m3_dwt_setup(cortex_m3, target);
1880 /* These hardware breakpoints only work for code in flash! */
1881 LOG_INFO("%s: hardware has %d breakpoints, %d watchpoints",
1882 target_name(target),
1883 cortex_m3->fp_num_code,
1884 cortex_m3->dwt_num_comp);
1887 return ERROR_OK;
1890 static int cortex_m3_dcc_read(struct adiv5_dap *swjdp, uint8_t *value, uint8_t *ctrl)
1892 uint16_t dcrdr;
1893 int retval;
1895 mem_ap_read_buf_u16(swjdp, (uint8_t *)&dcrdr, 1, DCB_DCRDR);
1896 *ctrl = (uint8_t)dcrdr;
1897 *value = (uint8_t)(dcrdr >> 8);
1899 LOG_DEBUG("data 0x%x ctrl 0x%x", *value, *ctrl);
1901 /* write ack back to software dcc register
1902 * signify we have read data */
1903 if (dcrdr & (1 << 0)) {
1904 dcrdr = 0;
1905 retval = mem_ap_write_buf_u16(swjdp, (uint8_t *)&dcrdr, 1, DCB_DCRDR);
1906 if (retval != ERROR_OK)
1907 return retval;
1910 return ERROR_OK;
1913 static int cortex_m3_target_request_data(struct target *target,
1914 uint32_t size, uint8_t *buffer)
1916 struct armv7m_common *armv7m = target_to_armv7m(target);
1917 struct adiv5_dap *swjdp = armv7m->arm.dap;
1918 uint8_t data;
1919 uint8_t ctrl;
1920 uint32_t i;
1922 for (i = 0; i < (size * 4); i++) {
1923 cortex_m3_dcc_read(swjdp, &data, &ctrl);
1924 buffer[i] = data;
1927 return ERROR_OK;
1930 static int cortex_m3_handle_target_request(void *priv)
1932 struct target *target = priv;
1933 if (!target_was_examined(target))
1934 return ERROR_OK;
1935 struct armv7m_common *armv7m = target_to_armv7m(target);
1936 struct adiv5_dap *swjdp = armv7m->arm.dap;
1938 if (!target->dbg_msg_enabled)
1939 return ERROR_OK;
1941 if (target->state == TARGET_RUNNING) {
1942 uint8_t data;
1943 uint8_t ctrl;
1945 cortex_m3_dcc_read(swjdp, &data, &ctrl);
1947 /* check if we have data */
1948 if (ctrl & (1 << 0)) {
1949 uint32_t request;
1951 /* we assume target is quick enough */
1952 request = data;
1953 cortex_m3_dcc_read(swjdp, &data, &ctrl);
1954 request |= (data << 8);
1955 cortex_m3_dcc_read(swjdp, &data, &ctrl);
1956 request |= (data << 16);
1957 cortex_m3_dcc_read(swjdp, &data, &ctrl);
1958 request |= (data << 24);
1959 target_request(target, request);
1963 return ERROR_OK;
1966 static int cortex_m3_init_arch_info(struct target *target,
1967 struct cortex_m3_common *cortex_m3, struct jtag_tap *tap)
1969 int retval;
1970 struct armv7m_common *armv7m = &cortex_m3->armv7m;
1972 armv7m_init_arch_info(target, armv7m);
1974 /* prepare JTAG information for the new target */
1975 cortex_m3->jtag_info.tap = tap;
1976 cortex_m3->jtag_info.scann_size = 4;
1978 /* default reset mode is to use srst if fitted
1979 * if not it will use CORTEX_M3_RESET_VECTRESET */
1980 cortex_m3->soft_reset_config = CORTEX_M3_RESET_VECTRESET;
1982 armv7m->arm.dap = &armv7m->dap;
1984 /* Leave (only) generic DAP stuff for debugport_init(); */
1985 armv7m->dap.jtag_info = &cortex_m3->jtag_info;
1986 armv7m->dap.memaccess_tck = 8;
1988 /* Cortex-M3/M4 has 4096 bytes autoincrement range
1989 * but set a safe default to 1024 to support Cortex-M0
1990 * this will be changed in cortex_m3_examine if a M3/M4 is detected */
1991 armv7m->dap.tar_autoincr_block = (1 << 10);
1993 /* register arch-specific functions */
1994 armv7m->examine_debug_reason = cortex_m3_examine_debug_reason;
1996 armv7m->post_debug_entry = NULL;
1998 armv7m->pre_restore_context = NULL;
2000 armv7m->load_core_reg_u32 = cortex_m3_load_core_reg_u32;
2001 armv7m->store_core_reg_u32 = cortex_m3_store_core_reg_u32;
2003 target_register_timer_callback(cortex_m3_handle_target_request, 1, 1, target);
2005 retval = arm_jtag_setup_connection(&cortex_m3->jtag_info);
2006 if (retval != ERROR_OK)
2007 return retval;
2009 return ERROR_OK;
2012 static int cortex_m3_target_create(struct target *target, Jim_Interp *interp)
2014 struct cortex_m3_common *cortex_m3 = calloc(1, sizeof(struct cortex_m3_common));
2016 cortex_m3->common_magic = CORTEX_M3_COMMON_MAGIC;
2017 cortex_m3_init_arch_info(target, cortex_m3, target->tap);
2019 return ERROR_OK;
2022 /*--------------------------------------------------------------------------*/
2024 static int cortex_m3_verify_pointer(struct command_context *cmd_ctx,
2025 struct cortex_m3_common *cm3)
2027 if (cm3->common_magic != CORTEX_M3_COMMON_MAGIC) {
2028 command_print(cmd_ctx, "target is not a Cortex-M");
2029 return ERROR_TARGET_INVALID;
2031 return ERROR_OK;
2035 * Only stuff below this line should need to verify that its target
2036 * is a Cortex-M3. Everything else should have indirected through the
2037 * cortexm3_target structure, which is only used with CM3 targets.
2040 static const struct {
2041 char name[10];
2042 unsigned mask;
2043 } vec_ids[] = {
2044 { "hard_err", VC_HARDERR, },
2045 { "int_err", VC_INTERR, },
2046 { "bus_err", VC_BUSERR, },
2047 { "state_err", VC_STATERR, },
2048 { "chk_err", VC_CHKERR, },
2049 { "nocp_err", VC_NOCPERR, },
2050 { "mm_err", VC_MMERR, },
2051 { "reset", VC_CORERESET, },
2054 COMMAND_HANDLER(handle_cortex_m3_vector_catch_command)
2056 struct target *target = get_current_target(CMD_CTX);
2057 struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
2058 struct armv7m_common *armv7m = &cortex_m3->armv7m;
2059 struct adiv5_dap *swjdp = armv7m->arm.dap;
2060 uint32_t demcr = 0;
2061 int retval;
2063 retval = cortex_m3_verify_pointer(CMD_CTX, cortex_m3);
2064 if (retval != ERROR_OK)
2065 return retval;
2067 retval = mem_ap_read_atomic_u32(swjdp, DCB_DEMCR, &demcr);
2068 if (retval != ERROR_OK)
2069 return retval;
2071 if (CMD_ARGC > 0) {
2072 unsigned catch = 0;
2074 if (CMD_ARGC == 1) {
2075 if (strcmp(CMD_ARGV[0], "all") == 0) {
2076 catch = VC_HARDERR | VC_INTERR | VC_BUSERR
2077 | VC_STATERR | VC_CHKERR | VC_NOCPERR
2078 | VC_MMERR | VC_CORERESET;
2079 goto write;
2080 } else if (strcmp(CMD_ARGV[0], "none") == 0)
2081 goto write;
2083 while (CMD_ARGC-- > 0) {
2084 unsigned i;
2085 for (i = 0; i < ARRAY_SIZE(vec_ids); i++) {
2086 if (strcmp(CMD_ARGV[CMD_ARGC], vec_ids[i].name) != 0)
2087 continue;
2088 catch |= vec_ids[i].mask;
2089 break;
2091 if (i == ARRAY_SIZE(vec_ids)) {
2092 LOG_ERROR("No CM3 vector '%s'", CMD_ARGV[CMD_ARGC]);
2093 return ERROR_COMMAND_SYNTAX_ERROR;
2096 write:
2097 /* For now, armv7m->demcr only stores vector catch flags. */
2098 armv7m->demcr = catch;
2100 demcr &= ~0xffff;
2101 demcr |= catch;
2103 /* write, but don't assume it stuck (why not??) */
2104 retval = mem_ap_write_u32(swjdp, DCB_DEMCR, demcr);
2105 if (retval != ERROR_OK)
2106 return retval;
2107 retval = mem_ap_read_atomic_u32(swjdp, DCB_DEMCR, &demcr);
2108 if (retval != ERROR_OK)
2109 return retval;
2111 /* FIXME be sure to clear DEMCR on clean server shutdown.
2112 * Otherwise the vector catch hardware could fire when there's
2113 * no debugger hooked up, causing much confusion...
2117 for (unsigned i = 0; i < ARRAY_SIZE(vec_ids); i++) {
2118 command_print(CMD_CTX, "%9s: %s", vec_ids[i].name,
2119 (demcr & vec_ids[i].mask) ? "catch" : "ignore");
2122 return ERROR_OK;
2125 COMMAND_HANDLER(handle_cortex_m3_mask_interrupts_command)
2127 struct target *target = get_current_target(CMD_CTX);
2128 struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
2129 int retval;
2131 static const Jim_Nvp nvp_maskisr_modes[] = {
2132 { .name = "auto", .value = CORTEX_M3_ISRMASK_AUTO },
2133 { .name = "off", .value = CORTEX_M3_ISRMASK_OFF },
2134 { .name = "on", .value = CORTEX_M3_ISRMASK_ON },
2135 { .name = NULL, .value = -1 },
2137 const Jim_Nvp *n;
2140 retval = cortex_m3_verify_pointer(CMD_CTX, cortex_m3);
2141 if (retval != ERROR_OK)
2142 return retval;
2144 if (target->state != TARGET_HALTED) {
2145 command_print(CMD_CTX, "target must be stopped for \"%s\" command", CMD_NAME);
2146 return ERROR_OK;
2149 if (CMD_ARGC > 0) {
2150 n = Jim_Nvp_name2value_simple(nvp_maskisr_modes, CMD_ARGV[0]);
2151 if (n->name == NULL)
2152 return ERROR_COMMAND_SYNTAX_ERROR;
2153 cortex_m3->isrmasking_mode = n->value;
2156 if (cortex_m3->isrmasking_mode == CORTEX_M3_ISRMASK_ON)
2157 cortex_m3_write_debug_halt_mask(target, C_HALT | C_MASKINTS, 0);
2158 else
2159 cortex_m3_write_debug_halt_mask(target, C_HALT, C_MASKINTS);
2162 n = Jim_Nvp_value2name_simple(nvp_maskisr_modes, cortex_m3->isrmasking_mode);
2163 command_print(CMD_CTX, "cortex_m interrupt mask %s", n->name);
2165 return ERROR_OK;
2168 COMMAND_HANDLER(handle_cortex_m3_reset_config_command)
2170 struct target *target = get_current_target(CMD_CTX);
2171 struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
2172 int retval;
2173 char *reset_config;
2175 retval = cortex_m3_verify_pointer(CMD_CTX, cortex_m3);
2176 if (retval != ERROR_OK)
2177 return retval;
2179 if (CMD_ARGC > 0) {
2180 if (strcmp(*CMD_ARGV, "sysresetreq") == 0)
2181 cortex_m3->soft_reset_config = CORTEX_M3_RESET_SYSRESETREQ;
2182 else if (strcmp(*CMD_ARGV, "vectreset") == 0)
2183 cortex_m3->soft_reset_config = CORTEX_M3_RESET_VECTRESET;
2186 switch (cortex_m3->soft_reset_config) {
2187 case CORTEX_M3_RESET_SYSRESETREQ:
2188 reset_config = "sysresetreq";
2189 break;
2191 case CORTEX_M3_RESET_VECTRESET:
2192 reset_config = "vectreset";
2193 break;
2195 default:
2196 reset_config = "unknown";
2197 break;
2200 command_print(CMD_CTX, "cortex_m reset_config %s", reset_config);
2202 return ERROR_OK;
2205 static const struct command_registration cortex_m3_exec_command_handlers[] = {
2207 .name = "maskisr",
2208 .handler = handle_cortex_m3_mask_interrupts_command,
2209 .mode = COMMAND_EXEC,
2210 .help = "mask cortex_m interrupts",
2211 .usage = "['auto'|'on'|'off']",
2214 .name = "vector_catch",
2215 .handler = handle_cortex_m3_vector_catch_command,
2216 .mode = COMMAND_EXEC,
2217 .help = "configure hardware vectors to trigger debug entry",
2218 .usage = "['all'|'none'|('bus_err'|'chk_err'|...)*]",
2221 .name = "reset_config",
2222 .handler = handle_cortex_m3_reset_config_command,
2223 .mode = COMMAND_ANY,
2224 .help = "configure software reset handling",
2225 .usage = "['srst'|'sysresetreq'|'vectreset']",
2227 COMMAND_REGISTRATION_DONE
2229 static const struct command_registration cortex_m3_command_handlers[] = {
2231 .chain = armv7m_command_handlers,
2234 .name = "cortex_m",
2235 .mode = COMMAND_EXEC,
2236 .help = "Cortex-M command group",
2237 .usage = "",
2238 .chain = cortex_m3_exec_command_handlers,
2240 COMMAND_REGISTRATION_DONE
2243 struct target_type cortexm3_target = {
2244 .name = "cortex_m",
2245 .deprecated_name = "cortex_m3",
2247 .poll = cortex_m3_poll,
2248 .arch_state = armv7m_arch_state,
2250 .target_request_data = cortex_m3_target_request_data,
2252 .halt = cortex_m3_halt,
2253 .resume = cortex_m3_resume,
2254 .step = cortex_m3_step,
2256 .assert_reset = cortex_m3_assert_reset,
2257 .deassert_reset = cortex_m3_deassert_reset,
2258 .soft_reset_halt = cortex_m3_soft_reset_halt,
2260 .get_gdb_reg_list = armv7m_get_gdb_reg_list,
2262 .read_memory = cortex_m3_read_memory,
2263 .write_memory = cortex_m3_write_memory,
2264 .checksum_memory = armv7m_checksum_memory,
2265 .blank_check_memory = armv7m_blank_check_memory,
2267 .run_algorithm = armv7m_run_algorithm,
2268 .start_algorithm = armv7m_start_algorithm,
2269 .wait_algorithm = armv7m_wait_algorithm,
2271 .add_breakpoint = cortex_m3_add_breakpoint,
2272 .remove_breakpoint = cortex_m3_remove_breakpoint,
2273 .add_watchpoint = cortex_m3_add_watchpoint,
2274 .remove_watchpoint = cortex_m3_remove_watchpoint,
2276 .commands = cortex_m3_command_handlers,
2277 .target_create = cortex_m3_target_create,
2278 .init_target = cortex_m3_init_target,
2279 .examine = cortex_m3_examine,