cortex_m: Fix single stepping will not return to debug mode sometimes
[openocd.git] / src / target / cortex_m.c
blob28824b8a36822ff7a5b7ae1f6a29cc86617935be
1 /***************************************************************************
2 * Copyright (C) 2005 by Dominic Rath *
3 * Dominic.Rath@gmx.de *
4 * *
5 * Copyright (C) 2006 by Magnus Lundin *
6 * lundin@mlu.mine.nu *
7 * *
8 * Copyright (C) 2008 by Spencer Oliver *
9 * spen@spen-soft.co.uk *
10 * *
11 * This program is free software; you can redistribute it and/or modify *
12 * it under the terms of the GNU General Public License as published by *
13 * the Free Software Foundation; either version 2 of the License, or *
14 * (at your option) any later version. *
15 * *
16 * This program is distributed in the hope that it will be useful, *
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
19 * GNU General Public License for more details. *
20 * *
21 * You should have received a copy of the GNU General Public License *
22 * along with this program; if not, write to the *
23 * Free Software Foundation, Inc., *
24 * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
25 * *
26 * *
27 * Cortex-M3(tm) TRM, ARM DDI 0337E (r1p1) and 0337G (r2p0) *
28 * *
29 ***************************************************************************/
30 #ifdef HAVE_CONFIG_H
31 #include "config.h"
32 #endif
34 #include "jtag/interface.h"
35 #include "breakpoints.h"
36 #include "cortex_m.h"
37 #include "target_request.h"
38 #include "target_type.h"
39 #include "arm_disassembler.h"
40 #include "register.h"
41 #include "arm_opcodes.h"
42 #include "arm_semihosting.h"
43 #include <helper/time_support.h>
45 /* NOTE: most of this should work fine for the Cortex-M1 and
46 * Cortex-M0 cores too, although they're ARMv6-M not ARMv7-M.
47 * Some differences: M0/M1 doesn't have FBP remapping or the
48 * DWT tracing/profiling support. (So the cycle counter will
49 * not be usable; the other stuff isn't currently used here.)
51 * Although there are some workarounds for errata seen only in r0p0
52 * silicon, such old parts are hard to find and thus not much tested
53 * any longer.
56 /**
57 * Returns the type of a break point required by address location
59 #define BKPT_TYPE_BY_ADDR(addr) ((addr) < 0x20000000 ? BKPT_HARD : BKPT_SOFT)
62 /* forward declarations */
63 static int cortex_m3_store_core_reg_u32(struct target *target,
64 enum armv7m_regtype type, uint32_t num, uint32_t value);
66 static int cortexm3_dap_read_coreregister_u32(struct adiv5_dap *swjdp,
67 uint32_t *value, int regnum)
69 int retval;
70 uint32_t dcrdr;
72 /* because the DCB_DCRDR is used for the emulated dcc channel
73 * we have to save/restore the DCB_DCRDR when used */
75 retval = mem_ap_read_u32(swjdp, DCB_DCRDR, &dcrdr);
76 if (retval != ERROR_OK)
77 return retval;
79 /* mem_ap_write_u32(swjdp, DCB_DCRSR, regnum); */
80 retval = dap_setup_accessport(swjdp, CSW_32BIT | CSW_ADDRINC_OFF, DCB_DCRSR & 0xFFFFFFF0);
81 if (retval != ERROR_OK)
82 return retval;
83 retval = dap_queue_ap_write(swjdp, AP_REG_BD0 | (DCB_DCRSR & 0xC), regnum);
84 if (retval != ERROR_OK)
85 return retval;
87 /* mem_ap_read_u32(swjdp, DCB_DCRDR, value); */
88 retval = dap_setup_accessport(swjdp, CSW_32BIT | CSW_ADDRINC_OFF, DCB_DCRDR & 0xFFFFFFF0);
89 if (retval != ERROR_OK)
90 return retval;
91 retval = dap_queue_ap_read(swjdp, AP_REG_BD0 | (DCB_DCRDR & 0xC), value);
92 if (retval != ERROR_OK)
93 return retval;
95 retval = dap_run(swjdp);
96 if (retval != ERROR_OK)
97 return retval;
99 /* restore DCB_DCRDR - this needs to be in a seperate
100 * transaction otherwise the emulated DCC channel breaks */
101 if (retval == ERROR_OK)
102 retval = mem_ap_write_atomic_u32(swjdp, DCB_DCRDR, dcrdr);
104 return retval;
107 static int cortexm3_dap_write_coreregister_u32(struct adiv5_dap *swjdp,
108 uint32_t value, int regnum)
110 int retval;
111 uint32_t dcrdr;
113 /* because the DCB_DCRDR is used for the emulated dcc channel
114 * we have to save/restore the DCB_DCRDR when used */
116 retval = mem_ap_read_u32(swjdp, DCB_DCRDR, &dcrdr);
117 if (retval != ERROR_OK)
118 return retval;
120 /* mem_ap_write_u32(swjdp, DCB_DCRDR, core_regs[i]); */
121 retval = dap_setup_accessport(swjdp, CSW_32BIT | CSW_ADDRINC_OFF, DCB_DCRDR & 0xFFFFFFF0);
122 if (retval != ERROR_OK)
123 return retval;
124 retval = dap_queue_ap_write(swjdp, AP_REG_BD0 | (DCB_DCRDR & 0xC), value);
125 if (retval != ERROR_OK)
126 return retval;
128 /* mem_ap_write_u32(swjdp, DCB_DCRSR, i | DCRSR_WnR); */
129 retval = dap_setup_accessport(swjdp, CSW_32BIT | CSW_ADDRINC_OFF, DCB_DCRSR & 0xFFFFFFF0);
130 if (retval != ERROR_OK)
131 return retval;
132 retval = dap_queue_ap_write(swjdp, AP_REG_BD0 | (DCB_DCRSR & 0xC), regnum | DCRSR_WnR);
133 if (retval != ERROR_OK)
134 return retval;
136 retval = dap_run(swjdp);
137 if (retval != ERROR_OK)
138 return retval;
140 /* restore DCB_DCRDR - this needs to be in a seperate
141 * transaction otherwise the emulated DCC channel breaks */
142 if (retval == ERROR_OK)
143 retval = mem_ap_write_atomic_u32(swjdp, DCB_DCRDR, dcrdr);
145 return retval;
148 static int cortex_m3_write_debug_halt_mask(struct target *target,
149 uint32_t mask_on, uint32_t mask_off)
151 struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
152 struct adiv5_dap *swjdp = cortex_m3->armv7m.arm.dap;
154 /* mask off status bits */
155 cortex_m3->dcb_dhcsr &= ~((0xFFFF << 16) | mask_off);
156 /* create new register mask */
157 cortex_m3->dcb_dhcsr |= DBGKEY | C_DEBUGEN | mask_on;
159 return mem_ap_write_atomic_u32(swjdp, DCB_DHCSR, cortex_m3->dcb_dhcsr);
162 static int cortex_m3_clear_halt(struct target *target)
164 struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
165 struct adiv5_dap *swjdp = cortex_m3->armv7m.arm.dap;
166 int retval;
168 /* clear step if any */
169 cortex_m3_write_debug_halt_mask(target, C_HALT, C_STEP);
171 /* Read Debug Fault Status Register */
172 retval = mem_ap_read_atomic_u32(swjdp, NVIC_DFSR, &cortex_m3->nvic_dfsr);
173 if (retval != ERROR_OK)
174 return retval;
176 /* Clear Debug Fault Status */
177 retval = mem_ap_write_atomic_u32(swjdp, NVIC_DFSR, cortex_m3->nvic_dfsr);
178 if (retval != ERROR_OK)
179 return retval;
180 LOG_DEBUG(" NVIC_DFSR 0x%" PRIx32 "", cortex_m3->nvic_dfsr);
182 return ERROR_OK;
185 static int cortex_m3_single_step_core(struct target *target)
187 struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
188 struct adiv5_dap *swjdp = cortex_m3->armv7m.arm.dap;
189 uint32_t dhcsr_save;
190 int retval;
192 /* backup dhcsr reg */
193 dhcsr_save = cortex_m3->dcb_dhcsr;
195 /* Mask interrupts before clearing halt, if done already. This avoids
196 * Erratum 377497 (fixed in r1p0) where setting MASKINTS while clearing
197 * HALT can put the core into an unknown state.
199 if (!(cortex_m3->dcb_dhcsr & C_MASKINTS)) {
200 retval = mem_ap_write_atomic_u32(swjdp, DCB_DHCSR,
201 DBGKEY | C_MASKINTS | C_HALT | C_DEBUGEN);
202 if (retval != ERROR_OK)
203 return retval;
205 retval = mem_ap_write_atomic_u32(swjdp, DCB_DHCSR,
206 DBGKEY | C_MASKINTS | C_STEP | C_DEBUGEN);
207 if (retval != ERROR_OK)
208 return retval;
209 LOG_DEBUG(" ");
211 /* restore dhcsr reg */
212 cortex_m3->dcb_dhcsr = dhcsr_save;
213 cortex_m3_clear_halt(target);
215 return ERROR_OK;
218 static int cortex_m3_endreset_event(struct target *target)
220 int i;
221 int retval;
222 uint32_t dcb_demcr;
223 struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
224 struct armv7m_common *armv7m = &cortex_m3->armv7m;
225 struct adiv5_dap *swjdp = cortex_m3->armv7m.arm.dap;
226 struct cortex_m3_fp_comparator *fp_list = cortex_m3->fp_comparator_list;
227 struct cortex_m3_dwt_comparator *dwt_list = cortex_m3->dwt_comparator_list;
229 /* REVISIT The four debug monitor bits are currently ignored... */
230 retval = mem_ap_read_atomic_u32(swjdp, DCB_DEMCR, &dcb_demcr);
231 if (retval != ERROR_OK)
232 return retval;
233 LOG_DEBUG("DCB_DEMCR = 0x%8.8" PRIx32 "", dcb_demcr);
235 /* this register is used for emulated dcc channel */
236 retval = mem_ap_write_u32(swjdp, DCB_DCRDR, 0);
237 if (retval != ERROR_OK)
238 return retval;
240 /* Enable debug requests */
241 retval = mem_ap_read_atomic_u32(swjdp, DCB_DHCSR, &cortex_m3->dcb_dhcsr);
242 if (retval != ERROR_OK)
243 return retval;
244 if (!(cortex_m3->dcb_dhcsr & C_DEBUGEN)) {
245 retval = mem_ap_write_u32(swjdp, DCB_DHCSR, DBGKEY | C_DEBUGEN);
246 if (retval != ERROR_OK)
247 return retval;
250 /* clear any interrupt masking */
251 cortex_m3_write_debug_halt_mask(target, 0, C_MASKINTS);
253 /* Enable features controlled by ITM and DWT blocks, and catch only
254 * the vectors we were told to pay attention to.
256 * Target firmware is responsible for all fault handling policy
257 * choices *EXCEPT* explicitly scripted overrides like "vector_catch"
258 * or manual updates to the NVIC SHCSR and CCR registers.
260 retval = mem_ap_write_u32(swjdp, DCB_DEMCR, TRCENA | armv7m->demcr);
261 if (retval != ERROR_OK)
262 return retval;
264 /* Paranoia: evidently some (early?) chips don't preserve all the
265 * debug state (including FBP, DWT, etc) across reset...
268 /* Enable FPB */
269 retval = target_write_u32(target, FP_CTRL, 3);
270 if (retval != ERROR_OK)
271 return retval;
273 cortex_m3->fpb_enabled = 1;
275 /* Restore FPB registers */
276 for (i = 0; i < cortex_m3->fp_num_code + cortex_m3->fp_num_lit; i++) {
277 retval = target_write_u32(target, fp_list[i].fpcr_address, fp_list[i].fpcr_value);
278 if (retval != ERROR_OK)
279 return retval;
282 /* Restore DWT registers */
283 for (i = 0; i < cortex_m3->dwt_num_comp; i++) {
284 retval = target_write_u32(target, dwt_list[i].dwt_comparator_address + 0,
285 dwt_list[i].comp);
286 if (retval != ERROR_OK)
287 return retval;
288 retval = target_write_u32(target, dwt_list[i].dwt_comparator_address + 4,
289 dwt_list[i].mask);
290 if (retval != ERROR_OK)
291 return retval;
292 retval = target_write_u32(target, dwt_list[i].dwt_comparator_address + 8,
293 dwt_list[i].function);
294 if (retval != ERROR_OK)
295 return retval;
297 retval = dap_run(swjdp);
298 if (retval != ERROR_OK)
299 return retval;
301 register_cache_invalidate(cortex_m3->armv7m.core_cache);
303 /* make sure we have latest dhcsr flags */
304 retval = mem_ap_read_atomic_u32(swjdp, DCB_DHCSR, &cortex_m3->dcb_dhcsr);
306 return retval;
309 static int cortex_m3_examine_debug_reason(struct target *target)
311 struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
313 /* THIS IS NOT GOOD, TODO - better logic for detection of debug state reason
314 * only check the debug reason if we don't know it already */
316 if ((target->debug_reason != DBG_REASON_DBGRQ)
317 && (target->debug_reason != DBG_REASON_SINGLESTEP)) {
318 if (cortex_m3->nvic_dfsr & DFSR_BKPT) {
319 target->debug_reason = DBG_REASON_BREAKPOINT;
320 if (cortex_m3->nvic_dfsr & DFSR_DWTTRAP)
321 target->debug_reason = DBG_REASON_WPTANDBKPT;
322 } else if (cortex_m3->nvic_dfsr & DFSR_DWTTRAP)
323 target->debug_reason = DBG_REASON_WATCHPOINT;
324 else if (cortex_m3->nvic_dfsr & DFSR_VCATCH)
325 target->debug_reason = DBG_REASON_BREAKPOINT;
326 else /* EXTERNAL, HALTED */
327 target->debug_reason = DBG_REASON_UNDEFINED;
330 return ERROR_OK;
333 static int cortex_m3_examine_exception_reason(struct target *target)
335 uint32_t shcsr = 0, except_sr = 0, cfsr = -1, except_ar = -1;
336 struct armv7m_common *armv7m = target_to_armv7m(target);
337 struct adiv5_dap *swjdp = armv7m->arm.dap;
338 int retval;
340 retval = mem_ap_read_u32(swjdp, NVIC_SHCSR, &shcsr);
341 if (retval != ERROR_OK)
342 return retval;
343 switch (armv7m->exception_number) {
344 case 2: /* NMI */
345 break;
346 case 3: /* Hard Fault */
347 retval = mem_ap_read_atomic_u32(swjdp, NVIC_HFSR, &except_sr);
348 if (retval != ERROR_OK)
349 return retval;
350 if (except_sr & 0x40000000) {
351 retval = mem_ap_read_u32(swjdp, NVIC_CFSR, &cfsr);
352 if (retval != ERROR_OK)
353 return retval;
355 break;
356 case 4: /* Memory Management */
357 retval = mem_ap_read_u32(swjdp, NVIC_CFSR, &except_sr);
358 if (retval != ERROR_OK)
359 return retval;
360 retval = mem_ap_read_u32(swjdp, NVIC_MMFAR, &except_ar);
361 if (retval != ERROR_OK)
362 return retval;
363 break;
364 case 5: /* Bus Fault */
365 retval = mem_ap_read_u32(swjdp, NVIC_CFSR, &except_sr);
366 if (retval != ERROR_OK)
367 return retval;
368 retval = mem_ap_read_u32(swjdp, NVIC_BFAR, &except_ar);
369 if (retval != ERROR_OK)
370 return retval;
371 break;
372 case 6: /* Usage Fault */
373 retval = mem_ap_read_u32(swjdp, NVIC_CFSR, &except_sr);
374 if (retval != ERROR_OK)
375 return retval;
376 break;
377 case 11: /* SVCall */
378 break;
379 case 12: /* Debug Monitor */
380 retval = mem_ap_read_u32(swjdp, NVIC_DFSR, &except_sr);
381 if (retval != ERROR_OK)
382 return retval;
383 break;
384 case 14: /* PendSV */
385 break;
386 case 15: /* SysTick */
387 break;
388 default:
389 except_sr = 0;
390 break;
392 retval = dap_run(swjdp);
393 if (retval == ERROR_OK)
394 LOG_DEBUG("%s SHCSR 0x%" PRIx32 ", SR 0x%" PRIx32
395 ", CFSR 0x%" PRIx32 ", AR 0x%" PRIx32,
396 armv7m_exception_string(armv7m->exception_number),
397 shcsr, except_sr, cfsr, except_ar);
398 return retval;
401 static int cortex_m3_debug_entry(struct target *target)
403 int i;
404 uint32_t xPSR;
405 int retval;
406 struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
407 struct armv7m_common *armv7m = &cortex_m3->armv7m;
408 struct arm *arm = &armv7m->arm;
409 struct adiv5_dap *swjdp = armv7m->arm.dap;
410 struct reg *r;
412 LOG_DEBUG(" ");
414 cortex_m3_clear_halt(target);
415 retval = mem_ap_read_atomic_u32(swjdp, DCB_DHCSR, &cortex_m3->dcb_dhcsr);
416 if (retval != ERROR_OK)
417 return retval;
419 retval = armv7m->examine_debug_reason(target);
420 if (retval != ERROR_OK)
421 return retval;
423 /* Examine target state and mode
424 * First load register acessible through core debug port*/
425 int num_regs = armv7m->core_cache->num_regs;
427 for (i = 0; i < num_regs; i++) {
428 if (!armv7m->core_cache->reg_list[i].valid)
429 armv7m->read_core_reg(target, i);
432 r = armv7m->core_cache->reg_list + ARMV7M_xPSR;
433 xPSR = buf_get_u32(r->value, 0, 32);
435 #ifdef ARMV7_GDB_HACKS
436 /* FIXME this breaks on scan chains with more than one Cortex-M3.
437 * Instead, each CM3 should have its own dummy value...
439 /* copy real xpsr reg for gdb, setting thumb bit */
440 buf_set_u32(armv7m_gdb_dummy_cpsr_value, 0, 32, xPSR);
441 buf_set_u32(armv7m_gdb_dummy_cpsr_value, 5, 1, 1);
442 armv7m_gdb_dummy_cpsr_reg.valid = r->valid;
443 armv7m_gdb_dummy_cpsr_reg.dirty = r->dirty;
444 #endif
446 /* For IT instructions xPSR must be reloaded on resume and clear on debug exec */
447 if (xPSR & 0xf00) {
448 r->dirty = r->valid;
449 cortex_m3_store_core_reg_u32(target, ARMV7M_REGISTER_CORE_GP, 16, xPSR & ~0xff);
452 /* Are we in an exception handler */
453 if (xPSR & 0x1FF) {
454 armv7m->core_mode = ARMV7M_MODE_HANDLER;
455 armv7m->exception_number = (xPSR & 0x1FF);
457 arm->core_mode = ARM_MODE_HANDLER;
458 arm->map = armv7m_msp_reg_map;
459 } else {
460 unsigned control = buf_get_u32(armv7m->core_cache
461 ->reg_list[ARMV7M_CONTROL].value, 0, 2);
463 /* is this thread privileged? */
464 armv7m->core_mode = control & 1;
465 arm->core_mode = armv7m->core_mode
466 ? ARM_MODE_USER_THREAD
467 : ARM_MODE_THREAD;
469 /* which stack is it using? */
470 if (control & 2)
471 arm->map = armv7m_psp_reg_map;
472 else
473 arm->map = armv7m_msp_reg_map;
475 armv7m->exception_number = 0;
478 if (armv7m->exception_number)
479 cortex_m3_examine_exception_reason(target);
481 LOG_DEBUG("entered debug state in core mode: %s at PC 0x%" PRIx32 ", target->state: %s",
482 armv7m_mode_strings[armv7m->core_mode],
483 *(uint32_t *)(arm->pc->value),
484 target_state_name(target));
486 if (armv7m->post_debug_entry) {
487 retval = armv7m->post_debug_entry(target);
488 if (retval != ERROR_OK)
489 return retval;
492 return ERROR_OK;
495 static int cortex_m3_poll(struct target *target)
497 int detected_failure = ERROR_OK;
498 int retval = ERROR_OK;
499 enum target_state prev_target_state = target->state;
500 struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
501 struct adiv5_dap *swjdp = cortex_m3->armv7m.arm.dap;
503 /* Read from Debug Halting Control and Status Register */
504 retval = mem_ap_read_atomic_u32(swjdp, DCB_DHCSR, &cortex_m3->dcb_dhcsr);
505 if (retval != ERROR_OK) {
506 target->state = TARGET_UNKNOWN;
507 return retval;
510 /* Recover from lockup. See ARMv7-M architecture spec,
511 * section B1.5.15 "Unrecoverable exception cases".
513 if (cortex_m3->dcb_dhcsr & S_LOCKUP) {
514 LOG_ERROR("%s -- clearing lockup after double fault",
515 target_name(target));
516 cortex_m3_write_debug_halt_mask(target, C_HALT, 0);
517 target->debug_reason = DBG_REASON_DBGRQ;
519 /* We have to execute the rest (the "finally" equivalent, but
520 * still throw this exception again).
522 detected_failure = ERROR_FAIL;
524 /* refresh status bits */
525 retval = mem_ap_read_atomic_u32(swjdp, DCB_DHCSR, &cortex_m3->dcb_dhcsr);
526 if (retval != ERROR_OK)
527 return retval;
530 if (cortex_m3->dcb_dhcsr & S_RESET_ST) {
531 /* check if still in reset */
532 retval = mem_ap_read_atomic_u32(swjdp, DCB_DHCSR, &cortex_m3->dcb_dhcsr);
533 if (retval != ERROR_OK)
534 return retval;
536 if (cortex_m3->dcb_dhcsr & S_RESET_ST) {
537 target->state = TARGET_RESET;
538 return ERROR_OK;
542 if (target->state == TARGET_RESET) {
543 /* Cannot switch context while running so endreset is
544 * called with target->state == TARGET_RESET
546 LOG_DEBUG("Exit from reset with dcb_dhcsr 0x%" PRIx32,
547 cortex_m3->dcb_dhcsr);
548 cortex_m3_endreset_event(target);
549 target->state = TARGET_RUNNING;
550 prev_target_state = TARGET_RUNNING;
553 if (cortex_m3->dcb_dhcsr & S_HALT) {
554 target->state = TARGET_HALTED;
556 if ((prev_target_state == TARGET_RUNNING) || (prev_target_state == TARGET_RESET)) {
557 retval = cortex_m3_debug_entry(target);
558 if (retval != ERROR_OK)
559 return retval;
561 if (arm_semihosting(target, &retval) != 0)
562 return retval;
564 target_call_event_callbacks(target, TARGET_EVENT_HALTED);
566 if (prev_target_state == TARGET_DEBUG_RUNNING) {
567 LOG_DEBUG(" ");
568 retval = cortex_m3_debug_entry(target);
569 if (retval != ERROR_OK)
570 return retval;
572 target_call_event_callbacks(target, TARGET_EVENT_DEBUG_HALTED);
576 /* REVISIT when S_SLEEP is set, it's in a Sleep or DeepSleep state.
577 * How best to model low power modes?
580 if (target->state == TARGET_UNKNOWN) {
581 /* check if processor is retiring instructions */
582 if (cortex_m3->dcb_dhcsr & S_RETIRE_ST) {
583 target->state = TARGET_RUNNING;
584 retval = ERROR_OK;
588 /* Did we detect a failure condition that we cleared? */
589 if (detected_failure != ERROR_OK)
590 retval = detected_failure;
591 return retval;
594 static int cortex_m3_halt(struct target *target)
596 LOG_DEBUG("target->state: %s",
597 target_state_name(target));
599 if (target->state == TARGET_HALTED) {
600 LOG_DEBUG("target was already halted");
601 return ERROR_OK;
604 if (target->state == TARGET_UNKNOWN)
605 LOG_WARNING("target was in unknown state when halt was requested");
607 if (target->state == TARGET_RESET) {
608 if ((jtag_get_reset_config() & RESET_SRST_PULLS_TRST) && jtag_get_srst()) {
609 LOG_ERROR("can't request a halt while in reset if nSRST pulls nTRST");
610 return ERROR_TARGET_FAILURE;
611 } else {
612 /* we came here in a reset_halt or reset_init sequence
613 * debug entry was already prepared in cortex_m3_assert_reset()
615 target->debug_reason = DBG_REASON_DBGRQ;
617 return ERROR_OK;
621 /* Write to Debug Halting Control and Status Register */
622 cortex_m3_write_debug_halt_mask(target, C_HALT, 0);
624 target->debug_reason = DBG_REASON_DBGRQ;
626 return ERROR_OK;
629 static int cortex_m3_soft_reset_halt(struct target *target)
631 struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
632 struct adiv5_dap *swjdp = cortex_m3->armv7m.arm.dap;
633 uint32_t dcb_dhcsr = 0;
634 int retval, timeout = 0;
636 /* Enter debug state on reset; restore DEMCR in endreset_event() */
637 retval = mem_ap_write_u32(swjdp, DCB_DEMCR,
638 TRCENA | VC_HARDERR | VC_BUSERR | VC_CORERESET);
639 if (retval != ERROR_OK)
640 return retval;
642 /* Request a core-only reset */
643 retval = mem_ap_write_atomic_u32(swjdp, NVIC_AIRCR,
644 AIRCR_VECTKEY | AIRCR_VECTRESET);
645 if (retval != ERROR_OK)
646 return retval;
647 target->state = TARGET_RESET;
649 /* registers are now invalid */
650 register_cache_invalidate(cortex_m3->armv7m.core_cache);
652 while (timeout < 100) {
653 retval = mem_ap_read_atomic_u32(swjdp, DCB_DHCSR, &dcb_dhcsr);
654 if (retval == ERROR_OK) {
655 retval = mem_ap_read_atomic_u32(swjdp, NVIC_DFSR,
656 &cortex_m3->nvic_dfsr);
657 if (retval != ERROR_OK)
658 return retval;
659 if ((dcb_dhcsr & S_HALT)
660 && (cortex_m3->nvic_dfsr & DFSR_VCATCH)) {
661 LOG_DEBUG("system reset-halted, DHCSR 0x%08x, "
662 "DFSR 0x%08x",
663 (unsigned) dcb_dhcsr,
664 (unsigned) cortex_m3->nvic_dfsr);
665 cortex_m3_poll(target);
666 /* FIXME restore user's vector catch config */
667 return ERROR_OK;
668 } else
669 LOG_DEBUG("waiting for system reset-halt, "
670 "DHCSR 0x%08x, %d ms",
671 (unsigned) dcb_dhcsr, timeout);
673 timeout++;
674 alive_sleep(1);
677 return ERROR_OK;
680 static void cortex_m3_enable_breakpoints(struct target *target)
682 struct breakpoint *breakpoint = target->breakpoints;
684 /* set any pending breakpoints */
685 while (breakpoint) {
686 if (!breakpoint->set)
687 cortex_m3_set_breakpoint(target, breakpoint);
688 breakpoint = breakpoint->next;
692 static int cortex_m3_resume(struct target *target, int current,
693 uint32_t address, int handle_breakpoints, int debug_execution)
695 struct armv7m_common *armv7m = target_to_armv7m(target);
696 struct breakpoint *breakpoint = NULL;
697 uint32_t resume_pc;
698 struct reg *r;
700 if (target->state != TARGET_HALTED) {
701 LOG_WARNING("target not halted");
702 return ERROR_TARGET_NOT_HALTED;
705 if (!debug_execution) {
706 target_free_all_working_areas(target);
707 cortex_m3_enable_breakpoints(target);
708 cortex_m3_enable_watchpoints(target);
711 if (debug_execution) {
712 r = armv7m->core_cache->reg_list + ARMV7M_PRIMASK;
714 /* Disable interrupts */
715 /* We disable interrupts in the PRIMASK register instead of
716 * masking with C_MASKINTS. This is probably the same issue
717 * as Cortex-M3 Erratum 377493 (fixed in r1p0): C_MASKINTS
718 * in parallel with disabled interrupts can cause local faults
719 * to not be taken.
721 * REVISIT this clearly breaks non-debug execution, since the
722 * PRIMASK register state isn't saved/restored... workaround
723 * by never resuming app code after debug execution.
725 buf_set_u32(r->value, 0, 1, 1);
726 r->dirty = true;
727 r->valid = true;
729 /* Make sure we are in Thumb mode */
730 r = armv7m->core_cache->reg_list + ARMV7M_xPSR;
731 buf_set_u32(r->value, 24, 1, 1);
732 r->dirty = true;
733 r->valid = true;
736 /* current = 1: continue on current pc, otherwise continue at <address> */
737 r = armv7m->arm.pc;
738 if (!current) {
739 buf_set_u32(r->value, 0, 32, address);
740 r->dirty = true;
741 r->valid = true;
744 /* if we halted last time due to a bkpt instruction
745 * then we have to manually step over it, otherwise
746 * the core will break again */
748 if (!breakpoint_find(target, buf_get_u32(r->value, 0, 32))
749 && !debug_execution)
750 armv7m_maybe_skip_bkpt_inst(target, NULL);
752 resume_pc = buf_get_u32(r->value, 0, 32);
754 armv7m_restore_context(target);
756 /* the front-end may request us not to handle breakpoints */
757 if (handle_breakpoints) {
758 /* Single step past breakpoint at current address */
759 breakpoint = breakpoint_find(target, resume_pc);
760 if (breakpoint) {
761 LOG_DEBUG("unset breakpoint at 0x%8.8" PRIx32 " (ID: %d)",
762 breakpoint->address,
763 breakpoint->unique_id);
764 cortex_m3_unset_breakpoint(target, breakpoint);
765 cortex_m3_single_step_core(target);
766 cortex_m3_set_breakpoint(target, breakpoint);
770 /* Restart core */
771 cortex_m3_write_debug_halt_mask(target, 0, C_HALT);
773 target->debug_reason = DBG_REASON_NOTHALTED;
775 /* registers are now invalid */
776 register_cache_invalidate(armv7m->core_cache);
778 if (!debug_execution) {
779 target->state = TARGET_RUNNING;
780 target_call_event_callbacks(target, TARGET_EVENT_RESUMED);
781 LOG_DEBUG("target resumed at 0x%" PRIx32 "", resume_pc);
782 } else {
783 target->state = TARGET_DEBUG_RUNNING;
784 target_call_event_callbacks(target, TARGET_EVENT_DEBUG_RESUMED);
785 LOG_DEBUG("target debug resumed at 0x%" PRIx32 "", resume_pc);
788 return ERROR_OK;
791 /* int irqstepcount = 0; */
792 static int cortex_m3_step(struct target *target, int current,
793 uint32_t address, int handle_breakpoints)
795 struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
796 struct armv7m_common *armv7m = &cortex_m3->armv7m;
797 struct adiv5_dap *swjdp = armv7m->arm.dap;
798 struct breakpoint *breakpoint = NULL;
799 struct reg *pc = armv7m->arm.pc;
800 bool bkpt_inst_found = false;
801 int retval;
802 bool isr_timed_out = false;
804 if (target->state != TARGET_HALTED) {
805 LOG_WARNING("target not halted");
806 return ERROR_TARGET_NOT_HALTED;
809 /* current = 1: continue on current pc, otherwise continue at <address> */
810 if (!current)
811 buf_set_u32(pc->value, 0, 32, address);
813 uint32_t pc_value = buf_get_u32(pc->value, 0, 32);
815 /* the front-end may request us not to handle breakpoints */
816 if (handle_breakpoints) {
817 breakpoint = breakpoint_find(target, pc_value);
818 if (breakpoint)
819 cortex_m3_unset_breakpoint(target, breakpoint);
822 armv7m_maybe_skip_bkpt_inst(target, &bkpt_inst_found);
824 target->debug_reason = DBG_REASON_SINGLESTEP;
826 armv7m_restore_context(target);
828 target_call_event_callbacks(target, TARGET_EVENT_RESUMED);
830 /* if no bkpt instruction is found at pc then we can perform
831 * a normal step, otherwise we have to manually step over the bkpt
832 * instruction - as such simulate a step */
833 if (bkpt_inst_found == false) {
834 /* Automatic ISR masking mode off: Just step over the next instruction */
835 if ((cortex_m3->isrmasking_mode != CORTEX_M3_ISRMASK_AUTO))
836 cortex_m3_write_debug_halt_mask(target, C_STEP, C_HALT);
837 else {
838 /* Process interrupts during stepping in a way they don't interfere
839 * debugging.
841 * Principle:
843 * Set a temporary break point at the current pc and let the core run
844 * with interrupts enabled. Pending interrupts get served and we run
845 * into the breakpoint again afterwards. Then we step over the next
846 * instruction with interrupts disabled.
848 * If the pending interrupts don't complete within time, we leave the
849 * core running. This may happen if the interrupts trigger faster
850 * than the core can process them or the handler doesn't return.
852 * If no more breakpoints are available we simply do a step with
853 * interrupts enabled.
857 /* 2012-09-29 ph
859 * If a break point is already set on the lower half word then a break point on
860 * the upper half word will not break again when the core is restarted. So we
861 * just step over the instruction with interrupts disabled.
863 * The documentation has no information about this, it was found by observation
864 * on STM32F1 and STM32F2. Proper explanation welcome. STM32F0 dosen't seem to
865 * suffer from this problem.
867 * To add some confusion: pc_value has bit 0 always set, while the breakpoint
868 * address has it always cleared. The former is done to indicate thumb mode
869 * to gdb.
872 if ((pc_value & 0x02) && breakpoint_find(target, pc_value & ~0x03)) {
873 LOG_DEBUG("Stepping over next instruction with interrupts disabled");
874 cortex_m3_write_debug_halt_mask(target, C_HALT | C_MASKINTS, 0);
875 cortex_m3_write_debug_halt_mask(target, C_STEP, C_HALT);
876 /* Re-enable interrupts */
877 cortex_m3_write_debug_halt_mask(target, C_HALT, C_MASKINTS);
879 else {
881 /* Set a temporary break point */
882 retval = breakpoint_add(target, pc_value, 2, BKPT_TYPE_BY_ADDR(pc_value));
883 bool tmp_bp_set = (retval == ERROR_OK);
885 /* No more breakpoints left, just do a step */
886 if (!tmp_bp_set)
887 cortex_m3_write_debug_halt_mask(target, C_STEP, C_HALT);
888 else {
889 /* Start the core */
890 LOG_DEBUG("Starting core to serve pending interrupts");
891 int64_t t_start = timeval_ms();
892 cortex_m3_write_debug_halt_mask(target, 0, C_HALT | C_STEP);
894 /* Wait for pending handlers to complete or timeout */
895 do {
896 retval = mem_ap_read_atomic_u32(swjdp,
897 DCB_DHCSR,
898 &cortex_m3->dcb_dhcsr);
899 if (retval != ERROR_OK) {
900 target->state = TARGET_UNKNOWN;
901 return retval;
903 isr_timed_out = ((timeval_ms() - t_start) > 500);
904 } while (!((cortex_m3->dcb_dhcsr & S_HALT) || isr_timed_out));
906 /* Remove the temporary breakpoint */
907 breakpoint_remove(target, pc_value);
909 if (isr_timed_out) {
910 LOG_DEBUG("Interrupt handlers didn't complete within time, "
911 "leaving target running");
912 } else {
913 /* Step over next instruction with interrupts disabled */
914 cortex_m3_write_debug_halt_mask(target,
915 C_HALT | C_MASKINTS,
917 cortex_m3_write_debug_halt_mask(target, C_STEP, C_HALT);
918 /* Re-enable interrupts */
919 cortex_m3_write_debug_halt_mask(target, C_HALT, C_MASKINTS);
926 retval = mem_ap_read_atomic_u32(swjdp, DCB_DHCSR, &cortex_m3->dcb_dhcsr);
927 if (retval != ERROR_OK)
928 return retval;
930 /* registers are now invalid */
931 register_cache_invalidate(cortex_m3->armv7m.core_cache);
933 if (breakpoint)
934 cortex_m3_set_breakpoint(target, breakpoint);
936 if (isr_timed_out) {
937 /* Leave the core running. The user has to stop execution manually. */
938 target->debug_reason = DBG_REASON_NOTHALTED;
939 target->state = TARGET_RUNNING;
940 return ERROR_OK;
943 LOG_DEBUG("target stepped dcb_dhcsr = 0x%" PRIx32
944 " nvic_icsr = 0x%" PRIx32,
945 cortex_m3->dcb_dhcsr, cortex_m3->nvic_icsr);
947 retval = cortex_m3_debug_entry(target);
948 if (retval != ERROR_OK)
949 return retval;
950 target_call_event_callbacks(target, TARGET_EVENT_HALTED);
952 LOG_DEBUG("target stepped dcb_dhcsr = 0x%" PRIx32
953 " nvic_icsr = 0x%" PRIx32,
954 cortex_m3->dcb_dhcsr, cortex_m3->nvic_icsr);
956 return ERROR_OK;
959 static int cortex_m3_assert_reset(struct target *target)
961 struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
962 struct adiv5_dap *swjdp = cortex_m3->armv7m.arm.dap;
963 enum cortex_m3_soft_reset_config reset_config = cortex_m3->soft_reset_config;
965 LOG_DEBUG("target->state: %s",
966 target_state_name(target));
968 enum reset_types jtag_reset_config = jtag_get_reset_config();
970 if (target_has_event_action(target, TARGET_EVENT_RESET_ASSERT)) {
971 /* allow scripts to override the reset event */
973 target_handle_event(target, TARGET_EVENT_RESET_ASSERT);
974 register_cache_invalidate(cortex_m3->armv7m.core_cache);
975 target->state = TARGET_RESET;
977 return ERROR_OK;
980 /* some cores support connecting while srst is asserted
981 * use that mode is it has been configured */
983 bool srst_asserted = false;
985 if (jtag_reset_config & RESET_SRST_NO_GATING) {
986 adapter_assert_reset();
987 srst_asserted = true;
990 /* Enable debug requests */
991 int retval;
992 retval = mem_ap_read_atomic_u32(swjdp, DCB_DHCSR, &cortex_m3->dcb_dhcsr);
993 if (retval != ERROR_OK)
994 return retval;
995 if (!(cortex_m3->dcb_dhcsr & C_DEBUGEN)) {
996 retval = mem_ap_write_u32(swjdp, DCB_DHCSR, DBGKEY | C_DEBUGEN);
997 if (retval != ERROR_OK)
998 return retval;
1001 /* If the processor is sleeping in a WFI or WFE instruction, the
1002 * C_HALT bit must be asserted to regain control */
1003 if (cortex_m3->dcb_dhcsr & S_SLEEP) {
1004 retval = mem_ap_write_u32(swjdp, DCB_DHCSR, DBGKEY | C_HALT | C_DEBUGEN);
1005 if (retval != ERROR_OK)
1006 return retval;
1009 retval = mem_ap_write_u32(swjdp, DCB_DCRDR, 0);
1010 if (retval != ERROR_OK)
1011 return retval;
1013 if (!target->reset_halt) {
1014 /* Set/Clear C_MASKINTS in a separate operation */
1015 if (cortex_m3->dcb_dhcsr & C_MASKINTS) {
1016 retval = mem_ap_write_atomic_u32(swjdp, DCB_DHCSR,
1017 DBGKEY | C_DEBUGEN | C_HALT);
1018 if (retval != ERROR_OK)
1019 return retval;
1022 /* clear any debug flags before resuming */
1023 cortex_m3_clear_halt(target);
1025 /* clear C_HALT in dhcsr reg */
1026 cortex_m3_write_debug_halt_mask(target, 0, C_HALT);
1027 } else {
1028 /* Halt in debug on reset; endreset_event() restores DEMCR.
1030 * REVISIT catching BUSERR presumably helps to defend against
1031 * bad vector table entries. Should this include MMERR or
1032 * other flags too?
1034 retval = mem_ap_write_atomic_u32(swjdp, DCB_DEMCR,
1035 TRCENA | VC_HARDERR | VC_BUSERR | VC_CORERESET);
1036 if (retval != ERROR_OK)
1037 return retval;
1040 if (jtag_reset_config & RESET_HAS_SRST) {
1041 /* default to asserting srst */
1042 if (!srst_asserted)
1043 adapter_assert_reset();
1044 } else {
1045 /* Use a standard Cortex-M3 software reset mechanism.
1046 * We default to using VECRESET as it is supported on all current cores.
1047 * This has the disadvantage of not resetting the peripherals, so a
1048 * reset-init event handler is needed to perform any peripheral resets.
1050 retval = mem_ap_write_atomic_u32(swjdp, NVIC_AIRCR,
1051 AIRCR_VECTKEY | ((reset_config == CORTEX_M3_RESET_SYSRESETREQ)
1052 ? AIRCR_SYSRESETREQ : AIRCR_VECTRESET));
1053 if (retval != ERROR_OK)
1054 return retval;
1056 LOG_DEBUG("Using Cortex-M3 %s", (reset_config == CORTEX_M3_RESET_SYSRESETREQ)
1057 ? "SYSRESETREQ" : "VECTRESET");
1059 if (reset_config == CORTEX_M3_RESET_VECTRESET) {
1060 LOG_WARNING("Only resetting the Cortex-M3 core, use a reset-init event "
1061 "handler to reset any peripherals or configure hardware srst support.");
1065 /* I do not know why this is necessary, but it
1066 * fixes strange effects (step/resume cause NMI
1067 * after reset) on LM3S6918 -- Michael Schwingen
1069 uint32_t tmp;
1070 retval = mem_ap_read_atomic_u32(swjdp, NVIC_AIRCR, &tmp);
1071 if (retval != ERROR_OK)
1072 return retval;
1076 target->state = TARGET_RESET;
1077 jtag_add_sleep(50000);
1079 register_cache_invalidate(cortex_m3->armv7m.core_cache);
1081 if (target->reset_halt) {
1082 retval = target_halt(target);
1083 if (retval != ERROR_OK)
1084 return retval;
1087 return ERROR_OK;
1090 static int cortex_m3_deassert_reset(struct target *target)
1092 LOG_DEBUG("target->state: %s",
1093 target_state_name(target));
1095 /* deassert reset lines */
1096 adapter_deassert_reset();
1098 return ERROR_OK;
1101 int cortex_m3_set_breakpoint(struct target *target, struct breakpoint *breakpoint)
1103 int retval;
1104 int fp_num = 0;
1105 uint32_t hilo;
1106 struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
1107 struct cortex_m3_fp_comparator *comparator_list = cortex_m3->fp_comparator_list;
1109 if (breakpoint->set) {
1110 LOG_WARNING("breakpoint (BPID: %d) already set", breakpoint->unique_id);
1111 return ERROR_OK;
1114 if (cortex_m3->auto_bp_type)
1115 breakpoint->type = BKPT_TYPE_BY_ADDR(breakpoint->address);
1117 if (breakpoint->type == BKPT_HARD) {
1118 while (comparator_list[fp_num].used && (fp_num < cortex_m3->fp_num_code))
1119 fp_num++;
1120 if (fp_num >= cortex_m3->fp_num_code) {
1121 LOG_ERROR("Can not find free FPB Comparator!");
1122 return ERROR_FAIL;
1124 breakpoint->set = fp_num + 1;
1125 hilo = (breakpoint->address & 0x2) ? FPCR_REPLACE_BKPT_HIGH : FPCR_REPLACE_BKPT_LOW;
1126 comparator_list[fp_num].used = 1;
1127 comparator_list[fp_num].fpcr_value = (breakpoint->address & 0x1FFFFFFC) | hilo | 1;
1128 target_write_u32(target, comparator_list[fp_num].fpcr_address,
1129 comparator_list[fp_num].fpcr_value);
1130 LOG_DEBUG("fpc_num %i fpcr_value 0x%" PRIx32 "",
1131 fp_num,
1132 comparator_list[fp_num].fpcr_value);
1133 if (!cortex_m3->fpb_enabled) {
1134 LOG_DEBUG("FPB wasn't enabled, do it now");
1135 target_write_u32(target, FP_CTRL, 3);
1137 } else if (breakpoint->type == BKPT_SOFT) {
1138 uint8_t code[4];
1140 /* NOTE: on ARMv6-M and ARMv7-M, BKPT(0xab) is used for
1141 * semihosting; don't use that. Otherwise the BKPT
1142 * parameter is arbitrary.
1144 buf_set_u32(code, 0, 32, ARMV5_T_BKPT(0x11));
1145 retval = target_read_memory(target,
1146 breakpoint->address & 0xFFFFFFFE,
1147 breakpoint->length, 1,
1148 breakpoint->orig_instr);
1149 if (retval != ERROR_OK)
1150 return retval;
1151 retval = target_write_memory(target,
1152 breakpoint->address & 0xFFFFFFFE,
1153 breakpoint->length, 1,
1154 code);
1155 if (retval != ERROR_OK)
1156 return retval;
1157 breakpoint->set = true;
1160 LOG_DEBUG("BPID: %d, Type: %d, Address: 0x%08" PRIx32 " Length: %d (set=%d)",
1161 breakpoint->unique_id,
1162 (int)(breakpoint->type),
1163 breakpoint->address,
1164 breakpoint->length,
1165 breakpoint->set);
1167 return ERROR_OK;
1170 int cortex_m3_unset_breakpoint(struct target *target, struct breakpoint *breakpoint)
1172 int retval;
1173 struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
1174 struct cortex_m3_fp_comparator *comparator_list = cortex_m3->fp_comparator_list;
1176 if (!breakpoint->set) {
1177 LOG_WARNING("breakpoint not set");
1178 return ERROR_OK;
1181 LOG_DEBUG("BPID: %d, Type: %d, Address: 0x%08" PRIx32 " Length: %d (set=%d)",
1182 breakpoint->unique_id,
1183 (int)(breakpoint->type),
1184 breakpoint->address,
1185 breakpoint->length,
1186 breakpoint->set);
1188 if (breakpoint->type == BKPT_HARD) {
1189 int fp_num = breakpoint->set - 1;
1190 if ((fp_num < 0) || (fp_num >= cortex_m3->fp_num_code)) {
1191 LOG_DEBUG("Invalid FP Comparator number in breakpoint");
1192 return ERROR_OK;
1194 comparator_list[fp_num].used = 0;
1195 comparator_list[fp_num].fpcr_value = 0;
1196 target_write_u32(target, comparator_list[fp_num].fpcr_address,
1197 comparator_list[fp_num].fpcr_value);
1198 } else {
1199 /* restore original instruction (kept in target endianness) */
1200 if (breakpoint->length == 4) {
1201 retval = target_write_memory(target, breakpoint->address & 0xFFFFFFFE, 4, 1,
1202 breakpoint->orig_instr);
1203 if (retval != ERROR_OK)
1204 return retval;
1205 } else {
1206 retval = target_write_memory(target, breakpoint->address & 0xFFFFFFFE, 2, 1,
1207 breakpoint->orig_instr);
1208 if (retval != ERROR_OK)
1209 return retval;
1212 breakpoint->set = false;
1214 return ERROR_OK;
1217 int cortex_m3_add_breakpoint(struct target *target, struct breakpoint *breakpoint)
1219 struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
1221 if (cortex_m3->auto_bp_type) {
1222 breakpoint->type = BKPT_TYPE_BY_ADDR(breakpoint->address);
1223 #ifdef ARMV7_GDB_HACKS
1224 if (breakpoint->length != 2) {
1225 /* XXX Hack: Replace all breakpoints with length != 2 with
1226 * a hardware breakpoint. */
1227 breakpoint->type = BKPT_HARD;
1228 breakpoint->length = 2;
1230 #endif
1233 if (breakpoint->type != BKPT_TYPE_BY_ADDR(breakpoint->address)) {
1234 if (breakpoint->type == BKPT_HARD) {
1235 LOG_INFO("flash patch comparator requested outside code memory region");
1236 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1239 if (breakpoint->type == BKPT_SOFT) {
1240 LOG_INFO("soft breakpoint requested in code (flash) memory region");
1241 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1245 if ((breakpoint->type == BKPT_HARD) && (cortex_m3->fp_code_available < 1)) {
1246 LOG_INFO("no flash patch comparator unit available for hardware breakpoint");
1247 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1250 if ((breakpoint->length != 2)) {
1251 LOG_INFO("only breakpoints of two bytes length supported");
1252 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1255 if (breakpoint->type == BKPT_HARD)
1256 cortex_m3->fp_code_available--;
1258 return cortex_m3_set_breakpoint(target, breakpoint);
1261 int cortex_m3_remove_breakpoint(struct target *target, struct breakpoint *breakpoint)
1263 struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
1265 /* REVISIT why check? FBP can be updated with core running ... */
1266 if (target->state != TARGET_HALTED) {
1267 LOG_WARNING("target not halted");
1268 return ERROR_TARGET_NOT_HALTED;
1271 if (cortex_m3->auto_bp_type)
1272 breakpoint->type = BKPT_TYPE_BY_ADDR(breakpoint->address);
1274 if (breakpoint->set)
1275 cortex_m3_unset_breakpoint(target, breakpoint);
1277 if (breakpoint->type == BKPT_HARD)
1278 cortex_m3->fp_code_available++;
1280 return ERROR_OK;
1283 int cortex_m3_set_watchpoint(struct target *target, struct watchpoint *watchpoint)
1285 int dwt_num = 0;
1286 uint32_t mask, temp;
1287 struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
1289 /* watchpoint params were validated earlier */
1290 mask = 0;
1291 temp = watchpoint->length;
1292 while (temp) {
1293 temp >>= 1;
1294 mask++;
1296 mask--;
1298 /* REVISIT Don't fully trust these "not used" records ... users
1299 * may set up breakpoints by hand, e.g. dual-address data value
1300 * watchpoint using comparator #1; comparator #0 matching cycle
1301 * count; send data trace info through ITM and TPIU; etc
1303 struct cortex_m3_dwt_comparator *comparator;
1305 for (comparator = cortex_m3->dwt_comparator_list;
1306 comparator->used && dwt_num < cortex_m3->dwt_num_comp;
1307 comparator++, dwt_num++)
1308 continue;
1309 if (dwt_num >= cortex_m3->dwt_num_comp) {
1310 LOG_ERROR("Can not find free DWT Comparator");
1311 return ERROR_FAIL;
1313 comparator->used = 1;
1314 watchpoint->set = dwt_num + 1;
1316 comparator->comp = watchpoint->address;
1317 target_write_u32(target, comparator->dwt_comparator_address + 0,
1318 comparator->comp);
1320 comparator->mask = mask;
1321 target_write_u32(target, comparator->dwt_comparator_address + 4,
1322 comparator->mask);
1324 switch (watchpoint->rw) {
1325 case WPT_READ:
1326 comparator->function = 5;
1327 break;
1328 case WPT_WRITE:
1329 comparator->function = 6;
1330 break;
1331 case WPT_ACCESS:
1332 comparator->function = 7;
1333 break;
1335 target_write_u32(target, comparator->dwt_comparator_address + 8,
1336 comparator->function);
1338 LOG_DEBUG("Watchpoint (ID %d) DWT%d 0x%08x 0x%x 0x%05x",
1339 watchpoint->unique_id, dwt_num,
1340 (unsigned) comparator->comp,
1341 (unsigned) comparator->mask,
1342 (unsigned) comparator->function);
1343 return ERROR_OK;
1346 int cortex_m3_unset_watchpoint(struct target *target, struct watchpoint *watchpoint)
1348 struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
1349 struct cortex_m3_dwt_comparator *comparator;
1350 int dwt_num;
1352 if (!watchpoint->set) {
1353 LOG_WARNING("watchpoint (wpid: %d) not set",
1354 watchpoint->unique_id);
1355 return ERROR_OK;
1358 dwt_num = watchpoint->set - 1;
1360 LOG_DEBUG("Watchpoint (ID %d) DWT%d address: 0x%08x clear",
1361 watchpoint->unique_id, dwt_num,
1362 (unsigned) watchpoint->address);
1364 if ((dwt_num < 0) || (dwt_num >= cortex_m3->dwt_num_comp)) {
1365 LOG_DEBUG("Invalid DWT Comparator number in watchpoint");
1366 return ERROR_OK;
1369 comparator = cortex_m3->dwt_comparator_list + dwt_num;
1370 comparator->used = 0;
1371 comparator->function = 0;
1372 target_write_u32(target, comparator->dwt_comparator_address + 8,
1373 comparator->function);
1375 watchpoint->set = false;
1377 return ERROR_OK;
1380 int cortex_m3_add_watchpoint(struct target *target, struct watchpoint *watchpoint)
1382 struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
1384 if (cortex_m3->dwt_comp_available < 1) {
1385 LOG_DEBUG("no comparators?");
1386 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1389 /* hardware doesn't support data value masking */
1390 if (watchpoint->mask != ~(uint32_t)0) {
1391 LOG_DEBUG("watchpoint value masks not supported");
1392 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1395 /* hardware allows address masks of up to 32K */
1396 unsigned mask;
1398 for (mask = 0; mask < 16; mask++) {
1399 if ((1u << mask) == watchpoint->length)
1400 break;
1402 if (mask == 16) {
1403 LOG_DEBUG("unsupported watchpoint length");
1404 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1406 if (watchpoint->address & ((1 << mask) - 1)) {
1407 LOG_DEBUG("watchpoint address is unaligned");
1408 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1411 /* Caller doesn't seem to be able to describe watching for data
1412 * values of zero; that flags "no value".
1414 * REVISIT This DWT may well be able to watch for specific data
1415 * values. Requires comparator #1 to set DATAVMATCH and match
1416 * the data, and another comparator (DATAVADDR0) matching addr.
1418 if (watchpoint->value) {
1419 LOG_DEBUG("data value watchpoint not YET supported");
1420 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1423 cortex_m3->dwt_comp_available--;
1424 LOG_DEBUG("dwt_comp_available: %d", cortex_m3->dwt_comp_available);
1426 return ERROR_OK;
1429 int cortex_m3_remove_watchpoint(struct target *target, struct watchpoint *watchpoint)
1431 struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
1433 /* REVISIT why check? DWT can be updated with core running ... */
1434 if (target->state != TARGET_HALTED) {
1435 LOG_WARNING("target not halted");
1436 return ERROR_TARGET_NOT_HALTED;
1439 if (watchpoint->set)
1440 cortex_m3_unset_watchpoint(target, watchpoint);
1442 cortex_m3->dwt_comp_available++;
1443 LOG_DEBUG("dwt_comp_available: %d", cortex_m3->dwt_comp_available);
1445 return ERROR_OK;
1448 void cortex_m3_enable_watchpoints(struct target *target)
1450 struct watchpoint *watchpoint = target->watchpoints;
1452 /* set any pending watchpoints */
1453 while (watchpoint) {
1454 if (!watchpoint->set)
1455 cortex_m3_set_watchpoint(target, watchpoint);
1456 watchpoint = watchpoint->next;
1460 static int cortex_m3_load_core_reg_u32(struct target *target,
1461 enum armv7m_regtype type, uint32_t num, uint32_t *value)
1463 int retval;
1464 struct armv7m_common *armv7m = target_to_armv7m(target);
1465 struct adiv5_dap *swjdp = armv7m->arm.dap;
1467 /* NOTE: we "know" here that the register identifiers used
1468 * in the v7m header match the Cortex-M3 Debug Core Register
1469 * Selector values for R0..R15, xPSR, MSP, and PSP.
1471 switch (num) {
1472 case 0 ... 18:
1473 /* read a normal core register */
1474 retval = cortexm3_dap_read_coreregister_u32(swjdp, value, num);
1476 if (retval != ERROR_OK) {
1477 LOG_ERROR("JTAG failure %i", retval);
1478 return ERROR_JTAG_DEVICE_ERROR;
1480 LOG_DEBUG("load from core reg %i value 0x%" PRIx32 "", (int)num, *value);
1481 break;
1483 case ARMV7M_PRIMASK:
1484 case ARMV7M_BASEPRI:
1485 case ARMV7M_FAULTMASK:
1486 case ARMV7M_CONTROL:
1487 /* Cortex-M3 packages these four registers as bitfields
1488 * in one Debug Core register. So say r0 and r2 docs;
1489 * it was removed from r1 docs, but still works.
1491 cortexm3_dap_read_coreregister_u32(swjdp, value, 20);
1493 switch (num) {
1494 case ARMV7M_PRIMASK:
1495 *value = buf_get_u32((uint8_t *)value, 0, 1);
1496 break;
1498 case ARMV7M_BASEPRI:
1499 *value = buf_get_u32((uint8_t *)value, 8, 8);
1500 break;
1502 case ARMV7M_FAULTMASK:
1503 *value = buf_get_u32((uint8_t *)value, 16, 1);
1504 break;
1506 case ARMV7M_CONTROL:
1507 *value = buf_get_u32((uint8_t *)value, 24, 2);
1508 break;
1511 LOG_DEBUG("load from special reg %i value 0x%" PRIx32 "", (int)num, *value);
1512 break;
1514 default:
1515 return ERROR_COMMAND_SYNTAX_ERROR;
1518 return ERROR_OK;
1521 static int cortex_m3_store_core_reg_u32(struct target *target,
1522 enum armv7m_regtype type, uint32_t num, uint32_t value)
1524 int retval;
1525 uint32_t reg;
1526 struct armv7m_common *armv7m = target_to_armv7m(target);
1527 struct adiv5_dap *swjdp = armv7m->arm.dap;
1529 #ifdef ARMV7_GDB_HACKS
1530 /* If the LR register is being modified, make sure it will put us
1531 * in "thumb" mode, or an INVSTATE exception will occur. This is a
1532 * hack to deal with the fact that gdb will sometimes "forge"
1533 * return addresses, and doesn't set the LSB correctly (i.e., when
1534 * printing expressions containing function calls, it sets LR = 0.)
1535 * Valid exception return codes have bit 0 set too.
1537 if (num == ARMV7M_R14)
1538 value |= 0x01;
1539 #endif
1541 /* NOTE: we "know" here that the register identifiers used
1542 * in the v7m header match the Cortex-M3 Debug Core Register
1543 * Selector values for R0..R15, xPSR, MSP, and PSP.
1545 switch (num) {
1546 case 0 ... 18:
1547 retval = cortexm3_dap_write_coreregister_u32(swjdp, value, num);
1548 if (retval != ERROR_OK) {
1549 struct reg *r;
1551 LOG_ERROR("JTAG failure");
1552 r = armv7m->core_cache->reg_list + num;
1553 r->dirty = r->valid;
1554 return ERROR_JTAG_DEVICE_ERROR;
1556 LOG_DEBUG("write core reg %i value 0x%" PRIx32 "", (int)num, value);
1557 break;
1559 case ARMV7M_PRIMASK:
1560 case ARMV7M_BASEPRI:
1561 case ARMV7M_FAULTMASK:
1562 case ARMV7M_CONTROL:
1563 /* Cortex-M3 packages these four registers as bitfields
1564 * in one Debug Core register. So say r0 and r2 docs;
1565 * it was removed from r1 docs, but still works.
1567 cortexm3_dap_read_coreregister_u32(swjdp, &reg, 20);
1569 switch (num) {
1570 case ARMV7M_PRIMASK:
1571 buf_set_u32((uint8_t *)&reg, 0, 1, value);
1572 break;
1574 case ARMV7M_BASEPRI:
1575 buf_set_u32((uint8_t *)&reg, 8, 8, value);
1576 break;
1578 case ARMV7M_FAULTMASK:
1579 buf_set_u32((uint8_t *)&reg, 16, 1, value);
1580 break;
1582 case ARMV7M_CONTROL:
1583 buf_set_u32((uint8_t *)&reg, 24, 2, value);
1584 break;
1587 cortexm3_dap_write_coreregister_u32(swjdp, reg, 20);
1589 LOG_DEBUG("write special reg %i value 0x%" PRIx32 " ", (int)num, value);
1590 break;
1592 default:
1593 return ERROR_COMMAND_SYNTAX_ERROR;
1596 return ERROR_OK;
1599 static int cortex_m3_read_memory(struct target *target, uint32_t address,
1600 uint32_t size, uint32_t count, uint8_t *buffer)
1602 struct armv7m_common *armv7m = target_to_armv7m(target);
1603 struct adiv5_dap *swjdp = armv7m->arm.dap;
1604 int retval = ERROR_COMMAND_SYNTAX_ERROR;
1606 if (armv7m->arm.is_armv6m) {
1607 /* armv6m does not handle unaligned memory access */
1608 if (((size == 4) && (address & 0x3u)) || ((size == 2) && (address & 0x1u)))
1609 return ERROR_TARGET_UNALIGNED_ACCESS;
1612 /* cortex_m3 handles unaligned memory access */
1613 if (count && buffer) {
1614 switch (size) {
1615 case 4:
1616 retval = mem_ap_read_buf_u32(swjdp, buffer, 4 * count, address);
1617 break;
1618 case 2:
1619 retval = mem_ap_read_buf_u16(swjdp, buffer, 2 * count, address);
1620 break;
1621 case 1:
1622 retval = mem_ap_read_buf_u8(swjdp, buffer, count, address);
1623 break;
1627 return retval;
1630 static int cortex_m3_write_memory(struct target *target, uint32_t address,
1631 uint32_t size, uint32_t count, const uint8_t *buffer)
1633 struct armv7m_common *armv7m = target_to_armv7m(target);
1634 struct adiv5_dap *swjdp = armv7m->arm.dap;
1635 int retval = ERROR_COMMAND_SYNTAX_ERROR;
1637 if (armv7m->arm.is_armv6m) {
1638 /* armv6m does not handle unaligned memory access */
1639 if (((size == 4) && (address & 0x3u)) || ((size == 2) && (address & 0x1u)))
1640 return ERROR_TARGET_UNALIGNED_ACCESS;
1643 if (count && buffer) {
1644 switch (size) {
1645 case 4:
1646 retval = mem_ap_write_buf_u32(swjdp, buffer, 4 * count, address);
1647 break;
1648 case 2:
1649 retval = mem_ap_write_buf_u16(swjdp, buffer, 2 * count, address);
1650 break;
1651 case 1:
1652 retval = mem_ap_write_buf_u8(swjdp, buffer, count, address);
1653 break;
1657 return retval;
1660 static int cortex_m3_bulk_write_memory(struct target *target, uint32_t address,
1661 uint32_t count, const uint8_t *buffer)
1663 return cortex_m3_write_memory(target, address, 4, count, buffer);
1666 static int cortex_m3_init_target(struct command_context *cmd_ctx,
1667 struct target *target)
1669 armv7m_build_reg_cache(target);
1670 return ERROR_OK;
1673 /* REVISIT cache valid/dirty bits are unmaintained. We could set "valid"
1674 * on r/w if the core is not running, and clear on resume or reset ... or
1675 * at least, in a post_restore_context() method.
1678 struct dwt_reg_state {
1679 struct target *target;
1680 uint32_t addr;
1681 uint32_t value; /* scratch/cache */
1684 static int cortex_m3_dwt_get_reg(struct reg *reg)
1686 struct dwt_reg_state *state = reg->arch_info;
1688 return target_read_u32(state->target, state->addr, &state->value);
1691 static int cortex_m3_dwt_set_reg(struct reg *reg, uint8_t *buf)
1693 struct dwt_reg_state *state = reg->arch_info;
1695 return target_write_u32(state->target, state->addr,
1696 buf_get_u32(buf, 0, reg->size));
1699 struct dwt_reg {
1700 uint32_t addr;
1701 char *name;
1702 unsigned size;
1705 static struct dwt_reg dwt_base_regs[] = {
1706 { DWT_CTRL, "dwt_ctrl", 32, },
1707 /* NOTE that Erratum 532314 (fixed r2p0) affects CYCCNT: it wrongly
1708 * increments while the core is asleep.
1710 { DWT_CYCCNT, "dwt_cyccnt", 32, },
1711 /* plus some 8 bit counters, useful for profiling with TPIU */
1714 static struct dwt_reg dwt_comp[] = {
1715 #define DWT_COMPARATOR(i) \
1716 { DWT_COMP0 + 0x10 * (i), "dwt_" #i "_comp", 32, }, \
1717 { DWT_MASK0 + 0x10 * (i), "dwt_" #i "_mask", 4, }, \
1718 { DWT_FUNCTION0 + 0x10 * (i), "dwt_" #i "_function", 32, }
1719 DWT_COMPARATOR(0),
1720 DWT_COMPARATOR(1),
1721 DWT_COMPARATOR(2),
1722 DWT_COMPARATOR(3),
1723 #undef DWT_COMPARATOR
1726 static const struct reg_arch_type dwt_reg_type = {
1727 .get = cortex_m3_dwt_get_reg,
1728 .set = cortex_m3_dwt_set_reg,
1731 static void cortex_m3_dwt_addreg(struct target *t, struct reg *r, struct dwt_reg *d)
1733 struct dwt_reg_state *state;
1735 state = calloc(1, sizeof *state);
1736 if (!state)
1737 return;
1738 state->addr = d->addr;
1739 state->target = t;
1741 r->name = d->name;
1742 r->size = d->size;
1743 r->value = &state->value;
1744 r->arch_info = state;
1745 r->type = &dwt_reg_type;
1748 void cortex_m3_dwt_setup(struct cortex_m3_common *cm3, struct target *target)
1750 uint32_t dwtcr;
1751 struct reg_cache *cache;
1752 struct cortex_m3_dwt_comparator *comparator;
1753 int reg, i;
1755 target_read_u32(target, DWT_CTRL, &dwtcr);
1756 if (!dwtcr) {
1757 LOG_DEBUG("no DWT");
1758 return;
1761 cm3->dwt_num_comp = (dwtcr >> 28) & 0xF;
1762 cm3->dwt_comp_available = cm3->dwt_num_comp;
1763 cm3->dwt_comparator_list = calloc(cm3->dwt_num_comp,
1764 sizeof(struct cortex_m3_dwt_comparator));
1765 if (!cm3->dwt_comparator_list) {
1766 fail0:
1767 cm3->dwt_num_comp = 0;
1768 LOG_ERROR("out of mem");
1769 return;
1772 cache = calloc(1, sizeof *cache);
1773 if (!cache) {
1774 fail1:
1775 free(cm3->dwt_comparator_list);
1776 goto fail0;
1778 cache->name = "cortex-m3 dwt registers";
1779 cache->num_regs = 2 + cm3->dwt_num_comp * 3;
1780 cache->reg_list = calloc(cache->num_regs, sizeof *cache->reg_list);
1781 if (!cache->reg_list) {
1782 free(cache);
1783 goto fail1;
1786 for (reg = 0; reg < 2; reg++)
1787 cortex_m3_dwt_addreg(target, cache->reg_list + reg,
1788 dwt_base_regs + reg);
1790 comparator = cm3->dwt_comparator_list;
1791 for (i = 0; i < cm3->dwt_num_comp; i++, comparator++) {
1792 int j;
1794 comparator->dwt_comparator_address = DWT_COMP0 + 0x10 * i;
1795 for (j = 0; j < 3; j++, reg++)
1796 cortex_m3_dwt_addreg(target, cache->reg_list + reg,
1797 dwt_comp + 3 * i + j);
1800 *register_get_last_cache_p(&target->reg_cache) = cache;
1801 cm3->dwt_cache = cache;
1803 LOG_DEBUG("DWT dwtcr 0x%" PRIx32 ", comp %d, watch%s",
1804 dwtcr, cm3->dwt_num_comp,
1805 (dwtcr & (0xf << 24)) ? " only" : "/trigger");
1807 /* REVISIT: if num_comp > 1, check whether comparator #1 can
1808 * implement single-address data value watchpoints ... so we
1809 * won't need to check it later, when asked to set one up.
1813 #define MVFR0 0xe000ef40
1814 #define MVFR1 0xe000ef44
1816 #define MVFR0_DEFAULT_M4 0x10110021
1817 #define MVFR1_DEFAULT_M4 0x11000011
1819 int cortex_m3_examine(struct target *target)
1821 int retval;
1822 uint32_t cpuid, fpcr, mvfr0, mvfr1;
1823 int i;
1824 struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
1825 struct adiv5_dap *swjdp = cortex_m3->armv7m.arm.dap;
1826 struct armv7m_common *armv7m = target_to_armv7m(target);
1828 /* stlink shares the examine handler but does not support
1829 * all its calls */
1830 if (!armv7m->stlink) {
1831 retval = ahbap_debugport_init(swjdp);
1832 if (retval != ERROR_OK)
1833 return retval;
1836 if (!target_was_examined(target)) {
1837 target_set_examined(target);
1839 /* Read from Device Identification Registers */
1840 retval = target_read_u32(target, CPUID, &cpuid);
1841 if (retval != ERROR_OK)
1842 return retval;
1844 /* Get CPU Type */
1845 i = (cpuid >> 4) & 0xf;
1847 LOG_DEBUG("Cortex-M%d r%" PRId8 "p%" PRId8 " processor detected",
1848 i, (uint8_t)((cpuid >> 20) & 0xf), (uint8_t)((cpuid >> 0) & 0xf));
1849 LOG_DEBUG("cpuid: 0x%8.8" PRIx32 "", cpuid);
1851 /* test for floating point feature on cortex-m4 */
1852 if (i == 4) {
1853 target_read_u32(target, MVFR0, &mvfr0);
1854 target_read_u32(target, MVFR1, &mvfr1);
1856 if ((mvfr0 == MVFR0_DEFAULT_M4) && (mvfr1 == MVFR1_DEFAULT_M4)) {
1857 LOG_DEBUG("Cortex-M%d floating point feature FPv4_SP found", i);
1858 armv7m->fp_feature = FPv4_SP;
1860 } else if (i == 0) {
1861 /* Cortex-M0 does not support unaligned memory access */
1862 armv7m->arm.is_armv6m = true;
1865 if (i == 4 || i == 3) {
1866 /* Cortex-M3/M4 has 4096 bytes autoincrement range */
1867 armv7m->dap.tar_autoincr_block = (1 << 12);
1870 /* NOTE: FPB and DWT are both optional. */
1872 /* Setup FPB */
1873 target_read_u32(target, FP_CTRL, &fpcr);
1874 cortex_m3->auto_bp_type = 1;
1875 cortex_m3->fp_num_code = ((fpcr >> 8) & 0x70) | ((fpcr >> 4) & 0xF); /* bits
1876 *[14:12]
1877 *and [7:4]
1879 cortex_m3->fp_num_lit = (fpcr >> 8) & 0xF;
1880 cortex_m3->fp_code_available = cortex_m3->fp_num_code;
1881 cortex_m3->fp_comparator_list = calloc(
1882 cortex_m3->fp_num_code + cortex_m3->fp_num_lit,
1883 sizeof(struct cortex_m3_fp_comparator));
1884 cortex_m3->fpb_enabled = fpcr & 1;
1885 for (i = 0; i < cortex_m3->fp_num_code + cortex_m3->fp_num_lit; i++) {
1886 cortex_m3->fp_comparator_list[i].type =
1887 (i < cortex_m3->fp_num_code) ? FPCR_CODE : FPCR_LITERAL;
1888 cortex_m3->fp_comparator_list[i].fpcr_address = FP_COMP0 + 4 * i;
1890 LOG_DEBUG("FPB fpcr 0x%" PRIx32 ", numcode %i, numlit %i",
1891 fpcr,
1892 cortex_m3->fp_num_code,
1893 cortex_m3->fp_num_lit);
1895 /* Setup DWT */
1896 cortex_m3_dwt_setup(cortex_m3, target);
1898 /* These hardware breakpoints only work for code in flash! */
1899 LOG_INFO("%s: hardware has %d breakpoints, %d watchpoints",
1900 target_name(target),
1901 cortex_m3->fp_num_code,
1902 cortex_m3->dwt_num_comp);
1905 return ERROR_OK;
1908 static int cortex_m3_dcc_read(struct adiv5_dap *swjdp, uint8_t *value, uint8_t *ctrl)
1910 uint16_t dcrdr;
1911 int retval;
1913 mem_ap_read_buf_u16(swjdp, (uint8_t *)&dcrdr, 1, DCB_DCRDR);
1914 *ctrl = (uint8_t)dcrdr;
1915 *value = (uint8_t)(dcrdr >> 8);
1917 LOG_DEBUG("data 0x%x ctrl 0x%x", *value, *ctrl);
1919 /* write ack back to software dcc register
1920 * signify we have read data */
1921 if (dcrdr & (1 << 0)) {
1922 dcrdr = 0;
1923 retval = mem_ap_write_buf_u16(swjdp, (uint8_t *)&dcrdr, 1, DCB_DCRDR);
1924 if (retval != ERROR_OK)
1925 return retval;
1928 return ERROR_OK;
1931 static int cortex_m3_target_request_data(struct target *target,
1932 uint32_t size, uint8_t *buffer)
1934 struct armv7m_common *armv7m = target_to_armv7m(target);
1935 struct adiv5_dap *swjdp = armv7m->arm.dap;
1936 uint8_t data;
1937 uint8_t ctrl;
1938 uint32_t i;
1940 for (i = 0; i < (size * 4); i++) {
1941 cortex_m3_dcc_read(swjdp, &data, &ctrl);
1942 buffer[i] = data;
1945 return ERROR_OK;
1948 static int cortex_m3_handle_target_request(void *priv)
1950 struct target *target = priv;
1951 if (!target_was_examined(target))
1952 return ERROR_OK;
1953 struct armv7m_common *armv7m = target_to_armv7m(target);
1954 struct adiv5_dap *swjdp = armv7m->arm.dap;
1956 if (!target->dbg_msg_enabled)
1957 return ERROR_OK;
1959 if (target->state == TARGET_RUNNING) {
1960 uint8_t data;
1961 uint8_t ctrl;
1963 cortex_m3_dcc_read(swjdp, &data, &ctrl);
1965 /* check if we have data */
1966 if (ctrl & (1 << 0)) {
1967 uint32_t request;
1969 /* we assume target is quick enough */
1970 request = data;
1971 cortex_m3_dcc_read(swjdp, &data, &ctrl);
1972 request |= (data << 8);
1973 cortex_m3_dcc_read(swjdp, &data, &ctrl);
1974 request |= (data << 16);
1975 cortex_m3_dcc_read(swjdp, &data, &ctrl);
1976 request |= (data << 24);
1977 target_request(target, request);
1981 return ERROR_OK;
1984 static int cortex_m3_init_arch_info(struct target *target,
1985 struct cortex_m3_common *cortex_m3, struct jtag_tap *tap)
1987 int retval;
1988 struct armv7m_common *armv7m = &cortex_m3->armv7m;
1990 armv7m_init_arch_info(target, armv7m);
1992 /* prepare JTAG information for the new target */
1993 cortex_m3->jtag_info.tap = tap;
1994 cortex_m3->jtag_info.scann_size = 4;
1996 /* default reset mode is to use srst if fitted
1997 * if not it will use CORTEX_M3_RESET_VECTRESET */
1998 cortex_m3->soft_reset_config = CORTEX_M3_RESET_VECTRESET;
2000 armv7m->arm.dap = &armv7m->dap;
2002 /* Leave (only) generic DAP stuff for debugport_init(); */
2003 armv7m->dap.jtag_info = &cortex_m3->jtag_info;
2004 armv7m->dap.memaccess_tck = 8;
2006 /* Cortex-M3/M4 has 4096 bytes autoincrement range
2007 * but set a safe default to 1024 to support Cortex-M0
2008 * this will be changed in cortex_m3_examine if a M3/M4 is detected */
2009 armv7m->dap.tar_autoincr_block = (1 << 10);
2011 /* register arch-specific functions */
2012 armv7m->examine_debug_reason = cortex_m3_examine_debug_reason;
2014 armv7m->post_debug_entry = NULL;
2016 armv7m->pre_restore_context = NULL;
2018 armv7m->load_core_reg_u32 = cortex_m3_load_core_reg_u32;
2019 armv7m->store_core_reg_u32 = cortex_m3_store_core_reg_u32;
2021 target_register_timer_callback(cortex_m3_handle_target_request, 1, 1, target);
2023 retval = arm_jtag_setup_connection(&cortex_m3->jtag_info);
2024 if (retval != ERROR_OK)
2025 return retval;
2027 return ERROR_OK;
2030 static int cortex_m3_target_create(struct target *target, Jim_Interp *interp)
2032 struct cortex_m3_common *cortex_m3 = calloc(1, sizeof(struct cortex_m3_common));
2034 cortex_m3->common_magic = CORTEX_M3_COMMON_MAGIC;
2035 cortex_m3_init_arch_info(target, cortex_m3, target->tap);
2037 return ERROR_OK;
2040 /*--------------------------------------------------------------------------*/
2042 static int cortex_m3_verify_pointer(struct command_context *cmd_ctx,
2043 struct cortex_m3_common *cm3)
2045 if (cm3->common_magic != CORTEX_M3_COMMON_MAGIC) {
2046 command_print(cmd_ctx, "target is not a Cortex-M3");
2047 return ERROR_TARGET_INVALID;
2049 return ERROR_OK;
2053 * Only stuff below this line should need to verify that its target
2054 * is a Cortex-M3. Everything else should have indirected through the
2055 * cortexm3_target structure, which is only used with CM3 targets.
2058 static const struct {
2059 char name[10];
2060 unsigned mask;
2061 } vec_ids[] = {
2062 { "hard_err", VC_HARDERR, },
2063 { "int_err", VC_INTERR, },
2064 { "bus_err", VC_BUSERR, },
2065 { "state_err", VC_STATERR, },
2066 { "chk_err", VC_CHKERR, },
2067 { "nocp_err", VC_NOCPERR, },
2068 { "mm_err", VC_MMERR, },
2069 { "reset", VC_CORERESET, },
2072 COMMAND_HANDLER(handle_cortex_m3_vector_catch_command)
2074 struct target *target = get_current_target(CMD_CTX);
2075 struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
2076 struct armv7m_common *armv7m = &cortex_m3->armv7m;
2077 struct adiv5_dap *swjdp = armv7m->arm.dap;
2078 uint32_t demcr = 0;
2079 int retval;
2081 retval = cortex_m3_verify_pointer(CMD_CTX, cortex_m3);
2082 if (retval != ERROR_OK)
2083 return retval;
2085 retval = mem_ap_read_atomic_u32(swjdp, DCB_DEMCR, &demcr);
2086 if (retval != ERROR_OK)
2087 return retval;
2089 if (CMD_ARGC > 0) {
2090 unsigned catch = 0;
2092 if (CMD_ARGC == 1) {
2093 if (strcmp(CMD_ARGV[0], "all") == 0) {
2094 catch = VC_HARDERR | VC_INTERR | VC_BUSERR
2095 | VC_STATERR | VC_CHKERR | VC_NOCPERR
2096 | VC_MMERR | VC_CORERESET;
2097 goto write;
2098 } else if (strcmp(CMD_ARGV[0], "none") == 0)
2099 goto write;
2101 while (CMD_ARGC-- > 0) {
2102 unsigned i;
2103 for (i = 0; i < ARRAY_SIZE(vec_ids); i++) {
2104 if (strcmp(CMD_ARGV[CMD_ARGC], vec_ids[i].name) != 0)
2105 continue;
2106 catch |= vec_ids[i].mask;
2107 break;
2109 if (i == ARRAY_SIZE(vec_ids)) {
2110 LOG_ERROR("No CM3 vector '%s'", CMD_ARGV[CMD_ARGC]);
2111 return ERROR_COMMAND_SYNTAX_ERROR;
2114 write:
2115 /* For now, armv7m->demcr only stores vector catch flags. */
2116 armv7m->demcr = catch;
2118 demcr &= ~0xffff;
2119 demcr |= catch;
2121 /* write, but don't assume it stuck (why not??) */
2122 retval = mem_ap_write_u32(swjdp, DCB_DEMCR, demcr);
2123 if (retval != ERROR_OK)
2124 return retval;
2125 retval = mem_ap_read_atomic_u32(swjdp, DCB_DEMCR, &demcr);
2126 if (retval != ERROR_OK)
2127 return retval;
2129 /* FIXME be sure to clear DEMCR on clean server shutdown.
2130 * Otherwise the vector catch hardware could fire when there's
2131 * no debugger hooked up, causing much confusion...
2135 for (unsigned i = 0; i < ARRAY_SIZE(vec_ids); i++) {
2136 command_print(CMD_CTX, "%9s: %s", vec_ids[i].name,
2137 (demcr & vec_ids[i].mask) ? "catch" : "ignore");
2140 return ERROR_OK;
2143 COMMAND_HANDLER(handle_cortex_m3_mask_interrupts_command)
2145 struct target *target = get_current_target(CMD_CTX);
2146 struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
2147 int retval;
2149 static const Jim_Nvp nvp_maskisr_modes[] = {
2150 { .name = "auto", .value = CORTEX_M3_ISRMASK_AUTO },
2151 { .name = "off", .value = CORTEX_M3_ISRMASK_OFF },
2152 { .name = "on", .value = CORTEX_M3_ISRMASK_ON },
2153 { .name = NULL, .value = -1 },
2155 const Jim_Nvp *n;
2158 retval = cortex_m3_verify_pointer(CMD_CTX, cortex_m3);
2159 if (retval != ERROR_OK)
2160 return retval;
2162 if (target->state != TARGET_HALTED) {
2163 command_print(CMD_CTX, "target must be stopped for \"%s\" command", CMD_NAME);
2164 return ERROR_OK;
2167 if (CMD_ARGC > 0) {
2168 n = Jim_Nvp_name2value_simple(nvp_maskisr_modes, CMD_ARGV[0]);
2169 if (n->name == NULL)
2170 return ERROR_COMMAND_SYNTAX_ERROR;
2171 cortex_m3->isrmasking_mode = n->value;
2174 if (cortex_m3->isrmasking_mode == CORTEX_M3_ISRMASK_ON)
2175 cortex_m3_write_debug_halt_mask(target, C_HALT | C_MASKINTS, 0);
2176 else
2177 cortex_m3_write_debug_halt_mask(target, C_HALT, C_MASKINTS);
2180 n = Jim_Nvp_value2name_simple(nvp_maskisr_modes, cortex_m3->isrmasking_mode);
2181 command_print(CMD_CTX, "cortex_m3 interrupt mask %s", n->name);
2183 return ERROR_OK;
2186 COMMAND_HANDLER(handle_cortex_m3_reset_config_command)
2188 struct target *target = get_current_target(CMD_CTX);
2189 struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
2190 int retval;
2191 char *reset_config;
2193 retval = cortex_m3_verify_pointer(CMD_CTX, cortex_m3);
2194 if (retval != ERROR_OK)
2195 return retval;
2197 if (CMD_ARGC > 0) {
2198 if (strcmp(*CMD_ARGV, "sysresetreq") == 0)
2199 cortex_m3->soft_reset_config = CORTEX_M3_RESET_SYSRESETREQ;
2200 else if (strcmp(*CMD_ARGV, "vectreset") == 0)
2201 cortex_m3->soft_reset_config = CORTEX_M3_RESET_VECTRESET;
2204 switch (cortex_m3->soft_reset_config) {
2205 case CORTEX_M3_RESET_SYSRESETREQ:
2206 reset_config = "sysresetreq";
2207 break;
2209 case CORTEX_M3_RESET_VECTRESET:
2210 reset_config = "vectreset";
2211 break;
2213 default:
2214 reset_config = "unknown";
2215 break;
2218 command_print(CMD_CTX, "cortex_m3 reset_config %s", reset_config);
2220 return ERROR_OK;
2223 static const struct command_registration cortex_m3_exec_command_handlers[] = {
2225 .name = "maskisr",
2226 .handler = handle_cortex_m3_mask_interrupts_command,
2227 .mode = COMMAND_EXEC,
2228 .help = "mask cortex_m3 interrupts",
2229 .usage = "['auto'|'on'|'off']",
2232 .name = "vector_catch",
2233 .handler = handle_cortex_m3_vector_catch_command,
2234 .mode = COMMAND_EXEC,
2235 .help = "configure hardware vectors to trigger debug entry",
2236 .usage = "['all'|'none'|('bus_err'|'chk_err'|...)*]",
2239 .name = "reset_config",
2240 .handler = handle_cortex_m3_reset_config_command,
2241 .mode = COMMAND_ANY,
2242 .help = "configure software reset handling",
2243 .usage = "['srst'|'sysresetreq'|'vectreset']",
2245 COMMAND_REGISTRATION_DONE
2247 static const struct command_registration cortex_m3_command_handlers[] = {
2249 .chain = armv7m_command_handlers,
2252 .name = "cortex_m3",
2253 .mode = COMMAND_EXEC,
2254 .help = "Cortex-M3 command group",
2255 .usage = "",
2256 .chain = cortex_m3_exec_command_handlers,
2258 COMMAND_REGISTRATION_DONE
2261 struct target_type cortexm3_target = {
2262 .name = "cortex_m3",
2264 .poll = cortex_m3_poll,
2265 .arch_state = armv7m_arch_state,
2267 .target_request_data = cortex_m3_target_request_data,
2269 .halt = cortex_m3_halt,
2270 .resume = cortex_m3_resume,
2271 .step = cortex_m3_step,
2273 .assert_reset = cortex_m3_assert_reset,
2274 .deassert_reset = cortex_m3_deassert_reset,
2275 .soft_reset_halt = cortex_m3_soft_reset_halt,
2277 .get_gdb_reg_list = armv7m_get_gdb_reg_list,
2279 .read_memory = cortex_m3_read_memory,
2280 .write_memory = cortex_m3_write_memory,
2281 .bulk_write_memory = cortex_m3_bulk_write_memory,
2282 .checksum_memory = armv7m_checksum_memory,
2283 .blank_check_memory = armv7m_blank_check_memory,
2285 .run_algorithm = armv7m_run_algorithm,
2286 .start_algorithm = armv7m_start_algorithm,
2287 .wait_algorithm = armv7m_wait_algorithm,
2289 .add_breakpoint = cortex_m3_add_breakpoint,
2290 .remove_breakpoint = cortex_m3_remove_breakpoint,
2291 .add_watchpoint = cortex_m3_add_watchpoint,
2292 .remove_watchpoint = cortex_m3_remove_watchpoint,
2294 .commands = cortex_m3_command_handlers,
2295 .target_create = cortex_m3_target_create,
2296 .init_target = cortex_m3_init_target,
2297 .examine = cortex_m3_examine,