mips: optimize mips32_pracc_read_regs() code
[openocd.git] / src / target / mips32_pracc.c
blob787daefe5a76c4ebb2c75f4f7a563795c2ae2b32
1 /***************************************************************************
2 * Copyright (C) 2008 by Spencer Oliver *
3 * spen@spen-soft.co.uk *
4 * *
5 * Copyright (C) 2008 by David T.L. Wong *
6 * *
7 * Copyright (C) 2009 by David N. Claffey <dnclaffey@gmail.com> *
8 * *
9 * Copyright (C) 2011 by Drasko DRASKOVIC *
10 * drasko.draskovic@gmail.com *
11 * *
12 * This program is free software; you can redistribute it and/or modify *
13 * it under the terms of the GNU General Public License as published by *
14 * the Free Software Foundation; either version 2 of the License, or *
15 * (at your option) any later version. *
16 * *
17 * This program is distributed in the hope that it will be useful, *
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
20 * GNU General Public License for more details. *
21 * *
22 * You should have received a copy of the GNU General Public License *
23 * along with this program; if not, write to the *
24 * Free Software Foundation, Inc., *
25 * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
26 ***************************************************************************/
29 * This version has optimized assembly routines for 32 bit operations:
30 * - read word
31 * - write word
32 * - write array of words
34 * One thing to be aware of is that the MIPS32 cpu will execute the
35 * instruction after a branch instruction (one delay slot).
37 * For example:
38 * LW $2, ($5 +10)
39 * B foo
40 * LW $1, ($2 +100)
42 * The LW $1, ($2 +100) instruction is also executed. If this is
43 * not wanted a NOP can be inserted:
45 * LW $2, ($5 +10)
46 * B foo
47 * NOP
48 * LW $1, ($2 +100)
50 * or the code can be changed to:
52 * B foo
53 * LW $2, ($5 +10)
54 * LW $1, ($2 +100)
56 * The original code contained NOPs. I have removed these and moved
57 * the branches.
59 * I also moved the PRACC_STACK to 0xFF204000. This allows
60 * the use of 16 bits offsets to get pointers to the input
61 * and output area relative to the stack. Note that the stack
62 * isn't really a stack (the stack pointer is not 'moving')
63 * but a FIFO simulated in software.
65 * These changes result in a 35% speed increase when programming an
66 * external flash.
68 * More improvement could be gained if the registers do no need
69 * to be preserved but in that case the routines should be aware
70 * OpenOCD is used as a flash programmer or as a debug tool.
72 * Nico Coesel
75 #ifdef HAVE_CONFIG_H
76 #include "config.h"
77 #endif
79 #include <helper/time_support.h>
81 #include "mips32.h"
82 #include "mips32_pracc.h"
84 struct mips32_pracc_context {
85 uint32_t *local_iparam;
86 int num_iparam;
87 uint32_t *local_oparam;
88 int num_oparam;
89 const uint32_t *code;
90 int code_len;
91 uint32_t stack[32];
92 int stack_offset;
93 struct mips_ejtag *ejtag_info;
96 static int mips32_pracc_sync_cache(struct mips_ejtag *ejtag_info,
97 uint32_t start_addr, uint32_t end_addr);
98 static int mips32_pracc_clean_invalidate_cache(struct mips_ejtag *ejtag_info,
99 uint32_t start_addr, uint32_t end_addr);
101 static int wait_for_pracc_rw(struct mips_ejtag *ejtag_info, uint32_t *ctrl)
103 uint32_t ejtag_ctrl;
104 long long then = timeval_ms();
105 int timeout;
106 int retval;
108 /* wait for the PrAcc to become "1" */
109 mips_ejtag_set_instr(ejtag_info, EJTAG_INST_CONTROL);
111 while (1) {
112 ejtag_ctrl = ejtag_info->ejtag_ctrl;
113 retval = mips_ejtag_drscan_32(ejtag_info, &ejtag_ctrl);
114 if (retval != ERROR_OK)
115 return retval;
117 if (ejtag_ctrl & EJTAG_CTRL_PRACC)
118 break;
120 timeout = timeval_ms() - then;
121 if (timeout > 1000) {
122 LOG_DEBUG("DEBUGMODULE: No memory access in progress!");
123 return ERROR_JTAG_DEVICE_ERROR;
127 *ctrl = ejtag_ctrl;
128 return ERROR_OK;
131 static int mips32_pracc_exec_read(struct mips32_pracc_context *ctx, uint32_t address)
133 struct mips_ejtag *ejtag_info = ctx->ejtag_info;
134 int offset;
135 uint32_t ejtag_ctrl, data;
137 if ((address >= MIPS32_PRACC_PARAM_IN)
138 && (address < MIPS32_PRACC_PARAM_IN + ctx->num_iparam * 4)) {
139 offset = (address - MIPS32_PRACC_PARAM_IN) / 4;
140 data = ctx->local_iparam[offset];
141 } else if ((address >= MIPS32_PRACC_PARAM_OUT)
142 && (address < MIPS32_PRACC_PARAM_OUT + ctx->num_oparam * 4)) {
143 offset = (address - MIPS32_PRACC_PARAM_OUT) / 4;
144 data = ctx->local_oparam[offset];
145 } else if ((address >= MIPS32_PRACC_TEXT)
146 && (address < MIPS32_PRACC_TEXT + ctx->code_len * 4)) {
147 offset = (address - MIPS32_PRACC_TEXT) / 4;
148 data = ctx->code[offset];
149 } else if (address == MIPS32_PRACC_STACK) {
150 if (ctx->stack_offset <= 0) {
151 LOG_ERROR("Error: Pracc stack out of bounds");
152 return ERROR_JTAG_DEVICE_ERROR;
154 /* save to our debug stack */
155 data = ctx->stack[--ctx->stack_offset];
156 } else {
157 /* TODO: send JMP 0xFF200000 instruction. Hopefully processor jump back
158 * to start of debug vector */
160 LOG_ERROR("Error reading unexpected address 0x%8.8" PRIx32 "", address);
161 return ERROR_JTAG_DEVICE_ERROR;
164 /* Send the data out */
165 mips_ejtag_set_instr(ctx->ejtag_info, EJTAG_INST_DATA);
166 mips_ejtag_drscan_32_out(ctx->ejtag_info, data);
168 /* Clear the access pending bit (let the processor eat!) */
169 ejtag_ctrl = ejtag_info->ejtag_ctrl & ~EJTAG_CTRL_PRACC;
170 mips_ejtag_set_instr(ctx->ejtag_info, EJTAG_INST_CONTROL);
171 mips_ejtag_drscan_32_out(ctx->ejtag_info, ejtag_ctrl);
173 return jtag_execute_queue();
176 static int mips32_pracc_exec_write(struct mips32_pracc_context *ctx, uint32_t address)
178 uint32_t ejtag_ctrl, data;
179 int offset;
180 struct mips_ejtag *ejtag_info = ctx->ejtag_info;
181 int retval;
183 mips_ejtag_set_instr(ctx->ejtag_info, EJTAG_INST_DATA);
184 retval = mips_ejtag_drscan_32(ctx->ejtag_info, &data);
185 if (retval != ERROR_OK)
186 return retval;
188 /* Clear access pending bit */
189 ejtag_ctrl = ejtag_info->ejtag_ctrl & ~EJTAG_CTRL_PRACC;
190 mips_ejtag_set_instr(ctx->ejtag_info, EJTAG_INST_CONTROL);
191 mips_ejtag_drscan_32_out(ctx->ejtag_info, ejtag_ctrl);
193 retval = jtag_execute_queue();
194 if (retval != ERROR_OK)
195 return retval;
197 if ((address >= MIPS32_PRACC_PARAM_IN)
198 && (address < MIPS32_PRACC_PARAM_IN + ctx->num_iparam * 4)) {
199 offset = (address - MIPS32_PRACC_PARAM_IN) / 4;
200 ctx->local_iparam[offset] = data;
201 } else if ((address >= MIPS32_PRACC_PARAM_OUT)
202 && (address < MIPS32_PRACC_PARAM_OUT + ctx->num_oparam * 4)) {
203 offset = (address - MIPS32_PRACC_PARAM_OUT) / 4;
204 ctx->local_oparam[offset] = data;
205 } else if (address == MIPS32_PRACC_STACK) {
206 if (ctx->stack_offset >= 32) {
207 LOG_ERROR("Error: Pracc stack out of bounds");
208 return ERROR_JTAG_DEVICE_ERROR;
210 /* save data onto our stack */
211 ctx->stack[ctx->stack_offset++] = data;
212 } else {
213 LOG_ERROR("Error writing unexpected address 0x%8.8" PRIx32 "", address);
214 return ERROR_JTAG_DEVICE_ERROR;
217 return ERROR_OK;
220 int mips32_pracc_exec(struct mips_ejtag *ejtag_info, int code_len, const uint32_t *code,
221 int num_param_in, uint32_t *param_in, int num_param_out, uint32_t *param_out, int cycle)
223 uint32_t ejtag_ctrl;
224 uint32_t address;
225 struct mips32_pracc_context ctx;
226 int retval;
227 int pass = 0;
229 ctx.local_iparam = param_in;
230 ctx.local_oparam = param_out;
231 ctx.num_iparam = num_param_in;
232 ctx.num_oparam = num_param_out;
233 ctx.code = code;
234 ctx.code_len = code_len;
235 ctx.ejtag_info = ejtag_info;
236 ctx.stack_offset = 0;
238 while (1) {
239 retval = wait_for_pracc_rw(ejtag_info, &ejtag_ctrl);
240 if (retval != ERROR_OK)
241 return retval;
243 address = 0;
244 mips_ejtag_set_instr(ejtag_info, EJTAG_INST_ADDRESS);
245 retval = mips_ejtag_drscan_32(ejtag_info, &address);
246 if (retval != ERROR_OK)
247 return retval;
249 /* Check for read or write */
250 if (ejtag_ctrl & EJTAG_CTRL_PRNW) {
251 retval = mips32_pracc_exec_write(&ctx, address);
252 if (retval != ERROR_OK)
253 return retval;
254 } else {
255 /* Check to see if its reading at the debug vector. The first pass through
256 * the module is always read at the vector, so the first one we allow. When
257 * the second read from the vector occurs we are done and just exit. */
258 if ((address == MIPS32_PRACC_TEXT) && (pass++))
259 break;
261 retval = mips32_pracc_exec_read(&ctx, address);
262 if (retval != ERROR_OK)
263 return retval;
266 if (cycle == 0)
267 break;
270 /* stack sanity check */
271 if (ctx.stack_offset != 0)
272 LOG_DEBUG("Pracc Stack not zero");
274 return ERROR_OK;
277 static int mips32_pracc_read_u32(struct mips_ejtag *ejtag_info, uint32_t addr, uint32_t *buf)
279 uint32_t code[] = {
280 /* start: */
281 MIPS32_MTC0(15, 31, 0), /* move $15 to COP0 DeSave */
282 MIPS32_LUI(15, PRACC_UPPER_BASE_ADDR), /* $15 = MIPS32_PRACC_BASE_ADDR */
283 MIPS32_SW(8, PRACC_STACK_OFFSET, 15), /* sw $8,PRACC_STACK_OFFSET($15) */
285 MIPS32_LUI(8, UPPER16((addr + 0x8000))), /* load $8 with modified upper address */
286 MIPS32_LW(8, LOWER16(addr), 8), /* lw $8, LOWER16(addr)($8) */
287 MIPS32_SW(8, PRACC_OUT_OFFSET, 15), /* sw $8,PRACC_OUT_OFFSET($15) */
289 MIPS32_LW(8, PRACC_STACK_OFFSET, 15), /* lw $8,PRACC_STACK_OFFSET($15) */
290 MIPS32_B(NEG16(8)), /* b start */
291 MIPS32_MFC0(15, 31, 0), /* move COP0 DeSave to $15 */
294 return mips32_pracc_exec(ejtag_info, ARRAY_SIZE(code), code, 0, NULL, 1, buf, 1);
297 int mips32_pracc_read_mem(struct mips_ejtag *ejtag_info, uint32_t addr, int size, int count, void *buf)
299 if (count == 1 && size == 4)
300 return mips32_pracc_read_u32(ejtag_info, addr, (uint32_t *)buf);
302 int retval = ERROR_FAIL;
304 uint32_t *code = NULL;
305 uint32_t *data = NULL;
307 code = malloc((256 * 2 + 10) * sizeof(uint32_t));
308 if (code == NULL) {
309 LOG_ERROR("Out of memory");
310 goto exit;
313 if (size != 4) {
314 data = malloc(256 * sizeof(uint32_t));
315 if (data == NULL) {
316 LOG_ERROR("Out of memory");
317 goto exit;
321 uint32_t *buf32 = buf;
322 uint16_t *buf16 = buf;
323 uint8_t *buf8 = buf;
325 int i;
326 uint32_t upper_base_addr, last_upper_base_addr;
327 int this_round_count;
328 int code_len;
330 while (count) {
331 this_round_count = (count > 256) ? 256 : count;
332 last_upper_base_addr = UPPER16((addr + 0x8000));
333 uint32_t *code_p = code;
335 *code_p++ = MIPS32_MTC0(15, 31, 0); /* save $15 in DeSave */
336 *code_p++ = MIPS32_LUI(15, PRACC_UPPER_BASE_ADDR); /* $15 = MIPS32_PRACC_BASE_ADDR */
337 *code_p++ = MIPS32_SW(8, PRACC_STACK_OFFSET, 15); /* save $8 and $9 to pracc stack */
338 *code_p++ = MIPS32_SW(9, PRACC_STACK_OFFSET, 15);
339 *code_p++ = MIPS32_LUI(9, last_upper_base_addr); /* load the upper memory address in $9*/
340 code_len = 5;
342 for (i = 0; i != this_round_count; i++) { /* Main code loop */
343 upper_base_addr = UPPER16((addr + 0x8000));
344 if (last_upper_base_addr != upper_base_addr) {
345 *code_p++ = MIPS32_LUI(9, upper_base_addr); /* if needed, change upper address in $9*/
346 code_len++;
347 last_upper_base_addr = upper_base_addr;
350 if (size == 4)
351 *code_p++ = MIPS32_LW(8, LOWER16(addr), 9); /* load from memory to $8 */
352 else if (size == 2)
353 *code_p++ = MIPS32_LHU(8, LOWER16(addr), 9);
354 else
355 *code_p++ = MIPS32_LBU(8, LOWER16(addr), 9);
357 *code_p++ = MIPS32_SW(8, PRACC_OUT_OFFSET + i * 4, 15); /* store $8 at param out */
359 code_len += 2;
360 addr += size;
363 *code_p++ = MIPS32_LW(9, PRACC_STACK_OFFSET, 15); /* restore $8 and $9 from pracc stack */
364 *code_p++ = MIPS32_LW(8, PRACC_STACK_OFFSET, 15);
366 code_len += 4;
367 *code_p++ = MIPS32_B(NEG16(code_len - 1)); /* jump to start */
368 *code_p = MIPS32_MFC0(15, 31, 0); /* restore $15 from DeSave */
370 if (size == 4) {
371 retval = mips32_pracc_exec(ejtag_info, code_len, code, 0, NULL, this_round_count, buf32, 1);
372 if (retval != ERROR_OK)
373 goto exit;
374 buf32 += this_round_count;
375 } else {
376 retval = mips32_pracc_exec(ejtag_info, code_len, code, 0, NULL, this_round_count, data, 1);
377 if (retval != ERROR_OK)
378 goto exit;
379 uint32_t *data_p = data;
380 for (i = 0; i != this_round_count; i++) {
381 if (size == 2)
382 *buf16++ = *data_p++;
383 else
384 *buf8++ = *data_p++;
387 count -= this_round_count;
390 exit:
391 if (code)
392 free(code);
393 if (data)
394 free(data);
395 return retval;
398 int mips32_cp0_read(struct mips_ejtag *ejtag_info, uint32_t *val, uint32_t cp0_reg, uint32_t cp0_sel)
401 * Do not make this code static, but regenerate it every time,
402 * as 3th element has to be changed to add parameters
404 uint32_t code[] = {
405 /* start: */
406 MIPS32_MTC0(15, 31, 0), /* move $15 to COP0 DeSave */
407 MIPS32_LUI(15, PRACC_UPPER_BASE_ADDR), /* $15 = MIPS32_PRACC_BASE_ADDR */
408 MIPS32_SW(8, PRACC_STACK_OFFSET, 15), /* sw $8,PRACC_STACK_OFFSET($15) */
410 /* 3 */ MIPS32_MFC0(8, 0, 0), /* move COP0 [cp0_reg select] to $8 */
411 MIPS32_SW(8, PRACC_OUT_OFFSET, 15), /* sw $8,PRACC_OUT_OFFSET($15) */
413 MIPS32_LW(8, PRACC_STACK_OFFSET, 15), /* lw $8,PRACC_STACK_OFFSET($15) */
414 MIPS32_B(NEG16(7)), /* b start */
415 MIPS32_MFC0(15, 31, 0), /* move COP0 DeSave to $15 */
419 * Note that our input parametes cp0_reg and cp0_sel
420 * are numbers (not gprs) which make part of mfc0 instruction opcode.
422 * These are not fix, but can be different for each mips32_cp0_read() function call,
423 * and that is why we must insert them directly into opcode,
424 * i.e. we can not pass it on EJTAG microprogram stack (via param_in),
425 * and put them into the gprs later from MIPS32_PRACC_STACK
426 * because mfc0 do not use gpr as a parameter for the cp0_reg and select part,
427 * but plain (immediate) number.
429 * MIPS32_MTC0 is implemented via MIPS32_R_INST macro.
430 * In order to insert our parameters, we must change rd and funct fields.
432 code[3] |= (cp0_reg << 11) | cp0_sel; /* change rd and funct of MIPS32_R_INST macro */
434 return mips32_pracc_exec(ejtag_info, ARRAY_SIZE(code), code, 0, NULL, 1, val, 1);
437 int mips32_cp0_write(struct mips_ejtag *ejtag_info, uint32_t val, uint32_t cp0_reg, uint32_t cp0_sel)
439 uint32_t code[] = {
440 /* start: */
441 MIPS32_MTC0(15, 31, 0), /* move $15 to COP0 DeSave */
442 MIPS32_LUI(15, UPPER16(val)), /* Load val to $15 */
443 MIPS32_ORI(15, 15, LOWER16(val)),
445 /* 3 */ MIPS32_MTC0(15, 0, 0), /* move $15 to COP0 [cp0_reg select] */
447 MIPS32_B(NEG16(5)), /* b start */
448 MIPS32_MFC0(15, 31, 0), /* move COP0 DeSave to $15 */
452 * Note that MIPS32_MTC0 macro is implemented via MIPS32_R_INST macro.
453 * In order to insert our parameters, we must change rd and funct fields.
455 code[3] |= (cp0_reg << 11) | cp0_sel; /* change rd and funct fields of MIPS32_R_INST macro */
457 return mips32_pracc_exec(ejtag_info, ARRAY_SIZE(code), code, 0, NULL, 0, NULL, 1);
461 * \b mips32_pracc_sync_cache
463 * Synchronize Caches to Make Instruction Writes Effective
464 * (ref. doc. MIPS32 Architecture For Programmers Volume II: The MIPS32 Instruction Set,
465 * Document Number: MD00086, Revision 2.00, June 9, 2003)
467 * When the instruction stream is written, the SYNCI instruction should be used
468 * in conjunction with other instructions to make the newly-written instructions effective.
470 * Explanation :
471 * A program that loads another program into memory is actually writing the D- side cache.
472 * The instructions it has loaded can't be executed until they reach the I-cache.
474 * After the instructions have been written, the loader should arrange
475 * to write back any containing D-cache line and invalidate any locations
476 * already in the I-cache.
478 * You can do that with cache instructions, but those instructions are only available in kernel mode,
479 * and a loader writing instructions for the use of its own process need not be privileged software.
481 * In the latest MIPS32/64 CPUs, MIPS provides the synci instruction,
482 * which does the whole job for a cache-line-sized chunk of the memory you just loaded:
483 * That is, it arranges a D-cache write-back and an I-cache invalidate.
485 * To employ synci at user level, you need to know the size of a cache line,
486 * and that can be obtained with a rdhwr SYNCI_Step
487 * from one of the standard “hardware registers”.
489 static int mips32_pracc_sync_cache(struct mips_ejtag *ejtag_info,
490 uint32_t start_addr, uint32_t end_addr)
492 static const uint32_t code[] = {
493 /* start: */
494 MIPS32_MTC0(15, 31, 0), /* move $15 to COP0 DeSave */
495 MIPS32_LUI(15, UPPER16(MIPS32_PRACC_STACK)), /* $15 = MIPS32_PRACC_STACK */
496 MIPS32_ORI(15, 15, LOWER16(MIPS32_PRACC_STACK)),
497 MIPS32_SW(8, 0, 15), /* sw $8,($15) */
498 MIPS32_SW(9, 0, 15), /* sw $9,($15) */
499 MIPS32_SW(10, 0, 15), /* sw $10,($15) */
500 MIPS32_SW(11, 0, 15), /* sw $11,($15) */
502 MIPS32_LUI(8, UPPER16(MIPS32_PRACC_PARAM_IN)), /* $8 = MIPS32_PRACC_PARAM_IN */
503 MIPS32_ORI(8, 8, LOWER16(MIPS32_PRACC_PARAM_IN)),
504 MIPS32_LW(9, 0, 8), /* Load write start_addr to $9 */
505 MIPS32_LW(10, 4, 8), /* Load write end_addr to $10 */
507 MIPS32_RDHWR(11, MIPS32_SYNCI_STEP), /* $11 = MIPS32_SYNCI_STEP */
508 MIPS32_BEQ(11, 0, 6), /* beq $11, $0, end */
509 MIPS32_NOP,
510 /* synci_loop : */
511 MIPS32_SYNCI(0, 9), /* synci 0($9) */
512 MIPS32_SLTU(8, 10, 9), /* sltu $8, $10, $9 # $8 = $10 < $9 ? 1 : 0 */
513 MIPS32_BNE(8, 0, NEG16(3)), /* bne $8, $0, synci_loop */
514 MIPS32_ADDU(9, 9, 11), /* $9 += MIPS32_SYNCI_STEP */
515 MIPS32_SYNC,
516 /* end: */
517 MIPS32_LW(11, 0, 15), /* lw $11,($15) */
518 MIPS32_LW(10, 0, 15), /* lw $10,($15) */
519 MIPS32_LW(9, 0, 15), /* lw $9,($15) */
520 MIPS32_LW(8, 0, 15), /* lw $8,($15) */
521 MIPS32_B(NEG16(24)), /* b start */
522 MIPS32_MFC0(15, 31, 0), /* move COP0 DeSave to $15 */
525 /* TODO remove array */
526 uint32_t *param_in = malloc(2 * sizeof(uint32_t));
527 int retval;
528 param_in[0] = start_addr;
529 param_in[1] = end_addr;
531 retval = mips32_pracc_exec(ejtag_info, ARRAY_SIZE(code), code, 2, param_in, 0, NULL, 1);
533 free(param_in);
535 return retval;
539 * \b mips32_pracc_clean_invalidate_cache
541 * Writeback D$ and Invalidate I$
542 * so that the instructions written can be visible to CPU
544 static int mips32_pracc_clean_invalidate_cache(struct mips_ejtag *ejtag_info,
545 uint32_t start_addr, uint32_t end_addr)
547 static const uint32_t code[] = {
548 /* start: */
549 MIPS32_MTC0(15, 31, 0), /* move $15 to COP0 DeSave */
550 MIPS32_LUI(15, UPPER16(MIPS32_PRACC_STACK)), /* $15 = MIPS32_PRACC_STACK */
551 MIPS32_ORI(15, 15, LOWER16(MIPS32_PRACC_STACK)),
552 MIPS32_SW(8, 0, 15), /* sw $8,($15) */
553 MIPS32_SW(9, 0, 15), /* sw $9,($15) */
554 MIPS32_SW(10, 0, 15), /* sw $10,($15) */
555 MIPS32_SW(11, 0, 15), /* sw $11,($15) */
557 MIPS32_LUI(8, UPPER16(MIPS32_PRACC_PARAM_IN)), /* $8 = MIPS32_PRACC_PARAM_IN */
558 MIPS32_ORI(8, 8, LOWER16(MIPS32_PRACC_PARAM_IN)),
559 MIPS32_LW(9, 0, 8), /* Load write start_addr to $9 */
560 MIPS32_LW(10, 4, 8), /* Load write end_addr to $10 */
561 MIPS32_LW(11, 8, 8), /* Load write clsiz to $11 */
563 /* cache_loop: */
564 MIPS32_SLTU(8, 10, 9), /* sltu $8, $10, $9 : $8 <- $10 < $9 ? */
565 MIPS32_BGTZ(8, 6), /* bgtz $8, end */
566 MIPS32_NOP,
568 MIPS32_CACHE(MIPS32_CACHE_D_HIT_WRITEBACK, 0, 9), /* cache Hit_Writeback_D, 0($9) */
569 MIPS32_CACHE(MIPS32_CACHE_I_HIT_INVALIDATE, 0, 9), /* cache Hit_Invalidate_I, 0($9) */
571 MIPS32_ADDU(9, 9, 11), /* $9 += $11 */
573 MIPS32_B(NEG16(7)), /* b cache_loop */
574 MIPS32_NOP,
575 /* end: */
576 MIPS32_LW(11, 0, 15), /* lw $11,($15) */
577 MIPS32_LW(10, 0, 15), /* lw $10,($15) */
578 MIPS32_LW(9, 0, 15), /* lw $9,($15) */
579 MIPS32_LW(8, 0, 15), /* lw $8,($15) */
580 MIPS32_B(NEG16(25)), /* b start */
581 MIPS32_MFC0(15, 31, 0), /* move COP0 DeSave to $15 */
585 * Find cache line size in bytes
587 uint32_t conf;
588 uint32_t dl, clsiz;
590 mips32_cp0_read(ejtag_info, &conf, 16, 1);
591 dl = (conf & MIPS32_CONFIG1_DL_MASK) >> MIPS32_CONFIG1_DL_SHIFT;
593 /* dl encoding : dl=1 => 4 bytes, dl=2 => 8 bytes, etc... */
594 clsiz = 0x2 << dl;
596 /* TODO remove array */
597 uint32_t *param_in = malloc(3 * sizeof(uint32_t));
598 int retval;
599 param_in[0] = start_addr;
600 param_in[1] = end_addr;
601 param_in[2] = clsiz;
603 retval = mips32_pracc_exec(ejtag_info, ARRAY_SIZE(code), code, 3, param_in, 0, NULL, 1);
605 free(param_in);
607 return retval;
610 static int mips32_pracc_write_mem_generic(struct mips_ejtag *ejtag_info, uint32_t addr, int size, int count, void *buf)
612 uint32_t *code;
613 code = malloc((128 * 3 + 9) * sizeof(uint32_t)); /* alloc memory for the worst case */
614 if (code == NULL) {
615 LOG_ERROR("Out of memory");
616 return ERROR_FAIL;
619 uint32_t *buf32 = buf;
620 uint16_t *buf16 = buf;
621 uint8_t *buf8 = buf;
623 int i;
624 int retval = ERROR_FAIL;
625 uint32_t *code_p;
626 uint32_t upper_base_addr, last_upper_base_addr;
627 int this_round_count;
628 int code_len;
630 while (count) {
631 this_round_count = (count > 128) ? 128 : count;
632 last_upper_base_addr = UPPER16((addr + 0x8000));
633 code_p = code;
635 *code_p++ = MIPS32_MTC0(15, 31, 0); /* save $15 in DeSave */
636 *code_p++ = MIPS32_LUI(15, PRACC_UPPER_BASE_ADDR); /* $15 = MIPS32_PRACC_BASE_ADDR */
637 *code_p++ = MIPS32_SW(8, PRACC_STACK_OFFSET, 15); /* save $8 to pracc stack */
638 *code_p++ = MIPS32_LUI(15, last_upper_base_addr); /* reuse $15 as memory base address */
639 code_len = 4;
641 for (i = 0; i != this_round_count; i++) {
642 upper_base_addr = UPPER16((addr + 0x8000));
643 if (last_upper_base_addr != upper_base_addr) {
644 *code_p++ = MIPS32_LUI(15, upper_base_addr); /* if needed, change upper address in $15*/
645 code_len++;
646 last_upper_base_addr = upper_base_addr;
649 if (size == 4) { /* for word write check if one half word is 0 and load it accordingly */
650 if (LOWER16(*buf32) == 0) {
651 *code_p++ = MIPS32_LUI(8, UPPER16(*buf32)); /* load only upper value */
652 code_len++;
653 } else if (UPPER16(*buf32) == 0) {
654 *code_p++ = MIPS32_ORI(8, 0, LOWER16(*buf32)); /* load only lower value */
655 code_len++;
656 } else {
657 *code_p++ = MIPS32_LUI(8, UPPER16(*buf32)); /* load upper and lower */
658 *code_p++ = MIPS32_ORI(8, 8, LOWER16(*buf32));
659 code_len += 2;
661 *code_p++ = MIPS32_SW(8, LOWER16(addr), 15); /* store word to memory */
662 code_len++;
663 buf32++;
665 } else if (size == 2) {
666 *code_p++ = MIPS32_ORI(8, 0, *buf16); /* load lower value */
667 *code_p++ = MIPS32_SH(8, LOWER16(addr), 15); /* store half word to memory */
668 code_len += 2;
669 buf16++;
671 } else {
672 *code_p++ = MIPS32_ORI(8, 0, *buf8); /* load lower value */
673 *code_p++ = MIPS32_SB(8, LOWER16(addr), 15); /* store byte to memory */
674 code_len += 2;
675 buf8++;
678 addr += size;
681 *code_p++ = MIPS32_LUI(15, PRACC_UPPER_BASE_ADDR); /* $15 = MIPS32_PRACC_BASE_ADDR */
682 *code_p++ = MIPS32_LW(8, PRACC_STACK_OFFSET, 15); /* restore $8 from pracc stack */
684 code_len += 4;
685 *code_p++ = MIPS32_B(NEG16(code_len - 1)); /* jump to start */
686 *code_p = MIPS32_MFC0(15, 31, 0); /* restore $15 from DeSave */
688 retval = mips32_pracc_exec(ejtag_info, code_len, code, 0, NULL, 0, NULL, 1);
689 if (retval != ERROR_OK)
690 goto exit;
692 count -= this_round_count;
695 exit:
696 free(code);
697 return retval;
700 int mips32_pracc_write_mem(struct mips_ejtag *ejtag_info, uint32_t addr, int size, int count, void *buf)
702 int retval = mips32_pracc_write_mem_generic(ejtag_info, addr, size, count, buf);
703 if (retval != ERROR_OK)
704 return retval;
707 * If we are in the cachable regoion and cache is activated,
708 * we must clean D$ + invalidate I$ after we did the write,
709 * so that changes do not continue to live only in D$, but to be
710 * replicated in I$ also (maybe we wrote the istructions)
712 uint32_t conf = 0;
713 int cached = 0;
715 if ((KSEGX(addr) == KSEG1) || ((addr >= 0xff200000) && (addr <= 0xff3fffff)))
716 return retval; /*Nothing to do*/
718 mips32_cp0_read(ejtag_info, &conf, 16, 0);
720 switch (KSEGX(addr)) {
721 case KUSEG:
722 cached = (conf & MIPS32_CONFIG0_KU_MASK) >> MIPS32_CONFIG0_KU_SHIFT;
723 break;
724 case KSEG0:
725 cached = (conf & MIPS32_CONFIG0_K0_MASK) >> MIPS32_CONFIG0_K0_SHIFT;
726 break;
727 case KSEG2:
728 case KSEG3:
729 cached = (conf & MIPS32_CONFIG0_K23_MASK) >> MIPS32_CONFIG0_K23_SHIFT;
730 break;
731 default:
732 /* what ? */
733 break;
737 * Check cachablitiy bits coherency algorithm -
738 * is the region cacheable or uncached.
739 * If cacheable we have to synchronize the cache
741 if (cached == 0x3) {
742 uint32_t start_addr, end_addr;
743 uint32_t rel;
745 start_addr = addr;
746 end_addr = addr + count * size;
748 /** select cache synchronisation mechanism based on Architecture Release */
749 rel = (conf & MIPS32_CONFIG0_AR_MASK) >> MIPS32_CONFIG0_AR_SHIFT;
750 switch (rel) {
751 case MIPS32_ARCH_REL1:
752 /* MIPS32/64 Release 1 - we must use cache instruction */
753 mips32_pracc_clean_invalidate_cache(ejtag_info, start_addr, end_addr);
754 break;
755 case MIPS32_ARCH_REL2:
756 /* MIPS32/64 Release 2 - we can use synci instruction */
757 mips32_pracc_sync_cache(ejtag_info, start_addr, end_addr);
758 break;
759 default:
760 /* what ? */
761 break;
765 return retval;
768 int mips32_pracc_write_regs(struct mips_ejtag *ejtag_info, uint32_t *regs)
770 static const uint32_t cp0_write_code[] = {
771 MIPS32_MTC0(1, 12, 0), /* move $1 to status */
772 MIPS32_MTLO(1), /* move $1 to lo */
773 MIPS32_MTHI(1), /* move $1 to hi */
774 MIPS32_MTC0(1, 8, 0), /* move $1 to badvaddr */
775 MIPS32_MTC0(1, 13, 0), /* move $1 to cause*/
776 MIPS32_MTC0(1, 24, 0), /* move $1 to depc (pc) */
779 uint32_t *code;
780 code = malloc((37 * 2 + 6 + 1) * sizeof(uint32_t)); /* alloc memory for the worst case */
781 if (code == NULL) {
782 LOG_ERROR("Out of memory");
783 return ERROR_FAIL;
786 uint32_t *code_p = code;
787 int code_len = 0;
788 /* load registers 2 to 31 with lui an ori instructions, check if same instructions can be saved */
789 for (int i = 2; i < 32; i++) {
790 if (LOWER16((regs[i])) == 0) {
791 *code_p++ = MIPS32_LUI(i, UPPER16((regs[i]))); /* if lower half word is 0, lui instruction only */
792 code_len++;
793 } else if (UPPER16((regs[i])) == 0) {
794 *code_p++ = MIPS32_ORI(i, 0, LOWER16((regs[i]))); /* if upper half word is 0, ori with $0 only*/
795 code_len++;
796 } else {
797 *code_p++ = MIPS32_LUI(i, UPPER16((regs[i]))); /* default, load with lui and ori instructions */
798 *code_p++ = MIPS32_ORI(i, i, LOWER16((regs[i])));
799 code_len += 2;
803 for (int i = 0; i != 6; i++) {
804 *code_p++ = MIPS32_LUI(1, UPPER16((regs[i + 32]))); /* load CPO value in $1, with lui and ori */
805 *code_p++ = MIPS32_ORI(1, 1, LOWER16((regs[i + 32])));
806 *code_p++ = cp0_write_code[i]; /* write value from $1 to CPO register */
807 code_len += 3;
810 *code_p++ = MIPS32_LUI(1, UPPER16((regs[1]))); /* load upper half word in $1 */
811 code_len += 3;
812 *code_p++ = MIPS32_B(NEG16(code_len - 1)), /* b start */
813 *code_p = MIPS32_ORI(1, 1, LOWER16((regs[1]))); /* load lower half word in $1 */
815 int retval = mips32_pracc_exec(ejtag_info, code_len, code, 0, NULL, 0, NULL, 1);
816 free(code);
817 return retval;
820 int mips32_pracc_read_regs(struct mips_ejtag *ejtag_info, uint32_t *regs)
822 static int cp0_read_code[] = {
823 MIPS32_MFC0(2, 12, 0), /* move status to $2 */
824 MIPS32_MFLO(2), /* move lo to $2 */
825 MIPS32_MFHI(2), /* move hi to $2 */
826 MIPS32_MFC0(2, 8, 0), /* move badvaddr to $2 */
827 MIPS32_MFC0(2, 13, 0), /* move cause to $2 */
828 MIPS32_MFC0(2, 24, 0), /* move depc (pc) to $2 */
831 uint32_t *code;
832 code = malloc(49 * sizeof(uint32_t));
833 if (code == NULL) {
834 LOG_ERROR("Out of memory");
835 return ERROR_FAIL;
838 uint32_t *code_p = code;
840 *code_p++ = MIPS32_MTC0(1, 31, 0), /* move $1 to COP0 DeSave */
841 *code_p++ = MIPS32_LUI(1, PRACC_UPPER_BASE_ADDR); /* $1 = MIP32_PRACC_BASE_ADDR */
843 for (int i = 2; i != 32; i++)
844 *code_p++ = MIPS32_SW(i, PRACC_OUT_OFFSET + (i * 4), 1); /* store GPR's 2 to 31 */
846 for (int i = 0; i != 6; i++) {
847 *code_p++ = cp0_read_code[i]; /* load COP0 needed registers to $2 */
848 *code_p++ = MIPS32_SW(2, PRACC_OUT_OFFSET + (i + 32) * 4, 1); /* store COP0 registers from $2 to param out */
851 *code_p++ = MIPS32_MFC0(2, 31, 0), /* move DeSave to $2, reg1 value */
852 *code_p++ = MIPS32_SW(2, PRACC_OUT_OFFSET + 4, 1); /* store reg1 value from $2 to param out */
854 *code_p++ = MIPS32_LW(2, PRACC_OUT_OFFSET + 8, 1); /* restore $2 from param out (singularity) */
855 *code_p++ = MIPS32_B(NEG16(48)); /* b start */
856 *code_p = MIPS32_MFC0(1, 31, 0); /* move COP0 DeSave to $1 */
858 int retval = mips32_pracc_exec(ejtag_info, 49, code, 0, NULL, MIPS32NUMCOREREGS, regs, 1);
860 free(code);
861 return retval;
864 /* fastdata upload/download requires an initialized working area
865 * to load the download code; it should not be called otherwise
866 * fetch order from the fastdata area
867 * 1. start addr
868 * 2. end addr
869 * 3. data ...
871 int mips32_pracc_fastdata_xfer(struct mips_ejtag *ejtag_info, struct working_area *source,
872 int write_t, uint32_t addr, int count, uint32_t *buf)
874 uint32_t handler_code[] = {
875 /* caution when editing, table is modified below */
876 /* r15 points to the start of this code */
877 MIPS32_SW(8, MIPS32_FASTDATA_HANDLER_SIZE - 4, 15),
878 MIPS32_SW(9, MIPS32_FASTDATA_HANDLER_SIZE - 8, 15),
879 MIPS32_SW(10, MIPS32_FASTDATA_HANDLER_SIZE - 12, 15),
880 MIPS32_SW(11, MIPS32_FASTDATA_HANDLER_SIZE - 16, 15),
881 /* start of fastdata area in t0 */
882 MIPS32_LUI(8, UPPER16(MIPS32_PRACC_FASTDATA_AREA)),
883 MIPS32_ORI(8, 8, LOWER16(MIPS32_PRACC_FASTDATA_AREA)),
884 MIPS32_LW(9, 0, 8), /* start addr in t1 */
885 MIPS32_LW(10, 0, 8), /* end addr to t2 */
886 /* loop: */
887 /* 8 */ MIPS32_LW(11, 0, 0), /* lw t3,[t8 | r9] */
888 /* 9 */ MIPS32_SW(11, 0, 0), /* sw t3,[r9 | r8] */
889 MIPS32_BNE(10, 9, NEG16(3)), /* bne $t2,t1,loop */
890 MIPS32_ADDI(9, 9, 4), /* addi t1,t1,4 */
892 MIPS32_LW(8, MIPS32_FASTDATA_HANDLER_SIZE - 4, 15),
893 MIPS32_LW(9, MIPS32_FASTDATA_HANDLER_SIZE - 8, 15),
894 MIPS32_LW(10, MIPS32_FASTDATA_HANDLER_SIZE - 12, 15),
895 MIPS32_LW(11, MIPS32_FASTDATA_HANDLER_SIZE - 16, 15),
897 MIPS32_LUI(15, UPPER16(MIPS32_PRACC_TEXT)),
898 MIPS32_ORI(15, 15, LOWER16(MIPS32_PRACC_TEXT)),
899 MIPS32_JR(15), /* jr start */
900 MIPS32_MFC0(15, 31, 0), /* move COP0 DeSave to $15 */
903 uint32_t jmp_code[] = {
904 MIPS32_MTC0(15, 31, 0), /* move $15 to COP0 DeSave */
905 /* 1 */ MIPS32_LUI(15, 0), /* addr of working area added below */
906 /* 2 */ MIPS32_ORI(15, 15, 0), /* addr of working area added below */
907 MIPS32_JR(15), /* jump to ram program */
908 MIPS32_NOP,
911 int retval, i;
912 uint32_t val, ejtag_ctrl, address;
914 if (source->size < MIPS32_FASTDATA_HANDLER_SIZE)
915 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
917 if (write_t) {
918 handler_code[8] = MIPS32_LW(11, 0, 8); /* load data from probe at fastdata area */
919 handler_code[9] = MIPS32_SW(11, 0, 9); /* store data to RAM @ r9 */
920 } else {
921 handler_code[8] = MIPS32_LW(11, 0, 9); /* load data from RAM @ r9 */
922 handler_code[9] = MIPS32_SW(11, 0, 8); /* store data to probe at fastdata area */
925 /* write program into RAM */
926 if (write_t != ejtag_info->fast_access_save) {
927 mips32_pracc_write_mem_generic(ejtag_info, source->address, 4, ARRAY_SIZE(handler_code), handler_code);
928 /* save previous operation to speed to any consecutive read/writes */
929 ejtag_info->fast_access_save = write_t;
932 LOG_DEBUG("%s using 0x%.8" PRIx32 " for write handler", __func__, source->address);
934 jmp_code[1] |= UPPER16(source->address);
935 jmp_code[2] |= LOWER16(source->address);
937 for (i = 0; i < (int) ARRAY_SIZE(jmp_code); i++) {
938 retval = wait_for_pracc_rw(ejtag_info, &ejtag_ctrl);
939 if (retval != ERROR_OK)
940 return retval;
942 mips_ejtag_set_instr(ejtag_info, EJTAG_INST_DATA);
943 mips_ejtag_drscan_32_out(ejtag_info, jmp_code[i]);
945 /* Clear the access pending bit (let the processor eat!) */
946 ejtag_ctrl = ejtag_info->ejtag_ctrl & ~EJTAG_CTRL_PRACC;
947 mips_ejtag_set_instr(ejtag_info, EJTAG_INST_CONTROL);
948 mips_ejtag_drscan_32_out(ejtag_info, ejtag_ctrl);
951 retval = wait_for_pracc_rw(ejtag_info, &ejtag_ctrl);
952 if (retval != ERROR_OK)
953 return retval;
955 /* next fetch to dmseg should be in FASTDATA_AREA, check */
956 address = 0;
957 mips_ejtag_set_instr(ejtag_info, EJTAG_INST_ADDRESS);
958 retval = mips_ejtag_drscan_32(ejtag_info, &address);
959 if (retval != ERROR_OK)
960 return retval;
962 if (address != MIPS32_PRACC_FASTDATA_AREA)
963 return ERROR_FAIL;
965 /* wait PrAcc pending bit for FASTDATA write */
966 retval = wait_for_pracc_rw(ejtag_info, &ejtag_ctrl);
967 if (retval != ERROR_OK)
968 return retval;
970 /* Send the load start address */
971 val = addr;
972 mips_ejtag_set_instr(ejtag_info, EJTAG_INST_FASTDATA);
973 mips_ejtag_fastdata_scan(ejtag_info, 1, &val);
975 /* Send the load end address */
976 val = addr + (count - 1) * 4;
977 mips_ejtag_fastdata_scan(ejtag_info, 1, &val);
979 for (i = 0; i < count; i++) {
980 retval = mips_ejtag_fastdata_scan(ejtag_info, write_t, buf++);
981 if (retval != ERROR_OK)
982 return retval;
985 retval = jtag_execute_queue();
986 if (retval != ERROR_OK) {
987 LOG_ERROR("fastdata load failed");
988 return retval;
991 retval = wait_for_pracc_rw(ejtag_info, &ejtag_ctrl);
992 if (retval != ERROR_OK)
993 return retval;
995 address = 0;
996 mips_ejtag_set_instr(ejtag_info, EJTAG_INST_ADDRESS);
997 retval = mips_ejtag_drscan_32(ejtag_info, &address);
998 if (retval != ERROR_OK)
999 return retval;
1001 if (address != MIPS32_PRACC_TEXT)
1002 LOG_ERROR("mini program did not return to start");
1004 return retval;