Add init_board procedure executed after init_targets
[openocd.git] / src / target / target.c
blobf8326ea72b0800362140dab39aaccb2bac1b2ce4
1 /***************************************************************************
2 * Copyright (C) 2005 by Dominic Rath *
3 * Dominic.Rath@gmx.de *
4 * *
5 * Copyright (C) 2007-2010 Øyvind Harboe *
6 * oyvind.harboe@zylin.com *
7 * *
8 * Copyright (C) 2008, Duane Ellis *
9 * openocd@duaneeellis.com *
10 * *
11 * Copyright (C) 2008 by Spencer Oliver *
12 * spen@spen-soft.co.uk *
13 * *
14 * Copyright (C) 2008 by Rick Altherr *
15 * kc8apf@kc8apf.net> *
16 * *
17 * Copyright (C) 2011 by Broadcom Corporation *
18 * Evan Hunter - ehunter@broadcom.com *
19 * *
20 * Copyright (C) ST-Ericsson SA 2011 *
21 * michel.jaouen@stericsson.com : smp minimum support *
22 * *
23 * This program is free software; you can redistribute it and/or modify *
24 * it under the terms of the GNU General Public License as published by *
25 * the Free Software Foundation; either version 2 of the License, or *
26 * (at your option) any later version. *
27 * *
28 * This program is distributed in the hope that it will be useful, *
29 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
30 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
31 * GNU General Public License for more details. *
32 * *
33 * You should have received a copy of the GNU General Public License *
34 * along with this program; if not, write to the *
35 * Free Software Foundation, Inc., *
36 * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
37 ***************************************************************************/
39 #ifdef HAVE_CONFIG_H
40 #include "config.h"
41 #endif
43 #include <helper/time_support.h>
44 #include <jtag/jtag.h>
45 #include <flash/nor/core.h>
47 #include "target.h"
48 #include "target_type.h"
49 #include "target_request.h"
50 #include "breakpoints.h"
51 #include "register.h"
52 #include "trace.h"
53 #include "image.h"
54 #include "rtos/rtos.h"
56 static int target_read_buffer_default(struct target *target, uint32_t address,
57 uint32_t size, uint8_t *buffer);
58 static int target_write_buffer_default(struct target *target, uint32_t address,
59 uint32_t size, const uint8_t *buffer);
60 static int target_array2mem(Jim_Interp *interp, struct target *target,
61 int argc, Jim_Obj * const *argv);
62 static int target_mem2array(Jim_Interp *interp, struct target *target,
63 int argc, Jim_Obj * const *argv);
64 static int target_register_user_commands(struct command_context *cmd_ctx);
66 /* targets */
67 extern struct target_type arm7tdmi_target;
68 extern struct target_type arm720t_target;
69 extern struct target_type arm9tdmi_target;
70 extern struct target_type arm920t_target;
71 extern struct target_type arm966e_target;
72 extern struct target_type arm946e_target;
73 extern struct target_type arm926ejs_target;
74 extern struct target_type fa526_target;
75 extern struct target_type feroceon_target;
76 extern struct target_type dragonite_target;
77 extern struct target_type xscale_target;
78 extern struct target_type cortexm3_target;
79 extern struct target_type cortexa8_target;
80 extern struct target_type arm11_target;
81 extern struct target_type mips_m4k_target;
82 extern struct target_type avr_target;
83 extern struct target_type dsp563xx_target;
84 extern struct target_type dsp5680xx_target;
85 extern struct target_type testee_target;
86 extern struct target_type avr32_ap7k_target;
87 extern struct target_type stm32_stlink_target;
89 static struct target_type *target_types[] = {
90 &arm7tdmi_target,
91 &arm9tdmi_target,
92 &arm920t_target,
93 &arm720t_target,
94 &arm966e_target,
95 &arm946e_target,
96 &arm926ejs_target,
97 &fa526_target,
98 &feroceon_target,
99 &dragonite_target,
100 &xscale_target,
101 &cortexm3_target,
102 &cortexa8_target,
103 &arm11_target,
104 &mips_m4k_target,
105 &avr_target,
106 &dsp563xx_target,
107 &dsp5680xx_target,
108 &testee_target,
109 &avr32_ap7k_target,
110 &stm32_stlink_target,
111 NULL,
114 struct target *all_targets;
115 static struct target_event_callback *target_event_callbacks;
116 static struct target_timer_callback *target_timer_callbacks;
117 static const int polling_interval = 100;
119 static const Jim_Nvp nvp_assert[] = {
120 { .name = "assert", NVP_ASSERT },
121 { .name = "deassert", NVP_DEASSERT },
122 { .name = "T", NVP_ASSERT },
123 { .name = "F", NVP_DEASSERT },
124 { .name = "t", NVP_ASSERT },
125 { .name = "f", NVP_DEASSERT },
126 { .name = NULL, .value = -1 }
129 static const Jim_Nvp nvp_error_target[] = {
130 { .value = ERROR_TARGET_INVALID, .name = "err-invalid" },
131 { .value = ERROR_TARGET_INIT_FAILED, .name = "err-init-failed" },
132 { .value = ERROR_TARGET_TIMEOUT, .name = "err-timeout" },
133 { .value = ERROR_TARGET_NOT_HALTED, .name = "err-not-halted" },
134 { .value = ERROR_TARGET_FAILURE, .name = "err-failure" },
135 { .value = ERROR_TARGET_UNALIGNED_ACCESS , .name = "err-unaligned-access" },
136 { .value = ERROR_TARGET_DATA_ABORT , .name = "err-data-abort" },
137 { .value = ERROR_TARGET_RESOURCE_NOT_AVAILABLE , .name = "err-resource-not-available" },
138 { .value = ERROR_TARGET_TRANSLATION_FAULT , .name = "err-translation-fault" },
139 { .value = ERROR_TARGET_NOT_RUNNING, .name = "err-not-running" },
140 { .value = ERROR_TARGET_NOT_EXAMINED, .name = "err-not-examined" },
141 { .value = -1, .name = NULL }
144 static const char *target_strerror_safe(int err)
146 const Jim_Nvp *n;
148 n = Jim_Nvp_value2name_simple(nvp_error_target, err);
149 if (n->name == NULL)
150 return "unknown";
151 else
152 return n->name;
155 static const Jim_Nvp nvp_target_event[] = {
156 { .value = TARGET_EVENT_OLD_gdb_program_config , .name = "old-gdb_program_config" },
157 { .value = TARGET_EVENT_OLD_pre_resume , .name = "old-pre_resume" },
159 { .value = TARGET_EVENT_GDB_HALT, .name = "gdb-halt" },
160 { .value = TARGET_EVENT_HALTED, .name = "halted" },
161 { .value = TARGET_EVENT_RESUMED, .name = "resumed" },
162 { .value = TARGET_EVENT_RESUME_START, .name = "resume-start" },
163 { .value = TARGET_EVENT_RESUME_END, .name = "resume-end" },
165 { .name = "gdb-start", .value = TARGET_EVENT_GDB_START },
166 { .name = "gdb-end", .value = TARGET_EVENT_GDB_END },
168 /* historical name */
170 { .value = TARGET_EVENT_RESET_START, .name = "reset-start" },
172 { .value = TARGET_EVENT_RESET_ASSERT_PRE, .name = "reset-assert-pre" },
173 { .value = TARGET_EVENT_RESET_ASSERT, .name = "reset-assert" },
174 { .value = TARGET_EVENT_RESET_ASSERT_POST, .name = "reset-assert-post" },
175 { .value = TARGET_EVENT_RESET_DEASSERT_PRE, .name = "reset-deassert-pre" },
176 { .value = TARGET_EVENT_RESET_DEASSERT_POST, .name = "reset-deassert-post" },
177 { .value = TARGET_EVENT_RESET_HALT_PRE, .name = "reset-halt-pre" },
178 { .value = TARGET_EVENT_RESET_HALT_POST, .name = "reset-halt-post" },
179 { .value = TARGET_EVENT_RESET_WAIT_PRE, .name = "reset-wait-pre" },
180 { .value = TARGET_EVENT_RESET_WAIT_POST, .name = "reset-wait-post" },
181 { .value = TARGET_EVENT_RESET_INIT, .name = "reset-init" },
182 { .value = TARGET_EVENT_RESET_END, .name = "reset-end" },
184 { .value = TARGET_EVENT_EXAMINE_START, .name = "examine-start" },
185 { .value = TARGET_EVENT_EXAMINE_END, .name = "examine-end" },
187 { .value = TARGET_EVENT_DEBUG_HALTED, .name = "debug-halted" },
188 { .value = TARGET_EVENT_DEBUG_RESUMED, .name = "debug-resumed" },
190 { .value = TARGET_EVENT_GDB_ATTACH, .name = "gdb-attach" },
191 { .value = TARGET_EVENT_GDB_DETACH, .name = "gdb-detach" },
193 { .value = TARGET_EVENT_GDB_FLASH_WRITE_START, .name = "gdb-flash-write-start" },
194 { .value = TARGET_EVENT_GDB_FLASH_WRITE_END , .name = "gdb-flash-write-end" },
196 { .value = TARGET_EVENT_GDB_FLASH_ERASE_START, .name = "gdb-flash-erase-start" },
197 { .value = TARGET_EVENT_GDB_FLASH_ERASE_END , .name = "gdb-flash-erase-end" },
199 { .value = TARGET_EVENT_RESUME_START, .name = "resume-start" },
200 { .value = TARGET_EVENT_RESUMED , .name = "resume-ok" },
201 { .value = TARGET_EVENT_RESUME_END , .name = "resume-end" },
203 { .name = NULL, .value = -1 }
206 static const Jim_Nvp nvp_target_state[] = {
207 { .name = "unknown", .value = TARGET_UNKNOWN },
208 { .name = "running", .value = TARGET_RUNNING },
209 { .name = "halted", .value = TARGET_HALTED },
210 { .name = "reset", .value = TARGET_RESET },
211 { .name = "debug-running", .value = TARGET_DEBUG_RUNNING },
212 { .name = NULL, .value = -1 },
215 static const Jim_Nvp nvp_target_debug_reason[] = {
216 { .name = "debug-request" , .value = DBG_REASON_DBGRQ },
217 { .name = "breakpoint" , .value = DBG_REASON_BREAKPOINT },
218 { .name = "watchpoint" , .value = DBG_REASON_WATCHPOINT },
219 { .name = "watchpoint-and-breakpoint", .value = DBG_REASON_WPTANDBKPT },
220 { .name = "single-step" , .value = DBG_REASON_SINGLESTEP },
221 { .name = "target-not-halted" , .value = DBG_REASON_NOTHALTED },
222 { .name = "undefined" , .value = DBG_REASON_UNDEFINED },
223 { .name = NULL, .value = -1 },
226 static const Jim_Nvp nvp_target_endian[] = {
227 { .name = "big", .value = TARGET_BIG_ENDIAN },
228 { .name = "little", .value = TARGET_LITTLE_ENDIAN },
229 { .name = "be", .value = TARGET_BIG_ENDIAN },
230 { .name = "le", .value = TARGET_LITTLE_ENDIAN },
231 { .name = NULL, .value = -1 },
234 static const Jim_Nvp nvp_reset_modes[] = {
235 { .name = "unknown", .value = RESET_UNKNOWN },
236 { .name = "run" , .value = RESET_RUN },
237 { .name = "halt" , .value = RESET_HALT },
238 { .name = "init" , .value = RESET_INIT },
239 { .name = NULL , .value = -1 },
242 const char *debug_reason_name(struct target *t)
244 const char *cp;
246 cp = Jim_Nvp_value2name_simple(nvp_target_debug_reason,
247 t->debug_reason)->name;
248 if (!cp) {
249 LOG_ERROR("Invalid debug reason: %d", (int)(t->debug_reason));
250 cp = "(*BUG*unknown*BUG*)";
252 return cp;
255 const char *target_state_name(struct target *t)
257 const char *cp;
258 cp = Jim_Nvp_value2name_simple(nvp_target_state, t->state)->name;
259 if (!cp) {
260 LOG_ERROR("Invalid target state: %d", (int)(t->state));
261 cp = "(*BUG*unknown*BUG*)";
263 return cp;
266 /* determine the number of the new target */
267 static int new_target_number(void)
269 struct target *t;
270 int x;
272 /* number is 0 based */
273 x = -1;
274 t = all_targets;
275 while (t) {
276 if (x < t->target_number)
277 x = t->target_number;
278 t = t->next;
280 return x + 1;
283 /* read a uint32_t from a buffer in target memory endianness */
284 uint32_t target_buffer_get_u32(struct target *target, const uint8_t *buffer)
286 if (target->endianness == TARGET_LITTLE_ENDIAN)
287 return le_to_h_u32(buffer);
288 else
289 return be_to_h_u32(buffer);
292 /* read a uint24_t from a buffer in target memory endianness */
293 uint32_t target_buffer_get_u24(struct target *target, const uint8_t *buffer)
295 if (target->endianness == TARGET_LITTLE_ENDIAN)
296 return le_to_h_u24(buffer);
297 else
298 return be_to_h_u24(buffer);
301 /* read a uint16_t from a buffer in target memory endianness */
302 uint16_t target_buffer_get_u16(struct target *target, const uint8_t *buffer)
304 if (target->endianness == TARGET_LITTLE_ENDIAN)
305 return le_to_h_u16(buffer);
306 else
307 return be_to_h_u16(buffer);
310 /* read a uint8_t from a buffer in target memory endianness */
311 static uint8_t target_buffer_get_u8(struct target *target, const uint8_t *buffer)
313 return *buffer & 0x0ff;
316 /* write a uint32_t to a buffer in target memory endianness */
317 void target_buffer_set_u32(struct target *target, uint8_t *buffer, uint32_t value)
319 if (target->endianness == TARGET_LITTLE_ENDIAN)
320 h_u32_to_le(buffer, value);
321 else
322 h_u32_to_be(buffer, value);
325 /* write a uint24_t to a buffer in target memory endianness */
326 void target_buffer_set_u24(struct target *target, uint8_t *buffer, uint32_t value)
328 if (target->endianness == TARGET_LITTLE_ENDIAN)
329 h_u24_to_le(buffer, value);
330 else
331 h_u24_to_be(buffer, value);
334 /* write a uint16_t to a buffer in target memory endianness */
335 void target_buffer_set_u16(struct target *target, uint8_t *buffer, uint16_t value)
337 if (target->endianness == TARGET_LITTLE_ENDIAN)
338 h_u16_to_le(buffer, value);
339 else
340 h_u16_to_be(buffer, value);
343 /* write a uint8_t to a buffer in target memory endianness */
344 static void target_buffer_set_u8(struct target *target, uint8_t *buffer, uint8_t value)
346 *buffer = value;
349 /* write a uint32_t array to a buffer in target memory endianness */
350 void target_buffer_get_u32_array(struct target *target, const uint8_t *buffer, uint32_t count, uint32_t *dstbuf)
352 uint32_t i;
353 for (i = 0; i < count; i++)
354 dstbuf[i] = target_buffer_get_u32(target, &buffer[i * 4]);
357 /* write a uint16_t array to a buffer in target memory endianness */
358 void target_buffer_get_u16_array(struct target *target, const uint8_t *buffer, uint32_t count, uint16_t *dstbuf)
360 uint32_t i;
361 for (i = 0; i < count; i++)
362 dstbuf[i] = target_buffer_get_u16(target, &buffer[i * 2]);
365 /* write a uint32_t array to a buffer in target memory endianness */
366 void target_buffer_set_u32_array(struct target *target, uint8_t *buffer, uint32_t count, uint32_t *srcbuf)
368 uint32_t i;
369 for (i = 0; i < count; i++)
370 target_buffer_set_u32(target, &buffer[i * 4], srcbuf[i]);
373 /* write a uint16_t array to a buffer in target memory endianness */
374 void target_buffer_set_u16_array(struct target *target, uint8_t *buffer, uint32_t count, uint16_t *srcbuf)
376 uint32_t i;
377 for (i = 0; i < count; i++)
378 target_buffer_set_u16(target, &buffer[i * 2], srcbuf[i]);
381 /* return a pointer to a configured target; id is name or number */
382 struct target *get_target(const char *id)
384 struct target *target;
386 /* try as tcltarget name */
387 for (target = all_targets; target; target = target->next) {
388 if (target->cmd_name == NULL)
389 continue;
390 if (strcmp(id, target->cmd_name) == 0)
391 return target;
394 /* It's OK to remove this fallback sometime after August 2010 or so */
396 /* no match, try as number */
397 unsigned num;
398 if (parse_uint(id, &num) != ERROR_OK)
399 return NULL;
401 for (target = all_targets; target; target = target->next) {
402 if (target->target_number == (int)num) {
403 LOG_WARNING("use '%s' as target identifier, not '%u'",
404 target->cmd_name, num);
405 return target;
409 return NULL;
412 /* returns a pointer to the n-th configured target */
413 static struct target *get_target_by_num(int num)
415 struct target *target = all_targets;
417 while (target) {
418 if (target->target_number == num)
419 return target;
420 target = target->next;
423 return NULL;
426 struct target *get_current_target(struct command_context *cmd_ctx)
428 struct target *target = get_target_by_num(cmd_ctx->current_target);
430 if (target == NULL) {
431 LOG_ERROR("BUG: current_target out of bounds");
432 exit(-1);
435 return target;
438 int target_poll(struct target *target)
440 int retval;
442 /* We can't poll until after examine */
443 if (!target_was_examined(target)) {
444 /* Fail silently lest we pollute the log */
445 return ERROR_FAIL;
448 retval = target->type->poll(target);
449 if (retval != ERROR_OK)
450 return retval;
452 if (target->halt_issued) {
453 if (target->state == TARGET_HALTED)
454 target->halt_issued = false;
455 else {
456 long long t = timeval_ms() - target->halt_issued_time;
457 if (t > 1000) {
458 target->halt_issued = false;
459 LOG_INFO("Halt timed out, wake up GDB.");
460 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
465 return ERROR_OK;
468 int target_halt(struct target *target)
470 int retval;
471 /* We can't poll until after examine */
472 if (!target_was_examined(target)) {
473 LOG_ERROR("Target not examined yet");
474 return ERROR_FAIL;
477 retval = target->type->halt(target);
478 if (retval != ERROR_OK)
479 return retval;
481 target->halt_issued = true;
482 target->halt_issued_time = timeval_ms();
484 return ERROR_OK;
488 * Make the target (re)start executing using its saved execution
489 * context (possibly with some modifications).
491 * @param target Which target should start executing.
492 * @param current True to use the target's saved program counter instead
493 * of the address parameter
494 * @param address Optionally used as the program counter.
495 * @param handle_breakpoints True iff breakpoints at the resumption PC
496 * should be skipped. (For example, maybe execution was stopped by
497 * such a breakpoint, in which case it would be counterprodutive to
498 * let it re-trigger.
499 * @param debug_execution False if all working areas allocated by OpenOCD
500 * should be released and/or restored to their original contents.
501 * (This would for example be true to run some downloaded "helper"
502 * algorithm code, which resides in one such working buffer and uses
503 * another for data storage.)
505 * @todo Resolve the ambiguity about what the "debug_execution" flag
506 * signifies. For example, Target implementations don't agree on how
507 * it relates to invalidation of the register cache, or to whether
508 * breakpoints and watchpoints should be enabled. (It would seem wrong
509 * to enable breakpoints when running downloaded "helper" algorithms
510 * (debug_execution true), since the breakpoints would be set to match
511 * target firmware being debugged, not the helper algorithm.... and
512 * enabling them could cause such helpers to malfunction (for example,
513 * by overwriting data with a breakpoint instruction. On the other
514 * hand the infrastructure for running such helpers might use this
515 * procedure but rely on hardware breakpoint to detect termination.)
517 int target_resume(struct target *target, int current, uint32_t address, int handle_breakpoints, int debug_execution)
519 int retval;
521 /* We can't poll until after examine */
522 if (!target_was_examined(target)) {
523 LOG_ERROR("Target not examined yet");
524 return ERROR_FAIL;
527 /* note that resume *must* be asynchronous. The CPU can halt before
528 * we poll. The CPU can even halt at the current PC as a result of
529 * a software breakpoint being inserted by (a bug?) the application.
531 retval = target->type->resume(target, current, address, handle_breakpoints, debug_execution);
532 if (retval != ERROR_OK)
533 return retval;
535 return retval;
538 static int target_process_reset(struct command_context *cmd_ctx, enum target_reset_mode reset_mode)
540 char buf[100];
541 int retval;
542 Jim_Nvp *n;
543 n = Jim_Nvp_value2name_simple(nvp_reset_modes, reset_mode);
544 if (n->name == NULL) {
545 LOG_ERROR("invalid reset mode");
546 return ERROR_FAIL;
549 /* disable polling during reset to make reset event scripts
550 * more predictable, i.e. dr/irscan & pathmove in events will
551 * not have JTAG operations injected into the middle of a sequence.
553 bool save_poll = jtag_poll_get_enabled();
555 jtag_poll_set_enabled(false);
557 sprintf(buf, "ocd_process_reset %s", n->name);
558 retval = Jim_Eval(cmd_ctx->interp, buf);
560 jtag_poll_set_enabled(save_poll);
562 if (retval != JIM_OK) {
563 Jim_MakeErrorMessage(cmd_ctx->interp);
564 command_print(NULL, "%s\n", Jim_GetString(Jim_GetResult(cmd_ctx->interp), NULL));
565 return ERROR_FAIL;
568 /* We want any events to be processed before the prompt */
569 retval = target_call_timer_callbacks_now();
571 struct target *target;
572 for (target = all_targets; target; target = target->next)
573 target->type->check_reset(target);
575 return retval;
578 static int identity_virt2phys(struct target *target,
579 uint32_t virtual, uint32_t *physical)
581 *physical = virtual;
582 return ERROR_OK;
585 static int no_mmu(struct target *target, int *enabled)
587 *enabled = 0;
588 return ERROR_OK;
591 static int default_examine(struct target *target)
593 target_set_examined(target);
594 return ERROR_OK;
597 /* no check by default */
598 static int default_check_reset(struct target *target)
600 return ERROR_OK;
603 int target_examine_one(struct target *target)
605 return target->type->examine(target);
608 static int jtag_enable_callback(enum jtag_event event, void *priv)
610 struct target *target = priv;
612 if (event != JTAG_TAP_EVENT_ENABLE || !target->tap->enabled)
613 return ERROR_OK;
615 jtag_unregister_event_callback(jtag_enable_callback, target);
616 return target_examine_one(target);
620 /* Targets that correctly implement init + examine, i.e.
621 * no communication with target during init:
623 * XScale
625 int target_examine(void)
627 int retval = ERROR_OK;
628 struct target *target;
630 for (target = all_targets; target; target = target->next) {
631 /* defer examination, but don't skip it */
632 if (!target->tap->enabled) {
633 jtag_register_event_callback(jtag_enable_callback,
634 target);
635 continue;
637 retval = target_examine_one(target);
638 if (retval != ERROR_OK)
639 return retval;
641 return retval;
643 const char *target_type_name(struct target *target)
645 return target->type->name;
648 static int target_write_memory_imp(struct target *target, uint32_t address,
649 uint32_t size, uint32_t count, const uint8_t *buffer)
651 if (!target_was_examined(target)) {
652 LOG_ERROR("Target not examined yet");
653 return ERROR_FAIL;
655 return target->type->write_memory_imp(target, address, size, count, buffer);
658 static int target_read_memory_imp(struct target *target, uint32_t address,
659 uint32_t size, uint32_t count, uint8_t *buffer)
661 if (!target_was_examined(target)) {
662 LOG_ERROR("Target not examined yet");
663 return ERROR_FAIL;
665 return target->type->read_memory_imp(target, address, size, count, buffer);
668 static int target_soft_reset_halt_imp(struct target *target)
670 if (!target_was_examined(target)) {
671 LOG_ERROR("Target not examined yet");
672 return ERROR_FAIL;
674 if (!target->type->soft_reset_halt_imp) {
675 LOG_ERROR("Target %s does not support soft_reset_halt",
676 target_name(target));
677 return ERROR_FAIL;
679 return target->type->soft_reset_halt_imp(target);
683 * Downloads a target-specific native code algorithm to the target,
684 * and executes it. * Note that some targets may need to set up, enable,
685 * and tear down a breakpoint (hard or * soft) to detect algorithm
686 * termination, while others may support lower overhead schemes where
687 * soft breakpoints embedded in the algorithm automatically terminate the
688 * algorithm.
690 * @param target used to run the algorithm
691 * @param arch_info target-specific description of the algorithm.
693 int target_run_algorithm(struct target *target,
694 int num_mem_params, struct mem_param *mem_params,
695 int num_reg_params, struct reg_param *reg_param,
696 uint32_t entry_point, uint32_t exit_point,
697 int timeout_ms, void *arch_info)
699 int retval = ERROR_FAIL;
701 if (!target_was_examined(target)) {
702 LOG_ERROR("Target not examined yet");
703 goto done;
705 if (!target->type->run_algorithm) {
706 LOG_ERROR("Target type '%s' does not support %s",
707 target_type_name(target), __func__);
708 goto done;
711 target->running_alg = true;
712 retval = target->type->run_algorithm(target,
713 num_mem_params, mem_params,
714 num_reg_params, reg_param,
715 entry_point, exit_point, timeout_ms, arch_info);
716 target->running_alg = false;
718 done:
719 return retval;
723 * Downloads a target-specific native code algorithm to the target,
724 * executes and leaves it running.
726 * @param target used to run the algorithm
727 * @param arch_info target-specific description of the algorithm.
729 int target_start_algorithm(struct target *target,
730 int num_mem_params, struct mem_param *mem_params,
731 int num_reg_params, struct reg_param *reg_params,
732 uint32_t entry_point, uint32_t exit_point,
733 void *arch_info)
735 int retval = ERROR_FAIL;
737 if (!target_was_examined(target)) {
738 LOG_ERROR("Target not examined yet");
739 goto done;
741 if (!target->type->start_algorithm) {
742 LOG_ERROR("Target type '%s' does not support %s",
743 target_type_name(target), __func__);
744 goto done;
746 if (target->running_alg) {
747 LOG_ERROR("Target is already running an algorithm");
748 goto done;
751 target->running_alg = true;
752 retval = target->type->start_algorithm(target,
753 num_mem_params, mem_params,
754 num_reg_params, reg_params,
755 entry_point, exit_point, arch_info);
757 done:
758 return retval;
762 * Waits for an algorithm started with target_start_algorithm() to complete.
764 * @param target used to run the algorithm
765 * @param arch_info target-specific description of the algorithm.
767 int target_wait_algorithm(struct target *target,
768 int num_mem_params, struct mem_param *mem_params,
769 int num_reg_params, struct reg_param *reg_params,
770 uint32_t exit_point, int timeout_ms,
771 void *arch_info)
773 int retval = ERROR_FAIL;
775 if (!target->type->wait_algorithm) {
776 LOG_ERROR("Target type '%s' does not support %s",
777 target_type_name(target), __func__);
778 goto done;
780 if (!target->running_alg) {
781 LOG_ERROR("Target is not running an algorithm");
782 goto done;
785 retval = target->type->wait_algorithm(target,
786 num_mem_params, mem_params,
787 num_reg_params, reg_params,
788 exit_point, timeout_ms, arch_info);
789 if (retval != ERROR_TARGET_TIMEOUT)
790 target->running_alg = false;
792 done:
793 return retval;
797 int target_read_memory(struct target *target,
798 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
800 return target->type->read_memory(target, address, size, count, buffer);
803 static int target_read_phys_memory(struct target *target,
804 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
806 return target->type->read_phys_memory(target, address, size, count, buffer);
809 int target_write_memory(struct target *target,
810 uint32_t address, uint32_t size, uint32_t count, const uint8_t *buffer)
812 return target->type->write_memory(target, address, size, count, buffer);
815 static int target_write_phys_memory(struct target *target,
816 uint32_t address, uint32_t size, uint32_t count, const uint8_t *buffer)
818 return target->type->write_phys_memory(target, address, size, count, buffer);
821 int target_bulk_write_memory(struct target *target,
822 uint32_t address, uint32_t count, const uint8_t *buffer)
824 return target->type->bulk_write_memory(target, address, count, buffer);
827 int target_add_breakpoint(struct target *target,
828 struct breakpoint *breakpoint)
830 if ((target->state != TARGET_HALTED) && (breakpoint->type != BKPT_HARD)) {
831 LOG_WARNING("target %s is not halted", target->cmd_name);
832 return ERROR_TARGET_NOT_HALTED;
834 return target->type->add_breakpoint(target, breakpoint);
837 int target_add_context_breakpoint(struct target *target,
838 struct breakpoint *breakpoint)
840 if (target->state != TARGET_HALTED) {
841 LOG_WARNING("target %s is not halted", target->cmd_name);
842 return ERROR_TARGET_NOT_HALTED;
844 return target->type->add_context_breakpoint(target, breakpoint);
847 int target_add_hybrid_breakpoint(struct target *target,
848 struct breakpoint *breakpoint)
850 if (target->state != TARGET_HALTED) {
851 LOG_WARNING("target %s is not halted", target->cmd_name);
852 return ERROR_TARGET_NOT_HALTED;
854 return target->type->add_hybrid_breakpoint(target, breakpoint);
857 int target_remove_breakpoint(struct target *target,
858 struct breakpoint *breakpoint)
860 return target->type->remove_breakpoint(target, breakpoint);
863 int target_add_watchpoint(struct target *target,
864 struct watchpoint *watchpoint)
866 if (target->state != TARGET_HALTED) {
867 LOG_WARNING("target %s is not halted", target->cmd_name);
868 return ERROR_TARGET_NOT_HALTED;
870 return target->type->add_watchpoint(target, watchpoint);
872 int target_remove_watchpoint(struct target *target,
873 struct watchpoint *watchpoint)
875 return target->type->remove_watchpoint(target, watchpoint);
878 int target_get_gdb_reg_list(struct target *target,
879 struct reg **reg_list[], int *reg_list_size)
881 return target->type->get_gdb_reg_list(target, reg_list, reg_list_size);
883 int target_step(struct target *target,
884 int current, uint32_t address, int handle_breakpoints)
886 return target->type->step(target, current, address, handle_breakpoints);
890 * Reset the @c examined flag for the given target.
891 * Pure paranoia -- targets are zeroed on allocation.
893 static void target_reset_examined(struct target *target)
895 target->examined = false;
898 static int err_read_phys_memory(struct target *target, uint32_t address,
899 uint32_t size, uint32_t count, uint8_t *buffer)
901 LOG_ERROR("Not implemented: %s", __func__);
902 return ERROR_FAIL;
905 static int err_write_phys_memory(struct target *target, uint32_t address,
906 uint32_t size, uint32_t count, const uint8_t *buffer)
908 LOG_ERROR("Not implemented: %s", __func__);
909 return ERROR_FAIL;
912 static int handle_target(void *priv);
914 static int target_init_one(struct command_context *cmd_ctx,
915 struct target *target)
917 target_reset_examined(target);
919 struct target_type *type = target->type;
920 if (type->examine == NULL)
921 type->examine = default_examine;
923 if (type->check_reset == NULL)
924 type->check_reset = default_check_reset;
926 assert(type->init_target != NULL);
928 int retval = type->init_target(cmd_ctx, target);
929 if (ERROR_OK != retval) {
930 LOG_ERROR("target '%s' init failed", target_name(target));
931 return retval;
935 * @todo get rid of those *memory_imp() methods, now that all
936 * callers are using target_*_memory() accessors ... and make
937 * sure the "physical" paths handle the same issues.
939 /* a non-invasive way(in terms of patches) to add some code that
940 * runs before the type->write/read_memory implementation
942 type->write_memory_imp = target->type->write_memory;
943 type->write_memory = target_write_memory_imp;
945 type->read_memory_imp = target->type->read_memory;
946 type->read_memory = target_read_memory_imp;
948 type->soft_reset_halt_imp = target->type->soft_reset_halt;
949 type->soft_reset_halt = target_soft_reset_halt_imp;
951 /* Sanity-check MMU support ... stub in what we must, to help
952 * implement it in stages, but warn if we need to do so.
954 if (type->mmu) {
955 if (type->write_phys_memory == NULL) {
956 LOG_ERROR("type '%s' is missing write_phys_memory",
957 type->name);
958 type->write_phys_memory = err_write_phys_memory;
960 if (type->read_phys_memory == NULL) {
961 LOG_ERROR("type '%s' is missing read_phys_memory",
962 type->name);
963 type->read_phys_memory = err_read_phys_memory;
965 if (type->virt2phys == NULL) {
966 LOG_ERROR("type '%s' is missing virt2phys", type->name);
967 type->virt2phys = identity_virt2phys;
969 } else {
970 /* Make sure no-MMU targets all behave the same: make no
971 * distinction between physical and virtual addresses, and
972 * ensure that virt2phys() is always an identity mapping.
974 if (type->write_phys_memory || type->read_phys_memory || type->virt2phys)
975 LOG_WARNING("type '%s' has bad MMU hooks", type->name);
977 type->mmu = no_mmu;
978 type->write_phys_memory = type->write_memory;
979 type->read_phys_memory = type->read_memory;
980 type->virt2phys = identity_virt2phys;
983 if (target->type->read_buffer == NULL)
984 target->type->read_buffer = target_read_buffer_default;
986 if (target->type->write_buffer == NULL)
987 target->type->write_buffer = target_write_buffer_default;
989 return ERROR_OK;
992 static int target_init(struct command_context *cmd_ctx)
994 struct target *target;
995 int retval;
997 for (target = all_targets; target; target = target->next) {
998 retval = target_init_one(cmd_ctx, target);
999 if (ERROR_OK != retval)
1000 return retval;
1003 if (!all_targets)
1004 return ERROR_OK;
1006 retval = target_register_user_commands(cmd_ctx);
1007 if (ERROR_OK != retval)
1008 return retval;
1010 retval = target_register_timer_callback(&handle_target,
1011 polling_interval, 1, cmd_ctx->interp);
1012 if (ERROR_OK != retval)
1013 return retval;
1015 return ERROR_OK;
1018 COMMAND_HANDLER(handle_target_init_command)
1020 int retval;
1022 if (CMD_ARGC != 0)
1023 return ERROR_COMMAND_SYNTAX_ERROR;
1025 static bool target_initialized;
1026 if (target_initialized) {
1027 LOG_INFO("'target init' has already been called");
1028 return ERROR_OK;
1030 target_initialized = true;
1032 retval = command_run_line(CMD_CTX, "init_targets");
1033 if (ERROR_OK != retval)
1034 return retval;
1036 retval = command_run_line(CMD_CTX, "init_board");
1037 if (ERROR_OK != retval)
1038 return retval;
1040 LOG_DEBUG("Initializing targets...");
1041 return target_init(CMD_CTX);
1044 int target_register_event_callback(int (*callback)(struct target *target,
1045 enum target_event event, void *priv), void *priv)
1047 struct target_event_callback **callbacks_p = &target_event_callbacks;
1049 if (callback == NULL)
1050 return ERROR_COMMAND_SYNTAX_ERROR;
1052 if (*callbacks_p) {
1053 while ((*callbacks_p)->next)
1054 callbacks_p = &((*callbacks_p)->next);
1055 callbacks_p = &((*callbacks_p)->next);
1058 (*callbacks_p) = malloc(sizeof(struct target_event_callback));
1059 (*callbacks_p)->callback = callback;
1060 (*callbacks_p)->priv = priv;
1061 (*callbacks_p)->next = NULL;
1063 return ERROR_OK;
1066 int target_register_timer_callback(int (*callback)(void *priv), int time_ms, int periodic, void *priv)
1068 struct target_timer_callback **callbacks_p = &target_timer_callbacks;
1069 struct timeval now;
1071 if (callback == NULL)
1072 return ERROR_COMMAND_SYNTAX_ERROR;
1074 if (*callbacks_p) {
1075 while ((*callbacks_p)->next)
1076 callbacks_p = &((*callbacks_p)->next);
1077 callbacks_p = &((*callbacks_p)->next);
1080 (*callbacks_p) = malloc(sizeof(struct target_timer_callback));
1081 (*callbacks_p)->callback = callback;
1082 (*callbacks_p)->periodic = periodic;
1083 (*callbacks_p)->time_ms = time_ms;
1085 gettimeofday(&now, NULL);
1086 (*callbacks_p)->when.tv_usec = now.tv_usec + (time_ms % 1000) * 1000;
1087 time_ms -= (time_ms % 1000);
1088 (*callbacks_p)->when.tv_sec = now.tv_sec + (time_ms / 1000);
1089 if ((*callbacks_p)->when.tv_usec > 1000000) {
1090 (*callbacks_p)->when.tv_usec = (*callbacks_p)->when.tv_usec - 1000000;
1091 (*callbacks_p)->when.tv_sec += 1;
1094 (*callbacks_p)->priv = priv;
1095 (*callbacks_p)->next = NULL;
1097 return ERROR_OK;
1100 int target_unregister_event_callback(int (*callback)(struct target *target,
1101 enum target_event event, void *priv), void *priv)
1103 struct target_event_callback **p = &target_event_callbacks;
1104 struct target_event_callback *c = target_event_callbacks;
1106 if (callback == NULL)
1107 return ERROR_COMMAND_SYNTAX_ERROR;
1109 while (c) {
1110 struct target_event_callback *next = c->next;
1111 if ((c->callback == callback) && (c->priv == priv)) {
1112 *p = next;
1113 free(c);
1114 return ERROR_OK;
1115 } else
1116 p = &(c->next);
1117 c = next;
1120 return ERROR_OK;
1123 static int target_unregister_timer_callback(int (*callback)(void *priv), void *priv)
1125 struct target_timer_callback **p = &target_timer_callbacks;
1126 struct target_timer_callback *c = target_timer_callbacks;
1128 if (callback == NULL)
1129 return ERROR_COMMAND_SYNTAX_ERROR;
1131 while (c) {
1132 struct target_timer_callback *next = c->next;
1133 if ((c->callback == callback) && (c->priv == priv)) {
1134 *p = next;
1135 free(c);
1136 return ERROR_OK;
1137 } else
1138 p = &(c->next);
1139 c = next;
1142 return ERROR_OK;
1145 int target_call_event_callbacks(struct target *target, enum target_event event)
1147 struct target_event_callback *callback = target_event_callbacks;
1148 struct target_event_callback *next_callback;
1150 if (event == TARGET_EVENT_HALTED) {
1151 /* execute early halted first */
1152 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
1155 LOG_DEBUG("target event %i (%s)", event,
1156 Jim_Nvp_value2name_simple(nvp_target_event, event)->name);
1158 target_handle_event(target, event);
1160 while (callback) {
1161 next_callback = callback->next;
1162 callback->callback(target, event, callback->priv);
1163 callback = next_callback;
1166 return ERROR_OK;
1169 static int target_timer_callback_periodic_restart(
1170 struct target_timer_callback *cb, struct timeval *now)
1172 int time_ms = cb->time_ms;
1173 cb->when.tv_usec = now->tv_usec + (time_ms % 1000) * 1000;
1174 time_ms -= (time_ms % 1000);
1175 cb->when.tv_sec = now->tv_sec + time_ms / 1000;
1176 if (cb->when.tv_usec > 1000000) {
1177 cb->when.tv_usec = cb->when.tv_usec - 1000000;
1178 cb->when.tv_sec += 1;
1180 return ERROR_OK;
1183 static int target_call_timer_callback(struct target_timer_callback *cb,
1184 struct timeval *now)
1186 cb->callback(cb->priv);
1188 if (cb->periodic)
1189 return target_timer_callback_periodic_restart(cb, now);
1191 return target_unregister_timer_callback(cb->callback, cb->priv);
1194 static int target_call_timer_callbacks_check_time(int checktime)
1196 keep_alive();
1198 struct timeval now;
1199 gettimeofday(&now, NULL);
1201 struct target_timer_callback *callback = target_timer_callbacks;
1202 while (callback) {
1203 /* cleaning up may unregister and free this callback */
1204 struct target_timer_callback *next_callback = callback->next;
1206 bool call_it = callback->callback &&
1207 ((!checktime && callback->periodic) ||
1208 now.tv_sec > callback->when.tv_sec ||
1209 (now.tv_sec == callback->when.tv_sec &&
1210 now.tv_usec >= callback->when.tv_usec));
1212 if (call_it) {
1213 int retval = target_call_timer_callback(callback, &now);
1214 if (retval != ERROR_OK)
1215 return retval;
1218 callback = next_callback;
1221 return ERROR_OK;
1224 int target_call_timer_callbacks(void)
1226 return target_call_timer_callbacks_check_time(1);
1229 /* invoke periodic callbacks immediately */
1230 int target_call_timer_callbacks_now(void)
1232 return target_call_timer_callbacks_check_time(0);
1235 int target_alloc_working_area_try(struct target *target, uint32_t size, struct working_area **area)
1237 struct working_area *c = target->working_areas;
1238 struct working_area *new_wa = NULL;
1240 /* Reevaluate working area address based on MMU state*/
1241 if (target->working_areas == NULL) {
1242 int retval;
1243 int enabled;
1245 retval = target->type->mmu(target, &enabled);
1246 if (retval != ERROR_OK)
1247 return retval;
1249 if (!enabled) {
1250 if (target->working_area_phys_spec) {
1251 LOG_DEBUG("MMU disabled, using physical "
1252 "address for working memory 0x%08x",
1253 (unsigned)target->working_area_phys);
1254 target->working_area = target->working_area_phys;
1255 } else {
1256 LOG_ERROR("No working memory available. "
1257 "Specify -work-area-phys to target.");
1258 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1260 } else {
1261 if (target->working_area_virt_spec) {
1262 LOG_DEBUG("MMU enabled, using virtual "
1263 "address for working memory 0x%08x",
1264 (unsigned)target->working_area_virt);
1265 target->working_area = target->working_area_virt;
1266 } else {
1267 LOG_ERROR("No working memory available. "
1268 "Specify -work-area-virt to target.");
1269 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1274 /* only allocate multiples of 4 byte */
1275 if (size % 4) {
1276 LOG_ERROR("BUG: code tried to allocate unaligned number of bytes (0x%08x), padding", ((unsigned)(size)));
1277 size = (size + 3) & (~3);
1280 /* see if there's already a matching working area */
1281 while (c) {
1282 if ((c->free) && (c->size == size)) {
1283 new_wa = c;
1284 break;
1286 c = c->next;
1289 /* if not, allocate a new one */
1290 if (!new_wa) {
1291 struct working_area **p = &target->working_areas;
1292 uint32_t first_free = target->working_area;
1293 uint32_t free_size = target->working_area_size;
1295 c = target->working_areas;
1296 while (c) {
1297 first_free += c->size;
1298 free_size -= c->size;
1299 p = &c->next;
1300 c = c->next;
1303 if (free_size < size)
1304 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1306 LOG_DEBUG("allocated new working area at address 0x%08x", (unsigned)first_free);
1308 new_wa = malloc(sizeof(struct working_area));
1309 new_wa->next = NULL;
1310 new_wa->size = size;
1311 new_wa->address = first_free;
1313 if (target->backup_working_area) {
1314 int retval;
1315 new_wa->backup = malloc(new_wa->size);
1316 retval = target_read_memory(target, new_wa->address, 4,
1317 new_wa->size / 4, new_wa->backup);
1318 if (retval != ERROR_OK) {
1319 free(new_wa->backup);
1320 free(new_wa);
1321 return retval;
1323 } else
1324 new_wa->backup = NULL;
1326 /* put new entry in list */
1327 *p = new_wa;
1330 /* mark as used, and return the new (reused) area */
1331 new_wa->free = false;
1332 *area = new_wa;
1334 /* user pointer */
1335 new_wa->user = area;
1337 return ERROR_OK;
1340 int target_alloc_working_area(struct target *target, uint32_t size, struct working_area **area)
1342 int retval;
1344 retval = target_alloc_working_area_try(target, size, area);
1345 if (retval == ERROR_TARGET_RESOURCE_NOT_AVAILABLE)
1346 LOG_WARNING("not enough working area available(requested %u)", (unsigned)(size));
1347 return retval;
1351 static int target_free_working_area_restore(struct target *target, struct working_area *area, int restore)
1353 if (area->free)
1354 return ERROR_OK;
1356 if (restore && target->backup_working_area) {
1357 int retval = target_write_memory(target,
1358 area->address, 4, area->size / 4, area->backup);
1359 if (retval != ERROR_OK)
1360 return retval;
1363 area->free = true;
1365 /* mark user pointer invalid */
1366 *area->user = NULL;
1367 area->user = NULL;
1369 return ERROR_OK;
1372 int target_free_working_area(struct target *target, struct working_area *area)
1374 return target_free_working_area_restore(target, area, 1);
1377 /* free resources and restore memory, if restoring memory fails,
1378 * free up resources anyway
1380 static void target_free_all_working_areas_restore(struct target *target, int restore)
1382 struct working_area *c = target->working_areas;
1384 while (c) {
1385 struct working_area *next = c->next;
1386 target_free_working_area_restore(target, c, restore);
1388 if (c->backup)
1389 free(c->backup);
1391 free(c);
1393 c = next;
1396 target->working_areas = NULL;
1399 void target_free_all_working_areas(struct target *target)
1401 target_free_all_working_areas_restore(target, 1);
1404 int target_arch_state(struct target *target)
1406 int retval;
1407 if (target == NULL) {
1408 LOG_USER("No target has been configured");
1409 return ERROR_OK;
1412 LOG_USER("target state: %s", target_state_name(target));
1414 if (target->state != TARGET_HALTED)
1415 return ERROR_OK;
1417 retval = target->type->arch_state(target);
1418 return retval;
1421 /* Single aligned words are guaranteed to use 16 or 32 bit access
1422 * mode respectively, otherwise data is handled as quickly as
1423 * possible
1425 int target_write_buffer(struct target *target, uint32_t address, uint32_t size, const uint8_t *buffer)
1427 LOG_DEBUG("writing buffer of %i byte at 0x%8.8x",
1428 (int)size, (unsigned)address);
1430 if (!target_was_examined(target)) {
1431 LOG_ERROR("Target not examined yet");
1432 return ERROR_FAIL;
1435 if (size == 0)
1436 return ERROR_OK;
1438 if ((address + size - 1) < address) {
1439 /* GDB can request this when e.g. PC is 0xfffffffc*/
1440 LOG_ERROR("address + size wrapped(0x%08x, 0x%08x)",
1441 (unsigned)address,
1442 (unsigned)size);
1443 return ERROR_FAIL;
1446 return target->type->write_buffer(target, address, size, buffer);
1449 static int target_write_buffer_default(struct target *target, uint32_t address, uint32_t size, const uint8_t *buffer)
1451 int retval = ERROR_OK;
1453 if (((address % 2) == 0) && (size == 2))
1454 return target_write_memory(target, address, 2, 1, buffer);
1456 /* handle unaligned head bytes */
1457 if (address % 4) {
1458 uint32_t unaligned = 4 - (address % 4);
1460 if (unaligned > size)
1461 unaligned = size;
1463 retval = target_write_memory(target, address, 1, unaligned, buffer);
1464 if (retval != ERROR_OK)
1465 return retval;
1467 buffer += unaligned;
1468 address += unaligned;
1469 size -= unaligned;
1472 /* handle aligned words */
1473 if (size >= 4) {
1474 int aligned = size - (size % 4);
1476 /* use bulk writes above a certain limit. This may have to be changed */
1477 if (aligned > 128) {
1478 retval = target->type->bulk_write_memory(target, address, aligned / 4, buffer);
1479 if (retval != ERROR_OK)
1480 return retval;
1481 } else {
1482 retval = target_write_memory(target, address, 4, aligned / 4, buffer);
1483 if (retval != ERROR_OK)
1484 return retval;
1487 buffer += aligned;
1488 address += aligned;
1489 size -= aligned;
1492 /* handle tail writes of less than 4 bytes */
1493 if (size > 0) {
1494 retval = target_write_memory(target, address, 1, size, buffer);
1495 if (retval != ERROR_OK)
1496 return retval;
1499 return retval;
1502 /* Single aligned words are guaranteed to use 16 or 32 bit access
1503 * mode respectively, otherwise data is handled as quickly as
1504 * possible
1506 int target_read_buffer(struct target *target, uint32_t address, uint32_t size, uint8_t *buffer)
1508 LOG_DEBUG("reading buffer of %i byte at 0x%8.8x",
1509 (int)size, (unsigned)address);
1511 if (!target_was_examined(target)) {
1512 LOG_ERROR("Target not examined yet");
1513 return ERROR_FAIL;
1516 if (size == 0)
1517 return ERROR_OK;
1519 if ((address + size - 1) < address) {
1520 /* GDB can request this when e.g. PC is 0xfffffffc*/
1521 LOG_ERROR("address + size wrapped(0x%08" PRIx32 ", 0x%08" PRIx32 ")",
1522 address,
1523 size);
1524 return ERROR_FAIL;
1527 return target->type->read_buffer(target, address, size, buffer);
1530 static int target_read_buffer_default(struct target *target, uint32_t address, uint32_t size, uint8_t *buffer)
1532 int retval = ERROR_OK;
1534 if (((address % 2) == 0) && (size == 2))
1535 return target_read_memory(target, address, 2, 1, buffer);
1537 /* handle unaligned head bytes */
1538 if (address % 4) {
1539 uint32_t unaligned = 4 - (address % 4);
1541 if (unaligned > size)
1542 unaligned = size;
1544 retval = target_read_memory(target, address, 1, unaligned, buffer);
1545 if (retval != ERROR_OK)
1546 return retval;
1548 buffer += unaligned;
1549 address += unaligned;
1550 size -= unaligned;
1553 /* handle aligned words */
1554 if (size >= 4) {
1555 int aligned = size - (size % 4);
1557 retval = target_read_memory(target, address, 4, aligned / 4, buffer);
1558 if (retval != ERROR_OK)
1559 return retval;
1561 buffer += aligned;
1562 address += aligned;
1563 size -= aligned;
1566 /*prevent byte access when possible (avoid AHB access limitations in some cases)*/
1567 if (size >= 2) {
1568 int aligned = size - (size % 2);
1569 retval = target_read_memory(target, address, 2, aligned / 2, buffer);
1570 if (retval != ERROR_OK)
1571 return retval;
1573 buffer += aligned;
1574 address += aligned;
1575 size -= aligned;
1577 /* handle tail writes of less than 4 bytes */
1578 if (size > 0) {
1579 retval = target_read_memory(target, address, 1, size, buffer);
1580 if (retval != ERROR_OK)
1581 return retval;
1584 return ERROR_OK;
1587 int target_checksum_memory(struct target *target, uint32_t address, uint32_t size, uint32_t* crc)
1589 uint8_t *buffer;
1590 int retval;
1591 uint32_t i;
1592 uint32_t checksum = 0;
1593 if (!target_was_examined(target)) {
1594 LOG_ERROR("Target not examined yet");
1595 return ERROR_FAIL;
1598 retval = target->type->checksum_memory(target, address, size, &checksum);
1599 if (retval != ERROR_OK) {
1600 buffer = malloc(size);
1601 if (buffer == NULL) {
1602 LOG_ERROR("error allocating buffer for section (%d bytes)", (int)size);
1603 return ERROR_COMMAND_SYNTAX_ERROR;
1605 retval = target_read_buffer(target, address, size, buffer);
1606 if (retval != ERROR_OK) {
1607 free(buffer);
1608 return retval;
1611 /* convert to target endianness */
1612 for (i = 0; i < (size/sizeof(uint32_t)); i++) {
1613 uint32_t target_data;
1614 target_data = target_buffer_get_u32(target, &buffer[i*sizeof(uint32_t)]);
1615 target_buffer_set_u32(target, &buffer[i*sizeof(uint32_t)], target_data);
1618 retval = image_calculate_checksum(buffer, size, &checksum);
1619 free(buffer);
1622 *crc = checksum;
1624 return retval;
1627 int target_blank_check_memory(struct target *target, uint32_t address, uint32_t size, uint32_t* blank)
1629 int retval;
1630 if (!target_was_examined(target)) {
1631 LOG_ERROR("Target not examined yet");
1632 return ERROR_FAIL;
1635 if (target->type->blank_check_memory == 0)
1636 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1638 retval = target->type->blank_check_memory(target, address, size, blank);
1640 return retval;
1643 int target_read_u32(struct target *target, uint32_t address, uint32_t *value)
1645 uint8_t value_buf[4];
1646 if (!target_was_examined(target)) {
1647 LOG_ERROR("Target not examined yet");
1648 return ERROR_FAIL;
1651 int retval = target_read_memory(target, address, 4, 1, value_buf);
1653 if (retval == ERROR_OK) {
1654 *value = target_buffer_get_u32(target, value_buf);
1655 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%8.8" PRIx32 "",
1656 address,
1657 *value);
1658 } else {
1659 *value = 0x0;
1660 LOG_DEBUG("address: 0x%8.8" PRIx32 " failed",
1661 address);
1664 return retval;
1667 int target_read_u16(struct target *target, uint32_t address, uint16_t *value)
1669 uint8_t value_buf[2];
1670 if (!target_was_examined(target)) {
1671 LOG_ERROR("Target not examined yet");
1672 return ERROR_FAIL;
1675 int retval = target_read_memory(target, address, 2, 1, value_buf);
1677 if (retval == ERROR_OK) {
1678 *value = target_buffer_get_u16(target, value_buf);
1679 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%4.4x",
1680 address,
1681 *value);
1682 } else {
1683 *value = 0x0;
1684 LOG_DEBUG("address: 0x%8.8" PRIx32 " failed",
1685 address);
1688 return retval;
1691 int target_read_u8(struct target *target, uint32_t address, uint8_t *value)
1693 int retval = target_read_memory(target, address, 1, 1, value);
1694 if (!target_was_examined(target)) {
1695 LOG_ERROR("Target not examined yet");
1696 return ERROR_FAIL;
1699 if (retval == ERROR_OK) {
1700 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%2.2x",
1701 address,
1702 *value);
1703 } else {
1704 *value = 0x0;
1705 LOG_DEBUG("address: 0x%8.8" PRIx32 " failed",
1706 address);
1709 return retval;
1712 int target_write_u32(struct target *target, uint32_t address, uint32_t value)
1714 int retval;
1715 uint8_t value_buf[4];
1716 if (!target_was_examined(target)) {
1717 LOG_ERROR("Target not examined yet");
1718 return ERROR_FAIL;
1721 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%8.8" PRIx32 "",
1722 address,
1723 value);
1725 target_buffer_set_u32(target, value_buf, value);
1726 retval = target_write_memory(target, address, 4, 1, value_buf);
1727 if (retval != ERROR_OK)
1728 LOG_DEBUG("failed: %i", retval);
1730 return retval;
1733 int target_write_u16(struct target *target, uint32_t address, uint16_t value)
1735 int retval;
1736 uint8_t value_buf[2];
1737 if (!target_was_examined(target)) {
1738 LOG_ERROR("Target not examined yet");
1739 return ERROR_FAIL;
1742 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%8.8x",
1743 address,
1744 value);
1746 target_buffer_set_u16(target, value_buf, value);
1747 retval = target_write_memory(target, address, 2, 1, value_buf);
1748 if (retval != ERROR_OK)
1749 LOG_DEBUG("failed: %i", retval);
1751 return retval;
1754 int target_write_u8(struct target *target, uint32_t address, uint8_t value)
1756 int retval;
1757 if (!target_was_examined(target)) {
1758 LOG_ERROR("Target not examined yet");
1759 return ERROR_FAIL;
1762 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%2.2x",
1763 address, value);
1765 retval = target_write_memory(target, address, 1, 1, &value);
1766 if (retval != ERROR_OK)
1767 LOG_DEBUG("failed: %i", retval);
1769 return retval;
1772 static int find_target(struct command_context *cmd_ctx, const char *name)
1774 struct target *target = get_target(name);
1775 if (target == NULL) {
1776 LOG_ERROR("Target: %s is unknown, try one of:\n", name);
1777 return ERROR_FAIL;
1779 if (!target->tap->enabled) {
1780 LOG_USER("Target: TAP %s is disabled, "
1781 "can't be the current target\n",
1782 target->tap->dotted_name);
1783 return ERROR_FAIL;
1786 cmd_ctx->current_target = target->target_number;
1787 return ERROR_OK;
1791 COMMAND_HANDLER(handle_targets_command)
1793 int retval = ERROR_OK;
1794 if (CMD_ARGC == 1) {
1795 retval = find_target(CMD_CTX, CMD_ARGV[0]);
1796 if (retval == ERROR_OK) {
1797 /* we're done! */
1798 return retval;
1802 struct target *target = all_targets;
1803 command_print(CMD_CTX, " TargetName Type Endian TapName State ");
1804 command_print(CMD_CTX, "-- ------------------ ---------- ------ ------------------ ------------");
1805 while (target) {
1806 const char *state;
1807 char marker = ' ';
1809 if (target->tap->enabled)
1810 state = target_state_name(target);
1811 else
1812 state = "tap-disabled";
1814 if (CMD_CTX->current_target == target->target_number)
1815 marker = '*';
1817 /* keep columns lined up to match the headers above */
1818 command_print(CMD_CTX,
1819 "%2d%c %-18s %-10s %-6s %-18s %s",
1820 target->target_number,
1821 marker,
1822 target_name(target),
1823 target_type_name(target),
1824 Jim_Nvp_value2name_simple(nvp_target_endian,
1825 target->endianness)->name,
1826 target->tap->dotted_name,
1827 state);
1828 target = target->next;
1831 return retval;
1834 /* every 300ms we check for reset & powerdropout and issue a "reset halt" if so. */
1836 static int powerDropout;
1837 static int srstAsserted;
1839 static int runPowerRestore;
1840 static int runPowerDropout;
1841 static int runSrstAsserted;
1842 static int runSrstDeasserted;
1844 static int sense_handler(void)
1846 static int prevSrstAsserted;
1847 static int prevPowerdropout;
1849 int retval = jtag_power_dropout(&powerDropout);
1850 if (retval != ERROR_OK)
1851 return retval;
1853 int powerRestored;
1854 powerRestored = prevPowerdropout && !powerDropout;
1855 if (powerRestored)
1856 runPowerRestore = 1;
1858 long long current = timeval_ms();
1859 static long long lastPower;
1860 int waitMore = lastPower + 2000 > current;
1861 if (powerDropout && !waitMore) {
1862 runPowerDropout = 1;
1863 lastPower = current;
1866 retval = jtag_srst_asserted(&srstAsserted);
1867 if (retval != ERROR_OK)
1868 return retval;
1870 int srstDeasserted;
1871 srstDeasserted = prevSrstAsserted && !srstAsserted;
1873 static long long lastSrst;
1874 waitMore = lastSrst + 2000 > current;
1875 if (srstDeasserted && !waitMore) {
1876 runSrstDeasserted = 1;
1877 lastSrst = current;
1880 if (!prevSrstAsserted && srstAsserted)
1881 runSrstAsserted = 1;
1883 prevSrstAsserted = srstAsserted;
1884 prevPowerdropout = powerDropout;
1886 if (srstDeasserted || powerRestored) {
1887 /* Other than logging the event we can't do anything here.
1888 * Issuing a reset is a particularly bad idea as we might
1889 * be inside a reset already.
1893 return ERROR_OK;
1896 static int backoff_times;
1897 static int backoff_count;
1899 /* process target state changes */
1900 static int handle_target(void *priv)
1902 Jim_Interp *interp = (Jim_Interp *)priv;
1903 int retval = ERROR_OK;
1905 if (!is_jtag_poll_safe()) {
1906 /* polling is disabled currently */
1907 return ERROR_OK;
1910 /* we do not want to recurse here... */
1911 static int recursive;
1912 if (!recursive) {
1913 recursive = 1;
1914 sense_handler();
1915 /* danger! running these procedures can trigger srst assertions and power dropouts.
1916 * We need to avoid an infinite loop/recursion here and we do that by
1917 * clearing the flags after running these events.
1919 int did_something = 0;
1920 if (runSrstAsserted) {
1921 LOG_INFO("srst asserted detected, running srst_asserted proc.");
1922 Jim_Eval(interp, "srst_asserted");
1923 did_something = 1;
1925 if (runSrstDeasserted) {
1926 Jim_Eval(interp, "srst_deasserted");
1927 did_something = 1;
1929 if (runPowerDropout) {
1930 LOG_INFO("Power dropout detected, running power_dropout proc.");
1931 Jim_Eval(interp, "power_dropout");
1932 did_something = 1;
1934 if (runPowerRestore) {
1935 Jim_Eval(interp, "power_restore");
1936 did_something = 1;
1939 if (did_something) {
1940 /* clear detect flags */
1941 sense_handler();
1944 /* clear action flags */
1946 runSrstAsserted = 0;
1947 runSrstDeasserted = 0;
1948 runPowerRestore = 0;
1949 runPowerDropout = 0;
1951 recursive = 0;
1954 if (backoff_times > backoff_count) {
1955 /* do not poll this time as we failed previously */
1956 backoff_count++;
1957 return ERROR_OK;
1959 backoff_count = 0;
1961 /* Poll targets for state changes unless that's globally disabled.
1962 * Skip targets that are currently disabled.
1964 for (struct target *target = all_targets;
1965 is_jtag_poll_safe() && target;
1966 target = target->next) {
1967 if (!target->tap->enabled)
1968 continue;
1970 /* only poll target if we've got power and srst isn't asserted */
1971 if (!powerDropout && !srstAsserted) {
1972 /* polling may fail silently until the target has been examined */
1973 retval = target_poll(target);
1974 if (retval != ERROR_OK) {
1975 /* 100ms polling interval. Increase interval between polling up to 5000ms */
1976 if (backoff_times * polling_interval < 5000) {
1977 backoff_times *= 2;
1978 backoff_times++;
1980 LOG_USER("Polling target failed, GDB will be halted. Polling again in %dms",
1981 backoff_times * polling_interval);
1983 /* Tell GDB to halt the debugger. This allows the user to
1984 * run monitor commands to handle the situation.
1986 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
1987 return retval;
1989 /* Since we succeeded, we reset backoff count */
1990 if (backoff_times > 0)
1991 LOG_USER("Polling succeeded again");
1992 backoff_times = 0;
1996 return retval;
1999 COMMAND_HANDLER(handle_reg_command)
2001 struct target *target;
2002 struct reg *reg = NULL;
2003 unsigned count = 0;
2004 char *value;
2006 LOG_DEBUG("-");
2008 target = get_current_target(CMD_CTX);
2010 /* list all available registers for the current target */
2011 if (CMD_ARGC == 0) {
2012 struct reg_cache *cache = target->reg_cache;
2014 count = 0;
2015 while (cache) {
2016 unsigned i;
2018 command_print(CMD_CTX, "===== %s", cache->name);
2020 for (i = 0, reg = cache->reg_list;
2021 i < cache->num_regs;
2022 i++, reg++, count++) {
2023 /* only print cached values if they are valid */
2024 if (reg->valid) {
2025 value = buf_to_str(reg->value,
2026 reg->size, 16);
2027 command_print(CMD_CTX,
2028 "(%i) %s (/%" PRIu32 "): 0x%s%s",
2029 count, reg->name,
2030 reg->size, value,
2031 reg->dirty
2032 ? " (dirty)"
2033 : "");
2034 free(value);
2035 } else {
2036 command_print(CMD_CTX, "(%i) %s (/%" PRIu32 ")",
2037 count, reg->name,
2038 reg->size) ;
2041 cache = cache->next;
2044 return ERROR_OK;
2047 /* access a single register by its ordinal number */
2048 if ((CMD_ARGV[0][0] >= '0') && (CMD_ARGV[0][0] <= '9')) {
2049 unsigned num;
2050 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[0], num);
2052 struct reg_cache *cache = target->reg_cache;
2053 count = 0;
2054 while (cache) {
2055 unsigned i;
2056 for (i = 0; i < cache->num_regs; i++) {
2057 if (count++ == num) {
2058 reg = &cache->reg_list[i];
2059 break;
2062 if (reg)
2063 break;
2064 cache = cache->next;
2067 if (!reg) {
2068 command_print(CMD_CTX, "%i is out of bounds, the current target "
2069 "has only %i registers (0 - %i)", num, count, count - 1);
2070 return ERROR_OK;
2072 } else {
2073 /* access a single register by its name */
2074 reg = register_get_by_name(target->reg_cache, CMD_ARGV[0], 1);
2076 if (!reg) {
2077 command_print(CMD_CTX, "register %s not found in current target", CMD_ARGV[0]);
2078 return ERROR_OK;
2082 assert(reg != NULL); /* give clang a hint that we *know* reg is != NULL here */
2084 /* display a register */
2085 if ((CMD_ARGC == 1) || ((CMD_ARGC == 2) && !((CMD_ARGV[1][0] >= '0')
2086 && (CMD_ARGV[1][0] <= '9')))) {
2087 if ((CMD_ARGC == 2) && (strcmp(CMD_ARGV[1], "force") == 0))
2088 reg->valid = 0;
2090 if (reg->valid == 0)
2091 reg->type->get(reg);
2092 value = buf_to_str(reg->value, reg->size, 16);
2093 command_print(CMD_CTX, "%s (/%i): 0x%s", reg->name, (int)(reg->size), value);
2094 free(value);
2095 return ERROR_OK;
2098 /* set register value */
2099 if (CMD_ARGC == 2) {
2100 uint8_t *buf = malloc(DIV_ROUND_UP(reg->size, 8));
2101 if (buf == NULL)
2102 return ERROR_FAIL;
2103 str_to_buf(CMD_ARGV[1], strlen(CMD_ARGV[1]), buf, reg->size, 0);
2105 reg->type->set(reg, buf);
2107 value = buf_to_str(reg->value, reg->size, 16);
2108 command_print(CMD_CTX, "%s (/%i): 0x%s", reg->name, (int)(reg->size), value);
2109 free(value);
2111 free(buf);
2113 return ERROR_OK;
2116 return ERROR_COMMAND_SYNTAX_ERROR;
2119 COMMAND_HANDLER(handle_poll_command)
2121 int retval = ERROR_OK;
2122 struct target *target = get_current_target(CMD_CTX);
2124 if (CMD_ARGC == 0) {
2125 command_print(CMD_CTX, "background polling: %s",
2126 jtag_poll_get_enabled() ? "on" : "off");
2127 command_print(CMD_CTX, "TAP: %s (%s)",
2128 target->tap->dotted_name,
2129 target->tap->enabled ? "enabled" : "disabled");
2130 if (!target->tap->enabled)
2131 return ERROR_OK;
2132 retval = target_poll(target);
2133 if (retval != ERROR_OK)
2134 return retval;
2135 retval = target_arch_state(target);
2136 if (retval != ERROR_OK)
2137 return retval;
2138 } else if (CMD_ARGC == 1) {
2139 bool enable;
2140 COMMAND_PARSE_ON_OFF(CMD_ARGV[0], enable);
2141 jtag_poll_set_enabled(enable);
2142 } else
2143 return ERROR_COMMAND_SYNTAX_ERROR;
2145 return retval;
2148 COMMAND_HANDLER(handle_wait_halt_command)
2150 if (CMD_ARGC > 1)
2151 return ERROR_COMMAND_SYNTAX_ERROR;
2153 unsigned ms = 5000;
2154 if (1 == CMD_ARGC) {
2155 int retval = parse_uint(CMD_ARGV[0], &ms);
2156 if (ERROR_OK != retval)
2157 return ERROR_COMMAND_SYNTAX_ERROR;
2158 /* convert seconds (given) to milliseconds (needed) */
2159 ms *= 1000;
2162 struct target *target = get_current_target(CMD_CTX);
2163 return target_wait_state(target, TARGET_HALTED, ms);
2166 /* wait for target state to change. The trick here is to have a low
2167 * latency for short waits and not to suck up all the CPU time
2168 * on longer waits.
2170 * After 500ms, keep_alive() is invoked
2172 int target_wait_state(struct target *target, enum target_state state, int ms)
2174 int retval;
2175 long long then = 0, cur;
2176 int once = 1;
2178 for (;;) {
2179 retval = target_poll(target);
2180 if (retval != ERROR_OK)
2181 return retval;
2182 if (target->state == state)
2183 break;
2184 cur = timeval_ms();
2185 if (once) {
2186 once = 0;
2187 then = timeval_ms();
2188 LOG_DEBUG("waiting for target %s...",
2189 Jim_Nvp_value2name_simple(nvp_target_state, state)->name);
2192 if (cur-then > 500)
2193 keep_alive();
2195 if ((cur-then) > ms) {
2196 LOG_ERROR("timed out while waiting for target %s",
2197 Jim_Nvp_value2name_simple(nvp_target_state, state)->name);
2198 return ERROR_FAIL;
2202 return ERROR_OK;
2205 COMMAND_HANDLER(handle_halt_command)
2207 LOG_DEBUG("-");
2209 struct target *target = get_current_target(CMD_CTX);
2210 int retval = target_halt(target);
2211 if (ERROR_OK != retval)
2212 return retval;
2214 if (CMD_ARGC == 1) {
2215 unsigned wait_local;
2216 retval = parse_uint(CMD_ARGV[0], &wait_local);
2217 if (ERROR_OK != retval)
2218 return ERROR_COMMAND_SYNTAX_ERROR;
2219 if (!wait_local)
2220 return ERROR_OK;
2223 return CALL_COMMAND_HANDLER(handle_wait_halt_command);
2226 COMMAND_HANDLER(handle_soft_reset_halt_command)
2228 struct target *target = get_current_target(CMD_CTX);
2230 LOG_USER("requesting target halt and executing a soft reset");
2232 target->type->soft_reset_halt(target);
2234 return ERROR_OK;
2237 COMMAND_HANDLER(handle_reset_command)
2239 if (CMD_ARGC > 1)
2240 return ERROR_COMMAND_SYNTAX_ERROR;
2242 enum target_reset_mode reset_mode = RESET_RUN;
2243 if (CMD_ARGC == 1) {
2244 const Jim_Nvp *n;
2245 n = Jim_Nvp_name2value_simple(nvp_reset_modes, CMD_ARGV[0]);
2246 if ((n->name == NULL) || (n->value == RESET_UNKNOWN))
2247 return ERROR_COMMAND_SYNTAX_ERROR;
2248 reset_mode = n->value;
2251 /* reset *all* targets */
2252 return target_process_reset(CMD_CTX, reset_mode);
2256 COMMAND_HANDLER(handle_resume_command)
2258 int current = 1;
2259 if (CMD_ARGC > 1)
2260 return ERROR_COMMAND_SYNTAX_ERROR;
2262 struct target *target = get_current_target(CMD_CTX);
2263 target_handle_event(target, TARGET_EVENT_OLD_pre_resume);
2265 /* with no CMD_ARGV, resume from current pc, addr = 0,
2266 * with one arguments, addr = CMD_ARGV[0],
2267 * handle breakpoints, not debugging */
2268 uint32_t addr = 0;
2269 if (CMD_ARGC == 1) {
2270 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
2271 current = 0;
2274 return target_resume(target, current, addr, 1, 0);
2277 COMMAND_HANDLER(handle_step_command)
2279 if (CMD_ARGC > 1)
2280 return ERROR_COMMAND_SYNTAX_ERROR;
2282 LOG_DEBUG("-");
2284 /* with no CMD_ARGV, step from current pc, addr = 0,
2285 * with one argument addr = CMD_ARGV[0],
2286 * handle breakpoints, debugging */
2287 uint32_t addr = 0;
2288 int current_pc = 1;
2289 if (CMD_ARGC == 1) {
2290 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
2291 current_pc = 0;
2294 struct target *target = get_current_target(CMD_CTX);
2296 return target->type->step(target, current_pc, addr, 1);
2299 static void handle_md_output(struct command_context *cmd_ctx,
2300 struct target *target, uint32_t address, unsigned size,
2301 unsigned count, const uint8_t *buffer)
2303 const unsigned line_bytecnt = 32;
2304 unsigned line_modulo = line_bytecnt / size;
2306 char output[line_bytecnt * 4 + 1];
2307 unsigned output_len = 0;
2309 const char *value_fmt;
2310 switch (size) {
2311 case 4:
2312 value_fmt = "%8.8x ";
2313 break;
2314 case 2:
2315 value_fmt = "%4.4x ";
2316 break;
2317 case 1:
2318 value_fmt = "%2.2x ";
2319 break;
2320 default:
2321 /* "can't happen", caller checked */
2322 LOG_ERROR("invalid memory read size: %u", size);
2323 return;
2326 for (unsigned i = 0; i < count; i++) {
2327 if (i % line_modulo == 0) {
2328 output_len += snprintf(output + output_len,
2329 sizeof(output) - output_len,
2330 "0x%8.8x: ",
2331 (unsigned)(address + (i*size)));
2334 uint32_t value = 0;
2335 const uint8_t *value_ptr = buffer + i * size;
2336 switch (size) {
2337 case 4:
2338 value = target_buffer_get_u32(target, value_ptr);
2339 break;
2340 case 2:
2341 value = target_buffer_get_u16(target, value_ptr);
2342 break;
2343 case 1:
2344 value = *value_ptr;
2346 output_len += snprintf(output + output_len,
2347 sizeof(output) - output_len,
2348 value_fmt, value);
2350 if ((i % line_modulo == line_modulo - 1) || (i == count - 1)) {
2351 command_print(cmd_ctx, "%s", output);
2352 output_len = 0;
2357 COMMAND_HANDLER(handle_md_command)
2359 if (CMD_ARGC < 1)
2360 return ERROR_COMMAND_SYNTAX_ERROR;
2362 unsigned size = 0;
2363 switch (CMD_NAME[2]) {
2364 case 'w':
2365 size = 4;
2366 break;
2367 case 'h':
2368 size = 2;
2369 break;
2370 case 'b':
2371 size = 1;
2372 break;
2373 default:
2374 return ERROR_COMMAND_SYNTAX_ERROR;
2377 bool physical = strcmp(CMD_ARGV[0], "phys") == 0;
2378 int (*fn)(struct target *target,
2379 uint32_t address, uint32_t size_value, uint32_t count, uint8_t *buffer);
2380 if (physical) {
2381 CMD_ARGC--;
2382 CMD_ARGV++;
2383 fn = target_read_phys_memory;
2384 } else
2385 fn = target_read_memory;
2386 if ((CMD_ARGC < 1) || (CMD_ARGC > 2))
2387 return ERROR_COMMAND_SYNTAX_ERROR;
2389 uint32_t address;
2390 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], address);
2392 unsigned count = 1;
2393 if (CMD_ARGC == 2)
2394 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[1], count);
2396 uint8_t *buffer = calloc(count, size);
2398 struct target *target = get_current_target(CMD_CTX);
2399 int retval = fn(target, address, size, count, buffer);
2400 if (ERROR_OK == retval)
2401 handle_md_output(CMD_CTX, target, address, size, count, buffer);
2403 free(buffer);
2405 return retval;
2408 typedef int (*target_write_fn)(struct target *target,
2409 uint32_t address, uint32_t size, uint32_t count, const uint8_t *buffer);
2411 static int target_write_memory_fast(struct target *target,
2412 uint32_t address, uint32_t size, uint32_t count, const uint8_t *buffer)
2414 return target_write_buffer(target, address, size * count, buffer);
2417 static int target_fill_mem(struct target *target,
2418 uint32_t address,
2419 target_write_fn fn,
2420 unsigned data_size,
2421 /* value */
2422 uint32_t b,
2423 /* count */
2424 unsigned c)
2426 /* We have to write in reasonably large chunks to be able
2427 * to fill large memory areas with any sane speed */
2428 const unsigned chunk_size = 16384;
2429 uint8_t *target_buf = malloc(chunk_size * data_size);
2430 if (target_buf == NULL) {
2431 LOG_ERROR("Out of memory");
2432 return ERROR_FAIL;
2435 for (unsigned i = 0; i < chunk_size; i++) {
2436 switch (data_size) {
2437 case 4:
2438 target_buffer_set_u32(target, target_buf + i * data_size, b);
2439 break;
2440 case 2:
2441 target_buffer_set_u16(target, target_buf + i * data_size, b);
2442 break;
2443 case 1:
2444 target_buffer_set_u8(target, target_buf + i * data_size, b);
2445 break;
2446 default:
2447 exit(-1);
2451 int retval = ERROR_OK;
2453 for (unsigned x = 0; x < c; x += chunk_size) {
2454 unsigned current;
2455 current = c - x;
2456 if (current > chunk_size)
2457 current = chunk_size;
2458 retval = fn(target, address + x * data_size, data_size, current, target_buf);
2459 if (retval != ERROR_OK)
2460 break;
2461 /* avoid GDB timeouts */
2462 keep_alive();
2464 free(target_buf);
2466 return retval;
2470 COMMAND_HANDLER(handle_mw_command)
2472 if (CMD_ARGC < 2)
2473 return ERROR_COMMAND_SYNTAX_ERROR;
2474 bool physical = strcmp(CMD_ARGV[0], "phys") == 0;
2475 target_write_fn fn;
2476 if (physical) {
2477 CMD_ARGC--;
2478 CMD_ARGV++;
2479 fn = target_write_phys_memory;
2480 } else
2481 fn = target_write_memory_fast;
2482 if ((CMD_ARGC < 2) || (CMD_ARGC > 3))
2483 return ERROR_COMMAND_SYNTAX_ERROR;
2485 uint32_t address;
2486 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], address);
2488 uint32_t value;
2489 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], value);
2491 unsigned count = 1;
2492 if (CMD_ARGC == 3)
2493 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[2], count);
2495 struct target *target = get_current_target(CMD_CTX);
2496 unsigned wordsize;
2497 switch (CMD_NAME[2]) {
2498 case 'w':
2499 wordsize = 4;
2500 break;
2501 case 'h':
2502 wordsize = 2;
2503 break;
2504 case 'b':
2505 wordsize = 1;
2506 break;
2507 default:
2508 return ERROR_COMMAND_SYNTAX_ERROR;
2511 return target_fill_mem(target, address, fn, wordsize, value, count);
2514 static COMMAND_HELPER(parse_load_image_command_CMD_ARGV, struct image *image,
2515 uint32_t *min_address, uint32_t *max_address)
2517 if (CMD_ARGC < 1 || CMD_ARGC > 5)
2518 return ERROR_COMMAND_SYNTAX_ERROR;
2520 /* a base address isn't always necessary,
2521 * default to 0x0 (i.e. don't relocate) */
2522 if (CMD_ARGC >= 2) {
2523 uint32_t addr;
2524 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], addr);
2525 image->base_address = addr;
2526 image->base_address_set = 1;
2527 } else
2528 image->base_address_set = 0;
2530 image->start_address_set = 0;
2532 if (CMD_ARGC >= 4)
2533 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[3], *min_address);
2534 if (CMD_ARGC == 5) {
2535 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[4], *max_address);
2536 /* use size (given) to find max (required) */
2537 *max_address += *min_address;
2540 if (*min_address > *max_address)
2541 return ERROR_COMMAND_SYNTAX_ERROR;
2543 return ERROR_OK;
2546 COMMAND_HANDLER(handle_load_image_command)
2548 uint8_t *buffer;
2549 size_t buf_cnt;
2550 uint32_t image_size;
2551 uint32_t min_address = 0;
2552 uint32_t max_address = 0xffffffff;
2553 int i;
2554 struct image image;
2556 int retval = CALL_COMMAND_HANDLER(parse_load_image_command_CMD_ARGV,
2557 &image, &min_address, &max_address);
2558 if (ERROR_OK != retval)
2559 return retval;
2561 struct target *target = get_current_target(CMD_CTX);
2563 struct duration bench;
2564 duration_start(&bench);
2566 if (image_open(&image, CMD_ARGV[0], (CMD_ARGC >= 3) ? CMD_ARGV[2] : NULL) != ERROR_OK)
2567 return ERROR_OK;
2569 image_size = 0x0;
2570 retval = ERROR_OK;
2571 for (i = 0; i < image.num_sections; i++) {
2572 buffer = malloc(image.sections[i].size);
2573 if (buffer == NULL) {
2574 command_print(CMD_CTX,
2575 "error allocating buffer for section (%d bytes)",
2576 (int)(image.sections[i].size));
2577 break;
2580 retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt);
2581 if (retval != ERROR_OK) {
2582 free(buffer);
2583 break;
2586 uint32_t offset = 0;
2587 uint32_t length = buf_cnt;
2589 /* DANGER!!! beware of unsigned comparision here!!! */
2591 if ((image.sections[i].base_address + buf_cnt >= min_address) &&
2592 (image.sections[i].base_address < max_address)) {
2594 if (image.sections[i].base_address < min_address) {
2595 /* clip addresses below */
2596 offset += min_address-image.sections[i].base_address;
2597 length -= offset;
2600 if (image.sections[i].base_address + buf_cnt > max_address)
2601 length -= (image.sections[i].base_address + buf_cnt)-max_address;
2603 retval = target_write_buffer(target,
2604 image.sections[i].base_address + offset, length, buffer + offset);
2605 if (retval != ERROR_OK) {
2606 free(buffer);
2607 break;
2609 image_size += length;
2610 command_print(CMD_CTX, "%u bytes written at address 0x%8.8" PRIx32 "",
2611 (unsigned int)length,
2612 image.sections[i].base_address + offset);
2615 free(buffer);
2618 if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK)) {
2619 command_print(CMD_CTX, "downloaded %" PRIu32 " bytes "
2620 "in %fs (%0.3f KiB/s)", image_size,
2621 duration_elapsed(&bench), duration_kbps(&bench, image_size));
2624 image_close(&image);
2626 return retval;
2630 COMMAND_HANDLER(handle_dump_image_command)
2632 struct fileio fileio;
2633 uint8_t *buffer;
2634 int retval, retvaltemp;
2635 uint32_t address, size;
2636 struct duration bench;
2637 struct target *target = get_current_target(CMD_CTX);
2639 if (CMD_ARGC != 3)
2640 return ERROR_COMMAND_SYNTAX_ERROR;
2642 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], address);
2643 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[2], size);
2645 uint32_t buf_size = (size > 4096) ? 4096 : size;
2646 buffer = malloc(buf_size);
2647 if (!buffer)
2648 return ERROR_FAIL;
2650 retval = fileio_open(&fileio, CMD_ARGV[0], FILEIO_WRITE, FILEIO_BINARY);
2651 if (retval != ERROR_OK) {
2652 free(buffer);
2653 return retval;
2656 duration_start(&bench);
2658 while (size > 0) {
2659 size_t size_written;
2660 uint32_t this_run_size = (size > buf_size) ? buf_size : size;
2661 retval = target_read_buffer(target, address, this_run_size, buffer);
2662 if (retval != ERROR_OK)
2663 break;
2665 retval = fileio_write(&fileio, this_run_size, buffer, &size_written);
2666 if (retval != ERROR_OK)
2667 break;
2669 size -= this_run_size;
2670 address += this_run_size;
2673 free(buffer);
2675 if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK)) {
2676 int filesize;
2677 retval = fileio_size(&fileio, &filesize);
2678 if (retval != ERROR_OK)
2679 return retval;
2680 command_print(CMD_CTX,
2681 "dumped %ld bytes in %fs (%0.3f KiB/s)", (long)filesize,
2682 duration_elapsed(&bench), duration_kbps(&bench, filesize));
2685 retvaltemp = fileio_close(&fileio);
2686 if (retvaltemp != ERROR_OK)
2687 return retvaltemp;
2689 return retval;
2692 static COMMAND_HELPER(handle_verify_image_command_internal, int verify)
2694 uint8_t *buffer;
2695 size_t buf_cnt;
2696 uint32_t image_size;
2697 int i;
2698 int retval;
2699 uint32_t checksum = 0;
2700 uint32_t mem_checksum = 0;
2702 struct image image;
2704 struct target *target = get_current_target(CMD_CTX);
2706 if (CMD_ARGC < 1)
2707 return ERROR_COMMAND_SYNTAX_ERROR;
2709 if (!target) {
2710 LOG_ERROR("no target selected");
2711 return ERROR_FAIL;
2714 struct duration bench;
2715 duration_start(&bench);
2717 if (CMD_ARGC >= 2) {
2718 uint32_t addr;
2719 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], addr);
2720 image.base_address = addr;
2721 image.base_address_set = 1;
2722 } else {
2723 image.base_address_set = 0;
2724 image.base_address = 0x0;
2727 image.start_address_set = 0;
2729 retval = image_open(&image, CMD_ARGV[0], (CMD_ARGC == 3) ? CMD_ARGV[2] : NULL);
2730 if (retval != ERROR_OK)
2731 return retval;
2733 image_size = 0x0;
2734 int diffs = 0;
2735 retval = ERROR_OK;
2736 for (i = 0; i < image.num_sections; i++) {
2737 buffer = malloc(image.sections[i].size);
2738 if (buffer == NULL) {
2739 command_print(CMD_CTX,
2740 "error allocating buffer for section (%d bytes)",
2741 (int)(image.sections[i].size));
2742 break;
2744 retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt);
2745 if (retval != ERROR_OK) {
2746 free(buffer);
2747 break;
2750 if (verify) {
2751 /* calculate checksum of image */
2752 retval = image_calculate_checksum(buffer, buf_cnt, &checksum);
2753 if (retval != ERROR_OK) {
2754 free(buffer);
2755 break;
2758 retval = target_checksum_memory(target, image.sections[i].base_address, buf_cnt, &mem_checksum);
2759 if (retval != ERROR_OK) {
2760 free(buffer);
2761 break;
2764 if (checksum != mem_checksum) {
2765 /* failed crc checksum, fall back to a binary compare */
2766 uint8_t *data;
2768 if (diffs == 0)
2769 LOG_ERROR("checksum mismatch - attempting binary compare");
2771 data = (uint8_t *)malloc(buf_cnt);
2773 /* Can we use 32bit word accesses? */
2774 int size = 1;
2775 int count = buf_cnt;
2776 if ((count % 4) == 0) {
2777 size *= 4;
2778 count /= 4;
2780 retval = target_read_memory(target, image.sections[i].base_address, size, count, data);
2781 if (retval == ERROR_OK) {
2782 uint32_t t;
2783 for (t = 0; t < buf_cnt; t++) {
2784 if (data[t] != buffer[t]) {
2785 command_print(CMD_CTX,
2786 "diff %d address 0x%08x. Was 0x%02x instead of 0x%02x",
2787 diffs,
2788 (unsigned)(t + image.sections[i].base_address),
2789 data[t],
2790 buffer[t]);
2791 if (diffs++ >= 127) {
2792 command_print(CMD_CTX, "More than 128 errors, the rest are not printed.");
2793 free(data);
2794 free(buffer);
2795 goto done;
2798 keep_alive();
2801 free(data);
2803 } else {
2804 command_print(CMD_CTX, "address 0x%08" PRIx32 " length 0x%08zx",
2805 image.sections[i].base_address,
2806 buf_cnt);
2809 free(buffer);
2810 image_size += buf_cnt;
2812 if (diffs > 0)
2813 command_print(CMD_CTX, "No more differences found.");
2814 done:
2815 if (diffs > 0)
2816 retval = ERROR_FAIL;
2817 if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK)) {
2818 command_print(CMD_CTX, "verified %" PRIu32 " bytes "
2819 "in %fs (%0.3f KiB/s)", image_size,
2820 duration_elapsed(&bench), duration_kbps(&bench, image_size));
2823 image_close(&image);
2825 return retval;
2828 COMMAND_HANDLER(handle_verify_image_command)
2830 return CALL_COMMAND_HANDLER(handle_verify_image_command_internal, 1);
2833 COMMAND_HANDLER(handle_test_image_command)
2835 return CALL_COMMAND_HANDLER(handle_verify_image_command_internal, 0);
2838 static int handle_bp_command_list(struct command_context *cmd_ctx)
2840 struct target *target = get_current_target(cmd_ctx);
2841 struct breakpoint *breakpoint = target->breakpoints;
2842 while (breakpoint) {
2843 if (breakpoint->type == BKPT_SOFT) {
2844 char *buf = buf_to_str(breakpoint->orig_instr,
2845 breakpoint->length, 16);
2846 command_print(cmd_ctx, "IVA breakpoint: 0x%8.8" PRIx32 ", 0x%x, %i, 0x%s",
2847 breakpoint->address,
2848 breakpoint->length,
2849 breakpoint->set, buf);
2850 free(buf);
2851 } else {
2852 if ((breakpoint->address == 0) && (breakpoint->asid != 0))
2853 command_print(cmd_ctx, "Context breakpoint: 0x%8.8" PRIx32 ", 0x%x, %i",
2854 breakpoint->asid,
2855 breakpoint->length, breakpoint->set);
2856 else if ((breakpoint->address != 0) && (breakpoint->asid != 0)) {
2857 command_print(cmd_ctx, "Hybrid breakpoint(IVA): 0x%8.8" PRIx32 ", 0x%x, %i",
2858 breakpoint->address,
2859 breakpoint->length, breakpoint->set);
2860 command_print(cmd_ctx, "\t|--->linked with ContextID: 0x%8.8" PRIx32,
2861 breakpoint->asid);
2862 } else
2863 command_print(cmd_ctx, "Breakpoint(IVA): 0x%8.8" PRIx32 ", 0x%x, %i",
2864 breakpoint->address,
2865 breakpoint->length, breakpoint->set);
2868 breakpoint = breakpoint->next;
2870 return ERROR_OK;
2873 static int handle_bp_command_set(struct command_context *cmd_ctx,
2874 uint32_t addr, uint32_t asid, uint32_t length, int hw)
2876 struct target *target = get_current_target(cmd_ctx);
2878 if (asid == 0) {
2879 int retval = breakpoint_add(target, addr, length, hw);
2880 if (ERROR_OK == retval)
2881 command_print(cmd_ctx, "breakpoint set at 0x%8.8" PRIx32 "", addr);
2882 else {
2883 LOG_ERROR("Failure setting breakpoint, the same address(IVA) is already used");
2884 return retval;
2886 } else if (addr == 0) {
2887 int retval = context_breakpoint_add(target, asid, length, hw);
2888 if (ERROR_OK == retval)
2889 command_print(cmd_ctx, "Context breakpoint set at 0x%8.8" PRIx32 "", asid);
2890 else {
2891 LOG_ERROR("Failure setting breakpoint, the same address(CONTEXTID) is already used");
2892 return retval;
2894 } else {
2895 int retval = hybrid_breakpoint_add(target, addr, asid, length, hw);
2896 if (ERROR_OK == retval)
2897 command_print(cmd_ctx, "Hybrid breakpoint set at 0x%8.8" PRIx32 "", asid);
2898 else {
2899 LOG_ERROR("Failure setting breakpoint, the same address is already used");
2900 return retval;
2903 return ERROR_OK;
2906 COMMAND_HANDLER(handle_bp_command)
2908 uint32_t addr;
2909 uint32_t asid;
2910 uint32_t length;
2911 int hw = BKPT_SOFT;
2913 switch (CMD_ARGC) {
2914 case 0:
2915 return handle_bp_command_list(CMD_CTX);
2917 case 2:
2918 asid = 0;
2919 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
2920 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
2921 return handle_bp_command_set(CMD_CTX, addr, asid, length, hw);
2923 case 3:
2924 if (strcmp(CMD_ARGV[2], "hw") == 0) {
2925 hw = BKPT_HARD;
2926 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
2928 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
2930 asid = 0;
2931 return handle_bp_command_set(CMD_CTX, addr, asid, length, hw);
2932 } else if (strcmp(CMD_ARGV[2], "hw_ctx") == 0) {
2933 hw = BKPT_HARD;
2934 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], asid);
2935 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
2936 addr = 0;
2937 return handle_bp_command_set(CMD_CTX, addr, asid, length, hw);
2940 case 4:
2941 hw = BKPT_HARD;
2942 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
2943 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], asid);
2944 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[2], length);
2945 return handle_bp_command_set(CMD_CTX, addr, asid, length, hw);
2947 default:
2948 return ERROR_COMMAND_SYNTAX_ERROR;
2952 COMMAND_HANDLER(handle_rbp_command)
2954 if (CMD_ARGC != 1)
2955 return ERROR_COMMAND_SYNTAX_ERROR;
2957 uint32_t addr;
2958 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
2960 struct target *target = get_current_target(CMD_CTX);
2961 breakpoint_remove(target, addr);
2963 return ERROR_OK;
2966 COMMAND_HANDLER(handle_wp_command)
2968 struct target *target = get_current_target(CMD_CTX);
2970 if (CMD_ARGC == 0) {
2971 struct watchpoint *watchpoint = target->watchpoints;
2973 while (watchpoint) {
2974 command_print(CMD_CTX, "address: 0x%8.8" PRIx32
2975 ", len: 0x%8.8" PRIx32
2976 ", r/w/a: %i, value: 0x%8.8" PRIx32
2977 ", mask: 0x%8.8" PRIx32,
2978 watchpoint->address,
2979 watchpoint->length,
2980 (int)watchpoint->rw,
2981 watchpoint->value,
2982 watchpoint->mask);
2983 watchpoint = watchpoint->next;
2985 return ERROR_OK;
2988 enum watchpoint_rw type = WPT_ACCESS;
2989 uint32_t addr = 0;
2990 uint32_t length = 0;
2991 uint32_t data_value = 0x0;
2992 uint32_t data_mask = 0xffffffff;
2994 switch (CMD_ARGC) {
2995 case 5:
2996 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[4], data_mask);
2997 /* fall through */
2998 case 4:
2999 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[3], data_value);
3000 /* fall through */
3001 case 3:
3002 switch (CMD_ARGV[2][0]) {
3003 case 'r':
3004 type = WPT_READ;
3005 break;
3006 case 'w':
3007 type = WPT_WRITE;
3008 break;
3009 case 'a':
3010 type = WPT_ACCESS;
3011 break;
3012 default:
3013 LOG_ERROR("invalid watchpoint mode ('%c')", CMD_ARGV[2][0]);
3014 return ERROR_COMMAND_SYNTAX_ERROR;
3016 /* fall through */
3017 case 2:
3018 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
3019 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3020 break;
3022 default:
3023 return ERROR_COMMAND_SYNTAX_ERROR;
3026 int retval = watchpoint_add(target, addr, length, type,
3027 data_value, data_mask);
3028 if (ERROR_OK != retval)
3029 LOG_ERROR("Failure setting watchpoints");
3031 return retval;
3034 COMMAND_HANDLER(handle_rwp_command)
3036 if (CMD_ARGC != 1)
3037 return ERROR_COMMAND_SYNTAX_ERROR;
3039 uint32_t addr;
3040 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3042 struct target *target = get_current_target(CMD_CTX);
3043 watchpoint_remove(target, addr);
3045 return ERROR_OK;
3049 * Translate a virtual address to a physical address.
3051 * The low-level target implementation must have logged a detailed error
3052 * which is forwarded to telnet/GDB session.
3054 COMMAND_HANDLER(handle_virt2phys_command)
3056 if (CMD_ARGC != 1)
3057 return ERROR_COMMAND_SYNTAX_ERROR;
3059 uint32_t va;
3060 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], va);
3061 uint32_t pa;
3063 struct target *target = get_current_target(CMD_CTX);
3064 int retval = target->type->virt2phys(target, va, &pa);
3065 if (retval == ERROR_OK)
3066 command_print(CMD_CTX, "Physical address 0x%08" PRIx32 "", pa);
3068 return retval;
3071 static void writeData(FILE *f, const void *data, size_t len)
3073 size_t written = fwrite(data, 1, len, f);
3074 if (written != len)
3075 LOG_ERROR("failed to write %zu bytes: %s", len, strerror(errno));
3078 static void writeLong(FILE *f, int l)
3080 int i;
3081 for (i = 0; i < 4; i++) {
3082 char c = (l >> (i*8))&0xff;
3083 writeData(f, &c, 1);
3088 static void writeString(FILE *f, char *s)
3090 writeData(f, s, strlen(s));
3093 /* Dump a gmon.out histogram file. */
3094 static void writeGmon(uint32_t *samples, uint32_t sampleNum, const char *filename)
3096 uint32_t i;
3097 FILE *f = fopen(filename, "w");
3098 if (f == NULL)
3099 return;
3100 writeString(f, "gmon");
3101 writeLong(f, 0x00000001); /* Version */
3102 writeLong(f, 0); /* padding */
3103 writeLong(f, 0); /* padding */
3104 writeLong(f, 0); /* padding */
3106 uint8_t zero = 0; /* GMON_TAG_TIME_HIST */
3107 writeData(f, &zero, 1);
3109 /* figure out bucket size */
3110 uint32_t min = samples[0];
3111 uint32_t max = samples[0];
3112 for (i = 0; i < sampleNum; i++) {
3113 if (min > samples[i])
3114 min = samples[i];
3115 if (max < samples[i])
3116 max = samples[i];
3119 int addressSpace = (max - min + 1);
3120 assert(addressSpace >= 2);
3122 static const uint32_t maxBuckets = 16 * 1024; /* maximum buckets. */
3123 uint32_t length = addressSpace;
3124 if (length > maxBuckets)
3125 length = maxBuckets;
3126 int *buckets = malloc(sizeof(int)*length);
3127 if (buckets == NULL) {
3128 fclose(f);
3129 return;
3131 memset(buckets, 0, sizeof(int) * length);
3132 for (i = 0; i < sampleNum; i++) {
3133 uint32_t address = samples[i];
3134 long long a = address - min;
3135 long long b = length - 1;
3136 long long c = addressSpace - 1;
3137 int index_t = (a * b) / c; /* danger!!!! int32 overflows */
3138 buckets[index_t]++;
3141 /* append binary memory gmon.out &profile_hist_hdr ((char*)&profile_hist_hdr + sizeof(struct gmon_hist_hdr)) */
3142 writeLong(f, min); /* low_pc */
3143 writeLong(f, max); /* high_pc */
3144 writeLong(f, length); /* # of samples */
3145 writeLong(f, 100); /* KLUDGE! We lie, ca. 100Hz best case. */
3146 writeString(f, "seconds");
3147 for (i = 0; i < (15-strlen("seconds")); i++)
3148 writeData(f, &zero, 1);
3149 writeString(f, "s");
3151 /*append binary memory gmon.out profile_hist_data (profile_hist_data + profile_hist_hdr.hist_size) */
3153 char *data = malloc(2 * length);
3154 if (data != NULL) {
3155 for (i = 0; i < length; i++) {
3156 int val;
3157 val = buckets[i];
3158 if (val > 65535)
3159 val = 65535;
3160 data[i * 2] = val&0xff;
3161 data[i * 2 + 1] = (val >> 8) & 0xff;
3163 free(buckets);
3164 writeData(f, data, length * 2);
3165 free(data);
3166 } else
3167 free(buckets);
3169 fclose(f);
3172 /* profiling samples the CPU PC as quickly as OpenOCD is able,
3173 * which will be used as a random sampling of PC */
3174 COMMAND_HANDLER(handle_profile_command)
3176 struct target *target = get_current_target(CMD_CTX);
3177 struct timeval timeout, now;
3179 gettimeofday(&timeout, NULL);
3180 if (CMD_ARGC != 2)
3181 return ERROR_COMMAND_SYNTAX_ERROR;
3182 unsigned offset;
3183 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[0], offset);
3185 timeval_add_time(&timeout, offset, 0);
3188 * @todo: Some cores let us sample the PC without the
3189 * annoying halt/resume step; for example, ARMv7 PCSR.
3190 * Provide a way to use that more efficient mechanism.
3193 command_print(CMD_CTX, "Starting profiling. Halting and resuming the target as often as we can...");
3195 static const int maxSample = 10000;
3196 uint32_t *samples = malloc(sizeof(uint32_t)*maxSample);
3197 if (samples == NULL)
3198 return ERROR_OK;
3200 int numSamples = 0;
3201 /* hopefully it is safe to cache! We want to stop/restart as quickly as possible. */
3202 struct reg *reg = register_get_by_name(target->reg_cache, "pc", 1);
3204 int retval = ERROR_OK;
3205 for (;;) {
3206 target_poll(target);
3207 if (target->state == TARGET_HALTED) {
3208 uint32_t t = *((uint32_t *)reg->value);
3209 samples[numSamples++] = t;
3210 /* current pc, addr = 0, do not handle breakpoints, not debugging */
3211 retval = target_resume(target, 1, 0, 0, 0);
3212 target_poll(target);
3213 alive_sleep(10); /* sleep 10ms, i.e. <100 samples/second. */
3214 } else if (target->state == TARGET_RUNNING) {
3215 /* We want to quickly sample the PC. */
3216 retval = target_halt(target);
3217 if (retval != ERROR_OK) {
3218 free(samples);
3219 return retval;
3221 } else {
3222 command_print(CMD_CTX, "Target not halted or running");
3223 retval = ERROR_OK;
3224 break;
3226 if (retval != ERROR_OK)
3227 break;
3229 gettimeofday(&now, NULL);
3230 if ((numSamples >= maxSample) || ((now.tv_sec >= timeout.tv_sec)
3231 && (now.tv_usec >= timeout.tv_usec))) {
3232 command_print(CMD_CTX, "Profiling completed. %d samples.", numSamples);
3233 retval = target_poll(target);
3234 if (retval != ERROR_OK) {
3235 free(samples);
3236 return retval;
3238 if (target->state == TARGET_HALTED) {
3239 /* current pc, addr = 0, do not handle
3240 * breakpoints, not debugging */
3241 target_resume(target, 1, 0, 0, 0);
3243 retval = target_poll(target);
3244 if (retval != ERROR_OK) {
3245 free(samples);
3246 return retval;
3248 writeGmon(samples, numSamples, CMD_ARGV[1]);
3249 command_print(CMD_CTX, "Wrote %s", CMD_ARGV[1]);
3250 break;
3253 free(samples);
3255 return retval;
3258 static int new_int_array_element(Jim_Interp *interp, const char *varname, int idx, uint32_t val)
3260 char *namebuf;
3261 Jim_Obj *nameObjPtr, *valObjPtr;
3262 int result;
3264 namebuf = alloc_printf("%s(%d)", varname, idx);
3265 if (!namebuf)
3266 return JIM_ERR;
3268 nameObjPtr = Jim_NewStringObj(interp, namebuf, -1);
3269 valObjPtr = Jim_NewIntObj(interp, val);
3270 if (!nameObjPtr || !valObjPtr) {
3271 free(namebuf);
3272 return JIM_ERR;
3275 Jim_IncrRefCount(nameObjPtr);
3276 Jim_IncrRefCount(valObjPtr);
3277 result = Jim_SetVariable(interp, nameObjPtr, valObjPtr);
3278 Jim_DecrRefCount(interp, nameObjPtr);
3279 Jim_DecrRefCount(interp, valObjPtr);
3280 free(namebuf);
3281 /* printf("%s(%d) <= 0%08x\n", varname, idx, val); */
3282 return result;
3285 static int jim_mem2array(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
3287 struct command_context *context;
3288 struct target *target;
3290 context = current_command_context(interp);
3291 assert(context != NULL);
3293 target = get_current_target(context);
3294 if (target == NULL) {
3295 LOG_ERROR("mem2array: no current target");
3296 return JIM_ERR;
3299 return target_mem2array(interp, target, argc - 1, argv + 1);
3302 static int target_mem2array(Jim_Interp *interp, struct target *target, int argc, Jim_Obj *const *argv)
3304 long l;
3305 uint32_t width;
3306 int len;
3307 uint32_t addr;
3308 uint32_t count;
3309 uint32_t v;
3310 const char *varname;
3311 int n, e, retval;
3312 uint32_t i;
3314 /* argv[1] = name of array to receive the data
3315 * argv[2] = desired width
3316 * argv[3] = memory address
3317 * argv[4] = count of times to read
3319 if (argc != 4) {
3320 Jim_WrongNumArgs(interp, 1, argv, "varname width addr nelems");
3321 return JIM_ERR;
3323 varname = Jim_GetString(argv[0], &len);
3324 /* given "foo" get space for worse case "foo(%d)" .. add 20 */
3326 e = Jim_GetLong(interp, argv[1], &l);
3327 width = l;
3328 if (e != JIM_OK)
3329 return e;
3331 e = Jim_GetLong(interp, argv[2], &l);
3332 addr = l;
3333 if (e != JIM_OK)
3334 return e;
3335 e = Jim_GetLong(interp, argv[3], &l);
3336 len = l;
3337 if (e != JIM_OK)
3338 return e;
3339 switch (width) {
3340 case 8:
3341 width = 1;
3342 break;
3343 case 16:
3344 width = 2;
3345 break;
3346 case 32:
3347 width = 4;
3348 break;
3349 default:
3350 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3351 Jim_AppendStrings(interp, Jim_GetResult(interp), "Invalid width param, must be 8/16/32", NULL);
3352 return JIM_ERR;
3354 if (len == 0) {
3355 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3356 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: zero width read?", NULL);
3357 return JIM_ERR;
3359 if ((addr + (len * width)) < addr) {
3360 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3361 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: addr + len - wraps to zero?", NULL);
3362 return JIM_ERR;
3364 /* absurd transfer size? */
3365 if (len > 65536) {
3366 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3367 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: absurd > 64K item request", NULL);
3368 return JIM_ERR;
3371 if ((width == 1) ||
3372 ((width == 2) && ((addr & 1) == 0)) ||
3373 ((width == 4) && ((addr & 3) == 0))) {
3374 /* all is well */
3375 } else {
3376 char buf[100];
3377 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3378 sprintf(buf, "mem2array address: 0x%08" PRIx32 " is not aligned for %" PRId32 " byte reads",
3379 addr,
3380 width);
3381 Jim_AppendStrings(interp, Jim_GetResult(interp), buf , NULL);
3382 return JIM_ERR;
3385 /* Transfer loop */
3387 /* index counter */
3388 n = 0;
3390 size_t buffersize = 4096;
3391 uint8_t *buffer = malloc(buffersize);
3392 if (buffer == NULL)
3393 return JIM_ERR;
3395 /* assume ok */
3396 e = JIM_OK;
3397 while (len) {
3398 /* Slurp... in buffer size chunks */
3400 count = len; /* in objects.. */
3401 if (count > (buffersize / width))
3402 count = (buffersize / width);
3404 retval = target_read_memory(target, addr, width, count, buffer);
3405 if (retval != ERROR_OK) {
3406 /* BOO !*/
3407 LOG_ERROR("mem2array: Read @ 0x%08x, w=%d, cnt=%d, failed",
3408 (unsigned int)addr,
3409 (int)width,
3410 (int)count);
3411 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3412 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: cannot read memory", NULL);
3413 e = JIM_ERR;
3414 break;
3415 } else {
3416 v = 0; /* shut up gcc */
3417 for (i = 0; i < count ; i++, n++) {
3418 switch (width) {
3419 case 4:
3420 v = target_buffer_get_u32(target, &buffer[i*width]);
3421 break;
3422 case 2:
3423 v = target_buffer_get_u16(target, &buffer[i*width]);
3424 break;
3425 case 1:
3426 v = buffer[i] & 0x0ff;
3427 break;
3429 new_int_array_element(interp, varname, n, v);
3431 len -= count;
3435 free(buffer);
3437 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3439 return e;
3442 static int get_int_array_element(Jim_Interp *interp, const char *varname, int idx, uint32_t *val)
3444 char *namebuf;
3445 Jim_Obj *nameObjPtr, *valObjPtr;
3446 int result;
3447 long l;
3449 namebuf = alloc_printf("%s(%d)", varname, idx);
3450 if (!namebuf)
3451 return JIM_ERR;
3453 nameObjPtr = Jim_NewStringObj(interp, namebuf, -1);
3454 if (!nameObjPtr) {
3455 free(namebuf);
3456 return JIM_ERR;
3459 Jim_IncrRefCount(nameObjPtr);
3460 valObjPtr = Jim_GetVariable(interp, nameObjPtr, JIM_ERRMSG);
3461 Jim_DecrRefCount(interp, nameObjPtr);
3462 free(namebuf);
3463 if (valObjPtr == NULL)
3464 return JIM_ERR;
3466 result = Jim_GetLong(interp, valObjPtr, &l);
3467 /* printf("%s(%d) => 0%08x\n", varname, idx, val); */
3468 *val = l;
3469 return result;
3472 static int jim_array2mem(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
3474 struct command_context *context;
3475 struct target *target;
3477 context = current_command_context(interp);
3478 assert(context != NULL);
3480 target = get_current_target(context);
3481 if (target == NULL) {
3482 LOG_ERROR("array2mem: no current target");
3483 return JIM_ERR;
3486 return target_array2mem(interp, target, argc-1, argv + 1);
3489 static int target_array2mem(Jim_Interp *interp, struct target *target,
3490 int argc, Jim_Obj *const *argv)
3492 long l;
3493 uint32_t width;
3494 int len;
3495 uint32_t addr;
3496 uint32_t count;
3497 uint32_t v;
3498 const char *varname;
3499 int n, e, retval;
3500 uint32_t i;
3502 /* argv[1] = name of array to get the data
3503 * argv[2] = desired width
3504 * argv[3] = memory address
3505 * argv[4] = count to write
3507 if (argc != 4) {
3508 Jim_WrongNumArgs(interp, 0, argv, "varname width addr nelems");
3509 return JIM_ERR;
3511 varname = Jim_GetString(argv[0], &len);
3512 /* given "foo" get space for worse case "foo(%d)" .. add 20 */
3514 e = Jim_GetLong(interp, argv[1], &l);
3515 width = l;
3516 if (e != JIM_OK)
3517 return e;
3519 e = Jim_GetLong(interp, argv[2], &l);
3520 addr = l;
3521 if (e != JIM_OK)
3522 return e;
3523 e = Jim_GetLong(interp, argv[3], &l);
3524 len = l;
3525 if (e != JIM_OK)
3526 return e;
3527 switch (width) {
3528 case 8:
3529 width = 1;
3530 break;
3531 case 16:
3532 width = 2;
3533 break;
3534 case 32:
3535 width = 4;
3536 break;
3537 default:
3538 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3539 Jim_AppendStrings(interp, Jim_GetResult(interp),
3540 "Invalid width param, must be 8/16/32", NULL);
3541 return JIM_ERR;
3543 if (len == 0) {
3544 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3545 Jim_AppendStrings(interp, Jim_GetResult(interp),
3546 "array2mem: zero width read?", NULL);
3547 return JIM_ERR;
3549 if ((addr + (len * width)) < addr) {
3550 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3551 Jim_AppendStrings(interp, Jim_GetResult(interp),
3552 "array2mem: addr + len - wraps to zero?", NULL);
3553 return JIM_ERR;
3555 /* absurd transfer size? */
3556 if (len > 65536) {
3557 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3558 Jim_AppendStrings(interp, Jim_GetResult(interp),
3559 "array2mem: absurd > 64K item request", NULL);
3560 return JIM_ERR;
3563 if ((width == 1) ||
3564 ((width == 2) && ((addr & 1) == 0)) ||
3565 ((width == 4) && ((addr & 3) == 0))) {
3566 /* all is well */
3567 } else {
3568 char buf[100];
3569 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3570 sprintf(buf, "array2mem address: 0x%08x is not aligned for %d byte reads",
3571 (unsigned int)addr,
3572 (int)width);
3573 Jim_AppendStrings(interp, Jim_GetResult(interp), buf , NULL);
3574 return JIM_ERR;
3577 /* Transfer loop */
3579 /* index counter */
3580 n = 0;
3581 /* assume ok */
3582 e = JIM_OK;
3584 size_t buffersize = 4096;
3585 uint8_t *buffer = malloc(buffersize);
3586 if (buffer == NULL)
3587 return JIM_ERR;
3589 while (len) {
3590 /* Slurp... in buffer size chunks */
3592 count = len; /* in objects.. */
3593 if (count > (buffersize / width))
3594 count = (buffersize / width);
3596 v = 0; /* shut up gcc */
3597 for (i = 0; i < count; i++, n++) {
3598 get_int_array_element(interp, varname, n, &v);
3599 switch (width) {
3600 case 4:
3601 target_buffer_set_u32(target, &buffer[i * width], v);
3602 break;
3603 case 2:
3604 target_buffer_set_u16(target, &buffer[i * width], v);
3605 break;
3606 case 1:
3607 buffer[i] = v & 0x0ff;
3608 break;
3611 len -= count;
3613 retval = target_write_memory(target, addr, width, count, buffer);
3614 if (retval != ERROR_OK) {
3615 /* BOO !*/
3616 LOG_ERROR("array2mem: Write @ 0x%08x, w=%d, cnt=%d, failed",
3617 (unsigned int)addr,
3618 (int)width,
3619 (int)count);
3620 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3621 Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: cannot read memory", NULL);
3622 e = JIM_ERR;
3623 break;
3627 free(buffer);
3629 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3631 return e;
3634 /* FIX? should we propagate errors here rather than printing them
3635 * and continuing?
3637 void target_handle_event(struct target *target, enum target_event e)
3639 struct target_event_action *teap;
3641 for (teap = target->event_action; teap != NULL; teap = teap->next) {
3642 if (teap->event == e) {
3643 LOG_DEBUG("target: (%d) %s (%s) event: %d (%s) action: %s",
3644 target->target_number,
3645 target_name(target),
3646 target_type_name(target),
3648 Jim_Nvp_value2name_simple(nvp_target_event, e)->name,
3649 Jim_GetString(teap->body, NULL));
3650 if (Jim_EvalObj(teap->interp, teap->body) != JIM_OK) {
3651 Jim_MakeErrorMessage(teap->interp);
3652 command_print(NULL, "%s\n", Jim_GetString(Jim_GetResult(teap->interp), NULL));
3659 * Returns true only if the target has a handler for the specified event.
3661 bool target_has_event_action(struct target *target, enum target_event event)
3663 struct target_event_action *teap;
3665 for (teap = target->event_action; teap != NULL; teap = teap->next) {
3666 if (teap->event == event)
3667 return true;
3669 return false;
3672 enum target_cfg_param {
3673 TCFG_TYPE,
3674 TCFG_EVENT,
3675 TCFG_WORK_AREA_VIRT,
3676 TCFG_WORK_AREA_PHYS,
3677 TCFG_WORK_AREA_SIZE,
3678 TCFG_WORK_AREA_BACKUP,
3679 TCFG_ENDIAN,
3680 TCFG_VARIANT,
3681 TCFG_COREID,
3682 TCFG_CHAIN_POSITION,
3683 TCFG_DBGBASE,
3684 TCFG_RTOS,
3687 static Jim_Nvp nvp_config_opts[] = {
3688 { .name = "-type", .value = TCFG_TYPE },
3689 { .name = "-event", .value = TCFG_EVENT },
3690 { .name = "-work-area-virt", .value = TCFG_WORK_AREA_VIRT },
3691 { .name = "-work-area-phys", .value = TCFG_WORK_AREA_PHYS },
3692 { .name = "-work-area-size", .value = TCFG_WORK_AREA_SIZE },
3693 { .name = "-work-area-backup", .value = TCFG_WORK_AREA_BACKUP },
3694 { .name = "-endian" , .value = TCFG_ENDIAN },
3695 { .name = "-variant", .value = TCFG_VARIANT },
3696 { .name = "-coreid", .value = TCFG_COREID },
3697 { .name = "-chain-position", .value = TCFG_CHAIN_POSITION },
3698 { .name = "-dbgbase", .value = TCFG_DBGBASE },
3699 { .name = "-rtos", .value = TCFG_RTOS },
3700 { .name = NULL, .value = -1 }
3703 static int target_configure(Jim_GetOptInfo *goi, struct target *target)
3705 Jim_Nvp *n;
3706 Jim_Obj *o;
3707 jim_wide w;
3708 char *cp;
3709 int e;
3711 /* parse config or cget options ... */
3712 while (goi->argc > 0) {
3713 Jim_SetEmptyResult(goi->interp);
3714 /* Jim_GetOpt_Debug(goi); */
3716 if (target->type->target_jim_configure) {
3717 /* target defines a configure function */
3718 /* target gets first dibs on parameters */
3719 e = (*(target->type->target_jim_configure))(target, goi);
3720 if (e == JIM_OK) {
3721 /* more? */
3722 continue;
3724 if (e == JIM_ERR) {
3725 /* An error */
3726 return e;
3728 /* otherwise we 'continue' below */
3730 e = Jim_GetOpt_Nvp(goi, nvp_config_opts, &n);
3731 if (e != JIM_OK) {
3732 Jim_GetOpt_NvpUnknown(goi, nvp_config_opts, 0);
3733 return e;
3735 switch (n->value) {
3736 case TCFG_TYPE:
3737 /* not setable */
3738 if (goi->isconfigure) {
3739 Jim_SetResultFormatted(goi->interp,
3740 "not settable: %s", n->name);
3741 return JIM_ERR;
3742 } else {
3743 no_params:
3744 if (goi->argc != 0) {
3745 Jim_WrongNumArgs(goi->interp,
3746 goi->argc, goi->argv,
3747 "NO PARAMS");
3748 return JIM_ERR;
3751 Jim_SetResultString(goi->interp,
3752 target_type_name(target), -1);
3753 /* loop for more */
3754 break;
3755 case TCFG_EVENT:
3756 if (goi->argc == 0) {
3757 Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name? ...");
3758 return JIM_ERR;
3761 e = Jim_GetOpt_Nvp(goi, nvp_target_event, &n);
3762 if (e != JIM_OK) {
3763 Jim_GetOpt_NvpUnknown(goi, nvp_target_event, 1);
3764 return e;
3767 if (goi->isconfigure) {
3768 if (goi->argc != 1) {
3769 Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name? ?EVENT-BODY?");
3770 return JIM_ERR;
3772 } else {
3773 if (goi->argc != 0) {
3774 Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name?");
3775 return JIM_ERR;
3780 struct target_event_action *teap;
3782 teap = target->event_action;
3783 /* replace existing? */
3784 while (teap) {
3785 if (teap->event == (enum target_event)n->value)
3786 break;
3787 teap = teap->next;
3790 if (goi->isconfigure) {
3791 bool replace = true;
3792 if (teap == NULL) {
3793 /* create new */
3794 teap = calloc(1, sizeof(*teap));
3795 replace = false;
3797 teap->event = n->value;
3798 teap->interp = goi->interp;
3799 Jim_GetOpt_Obj(goi, &o);
3800 if (teap->body)
3801 Jim_DecrRefCount(teap->interp, teap->body);
3802 teap->body = Jim_DuplicateObj(goi->interp, o);
3804 * FIXME:
3805 * Tcl/TK - "tk events" have a nice feature.
3806 * See the "BIND" command.
3807 * We should support that here.
3808 * You can specify %X and %Y in the event code.
3809 * The idea is: %T - target name.
3810 * The idea is: %N - target number
3811 * The idea is: %E - event name.
3813 Jim_IncrRefCount(teap->body);
3815 if (!replace) {
3816 /* add to head of event list */
3817 teap->next = target->event_action;
3818 target->event_action = teap;
3820 Jim_SetEmptyResult(goi->interp);
3821 } else {
3822 /* get */
3823 if (teap == NULL)
3824 Jim_SetEmptyResult(goi->interp);
3825 else
3826 Jim_SetResult(goi->interp, Jim_DuplicateObj(goi->interp, teap->body));
3829 /* loop for more */
3830 break;
3832 case TCFG_WORK_AREA_VIRT:
3833 if (goi->isconfigure) {
3834 target_free_all_working_areas(target);
3835 e = Jim_GetOpt_Wide(goi, &w);
3836 if (e != JIM_OK)
3837 return e;
3838 target->working_area_virt = w;
3839 target->working_area_virt_spec = true;
3840 } else {
3841 if (goi->argc != 0)
3842 goto no_params;
3844 Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_virt));
3845 /* loop for more */
3846 break;
3848 case TCFG_WORK_AREA_PHYS:
3849 if (goi->isconfigure) {
3850 target_free_all_working_areas(target);
3851 e = Jim_GetOpt_Wide(goi, &w);
3852 if (e != JIM_OK)
3853 return e;
3854 target->working_area_phys = w;
3855 target->working_area_phys_spec = true;
3856 } else {
3857 if (goi->argc != 0)
3858 goto no_params;
3860 Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_phys));
3861 /* loop for more */
3862 break;
3864 case TCFG_WORK_AREA_SIZE:
3865 if (goi->isconfigure) {
3866 target_free_all_working_areas(target);
3867 e = Jim_GetOpt_Wide(goi, &w);
3868 if (e != JIM_OK)
3869 return e;
3870 target->working_area_size = w;
3871 } else {
3872 if (goi->argc != 0)
3873 goto no_params;
3875 Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_size));
3876 /* loop for more */
3877 break;
3879 case TCFG_WORK_AREA_BACKUP:
3880 if (goi->isconfigure) {
3881 target_free_all_working_areas(target);
3882 e = Jim_GetOpt_Wide(goi, &w);
3883 if (e != JIM_OK)
3884 return e;
3885 /* make this exactly 1 or 0 */
3886 target->backup_working_area = (!!w);
3887 } else {
3888 if (goi->argc != 0)
3889 goto no_params;
3891 Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->backup_working_area));
3892 /* loop for more e*/
3893 break;
3896 case TCFG_ENDIAN:
3897 if (goi->isconfigure) {
3898 e = Jim_GetOpt_Nvp(goi, nvp_target_endian, &n);
3899 if (e != JIM_OK) {
3900 Jim_GetOpt_NvpUnknown(goi, nvp_target_endian, 1);
3901 return e;
3903 target->endianness = n->value;
3904 } else {
3905 if (goi->argc != 0)
3906 goto no_params;
3908 n = Jim_Nvp_value2name_simple(nvp_target_endian, target->endianness);
3909 if (n->name == NULL) {
3910 target->endianness = TARGET_LITTLE_ENDIAN;
3911 n = Jim_Nvp_value2name_simple(nvp_target_endian, target->endianness);
3913 Jim_SetResultString(goi->interp, n->name, -1);
3914 /* loop for more */
3915 break;
3917 case TCFG_VARIANT:
3918 if (goi->isconfigure) {
3919 if (goi->argc < 1) {
3920 Jim_SetResultFormatted(goi->interp,
3921 "%s ?STRING?",
3922 n->name);
3923 return JIM_ERR;
3925 if (target->variant)
3926 free((void *)(target->variant));
3927 e = Jim_GetOpt_String(goi, &cp, NULL);
3928 if (e != JIM_OK)
3929 return e;
3930 target->variant = strdup(cp);
3931 } else {
3932 if (goi->argc != 0)
3933 goto no_params;
3935 Jim_SetResultString(goi->interp, target->variant, -1);
3936 /* loop for more */
3937 break;
3939 case TCFG_COREID:
3940 if (goi->isconfigure) {
3941 e = Jim_GetOpt_Wide(goi, &w);
3942 if (e != JIM_OK)
3943 return e;
3944 target->coreid = (int32_t)w;
3945 } else {
3946 if (goi->argc != 0)
3947 goto no_params;
3949 Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_size));
3950 /* loop for more */
3951 break;
3953 case TCFG_CHAIN_POSITION:
3954 if (goi->isconfigure) {
3955 Jim_Obj *o_t;
3956 struct jtag_tap *tap;
3957 target_free_all_working_areas(target);
3958 e = Jim_GetOpt_Obj(goi, &o_t);
3959 if (e != JIM_OK)
3960 return e;
3961 tap = jtag_tap_by_jim_obj(goi->interp, o_t);
3962 if (tap == NULL)
3963 return JIM_ERR;
3964 /* make this exactly 1 or 0 */
3965 target->tap = tap;
3966 } else {
3967 if (goi->argc != 0)
3968 goto no_params;
3970 Jim_SetResultString(goi->interp, target->tap->dotted_name, -1);
3971 /* loop for more e*/
3972 break;
3973 case TCFG_DBGBASE:
3974 if (goi->isconfigure) {
3975 e = Jim_GetOpt_Wide(goi, &w);
3976 if (e != JIM_OK)
3977 return e;
3978 target->dbgbase = (uint32_t)w;
3979 target->dbgbase_set = true;
3980 } else {
3981 if (goi->argc != 0)
3982 goto no_params;
3984 Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->dbgbase));
3985 /* loop for more */
3986 break;
3988 case TCFG_RTOS:
3989 /* RTOS */
3991 int result = rtos_create(goi, target);
3992 if (result != JIM_OK)
3993 return result;
3995 /* loop for more */
3996 break;
3998 } /* while (goi->argc) */
4001 /* done - we return */
4002 return JIM_OK;
4005 static int jim_target_configure(Jim_Interp *interp, int argc, Jim_Obj * const *argv)
4007 Jim_GetOptInfo goi;
4009 Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4010 goi.isconfigure = !strcmp(Jim_GetString(argv[0], NULL), "configure");
4011 int need_args = 1 + goi.isconfigure;
4012 if (goi.argc < need_args) {
4013 Jim_WrongNumArgs(goi.interp, goi.argc, goi.argv,
4014 goi.isconfigure
4015 ? "missing: -option VALUE ..."
4016 : "missing: -option ...");
4017 return JIM_ERR;
4019 struct target *target = Jim_CmdPrivData(goi.interp);
4020 return target_configure(&goi, target);
4023 static int jim_target_mw(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4025 const char *cmd_name = Jim_GetString(argv[0], NULL);
4027 Jim_GetOptInfo goi;
4028 Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4030 if (goi.argc < 2 || goi.argc > 4) {
4031 Jim_SetResultFormatted(goi.interp,
4032 "usage: %s [phys] <address> <data> [<count>]", cmd_name);
4033 return JIM_ERR;
4036 target_write_fn fn;
4037 fn = target_write_memory_fast;
4039 int e;
4040 if (strcmp(Jim_GetString(argv[1], NULL), "phys") == 0) {
4041 /* consume it */
4042 struct Jim_Obj *obj;
4043 e = Jim_GetOpt_Obj(&goi, &obj);
4044 if (e != JIM_OK)
4045 return e;
4047 fn = target_write_phys_memory;
4050 jim_wide a;
4051 e = Jim_GetOpt_Wide(&goi, &a);
4052 if (e != JIM_OK)
4053 return e;
4055 jim_wide b;
4056 e = Jim_GetOpt_Wide(&goi, &b);
4057 if (e != JIM_OK)
4058 return e;
4060 jim_wide c = 1;
4061 if (goi.argc == 1) {
4062 e = Jim_GetOpt_Wide(&goi, &c);
4063 if (e != JIM_OK)
4064 return e;
4067 /* all args must be consumed */
4068 if (goi.argc != 0)
4069 return JIM_ERR;
4071 struct target *target = Jim_CmdPrivData(goi.interp);
4072 unsigned data_size;
4073 if (strcasecmp(cmd_name, "mww") == 0)
4074 data_size = 4;
4075 else if (strcasecmp(cmd_name, "mwh") == 0)
4076 data_size = 2;
4077 else if (strcasecmp(cmd_name, "mwb") == 0)
4078 data_size = 1;
4079 else {
4080 LOG_ERROR("command '%s' unknown: ", cmd_name);
4081 return JIM_ERR;
4084 return (target_fill_mem(target, a, fn, data_size, b, c) == ERROR_OK) ? JIM_OK : JIM_ERR;
4087 static int jim_target_md(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4089 const char *cmd_name = Jim_GetString(argv[0], NULL);
4091 Jim_GetOptInfo goi;
4092 Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4094 if ((goi.argc < 1) || (goi.argc > 3)) {
4095 Jim_SetResultFormatted(goi.interp,
4096 "usage: %s [phys] <address> [<count>]", cmd_name);
4097 return JIM_ERR;
4100 int (*fn)(struct target *target,
4101 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer);
4102 fn = target_read_memory;
4104 int e;
4105 if (strcmp(Jim_GetString(argv[1], NULL), "phys") == 0) {
4106 /* consume it */
4107 struct Jim_Obj *obj;
4108 e = Jim_GetOpt_Obj(&goi, &obj);
4109 if (e != JIM_OK)
4110 return e;
4112 fn = target_read_phys_memory;
4115 jim_wide a;
4116 e = Jim_GetOpt_Wide(&goi, &a);
4117 if (e != JIM_OK)
4118 return JIM_ERR;
4119 jim_wide c;
4120 if (goi.argc == 1) {
4121 e = Jim_GetOpt_Wide(&goi, &c);
4122 if (e != JIM_OK)
4123 return JIM_ERR;
4124 } else
4125 c = 1;
4127 /* all args must be consumed */
4128 if (goi.argc != 0)
4129 return JIM_ERR;
4131 jim_wide b = 1; /* shut up gcc */
4132 if (strcasecmp(cmd_name, "mdw") == 0)
4133 b = 4;
4134 else if (strcasecmp(cmd_name, "mdh") == 0)
4135 b = 2;
4136 else if (strcasecmp(cmd_name, "mdb") == 0)
4137 b = 1;
4138 else {
4139 LOG_ERROR("command '%s' unknown: ", cmd_name);
4140 return JIM_ERR;
4143 /* convert count to "bytes" */
4144 c = c * b;
4146 struct target *target = Jim_CmdPrivData(goi.interp);
4147 uint8_t target_buf[32];
4148 jim_wide x, y, z;
4149 while (c > 0) {
4150 y = c;
4151 if (y > 16)
4152 y = 16;
4153 e = fn(target, a, b, y / b, target_buf);
4154 if (e != ERROR_OK) {
4155 char tmp[10];
4156 snprintf(tmp, sizeof(tmp), "%08lx", (long)a);
4157 Jim_SetResultFormatted(interp, "error reading target @ 0x%s", tmp);
4158 return JIM_ERR;
4161 command_print(NULL, "0x%08x ", (int)(a));
4162 switch (b) {
4163 case 4:
4164 for (x = 0; x < 16 && x < y; x += 4) {
4165 z = target_buffer_get_u32(target, &(target_buf[x]));
4166 command_print(NULL, "%08x ", (int)(z));
4168 for (; (x < 16) ; x += 4)
4169 command_print(NULL, " ");
4170 break;
4171 case 2:
4172 for (x = 0; x < 16 && x < y; x += 2) {
4173 z = target_buffer_get_u16(target, &(target_buf[x]));
4174 command_print(NULL, "%04x ", (int)(z));
4176 for (; (x < 16) ; x += 2)
4177 command_print(NULL, " ");
4178 break;
4179 case 1:
4180 default:
4181 for (x = 0 ; (x < 16) && (x < y) ; x += 1) {
4182 z = target_buffer_get_u8(target, &(target_buf[x]));
4183 command_print(NULL, "%02x ", (int)(z));
4185 for (; (x < 16) ; x += 1)
4186 command_print(NULL, " ");
4187 break;
4189 /* ascii-ify the bytes */
4190 for (x = 0 ; x < y ; x++) {
4191 if ((target_buf[x] >= 0x20) &&
4192 (target_buf[x] <= 0x7e)) {
4193 /* good */
4194 } else {
4195 /* smack it */
4196 target_buf[x] = '.';
4199 /* space pad */
4200 while (x < 16) {
4201 target_buf[x] = ' ';
4202 x++;
4204 /* terminate */
4205 target_buf[16] = 0;
4206 /* print - with a newline */
4207 command_print(NULL, "%s\n", target_buf);
4208 /* NEXT... */
4209 c -= 16;
4210 a += 16;
4212 return JIM_OK;
4215 static int jim_target_mem2array(Jim_Interp *interp,
4216 int argc, Jim_Obj *const *argv)
4218 struct target *target = Jim_CmdPrivData(interp);
4219 return target_mem2array(interp, target, argc - 1, argv + 1);
4222 static int jim_target_array2mem(Jim_Interp *interp,
4223 int argc, Jim_Obj *const *argv)
4225 struct target *target = Jim_CmdPrivData(interp);
4226 return target_array2mem(interp, target, argc - 1, argv + 1);
4229 static int jim_target_tap_disabled(Jim_Interp *interp)
4231 Jim_SetResultFormatted(interp, "[TAP is disabled]");
4232 return JIM_ERR;
4235 static int jim_target_examine(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4237 if (argc != 1) {
4238 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
4239 return JIM_ERR;
4241 struct target *target = Jim_CmdPrivData(interp);
4242 if (!target->tap->enabled)
4243 return jim_target_tap_disabled(interp);
4245 int e = target->type->examine(target);
4246 if (e != ERROR_OK)
4247 return JIM_ERR;
4248 return JIM_OK;
4251 static int jim_target_halt_gdb(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4253 if (argc != 1) {
4254 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
4255 return JIM_ERR;
4257 struct target *target = Jim_CmdPrivData(interp);
4259 if (target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT) != ERROR_OK)
4260 return JIM_ERR;
4262 return JIM_OK;
4265 static int jim_target_poll(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4267 if (argc != 1) {
4268 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
4269 return JIM_ERR;
4271 struct target *target = Jim_CmdPrivData(interp);
4272 if (!target->tap->enabled)
4273 return jim_target_tap_disabled(interp);
4275 int e;
4276 if (!(target_was_examined(target)))
4277 e = ERROR_TARGET_NOT_EXAMINED;
4278 else
4279 e = target->type->poll(target);
4280 if (e != ERROR_OK)
4281 return JIM_ERR;
4282 return JIM_OK;
4285 static int jim_target_reset(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4287 Jim_GetOptInfo goi;
4288 Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4290 if (goi.argc != 2) {
4291 Jim_WrongNumArgs(interp, 0, argv,
4292 "([tT]|[fF]|assert|deassert) BOOL");
4293 return JIM_ERR;
4296 Jim_Nvp *n;
4297 int e = Jim_GetOpt_Nvp(&goi, nvp_assert, &n);
4298 if (e != JIM_OK) {
4299 Jim_GetOpt_NvpUnknown(&goi, nvp_assert, 1);
4300 return e;
4302 /* the halt or not param */
4303 jim_wide a;
4304 e = Jim_GetOpt_Wide(&goi, &a);
4305 if (e != JIM_OK)
4306 return e;
4308 struct target *target = Jim_CmdPrivData(goi.interp);
4309 if (!target->tap->enabled)
4310 return jim_target_tap_disabled(interp);
4311 if (!(target_was_examined(target))) {
4312 LOG_ERROR("Target not examined yet");
4313 return ERROR_TARGET_NOT_EXAMINED;
4315 if (!target->type->assert_reset || !target->type->deassert_reset) {
4316 Jim_SetResultFormatted(interp,
4317 "No target-specific reset for %s",
4318 target_name(target));
4319 return JIM_ERR;
4321 /* determine if we should halt or not. */
4322 target->reset_halt = !!a;
4323 /* When this happens - all workareas are invalid. */
4324 target_free_all_working_areas_restore(target, 0);
4326 /* do the assert */
4327 if (n->value == NVP_ASSERT)
4328 e = target->type->assert_reset(target);
4329 else
4330 e = target->type->deassert_reset(target);
4331 return (e == ERROR_OK) ? JIM_OK : JIM_ERR;
4334 static int jim_target_halt(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4336 if (argc != 1) {
4337 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
4338 return JIM_ERR;
4340 struct target *target = Jim_CmdPrivData(interp);
4341 if (!target->tap->enabled)
4342 return jim_target_tap_disabled(interp);
4343 int e = target->type->halt(target);
4344 return (e == ERROR_OK) ? JIM_OK : JIM_ERR;
4347 static int jim_target_wait_state(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4349 Jim_GetOptInfo goi;
4350 Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4352 /* params: <name> statename timeoutmsecs */
4353 if (goi.argc != 2) {
4354 const char *cmd_name = Jim_GetString(argv[0], NULL);
4355 Jim_SetResultFormatted(goi.interp,
4356 "%s <state_name> <timeout_in_msec>", cmd_name);
4357 return JIM_ERR;
4360 Jim_Nvp *n;
4361 int e = Jim_GetOpt_Nvp(&goi, nvp_target_state, &n);
4362 if (e != JIM_OK) {
4363 Jim_GetOpt_NvpUnknown(&goi, nvp_target_state, 1);
4364 return e;
4366 jim_wide a;
4367 e = Jim_GetOpt_Wide(&goi, &a);
4368 if (e != JIM_OK)
4369 return e;
4370 struct target *target = Jim_CmdPrivData(interp);
4371 if (!target->tap->enabled)
4372 return jim_target_tap_disabled(interp);
4374 e = target_wait_state(target, n->value, a);
4375 if (e != ERROR_OK) {
4376 Jim_Obj *eObj = Jim_NewIntObj(interp, e);
4377 Jim_SetResultFormatted(goi.interp,
4378 "target: %s wait %s fails (%#s) %s",
4379 target_name(target), n->name,
4380 eObj, target_strerror_safe(e));
4381 Jim_FreeNewObj(interp, eObj);
4382 return JIM_ERR;
4384 return JIM_OK;
4386 /* List for human, Events defined for this target.
4387 * scripts/programs should use 'name cget -event NAME'
4389 static int jim_target_event_list(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4391 struct command_context *cmd_ctx = current_command_context(interp);
4392 assert(cmd_ctx != NULL);
4394 struct target *target = Jim_CmdPrivData(interp);
4395 struct target_event_action *teap = target->event_action;
4396 command_print(cmd_ctx, "Event actions for target (%d) %s\n",
4397 target->target_number,
4398 target_name(target));
4399 command_print(cmd_ctx, "%-25s | Body", "Event");
4400 command_print(cmd_ctx, "------------------------- | "
4401 "----------------------------------------");
4402 while (teap) {
4403 Jim_Nvp *opt = Jim_Nvp_value2name_simple(nvp_target_event, teap->event);
4404 command_print(cmd_ctx, "%-25s | %s",
4405 opt->name, Jim_GetString(teap->body, NULL));
4406 teap = teap->next;
4408 command_print(cmd_ctx, "***END***");
4409 return JIM_OK;
4411 static int jim_target_current_state(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4413 if (argc != 1) {
4414 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
4415 return JIM_ERR;
4417 struct target *target = Jim_CmdPrivData(interp);
4418 Jim_SetResultString(interp, target_state_name(target), -1);
4419 return JIM_OK;
4421 static int jim_target_invoke_event(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4423 Jim_GetOptInfo goi;
4424 Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4425 if (goi.argc != 1) {
4426 const char *cmd_name = Jim_GetString(argv[0], NULL);
4427 Jim_SetResultFormatted(goi.interp, "%s <eventname>", cmd_name);
4428 return JIM_ERR;
4430 Jim_Nvp *n;
4431 int e = Jim_GetOpt_Nvp(&goi, nvp_target_event, &n);
4432 if (e != JIM_OK) {
4433 Jim_GetOpt_NvpUnknown(&goi, nvp_target_event, 1);
4434 return e;
4436 struct target *target = Jim_CmdPrivData(interp);
4437 target_handle_event(target, n->value);
4438 return JIM_OK;
4441 static const struct command_registration target_instance_command_handlers[] = {
4443 .name = "configure",
4444 .mode = COMMAND_CONFIG,
4445 .jim_handler = jim_target_configure,
4446 .help = "configure a new target for use",
4447 .usage = "[target_attribute ...]",
4450 .name = "cget",
4451 .mode = COMMAND_ANY,
4452 .jim_handler = jim_target_configure,
4453 .help = "returns the specified target attribute",
4454 .usage = "target_attribute",
4457 .name = "mww",
4458 .mode = COMMAND_EXEC,
4459 .jim_handler = jim_target_mw,
4460 .help = "Write 32-bit word(s) to target memory",
4461 .usage = "address data [count]",
4464 .name = "mwh",
4465 .mode = COMMAND_EXEC,
4466 .jim_handler = jim_target_mw,
4467 .help = "Write 16-bit half-word(s) to target memory",
4468 .usage = "address data [count]",
4471 .name = "mwb",
4472 .mode = COMMAND_EXEC,
4473 .jim_handler = jim_target_mw,
4474 .help = "Write byte(s) to target memory",
4475 .usage = "address data [count]",
4478 .name = "mdw",
4479 .mode = COMMAND_EXEC,
4480 .jim_handler = jim_target_md,
4481 .help = "Display target memory as 32-bit words",
4482 .usage = "address [count]",
4485 .name = "mdh",
4486 .mode = COMMAND_EXEC,
4487 .jim_handler = jim_target_md,
4488 .help = "Display target memory as 16-bit half-words",
4489 .usage = "address [count]",
4492 .name = "mdb",
4493 .mode = COMMAND_EXEC,
4494 .jim_handler = jim_target_md,
4495 .help = "Display target memory as 8-bit bytes",
4496 .usage = "address [count]",
4499 .name = "array2mem",
4500 .mode = COMMAND_EXEC,
4501 .jim_handler = jim_target_array2mem,
4502 .help = "Writes Tcl array of 8/16/32 bit numbers "
4503 "to target memory",
4504 .usage = "arrayname bitwidth address count",
4507 .name = "mem2array",
4508 .mode = COMMAND_EXEC,
4509 .jim_handler = jim_target_mem2array,
4510 .help = "Loads Tcl array of 8/16/32 bit numbers "
4511 "from target memory",
4512 .usage = "arrayname bitwidth address count",
4515 .name = "eventlist",
4516 .mode = COMMAND_EXEC,
4517 .jim_handler = jim_target_event_list,
4518 .help = "displays a table of events defined for this target",
4521 .name = "curstate",
4522 .mode = COMMAND_EXEC,
4523 .jim_handler = jim_target_current_state,
4524 .help = "displays the current state of this target",
4527 .name = "arp_examine",
4528 .mode = COMMAND_EXEC,
4529 .jim_handler = jim_target_examine,
4530 .help = "used internally for reset processing",
4533 .name = "arp_halt_gdb",
4534 .mode = COMMAND_EXEC,
4535 .jim_handler = jim_target_halt_gdb,
4536 .help = "used internally for reset processing to halt GDB",
4539 .name = "arp_poll",
4540 .mode = COMMAND_EXEC,
4541 .jim_handler = jim_target_poll,
4542 .help = "used internally for reset processing",
4545 .name = "arp_reset",
4546 .mode = COMMAND_EXEC,
4547 .jim_handler = jim_target_reset,
4548 .help = "used internally for reset processing",
4551 .name = "arp_halt",
4552 .mode = COMMAND_EXEC,
4553 .jim_handler = jim_target_halt,
4554 .help = "used internally for reset processing",
4557 .name = "arp_waitstate",
4558 .mode = COMMAND_EXEC,
4559 .jim_handler = jim_target_wait_state,
4560 .help = "used internally for reset processing",
4563 .name = "invoke-event",
4564 .mode = COMMAND_EXEC,
4565 .jim_handler = jim_target_invoke_event,
4566 .help = "invoke handler for specified event",
4567 .usage = "event_name",
4569 COMMAND_REGISTRATION_DONE
4572 static int target_create(Jim_GetOptInfo *goi)
4574 Jim_Obj *new_cmd;
4575 Jim_Cmd *cmd;
4576 const char *cp;
4577 char *cp2;
4578 int e;
4579 int x;
4580 struct target *target;
4581 struct command_context *cmd_ctx;
4583 cmd_ctx = current_command_context(goi->interp);
4584 assert(cmd_ctx != NULL);
4586 if (goi->argc < 3) {
4587 Jim_WrongNumArgs(goi->interp, 1, goi->argv, "?name? ?type? ..options...");
4588 return JIM_ERR;
4591 /* COMMAND */
4592 Jim_GetOpt_Obj(goi, &new_cmd);
4593 /* does this command exist? */
4594 cmd = Jim_GetCommand(goi->interp, new_cmd, JIM_ERRMSG);
4595 if (cmd) {
4596 cp = Jim_GetString(new_cmd, NULL);
4597 Jim_SetResultFormatted(goi->interp, "Command/target: %s Exists", cp);
4598 return JIM_ERR;
4601 /* TYPE */
4602 e = Jim_GetOpt_String(goi, &cp2, NULL);
4603 if (e != JIM_OK)
4604 return e;
4605 cp = cp2;
4606 /* now does target type exist */
4607 for (x = 0 ; target_types[x] ; x++) {
4608 if (0 == strcmp(cp, target_types[x]->name)) {
4609 /* found */
4610 break;
4613 if (target_types[x] == NULL) {
4614 Jim_SetResultFormatted(goi->interp, "Unknown target type %s, try one of ", cp);
4615 for (x = 0 ; target_types[x] ; x++) {
4616 if (target_types[x + 1]) {
4617 Jim_AppendStrings(goi->interp,
4618 Jim_GetResult(goi->interp),
4619 target_types[x]->name,
4620 ", ", NULL);
4621 } else {
4622 Jim_AppendStrings(goi->interp,
4623 Jim_GetResult(goi->interp),
4624 " or ",
4625 target_types[x]->name, NULL);
4628 return JIM_ERR;
4631 /* Create it */
4632 target = calloc(1, sizeof(struct target));
4633 /* set target number */
4634 target->target_number = new_target_number();
4636 /* allocate memory for each unique target type */
4637 target->type = (struct target_type *)calloc(1, sizeof(struct target_type));
4639 memcpy(target->type, target_types[x], sizeof(struct target_type));
4641 /* will be set by "-endian" */
4642 target->endianness = TARGET_ENDIAN_UNKNOWN;
4644 /* default to first core, override with -coreid */
4645 target->coreid = 0;
4647 target->working_area = 0x0;
4648 target->working_area_size = 0x0;
4649 target->working_areas = NULL;
4650 target->backup_working_area = 0;
4652 target->state = TARGET_UNKNOWN;
4653 target->debug_reason = DBG_REASON_UNDEFINED;
4654 target->reg_cache = NULL;
4655 target->breakpoints = NULL;
4656 target->watchpoints = NULL;
4657 target->next = NULL;
4658 target->arch_info = NULL;
4660 target->display = 1;
4662 target->halt_issued = false;
4664 /* initialize trace information */
4665 target->trace_info = malloc(sizeof(struct trace));
4666 target->trace_info->num_trace_points = 0;
4667 target->trace_info->trace_points_size = 0;
4668 target->trace_info->trace_points = NULL;
4669 target->trace_info->trace_history_size = 0;
4670 target->trace_info->trace_history = NULL;
4671 target->trace_info->trace_history_pos = 0;
4672 target->trace_info->trace_history_overflowed = 0;
4674 target->dbgmsg = NULL;
4675 target->dbg_msg_enabled = 0;
4677 target->endianness = TARGET_ENDIAN_UNKNOWN;
4679 target->rtos = NULL;
4680 target->rtos_auto_detect = false;
4682 /* Do the rest as "configure" options */
4683 goi->isconfigure = 1;
4684 e = target_configure(goi, target);
4686 if (target->tap == NULL) {
4687 Jim_SetResultString(goi->interp, "-chain-position required when creating target", -1);
4688 e = JIM_ERR;
4691 if (e != JIM_OK) {
4692 free(target->type);
4693 free(target);
4694 return e;
4697 if (target->endianness == TARGET_ENDIAN_UNKNOWN) {
4698 /* default endian to little if not specified */
4699 target->endianness = TARGET_LITTLE_ENDIAN;
4702 /* incase variant is not set */
4703 if (!target->variant)
4704 target->variant = strdup("");
4706 cp = Jim_GetString(new_cmd, NULL);
4707 target->cmd_name = strdup(cp);
4709 /* create the target specific commands */
4710 if (target->type->commands) {
4711 e = register_commands(cmd_ctx, NULL, target->type->commands);
4712 if (ERROR_OK != e)
4713 LOG_ERROR("unable to register '%s' commands", cp);
4715 if (target->type->target_create)
4716 (*(target->type->target_create))(target, goi->interp);
4718 /* append to end of list */
4720 struct target **tpp;
4721 tpp = &(all_targets);
4722 while (*tpp)
4723 tpp = &((*tpp)->next);
4724 *tpp = target;
4727 /* now - create the new target name command */
4728 const const struct command_registration target_subcommands[] = {
4730 .chain = target_instance_command_handlers,
4733 .chain = target->type->commands,
4735 COMMAND_REGISTRATION_DONE
4737 const const struct command_registration target_commands[] = {
4739 .name = cp,
4740 .mode = COMMAND_ANY,
4741 .help = "target command group",
4742 .usage = "",
4743 .chain = target_subcommands,
4745 COMMAND_REGISTRATION_DONE
4747 e = register_commands(cmd_ctx, NULL, target_commands);
4748 if (ERROR_OK != e)
4749 return JIM_ERR;
4751 struct command *c = command_find_in_context(cmd_ctx, cp);
4752 assert(c);
4753 command_set_handler_data(c, target);
4755 return (ERROR_OK == e) ? JIM_OK : JIM_ERR;
4758 static int jim_target_current(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4760 if (argc != 1) {
4761 Jim_WrongNumArgs(interp, 1, argv, "Too many parameters");
4762 return JIM_ERR;
4764 struct command_context *cmd_ctx = current_command_context(interp);
4765 assert(cmd_ctx != NULL);
4767 Jim_SetResultString(interp, get_current_target(cmd_ctx)->cmd_name, -1);
4768 return JIM_OK;
4771 static int jim_target_types(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4773 if (argc != 1) {
4774 Jim_WrongNumArgs(interp, 1, argv, "Too many parameters");
4775 return JIM_ERR;
4777 Jim_SetResult(interp, Jim_NewListObj(interp, NULL, 0));
4778 for (unsigned x = 0; NULL != target_types[x]; x++) {
4779 Jim_ListAppendElement(interp, Jim_GetResult(interp),
4780 Jim_NewStringObj(interp, target_types[x]->name, -1));
4782 return JIM_OK;
4785 static int jim_target_names(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4787 if (argc != 1) {
4788 Jim_WrongNumArgs(interp, 1, argv, "Too many parameters");
4789 return JIM_ERR;
4791 Jim_SetResult(interp, Jim_NewListObj(interp, NULL, 0));
4792 struct target *target = all_targets;
4793 while (target) {
4794 Jim_ListAppendElement(interp, Jim_GetResult(interp),
4795 Jim_NewStringObj(interp, target_name(target), -1));
4796 target = target->next;
4798 return JIM_OK;
4801 static int jim_target_smp(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4803 int i;
4804 const char *targetname;
4805 int retval, len;
4806 struct target *target = (struct target *) NULL;
4807 struct target_list *head, *curr, *new;
4808 curr = (struct target_list *) NULL;
4809 head = (struct target_list *) NULL;
4810 new = (struct target_list *) NULL;
4812 retval = 0;
4813 LOG_DEBUG("%d", argc);
4814 /* argv[1] = target to associate in smp
4815 * argv[2] = target to assoicate in smp
4816 * argv[3] ...
4819 for (i = 1; i < argc; i++) {
4821 targetname = Jim_GetString(argv[i], &len);
4822 target = get_target(targetname);
4823 LOG_DEBUG("%s ", targetname);
4824 if (target) {
4825 new = malloc(sizeof(struct target_list));
4826 new->target = target;
4827 new->next = (struct target_list *)NULL;
4828 if (head == (struct target_list *)NULL) {
4829 head = new;
4830 curr = head;
4831 } else {
4832 curr->next = new;
4833 curr = new;
4837 /* now parse the list of cpu and put the target in smp mode*/
4838 curr = head;
4840 while (curr != (struct target_list *)NULL) {
4841 target = curr->target;
4842 target->smp = 1;
4843 target->head = head;
4844 curr = curr->next;
4846 if (target->rtos)
4847 retval = rtos_smp_init(head->target);
4848 return retval;
4852 static int jim_target_create(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4854 Jim_GetOptInfo goi;
4855 Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4856 if (goi.argc < 3) {
4857 Jim_WrongNumArgs(goi.interp, goi.argc, goi.argv,
4858 "<name> <target_type> [<target_options> ...]");
4859 return JIM_ERR;
4861 return target_create(&goi);
4864 static int jim_target_number(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4866 Jim_GetOptInfo goi;
4867 Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4869 /* It's OK to remove this mechanism sometime after August 2010 or so */
4870 LOG_WARNING("don't use numbers as target identifiers; use names");
4871 if (goi.argc != 1) {
4872 Jim_SetResultFormatted(goi.interp, "usage: target number <number>");
4873 return JIM_ERR;
4875 jim_wide w;
4876 int e = Jim_GetOpt_Wide(&goi, &w);
4877 if (e != JIM_OK)
4878 return JIM_ERR;
4880 struct target *target;
4881 for (target = all_targets; NULL != target; target = target->next) {
4882 if (target->target_number != w)
4883 continue;
4885 Jim_SetResultString(goi.interp, target_name(target), -1);
4886 return JIM_OK;
4889 Jim_Obj *wObj = Jim_NewIntObj(goi.interp, w);
4890 Jim_SetResultFormatted(goi.interp,
4891 "Target: number %#s does not exist", wObj);
4892 Jim_FreeNewObj(interp, wObj);
4894 return JIM_ERR;
4897 static int jim_target_count(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4899 if (argc != 1) {
4900 Jim_WrongNumArgs(interp, 1, argv, "<no parameters>");
4901 return JIM_ERR;
4903 unsigned count = 0;
4904 struct target *target = all_targets;
4905 while (NULL != target) {
4906 target = target->next;
4907 count++;
4909 Jim_SetResult(interp, Jim_NewIntObj(interp, count));
4910 return JIM_OK;
4913 static const struct command_registration target_subcommand_handlers[] = {
4915 .name = "init",
4916 .mode = COMMAND_CONFIG,
4917 .handler = handle_target_init_command,
4918 .help = "initialize targets",
4921 .name = "create",
4922 /* REVISIT this should be COMMAND_CONFIG ... */
4923 .mode = COMMAND_ANY,
4924 .jim_handler = jim_target_create,
4925 .usage = "name type '-chain-position' name [options ...]",
4926 .help = "Creates and selects a new target",
4929 .name = "current",
4930 .mode = COMMAND_ANY,
4931 .jim_handler = jim_target_current,
4932 .help = "Returns the currently selected target",
4935 .name = "types",
4936 .mode = COMMAND_ANY,
4937 .jim_handler = jim_target_types,
4938 .help = "Returns the available target types as "
4939 "a list of strings",
4942 .name = "names",
4943 .mode = COMMAND_ANY,
4944 .jim_handler = jim_target_names,
4945 .help = "Returns the names of all targets as a list of strings",
4948 .name = "number",
4949 .mode = COMMAND_ANY,
4950 .jim_handler = jim_target_number,
4951 .usage = "number",
4952 .help = "Returns the name of the numbered target "
4953 "(DEPRECATED)",
4956 .name = "count",
4957 .mode = COMMAND_ANY,
4958 .jim_handler = jim_target_count,
4959 .help = "Returns the number of targets as an integer "
4960 "(DEPRECATED)",
4963 .name = "smp",
4964 .mode = COMMAND_ANY,
4965 .jim_handler = jim_target_smp,
4966 .usage = "targetname1 targetname2 ...",
4967 .help = "gather several target in a smp list"
4970 COMMAND_REGISTRATION_DONE
4973 struct FastLoad {
4974 uint32_t address;
4975 uint8_t *data;
4976 int length;
4980 static int fastload_num;
4981 static struct FastLoad *fastload;
4983 static void free_fastload(void)
4985 if (fastload != NULL) {
4986 int i;
4987 for (i = 0; i < fastload_num; i++) {
4988 if (fastload[i].data)
4989 free(fastload[i].data);
4991 free(fastload);
4992 fastload = NULL;
4996 COMMAND_HANDLER(handle_fast_load_image_command)
4998 uint8_t *buffer;
4999 size_t buf_cnt;
5000 uint32_t image_size;
5001 uint32_t min_address = 0;
5002 uint32_t max_address = 0xffffffff;
5003 int i;
5005 struct image image;
5007 int retval = CALL_COMMAND_HANDLER(parse_load_image_command_CMD_ARGV,
5008 &image, &min_address, &max_address);
5009 if (ERROR_OK != retval)
5010 return retval;
5012 struct duration bench;
5013 duration_start(&bench);
5015 retval = image_open(&image, CMD_ARGV[0], (CMD_ARGC >= 3) ? CMD_ARGV[2] : NULL);
5016 if (retval != ERROR_OK)
5017 return retval;
5019 image_size = 0x0;
5020 retval = ERROR_OK;
5021 fastload_num = image.num_sections;
5022 fastload = (struct FastLoad *)malloc(sizeof(struct FastLoad)*image.num_sections);
5023 if (fastload == NULL) {
5024 command_print(CMD_CTX, "out of memory");
5025 image_close(&image);
5026 return ERROR_FAIL;
5028 memset(fastload, 0, sizeof(struct FastLoad)*image.num_sections);
5029 for (i = 0; i < image.num_sections; i++) {
5030 buffer = malloc(image.sections[i].size);
5031 if (buffer == NULL) {
5032 command_print(CMD_CTX, "error allocating buffer for section (%d bytes)",
5033 (int)(image.sections[i].size));
5034 retval = ERROR_FAIL;
5035 break;
5038 retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt);
5039 if (retval != ERROR_OK) {
5040 free(buffer);
5041 break;
5044 uint32_t offset = 0;
5045 uint32_t length = buf_cnt;
5047 /* DANGER!!! beware of unsigned comparision here!!! */
5049 if ((image.sections[i].base_address + buf_cnt >= min_address) &&
5050 (image.sections[i].base_address < max_address)) {
5051 if (image.sections[i].base_address < min_address) {
5052 /* clip addresses below */
5053 offset += min_address-image.sections[i].base_address;
5054 length -= offset;
5057 if (image.sections[i].base_address + buf_cnt > max_address)
5058 length -= (image.sections[i].base_address + buf_cnt)-max_address;
5060 fastload[i].address = image.sections[i].base_address + offset;
5061 fastload[i].data = malloc(length);
5062 if (fastload[i].data == NULL) {
5063 free(buffer);
5064 command_print(CMD_CTX, "error allocating buffer for section (%d bytes)",
5065 length);
5066 retval = ERROR_FAIL;
5067 break;
5069 memcpy(fastload[i].data, buffer + offset, length);
5070 fastload[i].length = length;
5072 image_size += length;
5073 command_print(CMD_CTX, "%u bytes written at address 0x%8.8x",
5074 (unsigned int)length,
5075 ((unsigned int)(image.sections[i].base_address + offset)));
5078 free(buffer);
5081 if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK)) {
5082 command_print(CMD_CTX, "Loaded %" PRIu32 " bytes "
5083 "in %fs (%0.3f KiB/s)", image_size,
5084 duration_elapsed(&bench), duration_kbps(&bench, image_size));
5086 command_print(CMD_CTX,
5087 "WARNING: image has not been loaded to target!"
5088 "You can issue a 'fast_load' to finish loading.");
5091 image_close(&image);
5093 if (retval != ERROR_OK)
5094 free_fastload();
5096 return retval;
5099 COMMAND_HANDLER(handle_fast_load_command)
5101 if (CMD_ARGC > 0)
5102 return ERROR_COMMAND_SYNTAX_ERROR;
5103 if (fastload == NULL) {
5104 LOG_ERROR("No image in memory");
5105 return ERROR_FAIL;
5107 int i;
5108 int ms = timeval_ms();
5109 int size = 0;
5110 int retval = ERROR_OK;
5111 for (i = 0; i < fastload_num; i++) {
5112 struct target *target = get_current_target(CMD_CTX);
5113 command_print(CMD_CTX, "Write to 0x%08x, length 0x%08x",
5114 (unsigned int)(fastload[i].address),
5115 (unsigned int)(fastload[i].length));
5116 retval = target_write_buffer(target, fastload[i].address, fastload[i].length, fastload[i].data);
5117 if (retval != ERROR_OK)
5118 break;
5119 size += fastload[i].length;
5121 if (retval == ERROR_OK) {
5122 int after = timeval_ms();
5123 command_print(CMD_CTX, "Loaded image %f kBytes/s", (float)(size/1024.0)/((float)(after-ms)/1000.0));
5125 return retval;
5128 static const struct command_registration target_command_handlers[] = {
5130 .name = "targets",
5131 .handler = handle_targets_command,
5132 .mode = COMMAND_ANY,
5133 .help = "change current default target (one parameter) "
5134 "or prints table of all targets (no parameters)",
5135 .usage = "[target]",
5138 .name = "target",
5139 .mode = COMMAND_CONFIG,
5140 .help = "configure target",
5142 .chain = target_subcommand_handlers,
5144 COMMAND_REGISTRATION_DONE
5147 int target_register_commands(struct command_context *cmd_ctx)
5149 return register_commands(cmd_ctx, NULL, target_command_handlers);
5152 static bool target_reset_nag = true;
5154 bool get_target_reset_nag(void)
5156 return target_reset_nag;
5159 COMMAND_HANDLER(handle_target_reset_nag)
5161 return CALL_COMMAND_HANDLER(handle_command_parse_bool,
5162 &target_reset_nag, "Nag after each reset about options to improve "
5163 "performance");
5166 COMMAND_HANDLER(handle_ps_command)
5168 struct target *target = get_current_target(CMD_CTX);
5169 char *display;
5170 if (target->state != TARGET_HALTED) {
5171 LOG_INFO("target not halted !!");
5172 return ERROR_OK;
5175 if ((target->rtos) && (target->rtos->type)
5176 && (target->rtos->type->ps_command)) {
5177 display = target->rtos->type->ps_command(target);
5178 command_print(CMD_CTX, "%s", display);
5179 free(display);
5180 return ERROR_OK;
5181 } else {
5182 LOG_INFO("failed");
5183 return ERROR_TARGET_FAILURE;
5187 static const struct command_registration target_exec_command_handlers[] = {
5189 .name = "fast_load_image",
5190 .handler = handle_fast_load_image_command,
5191 .mode = COMMAND_ANY,
5192 .help = "Load image into server memory for later use by "
5193 "fast_load; primarily for profiling",
5194 .usage = "filename address ['bin'|'ihex'|'elf'|'s19'] "
5195 "[min_address [max_length]]",
5198 .name = "fast_load",
5199 .handler = handle_fast_load_command,
5200 .mode = COMMAND_EXEC,
5201 .help = "loads active fast load image to current target "
5202 "- mainly for profiling purposes",
5203 .usage = "",
5206 .name = "profile",
5207 .handler = handle_profile_command,
5208 .mode = COMMAND_EXEC,
5209 .usage = "seconds filename",
5210 .help = "profiling samples the CPU PC",
5212 /** @todo don't register virt2phys() unless target supports it */
5214 .name = "virt2phys",
5215 .handler = handle_virt2phys_command,
5216 .mode = COMMAND_ANY,
5217 .help = "translate a virtual address into a physical address",
5218 .usage = "virtual_address",
5221 .name = "reg",
5222 .handler = handle_reg_command,
5223 .mode = COMMAND_EXEC,
5224 .help = "display or set a register; with no arguments, "
5225 "displays all registers and their values",
5226 .usage = "[(register_name|register_number) [value]]",
5229 .name = "poll",
5230 .handler = handle_poll_command,
5231 .mode = COMMAND_EXEC,
5232 .help = "poll target state; or reconfigure background polling",
5233 .usage = "['on'|'off']",
5236 .name = "wait_halt",
5237 .handler = handle_wait_halt_command,
5238 .mode = COMMAND_EXEC,
5239 .help = "wait up to the specified number of milliseconds "
5240 "(default 5) for a previously requested halt",
5241 .usage = "[milliseconds]",
5244 .name = "halt",
5245 .handler = handle_halt_command,
5246 .mode = COMMAND_EXEC,
5247 .help = "request target to halt, then wait up to the specified"
5248 "number of milliseconds (default 5) for it to complete",
5249 .usage = "[milliseconds]",
5252 .name = "resume",
5253 .handler = handle_resume_command,
5254 .mode = COMMAND_EXEC,
5255 .help = "resume target execution from current PC or address",
5256 .usage = "[address]",
5259 .name = "reset",
5260 .handler = handle_reset_command,
5261 .mode = COMMAND_EXEC,
5262 .usage = "[run|halt|init]",
5263 .help = "Reset all targets into the specified mode."
5264 "Default reset mode is run, if not given.",
5267 .name = "soft_reset_halt",
5268 .handler = handle_soft_reset_halt_command,
5269 .mode = COMMAND_EXEC,
5270 .usage = "",
5271 .help = "halt the target and do a soft reset",
5274 .name = "step",
5275 .handler = handle_step_command,
5276 .mode = COMMAND_EXEC,
5277 .help = "step one instruction from current PC or address",
5278 .usage = "[address]",
5281 .name = "mdw",
5282 .handler = handle_md_command,
5283 .mode = COMMAND_EXEC,
5284 .help = "display memory words",
5285 .usage = "['phys'] address [count]",
5288 .name = "mdh",
5289 .handler = handle_md_command,
5290 .mode = COMMAND_EXEC,
5291 .help = "display memory half-words",
5292 .usage = "['phys'] address [count]",
5295 .name = "mdb",
5296 .handler = handle_md_command,
5297 .mode = COMMAND_EXEC,
5298 .help = "display memory bytes",
5299 .usage = "['phys'] address [count]",
5302 .name = "mww",
5303 .handler = handle_mw_command,
5304 .mode = COMMAND_EXEC,
5305 .help = "write memory word",
5306 .usage = "['phys'] address value [count]",
5309 .name = "mwh",
5310 .handler = handle_mw_command,
5311 .mode = COMMAND_EXEC,
5312 .help = "write memory half-word",
5313 .usage = "['phys'] address value [count]",
5316 .name = "mwb",
5317 .handler = handle_mw_command,
5318 .mode = COMMAND_EXEC,
5319 .help = "write memory byte",
5320 .usage = "['phys'] address value [count]",
5323 .name = "bp",
5324 .handler = handle_bp_command,
5325 .mode = COMMAND_EXEC,
5326 .help = "list or set hardware or software breakpoint",
5327 .usage = "<address> [<asid>]<length> ['hw'|'hw_ctx']",
5330 .name = "rbp",
5331 .handler = handle_rbp_command,
5332 .mode = COMMAND_EXEC,
5333 .help = "remove breakpoint",
5334 .usage = "address",
5337 .name = "wp",
5338 .handler = handle_wp_command,
5339 .mode = COMMAND_EXEC,
5340 .help = "list (no params) or create watchpoints",
5341 .usage = "[address length [('r'|'w'|'a') value [mask]]]",
5344 .name = "rwp",
5345 .handler = handle_rwp_command,
5346 .mode = COMMAND_EXEC,
5347 .help = "remove watchpoint",
5348 .usage = "address",
5351 .name = "load_image",
5352 .handler = handle_load_image_command,
5353 .mode = COMMAND_EXEC,
5354 .usage = "filename address ['bin'|'ihex'|'elf'|'s19'] "
5355 "[min_address] [max_length]",
5358 .name = "dump_image",
5359 .handler = handle_dump_image_command,
5360 .mode = COMMAND_EXEC,
5361 .usage = "filename address size",
5364 .name = "verify_image",
5365 .handler = handle_verify_image_command,
5366 .mode = COMMAND_EXEC,
5367 .usage = "filename [offset [type]]",
5370 .name = "test_image",
5371 .handler = handle_test_image_command,
5372 .mode = COMMAND_EXEC,
5373 .usage = "filename [offset [type]]",
5376 .name = "mem2array",
5377 .mode = COMMAND_EXEC,
5378 .jim_handler = jim_mem2array,
5379 .help = "read 8/16/32 bit memory and return as a TCL array "
5380 "for script processing",
5381 .usage = "arrayname bitwidth address count",
5384 .name = "array2mem",
5385 .mode = COMMAND_EXEC,
5386 .jim_handler = jim_array2mem,
5387 .help = "convert a TCL array to memory locations "
5388 "and write the 8/16/32 bit values",
5389 .usage = "arrayname bitwidth address count",
5392 .name = "reset_nag",
5393 .handler = handle_target_reset_nag,
5394 .mode = COMMAND_ANY,
5395 .help = "Nag after each reset about options that could have been "
5396 "enabled to improve performance. ",
5397 .usage = "['enable'|'disable']",
5400 .name = "ps",
5401 .handler = handle_ps_command,
5402 .mode = COMMAND_EXEC,
5403 .help = "list all tasks ",
5404 .usage = " ",
5407 COMMAND_REGISTRATION_DONE
5409 static int target_register_user_commands(struct command_context *cmd_ctx)
5411 int retval = ERROR_OK;
5412 retval = target_request_register_commands(cmd_ctx);
5413 if (retval != ERROR_OK)
5414 return retval;
5416 retval = trace_register_commands(cmd_ctx);
5417 if (retval != ERROR_OK)
5418 return retval;
5421 return register_commands(cmd_ctx, NULL, target_exec_command_handlers);