target/adi_v5_swd, cortex_m: properly handle more cases requiring reconnect
[openocd.git] / src / target / cortex_m.c
blob3e42af0a3d864ea4faeac75024368ae02d48d190
1 /***************************************************************************
2 * Copyright (C) 2005 by Dominic Rath *
3 * Dominic.Rath@gmx.de *
4 * *
5 * Copyright (C) 2006 by Magnus Lundin *
6 * lundin@mlu.mine.nu *
7 * *
8 * Copyright (C) 2008 by Spencer Oliver *
9 * spen@spen-soft.co.uk *
10 * *
11 * This program is free software; you can redistribute it and/or modify *
12 * it under the terms of the GNU General Public License as published by *
13 * the Free Software Foundation; either version 2 of the License, or *
14 * (at your option) any later version. *
15 * *
16 * This program is distributed in the hope that it will be useful, *
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
19 * GNU General Public License for more details. *
20 * *
21 * You should have received a copy of the GNU General Public License *
22 * along with this program; if not, write to the *
23 * Free Software Foundation, Inc., *
24 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. *
25 * *
26 * *
27 * Cortex-M3(tm) TRM, ARM DDI 0337E (r1p1) and 0337G (r2p0) *
28 * *
29 ***************************************************************************/
30 #ifdef HAVE_CONFIG_H
31 #include "config.h"
32 #endif
34 #include "jtag/interface.h"
35 #include "breakpoints.h"
36 #include "cortex_m.h"
37 #include "target_request.h"
38 #include "target_type.h"
39 #include "arm_disassembler.h"
40 #include "register.h"
41 #include "arm_opcodes.h"
42 #include "arm_semihosting.h"
43 #include <helper/time_support.h>
45 /* NOTE: most of this should work fine for the Cortex-M1 and
46 * Cortex-M0 cores too, although they're ARMv6-M not ARMv7-M.
47 * Some differences: M0/M1 doesn't have FBP remapping or the
48 * DWT tracing/profiling support. (So the cycle counter will
49 * not be usable; the other stuff isn't currently used here.)
51 * Although there are some workarounds for errata seen only in r0p0
52 * silicon, such old parts are hard to find and thus not much tested
53 * any longer.
56 /**
57 * Returns the type of a break point required by address location
59 #define BKPT_TYPE_BY_ADDR(addr) ((addr) < 0x20000000 ? BKPT_HARD : BKPT_SOFT)
61 /* forward declarations */
62 static int cortex_m_store_core_reg_u32(struct target *target,
63 uint32_t num, uint32_t value);
64 static void cortex_m_dwt_free(struct target *target);
66 static int cortexm_dap_read_coreregister_u32(struct target *target,
67 uint32_t *value, int regnum)
69 struct armv7m_common *armv7m = target_to_armv7m(target);
70 struct adiv5_dap *swjdp = armv7m->arm.dap;
71 int retval;
72 uint32_t dcrdr;
74 /* because the DCB_DCRDR is used for the emulated dcc channel
75 * we have to save/restore the DCB_DCRDR when used */
76 if (target->dbg_msg_enabled) {
77 retval = mem_ap_read_u32(swjdp, DCB_DCRDR, &dcrdr);
78 if (retval != ERROR_OK)
79 return retval;
82 retval = mem_ap_write_u32(swjdp, DCB_DCRSR, regnum);
83 if (retval != ERROR_OK)
84 return retval;
86 retval = mem_ap_read_atomic_u32(swjdp, DCB_DCRDR, value);
87 if (retval != ERROR_OK)
88 return retval;
90 if (target->dbg_msg_enabled) {
91 /* restore DCB_DCRDR - this needs to be in a separate
92 * transaction otherwise the emulated DCC channel breaks */
93 if (retval == ERROR_OK)
94 retval = mem_ap_write_atomic_u32(swjdp, DCB_DCRDR, dcrdr);
97 return retval;
100 static int cortexm_dap_write_coreregister_u32(struct target *target,
101 uint32_t value, int regnum)
103 struct armv7m_common *armv7m = target_to_armv7m(target);
104 struct adiv5_dap *swjdp = armv7m->arm.dap;
105 int retval;
106 uint32_t dcrdr;
108 /* because the DCB_DCRDR is used for the emulated dcc channel
109 * we have to save/restore the DCB_DCRDR when used */
110 if (target->dbg_msg_enabled) {
111 retval = mem_ap_read_u32(swjdp, DCB_DCRDR, &dcrdr);
112 if (retval != ERROR_OK)
113 return retval;
116 retval = mem_ap_write_u32(swjdp, DCB_DCRDR, value);
117 if (retval != ERROR_OK)
118 return retval;
120 retval = mem_ap_write_atomic_u32(swjdp, DCB_DCRSR, regnum | DCRSR_WnR);
121 if (retval != ERROR_OK)
122 return retval;
124 if (target->dbg_msg_enabled) {
125 /* restore DCB_DCRDR - this needs to be in a seperate
126 * transaction otherwise the emulated DCC channel breaks */
127 if (retval == ERROR_OK)
128 retval = mem_ap_write_atomic_u32(swjdp, DCB_DCRDR, dcrdr);
131 return retval;
134 static int cortex_m_write_debug_halt_mask(struct target *target,
135 uint32_t mask_on, uint32_t mask_off)
137 struct cortex_m_common *cortex_m = target_to_cm(target);
138 struct adiv5_dap *swjdp = cortex_m->armv7m.arm.dap;
140 /* mask off status bits */
141 cortex_m->dcb_dhcsr &= ~((0xFFFF << 16) | mask_off);
142 /* create new register mask */
143 cortex_m->dcb_dhcsr |= DBGKEY | C_DEBUGEN | mask_on;
145 return mem_ap_write_atomic_u32(swjdp, DCB_DHCSR, cortex_m->dcb_dhcsr);
148 static int cortex_m_clear_halt(struct target *target)
150 struct cortex_m_common *cortex_m = target_to_cm(target);
151 struct adiv5_dap *swjdp = cortex_m->armv7m.arm.dap;
152 int retval;
154 /* clear step if any */
155 cortex_m_write_debug_halt_mask(target, C_HALT, C_STEP);
157 /* Read Debug Fault Status Register */
158 retval = mem_ap_read_atomic_u32(swjdp, NVIC_DFSR, &cortex_m->nvic_dfsr);
159 if (retval != ERROR_OK)
160 return retval;
162 /* Clear Debug Fault Status */
163 retval = mem_ap_write_atomic_u32(swjdp, NVIC_DFSR, cortex_m->nvic_dfsr);
164 if (retval != ERROR_OK)
165 return retval;
166 LOG_DEBUG(" NVIC_DFSR 0x%" PRIx32 "", cortex_m->nvic_dfsr);
168 return ERROR_OK;
171 static int cortex_m_single_step_core(struct target *target)
173 struct cortex_m_common *cortex_m = target_to_cm(target);
174 struct adiv5_dap *swjdp = cortex_m->armv7m.arm.dap;
175 uint32_t dhcsr_save;
176 int retval;
178 /* backup dhcsr reg */
179 dhcsr_save = cortex_m->dcb_dhcsr;
181 /* Mask interrupts before clearing halt, if done already. This avoids
182 * Erratum 377497 (fixed in r1p0) where setting MASKINTS while clearing
183 * HALT can put the core into an unknown state.
185 if (!(cortex_m->dcb_dhcsr & C_MASKINTS)) {
186 retval = mem_ap_write_atomic_u32(swjdp, DCB_DHCSR,
187 DBGKEY | C_MASKINTS | C_HALT | C_DEBUGEN);
188 if (retval != ERROR_OK)
189 return retval;
191 retval = mem_ap_write_atomic_u32(swjdp, DCB_DHCSR,
192 DBGKEY | C_MASKINTS | C_STEP | C_DEBUGEN);
193 if (retval != ERROR_OK)
194 return retval;
195 LOG_DEBUG(" ");
197 /* restore dhcsr reg */
198 cortex_m->dcb_dhcsr = dhcsr_save;
199 cortex_m_clear_halt(target);
201 return ERROR_OK;
204 static int cortex_m_enable_fpb(struct target *target)
206 int retval = target_write_u32(target, FP_CTRL, 3);
207 if (retval != ERROR_OK)
208 return retval;
210 /* check the fpb is actually enabled */
211 uint32_t fpctrl;
212 retval = target_read_u32(target, FP_CTRL, &fpctrl);
213 if (retval != ERROR_OK)
214 return retval;
216 if (fpctrl & 1)
217 return ERROR_OK;
219 return ERROR_FAIL;
222 static int cortex_m_endreset_event(struct target *target)
224 int i;
225 int retval;
226 uint32_t dcb_demcr;
227 struct cortex_m_common *cortex_m = target_to_cm(target);
228 struct armv7m_common *armv7m = &cortex_m->armv7m;
229 struct adiv5_dap *swjdp = cortex_m->armv7m.arm.dap;
230 struct cortex_m_fp_comparator *fp_list = cortex_m->fp_comparator_list;
231 struct cortex_m_dwt_comparator *dwt_list = cortex_m->dwt_comparator_list;
233 /* REVISIT The four debug monitor bits are currently ignored... */
234 retval = mem_ap_read_atomic_u32(swjdp, DCB_DEMCR, &dcb_demcr);
235 if (retval != ERROR_OK)
236 return retval;
237 LOG_DEBUG("DCB_DEMCR = 0x%8.8" PRIx32 "", dcb_demcr);
239 /* this register is used for emulated dcc channel */
240 retval = mem_ap_write_u32(swjdp, DCB_DCRDR, 0);
241 if (retval != ERROR_OK)
242 return retval;
244 /* Enable debug requests */
245 retval = mem_ap_read_atomic_u32(swjdp, DCB_DHCSR, &cortex_m->dcb_dhcsr);
246 if (retval != ERROR_OK)
247 return retval;
248 if (!(cortex_m->dcb_dhcsr & C_DEBUGEN)) {
249 retval = mem_ap_write_u32(swjdp, DCB_DHCSR, DBGKEY | C_DEBUGEN);
250 if (retval != ERROR_OK)
251 return retval;
254 /* clear any interrupt masking */
255 cortex_m_write_debug_halt_mask(target, 0, C_MASKINTS);
257 /* Enable features controlled by ITM and DWT blocks, and catch only
258 * the vectors we were told to pay attention to.
260 * Target firmware is responsible for all fault handling policy
261 * choices *EXCEPT* explicitly scripted overrides like "vector_catch"
262 * or manual updates to the NVIC SHCSR and CCR registers.
264 retval = mem_ap_write_u32(swjdp, DCB_DEMCR, TRCENA | armv7m->demcr);
265 if (retval != ERROR_OK)
266 return retval;
268 /* Paranoia: evidently some (early?) chips don't preserve all the
269 * debug state (including FBP, DWT, etc) across reset...
272 /* Enable FPB */
273 retval = cortex_m_enable_fpb(target);
274 if (retval != ERROR_OK) {
275 LOG_ERROR("Failed to enable the FPB");
276 return retval;
279 cortex_m->fpb_enabled = 1;
281 /* Restore FPB registers */
282 for (i = 0; i < cortex_m->fp_num_code + cortex_m->fp_num_lit; i++) {
283 retval = target_write_u32(target, fp_list[i].fpcr_address, fp_list[i].fpcr_value);
284 if (retval != ERROR_OK)
285 return retval;
288 /* Restore DWT registers */
289 for (i = 0; i < cortex_m->dwt_num_comp; i++) {
290 retval = target_write_u32(target, dwt_list[i].dwt_comparator_address + 0,
291 dwt_list[i].comp);
292 if (retval != ERROR_OK)
293 return retval;
294 retval = target_write_u32(target, dwt_list[i].dwt_comparator_address + 4,
295 dwt_list[i].mask);
296 if (retval != ERROR_OK)
297 return retval;
298 retval = target_write_u32(target, dwt_list[i].dwt_comparator_address + 8,
299 dwt_list[i].function);
300 if (retval != ERROR_OK)
301 return retval;
303 retval = dap_run(swjdp);
304 if (retval != ERROR_OK)
305 return retval;
307 register_cache_invalidate(armv7m->arm.core_cache);
309 /* make sure we have latest dhcsr flags */
310 retval = mem_ap_read_atomic_u32(swjdp, DCB_DHCSR, &cortex_m->dcb_dhcsr);
312 return retval;
315 static int cortex_m_examine_debug_reason(struct target *target)
317 struct cortex_m_common *cortex_m = target_to_cm(target);
319 /* THIS IS NOT GOOD, TODO - better logic for detection of debug state reason
320 * only check the debug reason if we don't know it already */
322 if ((target->debug_reason != DBG_REASON_DBGRQ)
323 && (target->debug_reason != DBG_REASON_SINGLESTEP)) {
324 if (cortex_m->nvic_dfsr & DFSR_BKPT) {
325 target->debug_reason = DBG_REASON_BREAKPOINT;
326 if (cortex_m->nvic_dfsr & DFSR_DWTTRAP)
327 target->debug_reason = DBG_REASON_WPTANDBKPT;
328 } else if (cortex_m->nvic_dfsr & DFSR_DWTTRAP)
329 target->debug_reason = DBG_REASON_WATCHPOINT;
330 else if (cortex_m->nvic_dfsr & DFSR_VCATCH)
331 target->debug_reason = DBG_REASON_BREAKPOINT;
332 else /* EXTERNAL, HALTED */
333 target->debug_reason = DBG_REASON_UNDEFINED;
336 return ERROR_OK;
339 static int cortex_m_examine_exception_reason(struct target *target)
341 uint32_t shcsr = 0, except_sr = 0, cfsr = -1, except_ar = -1;
342 struct armv7m_common *armv7m = target_to_armv7m(target);
343 struct adiv5_dap *swjdp = armv7m->arm.dap;
344 int retval;
346 retval = mem_ap_read_u32(swjdp, NVIC_SHCSR, &shcsr);
347 if (retval != ERROR_OK)
348 return retval;
349 switch (armv7m->exception_number) {
350 case 2: /* NMI */
351 break;
352 case 3: /* Hard Fault */
353 retval = mem_ap_read_atomic_u32(swjdp, NVIC_HFSR, &except_sr);
354 if (retval != ERROR_OK)
355 return retval;
356 if (except_sr & 0x40000000) {
357 retval = mem_ap_read_u32(swjdp, NVIC_CFSR, &cfsr);
358 if (retval != ERROR_OK)
359 return retval;
361 break;
362 case 4: /* Memory Management */
363 retval = mem_ap_read_u32(swjdp, NVIC_CFSR, &except_sr);
364 if (retval != ERROR_OK)
365 return retval;
366 retval = mem_ap_read_u32(swjdp, NVIC_MMFAR, &except_ar);
367 if (retval != ERROR_OK)
368 return retval;
369 break;
370 case 5: /* Bus Fault */
371 retval = mem_ap_read_u32(swjdp, NVIC_CFSR, &except_sr);
372 if (retval != ERROR_OK)
373 return retval;
374 retval = mem_ap_read_u32(swjdp, NVIC_BFAR, &except_ar);
375 if (retval != ERROR_OK)
376 return retval;
377 break;
378 case 6: /* Usage Fault */
379 retval = mem_ap_read_u32(swjdp, NVIC_CFSR, &except_sr);
380 if (retval != ERROR_OK)
381 return retval;
382 break;
383 case 11: /* SVCall */
384 break;
385 case 12: /* Debug Monitor */
386 retval = mem_ap_read_u32(swjdp, NVIC_DFSR, &except_sr);
387 if (retval != ERROR_OK)
388 return retval;
389 break;
390 case 14: /* PendSV */
391 break;
392 case 15: /* SysTick */
393 break;
394 default:
395 except_sr = 0;
396 break;
398 retval = dap_run(swjdp);
399 if (retval == ERROR_OK)
400 LOG_DEBUG("%s SHCSR 0x%" PRIx32 ", SR 0x%" PRIx32
401 ", CFSR 0x%" PRIx32 ", AR 0x%" PRIx32,
402 armv7m_exception_string(armv7m->exception_number),
403 shcsr, except_sr, cfsr, except_ar);
404 return retval;
407 static int cortex_m_debug_entry(struct target *target)
409 int i;
410 uint32_t xPSR;
411 int retval;
412 struct cortex_m_common *cortex_m = target_to_cm(target);
413 struct armv7m_common *armv7m = &cortex_m->armv7m;
414 struct arm *arm = &armv7m->arm;
415 struct adiv5_dap *swjdp = armv7m->arm.dap;
416 struct reg *r;
418 LOG_DEBUG(" ");
420 cortex_m_clear_halt(target);
421 retval = mem_ap_read_atomic_u32(swjdp, DCB_DHCSR, &cortex_m->dcb_dhcsr);
422 if (retval != ERROR_OK)
423 return retval;
425 retval = armv7m->examine_debug_reason(target);
426 if (retval != ERROR_OK)
427 return retval;
429 /* Examine target state and mode
430 * First load register accessible through core debug port */
431 int num_regs = arm->core_cache->num_regs;
433 for (i = 0; i < num_regs; i++) {
434 r = &armv7m->arm.core_cache->reg_list[i];
435 if (!r->valid)
436 arm->read_core_reg(target, r, i, ARM_MODE_ANY);
439 r = arm->cpsr;
440 xPSR = buf_get_u32(r->value, 0, 32);
442 /* For IT instructions xPSR must be reloaded on resume and clear on debug exec */
443 if (xPSR & 0xf00) {
444 r->dirty = r->valid;
445 cortex_m_store_core_reg_u32(target, 16, xPSR & ~0xff);
448 /* Are we in an exception handler */
449 if (xPSR & 0x1FF) {
450 armv7m->exception_number = (xPSR & 0x1FF);
452 arm->core_mode = ARM_MODE_HANDLER;
453 arm->map = armv7m_msp_reg_map;
454 } else {
455 unsigned control = buf_get_u32(arm->core_cache
456 ->reg_list[ARMV7M_CONTROL].value, 0, 2);
458 /* is this thread privileged? */
459 arm->core_mode = control & 1
460 ? ARM_MODE_USER_THREAD
461 : ARM_MODE_THREAD;
463 /* which stack is it using? */
464 if (control & 2)
465 arm->map = armv7m_psp_reg_map;
466 else
467 arm->map = armv7m_msp_reg_map;
469 armv7m->exception_number = 0;
472 if (armv7m->exception_number)
473 cortex_m_examine_exception_reason(target);
475 LOG_DEBUG("entered debug state in core mode: %s at PC 0x%" PRIx32 ", target->state: %s",
476 arm_mode_name(arm->core_mode),
477 buf_get_u32(arm->pc->value, 0, 32),
478 target_state_name(target));
480 if (armv7m->post_debug_entry) {
481 retval = armv7m->post_debug_entry(target);
482 if (retval != ERROR_OK)
483 return retval;
486 return ERROR_OK;
489 static int cortex_m_poll(struct target *target)
491 int detected_failure = ERROR_OK;
492 int retval = ERROR_OK;
493 enum target_state prev_target_state = target->state;
494 struct cortex_m_common *cortex_m = target_to_cm(target);
495 struct adiv5_dap *swjdp = cortex_m->armv7m.arm.dap;
497 /* Read from Debug Halting Control and Status Register */
498 retval = mem_ap_read_atomic_u32(swjdp, DCB_DHCSR, &cortex_m->dcb_dhcsr);
499 if (retval != ERROR_OK) {
500 target->state = TARGET_UNKNOWN;
501 return retval;
504 /* Recover from lockup. See ARMv7-M architecture spec,
505 * section B1.5.15 "Unrecoverable exception cases".
507 if (cortex_m->dcb_dhcsr & S_LOCKUP) {
508 LOG_ERROR("%s -- clearing lockup after double fault",
509 target_name(target));
510 cortex_m_write_debug_halt_mask(target, C_HALT, 0);
511 target->debug_reason = DBG_REASON_DBGRQ;
513 /* We have to execute the rest (the "finally" equivalent, but
514 * still throw this exception again).
516 detected_failure = ERROR_FAIL;
518 /* refresh status bits */
519 retval = mem_ap_read_atomic_u32(swjdp, DCB_DHCSR, &cortex_m->dcb_dhcsr);
520 if (retval != ERROR_OK)
521 return retval;
524 if (cortex_m->dcb_dhcsr & S_RESET_ST) {
525 target->state = TARGET_RESET;
526 return ERROR_OK;
529 if (target->state == TARGET_RESET) {
530 /* Cannot switch context while running so endreset is
531 * called with target->state == TARGET_RESET
533 LOG_DEBUG("Exit from reset with dcb_dhcsr 0x%" PRIx32,
534 cortex_m->dcb_dhcsr);
535 retval = cortex_m_endreset_event(target);
536 if (retval != ERROR_OK) {
537 target->state = TARGET_UNKNOWN;
538 return retval;
540 target->state = TARGET_RUNNING;
541 prev_target_state = TARGET_RUNNING;
544 if (cortex_m->dcb_dhcsr & S_HALT) {
545 target->state = TARGET_HALTED;
547 if ((prev_target_state == TARGET_RUNNING) || (prev_target_state == TARGET_RESET)) {
548 retval = cortex_m_debug_entry(target);
549 if (retval != ERROR_OK)
550 return retval;
552 if (arm_semihosting(target, &retval) != 0)
553 return retval;
555 target_call_event_callbacks(target, TARGET_EVENT_HALTED);
557 if (prev_target_state == TARGET_DEBUG_RUNNING) {
558 LOG_DEBUG(" ");
559 retval = cortex_m_debug_entry(target);
560 if (retval != ERROR_OK)
561 return retval;
563 target_call_event_callbacks(target, TARGET_EVENT_DEBUG_HALTED);
567 /* REVISIT when S_SLEEP is set, it's in a Sleep or DeepSleep state.
568 * How best to model low power modes?
571 if (target->state == TARGET_UNKNOWN) {
572 /* check if processor is retiring instructions */
573 if (cortex_m->dcb_dhcsr & S_RETIRE_ST) {
574 target->state = TARGET_RUNNING;
575 retval = ERROR_OK;
579 /* Did we detect a failure condition that we cleared? */
580 if (detected_failure != ERROR_OK)
581 retval = detected_failure;
582 return retval;
585 static int cortex_m_halt(struct target *target)
587 LOG_DEBUG("target->state: %s",
588 target_state_name(target));
590 if (target->state == TARGET_HALTED) {
591 LOG_DEBUG("target was already halted");
592 return ERROR_OK;
595 if (target->state == TARGET_UNKNOWN)
596 LOG_WARNING("target was in unknown state when halt was requested");
598 if (target->state == TARGET_RESET) {
599 if ((jtag_get_reset_config() & RESET_SRST_PULLS_TRST) && jtag_get_srst()) {
600 LOG_ERROR("can't request a halt while in reset if nSRST pulls nTRST");
601 return ERROR_TARGET_FAILURE;
602 } else {
603 /* we came here in a reset_halt or reset_init sequence
604 * debug entry was already prepared in cortex_m3_assert_reset()
606 target->debug_reason = DBG_REASON_DBGRQ;
608 return ERROR_OK;
612 /* Write to Debug Halting Control and Status Register */
613 cortex_m_write_debug_halt_mask(target, C_HALT, 0);
615 target->debug_reason = DBG_REASON_DBGRQ;
617 return ERROR_OK;
620 static int cortex_m_soft_reset_halt(struct target *target)
622 struct cortex_m_common *cortex_m = target_to_cm(target);
623 struct adiv5_dap *swjdp = cortex_m->armv7m.arm.dap;
624 uint32_t dcb_dhcsr = 0;
625 int retval, timeout = 0;
627 /* soft_reset_halt is deprecated on cortex_m as the same functionality
628 * can be obtained by using 'reset halt' and 'cortex_m reset_config vectreset'
629 * As this reset only used VC_CORERESET it would only ever reset the cortex_m
630 * core, not the peripherals */
631 LOG_WARNING("soft_reset_halt is deprecated, please use 'reset halt' instead.");
633 /* Enter debug state on reset; restore DEMCR in endreset_event() */
634 retval = mem_ap_write_u32(swjdp, DCB_DEMCR,
635 TRCENA | VC_HARDERR | VC_BUSERR | VC_CORERESET);
636 if (retval != ERROR_OK)
637 return retval;
639 /* Request a core-only reset */
640 retval = mem_ap_write_atomic_u32(swjdp, NVIC_AIRCR,
641 AIRCR_VECTKEY | AIRCR_VECTRESET);
642 if (retval != ERROR_OK)
643 return retval;
644 target->state = TARGET_RESET;
646 /* registers are now invalid */
647 register_cache_invalidate(cortex_m->armv7m.arm.core_cache);
649 while (timeout < 100) {
650 retval = mem_ap_read_atomic_u32(swjdp, DCB_DHCSR, &dcb_dhcsr);
651 if (retval == ERROR_OK) {
652 retval = mem_ap_read_atomic_u32(swjdp, NVIC_DFSR,
653 &cortex_m->nvic_dfsr);
654 if (retval != ERROR_OK)
655 return retval;
656 if ((dcb_dhcsr & S_HALT)
657 && (cortex_m->nvic_dfsr & DFSR_VCATCH)) {
658 LOG_DEBUG("system reset-halted, DHCSR 0x%08x, "
659 "DFSR 0x%08x",
660 (unsigned) dcb_dhcsr,
661 (unsigned) cortex_m->nvic_dfsr);
662 cortex_m_poll(target);
663 /* FIXME restore user's vector catch config */
664 return ERROR_OK;
665 } else
666 LOG_DEBUG("waiting for system reset-halt, "
667 "DHCSR 0x%08x, %d ms",
668 (unsigned) dcb_dhcsr, timeout);
670 timeout++;
671 alive_sleep(1);
674 return ERROR_OK;
677 void cortex_m_enable_breakpoints(struct target *target)
679 struct breakpoint *breakpoint = target->breakpoints;
681 /* set any pending breakpoints */
682 while (breakpoint) {
683 if (!breakpoint->set)
684 cortex_m_set_breakpoint(target, breakpoint);
685 breakpoint = breakpoint->next;
689 static int cortex_m_resume(struct target *target, int current,
690 uint32_t address, int handle_breakpoints, int debug_execution)
692 struct armv7m_common *armv7m = target_to_armv7m(target);
693 struct breakpoint *breakpoint = NULL;
694 uint32_t resume_pc;
695 struct reg *r;
697 if (target->state != TARGET_HALTED) {
698 LOG_WARNING("target not halted");
699 return ERROR_TARGET_NOT_HALTED;
702 if (!debug_execution) {
703 target_free_all_working_areas(target);
704 cortex_m_enable_breakpoints(target);
705 cortex_m_enable_watchpoints(target);
708 if (debug_execution) {
709 r = armv7m->arm.core_cache->reg_list + ARMV7M_PRIMASK;
711 /* Disable interrupts */
712 /* We disable interrupts in the PRIMASK register instead of
713 * masking with C_MASKINTS. This is probably the same issue
714 * as Cortex-M3 Erratum 377493 (fixed in r1p0): C_MASKINTS
715 * in parallel with disabled interrupts can cause local faults
716 * to not be taken.
718 * REVISIT this clearly breaks non-debug execution, since the
719 * PRIMASK register state isn't saved/restored... workaround
720 * by never resuming app code after debug execution.
722 buf_set_u32(r->value, 0, 1, 1);
723 r->dirty = true;
724 r->valid = true;
726 /* Make sure we are in Thumb mode */
727 r = armv7m->arm.cpsr;
728 buf_set_u32(r->value, 24, 1, 1);
729 r->dirty = true;
730 r->valid = true;
733 /* current = 1: continue on current pc, otherwise continue at <address> */
734 r = armv7m->arm.pc;
735 if (!current) {
736 buf_set_u32(r->value, 0, 32, address);
737 r->dirty = true;
738 r->valid = true;
741 /* if we halted last time due to a bkpt instruction
742 * then we have to manually step over it, otherwise
743 * the core will break again */
745 if (!breakpoint_find(target, buf_get_u32(r->value, 0, 32))
746 && !debug_execution)
747 armv7m_maybe_skip_bkpt_inst(target, NULL);
749 resume_pc = buf_get_u32(r->value, 0, 32);
751 armv7m_restore_context(target);
753 /* the front-end may request us not to handle breakpoints */
754 if (handle_breakpoints) {
755 /* Single step past breakpoint at current address */
756 breakpoint = breakpoint_find(target, resume_pc);
757 if (breakpoint) {
758 LOG_DEBUG("unset breakpoint at 0x%8.8" PRIx32 " (ID: %" PRIu32 ")",
759 breakpoint->address,
760 breakpoint->unique_id);
761 cortex_m_unset_breakpoint(target, breakpoint);
762 cortex_m_single_step_core(target);
763 cortex_m_set_breakpoint(target, breakpoint);
767 /* Restart core */
768 cortex_m_write_debug_halt_mask(target, 0, C_HALT);
770 target->debug_reason = DBG_REASON_NOTHALTED;
772 /* registers are now invalid */
773 register_cache_invalidate(armv7m->arm.core_cache);
775 if (!debug_execution) {
776 target->state = TARGET_RUNNING;
777 target_call_event_callbacks(target, TARGET_EVENT_RESUMED);
778 LOG_DEBUG("target resumed at 0x%" PRIx32 "", resume_pc);
779 } else {
780 target->state = TARGET_DEBUG_RUNNING;
781 target_call_event_callbacks(target, TARGET_EVENT_DEBUG_RESUMED);
782 LOG_DEBUG("target debug resumed at 0x%" PRIx32 "", resume_pc);
785 return ERROR_OK;
788 /* int irqstepcount = 0; */
789 static int cortex_m_step(struct target *target, int current,
790 uint32_t address, int handle_breakpoints)
792 struct cortex_m_common *cortex_m = target_to_cm(target);
793 struct armv7m_common *armv7m = &cortex_m->armv7m;
794 struct adiv5_dap *swjdp = armv7m->arm.dap;
795 struct breakpoint *breakpoint = NULL;
796 struct reg *pc = armv7m->arm.pc;
797 bool bkpt_inst_found = false;
798 int retval;
799 bool isr_timed_out = false;
801 if (target->state != TARGET_HALTED) {
802 LOG_WARNING("target not halted");
803 return ERROR_TARGET_NOT_HALTED;
806 /* current = 1: continue on current pc, otherwise continue at <address> */
807 if (!current)
808 buf_set_u32(pc->value, 0, 32, address);
810 uint32_t pc_value = buf_get_u32(pc->value, 0, 32);
812 /* the front-end may request us not to handle breakpoints */
813 if (handle_breakpoints) {
814 breakpoint = breakpoint_find(target, pc_value);
815 if (breakpoint)
816 cortex_m_unset_breakpoint(target, breakpoint);
819 armv7m_maybe_skip_bkpt_inst(target, &bkpt_inst_found);
821 target->debug_reason = DBG_REASON_SINGLESTEP;
823 armv7m_restore_context(target);
825 target_call_event_callbacks(target, TARGET_EVENT_RESUMED);
827 /* if no bkpt instruction is found at pc then we can perform
828 * a normal step, otherwise we have to manually step over the bkpt
829 * instruction - as such simulate a step */
830 if (bkpt_inst_found == false) {
831 /* Automatic ISR masking mode off: Just step over the next instruction */
832 if ((cortex_m->isrmasking_mode != CORTEX_M_ISRMASK_AUTO))
833 cortex_m_write_debug_halt_mask(target, C_STEP, C_HALT);
834 else {
835 /* Process interrupts during stepping in a way they don't interfere
836 * debugging.
838 * Principle:
840 * Set a temporary break point at the current pc and let the core run
841 * with interrupts enabled. Pending interrupts get served and we run
842 * into the breakpoint again afterwards. Then we step over the next
843 * instruction with interrupts disabled.
845 * If the pending interrupts don't complete within time, we leave the
846 * core running. This may happen if the interrupts trigger faster
847 * than the core can process them or the handler doesn't return.
849 * If no more breakpoints are available we simply do a step with
850 * interrupts enabled.
854 /* 2012-09-29 ph
856 * If a break point is already set on the lower half word then a break point on
857 * the upper half word will not break again when the core is restarted. So we
858 * just step over the instruction with interrupts disabled.
860 * The documentation has no information about this, it was found by observation
861 * on STM32F1 and STM32F2. Proper explanation welcome. STM32F0 dosen't seem to
862 * suffer from this problem.
864 * To add some confusion: pc_value has bit 0 always set, while the breakpoint
865 * address has it always cleared. The former is done to indicate thumb mode
866 * to gdb.
869 if ((pc_value & 0x02) && breakpoint_find(target, pc_value & ~0x03)) {
870 LOG_DEBUG("Stepping over next instruction with interrupts disabled");
871 cortex_m_write_debug_halt_mask(target, C_HALT | C_MASKINTS, 0);
872 cortex_m_write_debug_halt_mask(target, C_STEP, C_HALT);
873 /* Re-enable interrupts */
874 cortex_m_write_debug_halt_mask(target, C_HALT, C_MASKINTS);
876 else {
878 /* Set a temporary break point */
879 if (breakpoint)
880 retval = cortex_m_set_breakpoint(target, breakpoint);
881 else
882 retval = breakpoint_add(target, pc_value, 2, BKPT_TYPE_BY_ADDR(pc_value));
883 bool tmp_bp_set = (retval == ERROR_OK);
885 /* No more breakpoints left, just do a step */
886 if (!tmp_bp_set)
887 cortex_m_write_debug_halt_mask(target, C_STEP, C_HALT);
888 else {
889 /* Start the core */
890 LOG_DEBUG("Starting core to serve pending interrupts");
891 int64_t t_start = timeval_ms();
892 cortex_m_write_debug_halt_mask(target, 0, C_HALT | C_STEP);
894 /* Wait for pending handlers to complete or timeout */
895 do {
896 retval = mem_ap_read_atomic_u32(swjdp,
897 DCB_DHCSR,
898 &cortex_m->dcb_dhcsr);
899 if (retval != ERROR_OK) {
900 target->state = TARGET_UNKNOWN;
901 return retval;
903 isr_timed_out = ((timeval_ms() - t_start) > 500);
904 } while (!((cortex_m->dcb_dhcsr & S_HALT) || isr_timed_out));
906 /* only remove breakpoint if we created it */
907 if (breakpoint)
908 cortex_m_unset_breakpoint(target, breakpoint);
909 else {
910 /* Remove the temporary breakpoint */
911 breakpoint_remove(target, pc_value);
914 if (isr_timed_out) {
915 LOG_DEBUG("Interrupt handlers didn't complete within time, "
916 "leaving target running");
917 } else {
918 /* Step over next instruction with interrupts disabled */
919 cortex_m_write_debug_halt_mask(target,
920 C_HALT | C_MASKINTS,
922 cortex_m_write_debug_halt_mask(target, C_STEP, C_HALT);
923 /* Re-enable interrupts */
924 cortex_m_write_debug_halt_mask(target, C_HALT, C_MASKINTS);
931 retval = mem_ap_read_atomic_u32(swjdp, DCB_DHCSR, &cortex_m->dcb_dhcsr);
932 if (retval != ERROR_OK)
933 return retval;
935 /* registers are now invalid */
936 register_cache_invalidate(armv7m->arm.core_cache);
938 if (breakpoint)
939 cortex_m_set_breakpoint(target, breakpoint);
941 if (isr_timed_out) {
942 /* Leave the core running. The user has to stop execution manually. */
943 target->debug_reason = DBG_REASON_NOTHALTED;
944 target->state = TARGET_RUNNING;
945 return ERROR_OK;
948 LOG_DEBUG("target stepped dcb_dhcsr = 0x%" PRIx32
949 " nvic_icsr = 0x%" PRIx32,
950 cortex_m->dcb_dhcsr, cortex_m->nvic_icsr);
952 retval = cortex_m_debug_entry(target);
953 if (retval != ERROR_OK)
954 return retval;
955 target_call_event_callbacks(target, TARGET_EVENT_HALTED);
957 LOG_DEBUG("target stepped dcb_dhcsr = 0x%" PRIx32
958 " nvic_icsr = 0x%" PRIx32,
959 cortex_m->dcb_dhcsr, cortex_m->nvic_icsr);
961 return ERROR_OK;
964 static int cortex_m_assert_reset(struct target *target)
966 struct cortex_m_common *cortex_m = target_to_cm(target);
967 struct adiv5_dap *swjdp = cortex_m->armv7m.arm.dap;
968 enum cortex_m_soft_reset_config reset_config = cortex_m->soft_reset_config;
970 LOG_DEBUG("target->state: %s",
971 target_state_name(target));
973 enum reset_types jtag_reset_config = jtag_get_reset_config();
975 if (target_has_event_action(target, TARGET_EVENT_RESET_ASSERT)) {
976 /* allow scripts to override the reset event */
978 target_handle_event(target, TARGET_EVENT_RESET_ASSERT);
979 register_cache_invalidate(cortex_m->armv7m.arm.core_cache);
980 target->state = TARGET_RESET;
982 return ERROR_OK;
985 /* some cores support connecting while srst is asserted
986 * use that mode is it has been configured */
988 bool srst_asserted = false;
990 if ((jtag_reset_config & RESET_HAS_SRST) &&
991 (jtag_reset_config & RESET_SRST_NO_GATING)) {
992 adapter_assert_reset();
993 srst_asserted = true;
996 /* Enable debug requests */
997 int retval;
998 retval = mem_ap_read_atomic_u32(swjdp, DCB_DHCSR, &cortex_m->dcb_dhcsr);
999 if (retval != ERROR_OK)
1000 return retval;
1001 if (!(cortex_m->dcb_dhcsr & C_DEBUGEN)) {
1002 retval = mem_ap_write_u32(swjdp, DCB_DHCSR, DBGKEY | C_DEBUGEN);
1003 if (retval != ERROR_OK)
1004 return retval;
1007 /* If the processor is sleeping in a WFI or WFE instruction, the
1008 * C_HALT bit must be asserted to regain control */
1009 if (cortex_m->dcb_dhcsr & S_SLEEP) {
1010 retval = mem_ap_write_u32(swjdp, DCB_DHCSR, DBGKEY | C_HALT | C_DEBUGEN);
1011 if (retval != ERROR_OK)
1012 return retval;
1015 retval = mem_ap_write_u32(swjdp, DCB_DCRDR, 0);
1016 if (retval != ERROR_OK)
1017 return retval;
1019 if (!target->reset_halt) {
1020 /* Set/Clear C_MASKINTS in a separate operation */
1021 if (cortex_m->dcb_dhcsr & C_MASKINTS) {
1022 retval = mem_ap_write_atomic_u32(swjdp, DCB_DHCSR,
1023 DBGKEY | C_DEBUGEN | C_HALT);
1024 if (retval != ERROR_OK)
1025 return retval;
1028 /* clear any debug flags before resuming */
1029 cortex_m_clear_halt(target);
1031 /* clear C_HALT in dhcsr reg */
1032 cortex_m_write_debug_halt_mask(target, 0, C_HALT);
1033 } else {
1034 /* Halt in debug on reset; endreset_event() restores DEMCR.
1036 * REVISIT catching BUSERR presumably helps to defend against
1037 * bad vector table entries. Should this include MMERR or
1038 * other flags too?
1040 retval = mem_ap_write_atomic_u32(swjdp, DCB_DEMCR,
1041 TRCENA | VC_HARDERR | VC_BUSERR | VC_CORERESET);
1042 if (retval != ERROR_OK)
1043 return retval;
1046 if (jtag_reset_config & RESET_HAS_SRST) {
1047 /* default to asserting srst */
1048 if (!srst_asserted)
1049 adapter_assert_reset();
1050 } else {
1051 /* Use a standard Cortex-M3 software reset mechanism.
1052 * We default to using VECRESET as it is supported on all current cores.
1053 * This has the disadvantage of not resetting the peripherals, so a
1054 * reset-init event handler is needed to perform any peripheral resets.
1056 LOG_DEBUG("Using Cortex-M %s", (reset_config == CORTEX_M_RESET_SYSRESETREQ)
1057 ? "SYSRESETREQ" : "VECTRESET");
1059 if (reset_config == CORTEX_M_RESET_VECTRESET) {
1060 LOG_WARNING("Only resetting the Cortex-M core, use a reset-init event "
1061 "handler to reset any peripherals or configure hardware srst support.");
1064 retval = mem_ap_write_atomic_u32(swjdp, NVIC_AIRCR,
1065 AIRCR_VECTKEY | ((reset_config == CORTEX_M_RESET_SYSRESETREQ)
1066 ? AIRCR_SYSRESETREQ : AIRCR_VECTRESET));
1067 if (retval != ERROR_OK)
1068 LOG_DEBUG("Ignoring AP write error right after reset");
1070 retval = ahbap_debugport_init(swjdp);
1071 if (retval != ERROR_OK) {
1072 LOG_ERROR("DP initialisation failed");
1073 return retval;
1077 /* I do not know why this is necessary, but it
1078 * fixes strange effects (step/resume cause NMI
1079 * after reset) on LM3S6918 -- Michael Schwingen
1081 uint32_t tmp;
1082 retval = mem_ap_read_atomic_u32(swjdp, NVIC_AIRCR, &tmp);
1083 if (retval != ERROR_OK)
1084 return retval;
1088 target->state = TARGET_RESET;
1089 jtag_add_sleep(50000);
1091 register_cache_invalidate(cortex_m->armv7m.arm.core_cache);
1093 if (target->reset_halt) {
1094 retval = target_halt(target);
1095 if (retval != ERROR_OK)
1096 return retval;
1099 return ERROR_OK;
1102 static int cortex_m_deassert_reset(struct target *target)
1104 LOG_DEBUG("target->state: %s",
1105 target_state_name(target));
1107 /* deassert reset lines */
1108 adapter_deassert_reset();
1110 return ERROR_OK;
1113 int cortex_m_set_breakpoint(struct target *target, struct breakpoint *breakpoint)
1115 int retval;
1116 int fp_num = 0;
1117 uint32_t hilo;
1118 struct cortex_m_common *cortex_m = target_to_cm(target);
1119 struct cortex_m_fp_comparator *comparator_list = cortex_m->fp_comparator_list;
1121 if (breakpoint->set) {
1122 LOG_WARNING("breakpoint (BPID: %" PRIu32 ") already set", breakpoint->unique_id);
1123 return ERROR_OK;
1126 if (cortex_m->auto_bp_type)
1127 breakpoint->type = BKPT_TYPE_BY_ADDR(breakpoint->address);
1129 if (breakpoint->type == BKPT_HARD) {
1130 while (comparator_list[fp_num].used && (fp_num < cortex_m->fp_num_code))
1131 fp_num++;
1132 if (fp_num >= cortex_m->fp_num_code) {
1133 LOG_ERROR("Can not find free FPB Comparator!");
1134 return ERROR_FAIL;
1136 breakpoint->set = fp_num + 1;
1137 hilo = (breakpoint->address & 0x2) ? FPCR_REPLACE_BKPT_HIGH : FPCR_REPLACE_BKPT_LOW;
1138 comparator_list[fp_num].used = 1;
1139 comparator_list[fp_num].fpcr_value = (breakpoint->address & 0x1FFFFFFC) | hilo | 1;
1140 target_write_u32(target, comparator_list[fp_num].fpcr_address,
1141 comparator_list[fp_num].fpcr_value);
1142 LOG_DEBUG("fpc_num %i fpcr_value 0x%" PRIx32 "",
1143 fp_num,
1144 comparator_list[fp_num].fpcr_value);
1145 if (!cortex_m->fpb_enabled) {
1146 LOG_DEBUG("FPB wasn't enabled, do it now");
1147 retval = cortex_m_enable_fpb(target);
1148 if (retval != ERROR_OK) {
1149 LOG_ERROR("Failed to enable the FPB");
1150 return retval;
1153 cortex_m->fpb_enabled = 1;
1155 } else if (breakpoint->type == BKPT_SOFT) {
1156 uint8_t code[4];
1158 /* NOTE: on ARMv6-M and ARMv7-M, BKPT(0xab) is used for
1159 * semihosting; don't use that. Otherwise the BKPT
1160 * parameter is arbitrary.
1162 buf_set_u32(code, 0, 32, ARMV5_T_BKPT(0x11));
1163 retval = target_read_memory(target,
1164 breakpoint->address & 0xFFFFFFFE,
1165 breakpoint->length, 1,
1166 breakpoint->orig_instr);
1167 if (retval != ERROR_OK)
1168 return retval;
1169 retval = target_write_memory(target,
1170 breakpoint->address & 0xFFFFFFFE,
1171 breakpoint->length, 1,
1172 code);
1173 if (retval != ERROR_OK)
1174 return retval;
1175 breakpoint->set = true;
1178 LOG_DEBUG("BPID: %" PRIu32 ", Type: %d, Address: 0x%08" PRIx32 " Length: %d (set=%d)",
1179 breakpoint->unique_id,
1180 (int)(breakpoint->type),
1181 breakpoint->address,
1182 breakpoint->length,
1183 breakpoint->set);
1185 return ERROR_OK;
1188 int cortex_m_unset_breakpoint(struct target *target, struct breakpoint *breakpoint)
1190 int retval;
1191 struct cortex_m_common *cortex_m = target_to_cm(target);
1192 struct cortex_m_fp_comparator *comparator_list = cortex_m->fp_comparator_list;
1194 if (!breakpoint->set) {
1195 LOG_WARNING("breakpoint not set");
1196 return ERROR_OK;
1199 LOG_DEBUG("BPID: %" PRIu32 ", Type: %d, Address: 0x%08" PRIx32 " Length: %d (set=%d)",
1200 breakpoint->unique_id,
1201 (int)(breakpoint->type),
1202 breakpoint->address,
1203 breakpoint->length,
1204 breakpoint->set);
1206 if (breakpoint->type == BKPT_HARD) {
1207 int fp_num = breakpoint->set - 1;
1208 if ((fp_num < 0) || (fp_num >= cortex_m->fp_num_code)) {
1209 LOG_DEBUG("Invalid FP Comparator number in breakpoint");
1210 return ERROR_OK;
1212 comparator_list[fp_num].used = 0;
1213 comparator_list[fp_num].fpcr_value = 0;
1214 target_write_u32(target, comparator_list[fp_num].fpcr_address,
1215 comparator_list[fp_num].fpcr_value);
1216 } else {
1217 /* restore original instruction (kept in target endianness) */
1218 if (breakpoint->length == 4) {
1219 retval = target_write_memory(target, breakpoint->address & 0xFFFFFFFE, 4, 1,
1220 breakpoint->orig_instr);
1221 if (retval != ERROR_OK)
1222 return retval;
1223 } else {
1224 retval = target_write_memory(target, breakpoint->address & 0xFFFFFFFE, 2, 1,
1225 breakpoint->orig_instr);
1226 if (retval != ERROR_OK)
1227 return retval;
1230 breakpoint->set = false;
1232 return ERROR_OK;
1235 int cortex_m_add_breakpoint(struct target *target, struct breakpoint *breakpoint)
1237 struct cortex_m_common *cortex_m = target_to_cm(target);
1239 if (cortex_m->auto_bp_type)
1240 breakpoint->type = BKPT_TYPE_BY_ADDR(breakpoint->address);
1242 if (breakpoint->type != BKPT_TYPE_BY_ADDR(breakpoint->address)) {
1243 if (breakpoint->type == BKPT_HARD) {
1244 LOG_INFO("flash patch comparator requested outside code memory region");
1245 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1248 if (breakpoint->type == BKPT_SOFT) {
1249 LOG_INFO("soft breakpoint requested in code (flash) memory region");
1250 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1254 if ((breakpoint->type == BKPT_HARD) && (cortex_m->fp_code_available < 1)) {
1255 LOG_INFO("no flash patch comparator unit available for hardware breakpoint");
1256 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1259 if (breakpoint->length == 3) {
1260 LOG_DEBUG("Using a two byte breakpoint for 32bit Thumb-2 request");
1261 breakpoint->length = 2;
1264 if ((breakpoint->length != 2)) {
1265 LOG_INFO("only breakpoints of two bytes length supported");
1266 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1269 if (breakpoint->type == BKPT_HARD)
1270 cortex_m->fp_code_available--;
1272 return cortex_m_set_breakpoint(target, breakpoint);
1275 int cortex_m_remove_breakpoint(struct target *target, struct breakpoint *breakpoint)
1277 struct cortex_m_common *cortex_m = target_to_cm(target);
1279 /* REVISIT why check? FBP can be updated with core running ... */
1280 if (target->state != TARGET_HALTED) {
1281 LOG_WARNING("target not halted");
1282 return ERROR_TARGET_NOT_HALTED;
1285 if (cortex_m->auto_bp_type)
1286 breakpoint->type = BKPT_TYPE_BY_ADDR(breakpoint->address);
1288 if (breakpoint->set)
1289 cortex_m_unset_breakpoint(target, breakpoint);
1291 if (breakpoint->type == BKPT_HARD)
1292 cortex_m->fp_code_available++;
1294 return ERROR_OK;
1297 int cortex_m_set_watchpoint(struct target *target, struct watchpoint *watchpoint)
1299 int dwt_num = 0;
1300 uint32_t mask, temp;
1301 struct cortex_m_common *cortex_m = target_to_cm(target);
1303 /* watchpoint params were validated earlier */
1304 mask = 0;
1305 temp = watchpoint->length;
1306 while (temp) {
1307 temp >>= 1;
1308 mask++;
1310 mask--;
1312 /* REVISIT Don't fully trust these "not used" records ... users
1313 * may set up breakpoints by hand, e.g. dual-address data value
1314 * watchpoint using comparator #1; comparator #0 matching cycle
1315 * count; send data trace info through ITM and TPIU; etc
1317 struct cortex_m_dwt_comparator *comparator;
1319 for (comparator = cortex_m->dwt_comparator_list;
1320 comparator->used && dwt_num < cortex_m->dwt_num_comp;
1321 comparator++, dwt_num++)
1322 continue;
1323 if (dwt_num >= cortex_m->dwt_num_comp) {
1324 LOG_ERROR("Can not find free DWT Comparator");
1325 return ERROR_FAIL;
1327 comparator->used = 1;
1328 watchpoint->set = dwt_num + 1;
1330 comparator->comp = watchpoint->address;
1331 target_write_u32(target, comparator->dwt_comparator_address + 0,
1332 comparator->comp);
1334 comparator->mask = mask;
1335 target_write_u32(target, comparator->dwt_comparator_address + 4,
1336 comparator->mask);
1338 switch (watchpoint->rw) {
1339 case WPT_READ:
1340 comparator->function = 5;
1341 break;
1342 case WPT_WRITE:
1343 comparator->function = 6;
1344 break;
1345 case WPT_ACCESS:
1346 comparator->function = 7;
1347 break;
1349 target_write_u32(target, comparator->dwt_comparator_address + 8,
1350 comparator->function);
1352 LOG_DEBUG("Watchpoint (ID %d) DWT%d 0x%08x 0x%x 0x%05x",
1353 watchpoint->unique_id, dwt_num,
1354 (unsigned) comparator->comp,
1355 (unsigned) comparator->mask,
1356 (unsigned) comparator->function);
1357 return ERROR_OK;
1360 int cortex_m_unset_watchpoint(struct target *target, struct watchpoint *watchpoint)
1362 struct cortex_m_common *cortex_m = target_to_cm(target);
1363 struct cortex_m_dwt_comparator *comparator;
1364 int dwt_num;
1366 if (!watchpoint->set) {
1367 LOG_WARNING("watchpoint (wpid: %d) not set",
1368 watchpoint->unique_id);
1369 return ERROR_OK;
1372 dwt_num = watchpoint->set - 1;
1374 LOG_DEBUG("Watchpoint (ID %d) DWT%d address: 0x%08x clear",
1375 watchpoint->unique_id, dwt_num,
1376 (unsigned) watchpoint->address);
1378 if ((dwt_num < 0) || (dwt_num >= cortex_m->dwt_num_comp)) {
1379 LOG_DEBUG("Invalid DWT Comparator number in watchpoint");
1380 return ERROR_OK;
1383 comparator = cortex_m->dwt_comparator_list + dwt_num;
1384 comparator->used = 0;
1385 comparator->function = 0;
1386 target_write_u32(target, comparator->dwt_comparator_address + 8,
1387 comparator->function);
1389 watchpoint->set = false;
1391 return ERROR_OK;
1394 int cortex_m_add_watchpoint(struct target *target, struct watchpoint *watchpoint)
1396 struct cortex_m_common *cortex_m = target_to_cm(target);
1398 if (cortex_m->dwt_comp_available < 1) {
1399 LOG_DEBUG("no comparators?");
1400 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1403 /* hardware doesn't support data value masking */
1404 if (watchpoint->mask != ~(uint32_t)0) {
1405 LOG_DEBUG("watchpoint value masks not supported");
1406 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1409 /* hardware allows address masks of up to 32K */
1410 unsigned mask;
1412 for (mask = 0; mask < 16; mask++) {
1413 if ((1u << mask) == watchpoint->length)
1414 break;
1416 if (mask == 16) {
1417 LOG_DEBUG("unsupported watchpoint length");
1418 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1420 if (watchpoint->address & ((1 << mask) - 1)) {
1421 LOG_DEBUG("watchpoint address is unaligned");
1422 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1425 /* Caller doesn't seem to be able to describe watching for data
1426 * values of zero; that flags "no value".
1428 * REVISIT This DWT may well be able to watch for specific data
1429 * values. Requires comparator #1 to set DATAVMATCH and match
1430 * the data, and another comparator (DATAVADDR0) matching addr.
1432 if (watchpoint->value) {
1433 LOG_DEBUG("data value watchpoint not YET supported");
1434 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1437 cortex_m->dwt_comp_available--;
1438 LOG_DEBUG("dwt_comp_available: %d", cortex_m->dwt_comp_available);
1440 return ERROR_OK;
1443 int cortex_m_remove_watchpoint(struct target *target, struct watchpoint *watchpoint)
1445 struct cortex_m_common *cortex_m = target_to_cm(target);
1447 /* REVISIT why check? DWT can be updated with core running ... */
1448 if (target->state != TARGET_HALTED) {
1449 LOG_WARNING("target not halted");
1450 return ERROR_TARGET_NOT_HALTED;
1453 if (watchpoint->set)
1454 cortex_m_unset_watchpoint(target, watchpoint);
1456 cortex_m->dwt_comp_available++;
1457 LOG_DEBUG("dwt_comp_available: %d", cortex_m->dwt_comp_available);
1459 return ERROR_OK;
1462 void cortex_m_enable_watchpoints(struct target *target)
1464 struct watchpoint *watchpoint = target->watchpoints;
1466 /* set any pending watchpoints */
1467 while (watchpoint) {
1468 if (!watchpoint->set)
1469 cortex_m_set_watchpoint(target, watchpoint);
1470 watchpoint = watchpoint->next;
1474 static int cortex_m_load_core_reg_u32(struct target *target,
1475 uint32_t num, uint32_t *value)
1477 int retval;
1479 /* NOTE: we "know" here that the register identifiers used
1480 * in the v7m header match the Cortex-M3 Debug Core Register
1481 * Selector values for R0..R15, xPSR, MSP, and PSP.
1483 switch (num) {
1484 case 0 ... 18:
1485 /* read a normal core register */
1486 retval = cortexm_dap_read_coreregister_u32(target, value, num);
1488 if (retval != ERROR_OK) {
1489 LOG_ERROR("JTAG failure %i", retval);
1490 return ERROR_JTAG_DEVICE_ERROR;
1492 LOG_DEBUG("load from core reg %i value 0x%" PRIx32 "", (int)num, *value);
1493 break;
1495 case ARMV7M_FPSCR:
1496 /* Floating-point Status and Registers */
1497 retval = target_write_u32(target, DCB_DCRSR, 0x21);
1498 if (retval != ERROR_OK)
1499 return retval;
1500 retval = target_read_u32(target, DCB_DCRDR, value);
1501 if (retval != ERROR_OK)
1502 return retval;
1503 LOG_DEBUG("load from FPSCR value 0x%" PRIx32, *value);
1504 break;
1506 case ARMV7M_S0 ... ARMV7M_S31:
1507 /* Floating-point Status and Registers */
1508 retval = target_write_u32(target, DCB_DCRSR, num - ARMV7M_S0 + 0x40);
1509 if (retval != ERROR_OK)
1510 return retval;
1511 retval = target_read_u32(target, DCB_DCRDR, value);
1512 if (retval != ERROR_OK)
1513 return retval;
1514 LOG_DEBUG("load from FPU reg S%d value 0x%" PRIx32,
1515 (int)(num - ARMV7M_S0), *value);
1516 break;
1518 case ARMV7M_PRIMASK:
1519 case ARMV7M_BASEPRI:
1520 case ARMV7M_FAULTMASK:
1521 case ARMV7M_CONTROL:
1522 /* Cortex-M3 packages these four registers as bitfields
1523 * in one Debug Core register. So say r0 and r2 docs;
1524 * it was removed from r1 docs, but still works.
1526 cortexm_dap_read_coreregister_u32(target, value, 20);
1528 switch (num) {
1529 case ARMV7M_PRIMASK:
1530 *value = buf_get_u32((uint8_t *)value, 0, 1);
1531 break;
1533 case ARMV7M_BASEPRI:
1534 *value = buf_get_u32((uint8_t *)value, 8, 8);
1535 break;
1537 case ARMV7M_FAULTMASK:
1538 *value = buf_get_u32((uint8_t *)value, 16, 1);
1539 break;
1541 case ARMV7M_CONTROL:
1542 *value = buf_get_u32((uint8_t *)value, 24, 2);
1543 break;
1546 LOG_DEBUG("load from special reg %i value 0x%" PRIx32 "", (int)num, *value);
1547 break;
1549 default:
1550 return ERROR_COMMAND_SYNTAX_ERROR;
1553 return ERROR_OK;
1556 static int cortex_m_store_core_reg_u32(struct target *target,
1557 uint32_t num, uint32_t value)
1559 int retval;
1560 uint32_t reg;
1561 struct armv7m_common *armv7m = target_to_armv7m(target);
1563 /* NOTE: we "know" here that the register identifiers used
1564 * in the v7m header match the Cortex-M3 Debug Core Register
1565 * Selector values for R0..R15, xPSR, MSP, and PSP.
1567 switch (num) {
1568 case 0 ... 18:
1569 retval = cortexm_dap_write_coreregister_u32(target, value, num);
1570 if (retval != ERROR_OK) {
1571 struct reg *r;
1573 LOG_ERROR("JTAG failure");
1574 r = armv7m->arm.core_cache->reg_list + num;
1575 r->dirty = r->valid;
1576 return ERROR_JTAG_DEVICE_ERROR;
1578 LOG_DEBUG("write core reg %i value 0x%" PRIx32 "", (int)num, value);
1579 break;
1581 case ARMV7M_FPSCR:
1582 /* Floating-point Status and Registers */
1583 retval = target_write_u32(target, DCB_DCRDR, value);
1584 if (retval != ERROR_OK)
1585 return retval;
1586 retval = target_write_u32(target, DCB_DCRSR, 0x21 | (1<<16));
1587 if (retval != ERROR_OK)
1588 return retval;
1589 LOG_DEBUG("write FPSCR value 0x%" PRIx32, value);
1590 break;
1592 case ARMV7M_S0 ... ARMV7M_S31:
1593 /* Floating-point Status and Registers */
1594 retval = target_write_u32(target, DCB_DCRDR, value);
1595 if (retval != ERROR_OK)
1596 return retval;
1597 retval = target_write_u32(target, DCB_DCRSR, (num - ARMV7M_S0 + 0x40) | (1<<16));
1598 if (retval != ERROR_OK)
1599 return retval;
1600 LOG_DEBUG("write FPU reg S%d value 0x%" PRIx32,
1601 (int)(num - ARMV7M_S0), value);
1602 break;
1604 case ARMV7M_PRIMASK:
1605 case ARMV7M_BASEPRI:
1606 case ARMV7M_FAULTMASK:
1607 case ARMV7M_CONTROL:
1608 /* Cortex-M3 packages these four registers as bitfields
1609 * in one Debug Core register. So say r0 and r2 docs;
1610 * it was removed from r1 docs, but still works.
1612 cortexm_dap_read_coreregister_u32(target, &reg, 20);
1614 switch (num) {
1615 case ARMV7M_PRIMASK:
1616 buf_set_u32((uint8_t *)&reg, 0, 1, value);
1617 break;
1619 case ARMV7M_BASEPRI:
1620 buf_set_u32((uint8_t *)&reg, 8, 8, value);
1621 break;
1623 case ARMV7M_FAULTMASK:
1624 buf_set_u32((uint8_t *)&reg, 16, 1, value);
1625 break;
1627 case ARMV7M_CONTROL:
1628 buf_set_u32((uint8_t *)&reg, 24, 2, value);
1629 break;
1632 cortexm_dap_write_coreregister_u32(target, reg, 20);
1634 LOG_DEBUG("write special reg %i value 0x%" PRIx32 " ", (int)num, value);
1635 break;
1637 default:
1638 return ERROR_COMMAND_SYNTAX_ERROR;
1641 return ERROR_OK;
1644 static int cortex_m_read_memory(struct target *target, uint32_t address,
1645 uint32_t size, uint32_t count, uint8_t *buffer)
1647 struct armv7m_common *armv7m = target_to_armv7m(target);
1648 struct adiv5_dap *swjdp = armv7m->arm.dap;
1650 if (armv7m->arm.is_armv6m) {
1651 /* armv6m does not handle unaligned memory access */
1652 if (((size == 4) && (address & 0x3u)) || ((size == 2) && (address & 0x1u)))
1653 return ERROR_TARGET_UNALIGNED_ACCESS;
1656 return mem_ap_read(swjdp, buffer, size, count, address, true);
1659 static int cortex_m_write_memory(struct target *target, uint32_t address,
1660 uint32_t size, uint32_t count, const uint8_t *buffer)
1662 struct armv7m_common *armv7m = target_to_armv7m(target);
1663 struct adiv5_dap *swjdp = armv7m->arm.dap;
1665 if (armv7m->arm.is_armv6m) {
1666 /* armv6m does not handle unaligned memory access */
1667 if (((size == 4) && (address & 0x3u)) || ((size == 2) && (address & 0x1u)))
1668 return ERROR_TARGET_UNALIGNED_ACCESS;
1671 return mem_ap_write(swjdp, buffer, size, count, address, true);
1674 static int cortex_m_init_target(struct command_context *cmd_ctx,
1675 struct target *target)
1677 armv7m_build_reg_cache(target);
1678 return ERROR_OK;
1681 void cortex_m_deinit_target(struct target *target)
1683 struct cortex_m_common *cortex_m = target_to_cm(target);
1685 free(cortex_m->fp_comparator_list);
1686 cortex_m_dwt_free(target);
1687 free(cortex_m);
1690 /* REVISIT cache valid/dirty bits are unmaintained. We could set "valid"
1691 * on r/w if the core is not running, and clear on resume or reset ... or
1692 * at least, in a post_restore_context() method.
1695 struct dwt_reg_state {
1696 struct target *target;
1697 uint32_t addr;
1698 uint8_t value[4]; /* scratch/cache */
1701 static int cortex_m_dwt_get_reg(struct reg *reg)
1703 struct dwt_reg_state *state = reg->arch_info;
1705 uint32_t tmp;
1706 int retval = target_read_u32(state->target, state->addr, &tmp);
1707 if (retval != ERROR_OK)
1708 return retval;
1710 buf_set_u32(state->value, 0, 32, tmp);
1711 return ERROR_OK;
1714 static int cortex_m_dwt_set_reg(struct reg *reg, uint8_t *buf)
1716 struct dwt_reg_state *state = reg->arch_info;
1718 return target_write_u32(state->target, state->addr,
1719 buf_get_u32(buf, 0, reg->size));
1722 struct dwt_reg {
1723 uint32_t addr;
1724 char *name;
1725 unsigned size;
1728 static struct dwt_reg dwt_base_regs[] = {
1729 { DWT_CTRL, "dwt_ctrl", 32, },
1730 /* NOTE that Erratum 532314 (fixed r2p0) affects CYCCNT: it wrongly
1731 * increments while the core is asleep.
1733 { DWT_CYCCNT, "dwt_cyccnt", 32, },
1734 /* plus some 8 bit counters, useful for profiling with TPIU */
1737 static struct dwt_reg dwt_comp[] = {
1738 #define DWT_COMPARATOR(i) \
1739 { DWT_COMP0 + 0x10 * (i), "dwt_" #i "_comp", 32, }, \
1740 { DWT_MASK0 + 0x10 * (i), "dwt_" #i "_mask", 4, }, \
1741 { DWT_FUNCTION0 + 0x10 * (i), "dwt_" #i "_function", 32, }
1742 DWT_COMPARATOR(0),
1743 DWT_COMPARATOR(1),
1744 DWT_COMPARATOR(2),
1745 DWT_COMPARATOR(3),
1746 #undef DWT_COMPARATOR
1749 static const struct reg_arch_type dwt_reg_type = {
1750 .get = cortex_m_dwt_get_reg,
1751 .set = cortex_m_dwt_set_reg,
1754 static void cortex_m_dwt_addreg(struct target *t, struct reg *r, struct dwt_reg *d)
1756 struct dwt_reg_state *state;
1758 state = calloc(1, sizeof *state);
1759 if (!state)
1760 return;
1761 state->addr = d->addr;
1762 state->target = t;
1764 r->name = d->name;
1765 r->size = d->size;
1766 r->value = state->value;
1767 r->arch_info = state;
1768 r->type = &dwt_reg_type;
1771 void cortex_m_dwt_setup(struct cortex_m_common *cm, struct target *target)
1773 uint32_t dwtcr;
1774 struct reg_cache *cache;
1775 struct cortex_m_dwt_comparator *comparator;
1776 int reg, i;
1778 target_read_u32(target, DWT_CTRL, &dwtcr);
1779 if (!dwtcr) {
1780 LOG_DEBUG("no DWT");
1781 return;
1784 cm->dwt_num_comp = (dwtcr >> 28) & 0xF;
1785 cm->dwt_comp_available = cm->dwt_num_comp;
1786 cm->dwt_comparator_list = calloc(cm->dwt_num_comp,
1787 sizeof(struct cortex_m_dwt_comparator));
1788 if (!cm->dwt_comparator_list) {
1789 fail0:
1790 cm->dwt_num_comp = 0;
1791 LOG_ERROR("out of mem");
1792 return;
1795 cache = calloc(1, sizeof *cache);
1796 if (!cache) {
1797 fail1:
1798 free(cm->dwt_comparator_list);
1799 goto fail0;
1801 cache->name = "Cortex-M DWT registers";
1802 cache->num_regs = 2 + cm->dwt_num_comp * 3;
1803 cache->reg_list = calloc(cache->num_regs, sizeof *cache->reg_list);
1804 if (!cache->reg_list) {
1805 free(cache);
1806 goto fail1;
1809 for (reg = 0; reg < 2; reg++)
1810 cortex_m_dwt_addreg(target, cache->reg_list + reg,
1811 dwt_base_regs + reg);
1813 comparator = cm->dwt_comparator_list;
1814 for (i = 0; i < cm->dwt_num_comp; i++, comparator++) {
1815 int j;
1817 comparator->dwt_comparator_address = DWT_COMP0 + 0x10 * i;
1818 for (j = 0; j < 3; j++, reg++)
1819 cortex_m_dwt_addreg(target, cache->reg_list + reg,
1820 dwt_comp + 3 * i + j);
1822 /* make sure we clear any watchpoints enabled on the target */
1823 target_write_u32(target, comparator->dwt_comparator_address + 8, 0);
1826 *register_get_last_cache_p(&target->reg_cache) = cache;
1827 cm->dwt_cache = cache;
1829 LOG_DEBUG("DWT dwtcr 0x%" PRIx32 ", comp %d, watch%s",
1830 dwtcr, cm->dwt_num_comp,
1831 (dwtcr & (0xf << 24)) ? " only" : "/trigger");
1833 /* REVISIT: if num_comp > 1, check whether comparator #1 can
1834 * implement single-address data value watchpoints ... so we
1835 * won't need to check it later, when asked to set one up.
1839 static void cortex_m_dwt_free(struct target *target)
1841 struct cortex_m_common *cm = target_to_cm(target);
1842 struct reg_cache *cache = cm->dwt_cache;
1844 free(cm->dwt_comparator_list);
1845 cm->dwt_comparator_list = NULL;
1847 if (cache) {
1848 register_unlink_cache(&target->reg_cache, cache);
1850 if (cache->reg_list) {
1851 for (size_t i = 0; i < cache->num_regs; i++)
1852 free(cache->reg_list[i].arch_info);
1853 free(cache->reg_list);
1855 free(cache);
1857 cm->dwt_cache = NULL;
1860 #define MVFR0 0xe000ef40
1861 #define MVFR1 0xe000ef44
1863 #define MVFR0_DEFAULT_M4 0x10110021
1864 #define MVFR1_DEFAULT_M4 0x11000011
1866 int cortex_m_examine(struct target *target)
1868 int retval;
1869 uint32_t cpuid, fpcr, mvfr0, mvfr1;
1870 int i;
1871 struct cortex_m_common *cortex_m = target_to_cm(target);
1872 struct adiv5_dap *swjdp = cortex_m->armv7m.arm.dap;
1873 struct armv7m_common *armv7m = target_to_armv7m(target);
1875 /* stlink shares the examine handler but does not support
1876 * all its calls */
1877 if (!armv7m->stlink) {
1878 retval = ahbap_debugport_init(swjdp);
1879 if (retval != ERROR_OK)
1880 return retval;
1883 if (!target_was_examined(target)) {
1884 target_set_examined(target);
1886 /* Read from Device Identification Registers */
1887 retval = target_read_u32(target, CPUID, &cpuid);
1888 if (retval != ERROR_OK)
1889 return retval;
1891 /* Get CPU Type */
1892 i = (cpuid >> 4) & 0xf;
1894 LOG_DEBUG("Cortex-M%d r%" PRId8 "p%" PRId8 " processor detected",
1895 i, (uint8_t)((cpuid >> 20) & 0xf), (uint8_t)((cpuid >> 0) & 0xf));
1896 LOG_DEBUG("cpuid: 0x%8.8" PRIx32 "", cpuid);
1898 /* test for floating point feature on cortex-m4 */
1899 if (i == 4) {
1900 target_read_u32(target, MVFR0, &mvfr0);
1901 target_read_u32(target, MVFR1, &mvfr1);
1903 if ((mvfr0 == MVFR0_DEFAULT_M4) && (mvfr1 == MVFR1_DEFAULT_M4)) {
1904 LOG_DEBUG("Cortex-M%d floating point feature FPv4_SP found", i);
1905 armv7m->fp_feature = FPv4_SP;
1907 } else if (i == 0) {
1908 /* Cortex-M0 does not support unaligned memory access */
1909 armv7m->arm.is_armv6m = true;
1912 if (armv7m->fp_feature != FPv4_SP &&
1913 armv7m->arm.core_cache->num_regs > ARMV7M_NUM_CORE_REGS_NOFP) {
1914 /* free unavailable FPU registers */
1915 size_t idx;
1916 for (idx = ARMV7M_NUM_CORE_REGS_NOFP;
1917 idx < armv7m->arm.core_cache->num_regs;
1918 idx++)
1919 free(armv7m->arm.core_cache->reg_list[idx].value);
1920 armv7m->arm.core_cache->num_regs = ARMV7M_NUM_CORE_REGS_NOFP;
1923 if (i == 4 || i == 3) {
1924 /* Cortex-M3/M4 has 4096 bytes autoincrement range */
1925 armv7m->dap.tar_autoincr_block = (1 << 12);
1928 /* Configure trace modules */
1929 retval = target_write_u32(target, DCB_DEMCR, TRCENA | armv7m->demcr);
1930 if (retval != ERROR_OK)
1931 return retval;
1933 if (armv7m->trace_config.config_type != DISABLED) {
1934 armv7m_trace_tpiu_config(target);
1935 armv7m_trace_itm_config(target);
1938 /* NOTE: FPB and DWT are both optional. */
1940 /* Setup FPB */
1941 target_read_u32(target, FP_CTRL, &fpcr);
1942 cortex_m->auto_bp_type = 1;
1943 /* bits [14:12] and [7:4] */
1944 cortex_m->fp_num_code = ((fpcr >> 8) & 0x70) | ((fpcr >> 4) & 0xF);
1945 cortex_m->fp_num_lit = (fpcr >> 8) & 0xF;
1946 cortex_m->fp_code_available = cortex_m->fp_num_code;
1947 free(cortex_m->fp_comparator_list);
1948 cortex_m->fp_comparator_list = calloc(
1949 cortex_m->fp_num_code + cortex_m->fp_num_lit,
1950 sizeof(struct cortex_m_fp_comparator));
1951 cortex_m->fpb_enabled = fpcr & 1;
1952 for (i = 0; i < cortex_m->fp_num_code + cortex_m->fp_num_lit; i++) {
1953 cortex_m->fp_comparator_list[i].type =
1954 (i < cortex_m->fp_num_code) ? FPCR_CODE : FPCR_LITERAL;
1955 cortex_m->fp_comparator_list[i].fpcr_address = FP_COMP0 + 4 * i;
1957 /* make sure we clear any breakpoints enabled on the target */
1958 target_write_u32(target, cortex_m->fp_comparator_list[i].fpcr_address, 0);
1960 LOG_DEBUG("FPB fpcr 0x%" PRIx32 ", numcode %i, numlit %i",
1961 fpcr,
1962 cortex_m->fp_num_code,
1963 cortex_m->fp_num_lit);
1965 /* Setup DWT */
1966 cortex_m_dwt_free(target);
1967 cortex_m_dwt_setup(cortex_m, target);
1969 /* These hardware breakpoints only work for code in flash! */
1970 LOG_INFO("%s: hardware has %d breakpoints, %d watchpoints",
1971 target_name(target),
1972 cortex_m->fp_num_code,
1973 cortex_m->dwt_num_comp);
1976 return ERROR_OK;
1979 static int cortex_m_dcc_read(struct target *target, uint8_t *value, uint8_t *ctrl)
1981 struct armv7m_common *armv7m = target_to_armv7m(target);
1982 struct adiv5_dap *swjdp = armv7m->arm.dap;
1983 uint16_t dcrdr;
1984 uint8_t buf[2];
1985 int retval;
1987 retval = mem_ap_read(swjdp, buf, 2, 1, DCB_DCRDR, false);
1988 if (retval != ERROR_OK)
1989 return retval;
1991 dcrdr = target_buffer_get_u16(target, buf);
1992 *ctrl = (uint8_t)dcrdr;
1993 *value = (uint8_t)(dcrdr >> 8);
1995 LOG_DEBUG("data 0x%x ctrl 0x%x", *value, *ctrl);
1997 /* write ack back to software dcc register
1998 * signify we have read data */
1999 if (dcrdr & (1 << 0)) {
2000 target_buffer_set_u16(target, buf, 0);
2001 retval = mem_ap_write(swjdp, buf, 2, 1, DCB_DCRDR, false);
2002 if (retval != ERROR_OK)
2003 return retval;
2006 return ERROR_OK;
2009 static int cortex_m_target_request_data(struct target *target,
2010 uint32_t size, uint8_t *buffer)
2012 uint8_t data;
2013 uint8_t ctrl;
2014 uint32_t i;
2016 for (i = 0; i < (size * 4); i++) {
2017 int retval = cortex_m_dcc_read(target, &data, &ctrl);
2018 if (retval != ERROR_OK)
2019 return retval;
2020 buffer[i] = data;
2023 return ERROR_OK;
2026 static int cortex_m_handle_target_request(void *priv)
2028 struct target *target = priv;
2029 if (!target_was_examined(target))
2030 return ERROR_OK;
2032 if (!target->dbg_msg_enabled)
2033 return ERROR_OK;
2035 if (target->state == TARGET_RUNNING) {
2036 uint8_t data;
2037 uint8_t ctrl;
2038 int retval;
2040 retval = cortex_m_dcc_read(target, &data, &ctrl);
2041 if (retval != ERROR_OK)
2042 return retval;
2044 /* check if we have data */
2045 if (ctrl & (1 << 0)) {
2046 uint32_t request;
2048 /* we assume target is quick enough */
2049 request = data;
2050 for (int i = 1; i <= 3; i++) {
2051 retval = cortex_m_dcc_read(target, &data, &ctrl);
2052 if (retval != ERROR_OK)
2053 return retval;
2054 request |= ((uint32_t)data << (i * 8));
2056 target_request(target, request);
2060 return ERROR_OK;
2063 static int cortex_m_init_arch_info(struct target *target,
2064 struct cortex_m_common *cortex_m, struct jtag_tap *tap)
2066 int retval;
2067 struct armv7m_common *armv7m = &cortex_m->armv7m;
2069 armv7m_init_arch_info(target, armv7m);
2071 /* prepare JTAG information for the new target */
2072 cortex_m->jtag_info.tap = tap;
2073 cortex_m->jtag_info.scann_size = 4;
2075 /* default reset mode is to use srst if fitted
2076 * if not it will use CORTEX_M3_RESET_VECTRESET */
2077 cortex_m->soft_reset_config = CORTEX_M_RESET_VECTRESET;
2079 armv7m->arm.dap = &armv7m->dap;
2081 /* Leave (only) generic DAP stuff for debugport_init(); */
2082 armv7m->dap.jtag_info = &cortex_m->jtag_info;
2083 armv7m->dap.memaccess_tck = 8;
2085 /* Cortex-M3/M4 has 4096 bytes autoincrement range
2086 * but set a safe default to 1024 to support Cortex-M0
2087 * this will be changed in cortex_m3_examine if a M3/M4 is detected */
2088 armv7m->dap.tar_autoincr_block = (1 << 10);
2090 /* register arch-specific functions */
2091 armv7m->examine_debug_reason = cortex_m_examine_debug_reason;
2093 armv7m->post_debug_entry = NULL;
2095 armv7m->pre_restore_context = NULL;
2097 armv7m->load_core_reg_u32 = cortex_m_load_core_reg_u32;
2098 armv7m->store_core_reg_u32 = cortex_m_store_core_reg_u32;
2100 target_register_timer_callback(cortex_m_handle_target_request, 1, 1, target);
2102 retval = arm_jtag_setup_connection(&cortex_m->jtag_info);
2103 if (retval != ERROR_OK)
2104 return retval;
2106 return ERROR_OK;
2109 static int cortex_m_target_create(struct target *target, Jim_Interp *interp)
2111 struct cortex_m_common *cortex_m = calloc(1, sizeof(struct cortex_m_common));
2113 cortex_m->common_magic = CORTEX_M_COMMON_MAGIC;
2114 cortex_m_init_arch_info(target, cortex_m, target->tap);
2116 return ERROR_OK;
2119 /*--------------------------------------------------------------------------*/
2121 static int cortex_m_verify_pointer(struct command_context *cmd_ctx,
2122 struct cortex_m_common *cm)
2124 if (cm->common_magic != CORTEX_M_COMMON_MAGIC) {
2125 command_print(cmd_ctx, "target is not a Cortex-M");
2126 return ERROR_TARGET_INVALID;
2128 return ERROR_OK;
2132 * Only stuff below this line should need to verify that its target
2133 * is a Cortex-M3. Everything else should have indirected through the
2134 * cortexm3_target structure, which is only used with CM3 targets.
2137 static const struct {
2138 char name[10];
2139 unsigned mask;
2140 } vec_ids[] = {
2141 { "hard_err", VC_HARDERR, },
2142 { "int_err", VC_INTERR, },
2143 { "bus_err", VC_BUSERR, },
2144 { "state_err", VC_STATERR, },
2145 { "chk_err", VC_CHKERR, },
2146 { "nocp_err", VC_NOCPERR, },
2147 { "mm_err", VC_MMERR, },
2148 { "reset", VC_CORERESET, },
2151 COMMAND_HANDLER(handle_cortex_m_vector_catch_command)
2153 struct target *target = get_current_target(CMD_CTX);
2154 struct cortex_m_common *cortex_m = target_to_cm(target);
2155 struct armv7m_common *armv7m = &cortex_m->armv7m;
2156 struct adiv5_dap *swjdp = armv7m->arm.dap;
2157 uint32_t demcr = 0;
2158 int retval;
2160 retval = cortex_m_verify_pointer(CMD_CTX, cortex_m);
2161 if (retval != ERROR_OK)
2162 return retval;
2164 retval = mem_ap_read_atomic_u32(swjdp, DCB_DEMCR, &demcr);
2165 if (retval != ERROR_OK)
2166 return retval;
2168 if (CMD_ARGC > 0) {
2169 unsigned catch = 0;
2171 if (CMD_ARGC == 1) {
2172 if (strcmp(CMD_ARGV[0], "all") == 0) {
2173 catch = VC_HARDERR | VC_INTERR | VC_BUSERR
2174 | VC_STATERR | VC_CHKERR | VC_NOCPERR
2175 | VC_MMERR | VC_CORERESET;
2176 goto write;
2177 } else if (strcmp(CMD_ARGV[0], "none") == 0)
2178 goto write;
2180 while (CMD_ARGC-- > 0) {
2181 unsigned i;
2182 for (i = 0; i < ARRAY_SIZE(vec_ids); i++) {
2183 if (strcmp(CMD_ARGV[CMD_ARGC], vec_ids[i].name) != 0)
2184 continue;
2185 catch |= vec_ids[i].mask;
2186 break;
2188 if (i == ARRAY_SIZE(vec_ids)) {
2189 LOG_ERROR("No CM3 vector '%s'", CMD_ARGV[CMD_ARGC]);
2190 return ERROR_COMMAND_SYNTAX_ERROR;
2193 write:
2194 /* For now, armv7m->demcr only stores vector catch flags. */
2195 armv7m->demcr = catch;
2197 demcr &= ~0xffff;
2198 demcr |= catch;
2200 /* write, but don't assume it stuck (why not??) */
2201 retval = mem_ap_write_u32(swjdp, DCB_DEMCR, demcr);
2202 if (retval != ERROR_OK)
2203 return retval;
2204 retval = mem_ap_read_atomic_u32(swjdp, DCB_DEMCR, &demcr);
2205 if (retval != ERROR_OK)
2206 return retval;
2208 /* FIXME be sure to clear DEMCR on clean server shutdown.
2209 * Otherwise the vector catch hardware could fire when there's
2210 * no debugger hooked up, causing much confusion...
2214 for (unsigned i = 0; i < ARRAY_SIZE(vec_ids); i++) {
2215 command_print(CMD_CTX, "%9s: %s", vec_ids[i].name,
2216 (demcr & vec_ids[i].mask) ? "catch" : "ignore");
2219 return ERROR_OK;
2222 COMMAND_HANDLER(handle_cortex_m_mask_interrupts_command)
2224 struct target *target = get_current_target(CMD_CTX);
2225 struct cortex_m_common *cortex_m = target_to_cm(target);
2226 int retval;
2228 static const Jim_Nvp nvp_maskisr_modes[] = {
2229 { .name = "auto", .value = CORTEX_M_ISRMASK_AUTO },
2230 { .name = "off", .value = CORTEX_M_ISRMASK_OFF },
2231 { .name = "on", .value = CORTEX_M_ISRMASK_ON },
2232 { .name = NULL, .value = -1 },
2234 const Jim_Nvp *n;
2237 retval = cortex_m_verify_pointer(CMD_CTX, cortex_m);
2238 if (retval != ERROR_OK)
2239 return retval;
2241 if (target->state != TARGET_HALTED) {
2242 command_print(CMD_CTX, "target must be stopped for \"%s\" command", CMD_NAME);
2243 return ERROR_OK;
2246 if (CMD_ARGC > 0) {
2247 n = Jim_Nvp_name2value_simple(nvp_maskisr_modes, CMD_ARGV[0]);
2248 if (n->name == NULL)
2249 return ERROR_COMMAND_SYNTAX_ERROR;
2250 cortex_m->isrmasking_mode = n->value;
2253 if (cortex_m->isrmasking_mode == CORTEX_M_ISRMASK_ON)
2254 cortex_m_write_debug_halt_mask(target, C_HALT | C_MASKINTS, 0);
2255 else
2256 cortex_m_write_debug_halt_mask(target, C_HALT, C_MASKINTS);
2259 n = Jim_Nvp_value2name_simple(nvp_maskisr_modes, cortex_m->isrmasking_mode);
2260 command_print(CMD_CTX, "cortex_m interrupt mask %s", n->name);
2262 return ERROR_OK;
2265 COMMAND_HANDLER(handle_cortex_m_reset_config_command)
2267 struct target *target = get_current_target(CMD_CTX);
2268 struct cortex_m_common *cortex_m = target_to_cm(target);
2269 int retval;
2270 char *reset_config;
2272 retval = cortex_m_verify_pointer(CMD_CTX, cortex_m);
2273 if (retval != ERROR_OK)
2274 return retval;
2276 if (CMD_ARGC > 0) {
2277 if (strcmp(*CMD_ARGV, "sysresetreq") == 0)
2278 cortex_m->soft_reset_config = CORTEX_M_RESET_SYSRESETREQ;
2279 else if (strcmp(*CMD_ARGV, "vectreset") == 0)
2280 cortex_m->soft_reset_config = CORTEX_M_RESET_VECTRESET;
2283 switch (cortex_m->soft_reset_config) {
2284 case CORTEX_M_RESET_SYSRESETREQ:
2285 reset_config = "sysresetreq";
2286 break;
2288 case CORTEX_M_RESET_VECTRESET:
2289 reset_config = "vectreset";
2290 break;
2292 default:
2293 reset_config = "unknown";
2294 break;
2297 command_print(CMD_CTX, "cortex_m reset_config %s", reset_config);
2299 return ERROR_OK;
2302 static const struct command_registration cortex_m_exec_command_handlers[] = {
2304 .name = "maskisr",
2305 .handler = handle_cortex_m_mask_interrupts_command,
2306 .mode = COMMAND_EXEC,
2307 .help = "mask cortex_m interrupts",
2308 .usage = "['auto'|'on'|'off']",
2311 .name = "vector_catch",
2312 .handler = handle_cortex_m_vector_catch_command,
2313 .mode = COMMAND_EXEC,
2314 .help = "configure hardware vectors to trigger debug entry",
2315 .usage = "['all'|'none'|('bus_err'|'chk_err'|...)*]",
2318 .name = "reset_config",
2319 .handler = handle_cortex_m_reset_config_command,
2320 .mode = COMMAND_ANY,
2321 .help = "configure software reset handling",
2322 .usage = "['srst'|'sysresetreq'|'vectreset']",
2324 COMMAND_REGISTRATION_DONE
2326 static const struct command_registration cortex_m_command_handlers[] = {
2328 .chain = armv7m_command_handlers,
2331 .chain = armv7m_trace_command_handlers,
2334 .name = "cortex_m",
2335 .mode = COMMAND_EXEC,
2336 .help = "Cortex-M command group",
2337 .usage = "",
2338 .chain = cortex_m_exec_command_handlers,
2340 COMMAND_REGISTRATION_DONE
2343 struct target_type cortexm_target = {
2344 .name = "cortex_m",
2345 .deprecated_name = "cortex_m3",
2347 .poll = cortex_m_poll,
2348 .arch_state = armv7m_arch_state,
2350 .target_request_data = cortex_m_target_request_data,
2352 .halt = cortex_m_halt,
2353 .resume = cortex_m_resume,
2354 .step = cortex_m_step,
2356 .assert_reset = cortex_m_assert_reset,
2357 .deassert_reset = cortex_m_deassert_reset,
2358 .soft_reset_halt = cortex_m_soft_reset_halt,
2360 .get_gdb_reg_list = armv7m_get_gdb_reg_list,
2362 .read_memory = cortex_m_read_memory,
2363 .write_memory = cortex_m_write_memory,
2364 .checksum_memory = armv7m_checksum_memory,
2365 .blank_check_memory = armv7m_blank_check_memory,
2367 .run_algorithm = armv7m_run_algorithm,
2368 .start_algorithm = armv7m_start_algorithm,
2369 .wait_algorithm = armv7m_wait_algorithm,
2371 .add_breakpoint = cortex_m_add_breakpoint,
2372 .remove_breakpoint = cortex_m_remove_breakpoint,
2373 .add_watchpoint = cortex_m_add_watchpoint,
2374 .remove_watchpoint = cortex_m_remove_watchpoint,
2376 .commands = cortex_m_command_handlers,
2377 .target_create = cortex_m_target_create,
2378 .init_target = cortex_m_init_target,
2379 .examine = cortex_m_examine,
2380 .deinit_target = cortex_m_deinit_target,