flash/stm32*: Remove the halted check in protect_check
[openocd.git] / src / flash / nor / stm32lx.c
blobec696d2b376a1314be506dc64fc5a66612412c27
1 /***************************************************************************
2 * Copyright (C) 2005 by Dominic Rath *
3 * Dominic.Rath@gmx.de *
4 * *
5 * Copyright (C) 2008 by Spencer Oliver *
6 * spen@spen-soft.co.uk *
7 * *
8 * Copyright (C) 2011 by Clement Burin des Roziers *
9 * clement.burin-des-roziers@hikob.com *
10 * *
11 * This program is free software; you can redistribute it and/or modify *
12 * it under the terms of the GNU General Public License as published by *
13 * the Free Software Foundation; either version 2 of the License, or *
14 * (at your option) any later version. *
15 * *
16 * This program is distributed in the hope that it will be useful, *
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
19 * GNU General Public License for more details. *
20 * *
21 * You should have received a copy of the GNU General Public License *
22 * along with this program; if not, write to the *
23 * Free Software Foundation, Inc., *
24 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. *
25 ***************************************************************************/
27 #ifdef HAVE_CONFIG_H
28 #include "config.h"
29 #endif
31 #include "imp.h"
32 #include <helper/binarybuffer.h>
33 #include <target/algorithm.h>
34 #include <target/armv7m.h>
35 #include <target/cortex_m.h>
37 /* stm32lx flash register locations */
39 #define FLASH_BASE 0x40023C00
40 #define FLASH_ACR 0x40023C00
41 #define FLASH_PECR 0x40023C04
42 #define FLASH_PDKEYR 0x40023C08
43 #define FLASH_PEKEYR 0x40023C0C
44 #define FLASH_PRGKEYR 0x40023C10
45 #define FLASH_OPTKEYR 0x40023C14
46 #define FLASH_SR 0x40023C18
47 #define FLASH_OBR 0x40023C1C
48 #define FLASH_WRPR 0x40023C20
50 /* FLASH_ACR bites */
51 #define FLASH_ACR__LATENCY (1<<0)
52 #define FLASH_ACR__PRFTEN (1<<1)
53 #define FLASH_ACR__ACC64 (1<<2)
54 #define FLASH_ACR__SLEEP_PD (1<<3)
55 #define FLASH_ACR__RUN_PD (1<<4)
57 /* FLASH_PECR bits */
58 #define FLASH_PECR__PELOCK (1<<0)
59 #define FLASH_PECR__PRGLOCK (1<<1)
60 #define FLASH_PECR__OPTLOCK (1<<2)
61 #define FLASH_PECR__PROG (1<<3)
62 #define FLASH_PECR__DATA (1<<4)
63 #define FLASH_PECR__FTDW (1<<8)
64 #define FLASH_PECR__ERASE (1<<9)
65 #define FLASH_PECR__FPRG (1<<10)
66 #define FLASH_PECR__EOPIE (1<<16)
67 #define FLASH_PECR__ERRIE (1<<17)
68 #define FLASH_PECR__OBL_LAUNCH (1<<18)
70 /* FLASH_SR bits */
71 #define FLASH_SR__BSY (1<<0)
72 #define FLASH_SR__EOP (1<<1)
73 #define FLASH_SR__ENDHV (1<<2)
74 #define FLASH_SR__READY (1<<3)
75 #define FLASH_SR__WRPERR (1<<8)
76 #define FLASH_SR__PGAERR (1<<9)
77 #define FLASH_SR__SIZERR (1<<10)
78 #define FLASH_SR__OPTVERR (1<<11)
80 /* Unlock keys */
81 #define PEKEY1 0x89ABCDEF
82 #define PEKEY2 0x02030405
83 #define PRGKEY1 0x8C9DAEBF
84 #define PRGKEY2 0x13141516
85 #define OPTKEY1 0xFBEAD9C8
86 #define OPTKEY2 0x24252627
88 /* other registers */
89 #define DBGMCU_IDCODE 0xE0042000
90 #define F_SIZE 0x1FF8004C
92 /* Constants */
93 #define FLASH_PAGE_SIZE 256
94 #define FLASH_SECTOR_SIZE 4096
95 #define FLASH_PAGES_PER_SECTOR 16
96 #define FLASH_BANK0_ADDRESS 0x08000000
98 /* stm32lx option byte register location */
99 #define OB_RDP 0x1FF80000
100 #define OB_USER 0x1FF80004
101 #define OB_WRP0_1 0x1FF80008
102 #define OB_WRP2_3 0x1FF8000C
104 /* OB_RDP values */
105 #define OB_RDP__LEVEL0 0xFF5500AA
106 #define OB_RDP__LEVEL1 0xFFFF0000
108 /* stm32lx RCC register locations */
109 #define RCC_CR 0x40023800
110 #define RCC_ICSCR 0x40023804
111 #define RCC_CFGR 0x40023808
113 /* RCC_ICSCR bits */
114 #define RCC_ICSCR__MSIRANGE_MASK (7<<13)
116 static int stm32lx_unlock_program_memory(struct flash_bank *bank);
117 static int stm32lx_lock_program_memory(struct flash_bank *bank);
118 static int stm32lx_enable_write_half_page(struct flash_bank *bank);
119 static int stm32lx_erase_sector(struct flash_bank *bank, int sector);
120 static int stm32lx_wait_until_bsy_clear(struct flash_bank *bank);
122 struct stm32lx_flash_bank {
123 int probed;
124 bool has_dual_banks;
125 uint32_t user_bank_size;
128 /* flash bank stm32lx <base> <size> 0 0 <target#>
130 FLASH_BANK_COMMAND_HANDLER(stm32lx_flash_bank_command)
132 struct stm32lx_flash_bank *stm32lx_info;
133 if (CMD_ARGC < 6)
134 return ERROR_COMMAND_SYNTAX_ERROR;
136 /* Create the bank structure */
137 stm32lx_info = malloc(sizeof(struct stm32lx_flash_bank));
139 /* Check allocation */
140 if (stm32lx_info == NULL) {
141 LOG_ERROR("failed to allocate bank structure");
142 return ERROR_FAIL;
145 bank->driver_priv = stm32lx_info;
147 stm32lx_info->probed = 0;
148 stm32lx_info->has_dual_banks = false;
149 stm32lx_info->user_bank_size = bank->size;
151 return ERROR_OK;
154 static int stm32lx_protect_check(struct flash_bank *bank)
156 int retval;
157 struct target *target = bank->target;
159 uint32_t wrpr;
162 * Read the WRPR word, and check each bit (corresponding to each
163 * flash sector
165 retval = target_read_u32(target, FLASH_WRPR, &wrpr);
166 if (retval != ERROR_OK)
167 return retval;
169 for (int i = 0; i < 32; i++) {
170 if (wrpr & (1 << i))
171 bank->sectors[i].is_protected = 1;
172 else
173 bank->sectors[i].is_protected = 0;
175 return ERROR_OK;
178 static int stm32lx_erase(struct flash_bank *bank, int first, int last)
180 int retval;
183 * It could be possible to do a mass erase if all sectors must be
184 * erased, but it is not implemented yet.
187 if (bank->target->state != TARGET_HALTED) {
188 LOG_ERROR("Target not halted");
189 return ERROR_TARGET_NOT_HALTED;
193 * Loop over the selected sectors and erase them
195 for (int i = first; i <= last; i++) {
196 retval = stm32lx_erase_sector(bank, i);
197 if (retval != ERROR_OK)
198 return retval;
199 bank->sectors[i].is_erased = 1;
201 return ERROR_OK;
204 static int stm32lx_protect(struct flash_bank *bank, int set, int first,
205 int last)
207 LOG_WARNING("protection of the STM32L flash is not implemented");
208 return ERROR_OK;
211 static int stm32lx_write_half_pages(struct flash_bank *bank, uint8_t *buffer,
212 uint32_t offset, uint32_t count)
214 struct target *target = bank->target;
215 uint32_t buffer_size = 16384;
216 struct working_area *write_algorithm;
217 struct working_area *source;
218 uint32_t address = bank->base + offset;
220 struct reg_param reg_params[3];
221 struct armv7m_algorithm armv7m_info;
223 int retval = ERROR_OK;
225 /* see contib/loaders/flash/stm32lx.S for src */
227 static const uint8_t stm32lx_flash_write_code[] = {
228 /* write_word: */
229 0x00, 0x23, /* movs r3, #0 */
230 0x04, 0xe0, /* b test_done */
232 /* write_word: */
233 0x51, 0xf8, 0x04, 0xcb, /* ldr ip, [r1], #4 */
234 0x40, 0xf8, 0x04, 0xcb, /* str ip, [r0], #4 */
235 0x01, 0x33, /* adds r3, #1 */
237 /* test_done: */
238 0x93, 0x42, /* cmp r3, r2 */
239 0xf8, 0xd3, /* bcc write_word */
240 0x00, 0xbe, /* bkpt 0 */
243 /* Check if there is an even number of half pages (128bytes) */
244 if (count % 128) {
245 LOG_ERROR("there should be an even number "
246 "of half pages = 128 bytes (count = %" PRIi32 " bytes)", count);
247 return ERROR_FAIL;
250 /* flash write code */
251 if (target_alloc_working_area(target, sizeof(stm32lx_flash_write_code),
252 &write_algorithm) != ERROR_OK) {
253 LOG_DEBUG("no working area for block memory writes");
254 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
257 /* Write the flashing code */
258 retval = target_write_buffer(target,
259 write_algorithm->address,
260 sizeof(stm32lx_flash_write_code),
261 (uint8_t *)stm32lx_flash_write_code);
262 if (retval != ERROR_OK) {
263 target_free_working_area(target, write_algorithm);
264 return retval;
267 /* Allocate half pages memory */
268 while (target_alloc_working_area_try(target, buffer_size, &source) != ERROR_OK) {
269 if (buffer_size > 1024)
270 buffer_size -= 1024;
271 else
272 buffer_size /= 2;
274 if (buffer_size <= 256) {
275 /* we already allocated the writing code, but failed to get a
276 * buffer, free the algorithm */
277 target_free_working_area(target, write_algorithm);
279 LOG_WARNING("no large enough working area available, can't do block memory writes");
280 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
284 armv7m_info.common_magic = ARMV7M_COMMON_MAGIC;
285 armv7m_info.core_mode = ARM_MODE_THREAD;
286 init_reg_param(&reg_params[0], "r0", 32, PARAM_OUT);
287 init_reg_param(&reg_params[1], "r1", 32, PARAM_OUT);
288 init_reg_param(&reg_params[2], "r2", 32, PARAM_OUT);
290 /* Enable half-page write */
291 retval = stm32lx_enable_write_half_page(bank);
292 if (retval != ERROR_OK) {
293 target_free_working_area(target, source);
294 target_free_working_area(target, write_algorithm);
296 destroy_reg_param(&reg_params[0]);
297 destroy_reg_param(&reg_params[1]);
298 destroy_reg_param(&reg_params[2]);
299 return retval;
302 struct armv7m_common *armv7m = target_to_armv7m(target);
303 if (armv7m == NULL) {
305 /* something is very wrong if armv7m is NULL */
306 LOG_ERROR("unable to get armv7m target");
307 return retval;
310 /* save any DEMCR flags and configure target to catch any Hard Faults */
311 uint32_t demcr_save = armv7m->demcr;
312 armv7m->demcr = VC_HARDERR;
314 /* Loop while there are bytes to write */
315 while (count > 0) {
316 uint32_t this_count;
317 this_count = (count > buffer_size) ? buffer_size : count;
319 /* Write the next half pages */
320 retval = target_write_buffer(target, source->address, this_count, buffer);
321 if (retval != ERROR_OK)
322 break;
324 /* 4: Store useful information in the registers */
325 /* the destination address of the copy (R0) */
326 buf_set_u32(reg_params[0].value, 0, 32, address);
327 /* The source address of the copy (R1) */
328 buf_set_u32(reg_params[1].value, 0, 32, source->address);
329 /* The length of the copy (R2) */
330 buf_set_u32(reg_params[2].value, 0, 32, this_count / 4);
332 /* 5: Execute the bunch of code */
333 retval = target_run_algorithm(target, 0, NULL, sizeof(reg_params)
334 / sizeof(*reg_params), reg_params,
335 write_algorithm->address, 0, 10000, &armv7m_info);
336 if (retval != ERROR_OK)
337 break;
339 /* check for Hard Fault */
340 if (armv7m->exception_number == 3)
341 break;
343 /* 6: Wait while busy */
344 retval = stm32lx_wait_until_bsy_clear(bank);
345 if (retval != ERROR_OK)
346 break;
348 buffer += this_count;
349 address += this_count;
350 count -= this_count;
353 /* restore previous flags */
354 armv7m->demcr = demcr_save;
356 if (armv7m->exception_number == 3) {
358 /* the stm32l15x devices seem to have an issue when blank.
359 * if a ram loader is executed on a blank device it will
360 * Hard Fault, this issue does not happen for a already programmed device.
361 * A related issue is described in the stm32l151xx errata (Doc ID 17721 Rev 6 - 2.1.3).
362 * The workaround of handling the Hard Fault exception does work, but makes the
363 * loader more complicated, as a compromise we manually write the pages, programming time
364 * is reduced by 50% using this slower method.
367 LOG_WARNING("couldn't use loader, falling back to page memory writes");
369 while (count > 0) {
370 uint32_t this_count;
371 this_count = (count > 128) ? 128 : count;
373 /* Write the next half pages */
374 retval = target_write_buffer(target, address, this_count, buffer);
375 if (retval != ERROR_OK)
376 break;
378 /* Wait while busy */
379 retval = stm32lx_wait_until_bsy_clear(bank);
380 if (retval != ERROR_OK)
381 break;
383 buffer += this_count;
384 address += this_count;
385 count -= this_count;
389 if (retval == ERROR_OK)
390 retval = stm32lx_lock_program_memory(bank);
392 target_free_working_area(target, source);
393 target_free_working_area(target, write_algorithm);
395 destroy_reg_param(&reg_params[0]);
396 destroy_reg_param(&reg_params[1]);
397 destroy_reg_param(&reg_params[2]);
399 return retval;
402 static int stm32lx_write(struct flash_bank *bank, uint8_t *buffer,
403 uint32_t offset, uint32_t count)
405 struct target *target = bank->target;
407 uint32_t halfpages_number;
408 uint32_t bytes_remaining = 0;
409 uint32_t address = bank->base + offset;
410 uint32_t bytes_written = 0;
411 int retval, retval2;
413 if (bank->target->state != TARGET_HALTED) {
414 LOG_ERROR("Target not halted");
415 return ERROR_TARGET_NOT_HALTED;
418 if (offset & 0x3) {
419 LOG_ERROR("offset 0x%" PRIx32 " breaks required 4-byte alignment", offset);
420 return ERROR_FLASH_DST_BREAKS_ALIGNMENT;
423 retval = stm32lx_unlock_program_memory(bank);
424 if (retval != ERROR_OK)
425 return retval;
427 /* first we need to write any unaligned head bytes upto
428 * the next 128 byte page */
430 if (offset % 128)
431 bytes_remaining = MIN(count, 128 - (offset % 128));
433 while (bytes_remaining > 0) {
434 uint8_t value[4] = {0xff, 0xff, 0xff, 0xff};
436 /* copy remaining bytes into the write buffer */
437 uint32_t bytes_to_write = MIN(4, bytes_remaining);
438 memcpy(value, buffer + bytes_written, bytes_to_write);
440 retval = target_write_buffer(target, address, 4, value);
441 if (retval != ERROR_OK)
442 goto reset_pg_and_lock;
444 bytes_written += bytes_to_write;
445 bytes_remaining -= bytes_to_write;
446 address += 4;
448 retval = stm32lx_wait_until_bsy_clear(bank);
449 if (retval != ERROR_OK)
450 goto reset_pg_and_lock;
453 offset += bytes_written;
454 count -= bytes_written;
456 /* this should always pass this check here */
457 assert((offset % 128) == 0);
459 /* calculate half pages */
460 halfpages_number = count / 128;
462 if (halfpages_number) {
463 retval = stm32lx_write_half_pages(bank, buffer + bytes_written, offset, 128 * halfpages_number);
464 if (retval == ERROR_TARGET_RESOURCE_NOT_AVAILABLE) {
465 /* attempt slow memory writes */
466 LOG_WARNING("couldn't use block writes, falling back to single memory accesses");
467 halfpages_number = 0;
468 } else {
469 if (retval != ERROR_OK)
470 return ERROR_FAIL;
474 /* write any remaining bytes */
475 uint32_t page_bytes_written = 128 * halfpages_number;
476 bytes_written += page_bytes_written;
477 address += page_bytes_written;
478 bytes_remaining = count - page_bytes_written;
480 retval = stm32lx_unlock_program_memory(bank);
481 if (retval != ERROR_OK)
482 return retval;
484 while (bytes_remaining > 0) {
485 uint8_t value[4] = {0xff, 0xff, 0xff, 0xff};
487 /* copy remaining bytes into the write buffer */
488 uint32_t bytes_to_write = MIN(4, bytes_remaining);
489 memcpy(value, buffer + bytes_written, bytes_to_write);
491 retval = target_write_buffer(target, address, 4, value);
492 if (retval != ERROR_OK)
493 goto reset_pg_and_lock;
495 bytes_written += bytes_to_write;
496 bytes_remaining -= bytes_to_write;
497 address += 4;
499 retval = stm32lx_wait_until_bsy_clear(bank);
500 if (retval != ERROR_OK)
501 goto reset_pg_and_lock;
504 reset_pg_and_lock:
505 retval2 = stm32lx_lock_program_memory(bank);
506 if (retval == ERROR_OK)
507 retval = retval2;
509 return retval;
512 static int stm32lx_probe(struct flash_bank *bank)
514 struct target *target = bank->target;
515 struct stm32lx_flash_bank *stm32lx_info = bank->driver_priv;
516 int i;
517 uint16_t flash_size_in_kb;
518 uint16_t max_flash_size_in_kb;
519 uint32_t device_id;
520 uint32_t base_address = FLASH_BANK0_ADDRESS;
521 uint32_t second_bank_base;
522 uint32_t first_bank_size_in_kb;
524 stm32lx_info->probed = 0;
526 /* read stm32 device id register */
527 int retval = target_read_u32(target, DBGMCU_IDCODE, &device_id);
528 if (retval != ERROR_OK)
529 return retval;
531 LOG_DEBUG("device id = 0x%08" PRIx32 "", device_id);
533 /* set max flash size depending on family */
534 switch (device_id & 0xfff) {
535 case 0x416:
536 max_flash_size_in_kb = 128;
537 break;
538 case 0x427:
539 /* single bank, high density */
540 max_flash_size_in_kb = 256;
541 break;
542 case 0x436:
543 /* According to ST, the devices with id 0x436 have dual bank flash and comes with
544 * a total flash size of 384k or 256kb. However, the first bank is always 192kb,
545 * and second one holds the rest. The reason is that the 256kb version is actually
546 * the same physical flash but only the first 256kb are verified.
548 max_flash_size_in_kb = 384;
549 first_bank_size_in_kb = 192;
550 stm32lx_info->has_dual_banks = true;
551 break;
552 default:
553 LOG_WARNING("Cannot identify target as a STM32L family.");
554 return ERROR_FAIL;
557 /* Get the flash size from target. */
558 retval = target_read_u16(target, F_SIZE, &flash_size_in_kb);
560 /* Failed reading flash size or flash size invalid (early silicon),
561 * default to max target family */
562 if (retval != ERROR_OK || flash_size_in_kb == 0xffff || flash_size_in_kb == 0) {
563 LOG_WARNING("STM32L flash size failed, probe inaccurate - assuming %dk flash",
564 max_flash_size_in_kb);
565 flash_size_in_kb = max_flash_size_in_kb;
566 } else if (flash_size_in_kb > max_flash_size_in_kb) {
567 LOG_WARNING("STM32L probed flash size assumed incorrect since FLASH_SIZE=%dk > %dk, - assuming %dk flash",
568 flash_size_in_kb, max_flash_size_in_kb, max_flash_size_in_kb);
569 flash_size_in_kb = max_flash_size_in_kb;
572 if (stm32lx_info->has_dual_banks) {
573 /* Use the configured base address to determine if this is the first or second flash bank.
574 * Verify that the base address is reasonably correct and determine the flash bank size
576 second_bank_base = base_address + first_bank_size_in_kb * 1024;
577 if (bank->base == second_bank_base) {
578 /* This is the second bank */
579 base_address = second_bank_base;
580 flash_size_in_kb = flash_size_in_kb - first_bank_size_in_kb;
581 } else if (bank->base == 0 || bank->base == base_address) {
582 /* This is the first bank */
583 flash_size_in_kb = first_bank_size_in_kb;
584 } else {
585 LOG_WARNING("STM32L flash bank base address config is incorrect. 0x%x but should rather be 0x%x or 0x%x",
586 bank->base, base_address, second_bank_base);
587 return ERROR_FAIL;
589 LOG_INFO("STM32L flash has dual banks. Bank (%d) size is %dkb, base address is 0x%x",
590 bank->bank_number, flash_size_in_kb, base_address);
591 } else {
592 LOG_INFO("STM32L flash size is %dkb, base address is 0x%x", flash_size_in_kb, base_address);
595 /* if the user sets the size manually then ignore the probed value
596 * this allows us to work around devices that have a invalid flash size register value */
597 if (stm32lx_info->user_bank_size) {
598 flash_size_in_kb = stm32lx_info->user_bank_size / 1024;
599 LOG_INFO("ignoring flash probed value, using configured bank size: %dkbytes", flash_size_in_kb);
602 /* STM32L - we have 32 sectors, 16 pages per sector -> 512 pages
603 * 16 pages for a protection area */
605 /* calculate numbers of sectors (4kB per sector) */
606 int num_sectors = (flash_size_in_kb * 1024) / FLASH_SECTOR_SIZE;
608 if (bank->sectors) {
609 free(bank->sectors);
610 bank->sectors = NULL;
613 bank->size = flash_size_in_kb * 1024;
614 bank->base = base_address;
615 bank->num_sectors = num_sectors;
616 bank->sectors = malloc(sizeof(struct flash_sector) * num_sectors);
617 if (bank->sectors == NULL) {
618 LOG_ERROR("failed to allocate bank sectors");
619 return ERROR_FAIL;
622 for (i = 0; i < num_sectors; i++) {
623 bank->sectors[i].offset = i * FLASH_SECTOR_SIZE;
624 bank->sectors[i].size = FLASH_SECTOR_SIZE;
625 bank->sectors[i].is_erased = -1;
626 bank->sectors[i].is_protected = 1;
629 stm32lx_info->probed = 1;
631 return ERROR_OK;
634 static int stm32lx_auto_probe(struct flash_bank *bank)
636 struct stm32lx_flash_bank *stm32lx_info = bank->driver_priv;
638 if (stm32lx_info->probed)
639 return ERROR_OK;
641 return stm32lx_probe(bank);
644 static int stm32lx_erase_check(struct flash_bank *bank)
646 struct target *target = bank->target;
647 const int buffer_size = 4096;
648 int i;
649 uint32_t nBytes;
650 int retval = ERROR_OK;
652 if (bank->target->state != TARGET_HALTED) {
653 LOG_ERROR("Target not halted");
654 return ERROR_TARGET_NOT_HALTED;
657 uint8_t *buffer = malloc(buffer_size);
658 if (buffer == NULL) {
659 LOG_ERROR("failed to allocate read buffer");
660 return ERROR_FAIL;
663 for (i = 0; i < bank->num_sectors; i++) {
664 uint32_t j;
665 bank->sectors[i].is_erased = 1;
667 /* Loop chunk by chunk over the sector */
668 for (j = 0; j < bank->sectors[i].size; j += buffer_size) {
669 uint32_t chunk;
670 chunk = buffer_size;
671 if (chunk > (j - bank->sectors[i].size))
672 chunk = (j - bank->sectors[i].size);
674 retval = target_read_memory(target, bank->base
675 + bank->sectors[i].offset + j, 4, chunk / 4, buffer);
676 if (retval != ERROR_OK)
677 break;
679 for (nBytes = 0; nBytes < chunk; nBytes++) {
680 if (buffer[nBytes] != 0x00) {
681 bank->sectors[i].is_erased = 0;
682 break;
686 if (retval != ERROR_OK)
687 break;
689 free(buffer);
691 return retval;
694 static int stm32lx_get_info(struct flash_bank *bank, char *buf, int buf_size)
696 /* This method must return a string displaying information about the bank */
698 struct target *target = bank->target;
699 uint32_t device_id;
700 int printed;
702 /* read stm32 device id register */
703 int retval = target_read_u32(target, DBGMCU_IDCODE, &device_id);
704 if (retval != ERROR_OK)
705 return retval;
707 if ((device_id & 0xfff) == 0x416) {
708 printed = snprintf(buf, buf_size, "stm32lx - Rev: ");
709 buf += printed;
710 buf_size -= printed;
712 switch (device_id >> 16) {
713 case 0x1000:
714 snprintf(buf, buf_size, "A");
715 break;
717 case 0x1008:
718 snprintf(buf, buf_size, "Y");
719 break;
721 case 0x1018:
722 snprintf(buf, buf_size, "X");
723 break;
725 case 0x1038:
726 snprintf(buf, buf_size, "W");
727 break;
729 case 0x1078:
730 snprintf(buf, buf_size, "V");
731 break;
733 default:
734 snprintf(buf, buf_size, "unknown");
735 break;
737 } else if (((device_id & 0xfff) == 0x436) ||
738 ((device_id & 0xfff) == 0x427)) {
739 printed = snprintf(buf, buf_size, "stm32lx (HD) - Rev: ");
740 buf += printed;
741 buf_size -= printed;
743 switch (device_id >> 16) {
744 case 0x1000:
745 snprintf(buf, buf_size, "A");
746 break;
748 case 0x1008:
749 snprintf(buf, buf_size, "Z");
750 break;
752 case 0x1018:
753 snprintf(buf, buf_size, "Y");
754 break;
756 default:
757 snprintf(buf, buf_size, "unknown");
758 break;
760 } else {
761 snprintf(buf, buf_size, "Cannot identify target as a stm32lx");
762 return ERROR_FAIL;
765 return ERROR_OK;
768 static const struct command_registration stm32lx_exec_command_handlers[] = {
769 COMMAND_REGISTRATION_DONE
772 static const struct command_registration stm32lx_command_handlers[] = {
774 .name = "stm32lx",
775 .mode = COMMAND_ANY,
776 .help = "stm32lx flash command group",
777 .usage = "",
778 .chain = stm32lx_exec_command_handlers,
780 COMMAND_REGISTRATION_DONE
783 struct flash_driver stm32lx_flash = {
784 .name = "stm32lx",
785 .commands = stm32lx_command_handlers,
786 .flash_bank_command = stm32lx_flash_bank_command,
787 .erase = stm32lx_erase,
788 .protect = stm32lx_protect,
789 .write = stm32lx_write,
790 .read = default_flash_read,
791 .probe = stm32lx_probe,
792 .auto_probe = stm32lx_auto_probe,
793 .erase_check = stm32lx_erase_check,
794 .protect_check = stm32lx_protect_check,
795 .info = stm32lx_get_info,
798 /* Static methods implementation */
799 static int stm32lx_unlock_program_memory(struct flash_bank *bank)
801 struct target *target = bank->target;
802 int retval;
803 uint32_t reg32;
806 * Unlocking the program memory is done by unlocking the PECR,
807 * then by writing the 2 PRGKEY to the PRGKEYR register
810 /* check flash is not already unlocked */
811 retval = target_read_u32(target, FLASH_PECR, &reg32);
812 if (retval != ERROR_OK)
813 return retval;
815 if ((reg32 & FLASH_PECR__PRGLOCK) == 0)
816 return ERROR_OK;
818 /* To unlock the PECR write the 2 PEKEY to the PEKEYR register */
819 retval = target_write_u32(target, FLASH_PEKEYR, PEKEY1);
820 if (retval != ERROR_OK)
821 return retval;
823 retval = target_write_u32(target, FLASH_PEKEYR, PEKEY2);
824 if (retval != ERROR_OK)
825 return retval;
827 /* Make sure it worked */
828 retval = target_read_u32(target, FLASH_PECR, &reg32);
829 if (retval != ERROR_OK)
830 return retval;
832 if (reg32 & FLASH_PECR__PELOCK) {
833 LOG_ERROR("PELOCK is not cleared :(");
834 return ERROR_FLASH_OPERATION_FAILED;
837 retval = target_write_u32(target, FLASH_PRGKEYR, PRGKEY1);
838 if (retval != ERROR_OK)
839 return retval;
840 retval = target_write_u32(target, FLASH_PRGKEYR, PRGKEY2);
841 if (retval != ERROR_OK)
842 return retval;
844 /* Make sure it worked */
845 retval = target_read_u32(target, FLASH_PECR, &reg32);
846 if (retval != ERROR_OK)
847 return retval;
849 if (reg32 & FLASH_PECR__PRGLOCK) {
850 LOG_ERROR("PRGLOCK is not cleared :(");
851 return ERROR_FLASH_OPERATION_FAILED;
854 return ERROR_OK;
857 static int stm32lx_enable_write_half_page(struct flash_bank *bank)
859 struct target *target = bank->target;
860 int retval;
861 uint32_t reg32;
864 * Unlock the program memory, then set the FPRG bit in the PECR register.
866 retval = stm32lx_unlock_program_memory(bank);
867 if (retval != ERROR_OK)
868 return retval;
870 retval = target_read_u32(target, FLASH_PECR, &reg32);
871 if (retval != ERROR_OK)
872 return retval;
874 reg32 |= FLASH_PECR__FPRG;
875 retval = target_write_u32(target, FLASH_PECR, reg32);
876 if (retval != ERROR_OK)
877 return retval;
879 retval = target_read_u32(target, FLASH_PECR, &reg32);
880 if (retval != ERROR_OK)
881 return retval;
883 reg32 |= FLASH_PECR__PROG;
884 retval = target_write_u32(target, FLASH_PECR, reg32);
886 return retval;
889 static int stm32lx_lock_program_memory(struct flash_bank *bank)
891 struct target *target = bank->target;
892 int retval;
893 uint32_t reg32;
895 /* To lock the program memory, simply set the lock bit and lock PECR */
897 retval = target_read_u32(target, FLASH_PECR, &reg32);
898 if (retval != ERROR_OK)
899 return retval;
901 reg32 |= FLASH_PECR__PRGLOCK;
902 retval = target_write_u32(target, FLASH_PECR, reg32);
903 if (retval != ERROR_OK)
904 return retval;
906 retval = target_read_u32(target, FLASH_PECR, &reg32);
907 if (retval != ERROR_OK)
908 return retval;
910 reg32 |= FLASH_PECR__PELOCK;
911 retval = target_write_u32(target, FLASH_PECR, reg32);
912 if (retval != ERROR_OK)
913 return retval;
915 return ERROR_OK;
918 static int stm32lx_erase_sector(struct flash_bank *bank, int sector)
920 struct target *target = bank->target;
921 int retval;
922 uint32_t reg32;
925 * To erase a sector (i.e. FLASH_PAGES_PER_SECTOR pages),
926 * first unlock the memory, loop over the pages of this sector
927 * and write 0x0 to its first word.
930 retval = stm32lx_unlock_program_memory(bank);
931 if (retval != ERROR_OK)
932 return retval;
934 for (int page = 0; page < FLASH_PAGES_PER_SECTOR; page++) {
935 reg32 = FLASH_PECR__PROG | FLASH_PECR__ERASE;
936 retval = target_write_u32(target, FLASH_PECR, reg32);
937 if (retval != ERROR_OK)
938 return retval;
940 retval = stm32lx_wait_until_bsy_clear(bank);
941 if (retval != ERROR_OK)
942 return retval;
944 uint32_t addr = bank->base + bank->sectors[sector].offset + (page
945 * FLASH_PAGE_SIZE);
946 retval = target_write_u32(target, addr, 0x0);
947 if (retval != ERROR_OK)
948 return retval;
950 retval = stm32lx_wait_until_bsy_clear(bank);
951 if (retval != ERROR_OK)
952 return retval;
955 retval = stm32lx_lock_program_memory(bank);
956 if (retval != ERROR_OK)
957 return retval;
959 return ERROR_OK;
962 static int stm32lx_wait_until_bsy_clear(struct flash_bank *bank)
964 struct target *target = bank->target;
965 uint32_t status;
966 int retval = ERROR_OK;
967 int timeout = 100;
969 /* wait for busy to clear */
970 for (;;) {
971 retval = target_read_u32(target, FLASH_SR, &status);
972 if (retval != ERROR_OK)
973 return retval;
975 if ((status & FLASH_SR__BSY) == 0)
976 break;
977 if (timeout-- <= 0) {
978 LOG_ERROR("timed out waiting for flash");
979 return ERROR_FAIL;
981 alive_sleep(1);
984 if (status & FLASH_SR__WRPERR) {
985 LOG_ERROR("access denied / write protected");
986 retval = ERROR_FAIL;
989 if (status & FLASH_SR__PGAERR) {
990 LOG_ERROR("invalid program address");
991 retval = ERROR_FAIL;
994 return retval;