mips32, add support for micromips in debug mode
[openocd.git] / src / target / mips32.c
blob5c85fea8bdc893fd554af690dac85baaa60194a8
1 /***************************************************************************
2 * Copyright (C) 2008 by Spencer Oliver *
3 * spen@spen-soft.co.uk *
4 * *
5 * Copyright (C) 2008 by David T.L. Wong *
6 * *
7 * Copyright (C) 2007,2008 Øyvind Harboe *
8 * oyvind.harboe@zylin.com *
9 * *
10 * Copyright (C) 2011 by Drasko DRASKOVIC *
11 * drasko.draskovic@gmail.com *
12 * *
13 * This program is free software; you can redistribute it and/or modify *
14 * it under the terms of the GNU General Public License as published by *
15 * the Free Software Foundation; either version 2 of the License, or *
16 * (at your option) any later version. *
17 * *
18 * This program is distributed in the hope that it will be useful, *
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
21 * GNU General Public License for more details. *
22 * *
23 * You should have received a copy of the GNU General Public License *
24 * along with this program. If not, see <http://www.gnu.org/licenses/>. *
25 ***************************************************************************/
27 #ifdef HAVE_CONFIG_H
28 #include "config.h"
29 #endif
31 #include "mips32.h"
32 #include "breakpoints.h"
33 #include "algorithm.h"
34 #include "register.h"
36 static const char *mips_isa_strings[] = {
37 "MIPS32", "MIPS16"
40 #define MIPS32_GDB_DUMMY_FP_REG 1
43 * GDB registers
44 * based on gdb-7.6.2/gdb/features/mips-{fpu,cp0,cpu}.xml
46 static const struct {
47 unsigned id;
48 const char *name;
49 enum reg_type type;
50 const char *group;
51 const char *feature;
52 int flag;
53 } mips32_regs[] = {
54 { 0, "r0", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
55 { 1, "r1", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
56 { 2, "r2", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
57 { 3, "r3", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
58 { 4, "r4", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
59 { 5, "r5", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
60 { 6, "r6", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
61 { 7, "r7", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
62 { 8, "r8", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
63 { 9, "r9", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
64 { 10, "r10", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
65 { 11, "r11", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
66 { 12, "r12", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
67 { 13, "r13", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
68 { 14, "r14", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
69 { 15, "r15", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
70 { 16, "r16", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
71 { 17, "r17", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
72 { 18, "r18", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
73 { 19, "r19", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
74 { 20, "r20", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
75 { 21, "r21", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
76 { 22, "r22", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
77 { 23, "r23", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
78 { 24, "r24", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
79 { 25, "r25", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
80 { 26, "r26", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
81 { 27, "r27", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
82 { 28, "r28", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
83 { 29, "r29", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
84 { 30, "r30", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
85 { 31, "r31", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
86 { 32, "status", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cp0", 0 },
87 { 33, "lo", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
88 { 34, "hi", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
89 { 35, "badvaddr", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cp0", 0 },
90 { 36, "cause", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cp0", 0 },
91 { 37, "pc", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
93 { 38, "f0", REG_TYPE_IEEE_SINGLE, NULL,
94 "org.gnu.gdb.mips.fpu", MIPS32_GDB_DUMMY_FP_REG },
95 { 39, "f1", REG_TYPE_IEEE_SINGLE, NULL,
96 "org.gnu.gdb.mips.fpu", MIPS32_GDB_DUMMY_FP_REG },
97 { 40, "f2", REG_TYPE_IEEE_SINGLE, NULL,
98 "org.gnu.gdb.mips.fpu", MIPS32_GDB_DUMMY_FP_REG },
99 { 41, "f3", REG_TYPE_IEEE_SINGLE, NULL,
100 "org.gnu.gdb.mips.fpu", MIPS32_GDB_DUMMY_FP_REG },
101 { 42, "f4", REG_TYPE_IEEE_SINGLE, NULL,
102 "org.gnu.gdb.mips.fpu", MIPS32_GDB_DUMMY_FP_REG },
103 { 43, "f5", REG_TYPE_IEEE_SINGLE, NULL,
104 "org.gnu.gdb.mips.fpu", MIPS32_GDB_DUMMY_FP_REG },
105 { 44, "f6", REG_TYPE_IEEE_SINGLE, NULL,
106 "org.gnu.gdb.mips.fpu", MIPS32_GDB_DUMMY_FP_REG },
107 { 45, "f7", REG_TYPE_IEEE_SINGLE, NULL,
108 "org.gnu.gdb.mips.fpu", MIPS32_GDB_DUMMY_FP_REG },
109 { 46, "f8", REG_TYPE_IEEE_SINGLE, NULL,
110 "org.gnu.gdb.mips.fpu", MIPS32_GDB_DUMMY_FP_REG },
111 { 47, "f9", REG_TYPE_IEEE_SINGLE, NULL,
112 "org.gnu.gdb.mips.fpu", MIPS32_GDB_DUMMY_FP_REG },
113 { 48, "f10", REG_TYPE_IEEE_SINGLE, NULL,
114 "org.gnu.gdb.mips.fpu", MIPS32_GDB_DUMMY_FP_REG },
115 { 49, "f11", REG_TYPE_IEEE_SINGLE, NULL,
116 "org.gnu.gdb.mips.fpu", MIPS32_GDB_DUMMY_FP_REG },
117 { 50, "f12", REG_TYPE_IEEE_SINGLE, NULL,
118 "org.gnu.gdb.mips.fpu", MIPS32_GDB_DUMMY_FP_REG },
119 { 51, "f13", REG_TYPE_IEEE_SINGLE, NULL,
120 "org.gnu.gdb.mips.fpu", MIPS32_GDB_DUMMY_FP_REG },
121 { 52, "f14", REG_TYPE_IEEE_SINGLE, NULL,
122 "org.gnu.gdb.mips.fpu", MIPS32_GDB_DUMMY_FP_REG },
123 { 53, "f15", REG_TYPE_IEEE_SINGLE, NULL,
124 "org.gnu.gdb.mips.fpu", MIPS32_GDB_DUMMY_FP_REG },
125 { 54, "f16", REG_TYPE_IEEE_SINGLE, NULL,
126 "org.gnu.gdb.mips.fpu", MIPS32_GDB_DUMMY_FP_REG },
127 { 55, "f17", REG_TYPE_IEEE_SINGLE, NULL,
128 "org.gnu.gdb.mips.fpu", MIPS32_GDB_DUMMY_FP_REG },
129 { 56, "f18", REG_TYPE_IEEE_SINGLE, NULL,
130 "org.gnu.gdb.mips.fpu", MIPS32_GDB_DUMMY_FP_REG },
131 { 57, "f19", REG_TYPE_IEEE_SINGLE, NULL,
132 "org.gnu.gdb.mips.fpu", MIPS32_GDB_DUMMY_FP_REG },
133 { 58, "f20", REG_TYPE_IEEE_SINGLE, NULL,
134 "org.gnu.gdb.mips.fpu", MIPS32_GDB_DUMMY_FP_REG },
135 { 59, "f21", REG_TYPE_IEEE_SINGLE, NULL,
136 "org.gnu.gdb.mips.fpu", MIPS32_GDB_DUMMY_FP_REG },
137 { 60, "f22", REG_TYPE_IEEE_SINGLE, NULL,
138 "org.gnu.gdb.mips.fpu", MIPS32_GDB_DUMMY_FP_REG },
139 { 61, "f23", REG_TYPE_IEEE_SINGLE, NULL,
140 "org.gnu.gdb.mips.fpu", MIPS32_GDB_DUMMY_FP_REG },
141 { 62, "f24", REG_TYPE_IEEE_SINGLE, NULL,
142 "org.gnu.gdb.mips.fpu", MIPS32_GDB_DUMMY_FP_REG },
143 { 63, "f25", REG_TYPE_IEEE_SINGLE, NULL,
144 "org.gnu.gdb.mips.fpu", MIPS32_GDB_DUMMY_FP_REG },
145 { 64, "f26", REG_TYPE_IEEE_SINGLE, NULL,
146 "org.gnu.gdb.mips.fpu", MIPS32_GDB_DUMMY_FP_REG },
147 { 65, "f27", REG_TYPE_IEEE_SINGLE, NULL,
148 "org.gnu.gdb.mips.fpu", MIPS32_GDB_DUMMY_FP_REG },
149 { 66, "f28", REG_TYPE_IEEE_SINGLE, NULL,
150 "org.gnu.gdb.mips.fpu", MIPS32_GDB_DUMMY_FP_REG },
151 { 67, "f29", REG_TYPE_IEEE_SINGLE, NULL,
152 "org.gnu.gdb.mips.fpu", MIPS32_GDB_DUMMY_FP_REG },
153 { 68, "f30", REG_TYPE_IEEE_SINGLE, NULL,
154 "org.gnu.gdb.mips.fpu", MIPS32_GDB_DUMMY_FP_REG },
155 { 69, "f31", REG_TYPE_IEEE_SINGLE, NULL,
156 "org.gnu.gdb.mips.fpu", MIPS32_GDB_DUMMY_FP_REG },
157 { 70, "fcsr", REG_TYPE_INT, "float",
158 "org.gnu.gdb.mips.fpu", MIPS32_GDB_DUMMY_FP_REG },
159 { 71, "fir", REG_TYPE_INT, "float",
160 "org.gnu.gdb.mips.fpu", MIPS32_GDB_DUMMY_FP_REG },
164 #define MIPS32_NUM_REGS ARRAY_SIZE(mips32_regs)
166 static uint8_t mips32_gdb_dummy_fp_value[] = {0, 0, 0, 0};
168 static int mips32_get_core_reg(struct reg *reg)
170 int retval;
171 struct mips32_core_reg *mips32_reg = reg->arch_info;
172 struct target *target = mips32_reg->target;
173 struct mips32_common *mips32_target = target_to_mips32(target);
175 if (target->state != TARGET_HALTED)
176 return ERROR_TARGET_NOT_HALTED;
178 retval = mips32_target->read_core_reg(target, mips32_reg->num);
180 return retval;
183 static int mips32_set_core_reg(struct reg *reg, uint8_t *buf)
185 struct mips32_core_reg *mips32_reg = reg->arch_info;
186 struct target *target = mips32_reg->target;
187 uint32_t value = buf_get_u32(buf, 0, 32);
189 if (target->state != TARGET_HALTED)
190 return ERROR_TARGET_NOT_HALTED;
192 buf_set_u32(reg->value, 0, 32, value);
193 reg->dirty = 1;
194 reg->valid = 1;
196 return ERROR_OK;
199 static int mips32_read_core_reg(struct target *target, unsigned int num)
201 uint32_t reg_value;
203 /* get pointers to arch-specific information */
204 struct mips32_common *mips32 = target_to_mips32(target);
206 if (num >= MIPS32_NUM_REGS)
207 return ERROR_COMMAND_SYNTAX_ERROR;
209 reg_value = mips32->core_regs[num];
210 buf_set_u32(mips32->core_cache->reg_list[num].value, 0, 32, reg_value);
211 mips32->core_cache->reg_list[num].valid = 1;
212 mips32->core_cache->reg_list[num].dirty = 0;
214 return ERROR_OK;
217 static int mips32_write_core_reg(struct target *target, unsigned int num)
219 uint32_t reg_value;
221 /* get pointers to arch-specific information */
222 struct mips32_common *mips32 = target_to_mips32(target);
224 if (num >= MIPS32_NUM_REGS)
225 return ERROR_COMMAND_SYNTAX_ERROR;
227 reg_value = buf_get_u32(mips32->core_cache->reg_list[num].value, 0, 32);
228 mips32->core_regs[num] = reg_value;
229 LOG_DEBUG("write core reg %i value 0x%" PRIx32 "", num , reg_value);
230 mips32->core_cache->reg_list[num].valid = 1;
231 mips32->core_cache->reg_list[num].dirty = 0;
233 return ERROR_OK;
236 int mips32_get_gdb_reg_list(struct target *target, struct reg **reg_list[],
237 int *reg_list_size, enum target_register_class reg_class)
239 /* get pointers to arch-specific information */
240 struct mips32_common *mips32 = target_to_mips32(target);
241 unsigned int i;
243 /* include floating point registers */
244 *reg_list_size = MIPS32_NUM_REGS;
245 *reg_list = malloc(sizeof(struct reg *) * (*reg_list_size));
247 for (i = 0; i < MIPS32_NUM_REGS; i++)
248 (*reg_list)[i] = &mips32->core_cache->reg_list[i];
250 return ERROR_OK;
253 int mips32_save_context(struct target *target)
255 unsigned int i;
257 /* get pointers to arch-specific information */
258 struct mips32_common *mips32 = target_to_mips32(target);
259 struct mips_ejtag *ejtag_info = &mips32->ejtag_info;
261 /* read core registers */
262 mips32_pracc_read_regs(ejtag_info, mips32->core_regs);
264 for (i = 0; i < MIPS32_NUM_REGS; i++) {
265 if (!mips32->core_cache->reg_list[i].valid)
266 mips32->read_core_reg(target, i);
269 return ERROR_OK;
272 int mips32_restore_context(struct target *target)
274 unsigned int i;
276 /* get pointers to arch-specific information */
277 struct mips32_common *mips32 = target_to_mips32(target);
278 struct mips_ejtag *ejtag_info = &mips32->ejtag_info;
280 for (i = 0; i < MIPS32_NUM_REGS; i++) {
281 if (mips32->core_cache->reg_list[i].dirty)
282 mips32->write_core_reg(target, i);
285 /* write core regs */
286 mips32_pracc_write_regs(ejtag_info, mips32->core_regs);
288 return ERROR_OK;
291 int mips32_arch_state(struct target *target)
293 struct mips32_common *mips32 = target_to_mips32(target);
295 LOG_USER("target halted in %s mode due to %s, pc: 0x%8.8" PRIx32 "",
296 mips_isa_strings[mips32->isa_mode],
297 debug_reason_name(target),
298 buf_get_u32(mips32->core_cache->reg_list[MIPS32_PC].value, 0, 32));
300 return ERROR_OK;
303 static const struct reg_arch_type mips32_reg_type = {
304 .get = mips32_get_core_reg,
305 .set = mips32_set_core_reg,
308 struct reg_cache *mips32_build_reg_cache(struct target *target)
310 /* get pointers to arch-specific information */
311 struct mips32_common *mips32 = target_to_mips32(target);
313 int num_regs = MIPS32_NUM_REGS;
314 struct reg_cache **cache_p = register_get_last_cache_p(&target->reg_cache);
315 struct reg_cache *cache = malloc(sizeof(struct reg_cache));
316 struct reg *reg_list = calloc(num_regs, sizeof(struct reg));
317 struct mips32_core_reg *arch_info = malloc(sizeof(struct mips32_core_reg) * num_regs);
318 struct reg_feature *feature;
319 int i;
321 /* Build the process context cache */
322 cache->name = "mips32 registers";
323 cache->next = NULL;
324 cache->reg_list = reg_list;
325 cache->num_regs = num_regs;
326 (*cache_p) = cache;
327 mips32->core_cache = cache;
329 for (i = 0; i < num_regs; i++) {
330 arch_info[i].num = mips32_regs[i].id;
331 arch_info[i].target = target;
332 arch_info[i].mips32_common = mips32;
334 reg_list[i].name = mips32_regs[i].name;
335 reg_list[i].size = 32;
337 if (mips32_regs[i].flag == MIPS32_GDB_DUMMY_FP_REG) {
338 reg_list[i].value = mips32_gdb_dummy_fp_value;
339 reg_list[i].valid = 1;
340 reg_list[i].arch_info = NULL;
341 register_init_dummy(&reg_list[i]);
342 } else {
343 reg_list[i].value = calloc(1, 4);
344 reg_list[i].valid = 0;
345 reg_list[i].type = &mips32_reg_type;
346 reg_list[i].arch_info = &arch_info[i];
348 reg_list[i].reg_data_type = calloc(1, sizeof(struct reg_data_type));
349 if (reg_list[i].reg_data_type)
350 reg_list[i].reg_data_type->type = mips32_regs[i].type;
351 else
352 LOG_ERROR("unable to allocate reg type list");
355 reg_list[i].dirty = 0;
357 reg_list[i].group = mips32_regs[i].group;
358 reg_list[i].number = i;
359 reg_list[i].exist = true;
360 reg_list[i].caller_save = true; /* gdb defaults to true */
362 feature = calloc(1, sizeof(struct reg_feature));
363 if (feature) {
364 feature->name = mips32_regs[i].feature;
365 reg_list[i].feature = feature;
366 } else
367 LOG_ERROR("unable to allocate feature list");
370 return cache;
373 int mips32_init_arch_info(struct target *target, struct mips32_common *mips32, struct jtag_tap *tap)
375 target->arch_info = mips32;
376 mips32->common_magic = MIPS32_COMMON_MAGIC;
377 mips32->fast_data_area = NULL;
379 /* has breakpoint/watchpoint unit been scanned */
380 mips32->bp_scanned = 0;
381 mips32->data_break_list = NULL;
383 mips32->ejtag_info.tap = tap;
384 mips32->read_core_reg = mips32_read_core_reg;
385 mips32->write_core_reg = mips32_write_core_reg;
386 /* if unknown endianness defaults to little endian, 1 */
387 mips32->ejtag_info.endianness = target->endianness == TARGET_BIG_ENDIAN ? 0 : 1;
388 mips32->ejtag_info.scan_delay = MIPS32_SCAN_DELAY_LEGACY_MODE;
389 mips32->ejtag_info.mode = 0; /* Initial default value */
390 mips32->ejtag_info.isa = 0; /* isa on debug mips32, updated by poll function */
392 return ERROR_OK;
395 /* run to exit point. return error if exit point was not reached. */
396 static int mips32_run_and_wait(struct target *target, target_addr_t entry_point,
397 int timeout_ms, target_addr_t exit_point, struct mips32_common *mips32)
399 uint32_t pc;
400 int retval;
401 /* This code relies on the target specific resume() and poll()->debug_entry()
402 * sequence to write register values to the processor and the read them back */
403 retval = target_resume(target, 0, entry_point, 0, 1);
404 if (retval != ERROR_OK)
405 return retval;
407 retval = target_wait_state(target, TARGET_HALTED, timeout_ms);
408 /* If the target fails to halt due to the breakpoint, force a halt */
409 if (retval != ERROR_OK || target->state != TARGET_HALTED) {
410 retval = target_halt(target);
411 if (retval != ERROR_OK)
412 return retval;
413 retval = target_wait_state(target, TARGET_HALTED, 500);
414 if (retval != ERROR_OK)
415 return retval;
416 return ERROR_TARGET_TIMEOUT;
419 pc = buf_get_u32(mips32->core_cache->reg_list[MIPS32_PC].value, 0, 32);
420 if (exit_point && (pc != exit_point)) {
421 LOG_DEBUG("failed algorithm halted at 0x%" PRIx32 " ", pc);
422 return ERROR_TARGET_TIMEOUT;
425 return ERROR_OK;
428 int mips32_run_algorithm(struct target *target, int num_mem_params,
429 struct mem_param *mem_params, int num_reg_params,
430 struct reg_param *reg_params, target_addr_t entry_point,
431 target_addr_t exit_point, int timeout_ms, void *arch_info)
433 struct mips32_common *mips32 = target_to_mips32(target);
434 struct mips32_algorithm *mips32_algorithm_info = arch_info;
435 enum mips32_isa_mode isa_mode = mips32->isa_mode;
437 uint32_t context[MIPS32_NUM_REGS];
438 int retval = ERROR_OK;
440 LOG_DEBUG("Running algorithm");
442 /* NOTE: mips32_run_algorithm requires that each algorithm uses a software breakpoint
443 * at the exit point */
445 if (mips32->common_magic != MIPS32_COMMON_MAGIC) {
446 LOG_ERROR("current target isn't a MIPS32 target");
447 return ERROR_TARGET_INVALID;
450 if (target->state != TARGET_HALTED) {
451 LOG_WARNING("target not halted");
452 return ERROR_TARGET_NOT_HALTED;
455 /* refresh core register cache */
456 for (unsigned int i = 0; i < MIPS32_NUM_REGS; i++) {
457 if (!mips32->core_cache->reg_list[i].valid)
458 mips32->read_core_reg(target, i);
459 context[i] = buf_get_u32(mips32->core_cache->reg_list[i].value, 0, 32);
462 for (int i = 0; i < num_mem_params; i++) {
463 retval = target_write_buffer(target, mem_params[i].address,
464 mem_params[i].size, mem_params[i].value);
465 if (retval != ERROR_OK)
466 return retval;
469 for (int i = 0; i < num_reg_params; i++) {
470 struct reg *reg = register_get_by_name(mips32->core_cache, reg_params[i].reg_name, 0);
472 if (!reg) {
473 LOG_ERROR("BUG: register '%s' not found", reg_params[i].reg_name);
474 return ERROR_COMMAND_SYNTAX_ERROR;
477 if (reg->size != reg_params[i].size) {
478 LOG_ERROR("BUG: register '%s' size doesn't match reg_params[i].size",
479 reg_params[i].reg_name);
480 return ERROR_COMMAND_SYNTAX_ERROR;
483 mips32_set_core_reg(reg, reg_params[i].value);
486 mips32->isa_mode = mips32_algorithm_info->isa_mode;
488 retval = mips32_run_and_wait(target, entry_point, timeout_ms, exit_point, mips32);
490 if (retval != ERROR_OK)
491 return retval;
493 for (int i = 0; i < num_mem_params; i++) {
494 if (mem_params[i].direction != PARAM_OUT) {
495 retval = target_read_buffer(target, mem_params[i].address, mem_params[i].size,
496 mem_params[i].value);
497 if (retval != ERROR_OK)
498 return retval;
502 for (int i = 0; i < num_reg_params; i++) {
503 if (reg_params[i].direction != PARAM_OUT) {
504 struct reg *reg = register_get_by_name(mips32->core_cache, reg_params[i].reg_name, 0);
505 if (!reg) {
506 LOG_ERROR("BUG: register '%s' not found", reg_params[i].reg_name);
507 return ERROR_COMMAND_SYNTAX_ERROR;
510 if (reg->size != reg_params[i].size) {
511 LOG_ERROR("BUG: register '%s' size doesn't match reg_params[i].size",
512 reg_params[i].reg_name);
513 return ERROR_COMMAND_SYNTAX_ERROR;
516 buf_set_u32(reg_params[i].value, 0, 32, buf_get_u32(reg->value, 0, 32));
520 /* restore everything we saved before */
521 for (unsigned int i = 0; i < MIPS32_NUM_REGS; i++) {
522 uint32_t regvalue;
523 regvalue = buf_get_u32(mips32->core_cache->reg_list[i].value, 0, 32);
524 if (regvalue != context[i]) {
525 LOG_DEBUG("restoring register %s with value 0x%8.8" PRIx32,
526 mips32->core_cache->reg_list[i].name, context[i]);
527 buf_set_u32(mips32->core_cache->reg_list[i].value,
528 0, 32, context[i]);
529 mips32->core_cache->reg_list[i].valid = 1;
530 mips32->core_cache->reg_list[i].dirty = 1;
534 mips32->isa_mode = isa_mode;
536 return ERROR_OK;
539 int mips32_examine(struct target *target)
541 struct mips32_common *mips32 = target_to_mips32(target);
543 if (!target_was_examined(target)) {
544 target_set_examined(target);
546 /* we will configure later */
547 mips32->bp_scanned = 0;
548 mips32->num_inst_bpoints = 0;
549 mips32->num_data_bpoints = 0;
550 mips32->num_inst_bpoints_avail = 0;
551 mips32->num_data_bpoints_avail = 0;
554 return ERROR_OK;
557 static int mips32_configure_ibs(struct target *target)
559 struct mips32_common *mips32 = target_to_mips32(target);
560 struct mips_ejtag *ejtag_info = &mips32->ejtag_info;
561 int retval, i;
562 uint32_t bpinfo;
564 /* get number of inst breakpoints */
565 retval = target_read_u32(target, ejtag_info->ejtag_ibs_addr, &bpinfo);
566 if (retval != ERROR_OK)
567 return retval;
569 mips32->num_inst_bpoints = (bpinfo >> 24) & 0x0F;
570 mips32->num_inst_bpoints_avail = mips32->num_inst_bpoints;
571 mips32->inst_break_list = calloc(mips32->num_inst_bpoints,
572 sizeof(struct mips32_comparator));
574 for (i = 0; i < mips32->num_inst_bpoints; i++)
575 mips32->inst_break_list[i].reg_address =
576 ejtag_info->ejtag_iba0_addr +
577 (ejtag_info->ejtag_iba_step_size * i);
579 /* clear IBIS reg */
580 retval = target_write_u32(target, ejtag_info->ejtag_ibs_addr, 0);
581 return retval;
584 static int mips32_configure_dbs(struct target *target)
586 struct mips32_common *mips32 = target_to_mips32(target);
587 struct mips_ejtag *ejtag_info = &mips32->ejtag_info;
588 int retval, i;
589 uint32_t bpinfo;
591 /* get number of data breakpoints */
592 retval = target_read_u32(target, ejtag_info->ejtag_dbs_addr, &bpinfo);
593 if (retval != ERROR_OK)
594 return retval;
596 mips32->num_data_bpoints = (bpinfo >> 24) & 0x0F;
597 mips32->num_data_bpoints_avail = mips32->num_data_bpoints;
598 mips32->data_break_list = calloc(mips32->num_data_bpoints,
599 sizeof(struct mips32_comparator));
601 for (i = 0; i < mips32->num_data_bpoints; i++)
602 mips32->data_break_list[i].reg_address =
603 ejtag_info->ejtag_dba0_addr +
604 (ejtag_info->ejtag_dba_step_size * i);
606 /* clear DBIS reg */
607 retval = target_write_u32(target, ejtag_info->ejtag_dbs_addr, 0);
608 return retval;
611 int mips32_configure_break_unit(struct target *target)
613 /* get pointers to arch-specific information */
614 struct mips32_common *mips32 = target_to_mips32(target);
615 struct mips_ejtag *ejtag_info = &mips32->ejtag_info;
616 int retval;
617 uint32_t dcr;
619 if (mips32->bp_scanned)
620 return ERROR_OK;
622 /* get info about breakpoint support */
623 retval = target_read_u32(target, EJTAG_DCR, &dcr);
624 if (retval != ERROR_OK)
625 return retval;
627 /* EJTAG 2.0 defines IB and DB bits in IMP instead of DCR. */
628 if (ejtag_info->ejtag_version == EJTAG_VERSION_20) {
629 ejtag_info->debug_caps = dcr & EJTAG_DCR_ENM;
630 if (!(ejtag_info->impcode & EJTAG_V20_IMP_NOIB))
631 ejtag_info->debug_caps |= EJTAG_DCR_IB;
632 if (!(ejtag_info->impcode & EJTAG_V20_IMP_NODB))
633 ejtag_info->debug_caps |= EJTAG_DCR_DB;
634 } else
635 /* keep debug caps for later use */
636 ejtag_info->debug_caps = dcr & (EJTAG_DCR_ENM
637 | EJTAG_DCR_IB | EJTAG_DCR_DB);
640 if (ejtag_info->debug_caps & EJTAG_DCR_IB) {
641 retval = mips32_configure_ibs(target);
642 if (retval != ERROR_OK)
643 return retval;
646 if (ejtag_info->debug_caps & EJTAG_DCR_DB) {
647 retval = mips32_configure_dbs(target);
648 if (retval != ERROR_OK)
649 return retval;
652 /* check if target endianness settings matches debug control register */
653 if (((ejtag_info->debug_caps & EJTAG_DCR_ENM)
654 && (target->endianness == TARGET_LITTLE_ENDIAN)) ||
655 (!(ejtag_info->debug_caps & EJTAG_DCR_ENM)
656 && (target->endianness == TARGET_BIG_ENDIAN)))
657 LOG_WARNING("DCR endianness settings does not match target settings");
659 LOG_DEBUG("DCR 0x%" PRIx32 " numinst %i numdata %i", dcr, mips32->num_inst_bpoints,
660 mips32->num_data_bpoints);
662 mips32->bp_scanned = 1;
664 return ERROR_OK;
667 int mips32_enable_interrupts(struct target *target, int enable)
669 int retval;
670 int update = 0;
671 uint32_t dcr;
673 /* read debug control register */
674 retval = target_read_u32(target, EJTAG_DCR, &dcr);
675 if (retval != ERROR_OK)
676 return retval;
678 if (enable) {
679 if (!(dcr & EJTAG_DCR_INTE)) {
680 /* enable interrupts */
681 dcr |= EJTAG_DCR_INTE;
682 update = 1;
684 } else {
685 if (dcr & EJTAG_DCR_INTE) {
686 /* disable interrupts */
687 dcr &= ~EJTAG_DCR_INTE;
688 update = 1;
692 if (update) {
693 retval = target_write_u32(target, EJTAG_DCR, dcr);
694 if (retval != ERROR_OK)
695 return retval;
698 return ERROR_OK;
701 int mips32_checksum_memory(struct target *target, target_addr_t address,
702 uint32_t count, uint32_t *checksum)
704 struct working_area *crc_algorithm;
705 struct reg_param reg_params[2];
706 struct mips32_algorithm mips32_info;
708 /* see contrib/loaders/checksum/mips32.s for src */
710 static const uint32_t mips_crc_code[] = {
711 0x248C0000, /* addiu $t4, $a0, 0 */
712 0x24AA0000, /* addiu $t2, $a1, 0 */
713 0x2404FFFF, /* addiu $a0, $zero, 0xffffffff */
714 0x10000010, /* beq $zero, $zero, ncomp */
715 0x240B0000, /* addiu $t3, $zero, 0 */
716 /* nbyte: */
717 0x81850000, /* lb $a1, ($t4) */
718 0x218C0001, /* addi $t4, $t4, 1 */
719 0x00052E00, /* sll $a1, $a1, 24 */
720 0x3C0204C1, /* lui $v0, 0x04c1 */
721 0x00852026, /* xor $a0, $a0, $a1 */
722 0x34471DB7, /* ori $a3, $v0, 0x1db7 */
723 0x00003021, /* addu $a2, $zero, $zero */
724 /* loop: */
725 0x00044040, /* sll $t0, $a0, 1 */
726 0x24C60001, /* addiu $a2, $a2, 1 */
727 0x28840000, /* slti $a0, $a0, 0 */
728 0x01074826, /* xor $t1, $t0, $a3 */
729 0x0124400B, /* movn $t0, $t1, $a0 */
730 0x28C30008, /* slti $v1, $a2, 8 */
731 0x1460FFF9, /* bne $v1, $zero, loop */
732 0x01002021, /* addu $a0, $t0, $zero */
733 /* ncomp: */
734 0x154BFFF0, /* bne $t2, $t3, nbyte */
735 0x256B0001, /* addiu $t3, $t3, 1 */
736 0x7000003F, /* sdbbp */
739 /* make sure we have a working area */
740 if (target_alloc_working_area(target, sizeof(mips_crc_code), &crc_algorithm) != ERROR_OK)
741 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
743 /* convert mips crc code into a buffer in target endianness */
744 uint8_t mips_crc_code_8[sizeof(mips_crc_code)];
745 target_buffer_set_u32_array(target, mips_crc_code_8,
746 ARRAY_SIZE(mips_crc_code), mips_crc_code);
748 target_write_buffer(target, crc_algorithm->address, sizeof(mips_crc_code), mips_crc_code_8);
750 mips32_info.common_magic = MIPS32_COMMON_MAGIC;
751 mips32_info.isa_mode = MIPS32_ISA_MIPS32;
753 init_reg_param(&reg_params[0], "r4", 32, PARAM_IN_OUT);
754 buf_set_u32(reg_params[0].value, 0, 32, address);
756 init_reg_param(&reg_params[1], "r5", 32, PARAM_OUT);
757 buf_set_u32(reg_params[1].value, 0, 32, count);
759 int timeout = 20000 * (1 + (count / (1024 * 1024)));
761 int retval = target_run_algorithm(target, 0, NULL, 2, reg_params,
762 crc_algorithm->address, crc_algorithm->address + (sizeof(mips_crc_code) - 4), timeout,
763 &mips32_info);
765 if (retval == ERROR_OK)
766 *checksum = buf_get_u32(reg_params[0].value, 0, 32);
768 destroy_reg_param(&reg_params[0]);
769 destroy_reg_param(&reg_params[1]);
771 target_free_working_area(target, crc_algorithm);
773 return retval;
776 /** Checks whether a memory region is erased. */
777 int mips32_blank_check_memory(struct target *target,
778 target_addr_t address, uint32_t count, uint32_t *blank, uint8_t erased_value)
780 struct working_area *erase_check_algorithm;
781 struct reg_param reg_params[3];
782 struct mips32_algorithm mips32_info;
784 static const uint32_t erase_check_code[] = {
785 /* nbyte: */
786 0x80880000, /* lb $t0, ($a0) */
787 0x00C83024, /* and $a2, $a2, $t0 */
788 0x24A5FFFF, /* addiu $a1, $a1, -1 */
789 0x14A0FFFC, /* bne $a1, $zero, nbyte */
790 0x24840001, /* addiu $a0, $a0, 1 */
791 0x7000003F /* sdbbp */
794 if (erased_value != 0xff) {
795 LOG_ERROR("Erase value 0x%02" PRIx8 " not yet supported for MIPS32",
796 erased_value);
797 return ERROR_FAIL;
800 /* make sure we have a working area */
801 if (target_alloc_working_area(target, sizeof(erase_check_code), &erase_check_algorithm) != ERROR_OK)
802 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
804 /* convert erase check code into a buffer in target endianness */
805 uint8_t erase_check_code_8[sizeof(erase_check_code)];
806 target_buffer_set_u32_array(target, erase_check_code_8,
807 ARRAY_SIZE(erase_check_code), erase_check_code);
809 target_write_buffer(target, erase_check_algorithm->address, sizeof(erase_check_code), erase_check_code_8);
811 mips32_info.common_magic = MIPS32_COMMON_MAGIC;
812 mips32_info.isa_mode = MIPS32_ISA_MIPS32;
814 init_reg_param(&reg_params[0], "r4", 32, PARAM_OUT);
815 buf_set_u32(reg_params[0].value, 0, 32, address);
817 init_reg_param(&reg_params[1], "r5", 32, PARAM_OUT);
818 buf_set_u32(reg_params[1].value, 0, 32, count);
820 init_reg_param(&reg_params[2], "r6", 32, PARAM_IN_OUT);
821 buf_set_u32(reg_params[2].value, 0, 32, erased_value);
823 int retval = target_run_algorithm(target, 0, NULL, 3, reg_params,
824 erase_check_algorithm->address,
825 erase_check_algorithm->address + (sizeof(erase_check_code) - 4),
826 10000, &mips32_info);
828 if (retval == ERROR_OK)
829 *blank = buf_get_u32(reg_params[2].value, 0, 32);
831 destroy_reg_param(&reg_params[0]);
832 destroy_reg_param(&reg_params[1]);
833 destroy_reg_param(&reg_params[2]);
835 target_free_working_area(target, erase_check_algorithm);
837 return retval;
840 static int mips32_verify_pointer(struct command_context *cmd_ctx,
841 struct mips32_common *mips32)
843 if (mips32->common_magic != MIPS32_COMMON_MAGIC) {
844 command_print(cmd_ctx, "target is not an MIPS32");
845 return ERROR_TARGET_INVALID;
847 return ERROR_OK;
851 * MIPS32 targets expose command interface
852 * to manipulate CP0 registers
854 COMMAND_HANDLER(mips32_handle_cp0_command)
856 int retval;
857 struct target *target = get_current_target(CMD_CTX);
858 struct mips32_common *mips32 = target_to_mips32(target);
859 struct mips_ejtag *ejtag_info = &mips32->ejtag_info;
862 retval = mips32_verify_pointer(CMD_CTX, mips32);
863 if (retval != ERROR_OK)
864 return retval;
866 if (target->state != TARGET_HALTED) {
867 command_print(CMD_CTX, "target must be stopped for \"%s\" command", CMD_NAME);
868 return ERROR_OK;
871 /* two or more argument, access a single register/select (write if third argument is given) */
872 if (CMD_ARGC < 2)
873 return ERROR_COMMAND_SYNTAX_ERROR;
874 else {
875 uint32_t cp0_reg, cp0_sel;
876 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], cp0_reg);
877 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], cp0_sel);
879 if (CMD_ARGC == 2) {
880 uint32_t value;
882 retval = mips32_cp0_read(ejtag_info, &value, cp0_reg, cp0_sel);
883 if (retval != ERROR_OK) {
884 command_print(CMD_CTX,
885 "couldn't access reg %" PRIi32,
886 cp0_reg);
887 return ERROR_OK;
889 command_print(CMD_CTX, "cp0 reg %" PRIi32 ", select %" PRIi32 ": %8.8" PRIx32,
890 cp0_reg, cp0_sel, value);
892 } else if (CMD_ARGC == 3) {
893 uint32_t value;
894 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[2], value);
895 retval = mips32_cp0_write(ejtag_info, value, cp0_reg, cp0_sel);
896 if (retval != ERROR_OK) {
897 command_print(CMD_CTX,
898 "couldn't access cp0 reg %" PRIi32 ", select %" PRIi32,
899 cp0_reg, cp0_sel);
900 return ERROR_OK;
902 command_print(CMD_CTX, "cp0 reg %" PRIi32 ", select %" PRIi32 ": %8.8" PRIx32,
903 cp0_reg, cp0_sel, value);
907 return ERROR_OK;
910 COMMAND_HANDLER(mips32_handle_scan_delay_command)
912 struct target *target = get_current_target(CMD_CTX);
913 struct mips32_common *mips32 = target_to_mips32(target);
914 struct mips_ejtag *ejtag_info = &mips32->ejtag_info;
916 if (CMD_ARGC == 1)
917 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[0], ejtag_info->scan_delay);
918 else if (CMD_ARGC > 1)
919 return ERROR_COMMAND_SYNTAX_ERROR;
921 command_print(CMD_CTX, "scan delay: %d nsec", ejtag_info->scan_delay);
922 if (ejtag_info->scan_delay >= MIPS32_SCAN_DELAY_LEGACY_MODE) {
923 ejtag_info->mode = 0;
924 command_print(CMD_CTX, "running in legacy mode");
925 } else {
926 ejtag_info->mode = 1;
927 command_print(CMD_CTX, "running in fast queued mode");
930 return ERROR_OK;
933 static const struct command_registration mips32_exec_command_handlers[] = {
935 .name = "cp0",
936 .handler = mips32_handle_cp0_command,
937 .mode = COMMAND_EXEC,
938 .usage = "regnum select [value]",
939 .help = "display/modify cp0 register",
942 .name = "scan_delay",
943 .handler = mips32_handle_scan_delay_command,
944 .mode = COMMAND_ANY,
945 .help = "display/set scan delay in nano seconds",
946 .usage = "[value]",
948 COMMAND_REGISTRATION_DONE
951 const struct command_registration mips32_command_handlers[] = {
953 .name = "mips32",
954 .mode = COMMAND_ANY,
955 .help = "mips32 command group",
956 .usage = "",
957 .chain = mips32_exec_command_handlers,
959 COMMAND_REGISTRATION_DONE