target: remove unused event definitions
[openocd.git] / src / target / target.c
bloba9907b0c3ef92f042dd11d5495084a7fe6419a47
1 /***************************************************************************
2 * Copyright (C) 2005 by Dominic Rath *
3 * Dominic.Rath@gmx.de *
4 * *
5 * Copyright (C) 2007-2010 Øyvind Harboe *
6 * oyvind.harboe@zylin.com *
7 * *
8 * Copyright (C) 2008, Duane Ellis *
9 * openocd@duaneeellis.com *
10 * *
11 * Copyright (C) 2008 by Spencer Oliver *
12 * spen@spen-soft.co.uk *
13 * *
14 * Copyright (C) 2008 by Rick Altherr *
15 * kc8apf@kc8apf.net> *
16 * *
17 * Copyright (C) 2011 by Broadcom Corporation *
18 * Evan Hunter - ehunter@broadcom.com *
19 * *
20 * Copyright (C) ST-Ericsson SA 2011 *
21 * michel.jaouen@stericsson.com : smp minimum support *
22 * *
23 * Copyright (C) 2011 Andreas Fritiofson *
24 * andreas.fritiofson@gmail.com *
25 * *
26 * This program is free software; you can redistribute it and/or modify *
27 * it under the terms of the GNU General Public License as published by *
28 * the Free Software Foundation; either version 2 of the License, or *
29 * (at your option) any later version. *
30 * *
31 * This program is distributed in the hope that it will be useful, *
32 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
33 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
34 * GNU General Public License for more details. *
35 * *
36 * You should have received a copy of the GNU General Public License *
37 * along with this program. If not, see <http://www.gnu.org/licenses/>. *
38 ***************************************************************************/
40 #ifdef HAVE_CONFIG_H
41 #include "config.h"
42 #endif
44 #include <helper/time_support.h>
45 #include <jtag/jtag.h>
46 #include <flash/nor/core.h>
48 #include "target.h"
49 #include "target_type.h"
50 #include "target_request.h"
51 #include "breakpoints.h"
52 #include "register.h"
53 #include "trace.h"
54 #include "image.h"
55 #include "rtos/rtos.h"
56 #include "transport/transport.h"
58 /* default halt wait timeout (ms) */
59 #define DEFAULT_HALT_TIMEOUT 5000
61 static int target_read_buffer_default(struct target *target, target_addr_t address,
62 uint32_t count, uint8_t *buffer);
63 static int target_write_buffer_default(struct target *target, target_addr_t address,
64 uint32_t count, const uint8_t *buffer);
65 static int target_array2mem(Jim_Interp *interp, struct target *target,
66 int argc, Jim_Obj * const *argv);
67 static int target_mem2array(Jim_Interp *interp, struct target *target,
68 int argc, Jim_Obj * const *argv);
69 static int target_register_user_commands(struct command_context *cmd_ctx);
70 static int target_get_gdb_fileio_info_default(struct target *target,
71 struct gdb_fileio_info *fileio_info);
72 static int target_gdb_fileio_end_default(struct target *target, int retcode,
73 int fileio_errno, bool ctrl_c);
74 static int target_profiling_default(struct target *target, uint32_t *samples,
75 uint32_t max_num_samples, uint32_t *num_samples, uint32_t seconds);
77 /* targets */
78 extern struct target_type arm7tdmi_target;
79 extern struct target_type arm720t_target;
80 extern struct target_type arm9tdmi_target;
81 extern struct target_type arm920t_target;
82 extern struct target_type arm966e_target;
83 extern struct target_type arm946e_target;
84 extern struct target_type arm926ejs_target;
85 extern struct target_type fa526_target;
86 extern struct target_type feroceon_target;
87 extern struct target_type dragonite_target;
88 extern struct target_type xscale_target;
89 extern struct target_type cortexm_target;
90 extern struct target_type cortexa_target;
91 extern struct target_type aarch64_target;
92 extern struct target_type cortexr4_target;
93 extern struct target_type arm11_target;
94 extern struct target_type ls1_sap_target;
95 extern struct target_type mips_m4k_target;
96 extern struct target_type avr_target;
97 extern struct target_type dsp563xx_target;
98 extern struct target_type dsp5680xx_target;
99 extern struct target_type testee_target;
100 extern struct target_type avr32_ap7k_target;
101 extern struct target_type hla_target;
102 extern struct target_type nds32_v2_target;
103 extern struct target_type nds32_v3_target;
104 extern struct target_type nds32_v3m_target;
105 extern struct target_type or1k_target;
106 extern struct target_type quark_x10xx_target;
107 extern struct target_type quark_d20xx_target;
108 extern struct target_type stm8_target;
110 static struct target_type *target_types[] = {
111 &arm7tdmi_target,
112 &arm9tdmi_target,
113 &arm920t_target,
114 &arm720t_target,
115 &arm966e_target,
116 &arm946e_target,
117 &arm926ejs_target,
118 &fa526_target,
119 &feroceon_target,
120 &dragonite_target,
121 &xscale_target,
122 &cortexm_target,
123 &cortexa_target,
124 &cortexr4_target,
125 &arm11_target,
126 &ls1_sap_target,
127 &mips_m4k_target,
128 &avr_target,
129 &dsp563xx_target,
130 &dsp5680xx_target,
131 &testee_target,
132 &avr32_ap7k_target,
133 &hla_target,
134 &nds32_v2_target,
135 &nds32_v3_target,
136 &nds32_v3m_target,
137 &or1k_target,
138 &quark_x10xx_target,
139 &quark_d20xx_target,
140 &stm8_target,
141 #if BUILD_TARGET64
142 &aarch64_target,
143 #endif
144 NULL,
147 struct target *all_targets;
148 static struct target_event_callback *target_event_callbacks;
149 static struct target_timer_callback *target_timer_callbacks;
150 LIST_HEAD(target_reset_callback_list);
151 LIST_HEAD(target_trace_callback_list);
152 static const int polling_interval = 100;
154 static const Jim_Nvp nvp_assert[] = {
155 { .name = "assert", NVP_ASSERT },
156 { .name = "deassert", NVP_DEASSERT },
157 { .name = "T", NVP_ASSERT },
158 { .name = "F", NVP_DEASSERT },
159 { .name = "t", NVP_ASSERT },
160 { .name = "f", NVP_DEASSERT },
161 { .name = NULL, .value = -1 }
164 static const Jim_Nvp nvp_error_target[] = {
165 { .value = ERROR_TARGET_INVALID, .name = "err-invalid" },
166 { .value = ERROR_TARGET_INIT_FAILED, .name = "err-init-failed" },
167 { .value = ERROR_TARGET_TIMEOUT, .name = "err-timeout" },
168 { .value = ERROR_TARGET_NOT_HALTED, .name = "err-not-halted" },
169 { .value = ERROR_TARGET_FAILURE, .name = "err-failure" },
170 { .value = ERROR_TARGET_UNALIGNED_ACCESS , .name = "err-unaligned-access" },
171 { .value = ERROR_TARGET_DATA_ABORT , .name = "err-data-abort" },
172 { .value = ERROR_TARGET_RESOURCE_NOT_AVAILABLE , .name = "err-resource-not-available" },
173 { .value = ERROR_TARGET_TRANSLATION_FAULT , .name = "err-translation-fault" },
174 { .value = ERROR_TARGET_NOT_RUNNING, .name = "err-not-running" },
175 { .value = ERROR_TARGET_NOT_EXAMINED, .name = "err-not-examined" },
176 { .value = -1, .name = NULL }
179 static const char *target_strerror_safe(int err)
181 const Jim_Nvp *n;
183 n = Jim_Nvp_value2name_simple(nvp_error_target, err);
184 if (n->name == NULL)
185 return "unknown";
186 else
187 return n->name;
190 static const Jim_Nvp nvp_target_event[] = {
192 { .value = TARGET_EVENT_GDB_HALT, .name = "gdb-halt" },
193 { .value = TARGET_EVENT_HALTED, .name = "halted" },
194 { .value = TARGET_EVENT_RESUMED, .name = "resumed" },
195 { .value = TARGET_EVENT_RESUME_START, .name = "resume-start" },
196 { .value = TARGET_EVENT_RESUME_END, .name = "resume-end" },
198 { .name = "gdb-start", .value = TARGET_EVENT_GDB_START },
199 { .name = "gdb-end", .value = TARGET_EVENT_GDB_END },
201 { .value = TARGET_EVENT_RESET_START, .name = "reset-start" },
202 { .value = TARGET_EVENT_RESET_ASSERT_PRE, .name = "reset-assert-pre" },
203 { .value = TARGET_EVENT_RESET_ASSERT, .name = "reset-assert" },
204 { .value = TARGET_EVENT_RESET_ASSERT_POST, .name = "reset-assert-post" },
205 { .value = TARGET_EVENT_RESET_DEASSERT_PRE, .name = "reset-deassert-pre" },
206 { .value = TARGET_EVENT_RESET_DEASSERT_POST, .name = "reset-deassert-post" },
207 { .value = TARGET_EVENT_RESET_INIT, .name = "reset-init" },
208 { .value = TARGET_EVENT_RESET_END, .name = "reset-end" },
210 { .value = TARGET_EVENT_EXAMINE_START, .name = "examine-start" },
211 { .value = TARGET_EVENT_EXAMINE_END, .name = "examine-end" },
213 { .value = TARGET_EVENT_DEBUG_HALTED, .name = "debug-halted" },
214 { .value = TARGET_EVENT_DEBUG_RESUMED, .name = "debug-resumed" },
216 { .value = TARGET_EVENT_GDB_ATTACH, .name = "gdb-attach" },
217 { .value = TARGET_EVENT_GDB_DETACH, .name = "gdb-detach" },
219 { .value = TARGET_EVENT_GDB_FLASH_WRITE_START, .name = "gdb-flash-write-start" },
220 { .value = TARGET_EVENT_GDB_FLASH_WRITE_END , .name = "gdb-flash-write-end" },
222 { .value = TARGET_EVENT_GDB_FLASH_ERASE_START, .name = "gdb-flash-erase-start" },
223 { .value = TARGET_EVENT_GDB_FLASH_ERASE_END , .name = "gdb-flash-erase-end" },
225 { .value = TARGET_EVENT_TRACE_CONFIG, .name = "trace-config" },
227 { .name = NULL, .value = -1 }
230 static const Jim_Nvp nvp_target_state[] = {
231 { .name = "unknown", .value = TARGET_UNKNOWN },
232 { .name = "running", .value = TARGET_RUNNING },
233 { .name = "halted", .value = TARGET_HALTED },
234 { .name = "reset", .value = TARGET_RESET },
235 { .name = "debug-running", .value = TARGET_DEBUG_RUNNING },
236 { .name = NULL, .value = -1 },
239 static const Jim_Nvp nvp_target_debug_reason[] = {
240 { .name = "debug-request" , .value = DBG_REASON_DBGRQ },
241 { .name = "breakpoint" , .value = DBG_REASON_BREAKPOINT },
242 { .name = "watchpoint" , .value = DBG_REASON_WATCHPOINT },
243 { .name = "watchpoint-and-breakpoint", .value = DBG_REASON_WPTANDBKPT },
244 { .name = "single-step" , .value = DBG_REASON_SINGLESTEP },
245 { .name = "target-not-halted" , .value = DBG_REASON_NOTHALTED },
246 { .name = "program-exit" , .value = DBG_REASON_EXIT },
247 { .name = "undefined" , .value = DBG_REASON_UNDEFINED },
248 { .name = NULL, .value = -1 },
251 static const Jim_Nvp nvp_target_endian[] = {
252 { .name = "big", .value = TARGET_BIG_ENDIAN },
253 { .name = "little", .value = TARGET_LITTLE_ENDIAN },
254 { .name = "be", .value = TARGET_BIG_ENDIAN },
255 { .name = "le", .value = TARGET_LITTLE_ENDIAN },
256 { .name = NULL, .value = -1 },
259 static const Jim_Nvp nvp_reset_modes[] = {
260 { .name = "unknown", .value = RESET_UNKNOWN },
261 { .name = "run" , .value = RESET_RUN },
262 { .name = "halt" , .value = RESET_HALT },
263 { .name = "init" , .value = RESET_INIT },
264 { .name = NULL , .value = -1 },
267 const char *debug_reason_name(struct target *t)
269 const char *cp;
271 cp = Jim_Nvp_value2name_simple(nvp_target_debug_reason,
272 t->debug_reason)->name;
273 if (!cp) {
274 LOG_ERROR("Invalid debug reason: %d", (int)(t->debug_reason));
275 cp = "(*BUG*unknown*BUG*)";
277 return cp;
280 const char *target_state_name(struct target *t)
282 const char *cp;
283 cp = Jim_Nvp_value2name_simple(nvp_target_state, t->state)->name;
284 if (!cp) {
285 LOG_ERROR("Invalid target state: %d", (int)(t->state));
286 cp = "(*BUG*unknown*BUG*)";
289 if (!target_was_examined(t) && t->defer_examine)
290 cp = "examine deferred";
292 return cp;
295 const char *target_event_name(enum target_event event)
297 const char *cp;
298 cp = Jim_Nvp_value2name_simple(nvp_target_event, event)->name;
299 if (!cp) {
300 LOG_ERROR("Invalid target event: %d", (int)(event));
301 cp = "(*BUG*unknown*BUG*)";
303 return cp;
306 const char *target_reset_mode_name(enum target_reset_mode reset_mode)
308 const char *cp;
309 cp = Jim_Nvp_value2name_simple(nvp_reset_modes, reset_mode)->name;
310 if (!cp) {
311 LOG_ERROR("Invalid target reset mode: %d", (int)(reset_mode));
312 cp = "(*BUG*unknown*BUG*)";
314 return cp;
317 /* determine the number of the new target */
318 static int new_target_number(void)
320 struct target *t;
321 int x;
323 /* number is 0 based */
324 x = -1;
325 t = all_targets;
326 while (t) {
327 if (x < t->target_number)
328 x = t->target_number;
329 t = t->next;
331 return x + 1;
334 /* read a uint64_t from a buffer in target memory endianness */
335 uint64_t target_buffer_get_u64(struct target *target, const uint8_t *buffer)
337 if (target->endianness == TARGET_LITTLE_ENDIAN)
338 return le_to_h_u64(buffer);
339 else
340 return be_to_h_u64(buffer);
343 /* read a uint32_t from a buffer in target memory endianness */
344 uint32_t target_buffer_get_u32(struct target *target, const uint8_t *buffer)
346 if (target->endianness == TARGET_LITTLE_ENDIAN)
347 return le_to_h_u32(buffer);
348 else
349 return be_to_h_u32(buffer);
352 /* read a uint24_t from a buffer in target memory endianness */
353 uint32_t target_buffer_get_u24(struct target *target, const uint8_t *buffer)
355 if (target->endianness == TARGET_LITTLE_ENDIAN)
356 return le_to_h_u24(buffer);
357 else
358 return be_to_h_u24(buffer);
361 /* read a uint16_t from a buffer in target memory endianness */
362 uint16_t target_buffer_get_u16(struct target *target, const uint8_t *buffer)
364 if (target->endianness == TARGET_LITTLE_ENDIAN)
365 return le_to_h_u16(buffer);
366 else
367 return be_to_h_u16(buffer);
370 /* read a uint8_t from a buffer in target memory endianness */
371 static uint8_t target_buffer_get_u8(struct target *target, const uint8_t *buffer)
373 return *buffer & 0x0ff;
376 /* write a uint64_t to a buffer in target memory endianness */
377 void target_buffer_set_u64(struct target *target, uint8_t *buffer, uint64_t value)
379 if (target->endianness == TARGET_LITTLE_ENDIAN)
380 h_u64_to_le(buffer, value);
381 else
382 h_u64_to_be(buffer, value);
385 /* write a uint32_t to a buffer in target memory endianness */
386 void target_buffer_set_u32(struct target *target, uint8_t *buffer, uint32_t value)
388 if (target->endianness == TARGET_LITTLE_ENDIAN)
389 h_u32_to_le(buffer, value);
390 else
391 h_u32_to_be(buffer, value);
394 /* write a uint24_t to a buffer in target memory endianness */
395 void target_buffer_set_u24(struct target *target, uint8_t *buffer, uint32_t value)
397 if (target->endianness == TARGET_LITTLE_ENDIAN)
398 h_u24_to_le(buffer, value);
399 else
400 h_u24_to_be(buffer, value);
403 /* write a uint16_t to a buffer in target memory endianness */
404 void target_buffer_set_u16(struct target *target, uint8_t *buffer, uint16_t value)
406 if (target->endianness == TARGET_LITTLE_ENDIAN)
407 h_u16_to_le(buffer, value);
408 else
409 h_u16_to_be(buffer, value);
412 /* write a uint8_t to a buffer in target memory endianness */
413 static void target_buffer_set_u8(struct target *target, uint8_t *buffer, uint8_t value)
415 *buffer = value;
418 /* write a uint64_t array to a buffer in target memory endianness */
419 void target_buffer_get_u64_array(struct target *target, const uint8_t *buffer, uint32_t count, uint64_t *dstbuf)
421 uint32_t i;
422 for (i = 0; i < count; i++)
423 dstbuf[i] = target_buffer_get_u64(target, &buffer[i * 8]);
426 /* write a uint32_t array to a buffer in target memory endianness */
427 void target_buffer_get_u32_array(struct target *target, const uint8_t *buffer, uint32_t count, uint32_t *dstbuf)
429 uint32_t i;
430 for (i = 0; i < count; i++)
431 dstbuf[i] = target_buffer_get_u32(target, &buffer[i * 4]);
434 /* write a uint16_t array to a buffer in target memory endianness */
435 void target_buffer_get_u16_array(struct target *target, const uint8_t *buffer, uint32_t count, uint16_t *dstbuf)
437 uint32_t i;
438 for (i = 0; i < count; i++)
439 dstbuf[i] = target_buffer_get_u16(target, &buffer[i * 2]);
442 /* write a uint64_t array to a buffer in target memory endianness */
443 void target_buffer_set_u64_array(struct target *target, uint8_t *buffer, uint32_t count, const uint64_t *srcbuf)
445 uint32_t i;
446 for (i = 0; i < count; i++)
447 target_buffer_set_u64(target, &buffer[i * 8], srcbuf[i]);
450 /* write a uint32_t array to a buffer in target memory endianness */
451 void target_buffer_set_u32_array(struct target *target, uint8_t *buffer, uint32_t count, const uint32_t *srcbuf)
453 uint32_t i;
454 for (i = 0; i < count; i++)
455 target_buffer_set_u32(target, &buffer[i * 4], srcbuf[i]);
458 /* write a uint16_t array to a buffer in target memory endianness */
459 void target_buffer_set_u16_array(struct target *target, uint8_t *buffer, uint32_t count, const uint16_t *srcbuf)
461 uint32_t i;
462 for (i = 0; i < count; i++)
463 target_buffer_set_u16(target, &buffer[i * 2], srcbuf[i]);
466 /* return a pointer to a configured target; id is name or number */
467 struct target *get_target(const char *id)
469 struct target *target;
471 /* try as tcltarget name */
472 for (target = all_targets; target; target = target->next) {
473 if (target_name(target) == NULL)
474 continue;
475 if (strcmp(id, target_name(target)) == 0)
476 return target;
479 /* It's OK to remove this fallback sometime after August 2010 or so */
481 /* no match, try as number */
482 unsigned num;
483 if (parse_uint(id, &num) != ERROR_OK)
484 return NULL;
486 for (target = all_targets; target; target = target->next) {
487 if (target->target_number == (int)num) {
488 LOG_WARNING("use '%s' as target identifier, not '%u'",
489 target_name(target), num);
490 return target;
494 return NULL;
497 /* returns a pointer to the n-th configured target */
498 struct target *get_target_by_num(int num)
500 struct target *target = all_targets;
502 while (target) {
503 if (target->target_number == num)
504 return target;
505 target = target->next;
508 return NULL;
511 struct target *get_current_target(struct command_context *cmd_ctx)
513 struct target *target = get_target_by_num(cmd_ctx->current_target);
515 if (target == NULL) {
516 LOG_ERROR("BUG: current_target out of bounds");
517 exit(-1);
520 return target;
523 int target_poll(struct target *target)
525 int retval;
527 /* We can't poll until after examine */
528 if (!target_was_examined(target)) {
529 /* Fail silently lest we pollute the log */
530 return ERROR_FAIL;
533 retval = target->type->poll(target);
534 if (retval != ERROR_OK)
535 return retval;
537 if (target->halt_issued) {
538 if (target->state == TARGET_HALTED)
539 target->halt_issued = false;
540 else {
541 int64_t t = timeval_ms() - target->halt_issued_time;
542 if (t > DEFAULT_HALT_TIMEOUT) {
543 target->halt_issued = false;
544 LOG_INFO("Halt timed out, wake up GDB.");
545 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
550 return ERROR_OK;
553 int target_halt(struct target *target)
555 int retval;
556 /* We can't poll until after examine */
557 if (!target_was_examined(target)) {
558 LOG_ERROR("Target not examined yet");
559 return ERROR_FAIL;
562 retval = target->type->halt(target);
563 if (retval != ERROR_OK)
564 return retval;
566 target->halt_issued = true;
567 target->halt_issued_time = timeval_ms();
569 return ERROR_OK;
573 * Make the target (re)start executing using its saved execution
574 * context (possibly with some modifications).
576 * @param target Which target should start executing.
577 * @param current True to use the target's saved program counter instead
578 * of the address parameter
579 * @param address Optionally used as the program counter.
580 * @param handle_breakpoints True iff breakpoints at the resumption PC
581 * should be skipped. (For example, maybe execution was stopped by
582 * such a breakpoint, in which case it would be counterprodutive to
583 * let it re-trigger.
584 * @param debug_execution False if all working areas allocated by OpenOCD
585 * should be released and/or restored to their original contents.
586 * (This would for example be true to run some downloaded "helper"
587 * algorithm code, which resides in one such working buffer and uses
588 * another for data storage.)
590 * @todo Resolve the ambiguity about what the "debug_execution" flag
591 * signifies. For example, Target implementations don't agree on how
592 * it relates to invalidation of the register cache, or to whether
593 * breakpoints and watchpoints should be enabled. (It would seem wrong
594 * to enable breakpoints when running downloaded "helper" algorithms
595 * (debug_execution true), since the breakpoints would be set to match
596 * target firmware being debugged, not the helper algorithm.... and
597 * enabling them could cause such helpers to malfunction (for example,
598 * by overwriting data with a breakpoint instruction. On the other
599 * hand the infrastructure for running such helpers might use this
600 * procedure but rely on hardware breakpoint to detect termination.)
602 int target_resume(struct target *target, int current, target_addr_t address,
603 int handle_breakpoints, int debug_execution)
605 int retval;
607 /* We can't poll until after examine */
608 if (!target_was_examined(target)) {
609 LOG_ERROR("Target not examined yet");
610 return ERROR_FAIL;
613 target_call_event_callbacks(target, TARGET_EVENT_RESUME_START);
615 /* note that resume *must* be asynchronous. The CPU can halt before
616 * we poll. The CPU can even halt at the current PC as a result of
617 * a software breakpoint being inserted by (a bug?) the application.
619 retval = target->type->resume(target, current, address, handle_breakpoints, debug_execution);
620 if (retval != ERROR_OK)
621 return retval;
623 target_call_event_callbacks(target, TARGET_EVENT_RESUME_END);
625 return retval;
628 static int target_process_reset(struct command_context *cmd_ctx, enum target_reset_mode reset_mode)
630 char buf[100];
631 int retval;
632 Jim_Nvp *n;
633 n = Jim_Nvp_value2name_simple(nvp_reset_modes, reset_mode);
634 if (n->name == NULL) {
635 LOG_ERROR("invalid reset mode");
636 return ERROR_FAIL;
639 struct target *target;
640 for (target = all_targets; target; target = target->next)
641 target_call_reset_callbacks(target, reset_mode);
643 /* disable polling during reset to make reset event scripts
644 * more predictable, i.e. dr/irscan & pathmove in events will
645 * not have JTAG operations injected into the middle of a sequence.
647 bool save_poll = jtag_poll_get_enabled();
649 jtag_poll_set_enabled(false);
651 sprintf(buf, "ocd_process_reset %s", n->name);
652 retval = Jim_Eval(cmd_ctx->interp, buf);
654 jtag_poll_set_enabled(save_poll);
656 if (retval != JIM_OK) {
657 Jim_MakeErrorMessage(cmd_ctx->interp);
658 command_print(NULL, "%s\n", Jim_GetString(Jim_GetResult(cmd_ctx->interp), NULL));
659 return ERROR_FAIL;
662 /* We want any events to be processed before the prompt */
663 retval = target_call_timer_callbacks_now();
665 for (target = all_targets; target; target = target->next) {
666 target->type->check_reset(target);
667 target->running_alg = false;
670 return retval;
673 static int identity_virt2phys(struct target *target,
674 target_addr_t virtual, target_addr_t *physical)
676 *physical = virtual;
677 return ERROR_OK;
680 static int no_mmu(struct target *target, int *enabled)
682 *enabled = 0;
683 return ERROR_OK;
686 static int default_examine(struct target *target)
688 target_set_examined(target);
689 return ERROR_OK;
692 /* no check by default */
693 static int default_check_reset(struct target *target)
695 return ERROR_OK;
698 int target_examine_one(struct target *target)
700 target_call_event_callbacks(target, TARGET_EVENT_EXAMINE_START);
702 int retval = target->type->examine(target);
703 if (retval != ERROR_OK)
704 return retval;
706 target_call_event_callbacks(target, TARGET_EVENT_EXAMINE_END);
708 return ERROR_OK;
711 static int jtag_enable_callback(enum jtag_event event, void *priv)
713 struct target *target = priv;
715 if (event != JTAG_TAP_EVENT_ENABLE || !target->tap->enabled)
716 return ERROR_OK;
718 jtag_unregister_event_callback(jtag_enable_callback, target);
720 return target_examine_one(target);
723 /* Targets that correctly implement init + examine, i.e.
724 * no communication with target during init:
726 * XScale
728 int target_examine(void)
730 int retval = ERROR_OK;
731 struct target *target;
733 for (target = all_targets; target; target = target->next) {
734 /* defer examination, but don't skip it */
735 if (!target->tap->enabled) {
736 jtag_register_event_callback(jtag_enable_callback,
737 target);
738 continue;
741 if (target->defer_examine)
742 continue;
744 retval = target_examine_one(target);
745 if (retval != ERROR_OK)
746 return retval;
748 return retval;
751 const char *target_type_name(struct target *target)
753 return target->type->name;
756 static int target_soft_reset_halt(struct target *target)
758 if (!target_was_examined(target)) {
759 LOG_ERROR("Target not examined yet");
760 return ERROR_FAIL;
762 if (!target->type->soft_reset_halt) {
763 LOG_ERROR("Target %s does not support soft_reset_halt",
764 target_name(target));
765 return ERROR_FAIL;
767 return target->type->soft_reset_halt(target);
771 * Downloads a target-specific native code algorithm to the target,
772 * and executes it. * Note that some targets may need to set up, enable,
773 * and tear down a breakpoint (hard or * soft) to detect algorithm
774 * termination, while others may support lower overhead schemes where
775 * soft breakpoints embedded in the algorithm automatically terminate the
776 * algorithm.
778 * @param target used to run the algorithm
779 * @param arch_info target-specific description of the algorithm.
781 int target_run_algorithm(struct target *target,
782 int num_mem_params, struct mem_param *mem_params,
783 int num_reg_params, struct reg_param *reg_param,
784 uint32_t entry_point, uint32_t exit_point,
785 int timeout_ms, void *arch_info)
787 int retval = ERROR_FAIL;
789 if (!target_was_examined(target)) {
790 LOG_ERROR("Target not examined yet");
791 goto done;
793 if (!target->type->run_algorithm) {
794 LOG_ERROR("Target type '%s' does not support %s",
795 target_type_name(target), __func__);
796 goto done;
799 target->running_alg = true;
800 retval = target->type->run_algorithm(target,
801 num_mem_params, mem_params,
802 num_reg_params, reg_param,
803 entry_point, exit_point, timeout_ms, arch_info);
804 target->running_alg = false;
806 done:
807 return retval;
811 * Downloads a target-specific native code algorithm to the target,
812 * executes and leaves it running.
814 * @param target used to run the algorithm
815 * @param arch_info target-specific description of the algorithm.
817 int target_start_algorithm(struct target *target,
818 int num_mem_params, struct mem_param *mem_params,
819 int num_reg_params, struct reg_param *reg_params,
820 uint32_t entry_point, uint32_t exit_point,
821 void *arch_info)
823 int retval = ERROR_FAIL;
825 if (!target_was_examined(target)) {
826 LOG_ERROR("Target not examined yet");
827 goto done;
829 if (!target->type->start_algorithm) {
830 LOG_ERROR("Target type '%s' does not support %s",
831 target_type_name(target), __func__);
832 goto done;
834 if (target->running_alg) {
835 LOG_ERROR("Target is already running an algorithm");
836 goto done;
839 target->running_alg = true;
840 retval = target->type->start_algorithm(target,
841 num_mem_params, mem_params,
842 num_reg_params, reg_params,
843 entry_point, exit_point, arch_info);
845 done:
846 return retval;
850 * Waits for an algorithm started with target_start_algorithm() to complete.
852 * @param target used to run the algorithm
853 * @param arch_info target-specific description of the algorithm.
855 int target_wait_algorithm(struct target *target,
856 int num_mem_params, struct mem_param *mem_params,
857 int num_reg_params, struct reg_param *reg_params,
858 uint32_t exit_point, int timeout_ms,
859 void *arch_info)
861 int retval = ERROR_FAIL;
863 if (!target->type->wait_algorithm) {
864 LOG_ERROR("Target type '%s' does not support %s",
865 target_type_name(target), __func__);
866 goto done;
868 if (!target->running_alg) {
869 LOG_ERROR("Target is not running an algorithm");
870 goto done;
873 retval = target->type->wait_algorithm(target,
874 num_mem_params, mem_params,
875 num_reg_params, reg_params,
876 exit_point, timeout_ms, arch_info);
877 if (retval != ERROR_TARGET_TIMEOUT)
878 target->running_alg = false;
880 done:
881 return retval;
885 * Executes a target-specific native code algorithm in the target.
886 * It differs from target_run_algorithm in that the algorithm is asynchronous.
887 * Because of this it requires an compliant algorithm:
888 * see contrib/loaders/flash/stm32f1x.S for example.
890 * @param target used to run the algorithm
893 int target_run_flash_async_algorithm(struct target *target,
894 const uint8_t *buffer, uint32_t count, int block_size,
895 int num_mem_params, struct mem_param *mem_params,
896 int num_reg_params, struct reg_param *reg_params,
897 uint32_t buffer_start, uint32_t buffer_size,
898 uint32_t entry_point, uint32_t exit_point, void *arch_info)
900 int retval;
901 int timeout = 0;
903 const uint8_t *buffer_orig = buffer;
905 /* Set up working area. First word is write pointer, second word is read pointer,
906 * rest is fifo data area. */
907 uint32_t wp_addr = buffer_start;
908 uint32_t rp_addr = buffer_start + 4;
909 uint32_t fifo_start_addr = buffer_start + 8;
910 uint32_t fifo_end_addr = buffer_start + buffer_size;
912 uint32_t wp = fifo_start_addr;
913 uint32_t rp = fifo_start_addr;
915 /* validate block_size is 2^n */
916 assert(!block_size || !(block_size & (block_size - 1)));
918 retval = target_write_u32(target, wp_addr, wp);
919 if (retval != ERROR_OK)
920 return retval;
921 retval = target_write_u32(target, rp_addr, rp);
922 if (retval != ERROR_OK)
923 return retval;
925 /* Start up algorithm on target and let it idle while writing the first chunk */
926 retval = target_start_algorithm(target, num_mem_params, mem_params,
927 num_reg_params, reg_params,
928 entry_point,
929 exit_point,
930 arch_info);
932 if (retval != ERROR_OK) {
933 LOG_ERROR("error starting target flash write algorithm");
934 return retval;
937 while (count > 0) {
939 retval = target_read_u32(target, rp_addr, &rp);
940 if (retval != ERROR_OK) {
941 LOG_ERROR("failed to get read pointer");
942 break;
945 LOG_DEBUG("offs 0x%zx count 0x%" PRIx32 " wp 0x%" PRIx32 " rp 0x%" PRIx32,
946 (size_t) (buffer - buffer_orig), count, wp, rp);
948 if (rp == 0) {
949 LOG_ERROR("flash write algorithm aborted by target");
950 retval = ERROR_FLASH_OPERATION_FAILED;
951 break;
954 if (((rp - fifo_start_addr) & (block_size - 1)) || rp < fifo_start_addr || rp >= fifo_end_addr) {
955 LOG_ERROR("corrupted fifo read pointer 0x%" PRIx32, rp);
956 break;
959 /* Count the number of bytes available in the fifo without
960 * crossing the wrap around. Make sure to not fill it completely,
961 * because that would make wp == rp and that's the empty condition. */
962 uint32_t thisrun_bytes;
963 if (rp > wp)
964 thisrun_bytes = rp - wp - block_size;
965 else if (rp > fifo_start_addr)
966 thisrun_bytes = fifo_end_addr - wp;
967 else
968 thisrun_bytes = fifo_end_addr - wp - block_size;
970 if (thisrun_bytes == 0) {
971 /* Throttle polling a bit if transfer is (much) faster than flash
972 * programming. The exact delay shouldn't matter as long as it's
973 * less than buffer size / flash speed. This is very unlikely to
974 * run when using high latency connections such as USB. */
975 alive_sleep(10);
977 /* to stop an infinite loop on some targets check and increment a timeout
978 * this issue was observed on a stellaris using the new ICDI interface */
979 if (timeout++ >= 500) {
980 LOG_ERROR("timeout waiting for algorithm, a target reset is recommended");
981 return ERROR_FLASH_OPERATION_FAILED;
983 continue;
986 /* reset our timeout */
987 timeout = 0;
989 /* Limit to the amount of data we actually want to write */
990 if (thisrun_bytes > count * block_size)
991 thisrun_bytes = count * block_size;
993 /* Write data to fifo */
994 retval = target_write_buffer(target, wp, thisrun_bytes, buffer);
995 if (retval != ERROR_OK)
996 break;
998 /* Update counters and wrap write pointer */
999 buffer += thisrun_bytes;
1000 count -= thisrun_bytes / block_size;
1001 wp += thisrun_bytes;
1002 if (wp >= fifo_end_addr)
1003 wp = fifo_start_addr;
1005 /* Store updated write pointer to target */
1006 retval = target_write_u32(target, wp_addr, wp);
1007 if (retval != ERROR_OK)
1008 break;
1011 if (retval != ERROR_OK) {
1012 /* abort flash write algorithm on target */
1013 target_write_u32(target, wp_addr, 0);
1016 int retval2 = target_wait_algorithm(target, num_mem_params, mem_params,
1017 num_reg_params, reg_params,
1018 exit_point,
1019 10000,
1020 arch_info);
1022 if (retval2 != ERROR_OK) {
1023 LOG_ERROR("error waiting for target flash write algorithm");
1024 retval = retval2;
1027 if (retval == ERROR_OK) {
1028 /* check if algorithm set rp = 0 after fifo writer loop finished */
1029 retval = target_read_u32(target, rp_addr, &rp);
1030 if (retval == ERROR_OK && rp == 0) {
1031 LOG_ERROR("flash write algorithm aborted by target");
1032 retval = ERROR_FLASH_OPERATION_FAILED;
1036 return retval;
1039 int target_read_memory(struct target *target,
1040 target_addr_t address, uint32_t size, uint32_t count, uint8_t *buffer)
1042 if (!target_was_examined(target)) {
1043 LOG_ERROR("Target not examined yet");
1044 return ERROR_FAIL;
1046 if (!target->type->read_memory) {
1047 LOG_ERROR("Target %s doesn't support read_memory", target_name(target));
1048 return ERROR_FAIL;
1050 return target->type->read_memory(target, address, size, count, buffer);
1053 int target_read_phys_memory(struct target *target,
1054 target_addr_t address, uint32_t size, uint32_t count, uint8_t *buffer)
1056 if (!target_was_examined(target)) {
1057 LOG_ERROR("Target not examined yet");
1058 return ERROR_FAIL;
1060 if (!target->type->read_phys_memory) {
1061 LOG_ERROR("Target %s doesn't support read_phys_memory", target_name(target));
1062 return ERROR_FAIL;
1064 return target->type->read_phys_memory(target, address, size, count, buffer);
1067 int target_write_memory(struct target *target,
1068 target_addr_t address, uint32_t size, uint32_t count, const uint8_t *buffer)
1070 if (!target_was_examined(target)) {
1071 LOG_ERROR("Target not examined yet");
1072 return ERROR_FAIL;
1074 if (!target->type->write_memory) {
1075 LOG_ERROR("Target %s doesn't support write_memory", target_name(target));
1076 return ERROR_FAIL;
1078 return target->type->write_memory(target, address, size, count, buffer);
1081 int target_write_phys_memory(struct target *target,
1082 target_addr_t address, uint32_t size, uint32_t count, const uint8_t *buffer)
1084 if (!target_was_examined(target)) {
1085 LOG_ERROR("Target not examined yet");
1086 return ERROR_FAIL;
1088 if (!target->type->write_phys_memory) {
1089 LOG_ERROR("Target %s doesn't support write_phys_memory", target_name(target));
1090 return ERROR_FAIL;
1092 return target->type->write_phys_memory(target, address, size, count, buffer);
1095 int target_add_breakpoint(struct target *target,
1096 struct breakpoint *breakpoint)
1098 if ((target->state != TARGET_HALTED) && (breakpoint->type != BKPT_HARD)) {
1099 LOG_WARNING("target %s is not halted (add breakpoint)", target_name(target));
1100 return ERROR_TARGET_NOT_HALTED;
1102 return target->type->add_breakpoint(target, breakpoint);
1105 int target_add_context_breakpoint(struct target *target,
1106 struct breakpoint *breakpoint)
1108 if (target->state != TARGET_HALTED) {
1109 LOG_WARNING("target %s is not halted (add context breakpoint)", target_name(target));
1110 return ERROR_TARGET_NOT_HALTED;
1112 return target->type->add_context_breakpoint(target, breakpoint);
1115 int target_add_hybrid_breakpoint(struct target *target,
1116 struct breakpoint *breakpoint)
1118 if (target->state != TARGET_HALTED) {
1119 LOG_WARNING("target %s is not halted (add hybrid breakpoint)", target_name(target));
1120 return ERROR_TARGET_NOT_HALTED;
1122 return target->type->add_hybrid_breakpoint(target, breakpoint);
1125 int target_remove_breakpoint(struct target *target,
1126 struct breakpoint *breakpoint)
1128 return target->type->remove_breakpoint(target, breakpoint);
1131 int target_add_watchpoint(struct target *target,
1132 struct watchpoint *watchpoint)
1134 if (target->state != TARGET_HALTED) {
1135 LOG_WARNING("target %s is not halted (add watchpoint)", target_name(target));
1136 return ERROR_TARGET_NOT_HALTED;
1138 return target->type->add_watchpoint(target, watchpoint);
1140 int target_remove_watchpoint(struct target *target,
1141 struct watchpoint *watchpoint)
1143 return target->type->remove_watchpoint(target, watchpoint);
1145 int target_hit_watchpoint(struct target *target,
1146 struct watchpoint **hit_watchpoint)
1148 if (target->state != TARGET_HALTED) {
1149 LOG_WARNING("target %s is not halted (hit watchpoint)", target->cmd_name);
1150 return ERROR_TARGET_NOT_HALTED;
1153 if (target->type->hit_watchpoint == NULL) {
1154 /* For backward compatible, if hit_watchpoint is not implemented,
1155 * return ERROR_FAIL such that gdb_server will not take the nonsense
1156 * information. */
1157 return ERROR_FAIL;
1160 return target->type->hit_watchpoint(target, hit_watchpoint);
1163 int target_get_gdb_reg_list(struct target *target,
1164 struct reg **reg_list[], int *reg_list_size,
1165 enum target_register_class reg_class)
1167 return target->type->get_gdb_reg_list(target, reg_list, reg_list_size, reg_class);
1169 int target_step(struct target *target,
1170 int current, target_addr_t address, int handle_breakpoints)
1172 return target->type->step(target, current, address, handle_breakpoints);
1175 int target_get_gdb_fileio_info(struct target *target, struct gdb_fileio_info *fileio_info)
1177 if (target->state != TARGET_HALTED) {
1178 LOG_WARNING("target %s is not halted (gdb fileio)", target->cmd_name);
1179 return ERROR_TARGET_NOT_HALTED;
1181 return target->type->get_gdb_fileio_info(target, fileio_info);
1184 int target_gdb_fileio_end(struct target *target, int retcode, int fileio_errno, bool ctrl_c)
1186 if (target->state != TARGET_HALTED) {
1187 LOG_WARNING("target %s is not halted (gdb fileio end)", target->cmd_name);
1188 return ERROR_TARGET_NOT_HALTED;
1190 return target->type->gdb_fileio_end(target, retcode, fileio_errno, ctrl_c);
1193 int target_profiling(struct target *target, uint32_t *samples,
1194 uint32_t max_num_samples, uint32_t *num_samples, uint32_t seconds)
1196 if (target->state != TARGET_HALTED) {
1197 LOG_WARNING("target %s is not halted (profiling)", target->cmd_name);
1198 return ERROR_TARGET_NOT_HALTED;
1200 return target->type->profiling(target, samples, max_num_samples,
1201 num_samples, seconds);
1205 * Reset the @c examined flag for the given target.
1206 * Pure paranoia -- targets are zeroed on allocation.
1208 static void target_reset_examined(struct target *target)
1210 target->examined = false;
1213 static int handle_target(void *priv);
1215 static int target_init_one(struct command_context *cmd_ctx,
1216 struct target *target)
1218 target_reset_examined(target);
1220 struct target_type *type = target->type;
1221 if (type->examine == NULL)
1222 type->examine = default_examine;
1224 if (type->check_reset == NULL)
1225 type->check_reset = default_check_reset;
1227 assert(type->init_target != NULL);
1229 int retval = type->init_target(cmd_ctx, target);
1230 if (ERROR_OK != retval) {
1231 LOG_ERROR("target '%s' init failed", target_name(target));
1232 return retval;
1235 /* Sanity-check MMU support ... stub in what we must, to help
1236 * implement it in stages, but warn if we need to do so.
1238 if (type->mmu) {
1239 if (type->virt2phys == NULL) {
1240 LOG_ERROR("type '%s' is missing virt2phys", type->name);
1241 type->virt2phys = identity_virt2phys;
1243 } else {
1244 /* Make sure no-MMU targets all behave the same: make no
1245 * distinction between physical and virtual addresses, and
1246 * ensure that virt2phys() is always an identity mapping.
1248 if (type->write_phys_memory || type->read_phys_memory || type->virt2phys)
1249 LOG_WARNING("type '%s' has bad MMU hooks", type->name);
1251 type->mmu = no_mmu;
1252 type->write_phys_memory = type->write_memory;
1253 type->read_phys_memory = type->read_memory;
1254 type->virt2phys = identity_virt2phys;
1257 if (target->type->read_buffer == NULL)
1258 target->type->read_buffer = target_read_buffer_default;
1260 if (target->type->write_buffer == NULL)
1261 target->type->write_buffer = target_write_buffer_default;
1263 if (target->type->get_gdb_fileio_info == NULL)
1264 target->type->get_gdb_fileio_info = target_get_gdb_fileio_info_default;
1266 if (target->type->gdb_fileio_end == NULL)
1267 target->type->gdb_fileio_end = target_gdb_fileio_end_default;
1269 if (target->type->profiling == NULL)
1270 target->type->profiling = target_profiling_default;
1272 return ERROR_OK;
1275 static int target_init(struct command_context *cmd_ctx)
1277 struct target *target;
1278 int retval;
1280 for (target = all_targets; target; target = target->next) {
1281 retval = target_init_one(cmd_ctx, target);
1282 if (ERROR_OK != retval)
1283 return retval;
1286 if (!all_targets)
1287 return ERROR_OK;
1289 retval = target_register_user_commands(cmd_ctx);
1290 if (ERROR_OK != retval)
1291 return retval;
1293 retval = target_register_timer_callback(&handle_target,
1294 polling_interval, 1, cmd_ctx->interp);
1295 if (ERROR_OK != retval)
1296 return retval;
1298 return ERROR_OK;
1301 COMMAND_HANDLER(handle_target_init_command)
1303 int retval;
1305 if (CMD_ARGC != 0)
1306 return ERROR_COMMAND_SYNTAX_ERROR;
1308 static bool target_initialized;
1309 if (target_initialized) {
1310 LOG_INFO("'target init' has already been called");
1311 return ERROR_OK;
1313 target_initialized = true;
1315 retval = command_run_line(CMD_CTX, "init_targets");
1316 if (ERROR_OK != retval)
1317 return retval;
1319 retval = command_run_line(CMD_CTX, "init_target_events");
1320 if (ERROR_OK != retval)
1321 return retval;
1323 retval = command_run_line(CMD_CTX, "init_board");
1324 if (ERROR_OK != retval)
1325 return retval;
1327 LOG_DEBUG("Initializing targets...");
1328 return target_init(CMD_CTX);
1331 int target_register_event_callback(int (*callback)(struct target *target,
1332 enum target_event event, void *priv), void *priv)
1334 struct target_event_callback **callbacks_p = &target_event_callbacks;
1336 if (callback == NULL)
1337 return ERROR_COMMAND_SYNTAX_ERROR;
1339 if (*callbacks_p) {
1340 while ((*callbacks_p)->next)
1341 callbacks_p = &((*callbacks_p)->next);
1342 callbacks_p = &((*callbacks_p)->next);
1345 (*callbacks_p) = malloc(sizeof(struct target_event_callback));
1346 (*callbacks_p)->callback = callback;
1347 (*callbacks_p)->priv = priv;
1348 (*callbacks_p)->next = NULL;
1350 return ERROR_OK;
1353 int target_register_reset_callback(int (*callback)(struct target *target,
1354 enum target_reset_mode reset_mode, void *priv), void *priv)
1356 struct target_reset_callback *entry;
1358 if (callback == NULL)
1359 return ERROR_COMMAND_SYNTAX_ERROR;
1361 entry = malloc(sizeof(struct target_reset_callback));
1362 if (entry == NULL) {
1363 LOG_ERROR("error allocating buffer for reset callback entry");
1364 return ERROR_COMMAND_SYNTAX_ERROR;
1367 entry->callback = callback;
1368 entry->priv = priv;
1369 list_add(&entry->list, &target_reset_callback_list);
1372 return ERROR_OK;
1375 int target_register_trace_callback(int (*callback)(struct target *target,
1376 size_t len, uint8_t *data, void *priv), void *priv)
1378 struct target_trace_callback *entry;
1380 if (callback == NULL)
1381 return ERROR_COMMAND_SYNTAX_ERROR;
1383 entry = malloc(sizeof(struct target_trace_callback));
1384 if (entry == NULL) {
1385 LOG_ERROR("error allocating buffer for trace callback entry");
1386 return ERROR_COMMAND_SYNTAX_ERROR;
1389 entry->callback = callback;
1390 entry->priv = priv;
1391 list_add(&entry->list, &target_trace_callback_list);
1394 return ERROR_OK;
1397 int target_register_timer_callback(int (*callback)(void *priv), int time_ms, int periodic, void *priv)
1399 struct target_timer_callback **callbacks_p = &target_timer_callbacks;
1400 struct timeval now;
1402 if (callback == NULL)
1403 return ERROR_COMMAND_SYNTAX_ERROR;
1405 if (*callbacks_p) {
1406 while ((*callbacks_p)->next)
1407 callbacks_p = &((*callbacks_p)->next);
1408 callbacks_p = &((*callbacks_p)->next);
1411 (*callbacks_p) = malloc(sizeof(struct target_timer_callback));
1412 (*callbacks_p)->callback = callback;
1413 (*callbacks_p)->periodic = periodic;
1414 (*callbacks_p)->time_ms = time_ms;
1415 (*callbacks_p)->removed = false;
1417 gettimeofday(&now, NULL);
1418 (*callbacks_p)->when.tv_usec = now.tv_usec + (time_ms % 1000) * 1000;
1419 time_ms -= (time_ms % 1000);
1420 (*callbacks_p)->when.tv_sec = now.tv_sec + (time_ms / 1000);
1421 if ((*callbacks_p)->when.tv_usec > 1000000) {
1422 (*callbacks_p)->when.tv_usec = (*callbacks_p)->when.tv_usec - 1000000;
1423 (*callbacks_p)->when.tv_sec += 1;
1426 (*callbacks_p)->priv = priv;
1427 (*callbacks_p)->next = NULL;
1429 return ERROR_OK;
1432 int target_unregister_event_callback(int (*callback)(struct target *target,
1433 enum target_event event, void *priv), void *priv)
1435 struct target_event_callback **p = &target_event_callbacks;
1436 struct target_event_callback *c = target_event_callbacks;
1438 if (callback == NULL)
1439 return ERROR_COMMAND_SYNTAX_ERROR;
1441 while (c) {
1442 struct target_event_callback *next = c->next;
1443 if ((c->callback == callback) && (c->priv == priv)) {
1444 *p = next;
1445 free(c);
1446 return ERROR_OK;
1447 } else
1448 p = &(c->next);
1449 c = next;
1452 return ERROR_OK;
1455 int target_unregister_reset_callback(int (*callback)(struct target *target,
1456 enum target_reset_mode reset_mode, void *priv), void *priv)
1458 struct target_reset_callback *entry;
1460 if (callback == NULL)
1461 return ERROR_COMMAND_SYNTAX_ERROR;
1463 list_for_each_entry(entry, &target_reset_callback_list, list) {
1464 if (entry->callback == callback && entry->priv == priv) {
1465 list_del(&entry->list);
1466 free(entry);
1467 break;
1471 return ERROR_OK;
1474 int target_unregister_trace_callback(int (*callback)(struct target *target,
1475 size_t len, uint8_t *data, void *priv), void *priv)
1477 struct target_trace_callback *entry;
1479 if (callback == NULL)
1480 return ERROR_COMMAND_SYNTAX_ERROR;
1482 list_for_each_entry(entry, &target_trace_callback_list, list) {
1483 if (entry->callback == callback && entry->priv == priv) {
1484 list_del(&entry->list);
1485 free(entry);
1486 break;
1490 return ERROR_OK;
1493 int target_unregister_timer_callback(int (*callback)(void *priv), void *priv)
1495 if (callback == NULL)
1496 return ERROR_COMMAND_SYNTAX_ERROR;
1498 for (struct target_timer_callback *c = target_timer_callbacks;
1499 c; c = c->next) {
1500 if ((c->callback == callback) && (c->priv == priv)) {
1501 c->removed = true;
1502 return ERROR_OK;
1506 return ERROR_FAIL;
1509 int target_call_event_callbacks(struct target *target, enum target_event event)
1511 struct target_event_callback *callback = target_event_callbacks;
1512 struct target_event_callback *next_callback;
1514 if (event == TARGET_EVENT_HALTED) {
1515 /* execute early halted first */
1516 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
1519 LOG_DEBUG("target event %i (%s)", event,
1520 Jim_Nvp_value2name_simple(nvp_target_event, event)->name);
1522 target_handle_event(target, event);
1524 while (callback) {
1525 next_callback = callback->next;
1526 callback->callback(target, event, callback->priv);
1527 callback = next_callback;
1530 return ERROR_OK;
1533 int target_call_reset_callbacks(struct target *target, enum target_reset_mode reset_mode)
1535 struct target_reset_callback *callback;
1537 LOG_DEBUG("target reset %i (%s)", reset_mode,
1538 Jim_Nvp_value2name_simple(nvp_reset_modes, reset_mode)->name);
1540 list_for_each_entry(callback, &target_reset_callback_list, list)
1541 callback->callback(target, reset_mode, callback->priv);
1543 return ERROR_OK;
1546 int target_call_trace_callbacks(struct target *target, size_t len, uint8_t *data)
1548 struct target_trace_callback *callback;
1550 list_for_each_entry(callback, &target_trace_callback_list, list)
1551 callback->callback(target, len, data, callback->priv);
1553 return ERROR_OK;
1556 static int target_timer_callback_periodic_restart(
1557 struct target_timer_callback *cb, struct timeval *now)
1559 int time_ms = cb->time_ms;
1560 cb->when.tv_usec = now->tv_usec + (time_ms % 1000) * 1000;
1561 time_ms -= (time_ms % 1000);
1562 cb->when.tv_sec = now->tv_sec + time_ms / 1000;
1563 if (cb->when.tv_usec > 1000000) {
1564 cb->when.tv_usec = cb->when.tv_usec - 1000000;
1565 cb->when.tv_sec += 1;
1567 return ERROR_OK;
1570 static int target_call_timer_callback(struct target_timer_callback *cb,
1571 struct timeval *now)
1573 cb->callback(cb->priv);
1575 if (cb->periodic)
1576 return target_timer_callback_periodic_restart(cb, now);
1578 return target_unregister_timer_callback(cb->callback, cb->priv);
1581 static int target_call_timer_callbacks_check_time(int checktime)
1583 static bool callback_processing;
1585 /* Do not allow nesting */
1586 if (callback_processing)
1587 return ERROR_OK;
1589 callback_processing = true;
1591 keep_alive();
1593 struct timeval now;
1594 gettimeofday(&now, NULL);
1596 /* Store an address of the place containing a pointer to the
1597 * next item; initially, that's a standalone "root of the
1598 * list" variable. */
1599 struct target_timer_callback **callback = &target_timer_callbacks;
1600 while (*callback) {
1601 if ((*callback)->removed) {
1602 struct target_timer_callback *p = *callback;
1603 *callback = (*callback)->next;
1604 free(p);
1605 continue;
1608 bool call_it = (*callback)->callback &&
1609 ((!checktime && (*callback)->periodic) ||
1610 now.tv_sec > (*callback)->when.tv_sec ||
1611 (now.tv_sec == (*callback)->when.tv_sec &&
1612 now.tv_usec >= (*callback)->when.tv_usec));
1614 if (call_it)
1615 target_call_timer_callback(*callback, &now);
1617 callback = &(*callback)->next;
1620 callback_processing = false;
1621 return ERROR_OK;
1624 int target_call_timer_callbacks(void)
1626 return target_call_timer_callbacks_check_time(1);
1629 /* invoke periodic callbacks immediately */
1630 int target_call_timer_callbacks_now(void)
1632 return target_call_timer_callbacks_check_time(0);
1635 /* Prints the working area layout for debug purposes */
1636 static void print_wa_layout(struct target *target)
1638 struct working_area *c = target->working_areas;
1640 while (c) {
1641 LOG_DEBUG("%c%c " TARGET_ADDR_FMT "-" TARGET_ADDR_FMT " (%" PRIu32 " bytes)",
1642 c->backup ? 'b' : ' ', c->free ? ' ' : '*',
1643 c->address, c->address + c->size - 1, c->size);
1644 c = c->next;
1648 /* Reduce area to size bytes, create a new free area from the remaining bytes, if any. */
1649 static void target_split_working_area(struct working_area *area, uint32_t size)
1651 assert(area->free); /* Shouldn't split an allocated area */
1652 assert(size <= area->size); /* Caller should guarantee this */
1654 /* Split only if not already the right size */
1655 if (size < area->size) {
1656 struct working_area *new_wa = malloc(sizeof(*new_wa));
1658 if (new_wa == NULL)
1659 return;
1661 new_wa->next = area->next;
1662 new_wa->size = area->size - size;
1663 new_wa->address = area->address + size;
1664 new_wa->backup = NULL;
1665 new_wa->user = NULL;
1666 new_wa->free = true;
1668 area->next = new_wa;
1669 area->size = size;
1671 /* If backup memory was allocated to this area, it has the wrong size
1672 * now so free it and it will be reallocated if/when needed */
1673 if (area->backup) {
1674 free(area->backup);
1675 area->backup = NULL;
1680 /* Merge all adjacent free areas into one */
1681 static void target_merge_working_areas(struct target *target)
1683 struct working_area *c = target->working_areas;
1685 while (c && c->next) {
1686 assert(c->next->address == c->address + c->size); /* This is an invariant */
1688 /* Find two adjacent free areas */
1689 if (c->free && c->next->free) {
1690 /* Merge the last into the first */
1691 c->size += c->next->size;
1693 /* Remove the last */
1694 struct working_area *to_be_freed = c->next;
1695 c->next = c->next->next;
1696 if (to_be_freed->backup)
1697 free(to_be_freed->backup);
1698 free(to_be_freed);
1700 /* If backup memory was allocated to the remaining area, it's has
1701 * the wrong size now */
1702 if (c->backup) {
1703 free(c->backup);
1704 c->backup = NULL;
1706 } else {
1707 c = c->next;
1712 int target_alloc_working_area_try(struct target *target, uint32_t size, struct working_area **area)
1714 /* Reevaluate working area address based on MMU state*/
1715 if (target->working_areas == NULL) {
1716 int retval;
1717 int enabled;
1719 retval = target->type->mmu(target, &enabled);
1720 if (retval != ERROR_OK)
1721 return retval;
1723 if (!enabled) {
1724 if (target->working_area_phys_spec) {
1725 LOG_DEBUG("MMU disabled, using physical "
1726 "address for working memory " TARGET_ADDR_FMT,
1727 target->working_area_phys);
1728 target->working_area = target->working_area_phys;
1729 } else {
1730 LOG_ERROR("No working memory available. "
1731 "Specify -work-area-phys to target.");
1732 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1734 } else {
1735 if (target->working_area_virt_spec) {
1736 LOG_DEBUG("MMU enabled, using virtual "
1737 "address for working memory " TARGET_ADDR_FMT,
1738 target->working_area_virt);
1739 target->working_area = target->working_area_virt;
1740 } else {
1741 LOG_ERROR("No working memory available. "
1742 "Specify -work-area-virt to target.");
1743 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1747 /* Set up initial working area on first call */
1748 struct working_area *new_wa = malloc(sizeof(*new_wa));
1749 if (new_wa) {
1750 new_wa->next = NULL;
1751 new_wa->size = target->working_area_size & ~3UL; /* 4-byte align */
1752 new_wa->address = target->working_area;
1753 new_wa->backup = NULL;
1754 new_wa->user = NULL;
1755 new_wa->free = true;
1758 target->working_areas = new_wa;
1761 /* only allocate multiples of 4 byte */
1762 if (size % 4)
1763 size = (size + 3) & (~3UL);
1765 struct working_area *c = target->working_areas;
1767 /* Find the first large enough working area */
1768 while (c) {
1769 if (c->free && c->size >= size)
1770 break;
1771 c = c->next;
1774 if (c == NULL)
1775 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1777 /* Split the working area into the requested size */
1778 target_split_working_area(c, size);
1780 LOG_DEBUG("allocated new working area of %" PRIu32 " bytes at address " TARGET_ADDR_FMT,
1781 size, c->address);
1783 if (target->backup_working_area) {
1784 if (c->backup == NULL) {
1785 c->backup = malloc(c->size);
1786 if (c->backup == NULL)
1787 return ERROR_FAIL;
1790 int retval = target_read_memory(target, c->address, 4, c->size / 4, c->backup);
1791 if (retval != ERROR_OK)
1792 return retval;
1795 /* mark as used, and return the new (reused) area */
1796 c->free = false;
1797 *area = c;
1799 /* user pointer */
1800 c->user = area;
1802 print_wa_layout(target);
1804 return ERROR_OK;
1807 int target_alloc_working_area(struct target *target, uint32_t size, struct working_area **area)
1809 int retval;
1811 retval = target_alloc_working_area_try(target, size, area);
1812 if (retval == ERROR_TARGET_RESOURCE_NOT_AVAILABLE)
1813 LOG_WARNING("not enough working area available(requested %"PRIu32")", size);
1814 return retval;
1818 static int target_restore_working_area(struct target *target, struct working_area *area)
1820 int retval = ERROR_OK;
1822 if (target->backup_working_area && area->backup != NULL) {
1823 retval = target_write_memory(target, area->address, 4, area->size / 4, area->backup);
1824 if (retval != ERROR_OK)
1825 LOG_ERROR("failed to restore %" PRIu32 " bytes of working area at address " TARGET_ADDR_FMT,
1826 area->size, area->address);
1829 return retval;
1832 /* Restore the area's backup memory, if any, and return the area to the allocation pool */
1833 static int target_free_working_area_restore(struct target *target, struct working_area *area, int restore)
1835 int retval = ERROR_OK;
1837 if (area->free)
1838 return retval;
1840 if (restore) {
1841 retval = target_restore_working_area(target, area);
1842 /* REVISIT: Perhaps the area should be freed even if restoring fails. */
1843 if (retval != ERROR_OK)
1844 return retval;
1847 area->free = true;
1849 LOG_DEBUG("freed %" PRIu32 " bytes of working area at address " TARGET_ADDR_FMT,
1850 area->size, area->address);
1852 /* mark user pointer invalid */
1853 /* TODO: Is this really safe? It points to some previous caller's memory.
1854 * How could we know that the area pointer is still in that place and not
1855 * some other vital data? What's the purpose of this, anyway? */
1856 *area->user = NULL;
1857 area->user = NULL;
1859 target_merge_working_areas(target);
1861 print_wa_layout(target);
1863 return retval;
1866 int target_free_working_area(struct target *target, struct working_area *area)
1868 return target_free_working_area_restore(target, area, 1);
1871 static void target_destroy(struct target *target)
1873 if (target->type->deinit_target)
1874 target->type->deinit_target(target);
1876 free(target->type);
1877 free(target->trace_info);
1878 free(target->cmd_name);
1879 free(target);
1882 void target_quit(void)
1884 struct target_event_callback *pe = target_event_callbacks;
1885 while (pe) {
1886 struct target_event_callback *t = pe->next;
1887 free(pe);
1888 pe = t;
1890 target_event_callbacks = NULL;
1892 struct target_timer_callback *pt = target_timer_callbacks;
1893 while (pt) {
1894 struct target_timer_callback *t = pt->next;
1895 free(pt);
1896 pt = t;
1898 target_timer_callbacks = NULL;
1900 for (struct target *target = all_targets; target;) {
1901 struct target *tmp;
1903 tmp = target->next;
1904 target_destroy(target);
1905 target = tmp;
1908 all_targets = NULL;
1911 /* free resources and restore memory, if restoring memory fails,
1912 * free up resources anyway
1914 static void target_free_all_working_areas_restore(struct target *target, int restore)
1916 struct working_area *c = target->working_areas;
1918 LOG_DEBUG("freeing all working areas");
1920 /* Loop through all areas, restoring the allocated ones and marking them as free */
1921 while (c) {
1922 if (!c->free) {
1923 if (restore)
1924 target_restore_working_area(target, c);
1925 c->free = true;
1926 *c->user = NULL; /* Same as above */
1927 c->user = NULL;
1929 c = c->next;
1932 /* Run a merge pass to combine all areas into one */
1933 target_merge_working_areas(target);
1935 print_wa_layout(target);
1938 void target_free_all_working_areas(struct target *target)
1940 target_free_all_working_areas_restore(target, 1);
1943 /* Find the largest number of bytes that can be allocated */
1944 uint32_t target_get_working_area_avail(struct target *target)
1946 struct working_area *c = target->working_areas;
1947 uint32_t max_size = 0;
1949 if (c == NULL)
1950 return target->working_area_size;
1952 while (c) {
1953 if (c->free && max_size < c->size)
1954 max_size = c->size;
1956 c = c->next;
1959 return max_size;
1962 int target_arch_state(struct target *target)
1964 int retval;
1965 if (target == NULL) {
1966 LOG_WARNING("No target has been configured");
1967 return ERROR_OK;
1970 if (target->state != TARGET_HALTED)
1971 return ERROR_OK;
1973 retval = target->type->arch_state(target);
1974 return retval;
1977 static int target_get_gdb_fileio_info_default(struct target *target,
1978 struct gdb_fileio_info *fileio_info)
1980 /* If target does not support semi-hosting function, target
1981 has no need to provide .get_gdb_fileio_info callback.
1982 It just return ERROR_FAIL and gdb_server will return "Txx"
1983 as target halted every time. */
1984 return ERROR_FAIL;
1987 static int target_gdb_fileio_end_default(struct target *target,
1988 int retcode, int fileio_errno, bool ctrl_c)
1990 return ERROR_OK;
1993 static int target_profiling_default(struct target *target, uint32_t *samples,
1994 uint32_t max_num_samples, uint32_t *num_samples, uint32_t seconds)
1996 struct timeval timeout, now;
1998 gettimeofday(&timeout, NULL);
1999 timeval_add_time(&timeout, seconds, 0);
2001 LOG_INFO("Starting profiling. Halting and resuming the"
2002 " target as often as we can...");
2004 uint32_t sample_count = 0;
2005 /* hopefully it is safe to cache! We want to stop/restart as quickly as possible. */
2006 struct reg *reg = register_get_by_name(target->reg_cache, "pc", 1);
2008 int retval = ERROR_OK;
2009 for (;;) {
2010 target_poll(target);
2011 if (target->state == TARGET_HALTED) {
2012 uint32_t t = buf_get_u32(reg->value, 0, 32);
2013 samples[sample_count++] = t;
2014 /* current pc, addr = 0, do not handle breakpoints, not debugging */
2015 retval = target_resume(target, 1, 0, 0, 0);
2016 target_poll(target);
2017 alive_sleep(10); /* sleep 10ms, i.e. <100 samples/second. */
2018 } else if (target->state == TARGET_RUNNING) {
2019 /* We want to quickly sample the PC. */
2020 retval = target_halt(target);
2021 } else {
2022 LOG_INFO("Target not halted or running");
2023 retval = ERROR_OK;
2024 break;
2027 if (retval != ERROR_OK)
2028 break;
2030 gettimeofday(&now, NULL);
2031 if ((sample_count >= max_num_samples) ||
2032 ((now.tv_sec >= timeout.tv_sec) && (now.tv_usec >= timeout.tv_usec))) {
2033 LOG_INFO("Profiling completed. %" PRIu32 " samples.", sample_count);
2034 break;
2038 *num_samples = sample_count;
2039 return retval;
2042 /* Single aligned words are guaranteed to use 16 or 32 bit access
2043 * mode respectively, otherwise data is handled as quickly as
2044 * possible
2046 int target_write_buffer(struct target *target, target_addr_t address, uint32_t size, const uint8_t *buffer)
2048 LOG_DEBUG("writing buffer of %" PRIi32 " byte at " TARGET_ADDR_FMT,
2049 size, address);
2051 if (!target_was_examined(target)) {
2052 LOG_ERROR("Target not examined yet");
2053 return ERROR_FAIL;
2056 if (size == 0)
2057 return ERROR_OK;
2059 if ((address + size - 1) < address) {
2060 /* GDB can request this when e.g. PC is 0xfffffffc */
2061 LOG_ERROR("address + size wrapped (" TARGET_ADDR_FMT ", 0x%08" PRIx32 ")",
2062 address,
2063 size);
2064 return ERROR_FAIL;
2067 return target->type->write_buffer(target, address, size, buffer);
2070 static int target_write_buffer_default(struct target *target,
2071 target_addr_t address, uint32_t count, const uint8_t *buffer)
2073 uint32_t size;
2075 /* Align up to maximum 4 bytes. The loop condition makes sure the next pass
2076 * will have something to do with the size we leave to it. */
2077 for (size = 1; size < 4 && count >= size * 2 + (address & size); size *= 2) {
2078 if (address & size) {
2079 int retval = target_write_memory(target, address, size, 1, buffer);
2080 if (retval != ERROR_OK)
2081 return retval;
2082 address += size;
2083 count -= size;
2084 buffer += size;
2088 /* Write the data with as large access size as possible. */
2089 for (; size > 0; size /= 2) {
2090 uint32_t aligned = count - count % size;
2091 if (aligned > 0) {
2092 int retval = target_write_memory(target, address, size, aligned / size, buffer);
2093 if (retval != ERROR_OK)
2094 return retval;
2095 address += aligned;
2096 count -= aligned;
2097 buffer += aligned;
2101 return ERROR_OK;
2104 /* Single aligned words are guaranteed to use 16 or 32 bit access
2105 * mode respectively, otherwise data is handled as quickly as
2106 * possible
2108 int target_read_buffer(struct target *target, target_addr_t address, uint32_t size, uint8_t *buffer)
2110 LOG_DEBUG("reading buffer of %" PRIi32 " byte at " TARGET_ADDR_FMT,
2111 size, address);
2113 if (!target_was_examined(target)) {
2114 LOG_ERROR("Target not examined yet");
2115 return ERROR_FAIL;
2118 if (size == 0)
2119 return ERROR_OK;
2121 if ((address + size - 1) < address) {
2122 /* GDB can request this when e.g. PC is 0xfffffffc */
2123 LOG_ERROR("address + size wrapped (" TARGET_ADDR_FMT ", 0x%08" PRIx32 ")",
2124 address,
2125 size);
2126 return ERROR_FAIL;
2129 return target->type->read_buffer(target, address, size, buffer);
2132 static int target_read_buffer_default(struct target *target, target_addr_t address, uint32_t count, uint8_t *buffer)
2134 uint32_t size;
2136 /* Align up to maximum 4 bytes. The loop condition makes sure the next pass
2137 * will have something to do with the size we leave to it. */
2138 for (size = 1; size < 4 && count >= size * 2 + (address & size); size *= 2) {
2139 if (address & size) {
2140 int retval = target_read_memory(target, address, size, 1, buffer);
2141 if (retval != ERROR_OK)
2142 return retval;
2143 address += size;
2144 count -= size;
2145 buffer += size;
2149 /* Read the data with as large access size as possible. */
2150 for (; size > 0; size /= 2) {
2151 uint32_t aligned = count - count % size;
2152 if (aligned > 0) {
2153 int retval = target_read_memory(target, address, size, aligned / size, buffer);
2154 if (retval != ERROR_OK)
2155 return retval;
2156 address += aligned;
2157 count -= aligned;
2158 buffer += aligned;
2162 return ERROR_OK;
2165 int target_checksum_memory(struct target *target, target_addr_t address, uint32_t size, uint32_t* crc)
2167 uint8_t *buffer;
2168 int retval;
2169 uint32_t i;
2170 uint32_t checksum = 0;
2171 if (!target_was_examined(target)) {
2172 LOG_ERROR("Target not examined yet");
2173 return ERROR_FAIL;
2176 retval = target->type->checksum_memory(target, address, size, &checksum);
2177 if (retval != ERROR_OK) {
2178 buffer = malloc(size);
2179 if (buffer == NULL) {
2180 LOG_ERROR("error allocating buffer for section (%" PRId32 " bytes)", size);
2181 return ERROR_COMMAND_SYNTAX_ERROR;
2183 retval = target_read_buffer(target, address, size, buffer);
2184 if (retval != ERROR_OK) {
2185 free(buffer);
2186 return retval;
2189 /* convert to target endianness */
2190 for (i = 0; i < (size/sizeof(uint32_t)); i++) {
2191 uint32_t target_data;
2192 target_data = target_buffer_get_u32(target, &buffer[i*sizeof(uint32_t)]);
2193 target_buffer_set_u32(target, &buffer[i*sizeof(uint32_t)], target_data);
2196 retval = image_calculate_checksum(buffer, size, &checksum);
2197 free(buffer);
2200 *crc = checksum;
2202 return retval;
2205 int target_blank_check_memory(struct target *target, target_addr_t address, uint32_t size, uint32_t* blank,
2206 uint8_t erased_value)
2208 int retval;
2209 if (!target_was_examined(target)) {
2210 LOG_ERROR("Target not examined yet");
2211 return ERROR_FAIL;
2214 if (target->type->blank_check_memory == 0)
2215 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
2217 retval = target->type->blank_check_memory(target, address, size, blank, erased_value);
2219 return retval;
2222 int target_read_u64(struct target *target, target_addr_t address, uint64_t *value)
2224 uint8_t value_buf[8];
2225 if (!target_was_examined(target)) {
2226 LOG_ERROR("Target not examined yet");
2227 return ERROR_FAIL;
2230 int retval = target_read_memory(target, address, 8, 1, value_buf);
2232 if (retval == ERROR_OK) {
2233 *value = target_buffer_get_u64(target, value_buf);
2234 LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%16.16" PRIx64 "",
2235 address,
2236 *value);
2237 } else {
2238 *value = 0x0;
2239 LOG_DEBUG("address: " TARGET_ADDR_FMT " failed",
2240 address);
2243 return retval;
2246 int target_read_u32(struct target *target, target_addr_t address, uint32_t *value)
2248 uint8_t value_buf[4];
2249 if (!target_was_examined(target)) {
2250 LOG_ERROR("Target not examined yet");
2251 return ERROR_FAIL;
2254 int retval = target_read_memory(target, address, 4, 1, value_buf);
2256 if (retval == ERROR_OK) {
2257 *value = target_buffer_get_u32(target, value_buf);
2258 LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%8.8" PRIx32 "",
2259 address,
2260 *value);
2261 } else {
2262 *value = 0x0;
2263 LOG_DEBUG("address: " TARGET_ADDR_FMT " failed",
2264 address);
2267 return retval;
2270 int target_read_u16(struct target *target, target_addr_t address, uint16_t *value)
2272 uint8_t value_buf[2];
2273 if (!target_was_examined(target)) {
2274 LOG_ERROR("Target not examined yet");
2275 return ERROR_FAIL;
2278 int retval = target_read_memory(target, address, 2, 1, value_buf);
2280 if (retval == ERROR_OK) {
2281 *value = target_buffer_get_u16(target, value_buf);
2282 LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%4.4" PRIx16,
2283 address,
2284 *value);
2285 } else {
2286 *value = 0x0;
2287 LOG_DEBUG("address: " TARGET_ADDR_FMT " failed",
2288 address);
2291 return retval;
2294 int target_read_u8(struct target *target, target_addr_t address, uint8_t *value)
2296 if (!target_was_examined(target)) {
2297 LOG_ERROR("Target not examined yet");
2298 return ERROR_FAIL;
2301 int retval = target_read_memory(target, address, 1, 1, value);
2303 if (retval == ERROR_OK) {
2304 LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%2.2" PRIx8,
2305 address,
2306 *value);
2307 } else {
2308 *value = 0x0;
2309 LOG_DEBUG("address: " TARGET_ADDR_FMT " failed",
2310 address);
2313 return retval;
2316 int target_write_u64(struct target *target, target_addr_t address, uint64_t value)
2318 int retval;
2319 uint8_t value_buf[8];
2320 if (!target_was_examined(target)) {
2321 LOG_ERROR("Target not examined yet");
2322 return ERROR_FAIL;
2325 LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%16.16" PRIx64 "",
2326 address,
2327 value);
2329 target_buffer_set_u64(target, value_buf, value);
2330 retval = target_write_memory(target, address, 8, 1, value_buf);
2331 if (retval != ERROR_OK)
2332 LOG_DEBUG("failed: %i", retval);
2334 return retval;
2337 int target_write_u32(struct target *target, target_addr_t address, uint32_t value)
2339 int retval;
2340 uint8_t value_buf[4];
2341 if (!target_was_examined(target)) {
2342 LOG_ERROR("Target not examined yet");
2343 return ERROR_FAIL;
2346 LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%8.8" PRIx32 "",
2347 address,
2348 value);
2350 target_buffer_set_u32(target, value_buf, value);
2351 retval = target_write_memory(target, address, 4, 1, value_buf);
2352 if (retval != ERROR_OK)
2353 LOG_DEBUG("failed: %i", retval);
2355 return retval;
2358 int target_write_u16(struct target *target, target_addr_t address, uint16_t value)
2360 int retval;
2361 uint8_t value_buf[2];
2362 if (!target_was_examined(target)) {
2363 LOG_ERROR("Target not examined yet");
2364 return ERROR_FAIL;
2367 LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%8.8" PRIx16,
2368 address,
2369 value);
2371 target_buffer_set_u16(target, value_buf, value);
2372 retval = target_write_memory(target, address, 2, 1, value_buf);
2373 if (retval != ERROR_OK)
2374 LOG_DEBUG("failed: %i", retval);
2376 return retval;
2379 int target_write_u8(struct target *target, target_addr_t address, uint8_t value)
2381 int retval;
2382 if (!target_was_examined(target)) {
2383 LOG_ERROR("Target not examined yet");
2384 return ERROR_FAIL;
2387 LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%2.2" PRIx8,
2388 address, value);
2390 retval = target_write_memory(target, address, 1, 1, &value);
2391 if (retval != ERROR_OK)
2392 LOG_DEBUG("failed: %i", retval);
2394 return retval;
2397 int target_write_phys_u64(struct target *target, target_addr_t address, uint64_t value)
2399 int retval;
2400 uint8_t value_buf[8];
2401 if (!target_was_examined(target)) {
2402 LOG_ERROR("Target not examined yet");
2403 return ERROR_FAIL;
2406 LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%16.16" PRIx64 "",
2407 address,
2408 value);
2410 target_buffer_set_u64(target, value_buf, value);
2411 retval = target_write_phys_memory(target, address, 8, 1, value_buf);
2412 if (retval != ERROR_OK)
2413 LOG_DEBUG("failed: %i", retval);
2415 return retval;
2418 int target_write_phys_u32(struct target *target, target_addr_t address, uint32_t value)
2420 int retval;
2421 uint8_t value_buf[4];
2422 if (!target_was_examined(target)) {
2423 LOG_ERROR("Target not examined yet");
2424 return ERROR_FAIL;
2427 LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%8.8" PRIx32 "",
2428 address,
2429 value);
2431 target_buffer_set_u32(target, value_buf, value);
2432 retval = target_write_phys_memory(target, address, 4, 1, value_buf);
2433 if (retval != ERROR_OK)
2434 LOG_DEBUG("failed: %i", retval);
2436 return retval;
2439 int target_write_phys_u16(struct target *target, target_addr_t address, uint16_t value)
2441 int retval;
2442 uint8_t value_buf[2];
2443 if (!target_was_examined(target)) {
2444 LOG_ERROR("Target not examined yet");
2445 return ERROR_FAIL;
2448 LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%8.8" PRIx16,
2449 address,
2450 value);
2452 target_buffer_set_u16(target, value_buf, value);
2453 retval = target_write_phys_memory(target, address, 2, 1, value_buf);
2454 if (retval != ERROR_OK)
2455 LOG_DEBUG("failed: %i", retval);
2457 return retval;
2460 int target_write_phys_u8(struct target *target, target_addr_t address, uint8_t value)
2462 int retval;
2463 if (!target_was_examined(target)) {
2464 LOG_ERROR("Target not examined yet");
2465 return ERROR_FAIL;
2468 LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%2.2" PRIx8,
2469 address, value);
2471 retval = target_write_phys_memory(target, address, 1, 1, &value);
2472 if (retval != ERROR_OK)
2473 LOG_DEBUG("failed: %i", retval);
2475 return retval;
2478 static int find_target(struct command_context *cmd_ctx, const char *name)
2480 struct target *target = get_target(name);
2481 if (target == NULL) {
2482 LOG_ERROR("Target: %s is unknown, try one of:\n", name);
2483 return ERROR_FAIL;
2485 if (!target->tap->enabled) {
2486 LOG_USER("Target: TAP %s is disabled, "
2487 "can't be the current target\n",
2488 target->tap->dotted_name);
2489 return ERROR_FAIL;
2492 cmd_ctx->current_target = target->target_number;
2493 return ERROR_OK;
2497 COMMAND_HANDLER(handle_targets_command)
2499 int retval = ERROR_OK;
2500 if (CMD_ARGC == 1) {
2501 retval = find_target(CMD_CTX, CMD_ARGV[0]);
2502 if (retval == ERROR_OK) {
2503 /* we're done! */
2504 return retval;
2508 struct target *target = all_targets;
2509 command_print(CMD_CTX, " TargetName Type Endian TapName State ");
2510 command_print(CMD_CTX, "-- ------------------ ---------- ------ ------------------ ------------");
2511 while (target) {
2512 const char *state;
2513 char marker = ' ';
2515 if (target->tap->enabled)
2516 state = target_state_name(target);
2517 else
2518 state = "tap-disabled";
2520 if (CMD_CTX->current_target == target->target_number)
2521 marker = '*';
2523 /* keep columns lined up to match the headers above */
2524 command_print(CMD_CTX,
2525 "%2d%c %-18s %-10s %-6s %-18s %s",
2526 target->target_number,
2527 marker,
2528 target_name(target),
2529 target_type_name(target),
2530 Jim_Nvp_value2name_simple(nvp_target_endian,
2531 target->endianness)->name,
2532 target->tap->dotted_name,
2533 state);
2534 target = target->next;
2537 return retval;
2540 /* every 300ms we check for reset & powerdropout and issue a "reset halt" if so. */
2542 static int powerDropout;
2543 static int srstAsserted;
2545 static int runPowerRestore;
2546 static int runPowerDropout;
2547 static int runSrstAsserted;
2548 static int runSrstDeasserted;
2550 static int sense_handler(void)
2552 static int prevSrstAsserted;
2553 static int prevPowerdropout;
2555 int retval = jtag_power_dropout(&powerDropout);
2556 if (retval != ERROR_OK)
2557 return retval;
2559 int powerRestored;
2560 powerRestored = prevPowerdropout && !powerDropout;
2561 if (powerRestored)
2562 runPowerRestore = 1;
2564 int64_t current = timeval_ms();
2565 static int64_t lastPower;
2566 bool waitMore = lastPower + 2000 > current;
2567 if (powerDropout && !waitMore) {
2568 runPowerDropout = 1;
2569 lastPower = current;
2572 retval = jtag_srst_asserted(&srstAsserted);
2573 if (retval != ERROR_OK)
2574 return retval;
2576 int srstDeasserted;
2577 srstDeasserted = prevSrstAsserted && !srstAsserted;
2579 static int64_t lastSrst;
2580 waitMore = lastSrst + 2000 > current;
2581 if (srstDeasserted && !waitMore) {
2582 runSrstDeasserted = 1;
2583 lastSrst = current;
2586 if (!prevSrstAsserted && srstAsserted)
2587 runSrstAsserted = 1;
2589 prevSrstAsserted = srstAsserted;
2590 prevPowerdropout = powerDropout;
2592 if (srstDeasserted || powerRestored) {
2593 /* Other than logging the event we can't do anything here.
2594 * Issuing a reset is a particularly bad idea as we might
2595 * be inside a reset already.
2599 return ERROR_OK;
2602 /* process target state changes */
2603 static int handle_target(void *priv)
2605 Jim_Interp *interp = (Jim_Interp *)priv;
2606 int retval = ERROR_OK;
2608 if (!is_jtag_poll_safe()) {
2609 /* polling is disabled currently */
2610 return ERROR_OK;
2613 /* we do not want to recurse here... */
2614 static int recursive;
2615 if (!recursive) {
2616 recursive = 1;
2617 sense_handler();
2618 /* danger! running these procedures can trigger srst assertions and power dropouts.
2619 * We need to avoid an infinite loop/recursion here and we do that by
2620 * clearing the flags after running these events.
2622 int did_something = 0;
2623 if (runSrstAsserted) {
2624 LOG_INFO("srst asserted detected, running srst_asserted proc.");
2625 Jim_Eval(interp, "srst_asserted");
2626 did_something = 1;
2628 if (runSrstDeasserted) {
2629 Jim_Eval(interp, "srst_deasserted");
2630 did_something = 1;
2632 if (runPowerDropout) {
2633 LOG_INFO("Power dropout detected, running power_dropout proc.");
2634 Jim_Eval(interp, "power_dropout");
2635 did_something = 1;
2637 if (runPowerRestore) {
2638 Jim_Eval(interp, "power_restore");
2639 did_something = 1;
2642 if (did_something) {
2643 /* clear detect flags */
2644 sense_handler();
2647 /* clear action flags */
2649 runSrstAsserted = 0;
2650 runSrstDeasserted = 0;
2651 runPowerRestore = 0;
2652 runPowerDropout = 0;
2654 recursive = 0;
2657 /* Poll targets for state changes unless that's globally disabled.
2658 * Skip targets that are currently disabled.
2660 for (struct target *target = all_targets;
2661 is_jtag_poll_safe() && target;
2662 target = target->next) {
2664 if (!target_was_examined(target))
2665 continue;
2667 if (!target->tap->enabled)
2668 continue;
2670 if (target->backoff.times > target->backoff.count) {
2671 /* do not poll this time as we failed previously */
2672 target->backoff.count++;
2673 continue;
2675 target->backoff.count = 0;
2677 /* only poll target if we've got power and srst isn't asserted */
2678 if (!powerDropout && !srstAsserted) {
2679 /* polling may fail silently until the target has been examined */
2680 retval = target_poll(target);
2681 if (retval != ERROR_OK) {
2682 /* 100ms polling interval. Increase interval between polling up to 5000ms */
2683 if (target->backoff.times * polling_interval < 5000) {
2684 target->backoff.times *= 2;
2685 target->backoff.times++;
2688 /* Tell GDB to halt the debugger. This allows the user to
2689 * run monitor commands to handle the situation.
2691 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
2693 if (target->backoff.times > 0) {
2694 LOG_USER("Polling target %s failed, trying to reexamine", target_name(target));
2695 target_reset_examined(target);
2696 retval = target_examine_one(target);
2697 /* Target examination could have failed due to unstable connection,
2698 * but we set the examined flag anyway to repoll it later */
2699 if (retval != ERROR_OK) {
2700 target->examined = true;
2701 LOG_USER("Examination failed, GDB will be halted. Polling again in %dms",
2702 target->backoff.times * polling_interval);
2703 return retval;
2707 /* Since we succeeded, we reset backoff count */
2708 target->backoff.times = 0;
2712 return retval;
2715 COMMAND_HANDLER(handle_reg_command)
2717 struct target *target;
2718 struct reg *reg = NULL;
2719 unsigned count = 0;
2720 char *value;
2722 LOG_DEBUG("-");
2724 target = get_current_target(CMD_CTX);
2726 /* list all available registers for the current target */
2727 if (CMD_ARGC == 0) {
2728 struct reg_cache *cache = target->reg_cache;
2730 count = 0;
2731 while (cache) {
2732 unsigned i;
2734 command_print(CMD_CTX, "===== %s", cache->name);
2736 for (i = 0, reg = cache->reg_list;
2737 i < cache->num_regs;
2738 i++, reg++, count++) {
2739 /* only print cached values if they are valid */
2740 if (reg->valid) {
2741 value = buf_to_str(reg->value,
2742 reg->size, 16);
2743 command_print(CMD_CTX,
2744 "(%i) %s (/%" PRIu32 "): 0x%s%s",
2745 count, reg->name,
2746 reg->size, value,
2747 reg->dirty
2748 ? " (dirty)"
2749 : "");
2750 free(value);
2751 } else {
2752 command_print(CMD_CTX, "(%i) %s (/%" PRIu32 ")",
2753 count, reg->name,
2754 reg->size) ;
2757 cache = cache->next;
2760 return ERROR_OK;
2763 /* access a single register by its ordinal number */
2764 if ((CMD_ARGV[0][0] >= '0') && (CMD_ARGV[0][0] <= '9')) {
2765 unsigned num;
2766 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[0], num);
2768 struct reg_cache *cache = target->reg_cache;
2769 count = 0;
2770 while (cache) {
2771 unsigned i;
2772 for (i = 0; i < cache->num_regs; i++) {
2773 if (count++ == num) {
2774 reg = &cache->reg_list[i];
2775 break;
2778 if (reg)
2779 break;
2780 cache = cache->next;
2783 if (!reg) {
2784 command_print(CMD_CTX, "%i is out of bounds, the current target "
2785 "has only %i registers (0 - %i)", num, count, count - 1);
2786 return ERROR_OK;
2788 } else {
2789 /* access a single register by its name */
2790 reg = register_get_by_name(target->reg_cache, CMD_ARGV[0], 1);
2792 if (!reg) {
2793 command_print(CMD_CTX, "register %s not found in current target", CMD_ARGV[0]);
2794 return ERROR_OK;
2798 assert(reg != NULL); /* give clang a hint that we *know* reg is != NULL here */
2800 /* display a register */
2801 if ((CMD_ARGC == 1) || ((CMD_ARGC == 2) && !((CMD_ARGV[1][0] >= '0')
2802 && (CMD_ARGV[1][0] <= '9')))) {
2803 if ((CMD_ARGC == 2) && (strcmp(CMD_ARGV[1], "force") == 0))
2804 reg->valid = 0;
2806 if (reg->valid == 0)
2807 reg->type->get(reg);
2808 value = buf_to_str(reg->value, reg->size, 16);
2809 command_print(CMD_CTX, "%s (/%i): 0x%s", reg->name, (int)(reg->size), value);
2810 free(value);
2811 return ERROR_OK;
2814 /* set register value */
2815 if (CMD_ARGC == 2) {
2816 uint8_t *buf = malloc(DIV_ROUND_UP(reg->size, 8));
2817 if (buf == NULL)
2818 return ERROR_FAIL;
2819 str_to_buf(CMD_ARGV[1], strlen(CMD_ARGV[1]), buf, reg->size, 0);
2821 reg->type->set(reg, buf);
2823 value = buf_to_str(reg->value, reg->size, 16);
2824 command_print(CMD_CTX, "%s (/%i): 0x%s", reg->name, (int)(reg->size), value);
2825 free(value);
2827 free(buf);
2829 return ERROR_OK;
2832 return ERROR_COMMAND_SYNTAX_ERROR;
2835 COMMAND_HANDLER(handle_poll_command)
2837 int retval = ERROR_OK;
2838 struct target *target = get_current_target(CMD_CTX);
2840 if (CMD_ARGC == 0) {
2841 command_print(CMD_CTX, "background polling: %s",
2842 jtag_poll_get_enabled() ? "on" : "off");
2843 command_print(CMD_CTX, "TAP: %s (%s)",
2844 target->tap->dotted_name,
2845 target->tap->enabled ? "enabled" : "disabled");
2846 if (!target->tap->enabled)
2847 return ERROR_OK;
2848 retval = target_poll(target);
2849 if (retval != ERROR_OK)
2850 return retval;
2851 retval = target_arch_state(target);
2852 if (retval != ERROR_OK)
2853 return retval;
2854 } else if (CMD_ARGC == 1) {
2855 bool enable;
2856 COMMAND_PARSE_ON_OFF(CMD_ARGV[0], enable);
2857 jtag_poll_set_enabled(enable);
2858 } else
2859 return ERROR_COMMAND_SYNTAX_ERROR;
2861 return retval;
2864 COMMAND_HANDLER(handle_wait_halt_command)
2866 if (CMD_ARGC > 1)
2867 return ERROR_COMMAND_SYNTAX_ERROR;
2869 unsigned ms = DEFAULT_HALT_TIMEOUT;
2870 if (1 == CMD_ARGC) {
2871 int retval = parse_uint(CMD_ARGV[0], &ms);
2872 if (ERROR_OK != retval)
2873 return ERROR_COMMAND_SYNTAX_ERROR;
2876 struct target *target = get_current_target(CMD_CTX);
2877 return target_wait_state(target, TARGET_HALTED, ms);
2880 /* wait for target state to change. The trick here is to have a low
2881 * latency for short waits and not to suck up all the CPU time
2882 * on longer waits.
2884 * After 500ms, keep_alive() is invoked
2886 int target_wait_state(struct target *target, enum target_state state, int ms)
2888 int retval;
2889 int64_t then = 0, cur;
2890 bool once = true;
2892 for (;;) {
2893 retval = target_poll(target);
2894 if (retval != ERROR_OK)
2895 return retval;
2896 if (target->state == state)
2897 break;
2898 cur = timeval_ms();
2899 if (once) {
2900 once = false;
2901 then = timeval_ms();
2902 LOG_DEBUG("waiting for target %s...",
2903 Jim_Nvp_value2name_simple(nvp_target_state, state)->name);
2906 if (cur-then > 500)
2907 keep_alive();
2909 if ((cur-then) > ms) {
2910 LOG_ERROR("timed out while waiting for target %s",
2911 Jim_Nvp_value2name_simple(nvp_target_state, state)->name);
2912 return ERROR_FAIL;
2916 return ERROR_OK;
2919 COMMAND_HANDLER(handle_halt_command)
2921 LOG_DEBUG("-");
2923 struct target *target = get_current_target(CMD_CTX);
2924 int retval = target_halt(target);
2925 if (ERROR_OK != retval)
2926 return retval;
2928 if (CMD_ARGC == 1) {
2929 unsigned wait_local;
2930 retval = parse_uint(CMD_ARGV[0], &wait_local);
2931 if (ERROR_OK != retval)
2932 return ERROR_COMMAND_SYNTAX_ERROR;
2933 if (!wait_local)
2934 return ERROR_OK;
2937 return CALL_COMMAND_HANDLER(handle_wait_halt_command);
2940 COMMAND_HANDLER(handle_soft_reset_halt_command)
2942 struct target *target = get_current_target(CMD_CTX);
2944 LOG_USER("requesting target halt and executing a soft reset");
2946 target_soft_reset_halt(target);
2948 return ERROR_OK;
2951 COMMAND_HANDLER(handle_reset_command)
2953 if (CMD_ARGC > 1)
2954 return ERROR_COMMAND_SYNTAX_ERROR;
2956 enum target_reset_mode reset_mode = RESET_RUN;
2957 if (CMD_ARGC == 1) {
2958 const Jim_Nvp *n;
2959 n = Jim_Nvp_name2value_simple(nvp_reset_modes, CMD_ARGV[0]);
2960 if ((n->name == NULL) || (n->value == RESET_UNKNOWN))
2961 return ERROR_COMMAND_SYNTAX_ERROR;
2962 reset_mode = n->value;
2965 /* reset *all* targets */
2966 return target_process_reset(CMD_CTX, reset_mode);
2970 COMMAND_HANDLER(handle_resume_command)
2972 int current = 1;
2973 if (CMD_ARGC > 1)
2974 return ERROR_COMMAND_SYNTAX_ERROR;
2976 struct target *target = get_current_target(CMD_CTX);
2978 /* with no CMD_ARGV, resume from current pc, addr = 0,
2979 * with one arguments, addr = CMD_ARGV[0],
2980 * handle breakpoints, not debugging */
2981 target_addr_t addr = 0;
2982 if (CMD_ARGC == 1) {
2983 COMMAND_PARSE_ADDRESS(CMD_ARGV[0], addr);
2984 current = 0;
2987 return target_resume(target, current, addr, 1, 0);
2990 COMMAND_HANDLER(handle_step_command)
2992 if (CMD_ARGC > 1)
2993 return ERROR_COMMAND_SYNTAX_ERROR;
2995 LOG_DEBUG("-");
2997 /* with no CMD_ARGV, step from current pc, addr = 0,
2998 * with one argument addr = CMD_ARGV[0],
2999 * handle breakpoints, debugging */
3000 target_addr_t addr = 0;
3001 int current_pc = 1;
3002 if (CMD_ARGC == 1) {
3003 COMMAND_PARSE_ADDRESS(CMD_ARGV[0], addr);
3004 current_pc = 0;
3007 struct target *target = get_current_target(CMD_CTX);
3009 return target->type->step(target, current_pc, addr, 1);
3012 static void handle_md_output(struct command_context *cmd_ctx,
3013 struct target *target, target_addr_t address, unsigned size,
3014 unsigned count, const uint8_t *buffer)
3016 const unsigned line_bytecnt = 32;
3017 unsigned line_modulo = line_bytecnt / size;
3019 char output[line_bytecnt * 4 + 1];
3020 unsigned output_len = 0;
3022 const char *value_fmt;
3023 switch (size) {
3024 case 8:
3025 value_fmt = "%16.16"PRIx64" ";
3026 break;
3027 case 4:
3028 value_fmt = "%8.8"PRIx64" ";
3029 break;
3030 case 2:
3031 value_fmt = "%4.4"PRIx64" ";
3032 break;
3033 case 1:
3034 value_fmt = "%2.2"PRIx64" ";
3035 break;
3036 default:
3037 /* "can't happen", caller checked */
3038 LOG_ERROR("invalid memory read size: %u", size);
3039 return;
3042 for (unsigned i = 0; i < count; i++) {
3043 if (i % line_modulo == 0) {
3044 output_len += snprintf(output + output_len,
3045 sizeof(output) - output_len,
3046 TARGET_ADDR_FMT ": ",
3047 (address + (i * size)));
3050 uint64_t value = 0;
3051 const uint8_t *value_ptr = buffer + i * size;
3052 switch (size) {
3053 case 8:
3054 value = target_buffer_get_u64(target, value_ptr);
3055 break;
3056 case 4:
3057 value = target_buffer_get_u32(target, value_ptr);
3058 break;
3059 case 2:
3060 value = target_buffer_get_u16(target, value_ptr);
3061 break;
3062 case 1:
3063 value = *value_ptr;
3065 output_len += snprintf(output + output_len,
3066 sizeof(output) - output_len,
3067 value_fmt, value);
3069 if ((i % line_modulo == line_modulo - 1) || (i == count - 1)) {
3070 command_print(cmd_ctx, "%s", output);
3071 output_len = 0;
3076 COMMAND_HANDLER(handle_md_command)
3078 if (CMD_ARGC < 1)
3079 return ERROR_COMMAND_SYNTAX_ERROR;
3081 unsigned size = 0;
3082 switch (CMD_NAME[2]) {
3083 case 'd':
3084 size = 8;
3085 break;
3086 case 'w':
3087 size = 4;
3088 break;
3089 case 'h':
3090 size = 2;
3091 break;
3092 case 'b':
3093 size = 1;
3094 break;
3095 default:
3096 return ERROR_COMMAND_SYNTAX_ERROR;
3099 bool physical = strcmp(CMD_ARGV[0], "phys") == 0;
3100 int (*fn)(struct target *target,
3101 target_addr_t address, uint32_t size_value, uint32_t count, uint8_t *buffer);
3102 if (physical) {
3103 CMD_ARGC--;
3104 CMD_ARGV++;
3105 fn = target_read_phys_memory;
3106 } else
3107 fn = target_read_memory;
3108 if ((CMD_ARGC < 1) || (CMD_ARGC > 2))
3109 return ERROR_COMMAND_SYNTAX_ERROR;
3111 target_addr_t address;
3112 COMMAND_PARSE_ADDRESS(CMD_ARGV[0], address);
3114 unsigned count = 1;
3115 if (CMD_ARGC == 2)
3116 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[1], count);
3118 uint8_t *buffer = calloc(count, size);
3120 struct target *target = get_current_target(CMD_CTX);
3121 int retval = fn(target, address, size, count, buffer);
3122 if (ERROR_OK == retval)
3123 handle_md_output(CMD_CTX, target, address, size, count, buffer);
3125 free(buffer);
3127 return retval;
3130 typedef int (*target_write_fn)(struct target *target,
3131 target_addr_t address, uint32_t size, uint32_t count, const uint8_t *buffer);
3133 static int target_fill_mem(struct target *target,
3134 target_addr_t address,
3135 target_write_fn fn,
3136 unsigned data_size,
3137 /* value */
3138 uint64_t b,
3139 /* count */
3140 unsigned c)
3142 /* We have to write in reasonably large chunks to be able
3143 * to fill large memory areas with any sane speed */
3144 const unsigned chunk_size = 16384;
3145 uint8_t *target_buf = malloc(chunk_size * data_size);
3146 if (target_buf == NULL) {
3147 LOG_ERROR("Out of memory");
3148 return ERROR_FAIL;
3151 for (unsigned i = 0; i < chunk_size; i++) {
3152 switch (data_size) {
3153 case 8:
3154 target_buffer_set_u64(target, target_buf + i * data_size, b);
3155 break;
3156 case 4:
3157 target_buffer_set_u32(target, target_buf + i * data_size, b);
3158 break;
3159 case 2:
3160 target_buffer_set_u16(target, target_buf + i * data_size, b);
3161 break;
3162 case 1:
3163 target_buffer_set_u8(target, target_buf + i * data_size, b);
3164 break;
3165 default:
3166 exit(-1);
3170 int retval = ERROR_OK;
3172 for (unsigned x = 0; x < c; x += chunk_size) {
3173 unsigned current;
3174 current = c - x;
3175 if (current > chunk_size)
3176 current = chunk_size;
3177 retval = fn(target, address + x * data_size, data_size, current, target_buf);
3178 if (retval != ERROR_OK)
3179 break;
3180 /* avoid GDB timeouts */
3181 keep_alive();
3183 free(target_buf);
3185 return retval;
3189 COMMAND_HANDLER(handle_mw_command)
3191 if (CMD_ARGC < 2)
3192 return ERROR_COMMAND_SYNTAX_ERROR;
3193 bool physical = strcmp(CMD_ARGV[0], "phys") == 0;
3194 target_write_fn fn;
3195 if (physical) {
3196 CMD_ARGC--;
3197 CMD_ARGV++;
3198 fn = target_write_phys_memory;
3199 } else
3200 fn = target_write_memory;
3201 if ((CMD_ARGC < 2) || (CMD_ARGC > 3))
3202 return ERROR_COMMAND_SYNTAX_ERROR;
3204 target_addr_t address;
3205 COMMAND_PARSE_ADDRESS(CMD_ARGV[0], address);
3207 target_addr_t value;
3208 COMMAND_PARSE_ADDRESS(CMD_ARGV[1], value);
3210 unsigned count = 1;
3211 if (CMD_ARGC == 3)
3212 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[2], count);
3214 struct target *target = get_current_target(CMD_CTX);
3215 unsigned wordsize;
3216 switch (CMD_NAME[2]) {
3217 case 'd':
3218 wordsize = 8;
3219 break;
3220 case 'w':
3221 wordsize = 4;
3222 break;
3223 case 'h':
3224 wordsize = 2;
3225 break;
3226 case 'b':
3227 wordsize = 1;
3228 break;
3229 default:
3230 return ERROR_COMMAND_SYNTAX_ERROR;
3233 return target_fill_mem(target, address, fn, wordsize, value, count);
3236 static COMMAND_HELPER(parse_load_image_command_CMD_ARGV, struct image *image,
3237 target_addr_t *min_address, target_addr_t *max_address)
3239 if (CMD_ARGC < 1 || CMD_ARGC > 5)
3240 return ERROR_COMMAND_SYNTAX_ERROR;
3242 /* a base address isn't always necessary,
3243 * default to 0x0 (i.e. don't relocate) */
3244 if (CMD_ARGC >= 2) {
3245 target_addr_t addr;
3246 COMMAND_PARSE_ADDRESS(CMD_ARGV[1], addr);
3247 image->base_address = addr;
3248 image->base_address_set = 1;
3249 } else
3250 image->base_address_set = 0;
3252 image->start_address_set = 0;
3254 if (CMD_ARGC >= 4)
3255 COMMAND_PARSE_ADDRESS(CMD_ARGV[3], *min_address);
3256 if (CMD_ARGC == 5) {
3257 COMMAND_PARSE_ADDRESS(CMD_ARGV[4], *max_address);
3258 /* use size (given) to find max (required) */
3259 *max_address += *min_address;
3262 if (*min_address > *max_address)
3263 return ERROR_COMMAND_SYNTAX_ERROR;
3265 return ERROR_OK;
3268 COMMAND_HANDLER(handle_load_image_command)
3270 uint8_t *buffer;
3271 size_t buf_cnt;
3272 uint32_t image_size;
3273 target_addr_t min_address = 0;
3274 target_addr_t max_address = -1;
3275 int i;
3276 struct image image;
3278 int retval = CALL_COMMAND_HANDLER(parse_load_image_command_CMD_ARGV,
3279 &image, &min_address, &max_address);
3280 if (ERROR_OK != retval)
3281 return retval;
3283 struct target *target = get_current_target(CMD_CTX);
3285 struct duration bench;
3286 duration_start(&bench);
3288 if (image_open(&image, CMD_ARGV[0], (CMD_ARGC >= 3) ? CMD_ARGV[2] : NULL) != ERROR_OK)
3289 return ERROR_FAIL;
3291 image_size = 0x0;
3292 retval = ERROR_OK;
3293 for (i = 0; i < image.num_sections; i++) {
3294 buffer = malloc(image.sections[i].size);
3295 if (buffer == NULL) {
3296 command_print(CMD_CTX,
3297 "error allocating buffer for section (%d bytes)",
3298 (int)(image.sections[i].size));
3299 retval = ERROR_FAIL;
3300 break;
3303 retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt);
3304 if (retval != ERROR_OK) {
3305 free(buffer);
3306 break;
3309 uint32_t offset = 0;
3310 uint32_t length = buf_cnt;
3312 /* DANGER!!! beware of unsigned comparision here!!! */
3314 if ((image.sections[i].base_address + buf_cnt >= min_address) &&
3315 (image.sections[i].base_address < max_address)) {
3317 if (image.sections[i].base_address < min_address) {
3318 /* clip addresses below */
3319 offset += min_address-image.sections[i].base_address;
3320 length -= offset;
3323 if (image.sections[i].base_address + buf_cnt > max_address)
3324 length -= (image.sections[i].base_address + buf_cnt)-max_address;
3326 retval = target_write_buffer(target,
3327 image.sections[i].base_address + offset, length, buffer + offset);
3328 if (retval != ERROR_OK) {
3329 free(buffer);
3330 break;
3332 image_size += length;
3333 command_print(CMD_CTX, "%u bytes written at address " TARGET_ADDR_FMT "",
3334 (unsigned int)length,
3335 image.sections[i].base_address + offset);
3338 free(buffer);
3341 if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK)) {
3342 command_print(CMD_CTX, "downloaded %" PRIu32 " bytes "
3343 "in %fs (%0.3f KiB/s)", image_size,
3344 duration_elapsed(&bench), duration_kbps(&bench, image_size));
3347 image_close(&image);
3349 return retval;
3353 COMMAND_HANDLER(handle_dump_image_command)
3355 struct fileio *fileio;
3356 uint8_t *buffer;
3357 int retval, retvaltemp;
3358 target_addr_t address, size;
3359 struct duration bench;
3360 struct target *target = get_current_target(CMD_CTX);
3362 if (CMD_ARGC != 3)
3363 return ERROR_COMMAND_SYNTAX_ERROR;
3365 COMMAND_PARSE_ADDRESS(CMD_ARGV[1], address);
3366 COMMAND_PARSE_ADDRESS(CMD_ARGV[2], size);
3368 uint32_t buf_size = (size > 4096) ? 4096 : size;
3369 buffer = malloc(buf_size);
3370 if (!buffer)
3371 return ERROR_FAIL;
3373 retval = fileio_open(&fileio, CMD_ARGV[0], FILEIO_WRITE, FILEIO_BINARY);
3374 if (retval != ERROR_OK) {
3375 free(buffer);
3376 return retval;
3379 duration_start(&bench);
3381 while (size > 0) {
3382 size_t size_written;
3383 uint32_t this_run_size = (size > buf_size) ? buf_size : size;
3384 retval = target_read_buffer(target, address, this_run_size, buffer);
3385 if (retval != ERROR_OK)
3386 break;
3388 retval = fileio_write(fileio, this_run_size, buffer, &size_written);
3389 if (retval != ERROR_OK)
3390 break;
3392 size -= this_run_size;
3393 address += this_run_size;
3396 free(buffer);
3398 if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK)) {
3399 size_t filesize;
3400 retval = fileio_size(fileio, &filesize);
3401 if (retval != ERROR_OK)
3402 return retval;
3403 command_print(CMD_CTX,
3404 "dumped %zu bytes in %fs (%0.3f KiB/s)", filesize,
3405 duration_elapsed(&bench), duration_kbps(&bench, filesize));
3408 retvaltemp = fileio_close(fileio);
3409 if (retvaltemp != ERROR_OK)
3410 return retvaltemp;
3412 return retval;
3415 enum verify_mode {
3416 IMAGE_TEST = 0,
3417 IMAGE_VERIFY = 1,
3418 IMAGE_CHECKSUM_ONLY = 2
3421 static COMMAND_HELPER(handle_verify_image_command_internal, enum verify_mode verify)
3423 uint8_t *buffer;
3424 size_t buf_cnt;
3425 uint32_t image_size;
3426 int i;
3427 int retval;
3428 uint32_t checksum = 0;
3429 uint32_t mem_checksum = 0;
3431 struct image image;
3433 struct target *target = get_current_target(CMD_CTX);
3435 if (CMD_ARGC < 1)
3436 return ERROR_COMMAND_SYNTAX_ERROR;
3438 if (!target) {
3439 LOG_ERROR("no target selected");
3440 return ERROR_FAIL;
3443 struct duration bench;
3444 duration_start(&bench);
3446 if (CMD_ARGC >= 2) {
3447 target_addr_t addr;
3448 COMMAND_PARSE_ADDRESS(CMD_ARGV[1], addr);
3449 image.base_address = addr;
3450 image.base_address_set = 1;
3451 } else {
3452 image.base_address_set = 0;
3453 image.base_address = 0x0;
3456 image.start_address_set = 0;
3458 retval = image_open(&image, CMD_ARGV[0], (CMD_ARGC == 3) ? CMD_ARGV[2] : NULL);
3459 if (retval != ERROR_OK)
3460 return retval;
3462 image_size = 0x0;
3463 int diffs = 0;
3464 retval = ERROR_OK;
3465 for (i = 0; i < image.num_sections; i++) {
3466 buffer = malloc(image.sections[i].size);
3467 if (buffer == NULL) {
3468 command_print(CMD_CTX,
3469 "error allocating buffer for section (%d bytes)",
3470 (int)(image.sections[i].size));
3471 break;
3473 retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt);
3474 if (retval != ERROR_OK) {
3475 free(buffer);
3476 break;
3479 if (verify >= IMAGE_VERIFY) {
3480 /* calculate checksum of image */
3481 retval = image_calculate_checksum(buffer, buf_cnt, &checksum);
3482 if (retval != ERROR_OK) {
3483 free(buffer);
3484 break;
3487 retval = target_checksum_memory(target, image.sections[i].base_address, buf_cnt, &mem_checksum);
3488 if (retval != ERROR_OK) {
3489 free(buffer);
3490 break;
3492 if ((checksum != mem_checksum) && (verify == IMAGE_CHECKSUM_ONLY)) {
3493 LOG_ERROR("checksum mismatch");
3494 free(buffer);
3495 retval = ERROR_FAIL;
3496 goto done;
3498 if (checksum != mem_checksum) {
3499 /* failed crc checksum, fall back to a binary compare */
3500 uint8_t *data;
3502 if (diffs == 0)
3503 LOG_ERROR("checksum mismatch - attempting binary compare");
3505 data = malloc(buf_cnt);
3507 /* Can we use 32bit word accesses? */
3508 int size = 1;
3509 int count = buf_cnt;
3510 if ((count % 4) == 0) {
3511 size *= 4;
3512 count /= 4;
3514 retval = target_read_memory(target, image.sections[i].base_address, size, count, data);
3515 if (retval == ERROR_OK) {
3516 uint32_t t;
3517 for (t = 0; t < buf_cnt; t++) {
3518 if (data[t] != buffer[t]) {
3519 command_print(CMD_CTX,
3520 "diff %d address 0x%08x. Was 0x%02x instead of 0x%02x",
3521 diffs,
3522 (unsigned)(t + image.sections[i].base_address),
3523 data[t],
3524 buffer[t]);
3525 if (diffs++ >= 127) {
3526 command_print(CMD_CTX, "More than 128 errors, the rest are not printed.");
3527 free(data);
3528 free(buffer);
3529 goto done;
3532 keep_alive();
3535 free(data);
3537 } else {
3538 command_print(CMD_CTX, "address " TARGET_ADDR_FMT " length 0x%08zx",
3539 image.sections[i].base_address,
3540 buf_cnt);
3543 free(buffer);
3544 image_size += buf_cnt;
3546 if (diffs > 0)
3547 command_print(CMD_CTX, "No more differences found.");
3548 done:
3549 if (diffs > 0)
3550 retval = ERROR_FAIL;
3551 if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK)) {
3552 command_print(CMD_CTX, "verified %" PRIu32 " bytes "
3553 "in %fs (%0.3f KiB/s)", image_size,
3554 duration_elapsed(&bench), duration_kbps(&bench, image_size));
3557 image_close(&image);
3559 return retval;
3562 COMMAND_HANDLER(handle_verify_image_checksum_command)
3564 return CALL_COMMAND_HANDLER(handle_verify_image_command_internal, IMAGE_CHECKSUM_ONLY);
3567 COMMAND_HANDLER(handle_verify_image_command)
3569 return CALL_COMMAND_HANDLER(handle_verify_image_command_internal, IMAGE_VERIFY);
3572 COMMAND_HANDLER(handle_test_image_command)
3574 return CALL_COMMAND_HANDLER(handle_verify_image_command_internal, IMAGE_TEST);
3577 static int handle_bp_command_list(struct command_context *cmd_ctx)
3579 struct target *target = get_current_target(cmd_ctx);
3580 struct breakpoint *breakpoint = target->breakpoints;
3581 while (breakpoint) {
3582 if (breakpoint->type == BKPT_SOFT) {
3583 char *buf = buf_to_str(breakpoint->orig_instr,
3584 breakpoint->length, 16);
3585 command_print(cmd_ctx, "IVA breakpoint: " TARGET_ADDR_FMT ", 0x%x, %i, 0x%s",
3586 breakpoint->address,
3587 breakpoint->length,
3588 breakpoint->set, buf);
3589 free(buf);
3590 } else {
3591 if ((breakpoint->address == 0) && (breakpoint->asid != 0))
3592 command_print(cmd_ctx, "Context breakpoint: 0x%8.8" PRIx32 ", 0x%x, %i",
3593 breakpoint->asid,
3594 breakpoint->length, breakpoint->set);
3595 else if ((breakpoint->address != 0) && (breakpoint->asid != 0)) {
3596 command_print(cmd_ctx, "Hybrid breakpoint(IVA): " TARGET_ADDR_FMT ", 0x%x, %i",
3597 breakpoint->address,
3598 breakpoint->length, breakpoint->set);
3599 command_print(cmd_ctx, "\t|--->linked with ContextID: 0x%8.8" PRIx32,
3600 breakpoint->asid);
3601 } else
3602 command_print(cmd_ctx, "Breakpoint(IVA): " TARGET_ADDR_FMT ", 0x%x, %i",
3603 breakpoint->address,
3604 breakpoint->length, breakpoint->set);
3607 breakpoint = breakpoint->next;
3609 return ERROR_OK;
3612 static int handle_bp_command_set(struct command_context *cmd_ctx,
3613 target_addr_t addr, uint32_t asid, uint32_t length, int hw)
3615 struct target *target = get_current_target(cmd_ctx);
3616 int retval;
3618 if (asid == 0) {
3619 retval = breakpoint_add(target, addr, length, hw);
3620 if (ERROR_OK == retval)
3621 command_print(cmd_ctx, "breakpoint set at " TARGET_ADDR_FMT "", addr);
3622 else {
3623 LOG_ERROR("Failure setting breakpoint, the same address(IVA) is already used");
3624 return retval;
3626 } else if (addr == 0) {
3627 if (target->type->add_context_breakpoint == NULL) {
3628 LOG_WARNING("Context breakpoint not available");
3629 return ERROR_OK;
3631 retval = context_breakpoint_add(target, asid, length, hw);
3632 if (ERROR_OK == retval)
3633 command_print(cmd_ctx, "Context breakpoint set at 0x%8.8" PRIx32 "", asid);
3634 else {
3635 LOG_ERROR("Failure setting breakpoint, the same address(CONTEXTID) is already used");
3636 return retval;
3638 } else {
3639 if (target->type->add_hybrid_breakpoint == NULL) {
3640 LOG_WARNING("Hybrid breakpoint not available");
3641 return ERROR_OK;
3643 retval = hybrid_breakpoint_add(target, addr, asid, length, hw);
3644 if (ERROR_OK == retval)
3645 command_print(cmd_ctx, "Hybrid breakpoint set at 0x%8.8" PRIx32 "", asid);
3646 else {
3647 LOG_ERROR("Failure setting breakpoint, the same address is already used");
3648 return retval;
3651 return ERROR_OK;
3654 COMMAND_HANDLER(handle_bp_command)
3656 target_addr_t addr;
3657 uint32_t asid;
3658 uint32_t length;
3659 int hw = BKPT_SOFT;
3661 switch (CMD_ARGC) {
3662 case 0:
3663 return handle_bp_command_list(CMD_CTX);
3665 case 2:
3666 asid = 0;
3667 COMMAND_PARSE_ADDRESS(CMD_ARGV[0], addr);
3668 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
3669 return handle_bp_command_set(CMD_CTX, addr, asid, length, hw);
3671 case 3:
3672 if (strcmp(CMD_ARGV[2], "hw") == 0) {
3673 hw = BKPT_HARD;
3674 COMMAND_PARSE_ADDRESS(CMD_ARGV[0], addr);
3675 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
3676 asid = 0;
3677 return handle_bp_command_set(CMD_CTX, addr, asid, length, hw);
3678 } else if (strcmp(CMD_ARGV[2], "hw_ctx") == 0) {
3679 hw = BKPT_HARD;
3680 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], asid);
3681 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
3682 addr = 0;
3683 return handle_bp_command_set(CMD_CTX, addr, asid, length, hw);
3685 /* fallthrough */
3686 case 4:
3687 hw = BKPT_HARD;
3688 COMMAND_PARSE_ADDRESS(CMD_ARGV[0], addr);
3689 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], asid);
3690 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[2], length);
3691 return handle_bp_command_set(CMD_CTX, addr, asid, length, hw);
3693 default:
3694 return ERROR_COMMAND_SYNTAX_ERROR;
3698 COMMAND_HANDLER(handle_rbp_command)
3700 if (CMD_ARGC != 1)
3701 return ERROR_COMMAND_SYNTAX_ERROR;
3703 target_addr_t addr;
3704 COMMAND_PARSE_ADDRESS(CMD_ARGV[0], addr);
3706 struct target *target = get_current_target(CMD_CTX);
3707 breakpoint_remove(target, addr);
3709 return ERROR_OK;
3712 COMMAND_HANDLER(handle_wp_command)
3714 struct target *target = get_current_target(CMD_CTX);
3716 if (CMD_ARGC == 0) {
3717 struct watchpoint *watchpoint = target->watchpoints;
3719 while (watchpoint) {
3720 command_print(CMD_CTX, "address: " TARGET_ADDR_FMT
3721 ", len: 0x%8.8" PRIx32
3722 ", r/w/a: %i, value: 0x%8.8" PRIx32
3723 ", mask: 0x%8.8" PRIx32,
3724 watchpoint->address,
3725 watchpoint->length,
3726 (int)watchpoint->rw,
3727 watchpoint->value,
3728 watchpoint->mask);
3729 watchpoint = watchpoint->next;
3731 return ERROR_OK;
3734 enum watchpoint_rw type = WPT_ACCESS;
3735 uint32_t addr = 0;
3736 uint32_t length = 0;
3737 uint32_t data_value = 0x0;
3738 uint32_t data_mask = 0xffffffff;
3740 switch (CMD_ARGC) {
3741 case 5:
3742 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[4], data_mask);
3743 /* fall through */
3744 case 4:
3745 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[3], data_value);
3746 /* fall through */
3747 case 3:
3748 switch (CMD_ARGV[2][0]) {
3749 case 'r':
3750 type = WPT_READ;
3751 break;
3752 case 'w':
3753 type = WPT_WRITE;
3754 break;
3755 case 'a':
3756 type = WPT_ACCESS;
3757 break;
3758 default:
3759 LOG_ERROR("invalid watchpoint mode ('%c')", CMD_ARGV[2][0]);
3760 return ERROR_COMMAND_SYNTAX_ERROR;
3762 /* fall through */
3763 case 2:
3764 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
3765 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3766 break;
3768 default:
3769 return ERROR_COMMAND_SYNTAX_ERROR;
3772 int retval = watchpoint_add(target, addr, length, type,
3773 data_value, data_mask);
3774 if (ERROR_OK != retval)
3775 LOG_ERROR("Failure setting watchpoints");
3777 return retval;
3780 COMMAND_HANDLER(handle_rwp_command)
3782 if (CMD_ARGC != 1)
3783 return ERROR_COMMAND_SYNTAX_ERROR;
3785 uint32_t addr;
3786 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3788 struct target *target = get_current_target(CMD_CTX);
3789 watchpoint_remove(target, addr);
3791 return ERROR_OK;
3795 * Translate a virtual address to a physical address.
3797 * The low-level target implementation must have logged a detailed error
3798 * which is forwarded to telnet/GDB session.
3800 COMMAND_HANDLER(handle_virt2phys_command)
3802 if (CMD_ARGC != 1)
3803 return ERROR_COMMAND_SYNTAX_ERROR;
3805 target_addr_t va;
3806 COMMAND_PARSE_ADDRESS(CMD_ARGV[0], va);
3807 target_addr_t pa;
3809 struct target *target = get_current_target(CMD_CTX);
3810 int retval = target->type->virt2phys(target, va, &pa);
3811 if (retval == ERROR_OK)
3812 command_print(CMD_CTX, "Physical address " TARGET_ADDR_FMT "", pa);
3814 return retval;
3817 static void writeData(FILE *f, const void *data, size_t len)
3819 size_t written = fwrite(data, 1, len, f);
3820 if (written != len)
3821 LOG_ERROR("failed to write %zu bytes: %s", len, strerror(errno));
3824 static void writeLong(FILE *f, int l, struct target *target)
3826 uint8_t val[4];
3828 target_buffer_set_u32(target, val, l);
3829 writeData(f, val, 4);
3832 static void writeString(FILE *f, char *s)
3834 writeData(f, s, strlen(s));
3837 typedef unsigned char UNIT[2]; /* unit of profiling */
3839 /* Dump a gmon.out histogram file. */
3840 static void write_gmon(uint32_t *samples, uint32_t sampleNum, const char *filename, bool with_range,
3841 uint32_t start_address, uint32_t end_address, struct target *target)
3843 uint32_t i;
3844 FILE *f = fopen(filename, "w");
3845 if (f == NULL)
3846 return;
3847 writeString(f, "gmon");
3848 writeLong(f, 0x00000001, target); /* Version */
3849 writeLong(f, 0, target); /* padding */
3850 writeLong(f, 0, target); /* padding */
3851 writeLong(f, 0, target); /* padding */
3853 uint8_t zero = 0; /* GMON_TAG_TIME_HIST */
3854 writeData(f, &zero, 1);
3856 /* figure out bucket size */
3857 uint32_t min;
3858 uint32_t max;
3859 if (with_range) {
3860 min = start_address;
3861 max = end_address;
3862 } else {
3863 min = samples[0];
3864 max = samples[0];
3865 for (i = 0; i < sampleNum; i++) {
3866 if (min > samples[i])
3867 min = samples[i];
3868 if (max < samples[i])
3869 max = samples[i];
3872 /* max should be (largest sample + 1)
3873 * Refer to binutils/gprof/hist.c (find_histogram_for_pc) */
3874 max++;
3877 int addressSpace = max - min;
3878 assert(addressSpace >= 2);
3880 /* FIXME: What is the reasonable number of buckets?
3881 * The profiling result will be more accurate if there are enough buckets. */
3882 static const uint32_t maxBuckets = 128 * 1024; /* maximum buckets. */
3883 uint32_t numBuckets = addressSpace / sizeof(UNIT);
3884 if (numBuckets > maxBuckets)
3885 numBuckets = maxBuckets;
3886 int *buckets = malloc(sizeof(int) * numBuckets);
3887 if (buckets == NULL) {
3888 fclose(f);
3889 return;
3891 memset(buckets, 0, sizeof(int) * numBuckets);
3892 for (i = 0; i < sampleNum; i++) {
3893 uint32_t address = samples[i];
3895 if ((address < min) || (max <= address))
3896 continue;
3898 long long a = address - min;
3899 long long b = numBuckets;
3900 long long c = addressSpace;
3901 int index_t = (a * b) / c; /* danger!!!! int32 overflows */
3902 buckets[index_t]++;
3905 /* append binary memory gmon.out &profile_hist_hdr ((char*)&profile_hist_hdr + sizeof(struct gmon_hist_hdr)) */
3906 writeLong(f, min, target); /* low_pc */
3907 writeLong(f, max, target); /* high_pc */
3908 writeLong(f, numBuckets, target); /* # of buckets */
3909 writeLong(f, 100, target); /* KLUDGE! We lie, ca. 100Hz best case. */
3910 writeString(f, "seconds");
3911 for (i = 0; i < (15-strlen("seconds")); i++)
3912 writeData(f, &zero, 1);
3913 writeString(f, "s");
3915 /*append binary memory gmon.out profile_hist_data (profile_hist_data + profile_hist_hdr.hist_size) */
3917 char *data = malloc(2 * numBuckets);
3918 if (data != NULL) {
3919 for (i = 0; i < numBuckets; i++) {
3920 int val;
3921 val = buckets[i];
3922 if (val > 65535)
3923 val = 65535;
3924 data[i * 2] = val&0xff;
3925 data[i * 2 + 1] = (val >> 8) & 0xff;
3927 free(buckets);
3928 writeData(f, data, numBuckets * 2);
3929 free(data);
3930 } else
3931 free(buckets);
3933 fclose(f);
3936 /* profiling samples the CPU PC as quickly as OpenOCD is able,
3937 * which will be used as a random sampling of PC */
3938 COMMAND_HANDLER(handle_profile_command)
3940 struct target *target = get_current_target(CMD_CTX);
3942 if ((CMD_ARGC != 2) && (CMD_ARGC != 4))
3943 return ERROR_COMMAND_SYNTAX_ERROR;
3945 const uint32_t MAX_PROFILE_SAMPLE_NUM = 10000;
3946 uint32_t offset;
3947 uint32_t num_of_samples;
3948 int retval = ERROR_OK;
3950 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], offset);
3952 uint32_t *samples = malloc(sizeof(uint32_t) * MAX_PROFILE_SAMPLE_NUM);
3953 if (samples == NULL) {
3954 LOG_ERROR("No memory to store samples.");
3955 return ERROR_FAIL;
3959 * Some cores let us sample the PC without the
3960 * annoying halt/resume step; for example, ARMv7 PCSR.
3961 * Provide a way to use that more efficient mechanism.
3963 retval = target_profiling(target, samples, MAX_PROFILE_SAMPLE_NUM,
3964 &num_of_samples, offset);
3965 if (retval != ERROR_OK) {
3966 free(samples);
3967 return retval;
3970 assert(num_of_samples <= MAX_PROFILE_SAMPLE_NUM);
3972 retval = target_poll(target);
3973 if (retval != ERROR_OK) {
3974 free(samples);
3975 return retval;
3977 if (target->state == TARGET_RUNNING) {
3978 retval = target_halt(target);
3979 if (retval != ERROR_OK) {
3980 free(samples);
3981 return retval;
3985 retval = target_poll(target);
3986 if (retval != ERROR_OK) {
3987 free(samples);
3988 return retval;
3991 uint32_t start_address = 0;
3992 uint32_t end_address = 0;
3993 bool with_range = false;
3994 if (CMD_ARGC == 4) {
3995 with_range = true;
3996 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[2], start_address);
3997 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[3], end_address);
4000 write_gmon(samples, num_of_samples, CMD_ARGV[1],
4001 with_range, start_address, end_address, target);
4002 command_print(CMD_CTX, "Wrote %s", CMD_ARGV[1]);
4004 free(samples);
4005 return retval;
4008 static int new_int_array_element(Jim_Interp *interp, const char *varname, int idx, uint32_t val)
4010 char *namebuf;
4011 Jim_Obj *nameObjPtr, *valObjPtr;
4012 int result;
4014 namebuf = alloc_printf("%s(%d)", varname, idx);
4015 if (!namebuf)
4016 return JIM_ERR;
4018 nameObjPtr = Jim_NewStringObj(interp, namebuf, -1);
4019 valObjPtr = Jim_NewIntObj(interp, val);
4020 if (!nameObjPtr || !valObjPtr) {
4021 free(namebuf);
4022 return JIM_ERR;
4025 Jim_IncrRefCount(nameObjPtr);
4026 Jim_IncrRefCount(valObjPtr);
4027 result = Jim_SetVariable(interp, nameObjPtr, valObjPtr);
4028 Jim_DecrRefCount(interp, nameObjPtr);
4029 Jim_DecrRefCount(interp, valObjPtr);
4030 free(namebuf);
4031 /* printf("%s(%d) <= 0%08x\n", varname, idx, val); */
4032 return result;
4035 static int jim_mem2array(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4037 struct command_context *context;
4038 struct target *target;
4040 context = current_command_context(interp);
4041 assert(context != NULL);
4043 target = get_current_target(context);
4044 if (target == NULL) {
4045 LOG_ERROR("mem2array: no current target");
4046 return JIM_ERR;
4049 return target_mem2array(interp, target, argc - 1, argv + 1);
4052 static int target_mem2array(Jim_Interp *interp, struct target *target, int argc, Jim_Obj *const *argv)
4054 long l;
4055 uint32_t width;
4056 int len;
4057 uint32_t addr;
4058 uint32_t count;
4059 uint32_t v;
4060 const char *varname;
4061 const char *phys;
4062 bool is_phys;
4063 int n, e, retval;
4064 uint32_t i;
4066 /* argv[1] = name of array to receive the data
4067 * argv[2] = desired width
4068 * argv[3] = memory address
4069 * argv[4] = count of times to read
4071 if (argc < 4 || argc > 5) {
4072 Jim_WrongNumArgs(interp, 1, argv, "varname width addr nelems [phys]");
4073 return JIM_ERR;
4075 varname = Jim_GetString(argv[0], &len);
4076 /* given "foo" get space for worse case "foo(%d)" .. add 20 */
4078 e = Jim_GetLong(interp, argv[1], &l);
4079 width = l;
4080 if (e != JIM_OK)
4081 return e;
4083 e = Jim_GetLong(interp, argv[2], &l);
4084 addr = l;
4085 if (e != JIM_OK)
4086 return e;
4087 e = Jim_GetLong(interp, argv[3], &l);
4088 len = l;
4089 if (e != JIM_OK)
4090 return e;
4091 is_phys = false;
4092 if (argc > 4) {
4093 phys = Jim_GetString(argv[4], &n);
4094 if (!strncmp(phys, "phys", n))
4095 is_phys = true;
4096 else
4097 return JIM_ERR;
4099 switch (width) {
4100 case 8:
4101 width = 1;
4102 break;
4103 case 16:
4104 width = 2;
4105 break;
4106 case 32:
4107 width = 4;
4108 break;
4109 default:
4110 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4111 Jim_AppendStrings(interp, Jim_GetResult(interp), "Invalid width param, must be 8/16/32", NULL);
4112 return JIM_ERR;
4114 if (len == 0) {
4115 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4116 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: zero width read?", NULL);
4117 return JIM_ERR;
4119 if ((addr + (len * width)) < addr) {
4120 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4121 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: addr + len - wraps to zero?", NULL);
4122 return JIM_ERR;
4124 /* absurd transfer size? */
4125 if (len > 65536) {
4126 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4127 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: absurd > 64K item request", NULL);
4128 return JIM_ERR;
4131 if ((width == 1) ||
4132 ((width == 2) && ((addr & 1) == 0)) ||
4133 ((width == 4) && ((addr & 3) == 0))) {
4134 /* all is well */
4135 } else {
4136 char buf[100];
4137 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4138 sprintf(buf, "mem2array address: 0x%08" PRIx32 " is not aligned for %" PRId32 " byte reads",
4139 addr,
4140 width);
4141 Jim_AppendStrings(interp, Jim_GetResult(interp), buf, NULL);
4142 return JIM_ERR;
4145 /* Transfer loop */
4147 /* index counter */
4148 n = 0;
4150 size_t buffersize = 4096;
4151 uint8_t *buffer = malloc(buffersize);
4152 if (buffer == NULL)
4153 return JIM_ERR;
4155 /* assume ok */
4156 e = JIM_OK;
4157 while (len) {
4158 /* Slurp... in buffer size chunks */
4160 count = len; /* in objects.. */
4161 if (count > (buffersize / width))
4162 count = (buffersize / width);
4164 if (is_phys)
4165 retval = target_read_phys_memory(target, addr, width, count, buffer);
4166 else
4167 retval = target_read_memory(target, addr, width, count, buffer);
4168 if (retval != ERROR_OK) {
4169 /* BOO !*/
4170 LOG_ERROR("mem2array: Read @ 0x%08" PRIx32 ", w=%" PRId32 ", cnt=%" PRId32 ", failed",
4171 addr,
4172 width,
4173 count);
4174 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4175 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: cannot read memory", NULL);
4176 e = JIM_ERR;
4177 break;
4178 } else {
4179 v = 0; /* shut up gcc */
4180 for (i = 0; i < count ; i++, n++) {
4181 switch (width) {
4182 case 4:
4183 v = target_buffer_get_u32(target, &buffer[i*width]);
4184 break;
4185 case 2:
4186 v = target_buffer_get_u16(target, &buffer[i*width]);
4187 break;
4188 case 1:
4189 v = buffer[i] & 0x0ff;
4190 break;
4192 new_int_array_element(interp, varname, n, v);
4194 len -= count;
4195 addr += count * width;
4199 free(buffer);
4201 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4203 return e;
4206 static int get_int_array_element(Jim_Interp *interp, const char *varname, int idx, uint32_t *val)
4208 char *namebuf;
4209 Jim_Obj *nameObjPtr, *valObjPtr;
4210 int result;
4211 long l;
4213 namebuf = alloc_printf("%s(%d)", varname, idx);
4214 if (!namebuf)
4215 return JIM_ERR;
4217 nameObjPtr = Jim_NewStringObj(interp, namebuf, -1);
4218 if (!nameObjPtr) {
4219 free(namebuf);
4220 return JIM_ERR;
4223 Jim_IncrRefCount(nameObjPtr);
4224 valObjPtr = Jim_GetVariable(interp, nameObjPtr, JIM_ERRMSG);
4225 Jim_DecrRefCount(interp, nameObjPtr);
4226 free(namebuf);
4227 if (valObjPtr == NULL)
4228 return JIM_ERR;
4230 result = Jim_GetLong(interp, valObjPtr, &l);
4231 /* printf("%s(%d) => 0%08x\n", varname, idx, val); */
4232 *val = l;
4233 return result;
4236 static int jim_array2mem(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4238 struct command_context *context;
4239 struct target *target;
4241 context = current_command_context(interp);
4242 assert(context != NULL);
4244 target = get_current_target(context);
4245 if (target == NULL) {
4246 LOG_ERROR("array2mem: no current target");
4247 return JIM_ERR;
4250 return target_array2mem(interp, target, argc-1, argv + 1);
4253 static int target_array2mem(Jim_Interp *interp, struct target *target,
4254 int argc, Jim_Obj *const *argv)
4256 long l;
4257 uint32_t width;
4258 int len;
4259 uint32_t addr;
4260 uint32_t count;
4261 uint32_t v;
4262 const char *varname;
4263 const char *phys;
4264 bool is_phys;
4265 int n, e, retval;
4266 uint32_t i;
4268 /* argv[1] = name of array to get the data
4269 * argv[2] = desired width
4270 * argv[3] = memory address
4271 * argv[4] = count to write
4273 if (argc < 4 || argc > 5) {
4274 Jim_WrongNumArgs(interp, 0, argv, "varname width addr nelems [phys]");
4275 return JIM_ERR;
4277 varname = Jim_GetString(argv[0], &len);
4278 /* given "foo" get space for worse case "foo(%d)" .. add 20 */
4280 e = Jim_GetLong(interp, argv[1], &l);
4281 width = l;
4282 if (e != JIM_OK)
4283 return e;
4285 e = Jim_GetLong(interp, argv[2], &l);
4286 addr = l;
4287 if (e != JIM_OK)
4288 return e;
4289 e = Jim_GetLong(interp, argv[3], &l);
4290 len = l;
4291 if (e != JIM_OK)
4292 return e;
4293 is_phys = false;
4294 if (argc > 4) {
4295 phys = Jim_GetString(argv[4], &n);
4296 if (!strncmp(phys, "phys", n))
4297 is_phys = true;
4298 else
4299 return JIM_ERR;
4301 switch (width) {
4302 case 8:
4303 width = 1;
4304 break;
4305 case 16:
4306 width = 2;
4307 break;
4308 case 32:
4309 width = 4;
4310 break;
4311 default:
4312 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4313 Jim_AppendStrings(interp, Jim_GetResult(interp),
4314 "Invalid width param, must be 8/16/32", NULL);
4315 return JIM_ERR;
4317 if (len == 0) {
4318 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4319 Jim_AppendStrings(interp, Jim_GetResult(interp),
4320 "array2mem: zero width read?", NULL);
4321 return JIM_ERR;
4323 if ((addr + (len * width)) < addr) {
4324 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4325 Jim_AppendStrings(interp, Jim_GetResult(interp),
4326 "array2mem: addr + len - wraps to zero?", NULL);
4327 return JIM_ERR;
4329 /* absurd transfer size? */
4330 if (len > 65536) {
4331 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4332 Jim_AppendStrings(interp, Jim_GetResult(interp),
4333 "array2mem: absurd > 64K item request", NULL);
4334 return JIM_ERR;
4337 if ((width == 1) ||
4338 ((width == 2) && ((addr & 1) == 0)) ||
4339 ((width == 4) && ((addr & 3) == 0))) {
4340 /* all is well */
4341 } else {
4342 char buf[100];
4343 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4344 sprintf(buf, "array2mem address: 0x%08" PRIx32 " is not aligned for %" PRId32 " byte reads",
4345 addr,
4346 width);
4347 Jim_AppendStrings(interp, Jim_GetResult(interp), buf, NULL);
4348 return JIM_ERR;
4351 /* Transfer loop */
4353 /* index counter */
4354 n = 0;
4355 /* assume ok */
4356 e = JIM_OK;
4358 size_t buffersize = 4096;
4359 uint8_t *buffer = malloc(buffersize);
4360 if (buffer == NULL)
4361 return JIM_ERR;
4363 while (len) {
4364 /* Slurp... in buffer size chunks */
4366 count = len; /* in objects.. */
4367 if (count > (buffersize / width))
4368 count = (buffersize / width);
4370 v = 0; /* shut up gcc */
4371 for (i = 0; i < count; i++, n++) {
4372 get_int_array_element(interp, varname, n, &v);
4373 switch (width) {
4374 case 4:
4375 target_buffer_set_u32(target, &buffer[i * width], v);
4376 break;
4377 case 2:
4378 target_buffer_set_u16(target, &buffer[i * width], v);
4379 break;
4380 case 1:
4381 buffer[i] = v & 0x0ff;
4382 break;
4385 len -= count;
4387 if (is_phys)
4388 retval = target_write_phys_memory(target, addr, width, count, buffer);
4389 else
4390 retval = target_write_memory(target, addr, width, count, buffer);
4391 if (retval != ERROR_OK) {
4392 /* BOO !*/
4393 LOG_ERROR("array2mem: Write @ 0x%08" PRIx32 ", w=%" PRId32 ", cnt=%" PRId32 ", failed",
4394 addr,
4395 width,
4396 count);
4397 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4398 Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: cannot read memory", NULL);
4399 e = JIM_ERR;
4400 break;
4402 addr += count * width;
4405 free(buffer);
4407 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4409 return e;
4412 /* FIX? should we propagate errors here rather than printing them
4413 * and continuing?
4415 void target_handle_event(struct target *target, enum target_event e)
4417 struct target_event_action *teap;
4419 for (teap = target->event_action; teap != NULL; teap = teap->next) {
4420 if (teap->event == e) {
4421 LOG_DEBUG("target: (%d) %s (%s) event: %d (%s) action: %s",
4422 target->target_number,
4423 target_name(target),
4424 target_type_name(target),
4426 Jim_Nvp_value2name_simple(nvp_target_event, e)->name,
4427 Jim_GetString(teap->body, NULL));
4428 if (Jim_EvalObj(teap->interp, teap->body) != JIM_OK) {
4429 Jim_MakeErrorMessage(teap->interp);
4430 command_print(NULL, "%s\n", Jim_GetString(Jim_GetResult(teap->interp), NULL));
4437 * Returns true only if the target has a handler for the specified event.
4439 bool target_has_event_action(struct target *target, enum target_event event)
4441 struct target_event_action *teap;
4443 for (teap = target->event_action; teap != NULL; teap = teap->next) {
4444 if (teap->event == event)
4445 return true;
4447 return false;
4450 enum target_cfg_param {
4451 TCFG_TYPE,
4452 TCFG_EVENT,
4453 TCFG_WORK_AREA_VIRT,
4454 TCFG_WORK_AREA_PHYS,
4455 TCFG_WORK_AREA_SIZE,
4456 TCFG_WORK_AREA_BACKUP,
4457 TCFG_ENDIAN,
4458 TCFG_COREID,
4459 TCFG_CHAIN_POSITION,
4460 TCFG_DBGBASE,
4461 TCFG_CTIBASE,
4462 TCFG_RTOS,
4463 TCFG_DEFER_EXAMINE,
4466 static Jim_Nvp nvp_config_opts[] = {
4467 { .name = "-type", .value = TCFG_TYPE },
4468 { .name = "-event", .value = TCFG_EVENT },
4469 { .name = "-work-area-virt", .value = TCFG_WORK_AREA_VIRT },
4470 { .name = "-work-area-phys", .value = TCFG_WORK_AREA_PHYS },
4471 { .name = "-work-area-size", .value = TCFG_WORK_AREA_SIZE },
4472 { .name = "-work-area-backup", .value = TCFG_WORK_AREA_BACKUP },
4473 { .name = "-endian" , .value = TCFG_ENDIAN },
4474 { .name = "-coreid", .value = TCFG_COREID },
4475 { .name = "-chain-position", .value = TCFG_CHAIN_POSITION },
4476 { .name = "-dbgbase", .value = TCFG_DBGBASE },
4477 { .name = "-ctibase", .value = TCFG_CTIBASE },
4478 { .name = "-rtos", .value = TCFG_RTOS },
4479 { .name = "-defer-examine", .value = TCFG_DEFER_EXAMINE },
4480 { .name = NULL, .value = -1 }
4483 static int target_configure(Jim_GetOptInfo *goi, struct target *target)
4485 Jim_Nvp *n;
4486 Jim_Obj *o;
4487 jim_wide w;
4488 int e;
4490 /* parse config or cget options ... */
4491 while (goi->argc > 0) {
4492 Jim_SetEmptyResult(goi->interp);
4493 /* Jim_GetOpt_Debug(goi); */
4495 if (target->type->target_jim_configure) {
4496 /* target defines a configure function */
4497 /* target gets first dibs on parameters */
4498 e = (*(target->type->target_jim_configure))(target, goi);
4499 if (e == JIM_OK) {
4500 /* more? */
4501 continue;
4503 if (e == JIM_ERR) {
4504 /* An error */
4505 return e;
4507 /* otherwise we 'continue' below */
4509 e = Jim_GetOpt_Nvp(goi, nvp_config_opts, &n);
4510 if (e != JIM_OK) {
4511 Jim_GetOpt_NvpUnknown(goi, nvp_config_opts, 0);
4512 return e;
4514 switch (n->value) {
4515 case TCFG_TYPE:
4516 /* not setable */
4517 if (goi->isconfigure) {
4518 Jim_SetResultFormatted(goi->interp,
4519 "not settable: %s", n->name);
4520 return JIM_ERR;
4521 } else {
4522 no_params:
4523 if (goi->argc != 0) {
4524 Jim_WrongNumArgs(goi->interp,
4525 goi->argc, goi->argv,
4526 "NO PARAMS");
4527 return JIM_ERR;
4530 Jim_SetResultString(goi->interp,
4531 target_type_name(target), -1);
4532 /* loop for more */
4533 break;
4534 case TCFG_EVENT:
4535 if (goi->argc == 0) {
4536 Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name? ...");
4537 return JIM_ERR;
4540 e = Jim_GetOpt_Nvp(goi, nvp_target_event, &n);
4541 if (e != JIM_OK) {
4542 Jim_GetOpt_NvpUnknown(goi, nvp_target_event, 1);
4543 return e;
4546 if (goi->isconfigure) {
4547 if (goi->argc != 1) {
4548 Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name? ?EVENT-BODY?");
4549 return JIM_ERR;
4551 } else {
4552 if (goi->argc != 0) {
4553 Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name?");
4554 return JIM_ERR;
4559 struct target_event_action *teap;
4561 teap = target->event_action;
4562 /* replace existing? */
4563 while (teap) {
4564 if (teap->event == (enum target_event)n->value)
4565 break;
4566 teap = teap->next;
4569 if (goi->isconfigure) {
4570 bool replace = true;
4571 if (teap == NULL) {
4572 /* create new */
4573 teap = calloc(1, sizeof(*teap));
4574 replace = false;
4576 teap->event = n->value;
4577 teap->interp = goi->interp;
4578 Jim_GetOpt_Obj(goi, &o);
4579 if (teap->body)
4580 Jim_DecrRefCount(teap->interp, teap->body);
4581 teap->body = Jim_DuplicateObj(goi->interp, o);
4583 * FIXME:
4584 * Tcl/TK - "tk events" have a nice feature.
4585 * See the "BIND" command.
4586 * We should support that here.
4587 * You can specify %X and %Y in the event code.
4588 * The idea is: %T - target name.
4589 * The idea is: %N - target number
4590 * The idea is: %E - event name.
4592 Jim_IncrRefCount(teap->body);
4594 if (!replace) {
4595 /* add to head of event list */
4596 teap->next = target->event_action;
4597 target->event_action = teap;
4599 Jim_SetEmptyResult(goi->interp);
4600 } else {
4601 /* get */
4602 if (teap == NULL)
4603 Jim_SetEmptyResult(goi->interp);
4604 else
4605 Jim_SetResult(goi->interp, Jim_DuplicateObj(goi->interp, teap->body));
4608 /* loop for more */
4609 break;
4611 case TCFG_WORK_AREA_VIRT:
4612 if (goi->isconfigure) {
4613 target_free_all_working_areas(target);
4614 e = Jim_GetOpt_Wide(goi, &w);
4615 if (e != JIM_OK)
4616 return e;
4617 target->working_area_virt = w;
4618 target->working_area_virt_spec = true;
4619 } else {
4620 if (goi->argc != 0)
4621 goto no_params;
4623 Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_virt));
4624 /* loop for more */
4625 break;
4627 case TCFG_WORK_AREA_PHYS:
4628 if (goi->isconfigure) {
4629 target_free_all_working_areas(target);
4630 e = Jim_GetOpt_Wide(goi, &w);
4631 if (e != JIM_OK)
4632 return e;
4633 target->working_area_phys = w;
4634 target->working_area_phys_spec = true;
4635 } else {
4636 if (goi->argc != 0)
4637 goto no_params;
4639 Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_phys));
4640 /* loop for more */
4641 break;
4643 case TCFG_WORK_AREA_SIZE:
4644 if (goi->isconfigure) {
4645 target_free_all_working_areas(target);
4646 e = Jim_GetOpt_Wide(goi, &w);
4647 if (e != JIM_OK)
4648 return e;
4649 target->working_area_size = w;
4650 } else {
4651 if (goi->argc != 0)
4652 goto no_params;
4654 Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_size));
4655 /* loop for more */
4656 break;
4658 case TCFG_WORK_AREA_BACKUP:
4659 if (goi->isconfigure) {
4660 target_free_all_working_areas(target);
4661 e = Jim_GetOpt_Wide(goi, &w);
4662 if (e != JIM_OK)
4663 return e;
4664 /* make this exactly 1 or 0 */
4665 target->backup_working_area = (!!w);
4666 } else {
4667 if (goi->argc != 0)
4668 goto no_params;
4670 Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->backup_working_area));
4671 /* loop for more e*/
4672 break;
4675 case TCFG_ENDIAN:
4676 if (goi->isconfigure) {
4677 e = Jim_GetOpt_Nvp(goi, nvp_target_endian, &n);
4678 if (e != JIM_OK) {
4679 Jim_GetOpt_NvpUnknown(goi, nvp_target_endian, 1);
4680 return e;
4682 target->endianness = n->value;
4683 } else {
4684 if (goi->argc != 0)
4685 goto no_params;
4687 n = Jim_Nvp_value2name_simple(nvp_target_endian, target->endianness);
4688 if (n->name == NULL) {
4689 target->endianness = TARGET_LITTLE_ENDIAN;
4690 n = Jim_Nvp_value2name_simple(nvp_target_endian, target->endianness);
4692 Jim_SetResultString(goi->interp, n->name, -1);
4693 /* loop for more */
4694 break;
4696 case TCFG_COREID:
4697 if (goi->isconfigure) {
4698 e = Jim_GetOpt_Wide(goi, &w);
4699 if (e != JIM_OK)
4700 return e;
4701 target->coreid = (int32_t)w;
4702 } else {
4703 if (goi->argc != 0)
4704 goto no_params;
4706 Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_size));
4707 /* loop for more */
4708 break;
4710 case TCFG_CHAIN_POSITION:
4711 if (goi->isconfigure) {
4712 Jim_Obj *o_t;
4713 struct jtag_tap *tap;
4714 target_free_all_working_areas(target);
4715 e = Jim_GetOpt_Obj(goi, &o_t);
4716 if (e != JIM_OK)
4717 return e;
4718 tap = jtag_tap_by_jim_obj(goi->interp, o_t);
4719 if (tap == NULL)
4720 return JIM_ERR;
4721 /* make this exactly 1 or 0 */
4722 target->tap = tap;
4723 } else {
4724 if (goi->argc != 0)
4725 goto no_params;
4727 Jim_SetResultString(goi->interp, target->tap->dotted_name, -1);
4728 /* loop for more e*/
4729 break;
4730 case TCFG_DBGBASE:
4731 if (goi->isconfigure) {
4732 e = Jim_GetOpt_Wide(goi, &w);
4733 if (e != JIM_OK)
4734 return e;
4735 target->dbgbase = (uint32_t)w;
4736 target->dbgbase_set = true;
4737 } else {
4738 if (goi->argc != 0)
4739 goto no_params;
4741 Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->dbgbase));
4742 /* loop for more */
4743 break;
4744 case TCFG_CTIBASE:
4745 if (goi->isconfigure) {
4746 e = Jim_GetOpt_Wide(goi, &w);
4747 if (e != JIM_OK)
4748 return e;
4749 target->ctibase = (uint32_t)w;
4750 target->ctibase_set = true;
4751 } else {
4752 if (goi->argc != 0)
4753 goto no_params;
4755 Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->ctibase));
4756 /* loop for more */
4757 break;
4758 case TCFG_RTOS:
4759 /* RTOS */
4761 int result = rtos_create(goi, target);
4762 if (result != JIM_OK)
4763 return result;
4765 /* loop for more */
4766 break;
4768 case TCFG_DEFER_EXAMINE:
4769 /* DEFER_EXAMINE */
4770 target->defer_examine = true;
4771 /* loop for more */
4772 break;
4775 } /* while (goi->argc) */
4778 /* done - we return */
4779 return JIM_OK;
4782 static int jim_target_configure(Jim_Interp *interp, int argc, Jim_Obj * const *argv)
4784 Jim_GetOptInfo goi;
4786 Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4787 goi.isconfigure = !strcmp(Jim_GetString(argv[0], NULL), "configure");
4788 if (goi.argc < 1) {
4789 Jim_WrongNumArgs(goi.interp, goi.argc, goi.argv,
4790 "missing: -option ...");
4791 return JIM_ERR;
4793 struct target *target = Jim_CmdPrivData(goi.interp);
4794 return target_configure(&goi, target);
4797 static int jim_target_mw(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4799 const char *cmd_name = Jim_GetString(argv[0], NULL);
4801 Jim_GetOptInfo goi;
4802 Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4804 if (goi.argc < 2 || goi.argc > 4) {
4805 Jim_SetResultFormatted(goi.interp,
4806 "usage: %s [phys] <address> <data> [<count>]", cmd_name);
4807 return JIM_ERR;
4810 target_write_fn fn;
4811 fn = target_write_memory;
4813 int e;
4814 if (strcmp(Jim_GetString(argv[1], NULL), "phys") == 0) {
4815 /* consume it */
4816 struct Jim_Obj *obj;
4817 e = Jim_GetOpt_Obj(&goi, &obj);
4818 if (e != JIM_OK)
4819 return e;
4821 fn = target_write_phys_memory;
4824 jim_wide a;
4825 e = Jim_GetOpt_Wide(&goi, &a);
4826 if (e != JIM_OK)
4827 return e;
4829 jim_wide b;
4830 e = Jim_GetOpt_Wide(&goi, &b);
4831 if (e != JIM_OK)
4832 return e;
4834 jim_wide c = 1;
4835 if (goi.argc == 1) {
4836 e = Jim_GetOpt_Wide(&goi, &c);
4837 if (e != JIM_OK)
4838 return e;
4841 /* all args must be consumed */
4842 if (goi.argc != 0)
4843 return JIM_ERR;
4845 struct target *target = Jim_CmdPrivData(goi.interp);
4846 unsigned data_size;
4847 if (strcasecmp(cmd_name, "mww") == 0)
4848 data_size = 4;
4849 else if (strcasecmp(cmd_name, "mwh") == 0)
4850 data_size = 2;
4851 else if (strcasecmp(cmd_name, "mwb") == 0)
4852 data_size = 1;
4853 else {
4854 LOG_ERROR("command '%s' unknown: ", cmd_name);
4855 return JIM_ERR;
4858 return (target_fill_mem(target, a, fn, data_size, b, c) == ERROR_OK) ? JIM_OK : JIM_ERR;
4862 * @brief Reads an array of words/halfwords/bytes from target memory starting at specified address.
4864 * Usage: mdw [phys] <address> [<count>] - for 32 bit reads
4865 * mdh [phys] <address> [<count>] - for 16 bit reads
4866 * mdb [phys] <address> [<count>] - for 8 bit reads
4868 * Count defaults to 1.
4870 * Calls target_read_memory or target_read_phys_memory depending on
4871 * the presence of the "phys" argument
4872 * Reads the target memory in blocks of max. 32 bytes, and returns an array of ints formatted
4873 * to int representation in base16.
4874 * Also outputs read data in a human readable form using command_print
4876 * @param phys if present target_read_phys_memory will be used instead of target_read_memory
4877 * @param address address where to start the read. May be specified in decimal or hex using the standard "0x" prefix
4878 * @param count optional count parameter to read an array of values. If not specified, defaults to 1.
4879 * @returns: JIM_ERR on error or JIM_OK on success and sets the result string to an array of ascii formatted numbers
4880 * on success, with [<count>] number of elements.
4882 * In case of little endian target:
4883 * Example1: "mdw 0x00000000" returns "10123456"
4884 * Exmaple2: "mdh 0x00000000 1" returns "3456"
4885 * Example3: "mdb 0x00000000" returns "56"
4886 * Example4: "mdh 0x00000000 2" returns "3456 1012"
4887 * Example5: "mdb 0x00000000 3" returns "56 34 12"
4889 static int jim_target_md(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4891 const char *cmd_name = Jim_GetString(argv[0], NULL);
4893 Jim_GetOptInfo goi;
4894 Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4896 if ((goi.argc < 1) || (goi.argc > 3)) {
4897 Jim_SetResultFormatted(goi.interp,
4898 "usage: %s [phys] <address> [<count>]", cmd_name);
4899 return JIM_ERR;
4902 int (*fn)(struct target *target,
4903 target_addr_t address, uint32_t size, uint32_t count, uint8_t *buffer);
4904 fn = target_read_memory;
4906 int e;
4907 if (strcmp(Jim_GetString(argv[1], NULL), "phys") == 0) {
4908 /* consume it */
4909 struct Jim_Obj *obj;
4910 e = Jim_GetOpt_Obj(&goi, &obj);
4911 if (e != JIM_OK)
4912 return e;
4914 fn = target_read_phys_memory;
4917 /* Read address parameter */
4918 jim_wide addr;
4919 e = Jim_GetOpt_Wide(&goi, &addr);
4920 if (e != JIM_OK)
4921 return JIM_ERR;
4923 /* If next parameter exists, read it out as the count parameter, if not, set it to 1 (default) */
4924 jim_wide count;
4925 if (goi.argc == 1) {
4926 e = Jim_GetOpt_Wide(&goi, &count);
4927 if (e != JIM_OK)
4928 return JIM_ERR;
4929 } else
4930 count = 1;
4932 /* all args must be consumed */
4933 if (goi.argc != 0)
4934 return JIM_ERR;
4936 jim_wide dwidth = 1; /* shut up gcc */
4937 if (strcasecmp(cmd_name, "mdw") == 0)
4938 dwidth = 4;
4939 else if (strcasecmp(cmd_name, "mdh") == 0)
4940 dwidth = 2;
4941 else if (strcasecmp(cmd_name, "mdb") == 0)
4942 dwidth = 1;
4943 else {
4944 LOG_ERROR("command '%s' unknown: ", cmd_name);
4945 return JIM_ERR;
4948 /* convert count to "bytes" */
4949 int bytes = count * dwidth;
4951 struct target *target = Jim_CmdPrivData(goi.interp);
4952 uint8_t target_buf[32];
4953 jim_wide x, y, z;
4954 while (bytes > 0) {
4955 y = (bytes < 16) ? bytes : 16; /* y = min(bytes, 16); */
4957 /* Try to read out next block */
4958 e = fn(target, addr, dwidth, y / dwidth, target_buf);
4960 if (e != ERROR_OK) {
4961 Jim_SetResultFormatted(interp, "error reading target @ 0x%08lx", (long)addr);
4962 return JIM_ERR;
4965 command_print_sameline(NULL, "0x%08x ", (int)(addr));
4966 switch (dwidth) {
4967 case 4:
4968 for (x = 0; x < 16 && x < y; x += 4) {
4969 z = target_buffer_get_u32(target, &(target_buf[x]));
4970 command_print_sameline(NULL, "%08x ", (int)(z));
4972 for (; (x < 16) ; x += 4)
4973 command_print_sameline(NULL, " ");
4974 break;
4975 case 2:
4976 for (x = 0; x < 16 && x < y; x += 2) {
4977 z = target_buffer_get_u16(target, &(target_buf[x]));
4978 command_print_sameline(NULL, "%04x ", (int)(z));
4980 for (; (x < 16) ; x += 2)
4981 command_print_sameline(NULL, " ");
4982 break;
4983 case 1:
4984 default:
4985 for (x = 0 ; (x < 16) && (x < y) ; x += 1) {
4986 z = target_buffer_get_u8(target, &(target_buf[x]));
4987 command_print_sameline(NULL, "%02x ", (int)(z));
4989 for (; (x < 16) ; x += 1)
4990 command_print_sameline(NULL, " ");
4991 break;
4993 /* ascii-ify the bytes */
4994 for (x = 0 ; x < y ; x++) {
4995 if ((target_buf[x] >= 0x20) &&
4996 (target_buf[x] <= 0x7e)) {
4997 /* good */
4998 } else {
4999 /* smack it */
5000 target_buf[x] = '.';
5003 /* space pad */
5004 while (x < 16) {
5005 target_buf[x] = ' ';
5006 x++;
5008 /* terminate */
5009 target_buf[16] = 0;
5010 /* print - with a newline */
5011 command_print_sameline(NULL, "%s\n", target_buf);
5012 /* NEXT... */
5013 bytes -= 16;
5014 addr += 16;
5016 return JIM_OK;
5019 static int jim_target_mem2array(Jim_Interp *interp,
5020 int argc, Jim_Obj *const *argv)
5022 struct target *target = Jim_CmdPrivData(interp);
5023 return target_mem2array(interp, target, argc - 1, argv + 1);
5026 static int jim_target_array2mem(Jim_Interp *interp,
5027 int argc, Jim_Obj *const *argv)
5029 struct target *target = Jim_CmdPrivData(interp);
5030 return target_array2mem(interp, target, argc - 1, argv + 1);
5033 static int jim_target_tap_disabled(Jim_Interp *interp)
5035 Jim_SetResultFormatted(interp, "[TAP is disabled]");
5036 return JIM_ERR;
5039 static int jim_target_examine(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5041 bool allow_defer = false;
5043 Jim_GetOptInfo goi;
5044 Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
5045 if (goi.argc > 1) {
5046 const char *cmd_name = Jim_GetString(argv[0], NULL);
5047 Jim_SetResultFormatted(goi.interp,
5048 "usage: %s ['allow-defer']", cmd_name);
5049 return JIM_ERR;
5051 if (goi.argc > 0 &&
5052 strcmp(Jim_GetString(argv[1], NULL), "allow-defer") == 0) {
5053 /* consume it */
5054 struct Jim_Obj *obj;
5055 int e = Jim_GetOpt_Obj(&goi, &obj);
5056 if (e != JIM_OK)
5057 return e;
5058 allow_defer = true;
5061 struct target *target = Jim_CmdPrivData(interp);
5062 if (!target->tap->enabled)
5063 return jim_target_tap_disabled(interp);
5065 if (allow_defer && target->defer_examine) {
5066 LOG_INFO("Deferring arp_examine of %s", target_name(target));
5067 LOG_INFO("Use arp_examine command to examine it manually!");
5068 return JIM_OK;
5071 int e = target->type->examine(target);
5072 if (e != ERROR_OK)
5073 return JIM_ERR;
5074 return JIM_OK;
5077 static int jim_target_was_examined(Jim_Interp *interp, int argc, Jim_Obj * const *argv)
5079 struct target *target = Jim_CmdPrivData(interp);
5081 Jim_SetResultBool(interp, target_was_examined(target));
5082 return JIM_OK;
5085 static int jim_target_examine_deferred(Jim_Interp *interp, int argc, Jim_Obj * const *argv)
5087 struct target *target = Jim_CmdPrivData(interp);
5089 Jim_SetResultBool(interp, target->defer_examine);
5090 return JIM_OK;
5093 static int jim_target_halt_gdb(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5095 if (argc != 1) {
5096 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
5097 return JIM_ERR;
5099 struct target *target = Jim_CmdPrivData(interp);
5101 if (target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT) != ERROR_OK)
5102 return JIM_ERR;
5104 return JIM_OK;
5107 static int jim_target_poll(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5109 if (argc != 1) {
5110 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
5111 return JIM_ERR;
5113 struct target *target = Jim_CmdPrivData(interp);
5114 if (!target->tap->enabled)
5115 return jim_target_tap_disabled(interp);
5117 int e;
5118 if (!(target_was_examined(target)))
5119 e = ERROR_TARGET_NOT_EXAMINED;
5120 else
5121 e = target->type->poll(target);
5122 if (e != ERROR_OK)
5123 return JIM_ERR;
5124 return JIM_OK;
5127 static int jim_target_reset(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5129 Jim_GetOptInfo goi;
5130 Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
5132 if (goi.argc != 2) {
5133 Jim_WrongNumArgs(interp, 0, argv,
5134 "([tT]|[fF]|assert|deassert) BOOL");
5135 return JIM_ERR;
5138 Jim_Nvp *n;
5139 int e = Jim_GetOpt_Nvp(&goi, nvp_assert, &n);
5140 if (e != JIM_OK) {
5141 Jim_GetOpt_NvpUnknown(&goi, nvp_assert, 1);
5142 return e;
5144 /* the halt or not param */
5145 jim_wide a;
5146 e = Jim_GetOpt_Wide(&goi, &a);
5147 if (e != JIM_OK)
5148 return e;
5150 struct target *target = Jim_CmdPrivData(goi.interp);
5151 if (!target->tap->enabled)
5152 return jim_target_tap_disabled(interp);
5154 if (!target->type->assert_reset || !target->type->deassert_reset) {
5155 Jim_SetResultFormatted(interp,
5156 "No target-specific reset for %s",
5157 target_name(target));
5158 return JIM_ERR;
5161 if (target->defer_examine)
5162 target_reset_examined(target);
5164 /* determine if we should halt or not. */
5165 target->reset_halt = !!a;
5166 /* When this happens - all workareas are invalid. */
5167 target_free_all_working_areas_restore(target, 0);
5169 /* do the assert */
5170 if (n->value == NVP_ASSERT)
5171 e = target->type->assert_reset(target);
5172 else
5173 e = target->type->deassert_reset(target);
5174 return (e == ERROR_OK) ? JIM_OK : JIM_ERR;
5177 static int jim_target_halt(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5179 if (argc != 1) {
5180 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
5181 return JIM_ERR;
5183 struct target *target = Jim_CmdPrivData(interp);
5184 if (!target->tap->enabled)
5185 return jim_target_tap_disabled(interp);
5186 int e = target->type->halt(target);
5187 return (e == ERROR_OK) ? JIM_OK : JIM_ERR;
5190 static int jim_target_wait_state(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5192 Jim_GetOptInfo goi;
5193 Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
5195 /* params: <name> statename timeoutmsecs */
5196 if (goi.argc != 2) {
5197 const char *cmd_name = Jim_GetString(argv[0], NULL);
5198 Jim_SetResultFormatted(goi.interp,
5199 "%s <state_name> <timeout_in_msec>", cmd_name);
5200 return JIM_ERR;
5203 Jim_Nvp *n;
5204 int e = Jim_GetOpt_Nvp(&goi, nvp_target_state, &n);
5205 if (e != JIM_OK) {
5206 Jim_GetOpt_NvpUnknown(&goi, nvp_target_state, 1);
5207 return e;
5209 jim_wide a;
5210 e = Jim_GetOpt_Wide(&goi, &a);
5211 if (e != JIM_OK)
5212 return e;
5213 struct target *target = Jim_CmdPrivData(interp);
5214 if (!target->tap->enabled)
5215 return jim_target_tap_disabled(interp);
5217 e = target_wait_state(target, n->value, a);
5218 if (e != ERROR_OK) {
5219 Jim_Obj *eObj = Jim_NewIntObj(interp, e);
5220 Jim_SetResultFormatted(goi.interp,
5221 "target: %s wait %s fails (%#s) %s",
5222 target_name(target), n->name,
5223 eObj, target_strerror_safe(e));
5224 Jim_FreeNewObj(interp, eObj);
5225 return JIM_ERR;
5227 return JIM_OK;
5229 /* List for human, Events defined for this target.
5230 * scripts/programs should use 'name cget -event NAME'
5232 static int jim_target_event_list(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5234 struct command_context *cmd_ctx = current_command_context(interp);
5235 assert(cmd_ctx != NULL);
5237 struct target *target = Jim_CmdPrivData(interp);
5238 struct target_event_action *teap = target->event_action;
5239 command_print(cmd_ctx, "Event actions for target (%d) %s\n",
5240 target->target_number,
5241 target_name(target));
5242 command_print(cmd_ctx, "%-25s | Body", "Event");
5243 command_print(cmd_ctx, "------------------------- | "
5244 "----------------------------------------");
5245 while (teap) {
5246 Jim_Nvp *opt = Jim_Nvp_value2name_simple(nvp_target_event, teap->event);
5247 command_print(cmd_ctx, "%-25s | %s",
5248 opt->name, Jim_GetString(teap->body, NULL));
5249 teap = teap->next;
5251 command_print(cmd_ctx, "***END***");
5252 return JIM_OK;
5254 static int jim_target_current_state(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5256 if (argc != 1) {
5257 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
5258 return JIM_ERR;
5260 struct target *target = Jim_CmdPrivData(interp);
5261 Jim_SetResultString(interp, target_state_name(target), -1);
5262 return JIM_OK;
5264 static int jim_target_invoke_event(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5266 Jim_GetOptInfo goi;
5267 Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
5268 if (goi.argc != 1) {
5269 const char *cmd_name = Jim_GetString(argv[0], NULL);
5270 Jim_SetResultFormatted(goi.interp, "%s <eventname>", cmd_name);
5271 return JIM_ERR;
5273 Jim_Nvp *n;
5274 int e = Jim_GetOpt_Nvp(&goi, nvp_target_event, &n);
5275 if (e != JIM_OK) {
5276 Jim_GetOpt_NvpUnknown(&goi, nvp_target_event, 1);
5277 return e;
5279 struct target *target = Jim_CmdPrivData(interp);
5280 target_handle_event(target, n->value);
5281 return JIM_OK;
5284 static const struct command_registration target_instance_command_handlers[] = {
5286 .name = "configure",
5287 .mode = COMMAND_CONFIG,
5288 .jim_handler = jim_target_configure,
5289 .help = "configure a new target for use",
5290 .usage = "[target_attribute ...]",
5293 .name = "cget",
5294 .mode = COMMAND_ANY,
5295 .jim_handler = jim_target_configure,
5296 .help = "returns the specified target attribute",
5297 .usage = "target_attribute",
5300 .name = "mww",
5301 .mode = COMMAND_EXEC,
5302 .jim_handler = jim_target_mw,
5303 .help = "Write 32-bit word(s) to target memory",
5304 .usage = "address data [count]",
5307 .name = "mwh",
5308 .mode = COMMAND_EXEC,
5309 .jim_handler = jim_target_mw,
5310 .help = "Write 16-bit half-word(s) to target memory",
5311 .usage = "address data [count]",
5314 .name = "mwb",
5315 .mode = COMMAND_EXEC,
5316 .jim_handler = jim_target_mw,
5317 .help = "Write byte(s) to target memory",
5318 .usage = "address data [count]",
5321 .name = "mdw",
5322 .mode = COMMAND_EXEC,
5323 .jim_handler = jim_target_md,
5324 .help = "Display target memory as 32-bit words",
5325 .usage = "address [count]",
5328 .name = "mdh",
5329 .mode = COMMAND_EXEC,
5330 .jim_handler = jim_target_md,
5331 .help = "Display target memory as 16-bit half-words",
5332 .usage = "address [count]",
5335 .name = "mdb",
5336 .mode = COMMAND_EXEC,
5337 .jim_handler = jim_target_md,
5338 .help = "Display target memory as 8-bit bytes",
5339 .usage = "address [count]",
5342 .name = "array2mem",
5343 .mode = COMMAND_EXEC,
5344 .jim_handler = jim_target_array2mem,
5345 .help = "Writes Tcl array of 8/16/32 bit numbers "
5346 "to target memory",
5347 .usage = "arrayname bitwidth address count",
5350 .name = "mem2array",
5351 .mode = COMMAND_EXEC,
5352 .jim_handler = jim_target_mem2array,
5353 .help = "Loads Tcl array of 8/16/32 bit numbers "
5354 "from target memory",
5355 .usage = "arrayname bitwidth address count",
5358 .name = "eventlist",
5359 .mode = COMMAND_EXEC,
5360 .jim_handler = jim_target_event_list,
5361 .help = "displays a table of events defined for this target",
5364 .name = "curstate",
5365 .mode = COMMAND_EXEC,
5366 .jim_handler = jim_target_current_state,
5367 .help = "displays the current state of this target",
5370 .name = "arp_examine",
5371 .mode = COMMAND_EXEC,
5372 .jim_handler = jim_target_examine,
5373 .help = "used internally for reset processing",
5374 .usage = "arp_examine ['allow-defer']",
5377 .name = "was_examined",
5378 .mode = COMMAND_EXEC,
5379 .jim_handler = jim_target_was_examined,
5380 .help = "used internally for reset processing",
5381 .usage = "was_examined",
5384 .name = "examine_deferred",
5385 .mode = COMMAND_EXEC,
5386 .jim_handler = jim_target_examine_deferred,
5387 .help = "used internally for reset processing",
5388 .usage = "examine_deferred",
5391 .name = "arp_halt_gdb",
5392 .mode = COMMAND_EXEC,
5393 .jim_handler = jim_target_halt_gdb,
5394 .help = "used internally for reset processing to halt GDB",
5397 .name = "arp_poll",
5398 .mode = COMMAND_EXEC,
5399 .jim_handler = jim_target_poll,
5400 .help = "used internally for reset processing",
5403 .name = "arp_reset",
5404 .mode = COMMAND_EXEC,
5405 .jim_handler = jim_target_reset,
5406 .help = "used internally for reset processing",
5409 .name = "arp_halt",
5410 .mode = COMMAND_EXEC,
5411 .jim_handler = jim_target_halt,
5412 .help = "used internally for reset processing",
5415 .name = "arp_waitstate",
5416 .mode = COMMAND_EXEC,
5417 .jim_handler = jim_target_wait_state,
5418 .help = "used internally for reset processing",
5421 .name = "invoke-event",
5422 .mode = COMMAND_EXEC,
5423 .jim_handler = jim_target_invoke_event,
5424 .help = "invoke handler for specified event",
5425 .usage = "event_name",
5427 COMMAND_REGISTRATION_DONE
5430 static int target_create(Jim_GetOptInfo *goi)
5432 Jim_Obj *new_cmd;
5433 Jim_Cmd *cmd;
5434 const char *cp;
5435 int e;
5436 int x;
5437 struct target *target;
5438 struct command_context *cmd_ctx;
5440 cmd_ctx = current_command_context(goi->interp);
5441 assert(cmd_ctx != NULL);
5443 if (goi->argc < 3) {
5444 Jim_WrongNumArgs(goi->interp, 1, goi->argv, "?name? ?type? ..options...");
5445 return JIM_ERR;
5448 /* COMMAND */
5449 Jim_GetOpt_Obj(goi, &new_cmd);
5450 /* does this command exist? */
5451 cmd = Jim_GetCommand(goi->interp, new_cmd, JIM_ERRMSG);
5452 if (cmd) {
5453 cp = Jim_GetString(new_cmd, NULL);
5454 Jim_SetResultFormatted(goi->interp, "Command/target: %s Exists", cp);
5455 return JIM_ERR;
5458 /* TYPE */
5459 e = Jim_GetOpt_String(goi, &cp, NULL);
5460 if (e != JIM_OK)
5461 return e;
5462 struct transport *tr = get_current_transport();
5463 if (tr->override_target) {
5464 e = tr->override_target(&cp);
5465 if (e != ERROR_OK) {
5466 LOG_ERROR("The selected transport doesn't support this target");
5467 return JIM_ERR;
5469 LOG_INFO("The selected transport took over low-level target control. The results might differ compared to plain JTAG/SWD");
5471 /* now does target type exist */
5472 for (x = 0 ; target_types[x] ; x++) {
5473 if (0 == strcmp(cp, target_types[x]->name)) {
5474 /* found */
5475 break;
5478 /* check for deprecated name */
5479 if (target_types[x]->deprecated_name) {
5480 if (0 == strcmp(cp, target_types[x]->deprecated_name)) {
5481 /* found */
5482 LOG_WARNING("target name is deprecated use: \'%s\'", target_types[x]->name);
5483 break;
5487 if (target_types[x] == NULL) {
5488 Jim_SetResultFormatted(goi->interp, "Unknown target type %s, try one of ", cp);
5489 for (x = 0 ; target_types[x] ; x++) {
5490 if (target_types[x + 1]) {
5491 Jim_AppendStrings(goi->interp,
5492 Jim_GetResult(goi->interp),
5493 target_types[x]->name,
5494 ", ", NULL);
5495 } else {
5496 Jim_AppendStrings(goi->interp,
5497 Jim_GetResult(goi->interp),
5498 " or ",
5499 target_types[x]->name, NULL);
5502 return JIM_ERR;
5505 /* Create it */
5506 target = calloc(1, sizeof(struct target));
5507 /* set target number */
5508 target->target_number = new_target_number();
5509 cmd_ctx->current_target = target->target_number;
5511 /* allocate memory for each unique target type */
5512 target->type = calloc(1, sizeof(struct target_type));
5514 memcpy(target->type, target_types[x], sizeof(struct target_type));
5516 /* will be set by "-endian" */
5517 target->endianness = TARGET_ENDIAN_UNKNOWN;
5519 /* default to first core, override with -coreid */
5520 target->coreid = 0;
5522 target->working_area = 0x0;
5523 target->working_area_size = 0x0;
5524 target->working_areas = NULL;
5525 target->backup_working_area = 0;
5527 target->state = TARGET_UNKNOWN;
5528 target->debug_reason = DBG_REASON_UNDEFINED;
5529 target->reg_cache = NULL;
5530 target->breakpoints = NULL;
5531 target->watchpoints = NULL;
5532 target->next = NULL;
5533 target->arch_info = NULL;
5535 target->display = 1;
5537 target->halt_issued = false;
5539 /* initialize trace information */
5540 target->trace_info = calloc(1, sizeof(struct trace));
5542 target->dbgmsg = NULL;
5543 target->dbg_msg_enabled = 0;
5545 target->endianness = TARGET_ENDIAN_UNKNOWN;
5547 target->rtos = NULL;
5548 target->rtos_auto_detect = false;
5550 /* Do the rest as "configure" options */
5551 goi->isconfigure = 1;
5552 e = target_configure(goi, target);
5554 if (target->tap == NULL) {
5555 Jim_SetResultString(goi->interp, "-chain-position required when creating target", -1);
5556 e = JIM_ERR;
5559 if (e != JIM_OK) {
5560 free(target->type);
5561 free(target);
5562 return e;
5565 if (target->endianness == TARGET_ENDIAN_UNKNOWN) {
5566 /* default endian to little if not specified */
5567 target->endianness = TARGET_LITTLE_ENDIAN;
5570 cp = Jim_GetString(new_cmd, NULL);
5571 target->cmd_name = strdup(cp);
5573 /* create the target specific commands */
5574 if (target->type->commands) {
5575 e = register_commands(cmd_ctx, NULL, target->type->commands);
5576 if (ERROR_OK != e)
5577 LOG_ERROR("unable to register '%s' commands", cp);
5579 if (target->type->target_create)
5580 (*(target->type->target_create))(target, goi->interp);
5582 /* append to end of list */
5584 struct target **tpp;
5585 tpp = &(all_targets);
5586 while (*tpp)
5587 tpp = &((*tpp)->next);
5588 *tpp = target;
5591 /* now - create the new target name command */
5592 const struct command_registration target_subcommands[] = {
5594 .chain = target_instance_command_handlers,
5597 .chain = target->type->commands,
5599 COMMAND_REGISTRATION_DONE
5601 const struct command_registration target_commands[] = {
5603 .name = cp,
5604 .mode = COMMAND_ANY,
5605 .help = "target command group",
5606 .usage = "",
5607 .chain = target_subcommands,
5609 COMMAND_REGISTRATION_DONE
5611 e = register_commands(cmd_ctx, NULL, target_commands);
5612 if (ERROR_OK != e)
5613 return JIM_ERR;
5615 struct command *c = command_find_in_context(cmd_ctx, cp);
5616 assert(c);
5617 command_set_handler_data(c, target);
5619 return (ERROR_OK == e) ? JIM_OK : JIM_ERR;
5622 static int jim_target_current(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5624 if (argc != 1) {
5625 Jim_WrongNumArgs(interp, 1, argv, "Too many parameters");
5626 return JIM_ERR;
5628 struct command_context *cmd_ctx = current_command_context(interp);
5629 assert(cmd_ctx != NULL);
5631 Jim_SetResultString(interp, target_name(get_current_target(cmd_ctx)), -1);
5632 return JIM_OK;
5635 static int jim_target_types(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5637 if (argc != 1) {
5638 Jim_WrongNumArgs(interp, 1, argv, "Too many parameters");
5639 return JIM_ERR;
5641 Jim_SetResult(interp, Jim_NewListObj(interp, NULL, 0));
5642 for (unsigned x = 0; NULL != target_types[x]; x++) {
5643 Jim_ListAppendElement(interp, Jim_GetResult(interp),
5644 Jim_NewStringObj(interp, target_types[x]->name, -1));
5646 return JIM_OK;
5649 static int jim_target_names(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5651 if (argc != 1) {
5652 Jim_WrongNumArgs(interp, 1, argv, "Too many parameters");
5653 return JIM_ERR;
5655 Jim_SetResult(interp, Jim_NewListObj(interp, NULL, 0));
5656 struct target *target = all_targets;
5657 while (target) {
5658 Jim_ListAppendElement(interp, Jim_GetResult(interp),
5659 Jim_NewStringObj(interp, target_name(target), -1));
5660 target = target->next;
5662 return JIM_OK;
5665 static int jim_target_smp(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5667 int i;
5668 const char *targetname;
5669 int retval, len;
5670 struct target *target = (struct target *) NULL;
5671 struct target_list *head, *curr, *new;
5672 curr = (struct target_list *) NULL;
5673 head = (struct target_list *) NULL;
5675 retval = 0;
5676 LOG_DEBUG("%d", argc);
5677 /* argv[1] = target to associate in smp
5678 * argv[2] = target to assoicate in smp
5679 * argv[3] ...
5682 for (i = 1; i < argc; i++) {
5684 targetname = Jim_GetString(argv[i], &len);
5685 target = get_target(targetname);
5686 LOG_DEBUG("%s ", targetname);
5687 if (target) {
5688 new = malloc(sizeof(struct target_list));
5689 new->target = target;
5690 new->next = (struct target_list *)NULL;
5691 if (head == (struct target_list *)NULL) {
5692 head = new;
5693 curr = head;
5694 } else {
5695 curr->next = new;
5696 curr = new;
5700 /* now parse the list of cpu and put the target in smp mode*/
5701 curr = head;
5703 while (curr != (struct target_list *)NULL) {
5704 target = curr->target;
5705 target->smp = 1;
5706 target->head = head;
5707 curr = curr->next;
5710 if (target && target->rtos)
5711 retval = rtos_smp_init(head->target);
5713 return retval;
5717 static int jim_target_create(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5719 Jim_GetOptInfo goi;
5720 Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
5721 if (goi.argc < 3) {
5722 Jim_WrongNumArgs(goi.interp, goi.argc, goi.argv,
5723 "<name> <target_type> [<target_options> ...]");
5724 return JIM_ERR;
5726 return target_create(&goi);
5729 static const struct command_registration target_subcommand_handlers[] = {
5731 .name = "init",
5732 .mode = COMMAND_CONFIG,
5733 .handler = handle_target_init_command,
5734 .help = "initialize targets",
5737 .name = "create",
5738 /* REVISIT this should be COMMAND_CONFIG ... */
5739 .mode = COMMAND_ANY,
5740 .jim_handler = jim_target_create,
5741 .usage = "name type '-chain-position' name [options ...]",
5742 .help = "Creates and selects a new target",
5745 .name = "current",
5746 .mode = COMMAND_ANY,
5747 .jim_handler = jim_target_current,
5748 .help = "Returns the currently selected target",
5751 .name = "types",
5752 .mode = COMMAND_ANY,
5753 .jim_handler = jim_target_types,
5754 .help = "Returns the available target types as "
5755 "a list of strings",
5758 .name = "names",
5759 .mode = COMMAND_ANY,
5760 .jim_handler = jim_target_names,
5761 .help = "Returns the names of all targets as a list of strings",
5764 .name = "smp",
5765 .mode = COMMAND_ANY,
5766 .jim_handler = jim_target_smp,
5767 .usage = "targetname1 targetname2 ...",
5768 .help = "gather several target in a smp list"
5771 COMMAND_REGISTRATION_DONE
5774 struct FastLoad {
5775 target_addr_t address;
5776 uint8_t *data;
5777 int length;
5781 static int fastload_num;
5782 static struct FastLoad *fastload;
5784 static void free_fastload(void)
5786 if (fastload != NULL) {
5787 int i;
5788 for (i = 0; i < fastload_num; i++) {
5789 if (fastload[i].data)
5790 free(fastload[i].data);
5792 free(fastload);
5793 fastload = NULL;
5797 COMMAND_HANDLER(handle_fast_load_image_command)
5799 uint8_t *buffer;
5800 size_t buf_cnt;
5801 uint32_t image_size;
5802 target_addr_t min_address = 0;
5803 target_addr_t max_address = -1;
5804 int i;
5806 struct image image;
5808 int retval = CALL_COMMAND_HANDLER(parse_load_image_command_CMD_ARGV,
5809 &image, &min_address, &max_address);
5810 if (ERROR_OK != retval)
5811 return retval;
5813 struct duration bench;
5814 duration_start(&bench);
5816 retval = image_open(&image, CMD_ARGV[0], (CMD_ARGC >= 3) ? CMD_ARGV[2] : NULL);
5817 if (retval != ERROR_OK)
5818 return retval;
5820 image_size = 0x0;
5821 retval = ERROR_OK;
5822 fastload_num = image.num_sections;
5823 fastload = malloc(sizeof(struct FastLoad)*image.num_sections);
5824 if (fastload == NULL) {
5825 command_print(CMD_CTX, "out of memory");
5826 image_close(&image);
5827 return ERROR_FAIL;
5829 memset(fastload, 0, sizeof(struct FastLoad)*image.num_sections);
5830 for (i = 0; i < image.num_sections; i++) {
5831 buffer = malloc(image.sections[i].size);
5832 if (buffer == NULL) {
5833 command_print(CMD_CTX, "error allocating buffer for section (%d bytes)",
5834 (int)(image.sections[i].size));
5835 retval = ERROR_FAIL;
5836 break;
5839 retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt);
5840 if (retval != ERROR_OK) {
5841 free(buffer);
5842 break;
5845 uint32_t offset = 0;
5846 uint32_t length = buf_cnt;
5848 /* DANGER!!! beware of unsigned comparision here!!! */
5850 if ((image.sections[i].base_address + buf_cnt >= min_address) &&
5851 (image.sections[i].base_address < max_address)) {
5852 if (image.sections[i].base_address < min_address) {
5853 /* clip addresses below */
5854 offset += min_address-image.sections[i].base_address;
5855 length -= offset;
5858 if (image.sections[i].base_address + buf_cnt > max_address)
5859 length -= (image.sections[i].base_address + buf_cnt)-max_address;
5861 fastload[i].address = image.sections[i].base_address + offset;
5862 fastload[i].data = malloc(length);
5863 if (fastload[i].data == NULL) {
5864 free(buffer);
5865 command_print(CMD_CTX, "error allocating buffer for section (%" PRIu32 " bytes)",
5866 length);
5867 retval = ERROR_FAIL;
5868 break;
5870 memcpy(fastload[i].data, buffer + offset, length);
5871 fastload[i].length = length;
5873 image_size += length;
5874 command_print(CMD_CTX, "%u bytes written at address 0x%8.8x",
5875 (unsigned int)length,
5876 ((unsigned int)(image.sections[i].base_address + offset)));
5879 free(buffer);
5882 if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK)) {
5883 command_print(CMD_CTX, "Loaded %" PRIu32 " bytes "
5884 "in %fs (%0.3f KiB/s)", image_size,
5885 duration_elapsed(&bench), duration_kbps(&bench, image_size));
5887 command_print(CMD_CTX,
5888 "WARNING: image has not been loaded to target!"
5889 "You can issue a 'fast_load' to finish loading.");
5892 image_close(&image);
5894 if (retval != ERROR_OK)
5895 free_fastload();
5897 return retval;
5900 COMMAND_HANDLER(handle_fast_load_command)
5902 if (CMD_ARGC > 0)
5903 return ERROR_COMMAND_SYNTAX_ERROR;
5904 if (fastload == NULL) {
5905 LOG_ERROR("No image in memory");
5906 return ERROR_FAIL;
5908 int i;
5909 int64_t ms = timeval_ms();
5910 int size = 0;
5911 int retval = ERROR_OK;
5912 for (i = 0; i < fastload_num; i++) {
5913 struct target *target = get_current_target(CMD_CTX);
5914 command_print(CMD_CTX, "Write to 0x%08x, length 0x%08x",
5915 (unsigned int)(fastload[i].address),
5916 (unsigned int)(fastload[i].length));
5917 retval = target_write_buffer(target, fastload[i].address, fastload[i].length, fastload[i].data);
5918 if (retval != ERROR_OK)
5919 break;
5920 size += fastload[i].length;
5922 if (retval == ERROR_OK) {
5923 int64_t after = timeval_ms();
5924 command_print(CMD_CTX, "Loaded image %f kBytes/s", (float)(size/1024.0)/((float)(after-ms)/1000.0));
5926 return retval;
5929 static const struct command_registration target_command_handlers[] = {
5931 .name = "targets",
5932 .handler = handle_targets_command,
5933 .mode = COMMAND_ANY,
5934 .help = "change current default target (one parameter) "
5935 "or prints table of all targets (no parameters)",
5936 .usage = "[target]",
5939 .name = "target",
5940 .mode = COMMAND_CONFIG,
5941 .help = "configure target",
5943 .chain = target_subcommand_handlers,
5945 COMMAND_REGISTRATION_DONE
5948 int target_register_commands(struct command_context *cmd_ctx)
5950 return register_commands(cmd_ctx, NULL, target_command_handlers);
5953 static bool target_reset_nag = true;
5955 bool get_target_reset_nag(void)
5957 return target_reset_nag;
5960 COMMAND_HANDLER(handle_target_reset_nag)
5962 return CALL_COMMAND_HANDLER(handle_command_parse_bool,
5963 &target_reset_nag, "Nag after each reset about options to improve "
5964 "performance");
5967 COMMAND_HANDLER(handle_ps_command)
5969 struct target *target = get_current_target(CMD_CTX);
5970 char *display;
5971 if (target->state != TARGET_HALTED) {
5972 LOG_INFO("target not halted !!");
5973 return ERROR_OK;
5976 if ((target->rtos) && (target->rtos->type)
5977 && (target->rtos->type->ps_command)) {
5978 display = target->rtos->type->ps_command(target);
5979 command_print(CMD_CTX, "%s", display);
5980 free(display);
5981 return ERROR_OK;
5982 } else {
5983 LOG_INFO("failed");
5984 return ERROR_TARGET_FAILURE;
5988 static void binprint(struct command_context *cmd_ctx, const char *text, const uint8_t *buf, int size)
5990 if (text != NULL)
5991 command_print_sameline(cmd_ctx, "%s", text);
5992 for (int i = 0; i < size; i++)
5993 command_print_sameline(cmd_ctx, " %02x", buf[i]);
5994 command_print(cmd_ctx, " ");
5997 COMMAND_HANDLER(handle_test_mem_access_command)
5999 struct target *target = get_current_target(CMD_CTX);
6000 uint32_t test_size;
6001 int retval = ERROR_OK;
6003 if (target->state != TARGET_HALTED) {
6004 LOG_INFO("target not halted !!");
6005 return ERROR_FAIL;
6008 if (CMD_ARGC != 1)
6009 return ERROR_COMMAND_SYNTAX_ERROR;
6011 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], test_size);
6013 /* Test reads */
6014 size_t num_bytes = test_size + 4;
6016 struct working_area *wa = NULL;
6017 retval = target_alloc_working_area(target, num_bytes, &wa);
6018 if (retval != ERROR_OK) {
6019 LOG_ERROR("Not enough working area");
6020 return ERROR_FAIL;
6023 uint8_t *test_pattern = malloc(num_bytes);
6025 for (size_t i = 0; i < num_bytes; i++)
6026 test_pattern[i] = rand();
6028 retval = target_write_memory(target, wa->address, 1, num_bytes, test_pattern);
6029 if (retval != ERROR_OK) {
6030 LOG_ERROR("Test pattern write failed");
6031 goto out;
6034 for (int host_offset = 0; host_offset <= 1; host_offset++) {
6035 for (int size = 1; size <= 4; size *= 2) {
6036 for (int offset = 0; offset < 4; offset++) {
6037 uint32_t count = test_size / size;
6038 size_t host_bufsiz = (count + 2) * size + host_offset;
6039 uint8_t *read_ref = malloc(host_bufsiz);
6040 uint8_t *read_buf = malloc(host_bufsiz);
6042 for (size_t i = 0; i < host_bufsiz; i++) {
6043 read_ref[i] = rand();
6044 read_buf[i] = read_ref[i];
6046 command_print_sameline(CMD_CTX,
6047 "Test read %" PRIu32 " x %d @ %d to %saligned buffer: ", count,
6048 size, offset, host_offset ? "un" : "");
6050 struct duration bench;
6051 duration_start(&bench);
6053 retval = target_read_memory(target, wa->address + offset, size, count,
6054 read_buf + size + host_offset);
6056 duration_measure(&bench);
6058 if (retval == ERROR_TARGET_UNALIGNED_ACCESS) {
6059 command_print(CMD_CTX, "Unsupported alignment");
6060 goto next;
6061 } else if (retval != ERROR_OK) {
6062 command_print(CMD_CTX, "Memory read failed");
6063 goto next;
6066 /* replay on host */
6067 memcpy(read_ref + size + host_offset, test_pattern + offset, count * size);
6069 /* check result */
6070 int result = memcmp(read_ref, read_buf, host_bufsiz);
6071 if (result == 0) {
6072 command_print(CMD_CTX, "Pass in %fs (%0.3f KiB/s)",
6073 duration_elapsed(&bench),
6074 duration_kbps(&bench, count * size));
6075 } else {
6076 command_print(CMD_CTX, "Compare failed");
6077 binprint(CMD_CTX, "ref:", read_ref, host_bufsiz);
6078 binprint(CMD_CTX, "buf:", read_buf, host_bufsiz);
6080 next:
6081 free(read_ref);
6082 free(read_buf);
6087 out:
6088 free(test_pattern);
6090 if (wa != NULL)
6091 target_free_working_area(target, wa);
6093 /* Test writes */
6094 num_bytes = test_size + 4 + 4 + 4;
6096 retval = target_alloc_working_area(target, num_bytes, &wa);
6097 if (retval != ERROR_OK) {
6098 LOG_ERROR("Not enough working area");
6099 return ERROR_FAIL;
6102 test_pattern = malloc(num_bytes);
6104 for (size_t i = 0; i < num_bytes; i++)
6105 test_pattern[i] = rand();
6107 for (int host_offset = 0; host_offset <= 1; host_offset++) {
6108 for (int size = 1; size <= 4; size *= 2) {
6109 for (int offset = 0; offset < 4; offset++) {
6110 uint32_t count = test_size / size;
6111 size_t host_bufsiz = count * size + host_offset;
6112 uint8_t *read_ref = malloc(num_bytes);
6113 uint8_t *read_buf = malloc(num_bytes);
6114 uint8_t *write_buf = malloc(host_bufsiz);
6116 for (size_t i = 0; i < host_bufsiz; i++)
6117 write_buf[i] = rand();
6118 command_print_sameline(CMD_CTX,
6119 "Test write %" PRIu32 " x %d @ %d from %saligned buffer: ", count,
6120 size, offset, host_offset ? "un" : "");
6122 retval = target_write_memory(target, wa->address, 1, num_bytes, test_pattern);
6123 if (retval != ERROR_OK) {
6124 command_print(CMD_CTX, "Test pattern write failed");
6125 goto nextw;
6128 /* replay on host */
6129 memcpy(read_ref, test_pattern, num_bytes);
6130 memcpy(read_ref + size + offset, write_buf + host_offset, count * size);
6132 struct duration bench;
6133 duration_start(&bench);
6135 retval = target_write_memory(target, wa->address + size + offset, size, count,
6136 write_buf + host_offset);
6138 duration_measure(&bench);
6140 if (retval == ERROR_TARGET_UNALIGNED_ACCESS) {
6141 command_print(CMD_CTX, "Unsupported alignment");
6142 goto nextw;
6143 } else if (retval != ERROR_OK) {
6144 command_print(CMD_CTX, "Memory write failed");
6145 goto nextw;
6148 /* read back */
6149 retval = target_read_memory(target, wa->address, 1, num_bytes, read_buf);
6150 if (retval != ERROR_OK) {
6151 command_print(CMD_CTX, "Test pattern write failed");
6152 goto nextw;
6155 /* check result */
6156 int result = memcmp(read_ref, read_buf, num_bytes);
6157 if (result == 0) {
6158 command_print(CMD_CTX, "Pass in %fs (%0.3f KiB/s)",
6159 duration_elapsed(&bench),
6160 duration_kbps(&bench, count * size));
6161 } else {
6162 command_print(CMD_CTX, "Compare failed");
6163 binprint(CMD_CTX, "ref:", read_ref, num_bytes);
6164 binprint(CMD_CTX, "buf:", read_buf, num_bytes);
6166 nextw:
6167 free(read_ref);
6168 free(read_buf);
6173 free(test_pattern);
6175 if (wa != NULL)
6176 target_free_working_area(target, wa);
6177 return retval;
6180 static const struct command_registration target_exec_command_handlers[] = {
6182 .name = "fast_load_image",
6183 .handler = handle_fast_load_image_command,
6184 .mode = COMMAND_ANY,
6185 .help = "Load image into server memory for later use by "
6186 "fast_load; primarily for profiling",
6187 .usage = "filename address ['bin'|'ihex'|'elf'|'s19'] "
6188 "[min_address [max_length]]",
6191 .name = "fast_load",
6192 .handler = handle_fast_load_command,
6193 .mode = COMMAND_EXEC,
6194 .help = "loads active fast load image to current target "
6195 "- mainly for profiling purposes",
6196 .usage = "",
6199 .name = "profile",
6200 .handler = handle_profile_command,
6201 .mode = COMMAND_EXEC,
6202 .usage = "seconds filename [start end]",
6203 .help = "profiling samples the CPU PC",
6205 /** @todo don't register virt2phys() unless target supports it */
6207 .name = "virt2phys",
6208 .handler = handle_virt2phys_command,
6209 .mode = COMMAND_ANY,
6210 .help = "translate a virtual address into a physical address",
6211 .usage = "virtual_address",
6214 .name = "reg",
6215 .handler = handle_reg_command,
6216 .mode = COMMAND_EXEC,
6217 .help = "display (reread from target with \"force\") or set a register; "
6218 "with no arguments, displays all registers and their values",
6219 .usage = "[(register_number|register_name) [(value|'force')]]",
6222 .name = "poll",
6223 .handler = handle_poll_command,
6224 .mode = COMMAND_EXEC,
6225 .help = "poll target state; or reconfigure background polling",
6226 .usage = "['on'|'off']",
6229 .name = "wait_halt",
6230 .handler = handle_wait_halt_command,
6231 .mode = COMMAND_EXEC,
6232 .help = "wait up to the specified number of milliseconds "
6233 "(default 5000) for a previously requested halt",
6234 .usage = "[milliseconds]",
6237 .name = "halt",
6238 .handler = handle_halt_command,
6239 .mode = COMMAND_EXEC,
6240 .help = "request target to halt, then wait up to the specified"
6241 "number of milliseconds (default 5000) for it to complete",
6242 .usage = "[milliseconds]",
6245 .name = "resume",
6246 .handler = handle_resume_command,
6247 .mode = COMMAND_EXEC,
6248 .help = "resume target execution from current PC or address",
6249 .usage = "[address]",
6252 .name = "reset",
6253 .handler = handle_reset_command,
6254 .mode = COMMAND_EXEC,
6255 .usage = "[run|halt|init]",
6256 .help = "Reset all targets into the specified mode."
6257 "Default reset mode is run, if not given.",
6260 .name = "soft_reset_halt",
6261 .handler = handle_soft_reset_halt_command,
6262 .mode = COMMAND_EXEC,
6263 .usage = "",
6264 .help = "halt the target and do a soft reset",
6267 .name = "step",
6268 .handler = handle_step_command,
6269 .mode = COMMAND_EXEC,
6270 .help = "step one instruction from current PC or address",
6271 .usage = "[address]",
6274 .name = "mdd",
6275 .handler = handle_md_command,
6276 .mode = COMMAND_EXEC,
6277 .help = "display memory words",
6278 .usage = "['phys'] address [count]",
6281 .name = "mdw",
6282 .handler = handle_md_command,
6283 .mode = COMMAND_EXEC,
6284 .help = "display memory words",
6285 .usage = "['phys'] address [count]",
6288 .name = "mdh",
6289 .handler = handle_md_command,
6290 .mode = COMMAND_EXEC,
6291 .help = "display memory half-words",
6292 .usage = "['phys'] address [count]",
6295 .name = "mdb",
6296 .handler = handle_md_command,
6297 .mode = COMMAND_EXEC,
6298 .help = "display memory bytes",
6299 .usage = "['phys'] address [count]",
6302 .name = "mwd",
6303 .handler = handle_mw_command,
6304 .mode = COMMAND_EXEC,
6305 .help = "write memory word",
6306 .usage = "['phys'] address value [count]",
6309 .name = "mww",
6310 .handler = handle_mw_command,
6311 .mode = COMMAND_EXEC,
6312 .help = "write memory word",
6313 .usage = "['phys'] address value [count]",
6316 .name = "mwh",
6317 .handler = handle_mw_command,
6318 .mode = COMMAND_EXEC,
6319 .help = "write memory half-word",
6320 .usage = "['phys'] address value [count]",
6323 .name = "mwb",
6324 .handler = handle_mw_command,
6325 .mode = COMMAND_EXEC,
6326 .help = "write memory byte",
6327 .usage = "['phys'] address value [count]",
6330 .name = "bp",
6331 .handler = handle_bp_command,
6332 .mode = COMMAND_EXEC,
6333 .help = "list or set hardware or software breakpoint",
6334 .usage = "<address> [<asid>]<length> ['hw'|'hw_ctx']",
6337 .name = "rbp",
6338 .handler = handle_rbp_command,
6339 .mode = COMMAND_EXEC,
6340 .help = "remove breakpoint",
6341 .usage = "address",
6344 .name = "wp",
6345 .handler = handle_wp_command,
6346 .mode = COMMAND_EXEC,
6347 .help = "list (no params) or create watchpoints",
6348 .usage = "[address length [('r'|'w'|'a') value [mask]]]",
6351 .name = "rwp",
6352 .handler = handle_rwp_command,
6353 .mode = COMMAND_EXEC,
6354 .help = "remove watchpoint",
6355 .usage = "address",
6358 .name = "load_image",
6359 .handler = handle_load_image_command,
6360 .mode = COMMAND_EXEC,
6361 .usage = "filename address ['bin'|'ihex'|'elf'|'s19'] "
6362 "[min_address] [max_length]",
6365 .name = "dump_image",
6366 .handler = handle_dump_image_command,
6367 .mode = COMMAND_EXEC,
6368 .usage = "filename address size",
6371 .name = "verify_image_checksum",
6372 .handler = handle_verify_image_checksum_command,
6373 .mode = COMMAND_EXEC,
6374 .usage = "filename [offset [type]]",
6377 .name = "verify_image",
6378 .handler = handle_verify_image_command,
6379 .mode = COMMAND_EXEC,
6380 .usage = "filename [offset [type]]",
6383 .name = "test_image",
6384 .handler = handle_test_image_command,
6385 .mode = COMMAND_EXEC,
6386 .usage = "filename [offset [type]]",
6389 .name = "mem2array",
6390 .mode = COMMAND_EXEC,
6391 .jim_handler = jim_mem2array,
6392 .help = "read 8/16/32 bit memory and return as a TCL array "
6393 "for script processing",
6394 .usage = "arrayname bitwidth address count",
6397 .name = "array2mem",
6398 .mode = COMMAND_EXEC,
6399 .jim_handler = jim_array2mem,
6400 .help = "convert a TCL array to memory locations "
6401 "and write the 8/16/32 bit values",
6402 .usage = "arrayname bitwidth address count",
6405 .name = "reset_nag",
6406 .handler = handle_target_reset_nag,
6407 .mode = COMMAND_ANY,
6408 .help = "Nag after each reset about options that could have been "
6409 "enabled to improve performance. ",
6410 .usage = "['enable'|'disable']",
6413 .name = "ps",
6414 .handler = handle_ps_command,
6415 .mode = COMMAND_EXEC,
6416 .help = "list all tasks ",
6417 .usage = " ",
6420 .name = "test_mem_access",
6421 .handler = handle_test_mem_access_command,
6422 .mode = COMMAND_EXEC,
6423 .help = "Test the target's memory access functions",
6424 .usage = "size",
6427 COMMAND_REGISTRATION_DONE
6429 static int target_register_user_commands(struct command_context *cmd_ctx)
6431 int retval = ERROR_OK;
6432 retval = target_request_register_commands(cmd_ctx);
6433 if (retval != ERROR_OK)
6434 return retval;
6436 retval = trace_register_commands(cmd_ctx);
6437 if (retval != ERROR_OK)
6438 return retval;
6441 return register_commands(cmd_ctx, NULL, target_exec_command_handlers);