update files to correct FSF address
[openocd.git] / src / flash / nor / stm32lx.c
blob0a4e5f84d8359364ee1c00f5108cc298bd0875f1
1 /***************************************************************************
2 * Copyright (C) 2005 by Dominic Rath *
3 * Dominic.Rath@gmx.de *
4 * *
5 * Copyright (C) 2008 by Spencer Oliver *
6 * spen@spen-soft.co.uk *
7 * *
8 * Copyright (C) 2011 by Clement Burin des Roziers *
9 * clement.burin-des-roziers@hikob.com *
10 * *
11 * This program is free software; you can redistribute it and/or modify *
12 * it under the terms of the GNU General Public License as published by *
13 * the Free Software Foundation; either version 2 of the License, or *
14 * (at your option) any later version. *
15 * *
16 * This program is distributed in the hope that it will be useful, *
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
19 * GNU General Public License for more details. *
20 * *
21 * You should have received a copy of the GNU General Public License *
22 * along with this program; if not, write to the *
23 * Free Software Foundation, Inc., *
24 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. *
25 ***************************************************************************/
27 #ifdef HAVE_CONFIG_H
28 #include "config.h"
29 #endif
31 #include "imp.h"
32 #include <helper/binarybuffer.h>
33 #include <target/algorithm.h>
34 #include <target/armv7m.h>
35 #include <target/cortex_m.h>
37 /* stm32lx flash register locations */
39 #define FLASH_BASE 0x40023C00
40 #define FLASH_ACR 0x40023C00
41 #define FLASH_PECR 0x40023C04
42 #define FLASH_PDKEYR 0x40023C08
43 #define FLASH_PEKEYR 0x40023C0C
44 #define FLASH_PRGKEYR 0x40023C10
45 #define FLASH_OPTKEYR 0x40023C14
46 #define FLASH_SR 0x40023C18
47 #define FLASH_OBR 0x40023C1C
48 #define FLASH_WRPR 0x40023C20
50 /* FLASH_ACR bites */
51 #define FLASH_ACR__LATENCY (1<<0)
52 #define FLASH_ACR__PRFTEN (1<<1)
53 #define FLASH_ACR__ACC64 (1<<2)
54 #define FLASH_ACR__SLEEP_PD (1<<3)
55 #define FLASH_ACR__RUN_PD (1<<4)
57 /* FLASH_PECR bits */
58 #define FLASH_PECR__PELOCK (1<<0)
59 #define FLASH_PECR__PRGLOCK (1<<1)
60 #define FLASH_PECR__OPTLOCK (1<<2)
61 #define FLASH_PECR__PROG (1<<3)
62 #define FLASH_PECR__DATA (1<<4)
63 #define FLASH_PECR__FTDW (1<<8)
64 #define FLASH_PECR__ERASE (1<<9)
65 #define FLASH_PECR__FPRG (1<<10)
66 #define FLASH_PECR__EOPIE (1<<16)
67 #define FLASH_PECR__ERRIE (1<<17)
68 #define FLASH_PECR__OBL_LAUNCH (1<<18)
70 /* FLASH_SR bits */
71 #define FLASH_SR__BSY (1<<0)
72 #define FLASH_SR__EOP (1<<1)
73 #define FLASH_SR__ENDHV (1<<2)
74 #define FLASH_SR__READY (1<<3)
75 #define FLASH_SR__WRPERR (1<<8)
76 #define FLASH_SR__PGAERR (1<<9)
77 #define FLASH_SR__SIZERR (1<<10)
78 #define FLASH_SR__OPTVERR (1<<11)
80 /* Unlock keys */
81 #define PEKEY1 0x89ABCDEF
82 #define PEKEY2 0x02030405
83 #define PRGKEY1 0x8C9DAEBF
84 #define PRGKEY2 0x13141516
85 #define OPTKEY1 0xFBEAD9C8
86 #define OPTKEY2 0x24252627
88 /* other registers */
89 #define DBGMCU_IDCODE 0xE0042000
90 #define F_SIZE 0x1FF8004C
92 /* Constants */
93 #define FLASH_PAGE_SIZE 256
94 #define FLASH_SECTOR_SIZE 4096
95 #define FLASH_PAGES_PER_SECTOR 16
96 #define FLASH_BANK0_ADDRESS 0x08000000
98 /* stm32lx option byte register location */
99 #define OB_RDP 0x1FF80000
100 #define OB_USER 0x1FF80004
101 #define OB_WRP0_1 0x1FF80008
102 #define OB_WRP2_3 0x1FF8000C
104 /* OB_RDP values */
105 #define OB_RDP__LEVEL0 0xFF5500AA
106 #define OB_RDP__LEVEL1 0xFFFF0000
108 /* stm32lx RCC register locations */
109 #define RCC_CR 0x40023800
110 #define RCC_ICSCR 0x40023804
111 #define RCC_CFGR 0x40023808
113 /* RCC_ICSCR bits */
114 #define RCC_ICSCR__MSIRANGE_MASK (7<<13)
116 static int stm32lx_unlock_program_memory(struct flash_bank *bank);
117 static int stm32lx_lock_program_memory(struct flash_bank *bank);
118 static int stm32lx_enable_write_half_page(struct flash_bank *bank);
119 static int stm32lx_erase_sector(struct flash_bank *bank, int sector);
120 static int stm32lx_wait_until_bsy_clear(struct flash_bank *bank);
122 struct stm32lx_flash_bank {
123 int probed;
124 bool has_dual_banks;
125 uint32_t user_bank_size;
128 /* flash bank stm32lx <base> <size> 0 0 <target#>
130 FLASH_BANK_COMMAND_HANDLER(stm32lx_flash_bank_command)
132 struct stm32lx_flash_bank *stm32lx_info;
133 if (CMD_ARGC < 6)
134 return ERROR_COMMAND_SYNTAX_ERROR;
136 /* Create the bank structure */
137 stm32lx_info = malloc(sizeof(struct stm32lx_flash_bank));
139 /* Check allocation */
140 if (stm32lx_info == NULL) {
141 LOG_ERROR("failed to allocate bank structure");
142 return ERROR_FAIL;
145 bank->driver_priv = stm32lx_info;
147 stm32lx_info->probed = 0;
148 stm32lx_info->has_dual_banks = false;
149 stm32lx_info->user_bank_size = bank->size;
151 return ERROR_OK;
154 static int stm32lx_protect_check(struct flash_bank *bank)
156 int retval;
157 struct target *target = bank->target;
159 uint32_t wrpr;
161 if (target->state != TARGET_HALTED) {
162 LOG_ERROR("Target not halted");
163 return ERROR_TARGET_NOT_HALTED;
167 * Read the WRPR word, and check each bit (corresponding to each
168 * flash sector
170 retval = target_read_u32(target, FLASH_WRPR, &wrpr);
171 if (retval != ERROR_OK)
172 return retval;
174 for (int i = 0; i < 32; i++) {
175 if (wrpr & (1 << i))
176 bank->sectors[i].is_protected = 1;
177 else
178 bank->sectors[i].is_protected = 0;
180 return ERROR_OK;
183 static int stm32lx_erase(struct flash_bank *bank, int first, int last)
185 int retval;
188 * It could be possible to do a mass erase if all sectors must be
189 * erased, but it is not implemented yet.
192 if (bank->target->state != TARGET_HALTED) {
193 LOG_ERROR("Target not halted");
194 return ERROR_TARGET_NOT_HALTED;
198 * Loop over the selected sectors and erase them
200 for (int i = first; i <= last; i++) {
201 retval = stm32lx_erase_sector(bank, i);
202 if (retval != ERROR_OK)
203 return retval;
204 bank->sectors[i].is_erased = 1;
206 return ERROR_OK;
209 static int stm32lx_protect(struct flash_bank *bank, int set, int first,
210 int last)
212 LOG_WARNING("protection of the STM32L flash is not implemented");
213 return ERROR_OK;
216 static int stm32lx_write_half_pages(struct flash_bank *bank, uint8_t *buffer,
217 uint32_t offset, uint32_t count)
219 struct target *target = bank->target;
220 uint32_t buffer_size = 16384;
221 struct working_area *write_algorithm;
222 struct working_area *source;
223 uint32_t address = bank->base + offset;
225 struct reg_param reg_params[3];
226 struct armv7m_algorithm armv7m_info;
228 int retval = ERROR_OK;
230 /* see contib/loaders/flash/stm32lx.S for src */
232 static const uint8_t stm32lx_flash_write_code[] = {
233 /* write_word: */
234 0x00, 0x23, /* movs r3, #0 */
235 0x04, 0xe0, /* b test_done */
237 /* write_word: */
238 0x51, 0xf8, 0x04, 0xcb, /* ldr ip, [r1], #4 */
239 0x40, 0xf8, 0x04, 0xcb, /* str ip, [r0], #4 */
240 0x01, 0x33, /* adds r3, #1 */
242 /* test_done: */
243 0x93, 0x42, /* cmp r3, r2 */
244 0xf8, 0xd3, /* bcc write_word */
245 0x00, 0xbe, /* bkpt 0 */
248 /* Check if there is an even number of half pages (128bytes) */
249 if (count % 128) {
250 LOG_ERROR("there should be an even number "
251 "of half pages = 128 bytes (count = %" PRIi32 " bytes)", count);
252 return ERROR_FAIL;
255 /* flash write code */
256 if (target_alloc_working_area(target, sizeof(stm32lx_flash_write_code),
257 &write_algorithm) != ERROR_OK) {
258 LOG_DEBUG("no working area for block memory writes");
259 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
262 /* Write the flashing code */
263 retval = target_write_buffer(target,
264 write_algorithm->address,
265 sizeof(stm32lx_flash_write_code),
266 (uint8_t *)stm32lx_flash_write_code);
267 if (retval != ERROR_OK) {
268 target_free_working_area(target, write_algorithm);
269 return retval;
272 /* Allocate half pages memory */
273 while (target_alloc_working_area_try(target, buffer_size, &source) != ERROR_OK) {
274 if (buffer_size > 1024)
275 buffer_size -= 1024;
276 else
277 buffer_size /= 2;
279 if (buffer_size <= 256) {
280 /* we already allocated the writing code, but failed to get a
281 * buffer, free the algorithm */
282 target_free_working_area(target, write_algorithm);
284 LOG_WARNING("no large enough working area available, can't do block memory writes");
285 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
289 armv7m_info.common_magic = ARMV7M_COMMON_MAGIC;
290 armv7m_info.core_mode = ARM_MODE_THREAD;
291 init_reg_param(&reg_params[0], "r0", 32, PARAM_OUT);
292 init_reg_param(&reg_params[1], "r1", 32, PARAM_OUT);
293 init_reg_param(&reg_params[2], "r2", 32, PARAM_OUT);
295 /* Enable half-page write */
296 retval = stm32lx_enable_write_half_page(bank);
297 if (retval != ERROR_OK) {
298 target_free_working_area(target, source);
299 target_free_working_area(target, write_algorithm);
301 destroy_reg_param(&reg_params[0]);
302 destroy_reg_param(&reg_params[1]);
303 destroy_reg_param(&reg_params[2]);
304 return retval;
307 struct armv7m_common *armv7m = target_to_armv7m(target);
308 if (armv7m == NULL) {
310 /* something is very wrong if armv7m is NULL */
311 LOG_ERROR("unable to get armv7m target");
312 return retval;
315 /* save any DEMCR flags and configure target to catch any Hard Faults */
316 uint32_t demcr_save = armv7m->demcr;
317 armv7m->demcr = VC_HARDERR;
319 /* Loop while there are bytes to write */
320 while (count > 0) {
321 uint32_t this_count;
322 this_count = (count > buffer_size) ? buffer_size : count;
324 /* Write the next half pages */
325 retval = target_write_buffer(target, source->address, this_count, buffer);
326 if (retval != ERROR_OK)
327 break;
329 /* 4: Store useful information in the registers */
330 /* the destination address of the copy (R0) */
331 buf_set_u32(reg_params[0].value, 0, 32, address);
332 /* The source address of the copy (R1) */
333 buf_set_u32(reg_params[1].value, 0, 32, source->address);
334 /* The length of the copy (R2) */
335 buf_set_u32(reg_params[2].value, 0, 32, this_count / 4);
337 /* 5: Execute the bunch of code */
338 retval = target_run_algorithm(target, 0, NULL, sizeof(reg_params)
339 / sizeof(*reg_params), reg_params,
340 write_algorithm->address, 0, 10000, &armv7m_info);
341 if (retval != ERROR_OK)
342 break;
344 /* check for Hard Fault */
345 if (armv7m->exception_number == 3)
346 break;
348 /* 6: Wait while busy */
349 retval = stm32lx_wait_until_bsy_clear(bank);
350 if (retval != ERROR_OK)
351 break;
353 buffer += this_count;
354 address += this_count;
355 count -= this_count;
358 /* restore previous flags */
359 armv7m->demcr = demcr_save;
361 if (armv7m->exception_number == 3) {
363 /* the stm32l15x devices seem to have an issue when blank.
364 * if a ram loader is executed on a blank device it will
365 * Hard Fault, this issue does not happen for a already programmed device.
366 * A related issue is described in the stm32l151xx errata (Doc ID 17721 Rev 6 - 2.1.3).
367 * The workaround of handling the Hard Fault exception does work, but makes the
368 * loader more complicated, as a compromise we manually write the pages, programming time
369 * is reduced by 50% using this slower method.
372 LOG_WARNING("couldn't use loader, falling back to page memory writes");
374 while (count > 0) {
375 uint32_t this_count;
376 this_count = (count > 128) ? 128 : count;
378 /* Write the next half pages */
379 retval = target_write_buffer(target, address, this_count, buffer);
380 if (retval != ERROR_OK)
381 break;
383 /* Wait while busy */
384 retval = stm32lx_wait_until_bsy_clear(bank);
385 if (retval != ERROR_OK)
386 break;
388 buffer += this_count;
389 address += this_count;
390 count -= this_count;
394 if (retval == ERROR_OK)
395 retval = stm32lx_lock_program_memory(bank);
397 target_free_working_area(target, source);
398 target_free_working_area(target, write_algorithm);
400 destroy_reg_param(&reg_params[0]);
401 destroy_reg_param(&reg_params[1]);
402 destroy_reg_param(&reg_params[2]);
404 return retval;
407 static int stm32lx_write(struct flash_bank *bank, uint8_t *buffer,
408 uint32_t offset, uint32_t count)
410 struct target *target = bank->target;
412 uint32_t halfpages_number;
413 uint32_t bytes_remaining = 0;
414 uint32_t address = bank->base + offset;
415 uint32_t bytes_written = 0;
416 int retval, retval2;
418 if (bank->target->state != TARGET_HALTED) {
419 LOG_ERROR("Target not halted");
420 return ERROR_TARGET_NOT_HALTED;
423 if (offset & 0x3) {
424 LOG_ERROR("offset 0x%" PRIx32 " breaks required 4-byte alignment", offset);
425 return ERROR_FLASH_DST_BREAKS_ALIGNMENT;
428 retval = stm32lx_unlock_program_memory(bank);
429 if (retval != ERROR_OK)
430 return retval;
432 /* first we need to write any unaligned head bytes upto
433 * the next 128 byte page */
435 if (offset % 128)
436 bytes_remaining = MIN(count, 128 - (offset % 128));
438 while (bytes_remaining > 0) {
439 uint8_t value[4] = {0xff, 0xff, 0xff, 0xff};
441 /* copy remaining bytes into the write buffer */
442 uint32_t bytes_to_write = MIN(4, bytes_remaining);
443 memcpy(value, buffer + bytes_written, bytes_to_write);
445 retval = target_write_buffer(target, address, 4, value);
446 if (retval != ERROR_OK)
447 goto reset_pg_and_lock;
449 bytes_written += bytes_to_write;
450 bytes_remaining -= bytes_to_write;
451 address += 4;
453 retval = stm32lx_wait_until_bsy_clear(bank);
454 if (retval != ERROR_OK)
455 goto reset_pg_and_lock;
458 offset += bytes_written;
459 count -= bytes_written;
461 /* this should always pass this check here */
462 assert((offset % 128) == 0);
464 /* calculate half pages */
465 halfpages_number = count / 128;
467 if (halfpages_number) {
468 retval = stm32lx_write_half_pages(bank, buffer + bytes_written, offset, 128 * halfpages_number);
469 if (retval == ERROR_TARGET_RESOURCE_NOT_AVAILABLE) {
470 /* attempt slow memory writes */
471 LOG_WARNING("couldn't use block writes, falling back to single memory accesses");
472 halfpages_number = 0;
473 } else {
474 if (retval != ERROR_OK)
475 return ERROR_FAIL;
479 /* write any remaining bytes */
480 uint32_t page_bytes_written = 128 * halfpages_number;
481 bytes_written += page_bytes_written;
482 address += page_bytes_written;
483 bytes_remaining = count - page_bytes_written;
485 retval = stm32lx_unlock_program_memory(bank);
486 if (retval != ERROR_OK)
487 return retval;
489 while (bytes_remaining > 0) {
490 uint8_t value[4] = {0xff, 0xff, 0xff, 0xff};
492 /* copy remaining bytes into the write buffer */
493 uint32_t bytes_to_write = MIN(4, bytes_remaining);
494 memcpy(value, buffer + bytes_written, bytes_to_write);
496 retval = target_write_buffer(target, address, 4, value);
497 if (retval != ERROR_OK)
498 goto reset_pg_and_lock;
500 bytes_written += bytes_to_write;
501 bytes_remaining -= bytes_to_write;
502 address += 4;
504 retval = stm32lx_wait_until_bsy_clear(bank);
505 if (retval != ERROR_OK)
506 goto reset_pg_and_lock;
509 reset_pg_and_lock:
510 retval2 = stm32lx_lock_program_memory(bank);
511 if (retval == ERROR_OK)
512 retval = retval2;
514 return retval;
517 static int stm32lx_probe(struct flash_bank *bank)
519 struct target *target = bank->target;
520 struct stm32lx_flash_bank *stm32lx_info = bank->driver_priv;
521 int i;
522 uint16_t flash_size_in_kb;
523 uint16_t max_flash_size_in_kb;
524 uint32_t device_id;
525 uint32_t base_address = FLASH_BANK0_ADDRESS;
526 uint32_t second_bank_base;
527 uint32_t first_bank_size_in_kb;
529 stm32lx_info->probed = 0;
531 /* read stm32 device id register */
532 int retval = target_read_u32(target, DBGMCU_IDCODE, &device_id);
533 if (retval != ERROR_OK)
534 return retval;
536 LOG_DEBUG("device id = 0x%08" PRIx32 "", device_id);
538 /* set max flash size depending on family */
539 switch (device_id & 0xfff) {
540 case 0x416:
541 max_flash_size_in_kb = 128;
542 break;
543 case 0x427:
544 /* single bank, high density */
545 max_flash_size_in_kb = 256;
546 break;
547 case 0x436:
548 /* According to ST, the devices with id 0x436 have dual bank flash and comes with
549 * a total flash size of 384k or 256kb. However, the first bank is always 192kb,
550 * and second one holds the rest. The reason is that the 256kb version is actually
551 * the same physical flash but only the first 256kb are verified.
553 max_flash_size_in_kb = 384;
554 first_bank_size_in_kb = 192;
555 stm32lx_info->has_dual_banks = true;
556 break;
557 default:
558 LOG_WARNING("Cannot identify target as a STM32L family.");
559 return ERROR_FAIL;
562 /* Get the flash size from target. */
563 retval = target_read_u16(target, F_SIZE, &flash_size_in_kb);
565 /* Failed reading flash size or flash size invalid (early silicon),
566 * default to max target family */
567 if (retval != ERROR_OK || flash_size_in_kb == 0xffff || flash_size_in_kb == 0) {
568 LOG_WARNING("STM32L flash size failed, probe inaccurate - assuming %dk flash",
569 max_flash_size_in_kb);
570 flash_size_in_kb = max_flash_size_in_kb;
571 } else if (flash_size_in_kb > max_flash_size_in_kb) {
572 LOG_WARNING("STM32L probed flash size assumed incorrect since FLASH_SIZE=%dk > %dk, - assuming %dk flash",
573 flash_size_in_kb, max_flash_size_in_kb, max_flash_size_in_kb);
574 flash_size_in_kb = max_flash_size_in_kb;
577 if (stm32lx_info->has_dual_banks) {
578 /* Use the configured base address to determine if this is the first or second flash bank.
579 * Verify that the base address is reasonably correct and determine the flash bank size
581 second_bank_base = base_address + first_bank_size_in_kb * 1024;
582 if (bank->base == second_bank_base) {
583 /* This is the second bank */
584 base_address = second_bank_base;
585 flash_size_in_kb = flash_size_in_kb - first_bank_size_in_kb;
586 } else if (bank->base == 0 || bank->base == base_address) {
587 /* This is the first bank */
588 flash_size_in_kb = first_bank_size_in_kb;
589 } else {
590 LOG_WARNING("STM32L flash bank base address config is incorrect. 0x%x but should rather be 0x%x or 0x%x",
591 bank->base, base_address, second_bank_base);
592 return ERROR_FAIL;
594 LOG_INFO("STM32L flash has dual banks. Bank (%d) size is %dkb, base address is 0x%x",
595 bank->bank_number, flash_size_in_kb, base_address);
596 } else {
597 LOG_INFO("STM32L flash size is %dkb, base address is 0x%x", flash_size_in_kb, base_address);
600 /* if the user sets the size manually then ignore the probed value
601 * this allows us to work around devices that have a invalid flash size register value */
602 if (stm32lx_info->user_bank_size) {
603 flash_size_in_kb = stm32lx_info->user_bank_size / 1024;
604 LOG_INFO("ignoring flash probed value, using configured bank size: %dkbytes", flash_size_in_kb);
607 /* STM32L - we have 32 sectors, 16 pages per sector -> 512 pages
608 * 16 pages for a protection area */
610 /* calculate numbers of sectors (4kB per sector) */
611 int num_sectors = (flash_size_in_kb * 1024) / FLASH_SECTOR_SIZE;
613 if (bank->sectors) {
614 free(bank->sectors);
615 bank->sectors = NULL;
618 bank->size = flash_size_in_kb * 1024;
619 bank->base = base_address;
620 bank->num_sectors = num_sectors;
621 bank->sectors = malloc(sizeof(struct flash_sector) * num_sectors);
622 if (bank->sectors == NULL) {
623 LOG_ERROR("failed to allocate bank sectors");
624 return ERROR_FAIL;
627 for (i = 0; i < num_sectors; i++) {
628 bank->sectors[i].offset = i * FLASH_SECTOR_SIZE;
629 bank->sectors[i].size = FLASH_SECTOR_SIZE;
630 bank->sectors[i].is_erased = -1;
631 bank->sectors[i].is_protected = 1;
634 stm32lx_info->probed = 1;
636 return ERROR_OK;
639 static int stm32lx_auto_probe(struct flash_bank *bank)
641 struct stm32lx_flash_bank *stm32lx_info = bank->driver_priv;
643 if (stm32lx_info->probed)
644 return ERROR_OK;
646 return stm32lx_probe(bank);
649 static int stm32lx_erase_check(struct flash_bank *bank)
651 struct target *target = bank->target;
652 const int buffer_size = 4096;
653 int i;
654 uint32_t nBytes;
655 int retval = ERROR_OK;
657 if (bank->target->state != TARGET_HALTED) {
658 LOG_ERROR("Target not halted");
659 return ERROR_TARGET_NOT_HALTED;
662 uint8_t *buffer = malloc(buffer_size);
663 if (buffer == NULL) {
664 LOG_ERROR("failed to allocate read buffer");
665 return ERROR_FAIL;
668 for (i = 0; i < bank->num_sectors; i++) {
669 uint32_t j;
670 bank->sectors[i].is_erased = 1;
672 /* Loop chunk by chunk over the sector */
673 for (j = 0; j < bank->sectors[i].size; j += buffer_size) {
674 uint32_t chunk;
675 chunk = buffer_size;
676 if (chunk > (j - bank->sectors[i].size))
677 chunk = (j - bank->sectors[i].size);
679 retval = target_read_memory(target, bank->base
680 + bank->sectors[i].offset + j, 4, chunk / 4, buffer);
681 if (retval != ERROR_OK)
682 break;
684 for (nBytes = 0; nBytes < chunk; nBytes++) {
685 if (buffer[nBytes] != 0x00) {
686 bank->sectors[i].is_erased = 0;
687 break;
691 if (retval != ERROR_OK)
692 break;
694 free(buffer);
696 return retval;
699 static int stm32lx_get_info(struct flash_bank *bank, char *buf, int buf_size)
701 /* This method must return a string displaying information about the bank */
703 struct target *target = bank->target;
704 uint32_t device_id;
705 int printed;
707 /* read stm32 device id register */
708 int retval = target_read_u32(target, DBGMCU_IDCODE, &device_id);
709 if (retval != ERROR_OK)
710 return retval;
712 if ((device_id & 0xfff) == 0x416) {
713 printed = snprintf(buf, buf_size, "stm32lx - Rev: ");
714 buf += printed;
715 buf_size -= printed;
717 switch (device_id >> 16) {
718 case 0x1000:
719 snprintf(buf, buf_size, "A");
720 break;
722 case 0x1008:
723 snprintf(buf, buf_size, "Y");
724 break;
726 case 0x1018:
727 snprintf(buf, buf_size, "X");
728 break;
730 case 0x1038:
731 snprintf(buf, buf_size, "W");
732 break;
734 case 0x1078:
735 snprintf(buf, buf_size, "V");
736 break;
738 default:
739 snprintf(buf, buf_size, "unknown");
740 break;
742 } else if ((device_id & 0xfff) == 0x436) {
743 printed = snprintf(buf, buf_size, "stm32lx (HD) - Rev: ");
744 buf += printed;
745 buf_size -= printed;
747 switch (device_id >> 16) {
748 case 0x1000:
749 snprintf(buf, buf_size, "A");
750 break;
752 case 0x1008:
753 snprintf(buf, buf_size, "Z");
754 break;
756 case 0x1018:
757 snprintf(buf, buf_size, "Y");
758 break;
760 default:
761 snprintf(buf, buf_size, "unknown");
762 break;
764 } else {
765 snprintf(buf, buf_size, "Cannot identify target as a stm32lx");
766 return ERROR_FAIL;
769 return ERROR_OK;
772 static const struct command_registration stm32lx_exec_command_handlers[] = {
773 COMMAND_REGISTRATION_DONE
776 static const struct command_registration stm32lx_command_handlers[] = {
778 .name = "stm32lx",
779 .mode = COMMAND_ANY,
780 .help = "stm32lx flash command group",
781 .usage = "",
782 .chain = stm32lx_exec_command_handlers,
784 COMMAND_REGISTRATION_DONE
787 struct flash_driver stm32lx_flash = {
788 .name = "stm32lx",
789 .commands = stm32lx_command_handlers,
790 .flash_bank_command = stm32lx_flash_bank_command,
791 .erase = stm32lx_erase,
792 .protect = stm32lx_protect,
793 .write = stm32lx_write,
794 .read = default_flash_read,
795 .probe = stm32lx_probe,
796 .auto_probe = stm32lx_auto_probe,
797 .erase_check = stm32lx_erase_check,
798 .protect_check = stm32lx_protect_check,
799 .info = stm32lx_get_info,
802 /* Static methods implementation */
803 static int stm32lx_unlock_program_memory(struct flash_bank *bank)
805 struct target *target = bank->target;
806 int retval;
807 uint32_t reg32;
810 * Unlocking the program memory is done by unlocking the PECR,
811 * then by writing the 2 PRGKEY to the PRGKEYR register
814 /* check flash is not already unlocked */
815 retval = target_read_u32(target, FLASH_PECR, &reg32);
816 if (retval != ERROR_OK)
817 return retval;
819 if ((reg32 & FLASH_PECR__PRGLOCK) == 0)
820 return ERROR_OK;
822 /* To unlock the PECR write the 2 PEKEY to the PEKEYR register */
823 retval = target_write_u32(target, FLASH_PEKEYR, PEKEY1);
824 if (retval != ERROR_OK)
825 return retval;
827 retval = target_write_u32(target, FLASH_PEKEYR, PEKEY2);
828 if (retval != ERROR_OK)
829 return retval;
831 /* Make sure it worked */
832 retval = target_read_u32(target, FLASH_PECR, &reg32);
833 if (retval != ERROR_OK)
834 return retval;
836 if (reg32 & FLASH_PECR__PELOCK) {
837 LOG_ERROR("PELOCK is not cleared :(");
838 return ERROR_FLASH_OPERATION_FAILED;
841 retval = target_write_u32(target, FLASH_PRGKEYR, PRGKEY1);
842 if (retval != ERROR_OK)
843 return retval;
844 retval = target_write_u32(target, FLASH_PRGKEYR, PRGKEY2);
845 if (retval != ERROR_OK)
846 return retval;
848 /* Make sure it worked */
849 retval = target_read_u32(target, FLASH_PECR, &reg32);
850 if (retval != ERROR_OK)
851 return retval;
853 if (reg32 & FLASH_PECR__PRGLOCK) {
854 LOG_ERROR("PRGLOCK is not cleared :(");
855 return ERROR_FLASH_OPERATION_FAILED;
858 return ERROR_OK;
861 static int stm32lx_enable_write_half_page(struct flash_bank *bank)
863 struct target *target = bank->target;
864 int retval;
865 uint32_t reg32;
868 * Unlock the program memory, then set the FPRG bit in the PECR register.
870 retval = stm32lx_unlock_program_memory(bank);
871 if (retval != ERROR_OK)
872 return retval;
874 retval = target_read_u32(target, FLASH_PECR, &reg32);
875 if (retval != ERROR_OK)
876 return retval;
878 reg32 |= FLASH_PECR__FPRG;
879 retval = target_write_u32(target, FLASH_PECR, reg32);
880 if (retval != ERROR_OK)
881 return retval;
883 retval = target_read_u32(target, FLASH_PECR, &reg32);
884 if (retval != ERROR_OK)
885 return retval;
887 reg32 |= FLASH_PECR__PROG;
888 retval = target_write_u32(target, FLASH_PECR, reg32);
890 return retval;
893 static int stm32lx_lock_program_memory(struct flash_bank *bank)
895 struct target *target = bank->target;
896 int retval;
897 uint32_t reg32;
899 /* To lock the program memory, simply set the lock bit and lock PECR */
901 retval = target_read_u32(target, FLASH_PECR, &reg32);
902 if (retval != ERROR_OK)
903 return retval;
905 reg32 |= FLASH_PECR__PRGLOCK;
906 retval = target_write_u32(target, FLASH_PECR, reg32);
907 if (retval != ERROR_OK)
908 return retval;
910 retval = target_read_u32(target, FLASH_PECR, &reg32);
911 if (retval != ERROR_OK)
912 return retval;
914 reg32 |= FLASH_PECR__PELOCK;
915 retval = target_write_u32(target, FLASH_PECR, reg32);
916 if (retval != ERROR_OK)
917 return retval;
919 return ERROR_OK;
922 static int stm32lx_erase_sector(struct flash_bank *bank, int sector)
924 struct target *target = bank->target;
925 int retval;
926 uint32_t reg32;
929 * To erase a sector (i.e. FLASH_PAGES_PER_SECTOR pages),
930 * first unlock the memory, loop over the pages of this sector
931 * and write 0x0 to its first word.
934 retval = stm32lx_unlock_program_memory(bank);
935 if (retval != ERROR_OK)
936 return retval;
938 for (int page = 0; page < FLASH_PAGES_PER_SECTOR; page++) {
939 reg32 = FLASH_PECR__PROG | FLASH_PECR__ERASE;
940 retval = target_write_u32(target, FLASH_PECR, reg32);
941 if (retval != ERROR_OK)
942 return retval;
944 retval = stm32lx_wait_until_bsy_clear(bank);
945 if (retval != ERROR_OK)
946 return retval;
948 uint32_t addr = bank->base + bank->sectors[sector].offset + (page
949 * FLASH_PAGE_SIZE);
950 retval = target_write_u32(target, addr, 0x0);
951 if (retval != ERROR_OK)
952 return retval;
954 retval = stm32lx_wait_until_bsy_clear(bank);
955 if (retval != ERROR_OK)
956 return retval;
959 retval = stm32lx_lock_program_memory(bank);
960 if (retval != ERROR_OK)
961 return retval;
963 return ERROR_OK;
966 static int stm32lx_wait_until_bsy_clear(struct flash_bank *bank)
968 struct target *target = bank->target;
969 uint32_t status;
970 int retval = ERROR_OK;
971 int timeout = 100;
973 /* wait for busy to clear */
974 for (;;) {
975 retval = target_read_u32(target, FLASH_SR, &status);
976 if (retval != ERROR_OK)
977 return retval;
979 if ((status & FLASH_SR__BSY) == 0)
980 break;
981 if (timeout-- <= 0) {
982 LOG_ERROR("timed out waiting for flash");
983 return ERROR_FAIL;
985 alive_sleep(1);
988 if (status & FLASH_SR__WRPERR) {
989 LOG_ERROR("access denied / write protected");
990 retval = ERROR_FAIL;
993 if (status & FLASH_SR__PGAERR) {
994 LOG_ERROR("invalid program address");
995 retval = ERROR_FAIL;
998 return retval;