stm8 : new target
[openocd.git] / src / target / target.c
blobdcb6725065ee766d57bbbd62e5c4e440f6c49ef8
1 /***************************************************************************
2 * Copyright (C) 2005 by Dominic Rath *
3 * Dominic.Rath@gmx.de *
4 * *
5 * Copyright (C) 2007-2010 Øyvind Harboe *
6 * oyvind.harboe@zylin.com *
7 * *
8 * Copyright (C) 2008, Duane Ellis *
9 * openocd@duaneeellis.com *
10 * *
11 * Copyright (C) 2008 by Spencer Oliver *
12 * spen@spen-soft.co.uk *
13 * *
14 * Copyright (C) 2008 by Rick Altherr *
15 * kc8apf@kc8apf.net> *
16 * *
17 * Copyright (C) 2011 by Broadcom Corporation *
18 * Evan Hunter - ehunter@broadcom.com *
19 * *
20 * Copyright (C) ST-Ericsson SA 2011 *
21 * michel.jaouen@stericsson.com : smp minimum support *
22 * *
23 * Copyright (C) 2011 Andreas Fritiofson *
24 * andreas.fritiofson@gmail.com *
25 * *
26 * This program is free software; you can redistribute it and/or modify *
27 * it under the terms of the GNU General Public License as published by *
28 * the Free Software Foundation; either version 2 of the License, or *
29 * (at your option) any later version. *
30 * *
31 * This program is distributed in the hope that it will be useful, *
32 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
33 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
34 * GNU General Public License for more details. *
35 * *
36 * You should have received a copy of the GNU General Public License *
37 * along with this program. If not, see <http://www.gnu.org/licenses/>. *
38 ***************************************************************************/
40 #ifdef HAVE_CONFIG_H
41 #include "config.h"
42 #endif
44 #include <helper/time_support.h>
45 #include <jtag/jtag.h>
46 #include <flash/nor/core.h>
48 #include "target.h"
49 #include "target_type.h"
50 #include "target_request.h"
51 #include "breakpoints.h"
52 #include "register.h"
53 #include "trace.h"
54 #include "image.h"
55 #include "rtos/rtos.h"
56 #include "transport/transport.h"
58 /* default halt wait timeout (ms) */
59 #define DEFAULT_HALT_TIMEOUT 5000
61 static int target_read_buffer_default(struct target *target, target_addr_t address,
62 uint32_t count, uint8_t *buffer);
63 static int target_write_buffer_default(struct target *target, target_addr_t address,
64 uint32_t count, const uint8_t *buffer);
65 static int target_array2mem(Jim_Interp *interp, struct target *target,
66 int argc, Jim_Obj * const *argv);
67 static int target_mem2array(Jim_Interp *interp, struct target *target,
68 int argc, Jim_Obj * const *argv);
69 static int target_register_user_commands(struct command_context *cmd_ctx);
70 static int target_get_gdb_fileio_info_default(struct target *target,
71 struct gdb_fileio_info *fileio_info);
72 static int target_gdb_fileio_end_default(struct target *target, int retcode,
73 int fileio_errno, bool ctrl_c);
74 static int target_profiling_default(struct target *target, uint32_t *samples,
75 uint32_t max_num_samples, uint32_t *num_samples, uint32_t seconds);
77 /* targets */
78 extern struct target_type arm7tdmi_target;
79 extern struct target_type arm720t_target;
80 extern struct target_type arm9tdmi_target;
81 extern struct target_type arm920t_target;
82 extern struct target_type arm966e_target;
83 extern struct target_type arm946e_target;
84 extern struct target_type arm926ejs_target;
85 extern struct target_type fa526_target;
86 extern struct target_type feroceon_target;
87 extern struct target_type dragonite_target;
88 extern struct target_type xscale_target;
89 extern struct target_type cortexm_target;
90 extern struct target_type cortexa_target;
91 extern struct target_type aarch64_target;
92 extern struct target_type cortexr4_target;
93 extern struct target_type arm11_target;
94 extern struct target_type ls1_sap_target;
95 extern struct target_type mips_m4k_target;
96 extern struct target_type avr_target;
97 extern struct target_type dsp563xx_target;
98 extern struct target_type dsp5680xx_target;
99 extern struct target_type testee_target;
100 extern struct target_type avr32_ap7k_target;
101 extern struct target_type hla_target;
102 extern struct target_type nds32_v2_target;
103 extern struct target_type nds32_v3_target;
104 extern struct target_type nds32_v3m_target;
105 extern struct target_type or1k_target;
106 extern struct target_type quark_x10xx_target;
107 extern struct target_type quark_d20xx_target;
108 extern struct target_type stm8_target;
110 static struct target_type *target_types[] = {
111 &arm7tdmi_target,
112 &arm9tdmi_target,
113 &arm920t_target,
114 &arm720t_target,
115 &arm966e_target,
116 &arm946e_target,
117 &arm926ejs_target,
118 &fa526_target,
119 &feroceon_target,
120 &dragonite_target,
121 &xscale_target,
122 &cortexm_target,
123 &cortexa_target,
124 &cortexr4_target,
125 &arm11_target,
126 &ls1_sap_target,
127 &mips_m4k_target,
128 &avr_target,
129 &dsp563xx_target,
130 &dsp5680xx_target,
131 &testee_target,
132 &avr32_ap7k_target,
133 &hla_target,
134 &nds32_v2_target,
135 &nds32_v3_target,
136 &nds32_v3m_target,
137 &or1k_target,
138 &quark_x10xx_target,
139 &quark_d20xx_target,
140 &stm8_target,
141 #if BUILD_TARGET64
142 &aarch64_target,
143 #endif
144 NULL,
147 struct target *all_targets;
148 static struct target_event_callback *target_event_callbacks;
149 static struct target_timer_callback *target_timer_callbacks;
150 LIST_HEAD(target_reset_callback_list);
151 LIST_HEAD(target_trace_callback_list);
152 static const int polling_interval = 100;
154 static const Jim_Nvp nvp_assert[] = {
155 { .name = "assert", NVP_ASSERT },
156 { .name = "deassert", NVP_DEASSERT },
157 { .name = "T", NVP_ASSERT },
158 { .name = "F", NVP_DEASSERT },
159 { .name = "t", NVP_ASSERT },
160 { .name = "f", NVP_DEASSERT },
161 { .name = NULL, .value = -1 }
164 static const Jim_Nvp nvp_error_target[] = {
165 { .value = ERROR_TARGET_INVALID, .name = "err-invalid" },
166 { .value = ERROR_TARGET_INIT_FAILED, .name = "err-init-failed" },
167 { .value = ERROR_TARGET_TIMEOUT, .name = "err-timeout" },
168 { .value = ERROR_TARGET_NOT_HALTED, .name = "err-not-halted" },
169 { .value = ERROR_TARGET_FAILURE, .name = "err-failure" },
170 { .value = ERROR_TARGET_UNALIGNED_ACCESS , .name = "err-unaligned-access" },
171 { .value = ERROR_TARGET_DATA_ABORT , .name = "err-data-abort" },
172 { .value = ERROR_TARGET_RESOURCE_NOT_AVAILABLE , .name = "err-resource-not-available" },
173 { .value = ERROR_TARGET_TRANSLATION_FAULT , .name = "err-translation-fault" },
174 { .value = ERROR_TARGET_NOT_RUNNING, .name = "err-not-running" },
175 { .value = ERROR_TARGET_NOT_EXAMINED, .name = "err-not-examined" },
176 { .value = -1, .name = NULL }
179 static const char *target_strerror_safe(int err)
181 const Jim_Nvp *n;
183 n = Jim_Nvp_value2name_simple(nvp_error_target, err);
184 if (n->name == NULL)
185 return "unknown";
186 else
187 return n->name;
190 static const Jim_Nvp nvp_target_event[] = {
192 { .value = TARGET_EVENT_GDB_HALT, .name = "gdb-halt" },
193 { .value = TARGET_EVENT_HALTED, .name = "halted" },
194 { .value = TARGET_EVENT_RESUMED, .name = "resumed" },
195 { .value = TARGET_EVENT_RESUME_START, .name = "resume-start" },
196 { .value = TARGET_EVENT_RESUME_END, .name = "resume-end" },
198 { .name = "gdb-start", .value = TARGET_EVENT_GDB_START },
199 { .name = "gdb-end", .value = TARGET_EVENT_GDB_END },
201 { .value = TARGET_EVENT_RESET_START, .name = "reset-start" },
202 { .value = TARGET_EVENT_RESET_ASSERT_PRE, .name = "reset-assert-pre" },
203 { .value = TARGET_EVENT_RESET_ASSERT, .name = "reset-assert" },
204 { .value = TARGET_EVENT_RESET_ASSERT_POST, .name = "reset-assert-post" },
205 { .value = TARGET_EVENT_RESET_DEASSERT_PRE, .name = "reset-deassert-pre" },
206 { .value = TARGET_EVENT_RESET_DEASSERT_POST, .name = "reset-deassert-post" },
207 { .value = TARGET_EVENT_RESET_HALT_PRE, .name = "reset-halt-pre" },
208 { .value = TARGET_EVENT_RESET_HALT_POST, .name = "reset-halt-post" },
209 { .value = TARGET_EVENT_RESET_WAIT_PRE, .name = "reset-wait-pre" },
210 { .value = TARGET_EVENT_RESET_WAIT_POST, .name = "reset-wait-post" },
211 { .value = TARGET_EVENT_RESET_INIT, .name = "reset-init" },
212 { .value = TARGET_EVENT_RESET_END, .name = "reset-end" },
214 { .value = TARGET_EVENT_EXAMINE_START, .name = "examine-start" },
215 { .value = TARGET_EVENT_EXAMINE_END, .name = "examine-end" },
217 { .value = TARGET_EVENT_DEBUG_HALTED, .name = "debug-halted" },
218 { .value = TARGET_EVENT_DEBUG_RESUMED, .name = "debug-resumed" },
220 { .value = TARGET_EVENT_GDB_ATTACH, .name = "gdb-attach" },
221 { .value = TARGET_EVENT_GDB_DETACH, .name = "gdb-detach" },
223 { .value = TARGET_EVENT_GDB_FLASH_WRITE_START, .name = "gdb-flash-write-start" },
224 { .value = TARGET_EVENT_GDB_FLASH_WRITE_END , .name = "gdb-flash-write-end" },
226 { .value = TARGET_EVENT_GDB_FLASH_ERASE_START, .name = "gdb-flash-erase-start" },
227 { .value = TARGET_EVENT_GDB_FLASH_ERASE_END , .name = "gdb-flash-erase-end" },
229 { .value = TARGET_EVENT_TRACE_CONFIG, .name = "trace-config" },
231 { .name = NULL, .value = -1 }
234 static const Jim_Nvp nvp_target_state[] = {
235 { .name = "unknown", .value = TARGET_UNKNOWN },
236 { .name = "running", .value = TARGET_RUNNING },
237 { .name = "halted", .value = TARGET_HALTED },
238 { .name = "reset", .value = TARGET_RESET },
239 { .name = "debug-running", .value = TARGET_DEBUG_RUNNING },
240 { .name = NULL, .value = -1 },
243 static const Jim_Nvp nvp_target_debug_reason[] = {
244 { .name = "debug-request" , .value = DBG_REASON_DBGRQ },
245 { .name = "breakpoint" , .value = DBG_REASON_BREAKPOINT },
246 { .name = "watchpoint" , .value = DBG_REASON_WATCHPOINT },
247 { .name = "watchpoint-and-breakpoint", .value = DBG_REASON_WPTANDBKPT },
248 { .name = "single-step" , .value = DBG_REASON_SINGLESTEP },
249 { .name = "target-not-halted" , .value = DBG_REASON_NOTHALTED },
250 { .name = "program-exit" , .value = DBG_REASON_EXIT },
251 { .name = "undefined" , .value = DBG_REASON_UNDEFINED },
252 { .name = NULL, .value = -1 },
255 static const Jim_Nvp nvp_target_endian[] = {
256 { .name = "big", .value = TARGET_BIG_ENDIAN },
257 { .name = "little", .value = TARGET_LITTLE_ENDIAN },
258 { .name = "be", .value = TARGET_BIG_ENDIAN },
259 { .name = "le", .value = TARGET_LITTLE_ENDIAN },
260 { .name = NULL, .value = -1 },
263 static const Jim_Nvp nvp_reset_modes[] = {
264 { .name = "unknown", .value = RESET_UNKNOWN },
265 { .name = "run" , .value = RESET_RUN },
266 { .name = "halt" , .value = RESET_HALT },
267 { .name = "init" , .value = RESET_INIT },
268 { .name = NULL , .value = -1 },
271 const char *debug_reason_name(struct target *t)
273 const char *cp;
275 cp = Jim_Nvp_value2name_simple(nvp_target_debug_reason,
276 t->debug_reason)->name;
277 if (!cp) {
278 LOG_ERROR("Invalid debug reason: %d", (int)(t->debug_reason));
279 cp = "(*BUG*unknown*BUG*)";
281 return cp;
284 const char *target_state_name(struct target *t)
286 const char *cp;
287 cp = Jim_Nvp_value2name_simple(nvp_target_state, t->state)->name;
288 if (!cp) {
289 LOG_ERROR("Invalid target state: %d", (int)(t->state));
290 cp = "(*BUG*unknown*BUG*)";
293 if (!target_was_examined(t) && t->defer_examine)
294 cp = "examine deferred";
296 return cp;
299 const char *target_event_name(enum target_event event)
301 const char *cp;
302 cp = Jim_Nvp_value2name_simple(nvp_target_event, event)->name;
303 if (!cp) {
304 LOG_ERROR("Invalid target event: %d", (int)(event));
305 cp = "(*BUG*unknown*BUG*)";
307 return cp;
310 const char *target_reset_mode_name(enum target_reset_mode reset_mode)
312 const char *cp;
313 cp = Jim_Nvp_value2name_simple(nvp_reset_modes, reset_mode)->name;
314 if (!cp) {
315 LOG_ERROR("Invalid target reset mode: %d", (int)(reset_mode));
316 cp = "(*BUG*unknown*BUG*)";
318 return cp;
321 /* determine the number of the new target */
322 static int new_target_number(void)
324 struct target *t;
325 int x;
327 /* number is 0 based */
328 x = -1;
329 t = all_targets;
330 while (t) {
331 if (x < t->target_number)
332 x = t->target_number;
333 t = t->next;
335 return x + 1;
338 /* read a uint64_t from a buffer in target memory endianness */
339 uint64_t target_buffer_get_u64(struct target *target, const uint8_t *buffer)
341 if (target->endianness == TARGET_LITTLE_ENDIAN)
342 return le_to_h_u64(buffer);
343 else
344 return be_to_h_u64(buffer);
347 /* read a uint32_t from a buffer in target memory endianness */
348 uint32_t target_buffer_get_u32(struct target *target, const uint8_t *buffer)
350 if (target->endianness == TARGET_LITTLE_ENDIAN)
351 return le_to_h_u32(buffer);
352 else
353 return be_to_h_u32(buffer);
356 /* read a uint24_t from a buffer in target memory endianness */
357 uint32_t target_buffer_get_u24(struct target *target, const uint8_t *buffer)
359 if (target->endianness == TARGET_LITTLE_ENDIAN)
360 return le_to_h_u24(buffer);
361 else
362 return be_to_h_u24(buffer);
365 /* read a uint16_t from a buffer in target memory endianness */
366 uint16_t target_buffer_get_u16(struct target *target, const uint8_t *buffer)
368 if (target->endianness == TARGET_LITTLE_ENDIAN)
369 return le_to_h_u16(buffer);
370 else
371 return be_to_h_u16(buffer);
374 /* read a uint8_t from a buffer in target memory endianness */
375 static uint8_t target_buffer_get_u8(struct target *target, const uint8_t *buffer)
377 return *buffer & 0x0ff;
380 /* write a uint64_t to a buffer in target memory endianness */
381 void target_buffer_set_u64(struct target *target, uint8_t *buffer, uint64_t value)
383 if (target->endianness == TARGET_LITTLE_ENDIAN)
384 h_u64_to_le(buffer, value);
385 else
386 h_u64_to_be(buffer, value);
389 /* write a uint32_t to a buffer in target memory endianness */
390 void target_buffer_set_u32(struct target *target, uint8_t *buffer, uint32_t value)
392 if (target->endianness == TARGET_LITTLE_ENDIAN)
393 h_u32_to_le(buffer, value);
394 else
395 h_u32_to_be(buffer, value);
398 /* write a uint24_t to a buffer in target memory endianness */
399 void target_buffer_set_u24(struct target *target, uint8_t *buffer, uint32_t value)
401 if (target->endianness == TARGET_LITTLE_ENDIAN)
402 h_u24_to_le(buffer, value);
403 else
404 h_u24_to_be(buffer, value);
407 /* write a uint16_t to a buffer in target memory endianness */
408 void target_buffer_set_u16(struct target *target, uint8_t *buffer, uint16_t value)
410 if (target->endianness == TARGET_LITTLE_ENDIAN)
411 h_u16_to_le(buffer, value);
412 else
413 h_u16_to_be(buffer, value);
416 /* write a uint8_t to a buffer in target memory endianness */
417 static void target_buffer_set_u8(struct target *target, uint8_t *buffer, uint8_t value)
419 *buffer = value;
422 /* write a uint64_t array to a buffer in target memory endianness */
423 void target_buffer_get_u64_array(struct target *target, const uint8_t *buffer, uint32_t count, uint64_t *dstbuf)
425 uint32_t i;
426 for (i = 0; i < count; i++)
427 dstbuf[i] = target_buffer_get_u64(target, &buffer[i * 8]);
430 /* write a uint32_t array to a buffer in target memory endianness */
431 void target_buffer_get_u32_array(struct target *target, const uint8_t *buffer, uint32_t count, uint32_t *dstbuf)
433 uint32_t i;
434 for (i = 0; i < count; i++)
435 dstbuf[i] = target_buffer_get_u32(target, &buffer[i * 4]);
438 /* write a uint16_t array to a buffer in target memory endianness */
439 void target_buffer_get_u16_array(struct target *target, const uint8_t *buffer, uint32_t count, uint16_t *dstbuf)
441 uint32_t i;
442 for (i = 0; i < count; i++)
443 dstbuf[i] = target_buffer_get_u16(target, &buffer[i * 2]);
446 /* write a uint64_t array to a buffer in target memory endianness */
447 void target_buffer_set_u64_array(struct target *target, uint8_t *buffer, uint32_t count, const uint64_t *srcbuf)
449 uint32_t i;
450 for (i = 0; i < count; i++)
451 target_buffer_set_u64(target, &buffer[i * 8], srcbuf[i]);
454 /* write a uint32_t array to a buffer in target memory endianness */
455 void target_buffer_set_u32_array(struct target *target, uint8_t *buffer, uint32_t count, const uint32_t *srcbuf)
457 uint32_t i;
458 for (i = 0; i < count; i++)
459 target_buffer_set_u32(target, &buffer[i * 4], srcbuf[i]);
462 /* write a uint16_t array to a buffer in target memory endianness */
463 void target_buffer_set_u16_array(struct target *target, uint8_t *buffer, uint32_t count, const uint16_t *srcbuf)
465 uint32_t i;
466 for (i = 0; i < count; i++)
467 target_buffer_set_u16(target, &buffer[i * 2], srcbuf[i]);
470 /* return a pointer to a configured target; id is name or number */
471 struct target *get_target(const char *id)
473 struct target *target;
475 /* try as tcltarget name */
476 for (target = all_targets; target; target = target->next) {
477 if (target_name(target) == NULL)
478 continue;
479 if (strcmp(id, target_name(target)) == 0)
480 return target;
483 /* It's OK to remove this fallback sometime after August 2010 or so */
485 /* no match, try as number */
486 unsigned num;
487 if (parse_uint(id, &num) != ERROR_OK)
488 return NULL;
490 for (target = all_targets; target; target = target->next) {
491 if (target->target_number == (int)num) {
492 LOG_WARNING("use '%s' as target identifier, not '%u'",
493 target_name(target), num);
494 return target;
498 return NULL;
501 /* returns a pointer to the n-th configured target */
502 struct target *get_target_by_num(int num)
504 struct target *target = all_targets;
506 while (target) {
507 if (target->target_number == num)
508 return target;
509 target = target->next;
512 return NULL;
515 struct target *get_current_target(struct command_context *cmd_ctx)
517 struct target *target = get_target_by_num(cmd_ctx->current_target);
519 if (target == NULL) {
520 LOG_ERROR("BUG: current_target out of bounds");
521 exit(-1);
524 return target;
527 int target_poll(struct target *target)
529 int retval;
531 /* We can't poll until after examine */
532 if (!target_was_examined(target)) {
533 /* Fail silently lest we pollute the log */
534 return ERROR_FAIL;
537 retval = target->type->poll(target);
538 if (retval != ERROR_OK)
539 return retval;
541 if (target->halt_issued) {
542 if (target->state == TARGET_HALTED)
543 target->halt_issued = false;
544 else {
545 int64_t t = timeval_ms() - target->halt_issued_time;
546 if (t > DEFAULT_HALT_TIMEOUT) {
547 target->halt_issued = false;
548 LOG_INFO("Halt timed out, wake up GDB.");
549 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
554 return ERROR_OK;
557 int target_halt(struct target *target)
559 int retval;
560 /* We can't poll until after examine */
561 if (!target_was_examined(target)) {
562 LOG_ERROR("Target not examined yet");
563 return ERROR_FAIL;
566 retval = target->type->halt(target);
567 if (retval != ERROR_OK)
568 return retval;
570 target->halt_issued = true;
571 target->halt_issued_time = timeval_ms();
573 return ERROR_OK;
577 * Make the target (re)start executing using its saved execution
578 * context (possibly with some modifications).
580 * @param target Which target should start executing.
581 * @param current True to use the target's saved program counter instead
582 * of the address parameter
583 * @param address Optionally used as the program counter.
584 * @param handle_breakpoints True iff breakpoints at the resumption PC
585 * should be skipped. (For example, maybe execution was stopped by
586 * such a breakpoint, in which case it would be counterprodutive to
587 * let it re-trigger.
588 * @param debug_execution False if all working areas allocated by OpenOCD
589 * should be released and/or restored to their original contents.
590 * (This would for example be true to run some downloaded "helper"
591 * algorithm code, which resides in one such working buffer and uses
592 * another for data storage.)
594 * @todo Resolve the ambiguity about what the "debug_execution" flag
595 * signifies. For example, Target implementations don't agree on how
596 * it relates to invalidation of the register cache, or to whether
597 * breakpoints and watchpoints should be enabled. (It would seem wrong
598 * to enable breakpoints when running downloaded "helper" algorithms
599 * (debug_execution true), since the breakpoints would be set to match
600 * target firmware being debugged, not the helper algorithm.... and
601 * enabling them could cause such helpers to malfunction (for example,
602 * by overwriting data with a breakpoint instruction. On the other
603 * hand the infrastructure for running such helpers might use this
604 * procedure but rely on hardware breakpoint to detect termination.)
606 int target_resume(struct target *target, int current, target_addr_t address,
607 int handle_breakpoints, int debug_execution)
609 int retval;
611 /* We can't poll until after examine */
612 if (!target_was_examined(target)) {
613 LOG_ERROR("Target not examined yet");
614 return ERROR_FAIL;
617 target_call_event_callbacks(target, TARGET_EVENT_RESUME_START);
619 /* note that resume *must* be asynchronous. The CPU can halt before
620 * we poll. The CPU can even halt at the current PC as a result of
621 * a software breakpoint being inserted by (a bug?) the application.
623 retval = target->type->resume(target, current, address, handle_breakpoints, debug_execution);
624 if (retval != ERROR_OK)
625 return retval;
627 target_call_event_callbacks(target, TARGET_EVENT_RESUME_END);
629 return retval;
632 static int target_process_reset(struct command_context *cmd_ctx, enum target_reset_mode reset_mode)
634 char buf[100];
635 int retval;
636 Jim_Nvp *n;
637 n = Jim_Nvp_value2name_simple(nvp_reset_modes, reset_mode);
638 if (n->name == NULL) {
639 LOG_ERROR("invalid reset mode");
640 return ERROR_FAIL;
643 struct target *target;
644 for (target = all_targets; target; target = target->next)
645 target_call_reset_callbacks(target, reset_mode);
647 /* disable polling during reset to make reset event scripts
648 * more predictable, i.e. dr/irscan & pathmove in events will
649 * not have JTAG operations injected into the middle of a sequence.
651 bool save_poll = jtag_poll_get_enabled();
653 jtag_poll_set_enabled(false);
655 sprintf(buf, "ocd_process_reset %s", n->name);
656 retval = Jim_Eval(cmd_ctx->interp, buf);
658 jtag_poll_set_enabled(save_poll);
660 if (retval != JIM_OK) {
661 Jim_MakeErrorMessage(cmd_ctx->interp);
662 command_print(NULL, "%s\n", Jim_GetString(Jim_GetResult(cmd_ctx->interp), NULL));
663 return ERROR_FAIL;
666 /* We want any events to be processed before the prompt */
667 retval = target_call_timer_callbacks_now();
669 for (target = all_targets; target; target = target->next) {
670 target->type->check_reset(target);
671 target->running_alg = false;
674 return retval;
677 static int identity_virt2phys(struct target *target,
678 target_addr_t virtual, target_addr_t *physical)
680 *physical = virtual;
681 return ERROR_OK;
684 static int no_mmu(struct target *target, int *enabled)
686 *enabled = 0;
687 return ERROR_OK;
690 static int default_examine(struct target *target)
692 target_set_examined(target);
693 return ERROR_OK;
696 /* no check by default */
697 static int default_check_reset(struct target *target)
699 return ERROR_OK;
702 int target_examine_one(struct target *target)
704 target_call_event_callbacks(target, TARGET_EVENT_EXAMINE_START);
706 int retval = target->type->examine(target);
707 if (retval != ERROR_OK)
708 return retval;
710 target_call_event_callbacks(target, TARGET_EVENT_EXAMINE_END);
712 return ERROR_OK;
715 static int jtag_enable_callback(enum jtag_event event, void *priv)
717 struct target *target = priv;
719 if (event != JTAG_TAP_EVENT_ENABLE || !target->tap->enabled)
720 return ERROR_OK;
722 jtag_unregister_event_callback(jtag_enable_callback, target);
724 return target_examine_one(target);
727 /* Targets that correctly implement init + examine, i.e.
728 * no communication with target during init:
730 * XScale
732 int target_examine(void)
734 int retval = ERROR_OK;
735 struct target *target;
737 for (target = all_targets; target; target = target->next) {
738 /* defer examination, but don't skip it */
739 if (!target->tap->enabled) {
740 jtag_register_event_callback(jtag_enable_callback,
741 target);
742 continue;
745 if (target->defer_examine)
746 continue;
748 retval = target_examine_one(target);
749 if (retval != ERROR_OK)
750 return retval;
752 return retval;
755 const char *target_type_name(struct target *target)
757 return target->type->name;
760 static int target_soft_reset_halt(struct target *target)
762 if (!target_was_examined(target)) {
763 LOG_ERROR("Target not examined yet");
764 return ERROR_FAIL;
766 if (!target->type->soft_reset_halt) {
767 LOG_ERROR("Target %s does not support soft_reset_halt",
768 target_name(target));
769 return ERROR_FAIL;
771 return target->type->soft_reset_halt(target);
775 * Downloads a target-specific native code algorithm to the target,
776 * and executes it. * Note that some targets may need to set up, enable,
777 * and tear down a breakpoint (hard or * soft) to detect algorithm
778 * termination, while others may support lower overhead schemes where
779 * soft breakpoints embedded in the algorithm automatically terminate the
780 * algorithm.
782 * @param target used to run the algorithm
783 * @param arch_info target-specific description of the algorithm.
785 int target_run_algorithm(struct target *target,
786 int num_mem_params, struct mem_param *mem_params,
787 int num_reg_params, struct reg_param *reg_param,
788 uint32_t entry_point, uint32_t exit_point,
789 int timeout_ms, void *arch_info)
791 int retval = ERROR_FAIL;
793 if (!target_was_examined(target)) {
794 LOG_ERROR("Target not examined yet");
795 goto done;
797 if (!target->type->run_algorithm) {
798 LOG_ERROR("Target type '%s' does not support %s",
799 target_type_name(target), __func__);
800 goto done;
803 target->running_alg = true;
804 retval = target->type->run_algorithm(target,
805 num_mem_params, mem_params,
806 num_reg_params, reg_param,
807 entry_point, exit_point, timeout_ms, arch_info);
808 target->running_alg = false;
810 done:
811 return retval;
815 * Downloads a target-specific native code algorithm to the target,
816 * executes and leaves it running.
818 * @param target used to run the algorithm
819 * @param arch_info target-specific description of the algorithm.
821 int target_start_algorithm(struct target *target,
822 int num_mem_params, struct mem_param *mem_params,
823 int num_reg_params, struct reg_param *reg_params,
824 uint32_t entry_point, uint32_t exit_point,
825 void *arch_info)
827 int retval = ERROR_FAIL;
829 if (!target_was_examined(target)) {
830 LOG_ERROR("Target not examined yet");
831 goto done;
833 if (!target->type->start_algorithm) {
834 LOG_ERROR("Target type '%s' does not support %s",
835 target_type_name(target), __func__);
836 goto done;
838 if (target->running_alg) {
839 LOG_ERROR("Target is already running an algorithm");
840 goto done;
843 target->running_alg = true;
844 retval = target->type->start_algorithm(target,
845 num_mem_params, mem_params,
846 num_reg_params, reg_params,
847 entry_point, exit_point, arch_info);
849 done:
850 return retval;
854 * Waits for an algorithm started with target_start_algorithm() to complete.
856 * @param target used to run the algorithm
857 * @param arch_info target-specific description of the algorithm.
859 int target_wait_algorithm(struct target *target,
860 int num_mem_params, struct mem_param *mem_params,
861 int num_reg_params, struct reg_param *reg_params,
862 uint32_t exit_point, int timeout_ms,
863 void *arch_info)
865 int retval = ERROR_FAIL;
867 if (!target->type->wait_algorithm) {
868 LOG_ERROR("Target type '%s' does not support %s",
869 target_type_name(target), __func__);
870 goto done;
872 if (!target->running_alg) {
873 LOG_ERROR("Target is not running an algorithm");
874 goto done;
877 retval = target->type->wait_algorithm(target,
878 num_mem_params, mem_params,
879 num_reg_params, reg_params,
880 exit_point, timeout_ms, arch_info);
881 if (retval != ERROR_TARGET_TIMEOUT)
882 target->running_alg = false;
884 done:
885 return retval;
889 * Executes a target-specific native code algorithm in the target.
890 * It differs from target_run_algorithm in that the algorithm is asynchronous.
891 * Because of this it requires an compliant algorithm:
892 * see contrib/loaders/flash/stm32f1x.S for example.
894 * @param target used to run the algorithm
897 int target_run_flash_async_algorithm(struct target *target,
898 const uint8_t *buffer, uint32_t count, int block_size,
899 int num_mem_params, struct mem_param *mem_params,
900 int num_reg_params, struct reg_param *reg_params,
901 uint32_t buffer_start, uint32_t buffer_size,
902 uint32_t entry_point, uint32_t exit_point, void *arch_info)
904 int retval;
905 int timeout = 0;
907 const uint8_t *buffer_orig = buffer;
909 /* Set up working area. First word is write pointer, second word is read pointer,
910 * rest is fifo data area. */
911 uint32_t wp_addr = buffer_start;
912 uint32_t rp_addr = buffer_start + 4;
913 uint32_t fifo_start_addr = buffer_start + 8;
914 uint32_t fifo_end_addr = buffer_start + buffer_size;
916 uint32_t wp = fifo_start_addr;
917 uint32_t rp = fifo_start_addr;
919 /* validate block_size is 2^n */
920 assert(!block_size || !(block_size & (block_size - 1)));
922 retval = target_write_u32(target, wp_addr, wp);
923 if (retval != ERROR_OK)
924 return retval;
925 retval = target_write_u32(target, rp_addr, rp);
926 if (retval != ERROR_OK)
927 return retval;
929 /* Start up algorithm on target and let it idle while writing the first chunk */
930 retval = target_start_algorithm(target, num_mem_params, mem_params,
931 num_reg_params, reg_params,
932 entry_point,
933 exit_point,
934 arch_info);
936 if (retval != ERROR_OK) {
937 LOG_ERROR("error starting target flash write algorithm");
938 return retval;
941 while (count > 0) {
943 retval = target_read_u32(target, rp_addr, &rp);
944 if (retval != ERROR_OK) {
945 LOG_ERROR("failed to get read pointer");
946 break;
949 LOG_DEBUG("offs 0x%zx count 0x%" PRIx32 " wp 0x%" PRIx32 " rp 0x%" PRIx32,
950 (size_t) (buffer - buffer_orig), count, wp, rp);
952 if (rp == 0) {
953 LOG_ERROR("flash write algorithm aborted by target");
954 retval = ERROR_FLASH_OPERATION_FAILED;
955 break;
958 if (((rp - fifo_start_addr) & (block_size - 1)) || rp < fifo_start_addr || rp >= fifo_end_addr) {
959 LOG_ERROR("corrupted fifo read pointer 0x%" PRIx32, rp);
960 break;
963 /* Count the number of bytes available in the fifo without
964 * crossing the wrap around. Make sure to not fill it completely,
965 * because that would make wp == rp and that's the empty condition. */
966 uint32_t thisrun_bytes;
967 if (rp > wp)
968 thisrun_bytes = rp - wp - block_size;
969 else if (rp > fifo_start_addr)
970 thisrun_bytes = fifo_end_addr - wp;
971 else
972 thisrun_bytes = fifo_end_addr - wp - block_size;
974 if (thisrun_bytes == 0) {
975 /* Throttle polling a bit if transfer is (much) faster than flash
976 * programming. The exact delay shouldn't matter as long as it's
977 * less than buffer size / flash speed. This is very unlikely to
978 * run when using high latency connections such as USB. */
979 alive_sleep(10);
981 /* to stop an infinite loop on some targets check and increment a timeout
982 * this issue was observed on a stellaris using the new ICDI interface */
983 if (timeout++ >= 500) {
984 LOG_ERROR("timeout waiting for algorithm, a target reset is recommended");
985 return ERROR_FLASH_OPERATION_FAILED;
987 continue;
990 /* reset our timeout */
991 timeout = 0;
993 /* Limit to the amount of data we actually want to write */
994 if (thisrun_bytes > count * block_size)
995 thisrun_bytes = count * block_size;
997 /* Write data to fifo */
998 retval = target_write_buffer(target, wp, thisrun_bytes, buffer);
999 if (retval != ERROR_OK)
1000 break;
1002 /* Update counters and wrap write pointer */
1003 buffer += thisrun_bytes;
1004 count -= thisrun_bytes / block_size;
1005 wp += thisrun_bytes;
1006 if (wp >= fifo_end_addr)
1007 wp = fifo_start_addr;
1009 /* Store updated write pointer to target */
1010 retval = target_write_u32(target, wp_addr, wp);
1011 if (retval != ERROR_OK)
1012 break;
1015 if (retval != ERROR_OK) {
1016 /* abort flash write algorithm on target */
1017 target_write_u32(target, wp_addr, 0);
1020 int retval2 = target_wait_algorithm(target, num_mem_params, mem_params,
1021 num_reg_params, reg_params,
1022 exit_point,
1023 10000,
1024 arch_info);
1026 if (retval2 != ERROR_OK) {
1027 LOG_ERROR("error waiting for target flash write algorithm");
1028 retval = retval2;
1031 if (retval == ERROR_OK) {
1032 /* check if algorithm set rp = 0 after fifo writer loop finished */
1033 retval = target_read_u32(target, rp_addr, &rp);
1034 if (retval == ERROR_OK && rp == 0) {
1035 LOG_ERROR("flash write algorithm aborted by target");
1036 retval = ERROR_FLASH_OPERATION_FAILED;
1040 return retval;
1043 int target_read_memory(struct target *target,
1044 target_addr_t address, uint32_t size, uint32_t count, uint8_t *buffer)
1046 if (!target_was_examined(target)) {
1047 LOG_ERROR("Target not examined yet");
1048 return ERROR_FAIL;
1050 if (!target->type->read_memory) {
1051 LOG_ERROR("Target %s doesn't support read_memory", target_name(target));
1052 return ERROR_FAIL;
1054 return target->type->read_memory(target, address, size, count, buffer);
1057 int target_read_phys_memory(struct target *target,
1058 target_addr_t address, uint32_t size, uint32_t count, uint8_t *buffer)
1060 if (!target_was_examined(target)) {
1061 LOG_ERROR("Target not examined yet");
1062 return ERROR_FAIL;
1064 if (!target->type->read_phys_memory) {
1065 LOG_ERROR("Target %s doesn't support read_phys_memory", target_name(target));
1066 return ERROR_FAIL;
1068 return target->type->read_phys_memory(target, address, size, count, buffer);
1071 int target_write_memory(struct target *target,
1072 target_addr_t address, uint32_t size, uint32_t count, const uint8_t *buffer)
1074 if (!target_was_examined(target)) {
1075 LOG_ERROR("Target not examined yet");
1076 return ERROR_FAIL;
1078 if (!target->type->write_memory) {
1079 LOG_ERROR("Target %s doesn't support write_memory", target_name(target));
1080 return ERROR_FAIL;
1082 return target->type->write_memory(target, address, size, count, buffer);
1085 int target_write_phys_memory(struct target *target,
1086 target_addr_t address, uint32_t size, uint32_t count, const uint8_t *buffer)
1088 if (!target_was_examined(target)) {
1089 LOG_ERROR("Target not examined yet");
1090 return ERROR_FAIL;
1092 if (!target->type->write_phys_memory) {
1093 LOG_ERROR("Target %s doesn't support write_phys_memory", target_name(target));
1094 return ERROR_FAIL;
1096 return target->type->write_phys_memory(target, address, size, count, buffer);
1099 int target_add_breakpoint(struct target *target,
1100 struct breakpoint *breakpoint)
1102 if ((target->state != TARGET_HALTED) && (breakpoint->type != BKPT_HARD)) {
1103 LOG_WARNING("target %s is not halted (add breakpoint)", target_name(target));
1104 return ERROR_TARGET_NOT_HALTED;
1106 return target->type->add_breakpoint(target, breakpoint);
1109 int target_add_context_breakpoint(struct target *target,
1110 struct breakpoint *breakpoint)
1112 if (target->state != TARGET_HALTED) {
1113 LOG_WARNING("target %s is not halted (add context breakpoint)", target_name(target));
1114 return ERROR_TARGET_NOT_HALTED;
1116 return target->type->add_context_breakpoint(target, breakpoint);
1119 int target_add_hybrid_breakpoint(struct target *target,
1120 struct breakpoint *breakpoint)
1122 if (target->state != TARGET_HALTED) {
1123 LOG_WARNING("target %s is not halted (add hybrid breakpoint)", target_name(target));
1124 return ERROR_TARGET_NOT_HALTED;
1126 return target->type->add_hybrid_breakpoint(target, breakpoint);
1129 int target_remove_breakpoint(struct target *target,
1130 struct breakpoint *breakpoint)
1132 return target->type->remove_breakpoint(target, breakpoint);
1135 int target_add_watchpoint(struct target *target,
1136 struct watchpoint *watchpoint)
1138 if (target->state != TARGET_HALTED) {
1139 LOG_WARNING("target %s is not halted (add watchpoint)", target_name(target));
1140 return ERROR_TARGET_NOT_HALTED;
1142 return target->type->add_watchpoint(target, watchpoint);
1144 int target_remove_watchpoint(struct target *target,
1145 struct watchpoint *watchpoint)
1147 return target->type->remove_watchpoint(target, watchpoint);
1149 int target_hit_watchpoint(struct target *target,
1150 struct watchpoint **hit_watchpoint)
1152 if (target->state != TARGET_HALTED) {
1153 LOG_WARNING("target %s is not halted (hit watchpoint)", target->cmd_name);
1154 return ERROR_TARGET_NOT_HALTED;
1157 if (target->type->hit_watchpoint == NULL) {
1158 /* For backward compatible, if hit_watchpoint is not implemented,
1159 * return ERROR_FAIL such that gdb_server will not take the nonsense
1160 * information. */
1161 return ERROR_FAIL;
1164 return target->type->hit_watchpoint(target, hit_watchpoint);
1167 int target_get_gdb_reg_list(struct target *target,
1168 struct reg **reg_list[], int *reg_list_size,
1169 enum target_register_class reg_class)
1171 return target->type->get_gdb_reg_list(target, reg_list, reg_list_size, reg_class);
1173 int target_step(struct target *target,
1174 int current, target_addr_t address, int handle_breakpoints)
1176 return target->type->step(target, current, address, handle_breakpoints);
1179 int target_get_gdb_fileio_info(struct target *target, struct gdb_fileio_info *fileio_info)
1181 if (target->state != TARGET_HALTED) {
1182 LOG_WARNING("target %s is not halted (gdb fileio)", target->cmd_name);
1183 return ERROR_TARGET_NOT_HALTED;
1185 return target->type->get_gdb_fileio_info(target, fileio_info);
1188 int target_gdb_fileio_end(struct target *target, int retcode, int fileio_errno, bool ctrl_c)
1190 if (target->state != TARGET_HALTED) {
1191 LOG_WARNING("target %s is not halted (gdb fileio end)", target->cmd_name);
1192 return ERROR_TARGET_NOT_HALTED;
1194 return target->type->gdb_fileio_end(target, retcode, fileio_errno, ctrl_c);
1197 int target_profiling(struct target *target, uint32_t *samples,
1198 uint32_t max_num_samples, uint32_t *num_samples, uint32_t seconds)
1200 if (target->state != TARGET_HALTED) {
1201 LOG_WARNING("target %s is not halted (profiling)", target->cmd_name);
1202 return ERROR_TARGET_NOT_HALTED;
1204 return target->type->profiling(target, samples, max_num_samples,
1205 num_samples, seconds);
1209 * Reset the @c examined flag for the given target.
1210 * Pure paranoia -- targets are zeroed on allocation.
1212 static void target_reset_examined(struct target *target)
1214 target->examined = false;
1217 static int handle_target(void *priv);
1219 static int target_init_one(struct command_context *cmd_ctx,
1220 struct target *target)
1222 target_reset_examined(target);
1224 struct target_type *type = target->type;
1225 if (type->examine == NULL)
1226 type->examine = default_examine;
1228 if (type->check_reset == NULL)
1229 type->check_reset = default_check_reset;
1231 assert(type->init_target != NULL);
1233 int retval = type->init_target(cmd_ctx, target);
1234 if (ERROR_OK != retval) {
1235 LOG_ERROR("target '%s' init failed", target_name(target));
1236 return retval;
1239 /* Sanity-check MMU support ... stub in what we must, to help
1240 * implement it in stages, but warn if we need to do so.
1242 if (type->mmu) {
1243 if (type->virt2phys == NULL) {
1244 LOG_ERROR("type '%s' is missing virt2phys", type->name);
1245 type->virt2phys = identity_virt2phys;
1247 } else {
1248 /* Make sure no-MMU targets all behave the same: make no
1249 * distinction between physical and virtual addresses, and
1250 * ensure that virt2phys() is always an identity mapping.
1252 if (type->write_phys_memory || type->read_phys_memory || type->virt2phys)
1253 LOG_WARNING("type '%s' has bad MMU hooks", type->name);
1255 type->mmu = no_mmu;
1256 type->write_phys_memory = type->write_memory;
1257 type->read_phys_memory = type->read_memory;
1258 type->virt2phys = identity_virt2phys;
1261 if (target->type->read_buffer == NULL)
1262 target->type->read_buffer = target_read_buffer_default;
1264 if (target->type->write_buffer == NULL)
1265 target->type->write_buffer = target_write_buffer_default;
1267 if (target->type->get_gdb_fileio_info == NULL)
1268 target->type->get_gdb_fileio_info = target_get_gdb_fileio_info_default;
1270 if (target->type->gdb_fileio_end == NULL)
1271 target->type->gdb_fileio_end = target_gdb_fileio_end_default;
1273 if (target->type->profiling == NULL)
1274 target->type->profiling = target_profiling_default;
1276 return ERROR_OK;
1279 static int target_init(struct command_context *cmd_ctx)
1281 struct target *target;
1282 int retval;
1284 for (target = all_targets; target; target = target->next) {
1285 retval = target_init_one(cmd_ctx, target);
1286 if (ERROR_OK != retval)
1287 return retval;
1290 if (!all_targets)
1291 return ERROR_OK;
1293 retval = target_register_user_commands(cmd_ctx);
1294 if (ERROR_OK != retval)
1295 return retval;
1297 retval = target_register_timer_callback(&handle_target,
1298 polling_interval, 1, cmd_ctx->interp);
1299 if (ERROR_OK != retval)
1300 return retval;
1302 return ERROR_OK;
1305 COMMAND_HANDLER(handle_target_init_command)
1307 int retval;
1309 if (CMD_ARGC != 0)
1310 return ERROR_COMMAND_SYNTAX_ERROR;
1312 static bool target_initialized;
1313 if (target_initialized) {
1314 LOG_INFO("'target init' has already been called");
1315 return ERROR_OK;
1317 target_initialized = true;
1319 retval = command_run_line(CMD_CTX, "init_targets");
1320 if (ERROR_OK != retval)
1321 return retval;
1323 retval = command_run_line(CMD_CTX, "init_target_events");
1324 if (ERROR_OK != retval)
1325 return retval;
1327 retval = command_run_line(CMD_CTX, "init_board");
1328 if (ERROR_OK != retval)
1329 return retval;
1331 LOG_DEBUG("Initializing targets...");
1332 return target_init(CMD_CTX);
1335 int target_register_event_callback(int (*callback)(struct target *target,
1336 enum target_event event, void *priv), void *priv)
1338 struct target_event_callback **callbacks_p = &target_event_callbacks;
1340 if (callback == NULL)
1341 return ERROR_COMMAND_SYNTAX_ERROR;
1343 if (*callbacks_p) {
1344 while ((*callbacks_p)->next)
1345 callbacks_p = &((*callbacks_p)->next);
1346 callbacks_p = &((*callbacks_p)->next);
1349 (*callbacks_p) = malloc(sizeof(struct target_event_callback));
1350 (*callbacks_p)->callback = callback;
1351 (*callbacks_p)->priv = priv;
1352 (*callbacks_p)->next = NULL;
1354 return ERROR_OK;
1357 int target_register_reset_callback(int (*callback)(struct target *target,
1358 enum target_reset_mode reset_mode, void *priv), void *priv)
1360 struct target_reset_callback *entry;
1362 if (callback == NULL)
1363 return ERROR_COMMAND_SYNTAX_ERROR;
1365 entry = malloc(sizeof(struct target_reset_callback));
1366 if (entry == NULL) {
1367 LOG_ERROR("error allocating buffer for reset callback entry");
1368 return ERROR_COMMAND_SYNTAX_ERROR;
1371 entry->callback = callback;
1372 entry->priv = priv;
1373 list_add(&entry->list, &target_reset_callback_list);
1376 return ERROR_OK;
1379 int target_register_trace_callback(int (*callback)(struct target *target,
1380 size_t len, uint8_t *data, void *priv), void *priv)
1382 struct target_trace_callback *entry;
1384 if (callback == NULL)
1385 return ERROR_COMMAND_SYNTAX_ERROR;
1387 entry = malloc(sizeof(struct target_trace_callback));
1388 if (entry == NULL) {
1389 LOG_ERROR("error allocating buffer for trace callback entry");
1390 return ERROR_COMMAND_SYNTAX_ERROR;
1393 entry->callback = callback;
1394 entry->priv = priv;
1395 list_add(&entry->list, &target_trace_callback_list);
1398 return ERROR_OK;
1401 int target_register_timer_callback(int (*callback)(void *priv), int time_ms, int periodic, void *priv)
1403 struct target_timer_callback **callbacks_p = &target_timer_callbacks;
1404 struct timeval now;
1406 if (callback == NULL)
1407 return ERROR_COMMAND_SYNTAX_ERROR;
1409 if (*callbacks_p) {
1410 while ((*callbacks_p)->next)
1411 callbacks_p = &((*callbacks_p)->next);
1412 callbacks_p = &((*callbacks_p)->next);
1415 (*callbacks_p) = malloc(sizeof(struct target_timer_callback));
1416 (*callbacks_p)->callback = callback;
1417 (*callbacks_p)->periodic = periodic;
1418 (*callbacks_p)->time_ms = time_ms;
1419 (*callbacks_p)->removed = false;
1421 gettimeofday(&now, NULL);
1422 (*callbacks_p)->when.tv_usec = now.tv_usec + (time_ms % 1000) * 1000;
1423 time_ms -= (time_ms % 1000);
1424 (*callbacks_p)->when.tv_sec = now.tv_sec + (time_ms / 1000);
1425 if ((*callbacks_p)->when.tv_usec > 1000000) {
1426 (*callbacks_p)->when.tv_usec = (*callbacks_p)->when.tv_usec - 1000000;
1427 (*callbacks_p)->when.tv_sec += 1;
1430 (*callbacks_p)->priv = priv;
1431 (*callbacks_p)->next = NULL;
1433 return ERROR_OK;
1436 int target_unregister_event_callback(int (*callback)(struct target *target,
1437 enum target_event event, void *priv), void *priv)
1439 struct target_event_callback **p = &target_event_callbacks;
1440 struct target_event_callback *c = target_event_callbacks;
1442 if (callback == NULL)
1443 return ERROR_COMMAND_SYNTAX_ERROR;
1445 while (c) {
1446 struct target_event_callback *next = c->next;
1447 if ((c->callback == callback) && (c->priv == priv)) {
1448 *p = next;
1449 free(c);
1450 return ERROR_OK;
1451 } else
1452 p = &(c->next);
1453 c = next;
1456 return ERROR_OK;
1459 int target_unregister_reset_callback(int (*callback)(struct target *target,
1460 enum target_reset_mode reset_mode, void *priv), void *priv)
1462 struct target_reset_callback *entry;
1464 if (callback == NULL)
1465 return ERROR_COMMAND_SYNTAX_ERROR;
1467 list_for_each_entry(entry, &target_reset_callback_list, list) {
1468 if (entry->callback == callback && entry->priv == priv) {
1469 list_del(&entry->list);
1470 free(entry);
1471 break;
1475 return ERROR_OK;
1478 int target_unregister_trace_callback(int (*callback)(struct target *target,
1479 size_t len, uint8_t *data, void *priv), void *priv)
1481 struct target_trace_callback *entry;
1483 if (callback == NULL)
1484 return ERROR_COMMAND_SYNTAX_ERROR;
1486 list_for_each_entry(entry, &target_trace_callback_list, list) {
1487 if (entry->callback == callback && entry->priv == priv) {
1488 list_del(&entry->list);
1489 free(entry);
1490 break;
1494 return ERROR_OK;
1497 int target_unregister_timer_callback(int (*callback)(void *priv), void *priv)
1499 if (callback == NULL)
1500 return ERROR_COMMAND_SYNTAX_ERROR;
1502 for (struct target_timer_callback *c = target_timer_callbacks;
1503 c; c = c->next) {
1504 if ((c->callback == callback) && (c->priv == priv)) {
1505 c->removed = true;
1506 return ERROR_OK;
1510 return ERROR_FAIL;
1513 int target_call_event_callbacks(struct target *target, enum target_event event)
1515 struct target_event_callback *callback = target_event_callbacks;
1516 struct target_event_callback *next_callback;
1518 if (event == TARGET_EVENT_HALTED) {
1519 /* execute early halted first */
1520 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
1523 LOG_DEBUG("target event %i (%s)", event,
1524 Jim_Nvp_value2name_simple(nvp_target_event, event)->name);
1526 target_handle_event(target, event);
1528 while (callback) {
1529 next_callback = callback->next;
1530 callback->callback(target, event, callback->priv);
1531 callback = next_callback;
1534 return ERROR_OK;
1537 int target_call_reset_callbacks(struct target *target, enum target_reset_mode reset_mode)
1539 struct target_reset_callback *callback;
1541 LOG_DEBUG("target reset %i (%s)", reset_mode,
1542 Jim_Nvp_value2name_simple(nvp_reset_modes, reset_mode)->name);
1544 list_for_each_entry(callback, &target_reset_callback_list, list)
1545 callback->callback(target, reset_mode, callback->priv);
1547 return ERROR_OK;
1550 int target_call_trace_callbacks(struct target *target, size_t len, uint8_t *data)
1552 struct target_trace_callback *callback;
1554 list_for_each_entry(callback, &target_trace_callback_list, list)
1555 callback->callback(target, len, data, callback->priv);
1557 return ERROR_OK;
1560 static int target_timer_callback_periodic_restart(
1561 struct target_timer_callback *cb, struct timeval *now)
1563 int time_ms = cb->time_ms;
1564 cb->when.tv_usec = now->tv_usec + (time_ms % 1000) * 1000;
1565 time_ms -= (time_ms % 1000);
1566 cb->when.tv_sec = now->tv_sec + time_ms / 1000;
1567 if (cb->when.tv_usec > 1000000) {
1568 cb->when.tv_usec = cb->when.tv_usec - 1000000;
1569 cb->when.tv_sec += 1;
1571 return ERROR_OK;
1574 static int target_call_timer_callback(struct target_timer_callback *cb,
1575 struct timeval *now)
1577 cb->callback(cb->priv);
1579 if (cb->periodic)
1580 return target_timer_callback_periodic_restart(cb, now);
1582 return target_unregister_timer_callback(cb->callback, cb->priv);
1585 static int target_call_timer_callbacks_check_time(int checktime)
1587 static bool callback_processing;
1589 /* Do not allow nesting */
1590 if (callback_processing)
1591 return ERROR_OK;
1593 callback_processing = true;
1595 keep_alive();
1597 struct timeval now;
1598 gettimeofday(&now, NULL);
1600 /* Store an address of the place containing a pointer to the
1601 * next item; initially, that's a standalone "root of the
1602 * list" variable. */
1603 struct target_timer_callback **callback = &target_timer_callbacks;
1604 while (*callback) {
1605 if ((*callback)->removed) {
1606 struct target_timer_callback *p = *callback;
1607 *callback = (*callback)->next;
1608 free(p);
1609 continue;
1612 bool call_it = (*callback)->callback &&
1613 ((!checktime && (*callback)->periodic) ||
1614 now.tv_sec > (*callback)->when.tv_sec ||
1615 (now.tv_sec == (*callback)->when.tv_sec &&
1616 now.tv_usec >= (*callback)->when.tv_usec));
1618 if (call_it)
1619 target_call_timer_callback(*callback, &now);
1621 callback = &(*callback)->next;
1624 callback_processing = false;
1625 return ERROR_OK;
1628 int target_call_timer_callbacks(void)
1630 return target_call_timer_callbacks_check_time(1);
1633 /* invoke periodic callbacks immediately */
1634 int target_call_timer_callbacks_now(void)
1636 return target_call_timer_callbacks_check_time(0);
1639 /* Prints the working area layout for debug purposes */
1640 static void print_wa_layout(struct target *target)
1642 struct working_area *c = target->working_areas;
1644 while (c) {
1645 LOG_DEBUG("%c%c " TARGET_ADDR_FMT "-" TARGET_ADDR_FMT " (%" PRIu32 " bytes)",
1646 c->backup ? 'b' : ' ', c->free ? ' ' : '*',
1647 c->address, c->address + c->size - 1, c->size);
1648 c = c->next;
1652 /* Reduce area to size bytes, create a new free area from the remaining bytes, if any. */
1653 static void target_split_working_area(struct working_area *area, uint32_t size)
1655 assert(area->free); /* Shouldn't split an allocated area */
1656 assert(size <= area->size); /* Caller should guarantee this */
1658 /* Split only if not already the right size */
1659 if (size < area->size) {
1660 struct working_area *new_wa = malloc(sizeof(*new_wa));
1662 if (new_wa == NULL)
1663 return;
1665 new_wa->next = area->next;
1666 new_wa->size = area->size - size;
1667 new_wa->address = area->address + size;
1668 new_wa->backup = NULL;
1669 new_wa->user = NULL;
1670 new_wa->free = true;
1672 area->next = new_wa;
1673 area->size = size;
1675 /* If backup memory was allocated to this area, it has the wrong size
1676 * now so free it and it will be reallocated if/when needed */
1677 if (area->backup) {
1678 free(area->backup);
1679 area->backup = NULL;
1684 /* Merge all adjacent free areas into one */
1685 static void target_merge_working_areas(struct target *target)
1687 struct working_area *c = target->working_areas;
1689 while (c && c->next) {
1690 assert(c->next->address == c->address + c->size); /* This is an invariant */
1692 /* Find two adjacent free areas */
1693 if (c->free && c->next->free) {
1694 /* Merge the last into the first */
1695 c->size += c->next->size;
1697 /* Remove the last */
1698 struct working_area *to_be_freed = c->next;
1699 c->next = c->next->next;
1700 if (to_be_freed->backup)
1701 free(to_be_freed->backup);
1702 free(to_be_freed);
1704 /* If backup memory was allocated to the remaining area, it's has
1705 * the wrong size now */
1706 if (c->backup) {
1707 free(c->backup);
1708 c->backup = NULL;
1710 } else {
1711 c = c->next;
1716 int target_alloc_working_area_try(struct target *target, uint32_t size, struct working_area **area)
1718 /* Reevaluate working area address based on MMU state*/
1719 if (target->working_areas == NULL) {
1720 int retval;
1721 int enabled;
1723 retval = target->type->mmu(target, &enabled);
1724 if (retval != ERROR_OK)
1725 return retval;
1727 if (!enabled) {
1728 if (target->working_area_phys_spec) {
1729 LOG_DEBUG("MMU disabled, using physical "
1730 "address for working memory " TARGET_ADDR_FMT,
1731 target->working_area_phys);
1732 target->working_area = target->working_area_phys;
1733 } else {
1734 LOG_ERROR("No working memory available. "
1735 "Specify -work-area-phys to target.");
1736 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1738 } else {
1739 if (target->working_area_virt_spec) {
1740 LOG_DEBUG("MMU enabled, using virtual "
1741 "address for working memory " TARGET_ADDR_FMT,
1742 target->working_area_virt);
1743 target->working_area = target->working_area_virt;
1744 } else {
1745 LOG_ERROR("No working memory available. "
1746 "Specify -work-area-virt to target.");
1747 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1751 /* Set up initial working area on first call */
1752 struct working_area *new_wa = malloc(sizeof(*new_wa));
1753 if (new_wa) {
1754 new_wa->next = NULL;
1755 new_wa->size = target->working_area_size & ~3UL; /* 4-byte align */
1756 new_wa->address = target->working_area;
1757 new_wa->backup = NULL;
1758 new_wa->user = NULL;
1759 new_wa->free = true;
1762 target->working_areas = new_wa;
1765 /* only allocate multiples of 4 byte */
1766 if (size % 4)
1767 size = (size + 3) & (~3UL);
1769 struct working_area *c = target->working_areas;
1771 /* Find the first large enough working area */
1772 while (c) {
1773 if (c->free && c->size >= size)
1774 break;
1775 c = c->next;
1778 if (c == NULL)
1779 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1781 /* Split the working area into the requested size */
1782 target_split_working_area(c, size);
1784 LOG_DEBUG("allocated new working area of %" PRIu32 " bytes at address " TARGET_ADDR_FMT,
1785 size, c->address);
1787 if (target->backup_working_area) {
1788 if (c->backup == NULL) {
1789 c->backup = malloc(c->size);
1790 if (c->backup == NULL)
1791 return ERROR_FAIL;
1794 int retval = target_read_memory(target, c->address, 4, c->size / 4, c->backup);
1795 if (retval != ERROR_OK)
1796 return retval;
1799 /* mark as used, and return the new (reused) area */
1800 c->free = false;
1801 *area = c;
1803 /* user pointer */
1804 c->user = area;
1806 print_wa_layout(target);
1808 return ERROR_OK;
1811 int target_alloc_working_area(struct target *target, uint32_t size, struct working_area **area)
1813 int retval;
1815 retval = target_alloc_working_area_try(target, size, area);
1816 if (retval == ERROR_TARGET_RESOURCE_NOT_AVAILABLE)
1817 LOG_WARNING("not enough working area available(requested %"PRIu32")", size);
1818 return retval;
1822 static int target_restore_working_area(struct target *target, struct working_area *area)
1824 int retval = ERROR_OK;
1826 if (target->backup_working_area && area->backup != NULL) {
1827 retval = target_write_memory(target, area->address, 4, area->size / 4, area->backup);
1828 if (retval != ERROR_OK)
1829 LOG_ERROR("failed to restore %" PRIu32 " bytes of working area at address " TARGET_ADDR_FMT,
1830 area->size, area->address);
1833 return retval;
1836 /* Restore the area's backup memory, if any, and return the area to the allocation pool */
1837 static int target_free_working_area_restore(struct target *target, struct working_area *area, int restore)
1839 int retval = ERROR_OK;
1841 if (area->free)
1842 return retval;
1844 if (restore) {
1845 retval = target_restore_working_area(target, area);
1846 /* REVISIT: Perhaps the area should be freed even if restoring fails. */
1847 if (retval != ERROR_OK)
1848 return retval;
1851 area->free = true;
1853 LOG_DEBUG("freed %" PRIu32 " bytes of working area at address " TARGET_ADDR_FMT,
1854 area->size, area->address);
1856 /* mark user pointer invalid */
1857 /* TODO: Is this really safe? It points to some previous caller's memory.
1858 * How could we know that the area pointer is still in that place and not
1859 * some other vital data? What's the purpose of this, anyway? */
1860 *area->user = NULL;
1861 area->user = NULL;
1863 target_merge_working_areas(target);
1865 print_wa_layout(target);
1867 return retval;
1870 int target_free_working_area(struct target *target, struct working_area *area)
1872 return target_free_working_area_restore(target, area, 1);
1875 static void target_destroy(struct target *target)
1877 if (target->type->deinit_target)
1878 target->type->deinit_target(target);
1880 free(target->type);
1881 free(target->trace_info);
1882 free(target->cmd_name);
1883 free(target);
1886 void target_quit(void)
1888 struct target_event_callback *pe = target_event_callbacks;
1889 while (pe) {
1890 struct target_event_callback *t = pe->next;
1891 free(pe);
1892 pe = t;
1894 target_event_callbacks = NULL;
1896 struct target_timer_callback *pt = target_timer_callbacks;
1897 while (pt) {
1898 struct target_timer_callback *t = pt->next;
1899 free(pt);
1900 pt = t;
1902 target_timer_callbacks = NULL;
1904 for (struct target *target = all_targets; target;) {
1905 struct target *tmp;
1907 tmp = target->next;
1908 target_destroy(target);
1909 target = tmp;
1912 all_targets = NULL;
1915 /* free resources and restore memory, if restoring memory fails,
1916 * free up resources anyway
1918 static void target_free_all_working_areas_restore(struct target *target, int restore)
1920 struct working_area *c = target->working_areas;
1922 LOG_DEBUG("freeing all working areas");
1924 /* Loop through all areas, restoring the allocated ones and marking them as free */
1925 while (c) {
1926 if (!c->free) {
1927 if (restore)
1928 target_restore_working_area(target, c);
1929 c->free = true;
1930 *c->user = NULL; /* Same as above */
1931 c->user = NULL;
1933 c = c->next;
1936 /* Run a merge pass to combine all areas into one */
1937 target_merge_working_areas(target);
1939 print_wa_layout(target);
1942 void target_free_all_working_areas(struct target *target)
1944 target_free_all_working_areas_restore(target, 1);
1947 /* Find the largest number of bytes that can be allocated */
1948 uint32_t target_get_working_area_avail(struct target *target)
1950 struct working_area *c = target->working_areas;
1951 uint32_t max_size = 0;
1953 if (c == NULL)
1954 return target->working_area_size;
1956 while (c) {
1957 if (c->free && max_size < c->size)
1958 max_size = c->size;
1960 c = c->next;
1963 return max_size;
1966 int target_arch_state(struct target *target)
1968 int retval;
1969 if (target == NULL) {
1970 LOG_WARNING("No target has been configured");
1971 return ERROR_OK;
1974 if (target->state != TARGET_HALTED)
1975 return ERROR_OK;
1977 retval = target->type->arch_state(target);
1978 return retval;
1981 static int target_get_gdb_fileio_info_default(struct target *target,
1982 struct gdb_fileio_info *fileio_info)
1984 /* If target does not support semi-hosting function, target
1985 has no need to provide .get_gdb_fileio_info callback.
1986 It just return ERROR_FAIL and gdb_server will return "Txx"
1987 as target halted every time. */
1988 return ERROR_FAIL;
1991 static int target_gdb_fileio_end_default(struct target *target,
1992 int retcode, int fileio_errno, bool ctrl_c)
1994 return ERROR_OK;
1997 static int target_profiling_default(struct target *target, uint32_t *samples,
1998 uint32_t max_num_samples, uint32_t *num_samples, uint32_t seconds)
2000 struct timeval timeout, now;
2002 gettimeofday(&timeout, NULL);
2003 timeval_add_time(&timeout, seconds, 0);
2005 LOG_INFO("Starting profiling. Halting and resuming the"
2006 " target as often as we can...");
2008 uint32_t sample_count = 0;
2009 /* hopefully it is safe to cache! We want to stop/restart as quickly as possible. */
2010 struct reg *reg = register_get_by_name(target->reg_cache, "pc", 1);
2012 int retval = ERROR_OK;
2013 for (;;) {
2014 target_poll(target);
2015 if (target->state == TARGET_HALTED) {
2016 uint32_t t = buf_get_u32(reg->value, 0, 32);
2017 samples[sample_count++] = t;
2018 /* current pc, addr = 0, do not handle breakpoints, not debugging */
2019 retval = target_resume(target, 1, 0, 0, 0);
2020 target_poll(target);
2021 alive_sleep(10); /* sleep 10ms, i.e. <100 samples/second. */
2022 } else if (target->state == TARGET_RUNNING) {
2023 /* We want to quickly sample the PC. */
2024 retval = target_halt(target);
2025 } else {
2026 LOG_INFO("Target not halted or running");
2027 retval = ERROR_OK;
2028 break;
2031 if (retval != ERROR_OK)
2032 break;
2034 gettimeofday(&now, NULL);
2035 if ((sample_count >= max_num_samples) ||
2036 ((now.tv_sec >= timeout.tv_sec) && (now.tv_usec >= timeout.tv_usec))) {
2037 LOG_INFO("Profiling completed. %" PRIu32 " samples.", sample_count);
2038 break;
2042 *num_samples = sample_count;
2043 return retval;
2046 /* Single aligned words are guaranteed to use 16 or 32 bit access
2047 * mode respectively, otherwise data is handled as quickly as
2048 * possible
2050 int target_write_buffer(struct target *target, target_addr_t address, uint32_t size, const uint8_t *buffer)
2052 LOG_DEBUG("writing buffer of %" PRIi32 " byte at " TARGET_ADDR_FMT,
2053 size, address);
2055 if (!target_was_examined(target)) {
2056 LOG_ERROR("Target not examined yet");
2057 return ERROR_FAIL;
2060 if (size == 0)
2061 return ERROR_OK;
2063 if ((address + size - 1) < address) {
2064 /* GDB can request this when e.g. PC is 0xfffffffc */
2065 LOG_ERROR("address + size wrapped (" TARGET_ADDR_FMT ", 0x%08" PRIx32 ")",
2066 address,
2067 size);
2068 return ERROR_FAIL;
2071 return target->type->write_buffer(target, address, size, buffer);
2074 static int target_write_buffer_default(struct target *target,
2075 target_addr_t address, uint32_t count, const uint8_t *buffer)
2077 uint32_t size;
2079 /* Align up to maximum 4 bytes. The loop condition makes sure the next pass
2080 * will have something to do with the size we leave to it. */
2081 for (size = 1; size < 4 && count >= size * 2 + (address & size); size *= 2) {
2082 if (address & size) {
2083 int retval = target_write_memory(target, address, size, 1, buffer);
2084 if (retval != ERROR_OK)
2085 return retval;
2086 address += size;
2087 count -= size;
2088 buffer += size;
2092 /* Write the data with as large access size as possible. */
2093 for (; size > 0; size /= 2) {
2094 uint32_t aligned = count - count % size;
2095 if (aligned > 0) {
2096 int retval = target_write_memory(target, address, size, aligned / size, buffer);
2097 if (retval != ERROR_OK)
2098 return retval;
2099 address += aligned;
2100 count -= aligned;
2101 buffer += aligned;
2105 return ERROR_OK;
2108 /* Single aligned words are guaranteed to use 16 or 32 bit access
2109 * mode respectively, otherwise data is handled as quickly as
2110 * possible
2112 int target_read_buffer(struct target *target, target_addr_t address, uint32_t size, uint8_t *buffer)
2114 LOG_DEBUG("reading buffer of %" PRIi32 " byte at " TARGET_ADDR_FMT,
2115 size, address);
2117 if (!target_was_examined(target)) {
2118 LOG_ERROR("Target not examined yet");
2119 return ERROR_FAIL;
2122 if (size == 0)
2123 return ERROR_OK;
2125 if ((address + size - 1) < address) {
2126 /* GDB can request this when e.g. PC is 0xfffffffc */
2127 LOG_ERROR("address + size wrapped (" TARGET_ADDR_FMT ", 0x%08" PRIx32 ")",
2128 address,
2129 size);
2130 return ERROR_FAIL;
2133 return target->type->read_buffer(target, address, size, buffer);
2136 static int target_read_buffer_default(struct target *target, target_addr_t address, uint32_t count, uint8_t *buffer)
2138 uint32_t size;
2140 /* Align up to maximum 4 bytes. The loop condition makes sure the next pass
2141 * will have something to do with the size we leave to it. */
2142 for (size = 1; size < 4 && count >= size * 2 + (address & size); size *= 2) {
2143 if (address & size) {
2144 int retval = target_read_memory(target, address, size, 1, buffer);
2145 if (retval != ERROR_OK)
2146 return retval;
2147 address += size;
2148 count -= size;
2149 buffer += size;
2153 /* Read the data with as large access size as possible. */
2154 for (; size > 0; size /= 2) {
2155 uint32_t aligned = count - count % size;
2156 if (aligned > 0) {
2157 int retval = target_read_memory(target, address, size, aligned / size, buffer);
2158 if (retval != ERROR_OK)
2159 return retval;
2160 address += aligned;
2161 count -= aligned;
2162 buffer += aligned;
2166 return ERROR_OK;
2169 int target_checksum_memory(struct target *target, target_addr_t address, uint32_t size, uint32_t* crc)
2171 uint8_t *buffer;
2172 int retval;
2173 uint32_t i;
2174 uint32_t checksum = 0;
2175 if (!target_was_examined(target)) {
2176 LOG_ERROR("Target not examined yet");
2177 return ERROR_FAIL;
2180 retval = target->type->checksum_memory(target, address, size, &checksum);
2181 if (retval != ERROR_OK) {
2182 buffer = malloc(size);
2183 if (buffer == NULL) {
2184 LOG_ERROR("error allocating buffer for section (%" PRId32 " bytes)", size);
2185 return ERROR_COMMAND_SYNTAX_ERROR;
2187 retval = target_read_buffer(target, address, size, buffer);
2188 if (retval != ERROR_OK) {
2189 free(buffer);
2190 return retval;
2193 /* convert to target endianness */
2194 for (i = 0; i < (size/sizeof(uint32_t)); i++) {
2195 uint32_t target_data;
2196 target_data = target_buffer_get_u32(target, &buffer[i*sizeof(uint32_t)]);
2197 target_buffer_set_u32(target, &buffer[i*sizeof(uint32_t)], target_data);
2200 retval = image_calculate_checksum(buffer, size, &checksum);
2201 free(buffer);
2204 *crc = checksum;
2206 return retval;
2209 int target_blank_check_memory(struct target *target, target_addr_t address, uint32_t size, uint32_t* blank,
2210 uint8_t erased_value)
2212 int retval;
2213 if (!target_was_examined(target)) {
2214 LOG_ERROR("Target not examined yet");
2215 return ERROR_FAIL;
2218 if (target->type->blank_check_memory == 0)
2219 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
2221 retval = target->type->blank_check_memory(target, address, size, blank, erased_value);
2223 return retval;
2226 int target_read_u64(struct target *target, target_addr_t address, uint64_t *value)
2228 uint8_t value_buf[8];
2229 if (!target_was_examined(target)) {
2230 LOG_ERROR("Target not examined yet");
2231 return ERROR_FAIL;
2234 int retval = target_read_memory(target, address, 8, 1, value_buf);
2236 if (retval == ERROR_OK) {
2237 *value = target_buffer_get_u64(target, value_buf);
2238 LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%16.16" PRIx64 "",
2239 address,
2240 *value);
2241 } else {
2242 *value = 0x0;
2243 LOG_DEBUG("address: " TARGET_ADDR_FMT " failed",
2244 address);
2247 return retval;
2250 int target_read_u32(struct target *target, target_addr_t address, uint32_t *value)
2252 uint8_t value_buf[4];
2253 if (!target_was_examined(target)) {
2254 LOG_ERROR("Target not examined yet");
2255 return ERROR_FAIL;
2258 int retval = target_read_memory(target, address, 4, 1, value_buf);
2260 if (retval == ERROR_OK) {
2261 *value = target_buffer_get_u32(target, value_buf);
2262 LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%8.8" PRIx32 "",
2263 address,
2264 *value);
2265 } else {
2266 *value = 0x0;
2267 LOG_DEBUG("address: " TARGET_ADDR_FMT " failed",
2268 address);
2271 return retval;
2274 int target_read_u16(struct target *target, target_addr_t address, uint16_t *value)
2276 uint8_t value_buf[2];
2277 if (!target_was_examined(target)) {
2278 LOG_ERROR("Target not examined yet");
2279 return ERROR_FAIL;
2282 int retval = target_read_memory(target, address, 2, 1, value_buf);
2284 if (retval == ERROR_OK) {
2285 *value = target_buffer_get_u16(target, value_buf);
2286 LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%4.4" PRIx16,
2287 address,
2288 *value);
2289 } else {
2290 *value = 0x0;
2291 LOG_DEBUG("address: " TARGET_ADDR_FMT " failed",
2292 address);
2295 return retval;
2298 int target_read_u8(struct target *target, target_addr_t address, uint8_t *value)
2300 if (!target_was_examined(target)) {
2301 LOG_ERROR("Target not examined yet");
2302 return ERROR_FAIL;
2305 int retval = target_read_memory(target, address, 1, 1, value);
2307 if (retval == ERROR_OK) {
2308 LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%2.2" PRIx8,
2309 address,
2310 *value);
2311 } else {
2312 *value = 0x0;
2313 LOG_DEBUG("address: " TARGET_ADDR_FMT " failed",
2314 address);
2317 return retval;
2320 int target_write_u64(struct target *target, target_addr_t address, uint64_t value)
2322 int retval;
2323 uint8_t value_buf[8];
2324 if (!target_was_examined(target)) {
2325 LOG_ERROR("Target not examined yet");
2326 return ERROR_FAIL;
2329 LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%16.16" PRIx64 "",
2330 address,
2331 value);
2333 target_buffer_set_u64(target, value_buf, value);
2334 retval = target_write_memory(target, address, 8, 1, value_buf);
2335 if (retval != ERROR_OK)
2336 LOG_DEBUG("failed: %i", retval);
2338 return retval;
2341 int target_write_u32(struct target *target, target_addr_t address, uint32_t value)
2343 int retval;
2344 uint8_t value_buf[4];
2345 if (!target_was_examined(target)) {
2346 LOG_ERROR("Target not examined yet");
2347 return ERROR_FAIL;
2350 LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%8.8" PRIx32 "",
2351 address,
2352 value);
2354 target_buffer_set_u32(target, value_buf, value);
2355 retval = target_write_memory(target, address, 4, 1, value_buf);
2356 if (retval != ERROR_OK)
2357 LOG_DEBUG("failed: %i", retval);
2359 return retval;
2362 int target_write_u16(struct target *target, target_addr_t address, uint16_t value)
2364 int retval;
2365 uint8_t value_buf[2];
2366 if (!target_was_examined(target)) {
2367 LOG_ERROR("Target not examined yet");
2368 return ERROR_FAIL;
2371 LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%8.8" PRIx16,
2372 address,
2373 value);
2375 target_buffer_set_u16(target, value_buf, value);
2376 retval = target_write_memory(target, address, 2, 1, value_buf);
2377 if (retval != ERROR_OK)
2378 LOG_DEBUG("failed: %i", retval);
2380 return retval;
2383 int target_write_u8(struct target *target, target_addr_t address, uint8_t value)
2385 int retval;
2386 if (!target_was_examined(target)) {
2387 LOG_ERROR("Target not examined yet");
2388 return ERROR_FAIL;
2391 LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%2.2" PRIx8,
2392 address, value);
2394 retval = target_write_memory(target, address, 1, 1, &value);
2395 if (retval != ERROR_OK)
2396 LOG_DEBUG("failed: %i", retval);
2398 return retval;
2401 int target_write_phys_u64(struct target *target, target_addr_t address, uint64_t value)
2403 int retval;
2404 uint8_t value_buf[8];
2405 if (!target_was_examined(target)) {
2406 LOG_ERROR("Target not examined yet");
2407 return ERROR_FAIL;
2410 LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%16.16" PRIx64 "",
2411 address,
2412 value);
2414 target_buffer_set_u64(target, value_buf, value);
2415 retval = target_write_phys_memory(target, address, 8, 1, value_buf);
2416 if (retval != ERROR_OK)
2417 LOG_DEBUG("failed: %i", retval);
2419 return retval;
2422 int target_write_phys_u32(struct target *target, target_addr_t address, uint32_t value)
2424 int retval;
2425 uint8_t value_buf[4];
2426 if (!target_was_examined(target)) {
2427 LOG_ERROR("Target not examined yet");
2428 return ERROR_FAIL;
2431 LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%8.8" PRIx32 "",
2432 address,
2433 value);
2435 target_buffer_set_u32(target, value_buf, value);
2436 retval = target_write_phys_memory(target, address, 4, 1, value_buf);
2437 if (retval != ERROR_OK)
2438 LOG_DEBUG("failed: %i", retval);
2440 return retval;
2443 int target_write_phys_u16(struct target *target, target_addr_t address, uint16_t value)
2445 int retval;
2446 uint8_t value_buf[2];
2447 if (!target_was_examined(target)) {
2448 LOG_ERROR("Target not examined yet");
2449 return ERROR_FAIL;
2452 LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%8.8" PRIx16,
2453 address,
2454 value);
2456 target_buffer_set_u16(target, value_buf, value);
2457 retval = target_write_phys_memory(target, address, 2, 1, value_buf);
2458 if (retval != ERROR_OK)
2459 LOG_DEBUG("failed: %i", retval);
2461 return retval;
2464 int target_write_phys_u8(struct target *target, target_addr_t address, uint8_t value)
2466 int retval;
2467 if (!target_was_examined(target)) {
2468 LOG_ERROR("Target not examined yet");
2469 return ERROR_FAIL;
2472 LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%2.2" PRIx8,
2473 address, value);
2475 retval = target_write_phys_memory(target, address, 1, 1, &value);
2476 if (retval != ERROR_OK)
2477 LOG_DEBUG("failed: %i", retval);
2479 return retval;
2482 static int find_target(struct command_context *cmd_ctx, const char *name)
2484 struct target *target = get_target(name);
2485 if (target == NULL) {
2486 LOG_ERROR("Target: %s is unknown, try one of:\n", name);
2487 return ERROR_FAIL;
2489 if (!target->tap->enabled) {
2490 LOG_USER("Target: TAP %s is disabled, "
2491 "can't be the current target\n",
2492 target->tap->dotted_name);
2493 return ERROR_FAIL;
2496 cmd_ctx->current_target = target->target_number;
2497 return ERROR_OK;
2501 COMMAND_HANDLER(handle_targets_command)
2503 int retval = ERROR_OK;
2504 if (CMD_ARGC == 1) {
2505 retval = find_target(CMD_CTX, CMD_ARGV[0]);
2506 if (retval == ERROR_OK) {
2507 /* we're done! */
2508 return retval;
2512 struct target *target = all_targets;
2513 command_print(CMD_CTX, " TargetName Type Endian TapName State ");
2514 command_print(CMD_CTX, "-- ------------------ ---------- ------ ------------------ ------------");
2515 while (target) {
2516 const char *state;
2517 char marker = ' ';
2519 if (target->tap->enabled)
2520 state = target_state_name(target);
2521 else
2522 state = "tap-disabled";
2524 if (CMD_CTX->current_target == target->target_number)
2525 marker = '*';
2527 /* keep columns lined up to match the headers above */
2528 command_print(CMD_CTX,
2529 "%2d%c %-18s %-10s %-6s %-18s %s",
2530 target->target_number,
2531 marker,
2532 target_name(target),
2533 target_type_name(target),
2534 Jim_Nvp_value2name_simple(nvp_target_endian,
2535 target->endianness)->name,
2536 target->tap->dotted_name,
2537 state);
2538 target = target->next;
2541 return retval;
2544 /* every 300ms we check for reset & powerdropout and issue a "reset halt" if so. */
2546 static int powerDropout;
2547 static int srstAsserted;
2549 static int runPowerRestore;
2550 static int runPowerDropout;
2551 static int runSrstAsserted;
2552 static int runSrstDeasserted;
2554 static int sense_handler(void)
2556 static int prevSrstAsserted;
2557 static int prevPowerdropout;
2559 int retval = jtag_power_dropout(&powerDropout);
2560 if (retval != ERROR_OK)
2561 return retval;
2563 int powerRestored;
2564 powerRestored = prevPowerdropout && !powerDropout;
2565 if (powerRestored)
2566 runPowerRestore = 1;
2568 int64_t current = timeval_ms();
2569 static int64_t lastPower;
2570 bool waitMore = lastPower + 2000 > current;
2571 if (powerDropout && !waitMore) {
2572 runPowerDropout = 1;
2573 lastPower = current;
2576 retval = jtag_srst_asserted(&srstAsserted);
2577 if (retval != ERROR_OK)
2578 return retval;
2580 int srstDeasserted;
2581 srstDeasserted = prevSrstAsserted && !srstAsserted;
2583 static int64_t lastSrst;
2584 waitMore = lastSrst + 2000 > current;
2585 if (srstDeasserted && !waitMore) {
2586 runSrstDeasserted = 1;
2587 lastSrst = current;
2590 if (!prevSrstAsserted && srstAsserted)
2591 runSrstAsserted = 1;
2593 prevSrstAsserted = srstAsserted;
2594 prevPowerdropout = powerDropout;
2596 if (srstDeasserted || powerRestored) {
2597 /* Other than logging the event we can't do anything here.
2598 * Issuing a reset is a particularly bad idea as we might
2599 * be inside a reset already.
2603 return ERROR_OK;
2606 /* process target state changes */
2607 static int handle_target(void *priv)
2609 Jim_Interp *interp = (Jim_Interp *)priv;
2610 int retval = ERROR_OK;
2612 if (!is_jtag_poll_safe()) {
2613 /* polling is disabled currently */
2614 return ERROR_OK;
2617 /* we do not want to recurse here... */
2618 static int recursive;
2619 if (!recursive) {
2620 recursive = 1;
2621 sense_handler();
2622 /* danger! running these procedures can trigger srst assertions and power dropouts.
2623 * We need to avoid an infinite loop/recursion here and we do that by
2624 * clearing the flags after running these events.
2626 int did_something = 0;
2627 if (runSrstAsserted) {
2628 LOG_INFO("srst asserted detected, running srst_asserted proc.");
2629 Jim_Eval(interp, "srst_asserted");
2630 did_something = 1;
2632 if (runSrstDeasserted) {
2633 Jim_Eval(interp, "srst_deasserted");
2634 did_something = 1;
2636 if (runPowerDropout) {
2637 LOG_INFO("Power dropout detected, running power_dropout proc.");
2638 Jim_Eval(interp, "power_dropout");
2639 did_something = 1;
2641 if (runPowerRestore) {
2642 Jim_Eval(interp, "power_restore");
2643 did_something = 1;
2646 if (did_something) {
2647 /* clear detect flags */
2648 sense_handler();
2651 /* clear action flags */
2653 runSrstAsserted = 0;
2654 runSrstDeasserted = 0;
2655 runPowerRestore = 0;
2656 runPowerDropout = 0;
2658 recursive = 0;
2661 /* Poll targets for state changes unless that's globally disabled.
2662 * Skip targets that are currently disabled.
2664 for (struct target *target = all_targets;
2665 is_jtag_poll_safe() && target;
2666 target = target->next) {
2668 if (!target_was_examined(target))
2669 continue;
2671 if (!target->tap->enabled)
2672 continue;
2674 if (target->backoff.times > target->backoff.count) {
2675 /* do not poll this time as we failed previously */
2676 target->backoff.count++;
2677 continue;
2679 target->backoff.count = 0;
2681 /* only poll target if we've got power and srst isn't asserted */
2682 if (!powerDropout && !srstAsserted) {
2683 /* polling may fail silently until the target has been examined */
2684 retval = target_poll(target);
2685 if (retval != ERROR_OK) {
2686 /* 100ms polling interval. Increase interval between polling up to 5000ms */
2687 if (target->backoff.times * polling_interval < 5000) {
2688 target->backoff.times *= 2;
2689 target->backoff.times++;
2692 /* Tell GDB to halt the debugger. This allows the user to
2693 * run monitor commands to handle the situation.
2695 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
2697 if (target->backoff.times > 0) {
2698 LOG_USER("Polling target %s failed, trying to reexamine", target_name(target));
2699 target_reset_examined(target);
2700 retval = target_examine_one(target);
2701 /* Target examination could have failed due to unstable connection,
2702 * but we set the examined flag anyway to repoll it later */
2703 if (retval != ERROR_OK) {
2704 target->examined = true;
2705 LOG_USER("Examination failed, GDB will be halted. Polling again in %dms",
2706 target->backoff.times * polling_interval);
2707 return retval;
2711 /* Since we succeeded, we reset backoff count */
2712 target->backoff.times = 0;
2716 return retval;
2719 COMMAND_HANDLER(handle_reg_command)
2721 struct target *target;
2722 struct reg *reg = NULL;
2723 unsigned count = 0;
2724 char *value;
2726 LOG_DEBUG("-");
2728 target = get_current_target(CMD_CTX);
2730 /* list all available registers for the current target */
2731 if (CMD_ARGC == 0) {
2732 struct reg_cache *cache = target->reg_cache;
2734 count = 0;
2735 while (cache) {
2736 unsigned i;
2738 command_print(CMD_CTX, "===== %s", cache->name);
2740 for (i = 0, reg = cache->reg_list;
2741 i < cache->num_regs;
2742 i++, reg++, count++) {
2743 /* only print cached values if they are valid */
2744 if (reg->valid) {
2745 value = buf_to_str(reg->value,
2746 reg->size, 16);
2747 command_print(CMD_CTX,
2748 "(%i) %s (/%" PRIu32 "): 0x%s%s",
2749 count, reg->name,
2750 reg->size, value,
2751 reg->dirty
2752 ? " (dirty)"
2753 : "");
2754 free(value);
2755 } else {
2756 command_print(CMD_CTX, "(%i) %s (/%" PRIu32 ")",
2757 count, reg->name,
2758 reg->size) ;
2761 cache = cache->next;
2764 return ERROR_OK;
2767 /* access a single register by its ordinal number */
2768 if ((CMD_ARGV[0][0] >= '0') && (CMD_ARGV[0][0] <= '9')) {
2769 unsigned num;
2770 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[0], num);
2772 struct reg_cache *cache = target->reg_cache;
2773 count = 0;
2774 while (cache) {
2775 unsigned i;
2776 for (i = 0; i < cache->num_regs; i++) {
2777 if (count++ == num) {
2778 reg = &cache->reg_list[i];
2779 break;
2782 if (reg)
2783 break;
2784 cache = cache->next;
2787 if (!reg) {
2788 command_print(CMD_CTX, "%i is out of bounds, the current target "
2789 "has only %i registers (0 - %i)", num, count, count - 1);
2790 return ERROR_OK;
2792 } else {
2793 /* access a single register by its name */
2794 reg = register_get_by_name(target->reg_cache, CMD_ARGV[0], 1);
2796 if (!reg) {
2797 command_print(CMD_CTX, "register %s not found in current target", CMD_ARGV[0]);
2798 return ERROR_OK;
2802 assert(reg != NULL); /* give clang a hint that we *know* reg is != NULL here */
2804 /* display a register */
2805 if ((CMD_ARGC == 1) || ((CMD_ARGC == 2) && !((CMD_ARGV[1][0] >= '0')
2806 && (CMD_ARGV[1][0] <= '9')))) {
2807 if ((CMD_ARGC == 2) && (strcmp(CMD_ARGV[1], "force") == 0))
2808 reg->valid = 0;
2810 if (reg->valid == 0)
2811 reg->type->get(reg);
2812 value = buf_to_str(reg->value, reg->size, 16);
2813 command_print(CMD_CTX, "%s (/%i): 0x%s", reg->name, (int)(reg->size), value);
2814 free(value);
2815 return ERROR_OK;
2818 /* set register value */
2819 if (CMD_ARGC == 2) {
2820 uint8_t *buf = malloc(DIV_ROUND_UP(reg->size, 8));
2821 if (buf == NULL)
2822 return ERROR_FAIL;
2823 str_to_buf(CMD_ARGV[1], strlen(CMD_ARGV[1]), buf, reg->size, 0);
2825 reg->type->set(reg, buf);
2827 value = buf_to_str(reg->value, reg->size, 16);
2828 command_print(CMD_CTX, "%s (/%i): 0x%s", reg->name, (int)(reg->size), value);
2829 free(value);
2831 free(buf);
2833 return ERROR_OK;
2836 return ERROR_COMMAND_SYNTAX_ERROR;
2839 COMMAND_HANDLER(handle_poll_command)
2841 int retval = ERROR_OK;
2842 struct target *target = get_current_target(CMD_CTX);
2844 if (CMD_ARGC == 0) {
2845 command_print(CMD_CTX, "background polling: %s",
2846 jtag_poll_get_enabled() ? "on" : "off");
2847 command_print(CMD_CTX, "TAP: %s (%s)",
2848 target->tap->dotted_name,
2849 target->tap->enabled ? "enabled" : "disabled");
2850 if (!target->tap->enabled)
2851 return ERROR_OK;
2852 retval = target_poll(target);
2853 if (retval != ERROR_OK)
2854 return retval;
2855 retval = target_arch_state(target);
2856 if (retval != ERROR_OK)
2857 return retval;
2858 } else if (CMD_ARGC == 1) {
2859 bool enable;
2860 COMMAND_PARSE_ON_OFF(CMD_ARGV[0], enable);
2861 jtag_poll_set_enabled(enable);
2862 } else
2863 return ERROR_COMMAND_SYNTAX_ERROR;
2865 return retval;
2868 COMMAND_HANDLER(handle_wait_halt_command)
2870 if (CMD_ARGC > 1)
2871 return ERROR_COMMAND_SYNTAX_ERROR;
2873 unsigned ms = DEFAULT_HALT_TIMEOUT;
2874 if (1 == CMD_ARGC) {
2875 int retval = parse_uint(CMD_ARGV[0], &ms);
2876 if (ERROR_OK != retval)
2877 return ERROR_COMMAND_SYNTAX_ERROR;
2880 struct target *target = get_current_target(CMD_CTX);
2881 return target_wait_state(target, TARGET_HALTED, ms);
2884 /* wait for target state to change. The trick here is to have a low
2885 * latency for short waits and not to suck up all the CPU time
2886 * on longer waits.
2888 * After 500ms, keep_alive() is invoked
2890 int target_wait_state(struct target *target, enum target_state state, int ms)
2892 int retval;
2893 int64_t then = 0, cur;
2894 bool once = true;
2896 for (;;) {
2897 retval = target_poll(target);
2898 if (retval != ERROR_OK)
2899 return retval;
2900 if (target->state == state)
2901 break;
2902 cur = timeval_ms();
2903 if (once) {
2904 once = false;
2905 then = timeval_ms();
2906 LOG_DEBUG("waiting for target %s...",
2907 Jim_Nvp_value2name_simple(nvp_target_state, state)->name);
2910 if (cur-then > 500)
2911 keep_alive();
2913 if ((cur-then) > ms) {
2914 LOG_ERROR("timed out while waiting for target %s",
2915 Jim_Nvp_value2name_simple(nvp_target_state, state)->name);
2916 return ERROR_FAIL;
2920 return ERROR_OK;
2923 COMMAND_HANDLER(handle_halt_command)
2925 LOG_DEBUG("-");
2927 struct target *target = get_current_target(CMD_CTX);
2928 int retval = target_halt(target);
2929 if (ERROR_OK != retval)
2930 return retval;
2932 if (CMD_ARGC == 1) {
2933 unsigned wait_local;
2934 retval = parse_uint(CMD_ARGV[0], &wait_local);
2935 if (ERROR_OK != retval)
2936 return ERROR_COMMAND_SYNTAX_ERROR;
2937 if (!wait_local)
2938 return ERROR_OK;
2941 return CALL_COMMAND_HANDLER(handle_wait_halt_command);
2944 COMMAND_HANDLER(handle_soft_reset_halt_command)
2946 struct target *target = get_current_target(CMD_CTX);
2948 LOG_USER("requesting target halt and executing a soft reset");
2950 target_soft_reset_halt(target);
2952 return ERROR_OK;
2955 COMMAND_HANDLER(handle_reset_command)
2957 if (CMD_ARGC > 1)
2958 return ERROR_COMMAND_SYNTAX_ERROR;
2960 enum target_reset_mode reset_mode = RESET_RUN;
2961 if (CMD_ARGC == 1) {
2962 const Jim_Nvp *n;
2963 n = Jim_Nvp_name2value_simple(nvp_reset_modes, CMD_ARGV[0]);
2964 if ((n->name == NULL) || (n->value == RESET_UNKNOWN))
2965 return ERROR_COMMAND_SYNTAX_ERROR;
2966 reset_mode = n->value;
2969 /* reset *all* targets */
2970 return target_process_reset(CMD_CTX, reset_mode);
2974 COMMAND_HANDLER(handle_resume_command)
2976 int current = 1;
2977 if (CMD_ARGC > 1)
2978 return ERROR_COMMAND_SYNTAX_ERROR;
2980 struct target *target = get_current_target(CMD_CTX);
2982 /* with no CMD_ARGV, resume from current pc, addr = 0,
2983 * with one arguments, addr = CMD_ARGV[0],
2984 * handle breakpoints, not debugging */
2985 target_addr_t addr = 0;
2986 if (CMD_ARGC == 1) {
2987 COMMAND_PARSE_ADDRESS(CMD_ARGV[0], addr);
2988 current = 0;
2991 return target_resume(target, current, addr, 1, 0);
2994 COMMAND_HANDLER(handle_step_command)
2996 if (CMD_ARGC > 1)
2997 return ERROR_COMMAND_SYNTAX_ERROR;
2999 LOG_DEBUG("-");
3001 /* with no CMD_ARGV, step from current pc, addr = 0,
3002 * with one argument addr = CMD_ARGV[0],
3003 * handle breakpoints, debugging */
3004 target_addr_t addr = 0;
3005 int current_pc = 1;
3006 if (CMD_ARGC == 1) {
3007 COMMAND_PARSE_ADDRESS(CMD_ARGV[0], addr);
3008 current_pc = 0;
3011 struct target *target = get_current_target(CMD_CTX);
3013 return target->type->step(target, current_pc, addr, 1);
3016 static void handle_md_output(struct command_context *cmd_ctx,
3017 struct target *target, target_addr_t address, unsigned size,
3018 unsigned count, const uint8_t *buffer)
3020 const unsigned line_bytecnt = 32;
3021 unsigned line_modulo = line_bytecnt / size;
3023 char output[line_bytecnt * 4 + 1];
3024 unsigned output_len = 0;
3026 const char *value_fmt;
3027 switch (size) {
3028 case 8:
3029 value_fmt = "%16.16"PRIx64" ";
3030 break;
3031 case 4:
3032 value_fmt = "%8.8"PRIx64" ";
3033 break;
3034 case 2:
3035 value_fmt = "%4.4"PRIx64" ";
3036 break;
3037 case 1:
3038 value_fmt = "%2.2"PRIx64" ";
3039 break;
3040 default:
3041 /* "can't happen", caller checked */
3042 LOG_ERROR("invalid memory read size: %u", size);
3043 return;
3046 for (unsigned i = 0; i < count; i++) {
3047 if (i % line_modulo == 0) {
3048 output_len += snprintf(output + output_len,
3049 sizeof(output) - output_len,
3050 TARGET_ADDR_FMT ": ",
3051 (address + (i * size)));
3054 uint64_t value = 0;
3055 const uint8_t *value_ptr = buffer + i * size;
3056 switch (size) {
3057 case 8:
3058 value = target_buffer_get_u64(target, value_ptr);
3059 break;
3060 case 4:
3061 value = target_buffer_get_u32(target, value_ptr);
3062 break;
3063 case 2:
3064 value = target_buffer_get_u16(target, value_ptr);
3065 break;
3066 case 1:
3067 value = *value_ptr;
3069 output_len += snprintf(output + output_len,
3070 sizeof(output) - output_len,
3071 value_fmt, value);
3073 if ((i % line_modulo == line_modulo - 1) || (i == count - 1)) {
3074 command_print(cmd_ctx, "%s", output);
3075 output_len = 0;
3080 COMMAND_HANDLER(handle_md_command)
3082 if (CMD_ARGC < 1)
3083 return ERROR_COMMAND_SYNTAX_ERROR;
3085 unsigned size = 0;
3086 switch (CMD_NAME[2]) {
3087 case 'd':
3088 size = 8;
3089 break;
3090 case 'w':
3091 size = 4;
3092 break;
3093 case 'h':
3094 size = 2;
3095 break;
3096 case 'b':
3097 size = 1;
3098 break;
3099 default:
3100 return ERROR_COMMAND_SYNTAX_ERROR;
3103 bool physical = strcmp(CMD_ARGV[0], "phys") == 0;
3104 int (*fn)(struct target *target,
3105 target_addr_t address, uint32_t size_value, uint32_t count, uint8_t *buffer);
3106 if (physical) {
3107 CMD_ARGC--;
3108 CMD_ARGV++;
3109 fn = target_read_phys_memory;
3110 } else
3111 fn = target_read_memory;
3112 if ((CMD_ARGC < 1) || (CMD_ARGC > 2))
3113 return ERROR_COMMAND_SYNTAX_ERROR;
3115 target_addr_t address;
3116 COMMAND_PARSE_ADDRESS(CMD_ARGV[0], address);
3118 unsigned count = 1;
3119 if (CMD_ARGC == 2)
3120 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[1], count);
3122 uint8_t *buffer = calloc(count, size);
3124 struct target *target = get_current_target(CMD_CTX);
3125 int retval = fn(target, address, size, count, buffer);
3126 if (ERROR_OK == retval)
3127 handle_md_output(CMD_CTX, target, address, size, count, buffer);
3129 free(buffer);
3131 return retval;
3134 typedef int (*target_write_fn)(struct target *target,
3135 target_addr_t address, uint32_t size, uint32_t count, const uint8_t *buffer);
3137 static int target_fill_mem(struct target *target,
3138 target_addr_t address,
3139 target_write_fn fn,
3140 unsigned data_size,
3141 /* value */
3142 uint64_t b,
3143 /* count */
3144 unsigned c)
3146 /* We have to write in reasonably large chunks to be able
3147 * to fill large memory areas with any sane speed */
3148 const unsigned chunk_size = 16384;
3149 uint8_t *target_buf = malloc(chunk_size * data_size);
3150 if (target_buf == NULL) {
3151 LOG_ERROR("Out of memory");
3152 return ERROR_FAIL;
3155 for (unsigned i = 0; i < chunk_size; i++) {
3156 switch (data_size) {
3157 case 8:
3158 target_buffer_set_u64(target, target_buf + i * data_size, b);
3159 break;
3160 case 4:
3161 target_buffer_set_u32(target, target_buf + i * data_size, b);
3162 break;
3163 case 2:
3164 target_buffer_set_u16(target, target_buf + i * data_size, b);
3165 break;
3166 case 1:
3167 target_buffer_set_u8(target, target_buf + i * data_size, b);
3168 break;
3169 default:
3170 exit(-1);
3174 int retval = ERROR_OK;
3176 for (unsigned x = 0; x < c; x += chunk_size) {
3177 unsigned current;
3178 current = c - x;
3179 if (current > chunk_size)
3180 current = chunk_size;
3181 retval = fn(target, address + x * data_size, data_size, current, target_buf);
3182 if (retval != ERROR_OK)
3183 break;
3184 /* avoid GDB timeouts */
3185 keep_alive();
3187 free(target_buf);
3189 return retval;
3193 COMMAND_HANDLER(handle_mw_command)
3195 if (CMD_ARGC < 2)
3196 return ERROR_COMMAND_SYNTAX_ERROR;
3197 bool physical = strcmp(CMD_ARGV[0], "phys") == 0;
3198 target_write_fn fn;
3199 if (physical) {
3200 CMD_ARGC--;
3201 CMD_ARGV++;
3202 fn = target_write_phys_memory;
3203 } else
3204 fn = target_write_memory;
3205 if ((CMD_ARGC < 2) || (CMD_ARGC > 3))
3206 return ERROR_COMMAND_SYNTAX_ERROR;
3208 target_addr_t address;
3209 COMMAND_PARSE_ADDRESS(CMD_ARGV[0], address);
3211 target_addr_t value;
3212 COMMAND_PARSE_ADDRESS(CMD_ARGV[1], value);
3214 unsigned count = 1;
3215 if (CMD_ARGC == 3)
3216 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[2], count);
3218 struct target *target = get_current_target(CMD_CTX);
3219 unsigned wordsize;
3220 switch (CMD_NAME[2]) {
3221 case 'd':
3222 wordsize = 8;
3223 break;
3224 case 'w':
3225 wordsize = 4;
3226 break;
3227 case 'h':
3228 wordsize = 2;
3229 break;
3230 case 'b':
3231 wordsize = 1;
3232 break;
3233 default:
3234 return ERROR_COMMAND_SYNTAX_ERROR;
3237 return target_fill_mem(target, address, fn, wordsize, value, count);
3240 static COMMAND_HELPER(parse_load_image_command_CMD_ARGV, struct image *image,
3241 target_addr_t *min_address, target_addr_t *max_address)
3243 if (CMD_ARGC < 1 || CMD_ARGC > 5)
3244 return ERROR_COMMAND_SYNTAX_ERROR;
3246 /* a base address isn't always necessary,
3247 * default to 0x0 (i.e. don't relocate) */
3248 if (CMD_ARGC >= 2) {
3249 target_addr_t addr;
3250 COMMAND_PARSE_ADDRESS(CMD_ARGV[1], addr);
3251 image->base_address = addr;
3252 image->base_address_set = 1;
3253 } else
3254 image->base_address_set = 0;
3256 image->start_address_set = 0;
3258 if (CMD_ARGC >= 4)
3259 COMMAND_PARSE_ADDRESS(CMD_ARGV[3], *min_address);
3260 if (CMD_ARGC == 5) {
3261 COMMAND_PARSE_ADDRESS(CMD_ARGV[4], *max_address);
3262 /* use size (given) to find max (required) */
3263 *max_address += *min_address;
3266 if (*min_address > *max_address)
3267 return ERROR_COMMAND_SYNTAX_ERROR;
3269 return ERROR_OK;
3272 COMMAND_HANDLER(handle_load_image_command)
3274 uint8_t *buffer;
3275 size_t buf_cnt;
3276 uint32_t image_size;
3277 target_addr_t min_address = 0;
3278 target_addr_t max_address = -1;
3279 int i;
3280 struct image image;
3282 int retval = CALL_COMMAND_HANDLER(parse_load_image_command_CMD_ARGV,
3283 &image, &min_address, &max_address);
3284 if (ERROR_OK != retval)
3285 return retval;
3287 struct target *target = get_current_target(CMD_CTX);
3289 struct duration bench;
3290 duration_start(&bench);
3292 if (image_open(&image, CMD_ARGV[0], (CMD_ARGC >= 3) ? CMD_ARGV[2] : NULL) != ERROR_OK)
3293 return ERROR_FAIL;
3295 image_size = 0x0;
3296 retval = ERROR_OK;
3297 for (i = 0; i < image.num_sections; i++) {
3298 buffer = malloc(image.sections[i].size);
3299 if (buffer == NULL) {
3300 command_print(CMD_CTX,
3301 "error allocating buffer for section (%d bytes)",
3302 (int)(image.sections[i].size));
3303 retval = ERROR_FAIL;
3304 break;
3307 retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt);
3308 if (retval != ERROR_OK) {
3309 free(buffer);
3310 break;
3313 uint32_t offset = 0;
3314 uint32_t length = buf_cnt;
3316 /* DANGER!!! beware of unsigned comparision here!!! */
3318 if ((image.sections[i].base_address + buf_cnt >= min_address) &&
3319 (image.sections[i].base_address < max_address)) {
3321 if (image.sections[i].base_address < min_address) {
3322 /* clip addresses below */
3323 offset += min_address-image.sections[i].base_address;
3324 length -= offset;
3327 if (image.sections[i].base_address + buf_cnt > max_address)
3328 length -= (image.sections[i].base_address + buf_cnt)-max_address;
3330 retval = target_write_buffer(target,
3331 image.sections[i].base_address + offset, length, buffer + offset);
3332 if (retval != ERROR_OK) {
3333 free(buffer);
3334 break;
3336 image_size += length;
3337 command_print(CMD_CTX, "%u bytes written at address " TARGET_ADDR_FMT "",
3338 (unsigned int)length,
3339 image.sections[i].base_address + offset);
3342 free(buffer);
3345 if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK)) {
3346 command_print(CMD_CTX, "downloaded %" PRIu32 " bytes "
3347 "in %fs (%0.3f KiB/s)", image_size,
3348 duration_elapsed(&bench), duration_kbps(&bench, image_size));
3351 image_close(&image);
3353 return retval;
3357 COMMAND_HANDLER(handle_dump_image_command)
3359 struct fileio *fileio;
3360 uint8_t *buffer;
3361 int retval, retvaltemp;
3362 target_addr_t address, size;
3363 struct duration bench;
3364 struct target *target = get_current_target(CMD_CTX);
3366 if (CMD_ARGC != 3)
3367 return ERROR_COMMAND_SYNTAX_ERROR;
3369 COMMAND_PARSE_ADDRESS(CMD_ARGV[1], address);
3370 COMMAND_PARSE_ADDRESS(CMD_ARGV[2], size);
3372 uint32_t buf_size = (size > 4096) ? 4096 : size;
3373 buffer = malloc(buf_size);
3374 if (!buffer)
3375 return ERROR_FAIL;
3377 retval = fileio_open(&fileio, CMD_ARGV[0], FILEIO_WRITE, FILEIO_BINARY);
3378 if (retval != ERROR_OK) {
3379 free(buffer);
3380 return retval;
3383 duration_start(&bench);
3385 while (size > 0) {
3386 size_t size_written;
3387 uint32_t this_run_size = (size > buf_size) ? buf_size : size;
3388 retval = target_read_buffer(target, address, this_run_size, buffer);
3389 if (retval != ERROR_OK)
3390 break;
3392 retval = fileio_write(fileio, this_run_size, buffer, &size_written);
3393 if (retval != ERROR_OK)
3394 break;
3396 size -= this_run_size;
3397 address += this_run_size;
3400 free(buffer);
3402 if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK)) {
3403 size_t filesize;
3404 retval = fileio_size(fileio, &filesize);
3405 if (retval != ERROR_OK)
3406 return retval;
3407 command_print(CMD_CTX,
3408 "dumped %zu bytes in %fs (%0.3f KiB/s)", filesize,
3409 duration_elapsed(&bench), duration_kbps(&bench, filesize));
3412 retvaltemp = fileio_close(fileio);
3413 if (retvaltemp != ERROR_OK)
3414 return retvaltemp;
3416 return retval;
3419 enum verify_mode {
3420 IMAGE_TEST = 0,
3421 IMAGE_VERIFY = 1,
3422 IMAGE_CHECKSUM_ONLY = 2
3425 static COMMAND_HELPER(handle_verify_image_command_internal, enum verify_mode verify)
3427 uint8_t *buffer;
3428 size_t buf_cnt;
3429 uint32_t image_size;
3430 int i;
3431 int retval;
3432 uint32_t checksum = 0;
3433 uint32_t mem_checksum = 0;
3435 struct image image;
3437 struct target *target = get_current_target(CMD_CTX);
3439 if (CMD_ARGC < 1)
3440 return ERROR_COMMAND_SYNTAX_ERROR;
3442 if (!target) {
3443 LOG_ERROR("no target selected");
3444 return ERROR_FAIL;
3447 struct duration bench;
3448 duration_start(&bench);
3450 if (CMD_ARGC >= 2) {
3451 target_addr_t addr;
3452 COMMAND_PARSE_ADDRESS(CMD_ARGV[1], addr);
3453 image.base_address = addr;
3454 image.base_address_set = 1;
3455 } else {
3456 image.base_address_set = 0;
3457 image.base_address = 0x0;
3460 image.start_address_set = 0;
3462 retval = image_open(&image, CMD_ARGV[0], (CMD_ARGC == 3) ? CMD_ARGV[2] : NULL);
3463 if (retval != ERROR_OK)
3464 return retval;
3466 image_size = 0x0;
3467 int diffs = 0;
3468 retval = ERROR_OK;
3469 for (i = 0; i < image.num_sections; i++) {
3470 buffer = malloc(image.sections[i].size);
3471 if (buffer == NULL) {
3472 command_print(CMD_CTX,
3473 "error allocating buffer for section (%d bytes)",
3474 (int)(image.sections[i].size));
3475 break;
3477 retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt);
3478 if (retval != ERROR_OK) {
3479 free(buffer);
3480 break;
3483 if (verify >= IMAGE_VERIFY) {
3484 /* calculate checksum of image */
3485 retval = image_calculate_checksum(buffer, buf_cnt, &checksum);
3486 if (retval != ERROR_OK) {
3487 free(buffer);
3488 break;
3491 retval = target_checksum_memory(target, image.sections[i].base_address, buf_cnt, &mem_checksum);
3492 if (retval != ERROR_OK) {
3493 free(buffer);
3494 break;
3496 if ((checksum != mem_checksum) && (verify == IMAGE_CHECKSUM_ONLY)) {
3497 LOG_ERROR("checksum mismatch");
3498 free(buffer);
3499 retval = ERROR_FAIL;
3500 goto done;
3502 if (checksum != mem_checksum) {
3503 /* failed crc checksum, fall back to a binary compare */
3504 uint8_t *data;
3506 if (diffs == 0)
3507 LOG_ERROR("checksum mismatch - attempting binary compare");
3509 data = malloc(buf_cnt);
3511 /* Can we use 32bit word accesses? */
3512 int size = 1;
3513 int count = buf_cnt;
3514 if ((count % 4) == 0) {
3515 size *= 4;
3516 count /= 4;
3518 retval = target_read_memory(target, image.sections[i].base_address, size, count, data);
3519 if (retval == ERROR_OK) {
3520 uint32_t t;
3521 for (t = 0; t < buf_cnt; t++) {
3522 if (data[t] != buffer[t]) {
3523 command_print(CMD_CTX,
3524 "diff %d address 0x%08x. Was 0x%02x instead of 0x%02x",
3525 diffs,
3526 (unsigned)(t + image.sections[i].base_address),
3527 data[t],
3528 buffer[t]);
3529 if (diffs++ >= 127) {
3530 command_print(CMD_CTX, "More than 128 errors, the rest are not printed.");
3531 free(data);
3532 free(buffer);
3533 goto done;
3536 keep_alive();
3539 free(data);
3541 } else {
3542 command_print(CMD_CTX, "address " TARGET_ADDR_FMT " length 0x%08zx",
3543 image.sections[i].base_address,
3544 buf_cnt);
3547 free(buffer);
3548 image_size += buf_cnt;
3550 if (diffs > 0)
3551 command_print(CMD_CTX, "No more differences found.");
3552 done:
3553 if (diffs > 0)
3554 retval = ERROR_FAIL;
3555 if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK)) {
3556 command_print(CMD_CTX, "verified %" PRIu32 " bytes "
3557 "in %fs (%0.3f KiB/s)", image_size,
3558 duration_elapsed(&bench), duration_kbps(&bench, image_size));
3561 image_close(&image);
3563 return retval;
3566 COMMAND_HANDLER(handle_verify_image_checksum_command)
3568 return CALL_COMMAND_HANDLER(handle_verify_image_command_internal, IMAGE_CHECKSUM_ONLY);
3571 COMMAND_HANDLER(handle_verify_image_command)
3573 return CALL_COMMAND_HANDLER(handle_verify_image_command_internal, IMAGE_VERIFY);
3576 COMMAND_HANDLER(handle_test_image_command)
3578 return CALL_COMMAND_HANDLER(handle_verify_image_command_internal, IMAGE_TEST);
3581 static int handle_bp_command_list(struct command_context *cmd_ctx)
3583 struct target *target = get_current_target(cmd_ctx);
3584 struct breakpoint *breakpoint = target->breakpoints;
3585 while (breakpoint) {
3586 if (breakpoint->type == BKPT_SOFT) {
3587 char *buf = buf_to_str(breakpoint->orig_instr,
3588 breakpoint->length, 16);
3589 command_print(cmd_ctx, "IVA breakpoint: " TARGET_ADDR_FMT ", 0x%x, %i, 0x%s",
3590 breakpoint->address,
3591 breakpoint->length,
3592 breakpoint->set, buf);
3593 free(buf);
3594 } else {
3595 if ((breakpoint->address == 0) && (breakpoint->asid != 0))
3596 command_print(cmd_ctx, "Context breakpoint: 0x%8.8" PRIx32 ", 0x%x, %i",
3597 breakpoint->asid,
3598 breakpoint->length, breakpoint->set);
3599 else if ((breakpoint->address != 0) && (breakpoint->asid != 0)) {
3600 command_print(cmd_ctx, "Hybrid breakpoint(IVA): " TARGET_ADDR_FMT ", 0x%x, %i",
3601 breakpoint->address,
3602 breakpoint->length, breakpoint->set);
3603 command_print(cmd_ctx, "\t|--->linked with ContextID: 0x%8.8" PRIx32,
3604 breakpoint->asid);
3605 } else
3606 command_print(cmd_ctx, "Breakpoint(IVA): " TARGET_ADDR_FMT ", 0x%x, %i",
3607 breakpoint->address,
3608 breakpoint->length, breakpoint->set);
3611 breakpoint = breakpoint->next;
3613 return ERROR_OK;
3616 static int handle_bp_command_set(struct command_context *cmd_ctx,
3617 target_addr_t addr, uint32_t asid, uint32_t length, int hw)
3619 struct target *target = get_current_target(cmd_ctx);
3620 int retval;
3622 if (asid == 0) {
3623 retval = breakpoint_add(target, addr, length, hw);
3624 if (ERROR_OK == retval)
3625 command_print(cmd_ctx, "breakpoint set at " TARGET_ADDR_FMT "", addr);
3626 else {
3627 LOG_ERROR("Failure setting breakpoint, the same address(IVA) is already used");
3628 return retval;
3630 } else if (addr == 0) {
3631 if (target->type->add_context_breakpoint == NULL) {
3632 LOG_WARNING("Context breakpoint not available");
3633 return ERROR_OK;
3635 retval = context_breakpoint_add(target, asid, length, hw);
3636 if (ERROR_OK == retval)
3637 command_print(cmd_ctx, "Context breakpoint set at 0x%8.8" PRIx32 "", asid);
3638 else {
3639 LOG_ERROR("Failure setting breakpoint, the same address(CONTEXTID) is already used");
3640 return retval;
3642 } else {
3643 if (target->type->add_hybrid_breakpoint == NULL) {
3644 LOG_WARNING("Hybrid breakpoint not available");
3645 return ERROR_OK;
3647 retval = hybrid_breakpoint_add(target, addr, asid, length, hw);
3648 if (ERROR_OK == retval)
3649 command_print(cmd_ctx, "Hybrid breakpoint set at 0x%8.8" PRIx32 "", asid);
3650 else {
3651 LOG_ERROR("Failure setting breakpoint, the same address is already used");
3652 return retval;
3655 return ERROR_OK;
3658 COMMAND_HANDLER(handle_bp_command)
3660 target_addr_t addr;
3661 uint32_t asid;
3662 uint32_t length;
3663 int hw = BKPT_SOFT;
3665 switch (CMD_ARGC) {
3666 case 0:
3667 return handle_bp_command_list(CMD_CTX);
3669 case 2:
3670 asid = 0;
3671 COMMAND_PARSE_ADDRESS(CMD_ARGV[0], addr);
3672 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
3673 return handle_bp_command_set(CMD_CTX, addr, asid, length, hw);
3675 case 3:
3676 if (strcmp(CMD_ARGV[2], "hw") == 0) {
3677 hw = BKPT_HARD;
3678 COMMAND_PARSE_ADDRESS(CMD_ARGV[0], addr);
3679 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
3680 asid = 0;
3681 return handle_bp_command_set(CMD_CTX, addr, asid, length, hw);
3682 } else if (strcmp(CMD_ARGV[2], "hw_ctx") == 0) {
3683 hw = BKPT_HARD;
3684 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], asid);
3685 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
3686 addr = 0;
3687 return handle_bp_command_set(CMD_CTX, addr, asid, length, hw);
3689 /* fallthrough */
3690 case 4:
3691 hw = BKPT_HARD;
3692 COMMAND_PARSE_ADDRESS(CMD_ARGV[0], addr);
3693 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], asid);
3694 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[2], length);
3695 return handle_bp_command_set(CMD_CTX, addr, asid, length, hw);
3697 default:
3698 return ERROR_COMMAND_SYNTAX_ERROR;
3702 COMMAND_HANDLER(handle_rbp_command)
3704 if (CMD_ARGC != 1)
3705 return ERROR_COMMAND_SYNTAX_ERROR;
3707 target_addr_t addr;
3708 COMMAND_PARSE_ADDRESS(CMD_ARGV[0], addr);
3710 struct target *target = get_current_target(CMD_CTX);
3711 breakpoint_remove(target, addr);
3713 return ERROR_OK;
3716 COMMAND_HANDLER(handle_wp_command)
3718 struct target *target = get_current_target(CMD_CTX);
3720 if (CMD_ARGC == 0) {
3721 struct watchpoint *watchpoint = target->watchpoints;
3723 while (watchpoint) {
3724 command_print(CMD_CTX, "address: " TARGET_ADDR_FMT
3725 ", len: 0x%8.8" PRIx32
3726 ", r/w/a: %i, value: 0x%8.8" PRIx32
3727 ", mask: 0x%8.8" PRIx32,
3728 watchpoint->address,
3729 watchpoint->length,
3730 (int)watchpoint->rw,
3731 watchpoint->value,
3732 watchpoint->mask);
3733 watchpoint = watchpoint->next;
3735 return ERROR_OK;
3738 enum watchpoint_rw type = WPT_ACCESS;
3739 uint32_t addr = 0;
3740 uint32_t length = 0;
3741 uint32_t data_value = 0x0;
3742 uint32_t data_mask = 0xffffffff;
3744 switch (CMD_ARGC) {
3745 case 5:
3746 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[4], data_mask);
3747 /* fall through */
3748 case 4:
3749 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[3], data_value);
3750 /* fall through */
3751 case 3:
3752 switch (CMD_ARGV[2][0]) {
3753 case 'r':
3754 type = WPT_READ;
3755 break;
3756 case 'w':
3757 type = WPT_WRITE;
3758 break;
3759 case 'a':
3760 type = WPT_ACCESS;
3761 break;
3762 default:
3763 LOG_ERROR("invalid watchpoint mode ('%c')", CMD_ARGV[2][0]);
3764 return ERROR_COMMAND_SYNTAX_ERROR;
3766 /* fall through */
3767 case 2:
3768 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
3769 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3770 break;
3772 default:
3773 return ERROR_COMMAND_SYNTAX_ERROR;
3776 int retval = watchpoint_add(target, addr, length, type,
3777 data_value, data_mask);
3778 if (ERROR_OK != retval)
3779 LOG_ERROR("Failure setting watchpoints");
3781 return retval;
3784 COMMAND_HANDLER(handle_rwp_command)
3786 if (CMD_ARGC != 1)
3787 return ERROR_COMMAND_SYNTAX_ERROR;
3789 uint32_t addr;
3790 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3792 struct target *target = get_current_target(CMD_CTX);
3793 watchpoint_remove(target, addr);
3795 return ERROR_OK;
3799 * Translate a virtual address to a physical address.
3801 * The low-level target implementation must have logged a detailed error
3802 * which is forwarded to telnet/GDB session.
3804 COMMAND_HANDLER(handle_virt2phys_command)
3806 if (CMD_ARGC != 1)
3807 return ERROR_COMMAND_SYNTAX_ERROR;
3809 target_addr_t va;
3810 COMMAND_PARSE_ADDRESS(CMD_ARGV[0], va);
3811 target_addr_t pa;
3813 struct target *target = get_current_target(CMD_CTX);
3814 int retval = target->type->virt2phys(target, va, &pa);
3815 if (retval == ERROR_OK)
3816 command_print(CMD_CTX, "Physical address " TARGET_ADDR_FMT "", pa);
3818 return retval;
3821 static void writeData(FILE *f, const void *data, size_t len)
3823 size_t written = fwrite(data, 1, len, f);
3824 if (written != len)
3825 LOG_ERROR("failed to write %zu bytes: %s", len, strerror(errno));
3828 static void writeLong(FILE *f, int l, struct target *target)
3830 uint8_t val[4];
3832 target_buffer_set_u32(target, val, l);
3833 writeData(f, val, 4);
3836 static void writeString(FILE *f, char *s)
3838 writeData(f, s, strlen(s));
3841 typedef unsigned char UNIT[2]; /* unit of profiling */
3843 /* Dump a gmon.out histogram file. */
3844 static void write_gmon(uint32_t *samples, uint32_t sampleNum, const char *filename, bool with_range,
3845 uint32_t start_address, uint32_t end_address, struct target *target)
3847 uint32_t i;
3848 FILE *f = fopen(filename, "w");
3849 if (f == NULL)
3850 return;
3851 writeString(f, "gmon");
3852 writeLong(f, 0x00000001, target); /* Version */
3853 writeLong(f, 0, target); /* padding */
3854 writeLong(f, 0, target); /* padding */
3855 writeLong(f, 0, target); /* padding */
3857 uint8_t zero = 0; /* GMON_TAG_TIME_HIST */
3858 writeData(f, &zero, 1);
3860 /* figure out bucket size */
3861 uint32_t min;
3862 uint32_t max;
3863 if (with_range) {
3864 min = start_address;
3865 max = end_address;
3866 } else {
3867 min = samples[0];
3868 max = samples[0];
3869 for (i = 0; i < sampleNum; i++) {
3870 if (min > samples[i])
3871 min = samples[i];
3872 if (max < samples[i])
3873 max = samples[i];
3876 /* max should be (largest sample + 1)
3877 * Refer to binutils/gprof/hist.c (find_histogram_for_pc) */
3878 max++;
3881 int addressSpace = max - min;
3882 assert(addressSpace >= 2);
3884 /* FIXME: What is the reasonable number of buckets?
3885 * The profiling result will be more accurate if there are enough buckets. */
3886 static const uint32_t maxBuckets = 128 * 1024; /* maximum buckets. */
3887 uint32_t numBuckets = addressSpace / sizeof(UNIT);
3888 if (numBuckets > maxBuckets)
3889 numBuckets = maxBuckets;
3890 int *buckets = malloc(sizeof(int) * numBuckets);
3891 if (buckets == NULL) {
3892 fclose(f);
3893 return;
3895 memset(buckets, 0, sizeof(int) * numBuckets);
3896 for (i = 0; i < sampleNum; i++) {
3897 uint32_t address = samples[i];
3899 if ((address < min) || (max <= address))
3900 continue;
3902 long long a = address - min;
3903 long long b = numBuckets;
3904 long long c = addressSpace;
3905 int index_t = (a * b) / c; /* danger!!!! int32 overflows */
3906 buckets[index_t]++;
3909 /* append binary memory gmon.out &profile_hist_hdr ((char*)&profile_hist_hdr + sizeof(struct gmon_hist_hdr)) */
3910 writeLong(f, min, target); /* low_pc */
3911 writeLong(f, max, target); /* high_pc */
3912 writeLong(f, numBuckets, target); /* # of buckets */
3913 writeLong(f, 100, target); /* KLUDGE! We lie, ca. 100Hz best case. */
3914 writeString(f, "seconds");
3915 for (i = 0; i < (15-strlen("seconds")); i++)
3916 writeData(f, &zero, 1);
3917 writeString(f, "s");
3919 /*append binary memory gmon.out profile_hist_data (profile_hist_data + profile_hist_hdr.hist_size) */
3921 char *data = malloc(2 * numBuckets);
3922 if (data != NULL) {
3923 for (i = 0; i < numBuckets; i++) {
3924 int val;
3925 val = buckets[i];
3926 if (val > 65535)
3927 val = 65535;
3928 data[i * 2] = val&0xff;
3929 data[i * 2 + 1] = (val >> 8) & 0xff;
3931 free(buckets);
3932 writeData(f, data, numBuckets * 2);
3933 free(data);
3934 } else
3935 free(buckets);
3937 fclose(f);
3940 /* profiling samples the CPU PC as quickly as OpenOCD is able,
3941 * which will be used as a random sampling of PC */
3942 COMMAND_HANDLER(handle_profile_command)
3944 struct target *target = get_current_target(CMD_CTX);
3946 if ((CMD_ARGC != 2) && (CMD_ARGC != 4))
3947 return ERROR_COMMAND_SYNTAX_ERROR;
3949 const uint32_t MAX_PROFILE_SAMPLE_NUM = 10000;
3950 uint32_t offset;
3951 uint32_t num_of_samples;
3952 int retval = ERROR_OK;
3954 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], offset);
3956 uint32_t *samples = malloc(sizeof(uint32_t) * MAX_PROFILE_SAMPLE_NUM);
3957 if (samples == NULL) {
3958 LOG_ERROR("No memory to store samples.");
3959 return ERROR_FAIL;
3963 * Some cores let us sample the PC without the
3964 * annoying halt/resume step; for example, ARMv7 PCSR.
3965 * Provide a way to use that more efficient mechanism.
3967 retval = target_profiling(target, samples, MAX_PROFILE_SAMPLE_NUM,
3968 &num_of_samples, offset);
3969 if (retval != ERROR_OK) {
3970 free(samples);
3971 return retval;
3974 assert(num_of_samples <= MAX_PROFILE_SAMPLE_NUM);
3976 retval = target_poll(target);
3977 if (retval != ERROR_OK) {
3978 free(samples);
3979 return retval;
3981 if (target->state == TARGET_RUNNING) {
3982 retval = target_halt(target);
3983 if (retval != ERROR_OK) {
3984 free(samples);
3985 return retval;
3989 retval = target_poll(target);
3990 if (retval != ERROR_OK) {
3991 free(samples);
3992 return retval;
3995 uint32_t start_address = 0;
3996 uint32_t end_address = 0;
3997 bool with_range = false;
3998 if (CMD_ARGC == 4) {
3999 with_range = true;
4000 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[2], start_address);
4001 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[3], end_address);
4004 write_gmon(samples, num_of_samples, CMD_ARGV[1],
4005 with_range, start_address, end_address, target);
4006 command_print(CMD_CTX, "Wrote %s", CMD_ARGV[1]);
4008 free(samples);
4009 return retval;
4012 static int new_int_array_element(Jim_Interp *interp, const char *varname, int idx, uint32_t val)
4014 char *namebuf;
4015 Jim_Obj *nameObjPtr, *valObjPtr;
4016 int result;
4018 namebuf = alloc_printf("%s(%d)", varname, idx);
4019 if (!namebuf)
4020 return JIM_ERR;
4022 nameObjPtr = Jim_NewStringObj(interp, namebuf, -1);
4023 valObjPtr = Jim_NewIntObj(interp, val);
4024 if (!nameObjPtr || !valObjPtr) {
4025 free(namebuf);
4026 return JIM_ERR;
4029 Jim_IncrRefCount(nameObjPtr);
4030 Jim_IncrRefCount(valObjPtr);
4031 result = Jim_SetVariable(interp, nameObjPtr, valObjPtr);
4032 Jim_DecrRefCount(interp, nameObjPtr);
4033 Jim_DecrRefCount(interp, valObjPtr);
4034 free(namebuf);
4035 /* printf("%s(%d) <= 0%08x\n", varname, idx, val); */
4036 return result;
4039 static int jim_mem2array(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4041 struct command_context *context;
4042 struct target *target;
4044 context = current_command_context(interp);
4045 assert(context != NULL);
4047 target = get_current_target(context);
4048 if (target == NULL) {
4049 LOG_ERROR("mem2array: no current target");
4050 return JIM_ERR;
4053 return target_mem2array(interp, target, argc - 1, argv + 1);
4056 static int target_mem2array(Jim_Interp *interp, struct target *target, int argc, Jim_Obj *const *argv)
4058 long l;
4059 uint32_t width;
4060 int len;
4061 uint32_t addr;
4062 uint32_t count;
4063 uint32_t v;
4064 const char *varname;
4065 const char *phys;
4066 bool is_phys;
4067 int n, e, retval;
4068 uint32_t i;
4070 /* argv[1] = name of array to receive the data
4071 * argv[2] = desired width
4072 * argv[3] = memory address
4073 * argv[4] = count of times to read
4075 if (argc < 4 || argc > 5) {
4076 Jim_WrongNumArgs(interp, 1, argv, "varname width addr nelems [phys]");
4077 return JIM_ERR;
4079 varname = Jim_GetString(argv[0], &len);
4080 /* given "foo" get space for worse case "foo(%d)" .. add 20 */
4082 e = Jim_GetLong(interp, argv[1], &l);
4083 width = l;
4084 if (e != JIM_OK)
4085 return e;
4087 e = Jim_GetLong(interp, argv[2], &l);
4088 addr = l;
4089 if (e != JIM_OK)
4090 return e;
4091 e = Jim_GetLong(interp, argv[3], &l);
4092 len = l;
4093 if (e != JIM_OK)
4094 return e;
4095 is_phys = false;
4096 if (argc > 4) {
4097 phys = Jim_GetString(argv[4], &n);
4098 if (!strncmp(phys, "phys", n))
4099 is_phys = true;
4100 else
4101 return JIM_ERR;
4103 switch (width) {
4104 case 8:
4105 width = 1;
4106 break;
4107 case 16:
4108 width = 2;
4109 break;
4110 case 32:
4111 width = 4;
4112 break;
4113 default:
4114 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4115 Jim_AppendStrings(interp, Jim_GetResult(interp), "Invalid width param, must be 8/16/32", NULL);
4116 return JIM_ERR;
4118 if (len == 0) {
4119 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4120 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: zero width read?", NULL);
4121 return JIM_ERR;
4123 if ((addr + (len * width)) < addr) {
4124 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4125 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: addr + len - wraps to zero?", NULL);
4126 return JIM_ERR;
4128 /* absurd transfer size? */
4129 if (len > 65536) {
4130 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4131 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: absurd > 64K item request", NULL);
4132 return JIM_ERR;
4135 if ((width == 1) ||
4136 ((width == 2) && ((addr & 1) == 0)) ||
4137 ((width == 4) && ((addr & 3) == 0))) {
4138 /* all is well */
4139 } else {
4140 char buf[100];
4141 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4142 sprintf(buf, "mem2array address: 0x%08" PRIx32 " is not aligned for %" PRId32 " byte reads",
4143 addr,
4144 width);
4145 Jim_AppendStrings(interp, Jim_GetResult(interp), buf, NULL);
4146 return JIM_ERR;
4149 /* Transfer loop */
4151 /* index counter */
4152 n = 0;
4154 size_t buffersize = 4096;
4155 uint8_t *buffer = malloc(buffersize);
4156 if (buffer == NULL)
4157 return JIM_ERR;
4159 /* assume ok */
4160 e = JIM_OK;
4161 while (len) {
4162 /* Slurp... in buffer size chunks */
4164 count = len; /* in objects.. */
4165 if (count > (buffersize / width))
4166 count = (buffersize / width);
4168 if (is_phys)
4169 retval = target_read_phys_memory(target, addr, width, count, buffer);
4170 else
4171 retval = target_read_memory(target, addr, width, count, buffer);
4172 if (retval != ERROR_OK) {
4173 /* BOO !*/
4174 LOG_ERROR("mem2array: Read @ 0x%08" PRIx32 ", w=%" PRId32 ", cnt=%" PRId32 ", failed",
4175 addr,
4176 width,
4177 count);
4178 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4179 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: cannot read memory", NULL);
4180 e = JIM_ERR;
4181 break;
4182 } else {
4183 v = 0; /* shut up gcc */
4184 for (i = 0; i < count ; i++, n++) {
4185 switch (width) {
4186 case 4:
4187 v = target_buffer_get_u32(target, &buffer[i*width]);
4188 break;
4189 case 2:
4190 v = target_buffer_get_u16(target, &buffer[i*width]);
4191 break;
4192 case 1:
4193 v = buffer[i] & 0x0ff;
4194 break;
4196 new_int_array_element(interp, varname, n, v);
4198 len -= count;
4199 addr += count * width;
4203 free(buffer);
4205 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4207 return e;
4210 static int get_int_array_element(Jim_Interp *interp, const char *varname, int idx, uint32_t *val)
4212 char *namebuf;
4213 Jim_Obj *nameObjPtr, *valObjPtr;
4214 int result;
4215 long l;
4217 namebuf = alloc_printf("%s(%d)", varname, idx);
4218 if (!namebuf)
4219 return JIM_ERR;
4221 nameObjPtr = Jim_NewStringObj(interp, namebuf, -1);
4222 if (!nameObjPtr) {
4223 free(namebuf);
4224 return JIM_ERR;
4227 Jim_IncrRefCount(nameObjPtr);
4228 valObjPtr = Jim_GetVariable(interp, nameObjPtr, JIM_ERRMSG);
4229 Jim_DecrRefCount(interp, nameObjPtr);
4230 free(namebuf);
4231 if (valObjPtr == NULL)
4232 return JIM_ERR;
4234 result = Jim_GetLong(interp, valObjPtr, &l);
4235 /* printf("%s(%d) => 0%08x\n", varname, idx, val); */
4236 *val = l;
4237 return result;
4240 static int jim_array2mem(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4242 struct command_context *context;
4243 struct target *target;
4245 context = current_command_context(interp);
4246 assert(context != NULL);
4248 target = get_current_target(context);
4249 if (target == NULL) {
4250 LOG_ERROR("array2mem: no current target");
4251 return JIM_ERR;
4254 return target_array2mem(interp, target, argc-1, argv + 1);
4257 static int target_array2mem(Jim_Interp *interp, struct target *target,
4258 int argc, Jim_Obj *const *argv)
4260 long l;
4261 uint32_t width;
4262 int len;
4263 uint32_t addr;
4264 uint32_t count;
4265 uint32_t v;
4266 const char *varname;
4267 const char *phys;
4268 bool is_phys;
4269 int n, e, retval;
4270 uint32_t i;
4272 /* argv[1] = name of array to get the data
4273 * argv[2] = desired width
4274 * argv[3] = memory address
4275 * argv[4] = count to write
4277 if (argc < 4 || argc > 5) {
4278 Jim_WrongNumArgs(interp, 0, argv, "varname width addr nelems [phys]");
4279 return JIM_ERR;
4281 varname = Jim_GetString(argv[0], &len);
4282 /* given "foo" get space for worse case "foo(%d)" .. add 20 */
4284 e = Jim_GetLong(interp, argv[1], &l);
4285 width = l;
4286 if (e != JIM_OK)
4287 return e;
4289 e = Jim_GetLong(interp, argv[2], &l);
4290 addr = l;
4291 if (e != JIM_OK)
4292 return e;
4293 e = Jim_GetLong(interp, argv[3], &l);
4294 len = l;
4295 if (e != JIM_OK)
4296 return e;
4297 is_phys = false;
4298 if (argc > 4) {
4299 phys = Jim_GetString(argv[4], &n);
4300 if (!strncmp(phys, "phys", n))
4301 is_phys = true;
4302 else
4303 return JIM_ERR;
4305 switch (width) {
4306 case 8:
4307 width = 1;
4308 break;
4309 case 16:
4310 width = 2;
4311 break;
4312 case 32:
4313 width = 4;
4314 break;
4315 default:
4316 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4317 Jim_AppendStrings(interp, Jim_GetResult(interp),
4318 "Invalid width param, must be 8/16/32", NULL);
4319 return JIM_ERR;
4321 if (len == 0) {
4322 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4323 Jim_AppendStrings(interp, Jim_GetResult(interp),
4324 "array2mem: zero width read?", NULL);
4325 return JIM_ERR;
4327 if ((addr + (len * width)) < addr) {
4328 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4329 Jim_AppendStrings(interp, Jim_GetResult(interp),
4330 "array2mem: addr + len - wraps to zero?", NULL);
4331 return JIM_ERR;
4333 /* absurd transfer size? */
4334 if (len > 65536) {
4335 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4336 Jim_AppendStrings(interp, Jim_GetResult(interp),
4337 "array2mem: absurd > 64K item request", NULL);
4338 return JIM_ERR;
4341 if ((width == 1) ||
4342 ((width == 2) && ((addr & 1) == 0)) ||
4343 ((width == 4) && ((addr & 3) == 0))) {
4344 /* all is well */
4345 } else {
4346 char buf[100];
4347 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4348 sprintf(buf, "array2mem address: 0x%08" PRIx32 " is not aligned for %" PRId32 " byte reads",
4349 addr,
4350 width);
4351 Jim_AppendStrings(interp, Jim_GetResult(interp), buf, NULL);
4352 return JIM_ERR;
4355 /* Transfer loop */
4357 /* index counter */
4358 n = 0;
4359 /* assume ok */
4360 e = JIM_OK;
4362 size_t buffersize = 4096;
4363 uint8_t *buffer = malloc(buffersize);
4364 if (buffer == NULL)
4365 return JIM_ERR;
4367 while (len) {
4368 /* Slurp... in buffer size chunks */
4370 count = len; /* in objects.. */
4371 if (count > (buffersize / width))
4372 count = (buffersize / width);
4374 v = 0; /* shut up gcc */
4375 for (i = 0; i < count; i++, n++) {
4376 get_int_array_element(interp, varname, n, &v);
4377 switch (width) {
4378 case 4:
4379 target_buffer_set_u32(target, &buffer[i * width], v);
4380 break;
4381 case 2:
4382 target_buffer_set_u16(target, &buffer[i * width], v);
4383 break;
4384 case 1:
4385 buffer[i] = v & 0x0ff;
4386 break;
4389 len -= count;
4391 if (is_phys)
4392 retval = target_write_phys_memory(target, addr, width, count, buffer);
4393 else
4394 retval = target_write_memory(target, addr, width, count, buffer);
4395 if (retval != ERROR_OK) {
4396 /* BOO !*/
4397 LOG_ERROR("array2mem: Write @ 0x%08" PRIx32 ", w=%" PRId32 ", cnt=%" PRId32 ", failed",
4398 addr,
4399 width,
4400 count);
4401 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4402 Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: cannot read memory", NULL);
4403 e = JIM_ERR;
4404 break;
4406 addr += count * width;
4409 free(buffer);
4411 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4413 return e;
4416 /* FIX? should we propagate errors here rather than printing them
4417 * and continuing?
4419 void target_handle_event(struct target *target, enum target_event e)
4421 struct target_event_action *teap;
4423 for (teap = target->event_action; teap != NULL; teap = teap->next) {
4424 if (teap->event == e) {
4425 LOG_DEBUG("target: (%d) %s (%s) event: %d (%s) action: %s",
4426 target->target_number,
4427 target_name(target),
4428 target_type_name(target),
4430 Jim_Nvp_value2name_simple(nvp_target_event, e)->name,
4431 Jim_GetString(teap->body, NULL));
4432 if (Jim_EvalObj(teap->interp, teap->body) != JIM_OK) {
4433 Jim_MakeErrorMessage(teap->interp);
4434 command_print(NULL, "%s\n", Jim_GetString(Jim_GetResult(teap->interp), NULL));
4441 * Returns true only if the target has a handler for the specified event.
4443 bool target_has_event_action(struct target *target, enum target_event event)
4445 struct target_event_action *teap;
4447 for (teap = target->event_action; teap != NULL; teap = teap->next) {
4448 if (teap->event == event)
4449 return true;
4451 return false;
4454 enum target_cfg_param {
4455 TCFG_TYPE,
4456 TCFG_EVENT,
4457 TCFG_WORK_AREA_VIRT,
4458 TCFG_WORK_AREA_PHYS,
4459 TCFG_WORK_AREA_SIZE,
4460 TCFG_WORK_AREA_BACKUP,
4461 TCFG_ENDIAN,
4462 TCFG_COREID,
4463 TCFG_CHAIN_POSITION,
4464 TCFG_DBGBASE,
4465 TCFG_CTIBASE,
4466 TCFG_RTOS,
4467 TCFG_DEFER_EXAMINE,
4470 static Jim_Nvp nvp_config_opts[] = {
4471 { .name = "-type", .value = TCFG_TYPE },
4472 { .name = "-event", .value = TCFG_EVENT },
4473 { .name = "-work-area-virt", .value = TCFG_WORK_AREA_VIRT },
4474 { .name = "-work-area-phys", .value = TCFG_WORK_AREA_PHYS },
4475 { .name = "-work-area-size", .value = TCFG_WORK_AREA_SIZE },
4476 { .name = "-work-area-backup", .value = TCFG_WORK_AREA_BACKUP },
4477 { .name = "-endian" , .value = TCFG_ENDIAN },
4478 { .name = "-coreid", .value = TCFG_COREID },
4479 { .name = "-chain-position", .value = TCFG_CHAIN_POSITION },
4480 { .name = "-dbgbase", .value = TCFG_DBGBASE },
4481 { .name = "-ctibase", .value = TCFG_CTIBASE },
4482 { .name = "-rtos", .value = TCFG_RTOS },
4483 { .name = "-defer-examine", .value = TCFG_DEFER_EXAMINE },
4484 { .name = NULL, .value = -1 }
4487 static int target_configure(Jim_GetOptInfo *goi, struct target *target)
4489 Jim_Nvp *n;
4490 Jim_Obj *o;
4491 jim_wide w;
4492 int e;
4494 /* parse config or cget options ... */
4495 while (goi->argc > 0) {
4496 Jim_SetEmptyResult(goi->interp);
4497 /* Jim_GetOpt_Debug(goi); */
4499 if (target->type->target_jim_configure) {
4500 /* target defines a configure function */
4501 /* target gets first dibs on parameters */
4502 e = (*(target->type->target_jim_configure))(target, goi);
4503 if (e == JIM_OK) {
4504 /* more? */
4505 continue;
4507 if (e == JIM_ERR) {
4508 /* An error */
4509 return e;
4511 /* otherwise we 'continue' below */
4513 e = Jim_GetOpt_Nvp(goi, nvp_config_opts, &n);
4514 if (e != JIM_OK) {
4515 Jim_GetOpt_NvpUnknown(goi, nvp_config_opts, 0);
4516 return e;
4518 switch (n->value) {
4519 case TCFG_TYPE:
4520 /* not setable */
4521 if (goi->isconfigure) {
4522 Jim_SetResultFormatted(goi->interp,
4523 "not settable: %s", n->name);
4524 return JIM_ERR;
4525 } else {
4526 no_params:
4527 if (goi->argc != 0) {
4528 Jim_WrongNumArgs(goi->interp,
4529 goi->argc, goi->argv,
4530 "NO PARAMS");
4531 return JIM_ERR;
4534 Jim_SetResultString(goi->interp,
4535 target_type_name(target), -1);
4536 /* loop for more */
4537 break;
4538 case TCFG_EVENT:
4539 if (goi->argc == 0) {
4540 Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name? ...");
4541 return JIM_ERR;
4544 e = Jim_GetOpt_Nvp(goi, nvp_target_event, &n);
4545 if (e != JIM_OK) {
4546 Jim_GetOpt_NvpUnknown(goi, nvp_target_event, 1);
4547 return e;
4550 if (goi->isconfigure) {
4551 if (goi->argc != 1) {
4552 Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name? ?EVENT-BODY?");
4553 return JIM_ERR;
4555 } else {
4556 if (goi->argc != 0) {
4557 Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name?");
4558 return JIM_ERR;
4563 struct target_event_action *teap;
4565 teap = target->event_action;
4566 /* replace existing? */
4567 while (teap) {
4568 if (teap->event == (enum target_event)n->value)
4569 break;
4570 teap = teap->next;
4573 if (goi->isconfigure) {
4574 bool replace = true;
4575 if (teap == NULL) {
4576 /* create new */
4577 teap = calloc(1, sizeof(*teap));
4578 replace = false;
4580 teap->event = n->value;
4581 teap->interp = goi->interp;
4582 Jim_GetOpt_Obj(goi, &o);
4583 if (teap->body)
4584 Jim_DecrRefCount(teap->interp, teap->body);
4585 teap->body = Jim_DuplicateObj(goi->interp, o);
4587 * FIXME:
4588 * Tcl/TK - "tk events" have a nice feature.
4589 * See the "BIND" command.
4590 * We should support that here.
4591 * You can specify %X and %Y in the event code.
4592 * The idea is: %T - target name.
4593 * The idea is: %N - target number
4594 * The idea is: %E - event name.
4596 Jim_IncrRefCount(teap->body);
4598 if (!replace) {
4599 /* add to head of event list */
4600 teap->next = target->event_action;
4601 target->event_action = teap;
4603 Jim_SetEmptyResult(goi->interp);
4604 } else {
4605 /* get */
4606 if (teap == NULL)
4607 Jim_SetEmptyResult(goi->interp);
4608 else
4609 Jim_SetResult(goi->interp, Jim_DuplicateObj(goi->interp, teap->body));
4612 /* loop for more */
4613 break;
4615 case TCFG_WORK_AREA_VIRT:
4616 if (goi->isconfigure) {
4617 target_free_all_working_areas(target);
4618 e = Jim_GetOpt_Wide(goi, &w);
4619 if (e != JIM_OK)
4620 return e;
4621 target->working_area_virt = w;
4622 target->working_area_virt_spec = true;
4623 } else {
4624 if (goi->argc != 0)
4625 goto no_params;
4627 Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_virt));
4628 /* loop for more */
4629 break;
4631 case TCFG_WORK_AREA_PHYS:
4632 if (goi->isconfigure) {
4633 target_free_all_working_areas(target);
4634 e = Jim_GetOpt_Wide(goi, &w);
4635 if (e != JIM_OK)
4636 return e;
4637 target->working_area_phys = w;
4638 target->working_area_phys_spec = true;
4639 } else {
4640 if (goi->argc != 0)
4641 goto no_params;
4643 Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_phys));
4644 /* loop for more */
4645 break;
4647 case TCFG_WORK_AREA_SIZE:
4648 if (goi->isconfigure) {
4649 target_free_all_working_areas(target);
4650 e = Jim_GetOpt_Wide(goi, &w);
4651 if (e != JIM_OK)
4652 return e;
4653 target->working_area_size = w;
4654 } else {
4655 if (goi->argc != 0)
4656 goto no_params;
4658 Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_size));
4659 /* loop for more */
4660 break;
4662 case TCFG_WORK_AREA_BACKUP:
4663 if (goi->isconfigure) {
4664 target_free_all_working_areas(target);
4665 e = Jim_GetOpt_Wide(goi, &w);
4666 if (e != JIM_OK)
4667 return e;
4668 /* make this exactly 1 or 0 */
4669 target->backup_working_area = (!!w);
4670 } else {
4671 if (goi->argc != 0)
4672 goto no_params;
4674 Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->backup_working_area));
4675 /* loop for more e*/
4676 break;
4679 case TCFG_ENDIAN:
4680 if (goi->isconfigure) {
4681 e = Jim_GetOpt_Nvp(goi, nvp_target_endian, &n);
4682 if (e != JIM_OK) {
4683 Jim_GetOpt_NvpUnknown(goi, nvp_target_endian, 1);
4684 return e;
4686 target->endianness = n->value;
4687 } else {
4688 if (goi->argc != 0)
4689 goto no_params;
4691 n = Jim_Nvp_value2name_simple(nvp_target_endian, target->endianness);
4692 if (n->name == NULL) {
4693 target->endianness = TARGET_LITTLE_ENDIAN;
4694 n = Jim_Nvp_value2name_simple(nvp_target_endian, target->endianness);
4696 Jim_SetResultString(goi->interp, n->name, -1);
4697 /* loop for more */
4698 break;
4700 case TCFG_COREID:
4701 if (goi->isconfigure) {
4702 e = Jim_GetOpt_Wide(goi, &w);
4703 if (e != JIM_OK)
4704 return e;
4705 target->coreid = (int32_t)w;
4706 } else {
4707 if (goi->argc != 0)
4708 goto no_params;
4710 Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_size));
4711 /* loop for more */
4712 break;
4714 case TCFG_CHAIN_POSITION:
4715 if (goi->isconfigure) {
4716 Jim_Obj *o_t;
4717 struct jtag_tap *tap;
4718 target_free_all_working_areas(target);
4719 e = Jim_GetOpt_Obj(goi, &o_t);
4720 if (e != JIM_OK)
4721 return e;
4722 tap = jtag_tap_by_jim_obj(goi->interp, o_t);
4723 if (tap == NULL)
4724 return JIM_ERR;
4725 /* make this exactly 1 or 0 */
4726 target->tap = tap;
4727 } else {
4728 if (goi->argc != 0)
4729 goto no_params;
4731 Jim_SetResultString(goi->interp, target->tap->dotted_name, -1);
4732 /* loop for more e*/
4733 break;
4734 case TCFG_DBGBASE:
4735 if (goi->isconfigure) {
4736 e = Jim_GetOpt_Wide(goi, &w);
4737 if (e != JIM_OK)
4738 return e;
4739 target->dbgbase = (uint32_t)w;
4740 target->dbgbase_set = true;
4741 } else {
4742 if (goi->argc != 0)
4743 goto no_params;
4745 Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->dbgbase));
4746 /* loop for more */
4747 break;
4748 case TCFG_CTIBASE:
4749 if (goi->isconfigure) {
4750 e = Jim_GetOpt_Wide(goi, &w);
4751 if (e != JIM_OK)
4752 return e;
4753 target->ctibase = (uint32_t)w;
4754 target->ctibase_set = true;
4755 } else {
4756 if (goi->argc != 0)
4757 goto no_params;
4759 Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->ctibase));
4760 /* loop for more */
4761 break;
4762 case TCFG_RTOS:
4763 /* RTOS */
4765 int result = rtos_create(goi, target);
4766 if (result != JIM_OK)
4767 return result;
4769 /* loop for more */
4770 break;
4772 case TCFG_DEFER_EXAMINE:
4773 /* DEFER_EXAMINE */
4774 target->defer_examine = true;
4775 /* loop for more */
4776 break;
4779 } /* while (goi->argc) */
4782 /* done - we return */
4783 return JIM_OK;
4786 static int jim_target_configure(Jim_Interp *interp, int argc, Jim_Obj * const *argv)
4788 Jim_GetOptInfo goi;
4790 Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4791 goi.isconfigure = !strcmp(Jim_GetString(argv[0], NULL), "configure");
4792 if (goi.argc < 1) {
4793 Jim_WrongNumArgs(goi.interp, goi.argc, goi.argv,
4794 "missing: -option ...");
4795 return JIM_ERR;
4797 struct target *target = Jim_CmdPrivData(goi.interp);
4798 return target_configure(&goi, target);
4801 static int jim_target_mw(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4803 const char *cmd_name = Jim_GetString(argv[0], NULL);
4805 Jim_GetOptInfo goi;
4806 Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4808 if (goi.argc < 2 || goi.argc > 4) {
4809 Jim_SetResultFormatted(goi.interp,
4810 "usage: %s [phys] <address> <data> [<count>]", cmd_name);
4811 return JIM_ERR;
4814 target_write_fn fn;
4815 fn = target_write_memory;
4817 int e;
4818 if (strcmp(Jim_GetString(argv[1], NULL), "phys") == 0) {
4819 /* consume it */
4820 struct Jim_Obj *obj;
4821 e = Jim_GetOpt_Obj(&goi, &obj);
4822 if (e != JIM_OK)
4823 return e;
4825 fn = target_write_phys_memory;
4828 jim_wide a;
4829 e = Jim_GetOpt_Wide(&goi, &a);
4830 if (e != JIM_OK)
4831 return e;
4833 jim_wide b;
4834 e = Jim_GetOpt_Wide(&goi, &b);
4835 if (e != JIM_OK)
4836 return e;
4838 jim_wide c = 1;
4839 if (goi.argc == 1) {
4840 e = Jim_GetOpt_Wide(&goi, &c);
4841 if (e != JIM_OK)
4842 return e;
4845 /* all args must be consumed */
4846 if (goi.argc != 0)
4847 return JIM_ERR;
4849 struct target *target = Jim_CmdPrivData(goi.interp);
4850 unsigned data_size;
4851 if (strcasecmp(cmd_name, "mww") == 0)
4852 data_size = 4;
4853 else if (strcasecmp(cmd_name, "mwh") == 0)
4854 data_size = 2;
4855 else if (strcasecmp(cmd_name, "mwb") == 0)
4856 data_size = 1;
4857 else {
4858 LOG_ERROR("command '%s' unknown: ", cmd_name);
4859 return JIM_ERR;
4862 return (target_fill_mem(target, a, fn, data_size, b, c) == ERROR_OK) ? JIM_OK : JIM_ERR;
4866 * @brief Reads an array of words/halfwords/bytes from target memory starting at specified address.
4868 * Usage: mdw [phys] <address> [<count>] - for 32 bit reads
4869 * mdh [phys] <address> [<count>] - for 16 bit reads
4870 * mdb [phys] <address> [<count>] - for 8 bit reads
4872 * Count defaults to 1.
4874 * Calls target_read_memory or target_read_phys_memory depending on
4875 * the presence of the "phys" argument
4876 * Reads the target memory in blocks of max. 32 bytes, and returns an array of ints formatted
4877 * to int representation in base16.
4878 * Also outputs read data in a human readable form using command_print
4880 * @param phys if present target_read_phys_memory will be used instead of target_read_memory
4881 * @param address address where to start the read. May be specified in decimal or hex using the standard "0x" prefix
4882 * @param count optional count parameter to read an array of values. If not specified, defaults to 1.
4883 * @returns: JIM_ERR on error or JIM_OK on success and sets the result string to an array of ascii formatted numbers
4884 * on success, with [<count>] number of elements.
4886 * In case of little endian target:
4887 * Example1: "mdw 0x00000000" returns "10123456"
4888 * Exmaple2: "mdh 0x00000000 1" returns "3456"
4889 * Example3: "mdb 0x00000000" returns "56"
4890 * Example4: "mdh 0x00000000 2" returns "3456 1012"
4891 * Example5: "mdb 0x00000000 3" returns "56 34 12"
4893 static int jim_target_md(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4895 const char *cmd_name = Jim_GetString(argv[0], NULL);
4897 Jim_GetOptInfo goi;
4898 Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4900 if ((goi.argc < 1) || (goi.argc > 3)) {
4901 Jim_SetResultFormatted(goi.interp,
4902 "usage: %s [phys] <address> [<count>]", cmd_name);
4903 return JIM_ERR;
4906 int (*fn)(struct target *target,
4907 target_addr_t address, uint32_t size, uint32_t count, uint8_t *buffer);
4908 fn = target_read_memory;
4910 int e;
4911 if (strcmp(Jim_GetString(argv[1], NULL), "phys") == 0) {
4912 /* consume it */
4913 struct Jim_Obj *obj;
4914 e = Jim_GetOpt_Obj(&goi, &obj);
4915 if (e != JIM_OK)
4916 return e;
4918 fn = target_read_phys_memory;
4921 /* Read address parameter */
4922 jim_wide addr;
4923 e = Jim_GetOpt_Wide(&goi, &addr);
4924 if (e != JIM_OK)
4925 return JIM_ERR;
4927 /* If next parameter exists, read it out as the count parameter, if not, set it to 1 (default) */
4928 jim_wide count;
4929 if (goi.argc == 1) {
4930 e = Jim_GetOpt_Wide(&goi, &count);
4931 if (e != JIM_OK)
4932 return JIM_ERR;
4933 } else
4934 count = 1;
4936 /* all args must be consumed */
4937 if (goi.argc != 0)
4938 return JIM_ERR;
4940 jim_wide dwidth = 1; /* shut up gcc */
4941 if (strcasecmp(cmd_name, "mdw") == 0)
4942 dwidth = 4;
4943 else if (strcasecmp(cmd_name, "mdh") == 0)
4944 dwidth = 2;
4945 else if (strcasecmp(cmd_name, "mdb") == 0)
4946 dwidth = 1;
4947 else {
4948 LOG_ERROR("command '%s' unknown: ", cmd_name);
4949 return JIM_ERR;
4952 /* convert count to "bytes" */
4953 int bytes = count * dwidth;
4955 struct target *target = Jim_CmdPrivData(goi.interp);
4956 uint8_t target_buf[32];
4957 jim_wide x, y, z;
4958 while (bytes > 0) {
4959 y = (bytes < 16) ? bytes : 16; /* y = min(bytes, 16); */
4961 /* Try to read out next block */
4962 e = fn(target, addr, dwidth, y / dwidth, target_buf);
4964 if (e != ERROR_OK) {
4965 Jim_SetResultFormatted(interp, "error reading target @ 0x%08lx", (long)addr);
4966 return JIM_ERR;
4969 command_print_sameline(NULL, "0x%08x ", (int)(addr));
4970 switch (dwidth) {
4971 case 4:
4972 for (x = 0; x < 16 && x < y; x += 4) {
4973 z = target_buffer_get_u32(target, &(target_buf[x]));
4974 command_print_sameline(NULL, "%08x ", (int)(z));
4976 for (; (x < 16) ; x += 4)
4977 command_print_sameline(NULL, " ");
4978 break;
4979 case 2:
4980 for (x = 0; x < 16 && x < y; x += 2) {
4981 z = target_buffer_get_u16(target, &(target_buf[x]));
4982 command_print_sameline(NULL, "%04x ", (int)(z));
4984 for (; (x < 16) ; x += 2)
4985 command_print_sameline(NULL, " ");
4986 break;
4987 case 1:
4988 default:
4989 for (x = 0 ; (x < 16) && (x < y) ; x += 1) {
4990 z = target_buffer_get_u8(target, &(target_buf[x]));
4991 command_print_sameline(NULL, "%02x ", (int)(z));
4993 for (; (x < 16) ; x += 1)
4994 command_print_sameline(NULL, " ");
4995 break;
4997 /* ascii-ify the bytes */
4998 for (x = 0 ; x < y ; x++) {
4999 if ((target_buf[x] >= 0x20) &&
5000 (target_buf[x] <= 0x7e)) {
5001 /* good */
5002 } else {
5003 /* smack it */
5004 target_buf[x] = '.';
5007 /* space pad */
5008 while (x < 16) {
5009 target_buf[x] = ' ';
5010 x++;
5012 /* terminate */
5013 target_buf[16] = 0;
5014 /* print - with a newline */
5015 command_print_sameline(NULL, "%s\n", target_buf);
5016 /* NEXT... */
5017 bytes -= 16;
5018 addr += 16;
5020 return JIM_OK;
5023 static int jim_target_mem2array(Jim_Interp *interp,
5024 int argc, Jim_Obj *const *argv)
5026 struct target *target = Jim_CmdPrivData(interp);
5027 return target_mem2array(interp, target, argc - 1, argv + 1);
5030 static int jim_target_array2mem(Jim_Interp *interp,
5031 int argc, Jim_Obj *const *argv)
5033 struct target *target = Jim_CmdPrivData(interp);
5034 return target_array2mem(interp, target, argc - 1, argv + 1);
5037 static int jim_target_tap_disabled(Jim_Interp *interp)
5039 Jim_SetResultFormatted(interp, "[TAP is disabled]");
5040 return JIM_ERR;
5043 static int jim_target_examine(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5045 bool allow_defer = false;
5047 Jim_GetOptInfo goi;
5048 Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
5049 if (goi.argc > 1) {
5050 const char *cmd_name = Jim_GetString(argv[0], NULL);
5051 Jim_SetResultFormatted(goi.interp,
5052 "usage: %s ['allow-defer']", cmd_name);
5053 return JIM_ERR;
5055 if (goi.argc > 0 &&
5056 strcmp(Jim_GetString(argv[1], NULL), "allow-defer") == 0) {
5057 /* consume it */
5058 struct Jim_Obj *obj;
5059 int e = Jim_GetOpt_Obj(&goi, &obj);
5060 if (e != JIM_OK)
5061 return e;
5062 allow_defer = true;
5065 struct target *target = Jim_CmdPrivData(interp);
5066 if (!target->tap->enabled)
5067 return jim_target_tap_disabled(interp);
5069 if (allow_defer && target->defer_examine) {
5070 LOG_INFO("Deferring arp_examine of %s", target_name(target));
5071 LOG_INFO("Use arp_examine command to examine it manually!");
5072 return JIM_OK;
5075 int e = target->type->examine(target);
5076 if (e != ERROR_OK)
5077 return JIM_ERR;
5078 return JIM_OK;
5081 static int jim_target_was_examined(Jim_Interp *interp, int argc, Jim_Obj * const *argv)
5083 struct target *target = Jim_CmdPrivData(interp);
5085 Jim_SetResultBool(interp, target_was_examined(target));
5086 return JIM_OK;
5089 static int jim_target_examine_deferred(Jim_Interp *interp, int argc, Jim_Obj * const *argv)
5091 struct target *target = Jim_CmdPrivData(interp);
5093 Jim_SetResultBool(interp, target->defer_examine);
5094 return JIM_OK;
5097 static int jim_target_halt_gdb(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5099 if (argc != 1) {
5100 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
5101 return JIM_ERR;
5103 struct target *target = Jim_CmdPrivData(interp);
5105 if (target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT) != ERROR_OK)
5106 return JIM_ERR;
5108 return JIM_OK;
5111 static int jim_target_poll(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5113 if (argc != 1) {
5114 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
5115 return JIM_ERR;
5117 struct target *target = Jim_CmdPrivData(interp);
5118 if (!target->tap->enabled)
5119 return jim_target_tap_disabled(interp);
5121 int e;
5122 if (!(target_was_examined(target)))
5123 e = ERROR_TARGET_NOT_EXAMINED;
5124 else
5125 e = target->type->poll(target);
5126 if (e != ERROR_OK)
5127 return JIM_ERR;
5128 return JIM_OK;
5131 static int jim_target_reset(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5133 Jim_GetOptInfo goi;
5134 Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
5136 if (goi.argc != 2) {
5137 Jim_WrongNumArgs(interp, 0, argv,
5138 "([tT]|[fF]|assert|deassert) BOOL");
5139 return JIM_ERR;
5142 Jim_Nvp *n;
5143 int e = Jim_GetOpt_Nvp(&goi, nvp_assert, &n);
5144 if (e != JIM_OK) {
5145 Jim_GetOpt_NvpUnknown(&goi, nvp_assert, 1);
5146 return e;
5148 /* the halt or not param */
5149 jim_wide a;
5150 e = Jim_GetOpt_Wide(&goi, &a);
5151 if (e != JIM_OK)
5152 return e;
5154 struct target *target = Jim_CmdPrivData(goi.interp);
5155 if (!target->tap->enabled)
5156 return jim_target_tap_disabled(interp);
5158 if (!target->type->assert_reset || !target->type->deassert_reset) {
5159 Jim_SetResultFormatted(interp,
5160 "No target-specific reset for %s",
5161 target_name(target));
5162 return JIM_ERR;
5165 if (target->defer_examine)
5166 target_reset_examined(target);
5168 /* determine if we should halt or not. */
5169 target->reset_halt = !!a;
5170 /* When this happens - all workareas are invalid. */
5171 target_free_all_working_areas_restore(target, 0);
5173 /* do the assert */
5174 if (n->value == NVP_ASSERT)
5175 e = target->type->assert_reset(target);
5176 else
5177 e = target->type->deassert_reset(target);
5178 return (e == ERROR_OK) ? JIM_OK : JIM_ERR;
5181 static int jim_target_halt(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5183 if (argc != 1) {
5184 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
5185 return JIM_ERR;
5187 struct target *target = Jim_CmdPrivData(interp);
5188 if (!target->tap->enabled)
5189 return jim_target_tap_disabled(interp);
5190 int e = target->type->halt(target);
5191 return (e == ERROR_OK) ? JIM_OK : JIM_ERR;
5194 static int jim_target_wait_state(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5196 Jim_GetOptInfo goi;
5197 Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
5199 /* params: <name> statename timeoutmsecs */
5200 if (goi.argc != 2) {
5201 const char *cmd_name = Jim_GetString(argv[0], NULL);
5202 Jim_SetResultFormatted(goi.interp,
5203 "%s <state_name> <timeout_in_msec>", cmd_name);
5204 return JIM_ERR;
5207 Jim_Nvp *n;
5208 int e = Jim_GetOpt_Nvp(&goi, nvp_target_state, &n);
5209 if (e != JIM_OK) {
5210 Jim_GetOpt_NvpUnknown(&goi, nvp_target_state, 1);
5211 return e;
5213 jim_wide a;
5214 e = Jim_GetOpt_Wide(&goi, &a);
5215 if (e != JIM_OK)
5216 return e;
5217 struct target *target = Jim_CmdPrivData(interp);
5218 if (!target->tap->enabled)
5219 return jim_target_tap_disabled(interp);
5221 e = target_wait_state(target, n->value, a);
5222 if (e != ERROR_OK) {
5223 Jim_Obj *eObj = Jim_NewIntObj(interp, e);
5224 Jim_SetResultFormatted(goi.interp,
5225 "target: %s wait %s fails (%#s) %s",
5226 target_name(target), n->name,
5227 eObj, target_strerror_safe(e));
5228 Jim_FreeNewObj(interp, eObj);
5229 return JIM_ERR;
5231 return JIM_OK;
5233 /* List for human, Events defined for this target.
5234 * scripts/programs should use 'name cget -event NAME'
5236 static int jim_target_event_list(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5238 struct command_context *cmd_ctx = current_command_context(interp);
5239 assert(cmd_ctx != NULL);
5241 struct target *target = Jim_CmdPrivData(interp);
5242 struct target_event_action *teap = target->event_action;
5243 command_print(cmd_ctx, "Event actions for target (%d) %s\n",
5244 target->target_number,
5245 target_name(target));
5246 command_print(cmd_ctx, "%-25s | Body", "Event");
5247 command_print(cmd_ctx, "------------------------- | "
5248 "----------------------------------------");
5249 while (teap) {
5250 Jim_Nvp *opt = Jim_Nvp_value2name_simple(nvp_target_event, teap->event);
5251 command_print(cmd_ctx, "%-25s | %s",
5252 opt->name, Jim_GetString(teap->body, NULL));
5253 teap = teap->next;
5255 command_print(cmd_ctx, "***END***");
5256 return JIM_OK;
5258 static int jim_target_current_state(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5260 if (argc != 1) {
5261 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
5262 return JIM_ERR;
5264 struct target *target = Jim_CmdPrivData(interp);
5265 Jim_SetResultString(interp, target_state_name(target), -1);
5266 return JIM_OK;
5268 static int jim_target_invoke_event(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5270 Jim_GetOptInfo goi;
5271 Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
5272 if (goi.argc != 1) {
5273 const char *cmd_name = Jim_GetString(argv[0], NULL);
5274 Jim_SetResultFormatted(goi.interp, "%s <eventname>", cmd_name);
5275 return JIM_ERR;
5277 Jim_Nvp *n;
5278 int e = Jim_GetOpt_Nvp(&goi, nvp_target_event, &n);
5279 if (e != JIM_OK) {
5280 Jim_GetOpt_NvpUnknown(&goi, nvp_target_event, 1);
5281 return e;
5283 struct target *target = Jim_CmdPrivData(interp);
5284 target_handle_event(target, n->value);
5285 return JIM_OK;
5288 static const struct command_registration target_instance_command_handlers[] = {
5290 .name = "configure",
5291 .mode = COMMAND_CONFIG,
5292 .jim_handler = jim_target_configure,
5293 .help = "configure a new target for use",
5294 .usage = "[target_attribute ...]",
5297 .name = "cget",
5298 .mode = COMMAND_ANY,
5299 .jim_handler = jim_target_configure,
5300 .help = "returns the specified target attribute",
5301 .usage = "target_attribute",
5304 .name = "mww",
5305 .mode = COMMAND_EXEC,
5306 .jim_handler = jim_target_mw,
5307 .help = "Write 32-bit word(s) to target memory",
5308 .usage = "address data [count]",
5311 .name = "mwh",
5312 .mode = COMMAND_EXEC,
5313 .jim_handler = jim_target_mw,
5314 .help = "Write 16-bit half-word(s) to target memory",
5315 .usage = "address data [count]",
5318 .name = "mwb",
5319 .mode = COMMAND_EXEC,
5320 .jim_handler = jim_target_mw,
5321 .help = "Write byte(s) to target memory",
5322 .usage = "address data [count]",
5325 .name = "mdw",
5326 .mode = COMMAND_EXEC,
5327 .jim_handler = jim_target_md,
5328 .help = "Display target memory as 32-bit words",
5329 .usage = "address [count]",
5332 .name = "mdh",
5333 .mode = COMMAND_EXEC,
5334 .jim_handler = jim_target_md,
5335 .help = "Display target memory as 16-bit half-words",
5336 .usage = "address [count]",
5339 .name = "mdb",
5340 .mode = COMMAND_EXEC,
5341 .jim_handler = jim_target_md,
5342 .help = "Display target memory as 8-bit bytes",
5343 .usage = "address [count]",
5346 .name = "array2mem",
5347 .mode = COMMAND_EXEC,
5348 .jim_handler = jim_target_array2mem,
5349 .help = "Writes Tcl array of 8/16/32 bit numbers "
5350 "to target memory",
5351 .usage = "arrayname bitwidth address count",
5354 .name = "mem2array",
5355 .mode = COMMAND_EXEC,
5356 .jim_handler = jim_target_mem2array,
5357 .help = "Loads Tcl array of 8/16/32 bit numbers "
5358 "from target memory",
5359 .usage = "arrayname bitwidth address count",
5362 .name = "eventlist",
5363 .mode = COMMAND_EXEC,
5364 .jim_handler = jim_target_event_list,
5365 .help = "displays a table of events defined for this target",
5368 .name = "curstate",
5369 .mode = COMMAND_EXEC,
5370 .jim_handler = jim_target_current_state,
5371 .help = "displays the current state of this target",
5374 .name = "arp_examine",
5375 .mode = COMMAND_EXEC,
5376 .jim_handler = jim_target_examine,
5377 .help = "used internally for reset processing",
5378 .usage = "arp_examine ['allow-defer']",
5381 .name = "was_examined",
5382 .mode = COMMAND_EXEC,
5383 .jim_handler = jim_target_was_examined,
5384 .help = "used internally for reset processing",
5385 .usage = "was_examined",
5388 .name = "examine_deferred",
5389 .mode = COMMAND_EXEC,
5390 .jim_handler = jim_target_examine_deferred,
5391 .help = "used internally for reset processing",
5392 .usage = "examine_deferred",
5395 .name = "arp_halt_gdb",
5396 .mode = COMMAND_EXEC,
5397 .jim_handler = jim_target_halt_gdb,
5398 .help = "used internally for reset processing to halt GDB",
5401 .name = "arp_poll",
5402 .mode = COMMAND_EXEC,
5403 .jim_handler = jim_target_poll,
5404 .help = "used internally for reset processing",
5407 .name = "arp_reset",
5408 .mode = COMMAND_EXEC,
5409 .jim_handler = jim_target_reset,
5410 .help = "used internally for reset processing",
5413 .name = "arp_halt",
5414 .mode = COMMAND_EXEC,
5415 .jim_handler = jim_target_halt,
5416 .help = "used internally for reset processing",
5419 .name = "arp_waitstate",
5420 .mode = COMMAND_EXEC,
5421 .jim_handler = jim_target_wait_state,
5422 .help = "used internally for reset processing",
5425 .name = "invoke-event",
5426 .mode = COMMAND_EXEC,
5427 .jim_handler = jim_target_invoke_event,
5428 .help = "invoke handler for specified event",
5429 .usage = "event_name",
5431 COMMAND_REGISTRATION_DONE
5434 static int target_create(Jim_GetOptInfo *goi)
5436 Jim_Obj *new_cmd;
5437 Jim_Cmd *cmd;
5438 const char *cp;
5439 int e;
5440 int x;
5441 struct target *target;
5442 struct command_context *cmd_ctx;
5444 cmd_ctx = current_command_context(goi->interp);
5445 assert(cmd_ctx != NULL);
5447 if (goi->argc < 3) {
5448 Jim_WrongNumArgs(goi->interp, 1, goi->argv, "?name? ?type? ..options...");
5449 return JIM_ERR;
5452 /* COMMAND */
5453 Jim_GetOpt_Obj(goi, &new_cmd);
5454 /* does this command exist? */
5455 cmd = Jim_GetCommand(goi->interp, new_cmd, JIM_ERRMSG);
5456 if (cmd) {
5457 cp = Jim_GetString(new_cmd, NULL);
5458 Jim_SetResultFormatted(goi->interp, "Command/target: %s Exists", cp);
5459 return JIM_ERR;
5462 /* TYPE */
5463 e = Jim_GetOpt_String(goi, &cp, NULL);
5464 if (e != JIM_OK)
5465 return e;
5466 struct transport *tr = get_current_transport();
5467 if (tr->override_target) {
5468 e = tr->override_target(&cp);
5469 if (e != ERROR_OK) {
5470 LOG_ERROR("The selected transport doesn't support this target");
5471 return JIM_ERR;
5473 LOG_INFO("The selected transport took over low-level target control. The results might differ compared to plain JTAG/SWD");
5475 /* now does target type exist */
5476 for (x = 0 ; target_types[x] ; x++) {
5477 if (0 == strcmp(cp, target_types[x]->name)) {
5478 /* found */
5479 break;
5482 /* check for deprecated name */
5483 if (target_types[x]->deprecated_name) {
5484 if (0 == strcmp(cp, target_types[x]->deprecated_name)) {
5485 /* found */
5486 LOG_WARNING("target name is deprecated use: \'%s\'", target_types[x]->name);
5487 break;
5491 if (target_types[x] == NULL) {
5492 Jim_SetResultFormatted(goi->interp, "Unknown target type %s, try one of ", cp);
5493 for (x = 0 ; target_types[x] ; x++) {
5494 if (target_types[x + 1]) {
5495 Jim_AppendStrings(goi->interp,
5496 Jim_GetResult(goi->interp),
5497 target_types[x]->name,
5498 ", ", NULL);
5499 } else {
5500 Jim_AppendStrings(goi->interp,
5501 Jim_GetResult(goi->interp),
5502 " or ",
5503 target_types[x]->name, NULL);
5506 return JIM_ERR;
5509 /* Create it */
5510 target = calloc(1, sizeof(struct target));
5511 /* set target number */
5512 target->target_number = new_target_number();
5513 cmd_ctx->current_target = target->target_number;
5515 /* allocate memory for each unique target type */
5516 target->type = calloc(1, sizeof(struct target_type));
5518 memcpy(target->type, target_types[x], sizeof(struct target_type));
5520 /* will be set by "-endian" */
5521 target->endianness = TARGET_ENDIAN_UNKNOWN;
5523 /* default to first core, override with -coreid */
5524 target->coreid = 0;
5526 target->working_area = 0x0;
5527 target->working_area_size = 0x0;
5528 target->working_areas = NULL;
5529 target->backup_working_area = 0;
5531 target->state = TARGET_UNKNOWN;
5532 target->debug_reason = DBG_REASON_UNDEFINED;
5533 target->reg_cache = NULL;
5534 target->breakpoints = NULL;
5535 target->watchpoints = NULL;
5536 target->next = NULL;
5537 target->arch_info = NULL;
5539 target->display = 1;
5541 target->halt_issued = false;
5543 /* initialize trace information */
5544 target->trace_info = calloc(1, sizeof(struct trace));
5546 target->dbgmsg = NULL;
5547 target->dbg_msg_enabled = 0;
5549 target->endianness = TARGET_ENDIAN_UNKNOWN;
5551 target->rtos = NULL;
5552 target->rtos_auto_detect = false;
5554 /* Do the rest as "configure" options */
5555 goi->isconfigure = 1;
5556 e = target_configure(goi, target);
5558 if (target->tap == NULL) {
5559 Jim_SetResultString(goi->interp, "-chain-position required when creating target", -1);
5560 e = JIM_ERR;
5563 if (e != JIM_OK) {
5564 free(target->type);
5565 free(target);
5566 return e;
5569 if (target->endianness == TARGET_ENDIAN_UNKNOWN) {
5570 /* default endian to little if not specified */
5571 target->endianness = TARGET_LITTLE_ENDIAN;
5574 cp = Jim_GetString(new_cmd, NULL);
5575 target->cmd_name = strdup(cp);
5577 /* create the target specific commands */
5578 if (target->type->commands) {
5579 e = register_commands(cmd_ctx, NULL, target->type->commands);
5580 if (ERROR_OK != e)
5581 LOG_ERROR("unable to register '%s' commands", cp);
5583 if (target->type->target_create)
5584 (*(target->type->target_create))(target, goi->interp);
5586 /* append to end of list */
5588 struct target **tpp;
5589 tpp = &(all_targets);
5590 while (*tpp)
5591 tpp = &((*tpp)->next);
5592 *tpp = target;
5595 /* now - create the new target name command */
5596 const struct command_registration target_subcommands[] = {
5598 .chain = target_instance_command_handlers,
5601 .chain = target->type->commands,
5603 COMMAND_REGISTRATION_DONE
5605 const struct command_registration target_commands[] = {
5607 .name = cp,
5608 .mode = COMMAND_ANY,
5609 .help = "target command group",
5610 .usage = "",
5611 .chain = target_subcommands,
5613 COMMAND_REGISTRATION_DONE
5615 e = register_commands(cmd_ctx, NULL, target_commands);
5616 if (ERROR_OK != e)
5617 return JIM_ERR;
5619 struct command *c = command_find_in_context(cmd_ctx, cp);
5620 assert(c);
5621 command_set_handler_data(c, target);
5623 return (ERROR_OK == e) ? JIM_OK : JIM_ERR;
5626 static int jim_target_current(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5628 if (argc != 1) {
5629 Jim_WrongNumArgs(interp, 1, argv, "Too many parameters");
5630 return JIM_ERR;
5632 struct command_context *cmd_ctx = current_command_context(interp);
5633 assert(cmd_ctx != NULL);
5635 Jim_SetResultString(interp, target_name(get_current_target(cmd_ctx)), -1);
5636 return JIM_OK;
5639 static int jim_target_types(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5641 if (argc != 1) {
5642 Jim_WrongNumArgs(interp, 1, argv, "Too many parameters");
5643 return JIM_ERR;
5645 Jim_SetResult(interp, Jim_NewListObj(interp, NULL, 0));
5646 for (unsigned x = 0; NULL != target_types[x]; x++) {
5647 Jim_ListAppendElement(interp, Jim_GetResult(interp),
5648 Jim_NewStringObj(interp, target_types[x]->name, -1));
5650 return JIM_OK;
5653 static int jim_target_names(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5655 if (argc != 1) {
5656 Jim_WrongNumArgs(interp, 1, argv, "Too many parameters");
5657 return JIM_ERR;
5659 Jim_SetResult(interp, Jim_NewListObj(interp, NULL, 0));
5660 struct target *target = all_targets;
5661 while (target) {
5662 Jim_ListAppendElement(interp, Jim_GetResult(interp),
5663 Jim_NewStringObj(interp, target_name(target), -1));
5664 target = target->next;
5666 return JIM_OK;
5669 static int jim_target_smp(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5671 int i;
5672 const char *targetname;
5673 int retval, len;
5674 struct target *target = (struct target *) NULL;
5675 struct target_list *head, *curr, *new;
5676 curr = (struct target_list *) NULL;
5677 head = (struct target_list *) NULL;
5679 retval = 0;
5680 LOG_DEBUG("%d", argc);
5681 /* argv[1] = target to associate in smp
5682 * argv[2] = target to assoicate in smp
5683 * argv[3] ...
5686 for (i = 1; i < argc; i++) {
5688 targetname = Jim_GetString(argv[i], &len);
5689 target = get_target(targetname);
5690 LOG_DEBUG("%s ", targetname);
5691 if (target) {
5692 new = malloc(sizeof(struct target_list));
5693 new->target = target;
5694 new->next = (struct target_list *)NULL;
5695 if (head == (struct target_list *)NULL) {
5696 head = new;
5697 curr = head;
5698 } else {
5699 curr->next = new;
5700 curr = new;
5704 /* now parse the list of cpu and put the target in smp mode*/
5705 curr = head;
5707 while (curr != (struct target_list *)NULL) {
5708 target = curr->target;
5709 target->smp = 1;
5710 target->head = head;
5711 curr = curr->next;
5714 if (target && target->rtos)
5715 retval = rtos_smp_init(head->target);
5717 return retval;
5721 static int jim_target_create(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5723 Jim_GetOptInfo goi;
5724 Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
5725 if (goi.argc < 3) {
5726 Jim_WrongNumArgs(goi.interp, goi.argc, goi.argv,
5727 "<name> <target_type> [<target_options> ...]");
5728 return JIM_ERR;
5730 return target_create(&goi);
5733 static const struct command_registration target_subcommand_handlers[] = {
5735 .name = "init",
5736 .mode = COMMAND_CONFIG,
5737 .handler = handle_target_init_command,
5738 .help = "initialize targets",
5741 .name = "create",
5742 /* REVISIT this should be COMMAND_CONFIG ... */
5743 .mode = COMMAND_ANY,
5744 .jim_handler = jim_target_create,
5745 .usage = "name type '-chain-position' name [options ...]",
5746 .help = "Creates and selects a new target",
5749 .name = "current",
5750 .mode = COMMAND_ANY,
5751 .jim_handler = jim_target_current,
5752 .help = "Returns the currently selected target",
5755 .name = "types",
5756 .mode = COMMAND_ANY,
5757 .jim_handler = jim_target_types,
5758 .help = "Returns the available target types as "
5759 "a list of strings",
5762 .name = "names",
5763 .mode = COMMAND_ANY,
5764 .jim_handler = jim_target_names,
5765 .help = "Returns the names of all targets as a list of strings",
5768 .name = "smp",
5769 .mode = COMMAND_ANY,
5770 .jim_handler = jim_target_smp,
5771 .usage = "targetname1 targetname2 ...",
5772 .help = "gather several target in a smp list"
5775 COMMAND_REGISTRATION_DONE
5778 struct FastLoad {
5779 target_addr_t address;
5780 uint8_t *data;
5781 int length;
5785 static int fastload_num;
5786 static struct FastLoad *fastload;
5788 static void free_fastload(void)
5790 if (fastload != NULL) {
5791 int i;
5792 for (i = 0; i < fastload_num; i++) {
5793 if (fastload[i].data)
5794 free(fastload[i].data);
5796 free(fastload);
5797 fastload = NULL;
5801 COMMAND_HANDLER(handle_fast_load_image_command)
5803 uint8_t *buffer;
5804 size_t buf_cnt;
5805 uint32_t image_size;
5806 target_addr_t min_address = 0;
5807 target_addr_t max_address = -1;
5808 int i;
5810 struct image image;
5812 int retval = CALL_COMMAND_HANDLER(parse_load_image_command_CMD_ARGV,
5813 &image, &min_address, &max_address);
5814 if (ERROR_OK != retval)
5815 return retval;
5817 struct duration bench;
5818 duration_start(&bench);
5820 retval = image_open(&image, CMD_ARGV[0], (CMD_ARGC >= 3) ? CMD_ARGV[2] : NULL);
5821 if (retval != ERROR_OK)
5822 return retval;
5824 image_size = 0x0;
5825 retval = ERROR_OK;
5826 fastload_num = image.num_sections;
5827 fastload = malloc(sizeof(struct FastLoad)*image.num_sections);
5828 if (fastload == NULL) {
5829 command_print(CMD_CTX, "out of memory");
5830 image_close(&image);
5831 return ERROR_FAIL;
5833 memset(fastload, 0, sizeof(struct FastLoad)*image.num_sections);
5834 for (i = 0; i < image.num_sections; i++) {
5835 buffer = malloc(image.sections[i].size);
5836 if (buffer == NULL) {
5837 command_print(CMD_CTX, "error allocating buffer for section (%d bytes)",
5838 (int)(image.sections[i].size));
5839 retval = ERROR_FAIL;
5840 break;
5843 retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt);
5844 if (retval != ERROR_OK) {
5845 free(buffer);
5846 break;
5849 uint32_t offset = 0;
5850 uint32_t length = buf_cnt;
5852 /* DANGER!!! beware of unsigned comparision here!!! */
5854 if ((image.sections[i].base_address + buf_cnt >= min_address) &&
5855 (image.sections[i].base_address < max_address)) {
5856 if (image.sections[i].base_address < min_address) {
5857 /* clip addresses below */
5858 offset += min_address-image.sections[i].base_address;
5859 length -= offset;
5862 if (image.sections[i].base_address + buf_cnt > max_address)
5863 length -= (image.sections[i].base_address + buf_cnt)-max_address;
5865 fastload[i].address = image.sections[i].base_address + offset;
5866 fastload[i].data = malloc(length);
5867 if (fastload[i].data == NULL) {
5868 free(buffer);
5869 command_print(CMD_CTX, "error allocating buffer for section (%" PRIu32 " bytes)",
5870 length);
5871 retval = ERROR_FAIL;
5872 break;
5874 memcpy(fastload[i].data, buffer + offset, length);
5875 fastload[i].length = length;
5877 image_size += length;
5878 command_print(CMD_CTX, "%u bytes written at address 0x%8.8x",
5879 (unsigned int)length,
5880 ((unsigned int)(image.sections[i].base_address + offset)));
5883 free(buffer);
5886 if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK)) {
5887 command_print(CMD_CTX, "Loaded %" PRIu32 " bytes "
5888 "in %fs (%0.3f KiB/s)", image_size,
5889 duration_elapsed(&bench), duration_kbps(&bench, image_size));
5891 command_print(CMD_CTX,
5892 "WARNING: image has not been loaded to target!"
5893 "You can issue a 'fast_load' to finish loading.");
5896 image_close(&image);
5898 if (retval != ERROR_OK)
5899 free_fastload();
5901 return retval;
5904 COMMAND_HANDLER(handle_fast_load_command)
5906 if (CMD_ARGC > 0)
5907 return ERROR_COMMAND_SYNTAX_ERROR;
5908 if (fastload == NULL) {
5909 LOG_ERROR("No image in memory");
5910 return ERROR_FAIL;
5912 int i;
5913 int64_t ms = timeval_ms();
5914 int size = 0;
5915 int retval = ERROR_OK;
5916 for (i = 0; i < fastload_num; i++) {
5917 struct target *target = get_current_target(CMD_CTX);
5918 command_print(CMD_CTX, "Write to 0x%08x, length 0x%08x",
5919 (unsigned int)(fastload[i].address),
5920 (unsigned int)(fastload[i].length));
5921 retval = target_write_buffer(target, fastload[i].address, fastload[i].length, fastload[i].data);
5922 if (retval != ERROR_OK)
5923 break;
5924 size += fastload[i].length;
5926 if (retval == ERROR_OK) {
5927 int64_t after = timeval_ms();
5928 command_print(CMD_CTX, "Loaded image %f kBytes/s", (float)(size/1024.0)/((float)(after-ms)/1000.0));
5930 return retval;
5933 static const struct command_registration target_command_handlers[] = {
5935 .name = "targets",
5936 .handler = handle_targets_command,
5937 .mode = COMMAND_ANY,
5938 .help = "change current default target (one parameter) "
5939 "or prints table of all targets (no parameters)",
5940 .usage = "[target]",
5943 .name = "target",
5944 .mode = COMMAND_CONFIG,
5945 .help = "configure target",
5947 .chain = target_subcommand_handlers,
5949 COMMAND_REGISTRATION_DONE
5952 int target_register_commands(struct command_context *cmd_ctx)
5954 return register_commands(cmd_ctx, NULL, target_command_handlers);
5957 static bool target_reset_nag = true;
5959 bool get_target_reset_nag(void)
5961 return target_reset_nag;
5964 COMMAND_HANDLER(handle_target_reset_nag)
5966 return CALL_COMMAND_HANDLER(handle_command_parse_bool,
5967 &target_reset_nag, "Nag after each reset about options to improve "
5968 "performance");
5971 COMMAND_HANDLER(handle_ps_command)
5973 struct target *target = get_current_target(CMD_CTX);
5974 char *display;
5975 if (target->state != TARGET_HALTED) {
5976 LOG_INFO("target not halted !!");
5977 return ERROR_OK;
5980 if ((target->rtos) && (target->rtos->type)
5981 && (target->rtos->type->ps_command)) {
5982 display = target->rtos->type->ps_command(target);
5983 command_print(CMD_CTX, "%s", display);
5984 free(display);
5985 return ERROR_OK;
5986 } else {
5987 LOG_INFO("failed");
5988 return ERROR_TARGET_FAILURE;
5992 static void binprint(struct command_context *cmd_ctx, const char *text, const uint8_t *buf, int size)
5994 if (text != NULL)
5995 command_print_sameline(cmd_ctx, "%s", text);
5996 for (int i = 0; i < size; i++)
5997 command_print_sameline(cmd_ctx, " %02x", buf[i]);
5998 command_print(cmd_ctx, " ");
6001 COMMAND_HANDLER(handle_test_mem_access_command)
6003 struct target *target = get_current_target(CMD_CTX);
6004 uint32_t test_size;
6005 int retval = ERROR_OK;
6007 if (target->state != TARGET_HALTED) {
6008 LOG_INFO("target not halted !!");
6009 return ERROR_FAIL;
6012 if (CMD_ARGC != 1)
6013 return ERROR_COMMAND_SYNTAX_ERROR;
6015 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], test_size);
6017 /* Test reads */
6018 size_t num_bytes = test_size + 4;
6020 struct working_area *wa = NULL;
6021 retval = target_alloc_working_area(target, num_bytes, &wa);
6022 if (retval != ERROR_OK) {
6023 LOG_ERROR("Not enough working area");
6024 return ERROR_FAIL;
6027 uint8_t *test_pattern = malloc(num_bytes);
6029 for (size_t i = 0; i < num_bytes; i++)
6030 test_pattern[i] = rand();
6032 retval = target_write_memory(target, wa->address, 1, num_bytes, test_pattern);
6033 if (retval != ERROR_OK) {
6034 LOG_ERROR("Test pattern write failed");
6035 goto out;
6038 for (int host_offset = 0; host_offset <= 1; host_offset++) {
6039 for (int size = 1; size <= 4; size *= 2) {
6040 for (int offset = 0; offset < 4; offset++) {
6041 uint32_t count = test_size / size;
6042 size_t host_bufsiz = (count + 2) * size + host_offset;
6043 uint8_t *read_ref = malloc(host_bufsiz);
6044 uint8_t *read_buf = malloc(host_bufsiz);
6046 for (size_t i = 0; i < host_bufsiz; i++) {
6047 read_ref[i] = rand();
6048 read_buf[i] = read_ref[i];
6050 command_print_sameline(CMD_CTX,
6051 "Test read %" PRIu32 " x %d @ %d to %saligned buffer: ", count,
6052 size, offset, host_offset ? "un" : "");
6054 struct duration bench;
6055 duration_start(&bench);
6057 retval = target_read_memory(target, wa->address + offset, size, count,
6058 read_buf + size + host_offset);
6060 duration_measure(&bench);
6062 if (retval == ERROR_TARGET_UNALIGNED_ACCESS) {
6063 command_print(CMD_CTX, "Unsupported alignment");
6064 goto next;
6065 } else if (retval != ERROR_OK) {
6066 command_print(CMD_CTX, "Memory read failed");
6067 goto next;
6070 /* replay on host */
6071 memcpy(read_ref + size + host_offset, test_pattern + offset, count * size);
6073 /* check result */
6074 int result = memcmp(read_ref, read_buf, host_bufsiz);
6075 if (result == 0) {
6076 command_print(CMD_CTX, "Pass in %fs (%0.3f KiB/s)",
6077 duration_elapsed(&bench),
6078 duration_kbps(&bench, count * size));
6079 } else {
6080 command_print(CMD_CTX, "Compare failed");
6081 binprint(CMD_CTX, "ref:", read_ref, host_bufsiz);
6082 binprint(CMD_CTX, "buf:", read_buf, host_bufsiz);
6084 next:
6085 free(read_ref);
6086 free(read_buf);
6091 out:
6092 free(test_pattern);
6094 if (wa != NULL)
6095 target_free_working_area(target, wa);
6097 /* Test writes */
6098 num_bytes = test_size + 4 + 4 + 4;
6100 retval = target_alloc_working_area(target, num_bytes, &wa);
6101 if (retval != ERROR_OK) {
6102 LOG_ERROR("Not enough working area");
6103 return ERROR_FAIL;
6106 test_pattern = malloc(num_bytes);
6108 for (size_t i = 0; i < num_bytes; i++)
6109 test_pattern[i] = rand();
6111 for (int host_offset = 0; host_offset <= 1; host_offset++) {
6112 for (int size = 1; size <= 4; size *= 2) {
6113 for (int offset = 0; offset < 4; offset++) {
6114 uint32_t count = test_size / size;
6115 size_t host_bufsiz = count * size + host_offset;
6116 uint8_t *read_ref = malloc(num_bytes);
6117 uint8_t *read_buf = malloc(num_bytes);
6118 uint8_t *write_buf = malloc(host_bufsiz);
6120 for (size_t i = 0; i < host_bufsiz; i++)
6121 write_buf[i] = rand();
6122 command_print_sameline(CMD_CTX,
6123 "Test write %" PRIu32 " x %d @ %d from %saligned buffer: ", count,
6124 size, offset, host_offset ? "un" : "");
6126 retval = target_write_memory(target, wa->address, 1, num_bytes, test_pattern);
6127 if (retval != ERROR_OK) {
6128 command_print(CMD_CTX, "Test pattern write failed");
6129 goto nextw;
6132 /* replay on host */
6133 memcpy(read_ref, test_pattern, num_bytes);
6134 memcpy(read_ref + size + offset, write_buf + host_offset, count * size);
6136 struct duration bench;
6137 duration_start(&bench);
6139 retval = target_write_memory(target, wa->address + size + offset, size, count,
6140 write_buf + host_offset);
6142 duration_measure(&bench);
6144 if (retval == ERROR_TARGET_UNALIGNED_ACCESS) {
6145 command_print(CMD_CTX, "Unsupported alignment");
6146 goto nextw;
6147 } else if (retval != ERROR_OK) {
6148 command_print(CMD_CTX, "Memory write failed");
6149 goto nextw;
6152 /* read back */
6153 retval = target_read_memory(target, wa->address, 1, num_bytes, read_buf);
6154 if (retval != ERROR_OK) {
6155 command_print(CMD_CTX, "Test pattern write failed");
6156 goto nextw;
6159 /* check result */
6160 int result = memcmp(read_ref, read_buf, num_bytes);
6161 if (result == 0) {
6162 command_print(CMD_CTX, "Pass in %fs (%0.3f KiB/s)",
6163 duration_elapsed(&bench),
6164 duration_kbps(&bench, count * size));
6165 } else {
6166 command_print(CMD_CTX, "Compare failed");
6167 binprint(CMD_CTX, "ref:", read_ref, num_bytes);
6168 binprint(CMD_CTX, "buf:", read_buf, num_bytes);
6170 nextw:
6171 free(read_ref);
6172 free(read_buf);
6177 free(test_pattern);
6179 if (wa != NULL)
6180 target_free_working_area(target, wa);
6181 return retval;
6184 static const struct command_registration target_exec_command_handlers[] = {
6186 .name = "fast_load_image",
6187 .handler = handle_fast_load_image_command,
6188 .mode = COMMAND_ANY,
6189 .help = "Load image into server memory for later use by "
6190 "fast_load; primarily for profiling",
6191 .usage = "filename address ['bin'|'ihex'|'elf'|'s19'] "
6192 "[min_address [max_length]]",
6195 .name = "fast_load",
6196 .handler = handle_fast_load_command,
6197 .mode = COMMAND_EXEC,
6198 .help = "loads active fast load image to current target "
6199 "- mainly for profiling purposes",
6200 .usage = "",
6203 .name = "profile",
6204 .handler = handle_profile_command,
6205 .mode = COMMAND_EXEC,
6206 .usage = "seconds filename [start end]",
6207 .help = "profiling samples the CPU PC",
6209 /** @todo don't register virt2phys() unless target supports it */
6211 .name = "virt2phys",
6212 .handler = handle_virt2phys_command,
6213 .mode = COMMAND_ANY,
6214 .help = "translate a virtual address into a physical address",
6215 .usage = "virtual_address",
6218 .name = "reg",
6219 .handler = handle_reg_command,
6220 .mode = COMMAND_EXEC,
6221 .help = "display (reread from target with \"force\") or set a register; "
6222 "with no arguments, displays all registers and their values",
6223 .usage = "[(register_number|register_name) [(value|'force')]]",
6226 .name = "poll",
6227 .handler = handle_poll_command,
6228 .mode = COMMAND_EXEC,
6229 .help = "poll target state; or reconfigure background polling",
6230 .usage = "['on'|'off']",
6233 .name = "wait_halt",
6234 .handler = handle_wait_halt_command,
6235 .mode = COMMAND_EXEC,
6236 .help = "wait up to the specified number of milliseconds "
6237 "(default 5000) for a previously requested halt",
6238 .usage = "[milliseconds]",
6241 .name = "halt",
6242 .handler = handle_halt_command,
6243 .mode = COMMAND_EXEC,
6244 .help = "request target to halt, then wait up to the specified"
6245 "number of milliseconds (default 5000) for it to complete",
6246 .usage = "[milliseconds]",
6249 .name = "resume",
6250 .handler = handle_resume_command,
6251 .mode = COMMAND_EXEC,
6252 .help = "resume target execution from current PC or address",
6253 .usage = "[address]",
6256 .name = "reset",
6257 .handler = handle_reset_command,
6258 .mode = COMMAND_EXEC,
6259 .usage = "[run|halt|init]",
6260 .help = "Reset all targets into the specified mode."
6261 "Default reset mode is run, if not given.",
6264 .name = "soft_reset_halt",
6265 .handler = handle_soft_reset_halt_command,
6266 .mode = COMMAND_EXEC,
6267 .usage = "",
6268 .help = "halt the target and do a soft reset",
6271 .name = "step",
6272 .handler = handle_step_command,
6273 .mode = COMMAND_EXEC,
6274 .help = "step one instruction from current PC or address",
6275 .usage = "[address]",
6278 .name = "mdd",
6279 .handler = handle_md_command,
6280 .mode = COMMAND_EXEC,
6281 .help = "display memory words",
6282 .usage = "['phys'] address [count]",
6285 .name = "mdw",
6286 .handler = handle_md_command,
6287 .mode = COMMAND_EXEC,
6288 .help = "display memory words",
6289 .usage = "['phys'] address [count]",
6292 .name = "mdh",
6293 .handler = handle_md_command,
6294 .mode = COMMAND_EXEC,
6295 .help = "display memory half-words",
6296 .usage = "['phys'] address [count]",
6299 .name = "mdb",
6300 .handler = handle_md_command,
6301 .mode = COMMAND_EXEC,
6302 .help = "display memory bytes",
6303 .usage = "['phys'] address [count]",
6306 .name = "mwd",
6307 .handler = handle_mw_command,
6308 .mode = COMMAND_EXEC,
6309 .help = "write memory word",
6310 .usage = "['phys'] address value [count]",
6313 .name = "mww",
6314 .handler = handle_mw_command,
6315 .mode = COMMAND_EXEC,
6316 .help = "write memory word",
6317 .usage = "['phys'] address value [count]",
6320 .name = "mwh",
6321 .handler = handle_mw_command,
6322 .mode = COMMAND_EXEC,
6323 .help = "write memory half-word",
6324 .usage = "['phys'] address value [count]",
6327 .name = "mwb",
6328 .handler = handle_mw_command,
6329 .mode = COMMAND_EXEC,
6330 .help = "write memory byte",
6331 .usage = "['phys'] address value [count]",
6334 .name = "bp",
6335 .handler = handle_bp_command,
6336 .mode = COMMAND_EXEC,
6337 .help = "list or set hardware or software breakpoint",
6338 .usage = "<address> [<asid>]<length> ['hw'|'hw_ctx']",
6341 .name = "rbp",
6342 .handler = handle_rbp_command,
6343 .mode = COMMAND_EXEC,
6344 .help = "remove breakpoint",
6345 .usage = "address",
6348 .name = "wp",
6349 .handler = handle_wp_command,
6350 .mode = COMMAND_EXEC,
6351 .help = "list (no params) or create watchpoints",
6352 .usage = "[address length [('r'|'w'|'a') value [mask]]]",
6355 .name = "rwp",
6356 .handler = handle_rwp_command,
6357 .mode = COMMAND_EXEC,
6358 .help = "remove watchpoint",
6359 .usage = "address",
6362 .name = "load_image",
6363 .handler = handle_load_image_command,
6364 .mode = COMMAND_EXEC,
6365 .usage = "filename address ['bin'|'ihex'|'elf'|'s19'] "
6366 "[min_address] [max_length]",
6369 .name = "dump_image",
6370 .handler = handle_dump_image_command,
6371 .mode = COMMAND_EXEC,
6372 .usage = "filename address size",
6375 .name = "verify_image_checksum",
6376 .handler = handle_verify_image_checksum_command,
6377 .mode = COMMAND_EXEC,
6378 .usage = "filename [offset [type]]",
6381 .name = "verify_image",
6382 .handler = handle_verify_image_command,
6383 .mode = COMMAND_EXEC,
6384 .usage = "filename [offset [type]]",
6387 .name = "test_image",
6388 .handler = handle_test_image_command,
6389 .mode = COMMAND_EXEC,
6390 .usage = "filename [offset [type]]",
6393 .name = "mem2array",
6394 .mode = COMMAND_EXEC,
6395 .jim_handler = jim_mem2array,
6396 .help = "read 8/16/32 bit memory and return as a TCL array "
6397 "for script processing",
6398 .usage = "arrayname bitwidth address count",
6401 .name = "array2mem",
6402 .mode = COMMAND_EXEC,
6403 .jim_handler = jim_array2mem,
6404 .help = "convert a TCL array to memory locations "
6405 "and write the 8/16/32 bit values",
6406 .usage = "arrayname bitwidth address count",
6409 .name = "reset_nag",
6410 .handler = handle_target_reset_nag,
6411 .mode = COMMAND_ANY,
6412 .help = "Nag after each reset about options that could have been "
6413 "enabled to improve performance. ",
6414 .usage = "['enable'|'disable']",
6417 .name = "ps",
6418 .handler = handle_ps_command,
6419 .mode = COMMAND_EXEC,
6420 .help = "list all tasks ",
6421 .usage = " ",
6424 .name = "test_mem_access",
6425 .handler = handle_test_mem_access_command,
6426 .mode = COMMAND_EXEC,
6427 .help = "Test the target's memory access functions",
6428 .usage = "size",
6431 COMMAND_REGISTRATION_DONE
6433 static int target_register_user_commands(struct command_context *cmd_ctx)
6435 int retval = ERROR_OK;
6436 retval = target_request_register_commands(cmd_ctx);
6437 if (retval != ERROR_OK)
6438 return retval;
6440 retval = trace_register_commands(cmd_ctx);
6441 if (retval != ERROR_OK)
6442 return retval;
6445 return register_commands(cmd_ctx, NULL, target_exec_command_handlers);