Use the square of the values when calculating the density gain
[openal-soft.git] / Alc / alcReverb.c
blob91e60a8c0b88b92bf0afc115ee34b756c4413daf
1 /**
2 * Reverb for the OpenAL cross platform audio library
3 * Copyright (C) 2008-2009 by Christopher Fitzgerald.
4 * This library is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU Library General Public
6 * License as published by the Free Software Foundation; either
7 * version 2 of the License, or (at your option) any later version.
9 * This library is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12 * Library General Public License for more details.
14 * You should have received a copy of the GNU Library General Public
15 * License along with this library; if not, write to the
16 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
17 * Boston, MA 02111-1307, USA.
18 * Or go to http://www.gnu.org/copyleft/lgpl.html
21 #include "config.h"
23 #include <math.h>
24 #include <stdlib.h>
26 #include "AL/al.h"
27 #include "AL/alc.h"
28 #include "alMain.h"
29 #include "alAuxEffectSlot.h"
30 #include "alEffect.h"
31 #include "alReverb.h"
33 #ifdef HAVE_SQRTF
34 #define aluSqrt(x) ((ALfloat)sqrtf((float)(x)))
35 #else
36 #define aluSqrt(x) ((ALfloat)sqrt((double)(x)))
37 #endif
39 // fixes for mingw32.
40 #if defined(max) && !defined(__max)
41 #define __max max
42 #endif
43 #if defined(min) && !defined(__min)
44 #define __min min
45 #endif
47 #ifndef M_PI
48 #define M_PI 3.14159265358979323846 /* pi */
49 #endif
51 typedef struct DelayLine
53 // The delay lines use sample lengths that are powers of 2 to allow
54 // bitmasking instead of modulus wrapping.
55 ALuint Mask;
56 ALfloat *Line;
57 } DelayLine;
59 struct ALverbState
61 // All delay lines are allocated as a single buffer to reduce memory
62 // fragmentation and management code.
63 ALfloat *SampleBuffer;
64 // Master effect gain.
65 ALfloat Gain;
66 // Initial effect delay and decorrelation.
67 DelayLine Delay;
68 // The tap points for the initial delay. First tap goes to early
69 // reflections, the last four decorrelate to late reverb.
70 ALuint Tap[5];
71 struct {
72 // Gain for early reflections.
73 ALfloat Gain;
74 // Early reflections are done with 4 delay lines.
75 ALfloat Coeff[4];
76 DelayLine Delay[4];
77 ALuint Offset[4];
78 } Early;
79 struct {
80 // Gain for late reverb.
81 ALfloat Gain;
82 // Attenuation to compensate for modal density and decay rate.
83 ALfloat DensityGain;
84 // The feed-back and feed-forward all-pass coefficient.
85 ALfloat ApFeedCoeff;
86 // Mixing matrix coefficient.
87 ALfloat MixCoeff;
88 // Late reverb has 4 parallel all-pass filters.
89 ALfloat ApCoeff[4];
90 DelayLine ApDelay[4];
91 ALuint ApOffset[4];
92 // In addition to 4 cyclical delay lines.
93 ALfloat Coeff[4];
94 DelayLine Delay[4];
95 ALuint Offset[4];
96 // The cyclical delay lines are low-pass filtered.
97 ALfloat LpCoeff[4][2];
98 ALfloat LpSample[4];
99 } Late;
100 // The current read offset for all delay lines.
101 ALuint Offset;
104 // All delay line lengths are specified in seconds.
106 // The lengths of the early delay lines.
107 static const ALfloat EARLY_LINE_LENGTH[4] =
109 0.0015f, 0.0045f, 0.0135f, 0.0405f
112 // The lengths of the late all-pass delay lines.
113 static const ALfloat ALLPASS_LINE_LENGTH[4] =
115 0.0151f, 0.0167f, 0.0183f, 0.0200f,
118 // The lengths of the late cyclical delay lines.
119 static const ALfloat LATE_LINE_LENGTH[4] =
121 0.0211f, 0.0311f, 0.0461f, 0.0680f
124 // The late cyclical delay lines have a variable length dependent on the
125 // effect's density parameter (inverted for some reason) and this multiplier.
126 static const ALfloat LATE_LINE_MULTIPLIER = 4.0f;
128 // Input into the late reverb is decorrelated between four channels. Their
129 // timings are dependent on a fraction and multiplier. See VerbUpdate() for
130 // the calculations involved.
131 static const ALfloat DECO_FRACTION = 1.0f / 32.0f;
132 static const ALfloat DECO_MULTIPLIER = 2.0f;
134 // The maximum length of initial delay for the master delay line (a sum of
135 // the maximum early reflection and late reverb delays).
136 static const ALfloat MASTER_LINE_LENGTH = 0.3f + 0.1f;
138 // Find the next power of 2. Actually, this will return the input value if
139 // it is already a power of 2.
140 static ALuint NextPowerOf2(ALuint value)
142 ALuint powerOf2 = 1;
144 if(value)
146 value--;
147 while(value)
149 value >>= 1;
150 powerOf2 <<= 1;
153 return powerOf2;
156 // Basic delay line input/output routines.
157 static __inline ALfloat DelayLineOut(DelayLine *Delay, ALuint offset)
159 return Delay->Line[offset&Delay->Mask];
162 static __inline ALvoid DelayLineIn(DelayLine *Delay, ALuint offset, ALfloat in)
164 Delay->Line[offset&Delay->Mask] = in;
167 // Delay line output routine for early reflections.
168 static __inline ALfloat EarlyDelayLineOut(ALverbState *State, ALuint index)
170 return State->Early.Coeff[index] *
171 DelayLineOut(&State->Early.Delay[index],
172 State->Offset - State->Early.Offset[index]);
175 // Given an input sample, this function produces stereo output for early
176 // reflections.
177 static __inline ALvoid EarlyReflection(ALverbState *State, ALfloat in, ALfloat *out)
179 ALfloat d[4], v, f[4];
181 // Obtain the decayed results of each early delay line.
182 d[0] = EarlyDelayLineOut(State, 0);
183 d[1] = EarlyDelayLineOut(State, 1);
184 d[2] = EarlyDelayLineOut(State, 2);
185 d[3] = EarlyDelayLineOut(State, 3);
187 /* The following uses a lossless scattering junction from waveguide
188 * theory. It actually amounts to a householder mixing matrix, which
189 * will produce a maximally diffuse response, and means this can probably
190 * be considered a simple feedback delay network (FDN).
192 * ---
194 * v = 2/N / d_i
195 * ---
196 * i=1
198 v = (d[0] + d[1] + d[2] + d[3]) * 0.5f;
199 // The junction is loaded with the input here.
200 v += in;
202 // Calculate the feed values for the delay lines.
203 f[0] = v - d[0];
204 f[1] = v - d[1];
205 f[2] = v - d[2];
206 f[3] = v - d[3];
208 // Refeed the delay lines.
209 DelayLineIn(&State->Early.Delay[0], State->Offset, f[0]);
210 DelayLineIn(&State->Early.Delay[1], State->Offset, f[1]);
211 DelayLineIn(&State->Early.Delay[2], State->Offset, f[2]);
212 DelayLineIn(&State->Early.Delay[3], State->Offset, f[3]);
214 // To decorrelate the output for stereo separation, the two outputs are
215 // obtained from the inner delay lines.
216 // Output is instant by using the inputs to them instead of taking the
217 // result of the two delay lines directly (f[0] and f[3] instead of d[1]
218 // and d[2]).
219 out[0] = State->Early.Gain * f[0];
220 out[1] = State->Early.Gain * f[3];
223 // All-pass input/output routine for late reverb.
224 static __inline ALfloat LateAllPassInOut(ALverbState *State, ALuint index, ALfloat in)
226 ALfloat out;
228 out = State->Late.ApCoeff[index] *
229 DelayLineOut(&State->Late.ApDelay[index],
230 State->Offset - State->Late.ApOffset[index]);
231 out -= (State->Late.ApFeedCoeff * in);
232 DelayLineIn(&State->Late.ApDelay[index], State->Offset,
233 (State->Late.ApFeedCoeff * out) + in);
234 return out;
237 // Delay line output routine for late reverb.
238 static __inline ALfloat LateDelayLineOut(ALverbState *State, ALuint index)
240 return State->Late.Coeff[index] *
241 DelayLineOut(&State->Late.Delay[index],
242 State->Offset - State->Late.Offset[index]);
245 // Low-pass filter input/output routine for late reverb.
246 static __inline ALfloat LateLowPassInOut(ALverbState *State, ALuint index, ALfloat in)
248 State->Late.LpSample[index] = (State->Late.LpCoeff[index][0] * in) +
249 (State->Late.LpCoeff[index][1] * State->Late.LpSample[index]);
250 return State->Late.LpSample[index];
253 // Given four decorrelated input samples, this function produces stereo
254 // output for late reverb.
255 static __inline ALvoid LateReverb(ALverbState *State, ALfloat *in, ALfloat *out)
257 ALfloat d[4], f[4];
259 // Obtain the decayed results of the cyclical delay lines, and add the
260 // corresponding input channels attenuated by density. Then pass the
261 // results through the low-pass filters.
262 d[0] = LateLowPassInOut(State, 0, (State->Late.DensityGain * in[0]) +
263 LateDelayLineOut(State, 0));
264 d[1] = LateLowPassInOut(State, 1, (State->Late.DensityGain * in[1]) +
265 LateDelayLineOut(State, 1));
266 d[2] = LateLowPassInOut(State, 2, (State->Late.DensityGain * in[2]) +
267 LateDelayLineOut(State, 2));
268 d[3] = LateLowPassInOut(State, 3, (State->Late.DensityGain * in[3]) +
269 LateDelayLineOut(State, 3));
271 // To help increase diffusion, run each line through an all-pass filter.
272 // The order of the all-pass filters is selected so that the shortest
273 // all-pass filter will feed the shortest delay line.
274 d[0] = LateAllPassInOut(State, 1, d[0]);
275 d[1] = LateAllPassInOut(State, 3, d[1]);
276 d[2] = LateAllPassInOut(State, 0, d[2]);
277 d[3] = LateAllPassInOut(State, 2, d[3]);
279 /* Late reverb is done with a modified feedback delay network (FDN)
280 * topology. Four input lines are each fed through their own all-pass
281 * filter and then into the mixing matrix. The four outputs of the
282 * mixing matrix are then cycled back to the inputs. Each output feeds
283 * a different input to form a circlular feed cycle.
285 * The mixing matrix used is a 4D skew-symmetric rotation matrix derived
286 * using a single unitary rotational parameter:
288 * [ d, a, b, c ] 1 = a^2 + b^2 + c^2 + d^2
289 * [ -a, d, c, -b ]
290 * [ -b, -c, d, a ]
291 * [ -c, b, -a, d ]
293 * The rotation is constructed from the effect's diffusion parameter,
294 * yielding: 1 = x^2 + 3 y^2; where a, b, and c are the coefficient y
295 * with differing signs, and d is the coefficient x. The matrix is thus:
297 * [ x, y, -y, y ] x = 1 - (0.5 diffusion^3)
298 * [ -y, x, y, y ] y = sqrt((1 - x^2) / 3)
299 * [ y, -y, x, y ]
300 * [ -y, -y, -y, x ]
302 * To reduce the number of multiplies, the x coefficient is applied with
303 * the cyclical delay line coefficients. Thus only the y coefficient is
304 * applied when mixing, and is modified to be: y / x.
306 f[0] = d[0] + (State->Late.MixCoeff * ( d[1] - d[2] + d[3]));
307 f[1] = d[1] + (State->Late.MixCoeff * (-d[0] + d[2] + d[3]));
308 f[2] = d[2] + (State->Late.MixCoeff * ( d[0] - d[1] + d[3]));
309 f[3] = d[3] + (State->Late.MixCoeff * (-d[0] - d[1] - d[2]));
311 // Output is tapped at the input to the shortest two cyclical delay
312 // lines, attenuated by the late reverb gain (which is attenuated by the
313 // mixing coefficient x).
314 out[0] = State->Late.Gain * f[0];
315 out[1] = State->Late.Gain * f[1];
317 // The delay lines are fed circularly in the order:
318 // 0 -> 1 -> 3 -> 2 -> 0 ...
319 DelayLineIn(&State->Late.Delay[0], State->Offset, f[2]);
320 DelayLineIn(&State->Late.Delay[1], State->Offset, f[0]);
321 DelayLineIn(&State->Late.Delay[2], State->Offset, f[3]);
322 DelayLineIn(&State->Late.Delay[3], State->Offset, f[1]);
325 // This creates the reverb state. It should be called only when the reverb
326 // effect is loaded into a slot that doesn't already have a reverb effect.
327 ALverbState *VerbCreate(ALCcontext *Context)
329 ALverbState *State = NULL;
330 ALuint samples, length[13], totalLength, index;
332 State = malloc(sizeof(ALverbState));
333 if(!State)
334 return NULL;
336 // All line lengths are powers of 2, calculated from their lengths, with
337 // an additional sample in case of rounding errors.
339 // See VerbUpdate() for an explanation of the additional calculation
340 // added to the master line length.
341 samples = (ALuint)
342 ((MASTER_LINE_LENGTH +
343 (LATE_LINE_LENGTH[0] * (1.0f + LATE_LINE_MULTIPLIER) *
344 (DECO_FRACTION * ((DECO_MULTIPLIER * DECO_MULTIPLIER *
345 DECO_MULTIPLIER) - 1.0f)))) *
346 Context->Frequency) + 1;
347 length[0] = NextPowerOf2(samples);
348 totalLength = length[0];
349 for(index = 0;index < 4;index++)
351 samples = (ALuint)(EARLY_LINE_LENGTH[index] * Context->Frequency) + 1;
352 length[1 + index] = NextPowerOf2(samples);
353 totalLength += length[1 + index];
355 for(index = 0;index < 4;index++)
357 samples = (ALuint)(ALLPASS_LINE_LENGTH[index] * Context->Frequency) + 1;
358 length[5 + index] = NextPowerOf2(samples);
359 totalLength += length[5 + index];
361 for(index = 0;index < 4;index++)
363 samples = (ALuint)(LATE_LINE_LENGTH[index] *
364 (1.0f + LATE_LINE_MULTIPLIER) * Context->Frequency) + 1;
365 length[9 + index] = NextPowerOf2(samples);
366 totalLength += length[9 + index];
369 // All lines share a single sample buffer.
370 State->SampleBuffer = malloc(totalLength * sizeof(ALfloat));
371 if(!State->SampleBuffer)
373 free(State);
374 return NULL;
376 for(index = 0; index < totalLength;index++)
377 State->SampleBuffer[index] = 0.0f;
379 // Each one has its mask and start address calculated one time.
380 State->Gain = 0.0f;
381 State->Delay.Mask = length[0] - 1;
382 State->Delay.Line = &State->SampleBuffer[0];
383 totalLength = length[0];
385 State->Tap[0] = 0;
386 State->Tap[1] = 0;
387 State->Tap[2] = 0;
388 State->Tap[3] = 0;
389 State->Tap[4] = 0;
391 State->Early.Gain = 0.0f;
392 for(index = 0;index < 4;index++)
394 State->Early.Coeff[index] = 0.0f;
395 State->Early.Delay[index].Mask = length[1 + index] - 1;
396 State->Early.Delay[index].Line = &State->SampleBuffer[totalLength];
397 totalLength += length[1 + index];
399 // The early delay lines have their read offsets calculated once.
400 State->Early.Offset[index] = (ALuint)(EARLY_LINE_LENGTH[index] *
401 Context->Frequency);
404 State->Late.Gain = 0.0f;
405 State->Late.DensityGain = 0.0f;
406 State->Late.ApFeedCoeff = 0.0f;
407 State->Late.MixCoeff = 0.0f;
409 for(index = 0;index < 4;index++)
411 State->Late.ApCoeff[index] = 0.0f;
412 State->Late.ApDelay[index].Mask = length[5 + index] - 1;
413 State->Late.ApDelay[index].Line = &State->SampleBuffer[totalLength];
414 totalLength += length[5 + index];
416 // The late all-pass lines have their read offsets calculated once.
417 State->Late.ApOffset[index] = (ALuint)(ALLPASS_LINE_LENGTH[index] *
418 Context->Frequency);
421 for(index = 0;index < 4;index++)
423 State->Late.Coeff[index] = 0.0f;
424 State->Late.Delay[index].Mask = length[9 + index] - 1;
425 State->Late.Delay[index].Line = &State->SampleBuffer[totalLength];
426 totalLength += length[9 + index];
428 State->Late.Offset[index] = 0;
430 State->Late.LpCoeff[index][0] = 0.0f;
431 State->Late.LpCoeff[index][1] = 0.0f;
432 State->Late.LpSample[index] = 0.0f;
435 State->Offset = 0;
436 return State;
439 // This destroys the reverb state. It should be called only when the effect
440 // slot has a different (or no) effect loaded over the reverb effect.
441 ALvoid VerbDestroy(ALverbState *State)
443 if(State)
445 free(State->SampleBuffer);
446 State->SampleBuffer = NULL;
447 free(State);
451 // This updates the reverb state. This is called any time the reverb effect
452 // is loaded into a slot.
453 ALvoid VerbUpdate(ALCcontext *Context, ALeffectslot *Slot, ALeffect *Effect)
455 ALverbState *State = Slot->ReverbState;
456 ALuint index;
457 ALfloat length, mixCoeff, cw, g, lpCoeff;
458 ALfloat hfRatio = Effect->Reverb.DecayHFRatio;
460 // Calculate the master gain (from the slot and master effect gain).
461 State->Gain = Slot->Gain * Effect->Reverb.Gain;
463 // Calculate the initial delay taps.
464 length = Effect->Reverb.ReflectionsDelay;
465 State->Tap[0] = (ALuint)(length * Context->Frequency);
467 length += Effect->Reverb.LateReverbDelay;
469 /* The four inputs to the late reverb are decorrelated to smooth the
470 * initial reverb and reduce harsh echos. The timings are calculated as
471 * multiples of a fraction of the smallest cyclical delay time. This
472 * result is then adjusted so that the first tap occurs immediately (all
473 * taps are reduced by the shortest fraction).
475 * offset[index] = ((FRACTION MULTIPLIER^index) - 1) delay
477 for(index = 0;index < 4;index++)
479 length += LATE_LINE_LENGTH[0] *
480 (1.0f + (Effect->Reverb.Density * LATE_LINE_MULTIPLIER)) *
481 (DECO_FRACTION * (pow(DECO_MULTIPLIER, (ALfloat)index) - 1.0f));
482 State->Tap[1 + index] = (ALuint)(length * Context->Frequency);
485 // Set the early reflections gain.
486 State->Early.Gain = Effect->Reverb.ReflectionsGain;
488 // Calculate the gain (coefficient) for each early delay line.
489 for(index = 0;index < 4;index++)
490 State->Early.Coeff[index] = pow(10.0f, EARLY_LINE_LENGTH[index] /
491 Effect->Reverb.LateReverbDelay *
492 -60.0f / 20.0f);
494 // Calculate the first mixing matrix coefficient (x).
495 mixCoeff = 1.0f - (0.5f * pow(Effect->Reverb.Diffusion, 3.0f));
497 // Set the late reverb gain. Since the output is tapped prior to the
498 // application of the delay line coefficients, this gain needs to be
499 // attenuated by the mix coefficient from above.
500 State->Late.Gain = Effect->Reverb.LateReverbGain * mixCoeff;
502 /* To compensate for changes in modal density and decay time of the late
503 * reverb signal, the input is attenuated based on the maximal energy of
504 * the outgoing signal. This is calculated as the ratio between a
505 * reference value and the current approximation of energy for the output
506 * signal.
508 * Reverb output matches exponential decay of the form Sum(a^n), where a
509 * is the attenuation coefficient, and n is the sample ranging from 0 to
510 * infinity. The signal energy can thus be approximated using the area
511 * under this curve, calculated as: 1 / (1 - a).
513 * The reference energy is calculated from a signal at the lowest (effect
514 * at 1.0) density with a decay time of one second.
516 * The coefficient is calculated as the average length of the cyclical
517 * delay lines. This produces a better result than calculating the gain
518 * for each line individually (most likely a side effect of diffusion).
520 * The final result is the square root of the ratio bound to a maximum
521 * value of 1 (no amplification) and attenuated by 1 / sqrt(2) to
522 * compensate for the four decorrelated inputs.
524 length = (LATE_LINE_LENGTH[0] + LATE_LINE_LENGTH[1] +
525 LATE_LINE_LENGTH[2] + LATE_LINE_LENGTH[3]);
526 g = length * (1.0f + LATE_LINE_MULTIPLIER) * 0.25f;
527 g = pow(10.0f, g * -60.0f / 20.0f);
528 g = 1.0f / (1.0f - (g*g));
529 length *= 1.0f + (Effect->Reverb.Density * LATE_LINE_MULTIPLIER) * 0.25f;
530 length = pow(10.0f, length / Effect->Reverb.DecayTime * -60.0f / 20.0f);
531 length = 1.0f / (1.0f - (length*length));
532 State->Late.DensityGain = 0.707106f * __min(aluSqrt(g / length), 1.0f);
534 // Calculate the all-pass feed-back and feed-forward coefficient.
535 State->Late.ApFeedCoeff = 0.6f * pow(Effect->Reverb.Diffusion, 3.0f);
537 // Calculate the mixing matrix coefficient (y / x).
538 g = aluSqrt((1.0f - (mixCoeff * mixCoeff)) / 3.0f);
539 State->Late.MixCoeff = g / mixCoeff;
541 for(index = 0;index < 4;index++)
543 // Calculate the gain (coefficient) for each all-pass line.
544 State->Late.ApCoeff[index] = pow(10.0f, ALLPASS_LINE_LENGTH[index] /
545 Effect->Reverb.DecayTime *
546 -60.0f / 20.0f);
549 // If the HF limit parameter is flagged, calculate an appropriate limit
550 // based on the air absorption parameter.
551 if(Effect->Reverb.DecayHFLimit && Effect->Reverb.AirAbsorptionGainHF < 1.0f)
553 ALfloat limitRatio;
555 // For each of the cyclical delays, find the attenuation due to air
556 // absorption in dB (converting delay time to meters using the speed
557 // of sound). Then reversing the decay equation, solve for HF ratio.
558 // The delay length is cancelled out of the equation, so it can be
559 // calculated once for all lines.
560 limitRatio = 1.0f / (log10(Effect->Reverb.AirAbsorptionGainHF) *
561 SPEEDOFSOUNDMETRESPERSEC *
562 Effect->Reverb.DecayTime / -60.0f * 20.0f);
563 // Need to limit the result to a minimum of 0.1, just like the HF
564 // ratio parameter.
565 limitRatio = __max(limitRatio, 0.1f);
567 // Using the limit calculated above, apply the upper bound to the
568 // HF ratio.
569 hfRatio = __min(hfRatio, limitRatio);
572 // Calculate the filter frequency for low-pass or high-pass depending on
573 // whether the HF ratio is above 1.
574 cw = 2.0f * M_PI * LOWPASSFREQCUTOFF / Context->Frequency;
575 if(hfRatio > 1.0f)
576 cw = M_PI - cw;
577 cw = cos(cw);
579 for(index = 0;index < 4;index++)
581 // Calculate the length (in seconds) of each cyclical delay line.
582 length = LATE_LINE_LENGTH[index] * (1.0f + (Effect->Reverb.Density *
583 LATE_LINE_MULTIPLIER));
584 // Calculate the delay offset for the cyclical delay lines.
585 State->Late.Offset[index] = (ALuint)(length * Context->Frequency);
587 // Calculate the gain (coefficient) for each cyclical line.
588 State->Late.Coeff[index] = pow(10.0f, length / Effect->Reverb.DecayTime *
589 -60.0f / 20.0f);
591 // Calculate the decay equation for each low-pass filter.
592 g = pow(10.0f, length / (Effect->Reverb.DecayTime * hfRatio) *
593 -60.0f / 20.0f);
594 if (hfRatio > 1.0f)
595 g = State->Late.Coeff[index] / g;
596 else
597 g = g / State->Late.Coeff[index];
598 g = __max(g, 0.1f);
599 g *= g;
601 // Calculate the gain (coefficient) for each low-pass filter.
602 lpCoeff = 0.0f;
603 if(g < 0.9999f) // 1-epsilon
604 lpCoeff = (1 - g*cw - aluSqrt(2*g*(1-cw) - g*g*(1 - cw*cw))) / (1 - g);
606 // Very low decay times will produce minimal output, so apply an
607 // upper bound to the coefficient.
608 lpCoeff = __min(lpCoeff, 0.98f);
610 // Calculate the filter coefficients for high-pass or low-pass
611 // dependent on HF ratio being above 1.
612 if(hfRatio > 1.0f) {
613 State->Late.LpCoeff[index][0] = 1.0f + lpCoeff;
614 State->Late.LpCoeff[index][1] = -lpCoeff;
615 } else {
616 State->Late.LpCoeff[index][0] = 1.0f - lpCoeff;
617 State->Late.LpCoeff[index][1] = lpCoeff;
620 // Attenuate the cyclical line coefficients by the mixing coefficient
621 // (x).
622 State->Late.Coeff[index] *= mixCoeff;
626 // This processes the reverb state, given the input samples and an output
627 // buffer.
628 ALvoid VerbProcess(ALverbState *State, ALuint SamplesToDo, const ALfloat *SamplesIn, ALfloat (*SamplesOut)[OUTPUTCHANNELS])
630 ALuint index;
631 ALfloat in[4], early[2], late[2], out[2];
633 for(index = 0;index < SamplesToDo;index++)
635 // Feed the initial delay line.
636 DelayLineIn(&State->Delay, State->Offset, SamplesIn[index]);
638 // Calculate the early reflection from the first delay tap.
639 in[0] = DelayLineOut(&State->Delay, State->Offset - State->Tap[0]);
640 EarlyReflection(State, in[0], early);
642 // Calculate the late reverb from the last four delay taps.
643 in[0] = DelayLineOut(&State->Delay, State->Offset - State->Tap[1]);
644 in[1] = DelayLineOut(&State->Delay, State->Offset - State->Tap[2]);
645 in[2] = DelayLineOut(&State->Delay, State->Offset - State->Tap[3]);
646 in[3] = DelayLineOut(&State->Delay, State->Offset - State->Tap[4]);
647 LateReverb(State, in, late);
649 // Mix early reflections and late reverb.
650 out[0] = State->Gain * (early[0] + late[0]);
651 out[1] = State->Gain * (early[1] + late[1]);
653 // Step all delays forward one sample.
654 State->Offset++;
656 // Output the results.
657 SamplesOut[index][FRONT_LEFT] += out[0];
658 SamplesOut[index][FRONT_RIGHT] += out[1];
659 SamplesOut[index][SIDE_LEFT] += out[0];
660 SamplesOut[index][SIDE_RIGHT] += out[1];
661 SamplesOut[index][BACK_LEFT] += out[0];
662 SamplesOut[index][BACK_RIGHT] += out[1];