Reorder setting of some variables
[openal-soft.git] / Alc / ALu.c
blob8e60a5454a0ca773afb824d5f40e36788e36d901
1 /**
2 * OpenAL cross platform audio library
3 * Copyright (C) 1999-2007 by authors.
4 * This library is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU Library General Public
6 * License as published by the Free Software Foundation; either
7 * version 2 of the License, or (at your option) any later version.
9 * This library is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12 * Library General Public License for more details.
14 * You should have received a copy of the GNU Library General Public
15 * License along with this library; if not, write to the
16 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
17 * Boston, MA 02111-1307, USA.
18 * Or go to http://www.gnu.org/copyleft/lgpl.html
21 #define _CRT_SECURE_NO_DEPRECATE // get rid of sprintf security warnings on VS2005
23 #include "config.h"
25 #include <math.h>
26 #include "alMain.h"
27 #include "AL/al.h"
28 #include "AL/alc.h"
29 #include "alSource.h"
30 #include "alBuffer.h"
31 #include "alThunk.h"
32 #include "alListener.h"
33 #include "bs2b.h"
35 #if defined(HAVE_STDINT_H)
36 #include <stdint.h>
37 typedef int64_t ALint64;
38 #elif defined(HAVE___INT64)
39 typedef __int64 ALint64;
40 #elif (SIZEOF_LONG == 8)
41 typedef long ALint64;
42 #elif (SIZEOF_LONG_LONG == 8)
43 typedef long long ALint64;
44 #endif
46 #ifdef HAVE_SQRTF
47 #define aluSqrt(x) ((ALfloat)sqrtf((float)(x)))
48 #else
49 #define aluSqrt(x) ((ALfloat)sqrt((double)(x)))
50 #endif
52 // fixes for mingw32.
53 #if defined(max) && !defined(__max)
54 #define __max max
55 #endif
56 #if defined(min) && !defined(__min)
57 #define __min min
58 #endif
60 #define BUFFERSIZE 48000
61 #define FRACTIONBITS 14
62 #define FRACTIONMASK ((1L<<FRACTIONBITS)-1)
63 #define MAX_PITCH 4
65 enum {
66 FRONT_LEFT = 0,
67 FRONT_RIGHT,
68 SIDE_LEFT,
69 SIDE_RIGHT,
70 BACK_LEFT,
71 BACK_RIGHT,
72 CENTER,
73 LFE,
75 OUTPUTCHANNELS
78 /* NOTE: The AL_FORMAT_REAR* enums aren't handled here be cause they're
79 * converted to AL_FORMAT_QUAD* when loaded */
80 __inline ALuint aluBytesFromFormat(ALenum format)
82 switch(format)
84 case AL_FORMAT_MONO8:
85 case AL_FORMAT_STEREO8:
86 case AL_FORMAT_QUAD8:
87 case AL_FORMAT_51CHN8:
88 case AL_FORMAT_61CHN8:
89 case AL_FORMAT_71CHN8:
90 return 1;
92 case AL_FORMAT_MONO16:
93 case AL_FORMAT_STEREO16:
94 case AL_FORMAT_QUAD16:
95 case AL_FORMAT_51CHN16:
96 case AL_FORMAT_61CHN16:
97 case AL_FORMAT_71CHN16:
98 return 2;
100 case AL_FORMAT_MONO_FLOAT32:
101 case AL_FORMAT_STEREO_FLOAT32:
102 case AL_FORMAT_QUAD32:
103 case AL_FORMAT_51CHN32:
104 case AL_FORMAT_61CHN32:
105 case AL_FORMAT_71CHN32:
106 return 4;
108 default:
109 return 0;
113 __inline ALuint aluChannelsFromFormat(ALenum format)
115 switch(format)
117 case AL_FORMAT_MONO8:
118 case AL_FORMAT_MONO16:
119 case AL_FORMAT_MONO_FLOAT32:
120 return 1;
122 case AL_FORMAT_STEREO8:
123 case AL_FORMAT_STEREO16:
124 case AL_FORMAT_STEREO_FLOAT32:
125 return 2;
127 case AL_FORMAT_QUAD8:
128 case AL_FORMAT_QUAD16:
129 case AL_FORMAT_QUAD32:
130 return 4;
132 case AL_FORMAT_51CHN8:
133 case AL_FORMAT_51CHN16:
134 case AL_FORMAT_51CHN32:
135 return 6;
137 case AL_FORMAT_61CHN8:
138 case AL_FORMAT_61CHN16:
139 case AL_FORMAT_61CHN32:
140 return 7;
142 case AL_FORMAT_71CHN8:
143 case AL_FORMAT_71CHN16:
144 case AL_FORMAT_71CHN32:
145 return 8;
147 default:
148 return 0;
152 static __inline ALint aluF2L(ALfloat Value)
154 #if 0
155 if(sizeof(ALint) == 4 && sizeof(double) == 8)
157 double temp;
158 temp = Value + (((65536.0*65536.0*16.0)+(65536.0*65536.0*8.0))*65536.0);
159 return *((ALint*)&temp);
161 #endif
162 return (ALint)Value;
165 static __inline ALshort aluF2S(ALfloat Value)
167 ALint i;
169 i = aluF2L(Value);
170 i = __min( 32767, i);
171 i = __max(-32768, i);
172 return ((ALshort)i);
175 static __inline ALvoid aluCrossproduct(ALfloat *inVector1,ALfloat *inVector2,ALfloat *outVector)
177 outVector[0] = inVector1[1]*inVector2[2] - inVector1[2]*inVector2[1];
178 outVector[1] = inVector1[2]*inVector2[0] - inVector1[0]*inVector2[2];
179 outVector[2] = inVector1[0]*inVector2[1] - inVector1[1]*inVector2[0];
182 static __inline ALfloat aluDotproduct(ALfloat *inVector1,ALfloat *inVector2)
184 return inVector1[0]*inVector2[0] + inVector1[1]*inVector2[1] +
185 inVector1[2]*inVector2[2];
188 static __inline ALvoid aluNormalize(ALfloat *inVector)
190 ALfloat length, inverse_length;
192 length = (ALfloat)aluSqrt(aluDotproduct(inVector, inVector));
193 if(length != 0)
195 inverse_length = 1.0f/length;
196 inVector[0] *= inverse_length;
197 inVector[1] *= inverse_length;
198 inVector[2] *= inverse_length;
202 static __inline ALvoid aluMatrixVector(ALfloat *vector,ALfloat matrix[3][3])
204 ALfloat result[3];
206 result[0] = vector[0]*matrix[0][0] + vector[1]*matrix[1][0] + vector[2]*matrix[2][0];
207 result[1] = vector[0]*matrix[0][1] + vector[1]*matrix[1][1] + vector[2]*matrix[2][1];
208 result[2] = vector[0]*matrix[0][2] + vector[1]*matrix[1][2] + vector[2]*matrix[2][2];
209 memcpy(vector, result, sizeof(result));
212 static __inline ALfloat aluComputeDrySample(ALsource *source, ALfloat DryGainHF, ALfloat sample)
214 if(DryGainHF < 1.0f)
216 ALfloat u = sample + source->LastDrySample;
217 ALfloat v = sample - source->LastDrySample;
218 sample = (u + (v*DryGainHF)) * 0.5;
221 source->LastDrySample = sample;
222 return sample;
225 static __inline ALfloat aluComputeWetSample(ALsource *source, ALfloat WetGainHF, ALfloat sample)
227 if(WetGainHF < 1.0f)
229 ALfloat u = sample + source->LastWetSample;
230 ALfloat v = sample - source->LastWetSample;
231 sample = (u + (v*WetGainHF)) * 0.5;
234 source->LastWetSample = sample;
235 return sample;
238 static ALvoid CalcSourceParams(ALCcontext *ALContext, ALsource *ALSource,
239 ALenum isMono, ALenum OutputFormat,
240 ALfloat *drysend, ALfloat *wetsend,
241 ALfloat *pitch, ALfloat *drygainhf,
242 ALfloat *wetgainhf)
244 ALfloat ListenerOrientation[6],ListenerPosition[3],ListenerVelocity[3];
245 ALfloat InnerAngle,OuterAngle,OuterGain,Angle,Distance,DryMix,WetMix;
246 ALfloat Direction[3],Position[3],Velocity[3],SourceToListener[3];
247 ALfloat MinVolume,MaxVolume,MinDist,MaxDist,Rolloff,OuterGainHF;
248 ALfloat Pitch,ConeVolume,SourceVolume,PanningFB,PanningLR,ListenerGain;
249 ALfloat U[3],V[3],N[3];
250 ALfloat DopplerFactor, DopplerVelocity, flSpeedOfSound, flMaxVelocity;
251 ALfloat flVSS, flVLS;
252 ALint DistanceModel;
253 ALfloat Matrix[3][3];
254 ALint HeadRelative;
255 ALfloat flAttenuation;
256 ALfloat RoomAttenuation;
257 ALfloat MetersPerUnit;
258 ALfloat RoomRolloff;
259 ALfloat DryGainHF = 1.0f;
260 ALfloat WetGainHF = 1.0f;
262 //Get context properties
263 DopplerFactor = ALContext->DopplerFactor;
264 DistanceModel = ALContext->DistanceModel;
265 DopplerVelocity = ALContext->DopplerVelocity;
266 flSpeedOfSound = ALContext->flSpeedOfSound;
268 //Get listener properties
269 ListenerGain = ALContext->Listener.Gain;
270 MetersPerUnit = ALContext->Listener.MetersPerUnit;
271 memcpy(ListenerPosition, ALContext->Listener.Position, sizeof(ALContext->Listener.Position));
272 memcpy(ListenerVelocity, ALContext->Listener.Velocity, sizeof(ALContext->Listener.Velocity));
273 memcpy(&ListenerOrientation[0], ALContext->Listener.Forward, sizeof(ALContext->Listener.Forward));
274 memcpy(&ListenerOrientation[3], ALContext->Listener.Up, sizeof(ALContext->Listener.Up));
276 //Get source properties
277 Pitch = ALSource->flPitch;
278 SourceVolume = ALSource->flGain;
279 memcpy(Position, ALSource->vPosition, sizeof(ALSource->vPosition));
280 memcpy(Velocity, ALSource->vVelocity, sizeof(ALSource->vVelocity));
281 memcpy(Direction, ALSource->vOrientation, sizeof(ALSource->vOrientation));
282 MinVolume = ALSource->flMinGain;
283 MaxVolume = ALSource->flMaxGain;
284 MinDist = ALSource->flRefDistance;
285 MaxDist = ALSource->flMaxDistance;
286 Rolloff = ALSource->flRollOffFactor;
287 OuterGain = ALSource->flOuterGain;
288 InnerAngle = ALSource->flInnerAngle;
289 OuterAngle = ALSource->flOuterAngle;
290 HeadRelative = ALSource->bHeadRelative;
291 OuterGainHF = ALSource->OuterGainHF;
292 RoomRolloff = ALSource->RoomRolloffFactor;
294 //Only apply 3D calculations for mono buffers
295 if(isMono != AL_FALSE)
297 //1. Translate Listener to origin (convert to head relative)
298 if(HeadRelative==AL_FALSE)
300 Position[0] -= ListenerPosition[0];
301 Position[1] -= ListenerPosition[1];
302 Position[2] -= ListenerPosition[2];
305 //2. Calculate distance attenuation
306 Distance = aluSqrt(aluDotproduct(Position, Position));
308 flAttenuation = 1.0f;
309 RoomAttenuation = 1.0f;
310 switch (DistanceModel)
312 case AL_INVERSE_DISTANCE_CLAMPED:
313 Distance=__max(Distance,MinDist);
314 Distance=__min(Distance,MaxDist);
315 if (MaxDist < MinDist)
316 break;
317 //fall-through
318 case AL_INVERSE_DISTANCE:
319 if (MinDist > 0.0f)
321 if ((MinDist + (Rolloff * (Distance - MinDist))) > 0.0f)
322 flAttenuation = MinDist / (MinDist + (Rolloff * (Distance - MinDist)));
323 if ((MinDist + (RoomRolloff * (Distance - MinDist))) > 0.0f)
324 RoomAttenuation = MinDist / (MinDist + (RoomRolloff * (Distance - MinDist)));
326 break;
328 case AL_LINEAR_DISTANCE_CLAMPED:
329 Distance=__max(Distance,MinDist);
330 Distance=__min(Distance,MaxDist);
331 if (MaxDist < MinDist)
332 break;
333 //fall-through
334 case AL_LINEAR_DISTANCE:
335 Distance=__min(Distance,MaxDist);
336 if (MaxDist != MinDist)
338 flAttenuation = 1.0f - (Rolloff*(Distance-MinDist)/(MaxDist - MinDist));
339 RoomAttenuation = 1.0f - (RoomRolloff*(Distance-MinDist)/(MaxDist - MinDist));
341 break;
343 case AL_EXPONENT_DISTANCE_CLAMPED:
344 Distance=__max(Distance,MinDist);
345 Distance=__min(Distance,MaxDist);
346 if (MaxDist < MinDist)
347 break;
348 //fall-through
349 case AL_EXPONENT_DISTANCE:
350 if ((Distance > 0.0f) && (MinDist > 0.0f))
352 flAttenuation = (ALfloat)pow(Distance/MinDist, -Rolloff);
353 RoomAttenuation = (ALfloat)pow(Distance/MinDist, -RoomRolloff);
355 break;
357 case AL_NONE:
358 default:
359 flAttenuation = 1.0f;
360 RoomAttenuation = 1.0f;
361 break;
364 // Source Gain + Attenuation
365 DryMix = SourceVolume * flAttenuation;
366 WetMix = SourceVolume * ((ALSource->WetGainAuto &&
367 ALSource->Send[0].Slot.AuxSendAuto) ?
368 RoomAttenuation : 1.0f);
370 // Clamp to Min/Max Gain
371 DryMix = __min(DryMix,MaxVolume);
372 DryMix = __max(DryMix,MinVolume);
373 WetMix = __min(WetMix,MaxVolume);
374 WetMix = __max(WetMix,MinVolume);
375 //3. Apply directional soundcones
376 SourceToListener[0] = -Position[0];
377 SourceToListener[1] = -Position[1];
378 SourceToListener[2] = -Position[2];
379 aluNormalize(Direction);
380 aluNormalize(SourceToListener);
381 Angle = (ALfloat)(180.0*acos(aluDotproduct(Direction,SourceToListener))/3.141592654f);
382 if(Angle >= InnerAngle && Angle <= OuterAngle)
384 ALfloat scale = (Angle-InnerAngle) / (OuterAngle-InnerAngle);
385 ConeVolume = (1.0f+(OuterGain-1.0f)*scale);
386 if(ALSource->WetGainAuto)
387 WetMix *= ConeVolume;
388 if(ALSource->DryGainHFAuto)
389 DryGainHF *= (1.0f+(OuterGainHF-1.0f)*scale);
390 if(ALSource->WetGainHFAuto)
391 WetGainHF *= (1.0f+(OuterGainHF-1.0f)*scale);
393 else if(Angle > OuterAngle)
395 ConeVolume = (1.0f+(OuterGain-1.0f));
396 if(ALSource->WetGainAuto)
397 WetMix *= ConeVolume;
398 if(ALSource->DryGainHFAuto)
399 DryGainHF *= (1.0f+(OuterGainHF-1.0f));
400 if(ALSource->WetGainHFAuto)
401 WetGainHF *= (1.0f+(OuterGainHF-1.0f));
403 else
404 ConeVolume = 1.0f;
406 //4. Calculate Velocity
407 if(DopplerFactor != 0.0f)
409 flVLS = aluDotproduct(ListenerVelocity, SourceToListener);
410 flVSS = aluDotproduct(Velocity, SourceToListener);
412 flMaxVelocity = (DopplerVelocity * flSpeedOfSound) / DopplerFactor;
414 if (flVSS >= flMaxVelocity)
415 flVSS = (flMaxVelocity - 1.0f);
416 else if (flVSS <= -flMaxVelocity)
417 flVSS = -flMaxVelocity + 1.0f;
419 if (flVLS >= flMaxVelocity)
420 flVLS = (flMaxVelocity - 1.0f);
421 else if (flVLS <= -flMaxVelocity)
422 flVLS = -flMaxVelocity + 1.0f;
424 pitch[0] = Pitch * ((flSpeedOfSound * DopplerVelocity) - (DopplerFactor * flVLS)) /
425 ((flSpeedOfSound * DopplerVelocity) - (DopplerFactor * flVSS));
427 else
428 pitch[0] = Pitch;
430 //5. Align coordinate system axes
431 aluCrossproduct(&ListenerOrientation[0], &ListenerOrientation[3], U); // Right-vector
432 aluNormalize(U); // Normalized Right-vector
433 memcpy(V, &ListenerOrientation[3], sizeof(V)); // Up-vector
434 aluNormalize(V); // Normalized Up-vector
435 memcpy(N, &ListenerOrientation[0], sizeof(N)); // At-vector
436 aluNormalize(N); // Normalized At-vector
437 Matrix[0][0] = U[0]; Matrix[0][1] = V[0]; Matrix[0][2] = -N[0];
438 Matrix[1][0] = U[1]; Matrix[1][1] = V[1]; Matrix[1][2] = -N[1];
439 Matrix[2][0] = U[2]; Matrix[2][1] = V[2]; Matrix[2][2] = -N[2];
440 aluMatrixVector(Position, Matrix);
442 //6. Apply filter gains and filters
443 switch(ALSource->DirectFilter.filter)
445 case AL_FILTER_LOWPASS:
446 DryMix *= ALSource->DirectFilter.Gain;
447 DryGainHF *= ALSource->DirectFilter.GainHF;
448 break;
451 switch(ALSource->Send[0].WetFilter.filter)
453 case AL_FILTER_LOWPASS:
454 WetMix *= ALSource->Send[0].WetFilter.Gain;
455 WetGainHF *= ALSource->Send[0].WetFilter.GainHF;
456 break;
459 if(ALSource->AirAbsorptionFactor > 0.0f)
460 DryGainHF *= pow(ALSource->AirAbsorptionFactor * AIRABSORBGAINHF,
461 Distance * MetersPerUnit);
463 WetMix *= ALSource->Send[0].Slot.Gain;
465 //7. Convert normalized position into pannings, then into channel volumes
466 aluNormalize(Position);
467 switch(aluChannelsFromFormat(OutputFormat))
469 case 1:
470 drysend[FRONT_LEFT] = ConeVolume * ListenerGain * DryMix * aluSqrt(1.0f); //Direct
471 drysend[FRONT_RIGHT] = ConeVolume * ListenerGain * DryMix * aluSqrt(1.0f); //Direct
472 if(ALSource->Send[0].Slot.effectslot)
474 wetsend[FRONT_LEFT] = ListenerGain * WetMix * aluSqrt(1.0f); //Room
475 wetsend[FRONT_RIGHT] = ListenerGain * WetMix * aluSqrt(1.0f); //Room
477 else
479 wetsend[FRONT_LEFT] = 0.0f;
480 wetsend[FRONT_RIGHT] = 0.0f;
481 WetGainHF = 1.0f;
483 break;
484 case 2:
485 PanningLR = 0.5f + 0.5f*Position[0];
486 drysend[FRONT_LEFT] = ConeVolume * ListenerGain * DryMix * aluSqrt(1.0f-PanningLR); //L Direct
487 drysend[FRONT_RIGHT] = ConeVolume * ListenerGain * DryMix * aluSqrt( PanningLR); //R Direct
488 if(ALSource->Send[0].Slot.effectslot)
490 wetsend[FRONT_LEFT] = ListenerGain * WetMix * aluSqrt(1.0f-PanningLR); //L Room
491 wetsend[FRONT_RIGHT] = ListenerGain * WetMix * aluSqrt( PanningLR); //R Room
493 else
495 wetsend[FRONT_LEFT] = 0.0f;
496 wetsend[FRONT_RIGHT] = 0.0f;
497 WetGainHF = 1.0f;
499 break;
500 case 4:
501 /* TODO: Add center/lfe channel in spatial calculations? */
502 case 6:
503 // Apply a scalar so each individual speaker has more weight
504 PanningLR = 0.5f + (0.5f*Position[0]*1.41421356f);
505 PanningLR = __min(1.0f, PanningLR);
506 PanningLR = __max(0.0f, PanningLR);
507 PanningFB = 0.5f + (0.5f*Position[2]*1.41421356f);
508 PanningFB = __min(1.0f, PanningFB);
509 PanningFB = __max(0.0f, PanningFB);
510 drysend[FRONT_LEFT] = ConeVolume * ListenerGain * DryMix * aluSqrt((1.0f-PanningLR)*(1.0f-PanningFB));
511 drysend[FRONT_RIGHT] = ConeVolume * ListenerGain * DryMix * aluSqrt(( PanningLR)*(1.0f-PanningFB));
512 drysend[BACK_LEFT] = ConeVolume * ListenerGain * DryMix * aluSqrt((1.0f-PanningLR)*( PanningFB));
513 drysend[BACK_RIGHT] = ConeVolume * ListenerGain * DryMix * aluSqrt(( PanningLR)*( PanningFB));
514 if(ALSource->Send[0].Slot.effectslot)
516 wetsend[FRONT_LEFT] = ListenerGain * WetMix * aluSqrt((1.0f-PanningLR)*(1.0f-PanningFB));
517 wetsend[FRONT_RIGHT] = ListenerGain * WetMix * aluSqrt(( PanningLR)*(1.0f-PanningFB));
518 wetsend[BACK_LEFT] = ListenerGain * WetMix * aluSqrt((1.0f-PanningLR)*( PanningFB));
519 wetsend[BACK_RIGHT] = ListenerGain * WetMix * aluSqrt(( PanningLR)*( PanningFB));
521 else
523 wetsend[FRONT_LEFT] = 0.0f;
524 wetsend[FRONT_RIGHT] = 0.0f;
525 wetsend[BACK_LEFT] = 0.0f;
526 wetsend[BACK_RIGHT] = 0.0f;
527 WetGainHF = 1.0f;
529 break;
530 case 7:
531 case 8:
532 PanningFB = 1.0f - fabs(Position[2]*1.15470054f);
533 PanningFB = __min(1.0f, PanningFB);
534 PanningFB = __max(0.0f, PanningFB);
535 PanningLR = 0.5f + (0.5*Position[0]*((1.0f-PanningFB)*2.0f));
536 PanningLR = __min(1.0f, PanningLR);
537 PanningLR = __max(0.0f, PanningLR);
538 if(Position[2] > 0.0f)
540 drysend[BACK_LEFT] = ConeVolume * ListenerGain * DryMix * aluSqrt((1.0f-PanningLR)*(1.0f-PanningFB));
541 drysend[BACK_RIGHT] = ConeVolume * ListenerGain * DryMix * aluSqrt(( PanningLR)*(1.0f-PanningFB));
542 drysend[SIDE_LEFT] = ConeVolume * ListenerGain * DryMix * aluSqrt((1.0f-PanningLR)*( PanningFB));
543 drysend[SIDE_RIGHT] = ConeVolume * ListenerGain * DryMix * aluSqrt(( PanningLR)*( PanningFB));
544 drysend[FRONT_LEFT] = 0.0f;
545 drysend[FRONT_RIGHT] = 0.0f;
546 if(ALSource->Send[0].Slot.effectslot)
548 wetsend[BACK_LEFT] = ListenerGain * WetMix * aluSqrt((1.0f-PanningLR)*(1.0f-PanningFB));
549 wetsend[BACK_RIGHT] = ListenerGain * WetMix * aluSqrt(( PanningLR)*(1.0f-PanningFB));
550 wetsend[SIDE_LEFT] = ListenerGain * WetMix * aluSqrt((1.0f-PanningLR)*( PanningFB));
551 wetsend[SIDE_RIGHT] = ListenerGain * WetMix * aluSqrt(( PanningLR)*( PanningFB));
552 wetsend[FRONT_LEFT] = 0.0f;
553 wetsend[FRONT_RIGHT] = 0.0f;
555 else
557 wetsend[FRONT_LEFT] = 0.0f;
558 wetsend[FRONT_RIGHT] = 0.0f;
559 wetsend[SIDE_LEFT] = 0.0f;
560 wetsend[SIDE_RIGHT] = 0.0f;
561 wetsend[BACK_LEFT] = 0.0f;
562 wetsend[BACK_RIGHT] = 0.0f;
563 WetGainHF = 1.0f;
566 else
568 drysend[FRONT_LEFT] = ConeVolume * ListenerGain * DryMix * aluSqrt((1.0f-PanningLR)*(1.0f-PanningFB));
569 drysend[FRONT_RIGHT] = ConeVolume * ListenerGain * DryMix * aluSqrt(( PanningLR)*(1.0f-PanningFB));
570 drysend[SIDE_LEFT] = ConeVolume * ListenerGain * DryMix * aluSqrt((1.0f-PanningLR)*( PanningFB));
571 drysend[SIDE_RIGHT] = ConeVolume * ListenerGain * DryMix * aluSqrt(( PanningLR)*( PanningFB));
572 drysend[BACK_LEFT] = 0.0f;
573 drysend[BACK_RIGHT] = 0.0f;
574 if(ALSource->Send[0].Slot.effectslot)
576 wetsend[FRONT_LEFT] = ListenerGain * WetMix * aluSqrt((1.0f-PanningLR)*(1.0f-PanningFB));
577 wetsend[FRONT_RIGHT] = ListenerGain * WetMix * aluSqrt(( PanningLR)*(1.0f-PanningFB));
578 wetsend[SIDE_LEFT] = ListenerGain * WetMix * aluSqrt((1.0f-PanningLR)*( PanningFB));
579 wetsend[SIDE_RIGHT] = ListenerGain * WetMix * aluSqrt(( PanningLR)*( PanningFB));
580 wetsend[BACK_LEFT] = 0.0f;
581 wetsend[BACK_RIGHT] = 0.0f;
583 else
585 wetsend[FRONT_LEFT] = 0.0f;
586 wetsend[FRONT_RIGHT] = 0.0f;
587 wetsend[SIDE_LEFT] = 0.0f;
588 wetsend[SIDE_RIGHT] = 0.0f;
589 wetsend[BACK_LEFT] = 0.0f;
590 wetsend[BACK_RIGHT] = 0.0f;
591 WetGainHF = 1.0f;
594 default:
595 break;
598 *drygainhf = DryGainHF;
599 *wetgainhf = WetGainHF;
601 else
603 *drygainhf = DryGainHF;
604 *wetgainhf = WetGainHF;
606 //1. Multi-channel buffers always play "normal"
607 drysend[FRONT_LEFT] = SourceVolume * 1.0f * ListenerGain;
608 drysend[FRONT_RIGHT] = SourceVolume * 1.0f * ListenerGain;
609 drysend[SIDE_LEFT] = SourceVolume * 1.0f * ListenerGain;
610 drysend[SIDE_RIGHT] = SourceVolume * 1.0f * ListenerGain;
611 drysend[BACK_LEFT] = SourceVolume * 1.0f * ListenerGain;
612 drysend[BACK_RIGHT] = SourceVolume * 1.0f * ListenerGain;
613 drysend[CENTER] = SourceVolume * 1.0f * ListenerGain;
614 drysend[LFE] = SourceVolume * 1.0f * ListenerGain;
615 if(ALSource->Send[0].Slot.effectslot)
617 wetsend[FRONT_LEFT] = SourceVolume * 0.0f * ListenerGain;
618 wetsend[FRONT_RIGHT] = SourceVolume * 0.0f * ListenerGain;
619 wetsend[SIDE_LEFT] = SourceVolume * 0.0f * ListenerGain;
620 wetsend[SIDE_RIGHT] = SourceVolume * 0.0f * ListenerGain;
621 wetsend[BACK_LEFT] = SourceVolume * 0.0f * ListenerGain;
622 wetsend[BACK_RIGHT] = SourceVolume * 0.0f * ListenerGain;
623 wetsend[CENTER] = SourceVolume * 0.0f * ListenerGain;
624 wetsend[LFE] = SourceVolume * 0.0f * ListenerGain;
626 else
628 wetsend[FRONT_LEFT] = 0.0f;
629 wetsend[FRONT_RIGHT] = 0.0f;
630 wetsend[SIDE_LEFT] = 0.0f;
631 wetsend[SIDE_RIGHT] = 0.0f;
632 wetsend[BACK_LEFT] = 0.0f;
633 wetsend[BACK_RIGHT] = 0.0f;
634 wetsend[CENTER] = 0.0f;
635 wetsend[LFE] = 0.0f;
636 *wetgainhf = 1.0f;
639 pitch[0] = Pitch;
643 ALvoid aluMixData(ALCcontext *ALContext,ALvoid *buffer,ALsizei size,ALenum format)
645 static float DryBuffer[BUFFERSIZE][OUTPUTCHANNELS];
646 static float WetBuffer[BUFFERSIZE][OUTPUTCHANNELS];
647 ALfloat DrySend[OUTPUTCHANNELS] = { 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f };
648 ALfloat WetSend[OUTPUTCHANNELS] = { 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f };
649 ALfloat DryGainHF = 0.0f;
650 ALfloat WetGainHF = 0.0f;
651 ALuint BlockAlign,BufferSize;
652 ALuint DataSize=0,DataPosInt=0,DataPosFrac=0;
653 ALuint Channels,Bits,Frequency,ulExtraSamples;
654 ALfloat Pitch;
655 ALint Looping,increment,State;
656 ALuint Buffer,fraction;
657 ALuint SamplesToDo;
658 ALsource *ALSource;
659 ALbuffer *ALBuffer;
660 ALfloat value;
661 ALshort *Data;
662 ALuint i,j,k;
663 ALbufferlistitem *BufferListItem;
664 ALuint loop;
665 ALint64 DataSize64,DataPos64;
667 SuspendContext(ALContext);
669 if(buffer)
671 //Figure output format variables
672 BlockAlign = aluChannelsFromFormat(format);
673 BlockAlign *= aluBytesFromFormat(format);
675 size /= BlockAlign;
676 while(size > 0)
678 //Setup variables
679 ALSource = (ALContext ? ALContext->Source : NULL);
680 SamplesToDo = min(size, BUFFERSIZE);
682 //Clear mixing buffer
683 memset(DryBuffer, 0, SamplesToDo*OUTPUTCHANNELS*sizeof(ALfloat));
684 memset(WetBuffer, 0, SamplesToDo*OUTPUTCHANNELS*sizeof(ALfloat));
686 //Actual mixing loop
687 while(ALSource)
689 j = 0;
690 State = ALSource->state;
691 while(State == AL_PLAYING && j < SamplesToDo)
693 DataSize = 0;
694 DataPosInt = 0;
695 DataPosFrac = 0;
697 //Get buffer info
698 if((Buffer = ALSource->ulBufferID))
700 ALBuffer = (ALbuffer*)ALTHUNK_LOOKUPENTRY(Buffer);
702 Data = ALBuffer->data;
703 Bits = aluBytesFromFormat(ALBuffer->format) * 8;
704 Channels = aluChannelsFromFormat(ALBuffer->format);
705 DataSize = ALBuffer->size;
706 Frequency = ALBuffer->frequency;
708 CalcSourceParams(ALContext, ALSource,
709 (Channels==1) ? AL_TRUE : AL_FALSE,
710 format, DrySend, WetSend, &Pitch,
711 &DryGainHF, &WetGainHF);
714 Pitch = (Pitch*Frequency) / ALContext->Frequency;
715 DataSize = DataSize / (Bits*Channels/8);
717 //Get source info
718 DataPosInt = ALSource->position;
719 DataPosFrac = ALSource->position_fraction;
721 //Compute 18.14 fixed point step
722 increment = aluF2L(Pitch*(1L<<FRACTIONBITS));
723 if(increment > (MAX_PITCH<<FRACTIONBITS))
724 increment = (MAX_PITCH<<FRACTIONBITS);
726 //Figure out how many samples we can mix.
727 //Pitch must be <= 4 (the number below !)
728 DataSize64 = DataSize+MAX_PITCH;
729 DataSize64 <<= FRACTIONBITS;
730 DataPos64 = DataPosInt;
731 DataPos64 <<= FRACTIONBITS;
732 DataPos64 += DataPosFrac;
733 BufferSize = (ALuint)((DataSize64-DataPos64) / increment);
734 BufferListItem = ALSource->queue;
735 for(loop = 0; loop < ALSource->BuffersPlayed; loop++)
737 if(BufferListItem)
738 BufferListItem = BufferListItem->next;
740 if (BufferListItem)
742 if (BufferListItem->next)
744 if(BufferListItem->next->buffer &&
745 ((ALbuffer*)ALTHUNK_LOOKUPENTRY(BufferListItem->next->buffer))->data)
747 ulExtraSamples = min(((ALbuffer*)ALTHUNK_LOOKUPENTRY(BufferListItem->next->buffer))->size, (ALint)(16*Channels));
748 memcpy(&Data[DataSize*Channels], ((ALbuffer*)ALTHUNK_LOOKUPENTRY(BufferListItem->next->buffer))->data, ulExtraSamples);
751 else if (ALSource->bLooping)
753 if (ALSource->queue->buffer)
755 if(((ALbuffer*)ALTHUNK_LOOKUPENTRY(ALSource->queue->buffer))->data)
757 ulExtraSamples = min(((ALbuffer*)ALTHUNK_LOOKUPENTRY(ALSource->queue->buffer))->size, (ALint)(16*Channels));
758 memcpy(&Data[DataSize*Channels], ((ALbuffer*)ALTHUNK_LOOKUPENTRY(ALSource->queue->buffer))->data, ulExtraSamples);
763 BufferSize = min(BufferSize, (SamplesToDo-j));
765 //Actual sample mixing loop
766 Data += DataPosInt*Channels;
767 while(BufferSize--)
769 k = DataPosFrac>>FRACTIONBITS;
770 fraction = DataPosFrac&FRACTIONMASK;
771 if(Channels==1)
773 //First order interpolator
774 ALfloat sample = (ALfloat)((ALshort)(((Data[k]*((1L<<FRACTIONBITS)-fraction))+(Data[k+1]*(fraction)))>>FRACTIONBITS));
776 //Direct path final mix buffer and panning
777 value = aluComputeDrySample(ALSource, DryGainHF, sample);
778 DryBuffer[j][FRONT_LEFT] += value*DrySend[FRONT_LEFT];
779 DryBuffer[j][FRONT_RIGHT] += value*DrySend[FRONT_RIGHT];
780 DryBuffer[j][SIDE_LEFT] += value*DrySend[SIDE_LEFT];
781 DryBuffer[j][SIDE_RIGHT] += value*DrySend[SIDE_RIGHT];
782 DryBuffer[j][BACK_LEFT] += value*DrySend[BACK_LEFT];
783 DryBuffer[j][BACK_RIGHT] += value*DrySend[BACK_RIGHT];
784 //Room path final mix buffer and panning
785 value = aluComputeWetSample(ALSource, WetGainHF, sample);
786 WetBuffer[j][FRONT_LEFT] += value*WetSend[FRONT_LEFT];
787 WetBuffer[j][FRONT_RIGHT] += value*WetSend[FRONT_RIGHT];
788 WetBuffer[j][SIDE_LEFT] += value*WetSend[SIDE_LEFT];
789 WetBuffer[j][SIDE_RIGHT] += value*WetSend[SIDE_RIGHT];
790 WetBuffer[j][BACK_LEFT] += value*WetSend[BACK_LEFT];
791 WetBuffer[j][BACK_RIGHT] += value*WetSend[BACK_RIGHT];
793 else
795 //First order interpolator (front left)
796 value = (ALfloat)((ALshort)(((Data[k*Channels ]*((1L<<FRACTIONBITS)-fraction))+(Data[(k+1)*Channels ]*(fraction)))>>FRACTIONBITS));
797 DryBuffer[j][FRONT_LEFT] += value*DrySend[FRONT_LEFT];
798 WetBuffer[j][FRONT_LEFT] += value*WetSend[FRONT_LEFT];
799 //First order interpolator (front right)
800 value = (ALfloat)((ALshort)(((Data[k*Channels+1]*((1L<<FRACTIONBITS)-fraction))+(Data[(k+1)*Channels+1]*(fraction)))>>FRACTIONBITS));
801 DryBuffer[j][FRONT_RIGHT] += value*DrySend[FRONT_RIGHT];
802 WetBuffer[j][FRONT_RIGHT] += value*WetSend[FRONT_RIGHT];
803 if(Channels >= 4)
805 int i = 2;
806 if(Channels >= 6)
808 if(Channels != 7)
810 //First order interpolator (center)
811 value = (ALfloat)((ALshort)(((Data[k*Channels+i]*((1L<<FRACTIONBITS)-fraction))+(Data[(k+1)*Channels+i]*(fraction)))>>FRACTIONBITS));
812 DryBuffer[j][CENTER] += value*DrySend[CENTER];
813 WetBuffer[j][CENTER] += value*WetSend[CENTER];
814 i++;
816 //First order interpolator (lfe)
817 value = (ALfloat)((ALshort)(((Data[k*Channels+i]*((1L<<FRACTIONBITS)-fraction))+(Data[(k+1)*Channels+i]*(fraction)))>>FRACTIONBITS));
818 DryBuffer[j][LFE] += value*DrySend[LFE];
819 WetBuffer[j][LFE] += value*WetSend[LFE];
820 i++;
822 //First order interpolator (back left)
823 value = (ALfloat)((ALshort)(((Data[k*Channels+i]*((1L<<FRACTIONBITS)-fraction))+(Data[(k+1)*Channels+i]*(fraction)))>>FRACTIONBITS));
824 DryBuffer[j][BACK_LEFT] += value*DrySend[BACK_LEFT];
825 WetBuffer[j][BACK_LEFT] += value*WetSend[BACK_LEFT];
826 i++;
827 //First order interpolator (back right)
828 value = (ALfloat)((ALshort)(((Data[k*Channels+i]*((1L<<FRACTIONBITS)-fraction))+(Data[(k+1)*Channels+i]*(fraction)))>>FRACTIONBITS));
829 DryBuffer[j][BACK_RIGHT] += value*DrySend[BACK_RIGHT];
830 WetBuffer[j][BACK_RIGHT] += value*WetSend[BACK_RIGHT];
831 i++;
832 if(Channels >= 7)
834 //First order interpolator (side left)
835 value = (ALfloat)((ALshort)(((Data[k*Channels+i]*((1L<<FRACTIONBITS)-fraction))+(Data[(k+1)*Channels+i]*(fraction)))>>FRACTIONBITS));
836 DryBuffer[j][SIDE_LEFT] += value*DrySend[SIDE_LEFT];
837 WetBuffer[j][SIDE_LEFT] += value*WetSend[SIDE_LEFT];
838 i++;
839 //First order interpolator (side right)
840 value = (ALfloat)((ALshort)(((Data[k*Channels+i]*((1L<<FRACTIONBITS)-fraction))+(Data[(k+1)*Channels+i]*(fraction)))>>FRACTIONBITS));
841 DryBuffer[j][SIDE_RIGHT] += value*DrySend[SIDE_RIGHT];
842 WetBuffer[j][SIDE_RIGHT] += value*WetSend[SIDE_RIGHT];
843 i++;
847 DataPosFrac += increment;
848 j++;
850 DataPosInt += (DataPosFrac>>FRACTIONBITS);
851 DataPosFrac = (DataPosFrac&FRACTIONMASK);
853 //Update source info
854 ALSource->position = DataPosInt;
855 ALSource->position_fraction = DataPosFrac;
858 //Handle looping sources
859 if(!Buffer || DataPosInt >= DataSize)
861 //queueing
862 if(ALSource->queue)
864 Looping = ALSource->bLooping;
865 if(ALSource->BuffersPlayed < (ALSource->BuffersInQueue-1))
867 BufferListItem = ALSource->queue;
868 for(loop = 0; loop <= ALSource->BuffersPlayed; loop++)
870 if(BufferListItem)
872 if(!Looping)
873 BufferListItem->bufferstate = PROCESSED;
874 BufferListItem = BufferListItem->next;
877 if(!Looping)
878 ALSource->BuffersProcessed++;
879 if(BufferListItem)
880 ALSource->ulBufferID = BufferListItem->buffer;
881 ALSource->position = DataPosInt-DataSize;
882 ALSource->position_fraction = DataPosFrac;
883 ALSource->BuffersPlayed++;
885 else
887 if(!Looping)
889 /* alSourceStop */
890 ALSource->state = AL_STOPPED;
891 ALSource->inuse = AL_FALSE;
892 ALSource->BuffersPlayed = ALSource->BuffersProcessed = ALSource->BuffersInQueue;
893 BufferListItem = ALSource->queue;
894 while(BufferListItem != NULL)
896 BufferListItem->bufferstate = PROCESSED;
897 BufferListItem = BufferListItem->next;
900 else
902 /* alSourceRewind */
903 /* alSourcePlay */
904 ALSource->state = AL_PLAYING;
905 ALSource->inuse = AL_TRUE;
906 ALSource->play = AL_TRUE;
907 ALSource->BuffersPlayed = 0;
908 ALSource->BufferPosition = 0;
909 ALSource->lBytesPlayed = 0;
910 ALSource->BuffersProcessed = 0;
911 BufferListItem = ALSource->queue;
912 while(BufferListItem != NULL)
914 BufferListItem->bufferstate = PENDING;
915 BufferListItem = BufferListItem->next;
917 ALSource->ulBufferID = ALSource->queue->buffer;
919 ALSource->position = DataPosInt-DataSize;
920 ALSource->position_fraction = DataPosFrac;
926 //Get source state
927 State = ALSource->state;
930 ALSource = ALSource->next;
933 //Post processing loop
934 switch(format)
936 case AL_FORMAT_MONO8:
937 for(i = 0;i < SamplesToDo;i++)
939 ((ALubyte*)buffer)[0] = (ALubyte)((aluF2S(DryBuffer[i][FRONT_LEFT]+DryBuffer[i][FRONT_RIGHT]+
940 WetBuffer[i][FRONT_LEFT]+WetBuffer[i][FRONT_RIGHT])>>8)+128);
941 buffer = ((ALubyte*)buffer) + 1;
943 break;
944 case AL_FORMAT_STEREO8:
945 if(ALContext->bs2b)
947 for(i = 0;i < SamplesToDo;i++)
949 float samples[2];
950 samples[0] = DryBuffer[i][FRONT_LEFT] +WetBuffer[i][FRONT_LEFT];
951 samples[1] = DryBuffer[i][FRONT_RIGHT]+WetBuffer[i][FRONT_RIGHT];
952 bs2b_cross_feed(ALContext->bs2b, samples);
953 ((ALubyte*)buffer)[0] = (ALubyte)((aluF2S(samples[0])>>8)+128);
954 ((ALubyte*)buffer)[1] = (ALubyte)((aluF2S(samples[1])>>8)+128);
955 buffer = ((ALubyte*)buffer) + 2;
958 else
960 for(i = 0;i < SamplesToDo;i++)
962 ((ALubyte*)buffer)[0] = (ALubyte)((aluF2S(DryBuffer[i][FRONT_LEFT] +WetBuffer[i][FRONT_LEFT])>>8)+128);
963 ((ALubyte*)buffer)[1] = (ALubyte)((aluF2S(DryBuffer[i][FRONT_RIGHT]+WetBuffer[i][FRONT_RIGHT])>>8)+128);
964 buffer = ((ALubyte*)buffer) + 2;
967 break;
968 case AL_FORMAT_QUAD8:
969 for(i = 0;i < SamplesToDo;i++)
971 ((ALubyte*)buffer)[0] = (ALubyte)((aluF2S(DryBuffer[i][FRONT_LEFT] +WetBuffer[i][FRONT_LEFT])>>8)+128);
972 ((ALubyte*)buffer)[1] = (ALubyte)((aluF2S(DryBuffer[i][FRONT_RIGHT]+WetBuffer[i][FRONT_RIGHT])>>8)+128);
973 ((ALubyte*)buffer)[2] = (ALubyte)((aluF2S(DryBuffer[i][BACK_LEFT] +WetBuffer[i][BACK_LEFT])>>8)+128);
974 ((ALubyte*)buffer)[3] = (ALubyte)((aluF2S(DryBuffer[i][BACK_RIGHT] +WetBuffer[i][BACK_RIGHT])>>8)+128);
975 buffer = ((ALubyte*)buffer) + 4;
977 break;
978 case AL_FORMAT_51CHN8:
979 for(i = 0;i < SamplesToDo;i++)
981 ((ALubyte*)buffer)[0] = (ALubyte)((aluF2S(DryBuffer[i][FRONT_LEFT] +WetBuffer[i][FRONT_LEFT])>>8)+128);
982 ((ALubyte*)buffer)[1] = (ALubyte)((aluF2S(DryBuffer[i][FRONT_RIGHT]+WetBuffer[i][FRONT_RIGHT])>>8)+128);
983 ((ALubyte*)buffer)[2] = (ALubyte)((aluF2S(DryBuffer[i][BACK_LEFT] +WetBuffer[i][BACK_LEFT])>>8)+128);
984 ((ALubyte*)buffer)[3] = (ALubyte)((aluF2S(DryBuffer[i][BACK_RIGHT] +WetBuffer[i][BACK_RIGHT])>>8)+128);
985 ((ALubyte*)buffer)[4] = (ALubyte)((aluF2S(DryBuffer[i][CENTER] +WetBuffer[i][CENTER])>>8)+128);
986 ((ALubyte*)buffer)[5] = (ALubyte)((aluF2S(DryBuffer[i][LFE] +WetBuffer[i][LFE])>>8)+128);
987 buffer = ((ALubyte*)buffer) + 6;
989 break;
990 case AL_FORMAT_61CHN8:
991 for(i = 0;i < SamplesToDo;i++)
993 ((ALubyte*)buffer)[0] = (ALubyte)((aluF2S(DryBuffer[i][FRONT_LEFT] +WetBuffer[i][FRONT_LEFT])>>8)+128);
994 ((ALubyte*)buffer)[1] = (ALubyte)((aluF2S(DryBuffer[i][FRONT_RIGHT]+WetBuffer[i][FRONT_RIGHT])>>8)+128);
995 ((ALubyte*)buffer)[2] = (ALubyte)((aluF2S(DryBuffer[i][SIDE_LEFT] +WetBuffer[i][SIDE_LEFT])>>8)+128);
996 ((ALubyte*)buffer)[3] = (ALubyte)((aluF2S(DryBuffer[i][SIDE_RIGHT] +WetBuffer[i][SIDE_RIGHT])>>8)+128);
997 ((ALubyte*)buffer)[4] = (ALubyte)((aluF2S(DryBuffer[i][BACK_LEFT] +WetBuffer[i][BACK_LEFT])>>8)+128);
998 ((ALubyte*)buffer)[5] = (ALubyte)((aluF2S(DryBuffer[i][BACK_RIGHT] +WetBuffer[i][BACK_RIGHT])>>8)+128);
999 ((ALubyte*)buffer)[6] = (ALubyte)((aluF2S(DryBuffer[i][LFE] +WetBuffer[i][LFE])>>8)+128);
1000 buffer = ((ALubyte*)buffer) + 7;
1002 break;
1003 case AL_FORMAT_71CHN8:
1004 for(i = 0;i < SamplesToDo;i++)
1006 ((ALubyte*)buffer)[0] = (ALubyte)((aluF2S(DryBuffer[i][FRONT_LEFT] +WetBuffer[i][FRONT_LEFT])>>8)+128);
1007 ((ALubyte*)buffer)[1] = (ALubyte)((aluF2S(DryBuffer[i][FRONT_RIGHT]+WetBuffer[i][FRONT_RIGHT])>>8)+128);
1008 ((ALubyte*)buffer)[2] = (ALubyte)((aluF2S(DryBuffer[i][SIDE_LEFT] +WetBuffer[i][SIDE_LEFT])>>8)+128);
1009 ((ALubyte*)buffer)[3] = (ALubyte)((aluF2S(DryBuffer[i][SIDE_RIGHT] +WetBuffer[i][SIDE_RIGHT])>>8)+128);
1010 ((ALubyte*)buffer)[4] = (ALubyte)((aluF2S(DryBuffer[i][BACK_LEFT] +WetBuffer[i][BACK_LEFT])>>8)+128);
1011 ((ALubyte*)buffer)[5] = (ALubyte)((aluF2S(DryBuffer[i][BACK_RIGHT] +WetBuffer[i][BACK_RIGHT])>>8)+128);
1012 ((ALubyte*)buffer)[6] = (ALubyte)((aluF2S(DryBuffer[i][CENTER] +WetBuffer[i][CENTER])>>8)+128);
1013 ((ALubyte*)buffer)[7] = (ALubyte)((aluF2S(DryBuffer[i][LFE] +WetBuffer[i][LFE])>>8)+128);
1014 buffer = ((ALubyte*)buffer) + 8;
1016 break;
1018 case AL_FORMAT_MONO16:
1019 for(i = 0;i < SamplesToDo;i++)
1021 ((ALshort*)buffer)[0] = aluF2S(DryBuffer[i][FRONT_LEFT]+DryBuffer[i][FRONT_RIGHT]+
1022 WetBuffer[i][FRONT_LEFT]+WetBuffer[i][FRONT_RIGHT]);
1023 buffer = ((ALshort*)buffer) + 1;
1025 break;
1026 case AL_FORMAT_STEREO16:
1027 if(ALContext->bs2b)
1029 for(i = 0;i < SamplesToDo;i++)
1031 float samples[2];
1032 samples[0] = DryBuffer[i][FRONT_LEFT] +WetBuffer[i][FRONT_LEFT];
1033 samples[1] = DryBuffer[i][FRONT_RIGHT]+WetBuffer[i][FRONT_RIGHT];
1034 bs2b_cross_feed(ALContext->bs2b, samples);
1035 ((ALshort*)buffer)[0] = aluF2S(samples[0]);
1036 ((ALshort*)buffer)[1] = aluF2S(samples[1]);
1037 buffer = ((ALshort*)buffer) + 2;
1040 else
1042 for(i = 0;i < SamplesToDo;i++)
1044 ((ALshort*)buffer)[0] = aluF2S(DryBuffer[i][FRONT_LEFT] +WetBuffer[i][FRONT_LEFT]);
1045 ((ALshort*)buffer)[1] = aluF2S(DryBuffer[i][FRONT_RIGHT]+WetBuffer[i][FRONT_RIGHT]);
1046 buffer = ((ALshort*)buffer) + 2;
1049 break;
1050 case AL_FORMAT_QUAD16:
1051 for(i = 0;i < SamplesToDo;i++)
1053 ((ALshort*)buffer)[0] = aluF2S(DryBuffer[i][FRONT_LEFT] +WetBuffer[i][FRONT_LEFT]);
1054 ((ALshort*)buffer)[1] = aluF2S(DryBuffer[i][FRONT_RIGHT]+WetBuffer[i][FRONT_RIGHT]);
1055 ((ALshort*)buffer)[2] = aluF2S(DryBuffer[i][BACK_LEFT] +WetBuffer[i][BACK_LEFT]);
1056 ((ALshort*)buffer)[3] = aluF2S(DryBuffer[i][BACK_RIGHT] +WetBuffer[i][BACK_RIGHT]);
1057 buffer = ((ALshort*)buffer) + 4;
1059 break;
1060 case AL_FORMAT_51CHN16:
1061 for(i = 0;i < SamplesToDo;i++)
1063 ((ALshort*)buffer)[0] = aluF2S(DryBuffer[i][FRONT_LEFT] +WetBuffer[i][FRONT_LEFT]);
1064 ((ALshort*)buffer)[1] = aluF2S(DryBuffer[i][FRONT_RIGHT]+WetBuffer[i][FRONT_RIGHT]);
1065 ((ALshort*)buffer)[2] = aluF2S(DryBuffer[i][BACK_LEFT] +WetBuffer[i][BACK_LEFT]);
1066 ((ALshort*)buffer)[3] = aluF2S(DryBuffer[i][BACK_RIGHT] +WetBuffer[i][BACK_RIGHT]);
1067 ((ALshort*)buffer)[4] = aluF2S(DryBuffer[i][CENTER] +WetBuffer[i][CENTER]);
1068 ((ALshort*)buffer)[5] = aluF2S(DryBuffer[i][LFE] +WetBuffer[i][LFE]);
1069 buffer = ((ALshort*)buffer) + 6;
1071 break;
1072 case AL_FORMAT_61CHN16:
1073 for(i = 0;i < SamplesToDo;i++)
1075 ((ALshort*)buffer)[0] = aluF2S(DryBuffer[i][FRONT_LEFT] +WetBuffer[i][FRONT_LEFT]);
1076 ((ALshort*)buffer)[1] = aluF2S(DryBuffer[i][FRONT_RIGHT]+WetBuffer[i][FRONT_RIGHT]);
1077 ((ALshort*)buffer)[2] = aluF2S(DryBuffer[i][SIDE_LEFT] +WetBuffer[i][SIDE_LEFT]);
1078 ((ALshort*)buffer)[3] = aluF2S(DryBuffer[i][SIDE_RIGHT] +WetBuffer[i][SIDE_RIGHT]);
1079 ((ALshort*)buffer)[4] = aluF2S(DryBuffer[i][BACK_LEFT] +WetBuffer[i][BACK_LEFT]);
1080 ((ALshort*)buffer)[5] = aluF2S(DryBuffer[i][BACK_RIGHT] +WetBuffer[i][BACK_RIGHT]);
1081 ((ALshort*)buffer)[6] = aluF2S(DryBuffer[i][LFE] +WetBuffer[i][LFE]);
1082 buffer = ((ALshort*)buffer) + 7;
1084 break;
1085 case AL_FORMAT_71CHN16:
1086 for(i = 0;i < SamplesToDo;i++)
1088 ((ALshort*)buffer)[0] = aluF2S(DryBuffer[i][FRONT_LEFT] +WetBuffer[i][FRONT_LEFT]);
1089 ((ALshort*)buffer)[1] = aluF2S(DryBuffer[i][FRONT_RIGHT]+WetBuffer[i][FRONT_RIGHT]);
1090 ((ALshort*)buffer)[2] = aluF2S(DryBuffer[i][SIDE_LEFT] +WetBuffer[i][SIDE_LEFT]);
1091 ((ALshort*)buffer)[3] = aluF2S(DryBuffer[i][SIDE_RIGHT] +WetBuffer[i][SIDE_RIGHT]);
1092 ((ALshort*)buffer)[4] = aluF2S(DryBuffer[i][BACK_LEFT] +WetBuffer[i][BACK_LEFT]);
1093 ((ALshort*)buffer)[5] = aluF2S(DryBuffer[i][BACK_RIGHT] +WetBuffer[i][BACK_RIGHT]);
1094 ((ALshort*)buffer)[6] = aluF2S(DryBuffer[i][CENTER] +WetBuffer[i][CENTER]);
1095 ((ALshort*)buffer)[7] = aluF2S(DryBuffer[i][LFE] +WetBuffer[i][LFE]);
1096 buffer = ((ALshort*)buffer) + 8;
1098 break;
1100 default:
1101 break;
1104 size -= SamplesToDo;
1108 ProcessContext(ALContext);