Use the correct channel ordering for Windows
[openal-soft.git] / Alc / ALu.c
blob79603425b1e8f2d479de7d218bea3755f798a3bc
1 /**
2 * OpenAL cross platform audio library
3 * Copyright (C) 1999-2007 by authors.
4 * This library is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU Library General Public
6 * License as published by the Free Software Foundation; either
7 * version 2 of the License, or (at your option) any later version.
9 * This library is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12 * Library General Public License for more details.
14 * You should have received a copy of the GNU Library General Public
15 * License along with this library; if not, write to the
16 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
17 * Boston, MA 02111-1307, USA.
18 * Or go to http://www.gnu.org/copyleft/lgpl.html
21 #define _CRT_SECURE_NO_DEPRECATE // get rid of sprintf security warnings on VS2005
23 #include "config.h"
25 #include <math.h>
26 #include "alMain.h"
27 #include "AL/al.h"
28 #include "AL/alc.h"
29 #include "alSource.h"
30 #include "alBuffer.h"
31 #include "alThunk.h"
32 #include "alListener.h"
33 #include "alAuxEffectSlot.h"
34 #include "bs2b.h"
36 #if defined(HAVE_STDINT_H)
37 #include <stdint.h>
38 typedef int64_t ALint64;
39 #elif defined(HAVE___INT64)
40 typedef __int64 ALint64;
41 #elif (SIZEOF_LONG == 8)
42 typedef long ALint64;
43 #elif (SIZEOF_LONG_LONG == 8)
44 typedef long long ALint64;
45 #endif
47 #ifdef HAVE_SQRTF
48 #define aluSqrt(x) ((ALfloat)sqrtf((float)(x)))
49 #else
50 #define aluSqrt(x) ((ALfloat)sqrt((double)(x)))
51 #endif
53 #ifdef HAVE_ACOSF
54 #define aluAcos(x) ((ALfloat)acosf((float)(x)))
55 #else
56 #define aluAcos(x) ((ALfloat)acos((double)(x)))
57 #endif
59 // fixes for mingw32.
60 #if defined(max) && !defined(__max)
61 #define __max max
62 #endif
63 #if defined(min) && !defined(__min)
64 #define __min min
65 #endif
67 #define BUFFERSIZE 48000
68 #define FRACTIONBITS 14
69 #define FRACTIONMASK ((1L<<FRACTIONBITS)-1)
70 #define MAX_PITCH 4
72 enum {
73 FRONT_LEFT = 0,
74 FRONT_RIGHT,
75 SIDE_LEFT,
76 SIDE_RIGHT,
77 BACK_LEFT,
78 BACK_RIGHT,
79 CENTER,
80 LFE,
82 OUTPUTCHANNELS
85 /* NOTE: The AL_FORMAT_REAR* enums aren't handled here be cause they're
86 * converted to AL_FORMAT_QUAD* when loaded */
87 __inline ALuint aluBytesFromFormat(ALenum format)
89 switch(format)
91 case AL_FORMAT_MONO8:
92 case AL_FORMAT_STEREO8:
93 case AL_FORMAT_QUAD8_LOKI:
94 case AL_FORMAT_QUAD8:
95 case AL_FORMAT_51CHN8:
96 case AL_FORMAT_61CHN8:
97 case AL_FORMAT_71CHN8:
98 return 1;
100 case AL_FORMAT_MONO16:
101 case AL_FORMAT_STEREO16:
102 case AL_FORMAT_QUAD16_LOKI:
103 case AL_FORMAT_QUAD16:
104 case AL_FORMAT_51CHN16:
105 case AL_FORMAT_61CHN16:
106 case AL_FORMAT_71CHN16:
107 return 2;
109 case AL_FORMAT_MONO_FLOAT32:
110 case AL_FORMAT_STEREO_FLOAT32:
111 case AL_FORMAT_QUAD32:
112 case AL_FORMAT_51CHN32:
113 case AL_FORMAT_61CHN32:
114 case AL_FORMAT_71CHN32:
115 return 4;
117 default:
118 return 0;
122 __inline ALuint aluChannelsFromFormat(ALenum format)
124 switch(format)
126 case AL_FORMAT_MONO8:
127 case AL_FORMAT_MONO16:
128 case AL_FORMAT_MONO_FLOAT32:
129 return 1;
131 case AL_FORMAT_STEREO8:
132 case AL_FORMAT_STEREO16:
133 case AL_FORMAT_STEREO_FLOAT32:
134 return 2;
136 case AL_FORMAT_QUAD8_LOKI:
137 case AL_FORMAT_QUAD16_LOKI:
138 case AL_FORMAT_QUAD8:
139 case AL_FORMAT_QUAD16:
140 case AL_FORMAT_QUAD32:
141 return 4;
143 case AL_FORMAT_51CHN8:
144 case AL_FORMAT_51CHN16:
145 case AL_FORMAT_51CHN32:
146 return 6;
148 case AL_FORMAT_61CHN8:
149 case AL_FORMAT_61CHN16:
150 case AL_FORMAT_61CHN32:
151 return 7;
153 case AL_FORMAT_71CHN8:
154 case AL_FORMAT_71CHN16:
155 case AL_FORMAT_71CHN32:
156 return 8;
158 default:
159 return 0;
163 static __inline ALint aluF2L(ALfloat Value)
165 #if 0
166 if(sizeof(ALint) == 4 && sizeof(double) == 8)
168 double temp;
169 temp = Value + (((65536.0*65536.0*16.0)+(65536.0*65536.0*8.0))*65536.0);
170 return *((ALint*)&temp);
172 #endif
173 return (ALint)Value;
176 static __inline ALshort aluF2S(ALfloat Value)
178 ALint i;
180 i = aluF2L(Value);
181 i = __min( 32767, i);
182 i = __max(-32768, i);
183 return ((ALshort)i);
186 static __inline ALvoid aluCrossproduct(ALfloat *inVector1,ALfloat *inVector2,ALfloat *outVector)
188 outVector[0] = inVector1[1]*inVector2[2] - inVector1[2]*inVector2[1];
189 outVector[1] = inVector1[2]*inVector2[0] - inVector1[0]*inVector2[2];
190 outVector[2] = inVector1[0]*inVector2[1] - inVector1[1]*inVector2[0];
193 static __inline ALfloat aluDotproduct(ALfloat *inVector1,ALfloat *inVector2)
195 return inVector1[0]*inVector2[0] + inVector1[1]*inVector2[1] +
196 inVector1[2]*inVector2[2];
199 static __inline ALvoid aluNormalize(ALfloat *inVector)
201 ALfloat length, inverse_length;
203 length = (ALfloat)aluSqrt(aluDotproduct(inVector, inVector));
204 if(length != 0)
206 inverse_length = 1.0f/length;
207 inVector[0] *= inverse_length;
208 inVector[1] *= inverse_length;
209 inVector[2] *= inverse_length;
213 static __inline ALvoid aluMatrixVector(ALfloat *vector,ALfloat matrix[3][3])
215 ALfloat result[3];
217 result[0] = vector[0]*matrix[0][0] + vector[1]*matrix[1][0] + vector[2]*matrix[2][0];
218 result[1] = vector[0]*matrix[0][1] + vector[1]*matrix[1][1] + vector[2]*matrix[2][1];
219 result[2] = vector[0]*matrix[0][2] + vector[1]*matrix[1][2] + vector[2]*matrix[2][2];
220 memcpy(vector, result, sizeof(result));
223 static __inline ALfloat aluComputeSample(ALfloat GainHF, ALfloat sample, ALfloat LastSample)
225 if(GainHF < 1.0f)
227 if(GainHF > 0.0f)
229 sample *= GainHF;
230 sample += LastSample * (1.0f-GainHF);
232 else
233 sample = 0.0f;
236 return sample;
239 static ALvoid CalcSourceParams(ALCcontext *ALContext, ALsource *ALSource,
240 ALenum isMono, ALenum OutputFormat,
241 ALfloat *drysend, ALfloat *wetsend,
242 ALfloat *pitch, ALfloat *drygainhf,
243 ALfloat *wetgainhf)
245 ALfloat InnerAngle,OuterAngle,Angle,Distance,DryMix,WetMix=0.0f;
246 ALfloat Direction[3],Position[3],SourceToListener[3];
247 ALfloat MinVolume,MaxVolume,MinDist,MaxDist,Rolloff,OuterGainHF;
248 ALfloat ConeVolume,SourceVolume,PanningFB,PanningLR,ListenerGain;
249 ALfloat U[3],V[3],N[3];
250 ALfloat DopplerFactor, DopplerVelocity, flSpeedOfSound, flMaxVelocity;
251 ALfloat Matrix[3][3];
252 ALfloat flAttenuation;
253 ALfloat RoomAttenuation;
254 ALfloat MetersPerUnit;
255 ALfloat RoomRolloff;
256 ALfloat DryGainHF = 1.0f;
257 ALfloat WetGainHF = 1.0f;
259 //Get context properties
260 DopplerFactor = ALContext->DopplerFactor;
261 DopplerVelocity = ALContext->DopplerVelocity;
262 flSpeedOfSound = ALContext->flSpeedOfSound;
264 //Get listener properties
265 ListenerGain = ALContext->Listener.Gain;
266 MetersPerUnit = ALContext->Listener.MetersPerUnit;
268 //Get source properties
269 SourceVolume = ALSource->flGain;
270 memcpy(Position, ALSource->vPosition, sizeof(ALSource->vPosition));
271 memcpy(Direction, ALSource->vOrientation, sizeof(ALSource->vOrientation));
272 MinVolume = ALSource->flMinGain;
273 MaxVolume = ALSource->flMaxGain;
274 MinDist = ALSource->flRefDistance;
275 MaxDist = ALSource->flMaxDistance;
276 Rolloff = ALSource->flRollOffFactor;
277 InnerAngle = ALSource->flInnerAngle;
278 OuterAngle = ALSource->flOuterAngle;
279 OuterGainHF = ALSource->OuterGainHF;
280 RoomRolloff = ALSource->RoomRolloffFactor;
282 //Only apply 3D calculations for mono buffers
283 if(isMono != AL_FALSE)
285 //1. Translate Listener to origin (convert to head relative)
286 if(ALSource->bHeadRelative==AL_FALSE)
288 Position[0] -= ALContext->Listener.Position[0];
289 Position[1] -= ALContext->Listener.Position[1];
290 Position[2] -= ALContext->Listener.Position[2];
293 //2. Calculate distance attenuation
294 Distance = aluSqrt(aluDotproduct(Position, Position));
296 if(ALSource->Send[0].Slot && !ALSource->Send[0].Slot->AuxSendAuto)
298 if(ALSource->Send[0].Slot->effect.type == AL_EFFECT_REVERB)
299 RoomRolloff = ALSource->Send[0].Slot->effect.Reverb.RoomRolloffFactor;
302 flAttenuation = 1.0f;
303 RoomAttenuation = 1.0f;
304 switch (ALContext->DistanceModel)
306 case AL_INVERSE_DISTANCE_CLAMPED:
307 Distance=__max(Distance,MinDist);
308 Distance=__min(Distance,MaxDist);
309 if (MaxDist < MinDist)
310 break;
311 //fall-through
312 case AL_INVERSE_DISTANCE:
313 if (MinDist > 0.0f)
315 if ((MinDist + (Rolloff * (Distance - MinDist))) > 0.0f)
316 flAttenuation = MinDist / (MinDist + (Rolloff * (Distance - MinDist)));
317 if ((MinDist + (RoomRolloff * (Distance - MinDist))) > 0.0f)
318 RoomAttenuation = MinDist / (MinDist + (RoomRolloff * (Distance - MinDist)));
320 break;
322 case AL_LINEAR_DISTANCE_CLAMPED:
323 Distance=__max(Distance,MinDist);
324 Distance=__min(Distance,MaxDist);
325 if (MaxDist < MinDist)
326 break;
327 //fall-through
328 case AL_LINEAR_DISTANCE:
329 Distance=__min(Distance,MaxDist);
330 if (MaxDist != MinDist)
332 flAttenuation = 1.0f - (Rolloff*(Distance-MinDist)/(MaxDist - MinDist));
333 RoomAttenuation = 1.0f - (RoomRolloff*(Distance-MinDist)/(MaxDist - MinDist));
335 break;
337 case AL_EXPONENT_DISTANCE_CLAMPED:
338 Distance=__max(Distance,MinDist);
339 Distance=__min(Distance,MaxDist);
340 if (MaxDist < MinDist)
341 break;
342 //fall-through
343 case AL_EXPONENT_DISTANCE:
344 if ((Distance > 0.0f) && (MinDist > 0.0f))
346 flAttenuation = (ALfloat)pow(Distance/MinDist, -Rolloff);
347 RoomAttenuation = (ALfloat)pow(Distance/MinDist, -RoomRolloff);
349 break;
351 case AL_NONE:
352 default:
353 flAttenuation = 1.0f;
354 RoomAttenuation = 1.0f;
355 break;
358 // Source Gain + Attenuation and clamp to Min/Max Gain
359 DryMix = SourceVolume * flAttenuation;
360 DryMix = __min(DryMix,MaxVolume);
361 DryMix = __max(DryMix,MinVolume);
363 WetMix = SourceVolume * (ALSource->WetGainAuto ?
364 RoomAttenuation : 1.0f);
365 WetMix = __min(WetMix,MaxVolume);
366 WetMix = __max(WetMix,MinVolume);
368 //3. Apply directional soundcones
369 SourceToListener[0] = -Position[0];
370 SourceToListener[1] = -Position[1];
371 SourceToListener[2] = -Position[2];
372 aluNormalize(Direction);
373 aluNormalize(SourceToListener);
374 Angle = aluAcos(aluDotproduct(Direction,SourceToListener)) * 180.0f /
375 3.141592654f;
376 if(Angle >= InnerAngle && Angle <= OuterAngle)
378 ALfloat scale = (Angle-InnerAngle) / (OuterAngle-InnerAngle);
379 ConeVolume = (1.0f+(ALSource->flOuterGain-1.0f)*scale);
380 if(ALSource->WetGainAuto)
381 WetMix *= ConeVolume;
382 if(ALSource->DryGainHFAuto)
383 DryGainHF *= (1.0f+(OuterGainHF-1.0f)*scale);
384 if(ALSource->WetGainHFAuto)
385 WetGainHF *= (1.0f+(OuterGainHF-1.0f)*scale);
387 else if(Angle > OuterAngle)
389 ConeVolume = (1.0f+(ALSource->flOuterGain-1.0f));
390 if(ALSource->WetGainAuto)
391 WetMix *= ConeVolume;
392 if(ALSource->DryGainHFAuto)
393 DryGainHF *= (1.0f+(OuterGainHF-1.0f));
394 if(ALSource->WetGainHFAuto)
395 WetGainHF *= (1.0f+(OuterGainHF-1.0f));
397 else
398 ConeVolume = 1.0f;
400 //4. Calculate Velocity
401 if(DopplerFactor != 0.0f)
403 ALfloat flVSS, flVLS;
405 flVLS = aluDotproduct(ALContext->Listener.Velocity,
406 SourceToListener);
407 flVSS = aluDotproduct(ALSource->vVelocity, SourceToListener);
409 flMaxVelocity = (DopplerVelocity * flSpeedOfSound) / DopplerFactor;
411 if (flVSS >= flMaxVelocity)
412 flVSS = (flMaxVelocity - 1.0f);
413 else if (flVSS <= -flMaxVelocity)
414 flVSS = -flMaxVelocity + 1.0f;
416 if (flVLS >= flMaxVelocity)
417 flVLS = (flMaxVelocity - 1.0f);
418 else if (flVLS <= -flMaxVelocity)
419 flVLS = -flMaxVelocity + 1.0f;
421 pitch[0] = ALSource->flPitch *
422 ((flSpeedOfSound * DopplerVelocity) - (DopplerFactor * flVLS)) /
423 ((flSpeedOfSound * DopplerVelocity) - (DopplerFactor * flVSS));
425 else
426 pitch[0] = ALSource->flPitch;
428 //5. Align coordinate system axes
429 aluCrossproduct(ALContext->Listener.Forward, ALContext->Listener.Up, U); // Right-vector
430 aluNormalize(U); // Normalized Right-vector
431 memcpy(V, ALContext->Listener.Up, sizeof(V)); // Up-vector
432 aluNormalize(V); // Normalized Up-vector
433 memcpy(N, ALContext->Listener.Forward, sizeof(N)); // At-vector
434 aluNormalize(N); // Normalized At-vector
435 Matrix[0][0] = U[0]; Matrix[0][1] = V[0]; Matrix[0][2] = -N[0];
436 Matrix[1][0] = U[1]; Matrix[1][1] = V[1]; Matrix[1][2] = -N[1];
437 Matrix[2][0] = U[2]; Matrix[2][1] = V[2]; Matrix[2][2] = -N[2];
438 aluMatrixVector(Position, Matrix);
440 //6. Apply filter gains and filters
441 switch(ALSource->DirectFilter.filter)
443 case AL_FILTER_LOWPASS:
444 DryMix *= ALSource->DirectFilter.Gain;
445 DryGainHF *= ALSource->DirectFilter.GainHF;
446 break;
449 switch(ALSource->Send[0].WetFilter.filter)
451 case AL_FILTER_LOWPASS:
452 WetMix *= ALSource->Send[0].WetFilter.Gain;
453 WetGainHF *= ALSource->Send[0].WetFilter.GainHF;
454 break;
457 if(ALSource->AirAbsorptionFactor > 0.0f)
458 DryGainHF *= pow(ALSource->AirAbsorptionFactor * AIRABSORBGAINHF,
459 Distance * MetersPerUnit);
461 if(ALSource->Send[0].Slot)
463 WetMix *= ALSource->Send[0].Slot->Gain;
465 if(ALSource->Send[0].Slot->effect.type == AL_EFFECT_REVERB)
467 WetGainHF *= ALSource->Send[0].Slot->effect.Reverb.GainHF;
468 WetGainHF *= pow(ALSource->Send[0].Slot->effect.Reverb.AirAbsorptionGainHF,
469 Distance * MetersPerUnit);
472 else
474 WetMix = 0.0f;
475 WetGainHF = 1.0f;
478 DryMix *= ListenerGain * ConeVolume;
479 WetMix *= ListenerGain;
481 //7. Convert normalized position into pannings, then into channel volumes
482 aluNormalize(Position);
483 switch(aluChannelsFromFormat(OutputFormat))
485 case 1:
486 drysend[FRONT_LEFT] = DryMix * aluSqrt(1.0f); //Direct
487 drysend[FRONT_RIGHT] = DryMix * aluSqrt(1.0f); //Direct
488 wetsend[FRONT_LEFT] = WetMix * aluSqrt(1.0f); //Room
489 wetsend[FRONT_RIGHT] = WetMix * aluSqrt(1.0f); //Room
490 break;
491 case 2:
492 PanningLR = 0.5f + 0.5f*Position[0];
493 drysend[FRONT_LEFT] = DryMix * aluSqrt(1.0f-PanningLR); //L Direct
494 drysend[FRONT_RIGHT] = DryMix * aluSqrt( PanningLR); //R Direct
495 wetsend[FRONT_LEFT] = WetMix * aluSqrt(1.0f-PanningLR); //L Room
496 wetsend[FRONT_RIGHT] = WetMix * aluSqrt( PanningLR); //R Room
497 break;
498 case 4:
499 /* TODO: Add center/lfe channel in spatial calculations? */
500 case 6:
501 // Apply a scalar so each individual speaker has more weight
502 PanningLR = 0.5f + (0.5f*Position[0]*1.41421356f);
503 PanningLR = __min(1.0f, PanningLR);
504 PanningLR = __max(0.0f, PanningLR);
505 PanningFB = 0.5f + (0.5f*Position[2]*1.41421356f);
506 PanningFB = __min(1.0f, PanningFB);
507 PanningFB = __max(0.0f, PanningFB);
508 drysend[FRONT_LEFT] = DryMix * aluSqrt((1.0f-PanningLR)*(1.0f-PanningFB));
509 drysend[FRONT_RIGHT] = DryMix * aluSqrt(( PanningLR)*(1.0f-PanningFB));
510 drysend[BACK_LEFT] = DryMix * aluSqrt((1.0f-PanningLR)*( PanningFB));
511 drysend[BACK_RIGHT] = DryMix * aluSqrt(( PanningLR)*( PanningFB));
512 wetsend[FRONT_LEFT] = WetMix * aluSqrt((1.0f-PanningLR)*(1.0f-PanningFB));
513 wetsend[FRONT_RIGHT] = WetMix * aluSqrt(( PanningLR)*(1.0f-PanningFB));
514 wetsend[BACK_LEFT] = WetMix * aluSqrt((1.0f-PanningLR)*( PanningFB));
515 wetsend[BACK_RIGHT] = WetMix * aluSqrt(( PanningLR)*( PanningFB));
516 break;
517 case 7:
518 case 8:
519 PanningFB = 1.0f - fabs(Position[2]*1.15470054f);
520 PanningFB = __min(1.0f, PanningFB);
521 PanningFB = __max(0.0f, PanningFB);
522 PanningLR = 0.5f + (0.5*Position[0]*((1.0f-PanningFB)*2.0f));
523 PanningLR = __min(1.0f, PanningLR);
524 PanningLR = __max(0.0f, PanningLR);
525 if(Position[2] > 0.0f)
527 drysend[BACK_LEFT] = DryMix * aluSqrt((1.0f-PanningLR)*(1.0f-PanningFB));
528 drysend[BACK_RIGHT] = DryMix * aluSqrt(( PanningLR)*(1.0f-PanningFB));
529 drysend[SIDE_LEFT] = DryMix * aluSqrt((1.0f-PanningLR)*( PanningFB));
530 drysend[SIDE_RIGHT] = DryMix * aluSqrt(( PanningLR)*( PanningFB));
531 drysend[FRONT_LEFT] = 0.0f;
532 drysend[FRONT_RIGHT] = 0.0f;
533 wetsend[BACK_LEFT] = WetMix * aluSqrt((1.0f-PanningLR)*(1.0f-PanningFB));
534 wetsend[BACK_RIGHT] = WetMix * aluSqrt(( PanningLR)*(1.0f-PanningFB));
535 wetsend[SIDE_LEFT] = WetMix * aluSqrt((1.0f-PanningLR)*( PanningFB));
536 wetsend[SIDE_RIGHT] = WetMix * aluSqrt(( PanningLR)*( PanningFB));
537 wetsend[FRONT_LEFT] = 0.0f;
538 wetsend[FRONT_RIGHT] = 0.0f;
540 else
542 drysend[FRONT_LEFT] = DryMix * aluSqrt((1.0f-PanningLR)*(1.0f-PanningFB));
543 drysend[FRONT_RIGHT] = DryMix * aluSqrt(( PanningLR)*(1.0f-PanningFB));
544 drysend[SIDE_LEFT] = DryMix * aluSqrt((1.0f-PanningLR)*( PanningFB));
545 drysend[SIDE_RIGHT] = DryMix * aluSqrt(( PanningLR)*( PanningFB));
546 drysend[BACK_LEFT] = 0.0f;
547 drysend[BACK_RIGHT] = 0.0f;
548 wetsend[FRONT_LEFT] = WetMix * aluSqrt((1.0f-PanningLR)*(1.0f-PanningFB));
549 wetsend[FRONT_RIGHT] = WetMix * aluSqrt(( PanningLR)*(1.0f-PanningFB));
550 wetsend[SIDE_LEFT] = WetMix * aluSqrt((1.0f-PanningLR)*( PanningFB));
551 wetsend[SIDE_RIGHT] = WetMix * aluSqrt(( PanningLR)*( PanningFB));
552 wetsend[BACK_LEFT] = 0.0f;
553 wetsend[BACK_RIGHT] = 0.0f;
555 default:
556 break;
559 *drygainhf = DryGainHF;
560 *wetgainhf = WetGainHF;
562 else
564 //1. Multi-channel buffers always play "normal"
565 pitch[0] = ALSource->flPitch;
567 drysend[FRONT_LEFT] = SourceVolume * ListenerGain;
568 drysend[FRONT_RIGHT] = SourceVolume * ListenerGain;
569 drysend[SIDE_LEFT] = SourceVolume * ListenerGain;
570 drysend[SIDE_RIGHT] = SourceVolume * ListenerGain;
571 drysend[BACK_LEFT] = SourceVolume * ListenerGain;
572 drysend[BACK_RIGHT] = SourceVolume * ListenerGain;
573 drysend[CENTER] = SourceVolume * ListenerGain;
574 drysend[LFE] = SourceVolume * ListenerGain;
575 wetsend[FRONT_LEFT] = 0.0f;
576 wetsend[FRONT_RIGHT] = 0.0f;
577 wetsend[SIDE_LEFT] = 0.0f;
578 wetsend[SIDE_RIGHT] = 0.0f;
579 wetsend[BACK_LEFT] = 0.0f;
580 wetsend[BACK_RIGHT] = 0.0f;
581 wetsend[CENTER] = 0.0f;
582 wetsend[LFE] = 0.0f;
583 WetGainHF = 1.0f;
585 *drygainhf = DryGainHF;
586 *wetgainhf = WetGainHF;
590 ALvoid aluMixData(ALCcontext *ALContext,ALvoid *buffer,ALsizei size,ALenum format)
592 static float DryBuffer[BUFFERSIZE][OUTPUTCHANNELS];
593 static float WetBuffer[BUFFERSIZE][OUTPUTCHANNELS];
594 static float ReverbBuffer[BUFFERSIZE];
595 ALfloat DrySend[OUTPUTCHANNELS] = { 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f };
596 ALfloat WetSend[OUTPUTCHANNELS] = { 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f };
597 ALfloat DryGainHF = 0.0f;
598 ALfloat WetGainHF = 0.0f;
599 ALuint BlockAlign,BufferSize;
600 ALuint DataSize=0,DataPosInt=0,DataPosFrac=0;
601 ALuint Channels,Frequency,ulExtraSamples;
602 ALfloat DrySample, WetSample;
603 ALboolean doReverb;
604 ALfloat Pitch;
605 ALint Looping,increment,State;
606 ALuint Buffer,fraction;
607 ALuint SamplesToDo;
608 ALsource *ALSource;
609 ALbuffer *ALBuffer;
610 ALeffectslot *ALEffectSlot;
611 ALfloat value;
612 ALshort *Data;
613 ALuint i,j,k;
614 ALbufferlistitem *BufferListItem;
615 ALuint loop;
616 ALint64 DataSize64,DataPos64;
618 SuspendContext(ALContext);
620 //Figure output format variables
621 BlockAlign = aluChannelsFromFormat(format);
622 BlockAlign *= aluBytesFromFormat(format);
624 size /= BlockAlign;
625 while(size > 0)
627 //Setup variables
628 ALEffectSlot = (ALContext ? ALContext->AuxiliaryEffectSlot : NULL);
629 ALSource = (ALContext ? ALContext->Source : NULL);
630 SamplesToDo = min(size, BUFFERSIZE);
632 //Clear mixing buffer
633 memset(DryBuffer, 0, SamplesToDo*OUTPUTCHANNELS*sizeof(ALfloat));
634 memset(WetBuffer, 0, SamplesToDo*OUTPUTCHANNELS*sizeof(ALfloat));
635 memset(ReverbBuffer, 0, SamplesToDo*sizeof(ALfloat));
637 //Actual mixing loop
638 while(ALSource)
640 j = 0;
641 State = ALSource->state;
643 doReverb = ((ALSource->Send[0].Slot &&
644 ALSource->Send[0].Slot->effect.type == AL_EFFECT_REVERB) ?
645 AL_TRUE : AL_FALSE);
647 while(State == AL_PLAYING && j < SamplesToDo)
649 DataSize = 0;
650 DataPosInt = 0;
651 DataPosFrac = 0;
653 //Get buffer info
654 if((Buffer = ALSource->ulBufferID))
656 ALBuffer = (ALbuffer*)ALTHUNK_LOOKUPENTRY(Buffer);
658 Data = ALBuffer->data;
659 Channels = aluChannelsFromFormat(ALBuffer->format);
660 DataSize = ALBuffer->size;
661 Frequency = ALBuffer->frequency;
663 CalcSourceParams(ALContext, ALSource,
664 (Channels==1) ? AL_TRUE : AL_FALSE,
665 format, DrySend, WetSend, &Pitch,
666 &DryGainHF, &WetGainHF);
669 Pitch = (Pitch*Frequency) / ALContext->Frequency;
670 DataSize /= Channels * aluBytesFromFormat(ALBuffer->format);
672 //Get source info
673 DataPosInt = ALSource->position;
674 DataPosFrac = ALSource->position_fraction;
675 DrySample = ALSource->LastDrySample;
676 WetSample = ALSource->LastWetSample;
678 //Compute 18.14 fixed point step
679 increment = aluF2L(Pitch*(1L<<FRACTIONBITS));
680 if(increment > (MAX_PITCH<<FRACTIONBITS))
681 increment = (MAX_PITCH<<FRACTIONBITS);
683 //Figure out how many samples we can mix.
684 //Pitch must be <= 4 (the number below !)
685 DataSize64 = DataSize+MAX_PITCH;
686 DataSize64 <<= FRACTIONBITS;
687 DataPos64 = DataPosInt;
688 DataPos64 <<= FRACTIONBITS;
689 DataPos64 += DataPosFrac;
690 BufferSize = (ALuint)((DataSize64-DataPos64) / increment);
691 BufferListItem = ALSource->queue;
692 for(loop = 0; loop < ALSource->BuffersPlayed; loop++)
694 if(BufferListItem)
695 BufferListItem = BufferListItem->next;
697 if (BufferListItem)
699 if (BufferListItem->next)
701 ALbuffer *NextBuf = (ALbuffer*)ALTHUNK_LOOKUPENTRY(BufferListItem->next->buffer);
702 if(NextBuf && NextBuf->data)
704 ulExtraSamples = min(NextBuf->size, (ALint)(16*Channels));
705 memcpy(&Data[DataSize*Channels], NextBuf->data, ulExtraSamples);
708 else if (ALSource->bLooping)
710 ALbuffer *NextBuf = (ALbuffer*)ALTHUNK_LOOKUPENTRY(ALSource->queue->buffer);
711 if (NextBuf && NextBuf->data)
713 ulExtraSamples = min(NextBuf->size, (ALint)(16*Channels));
714 memcpy(&Data[DataSize*Channels], NextBuf->data, ulExtraSamples);
718 BufferSize = min(BufferSize, (SamplesToDo-j));
720 //Actual sample mixing loop
721 Data += DataPosInt*Channels;
722 while(BufferSize--)
724 k = DataPosFrac>>FRACTIONBITS;
725 fraction = DataPosFrac&FRACTIONMASK;
726 if(Channels==1)
728 //First order interpolator
729 ALfloat sample = (ALfloat)((ALshort)(((Data[k]*((1L<<FRACTIONBITS)-fraction))+(Data[k+1]*(fraction)))>>FRACTIONBITS));
731 //Direct path final mix buffer and panning
732 DrySample = aluComputeSample(DryGainHF, sample, DrySample);
733 DryBuffer[j][FRONT_LEFT] += DrySample*DrySend[FRONT_LEFT];
734 DryBuffer[j][FRONT_RIGHT] += DrySample*DrySend[FRONT_RIGHT];
735 DryBuffer[j][SIDE_LEFT] += DrySample*DrySend[SIDE_LEFT];
736 DryBuffer[j][SIDE_RIGHT] += DrySample*DrySend[SIDE_RIGHT];
737 DryBuffer[j][BACK_LEFT] += DrySample*DrySend[BACK_LEFT];
738 DryBuffer[j][BACK_RIGHT] += DrySample*DrySend[BACK_RIGHT];
739 //Room path final mix buffer and panning
740 WetSample = aluComputeSample(WetGainHF, sample, WetSample);
741 if(doReverb)
742 ReverbBuffer[j] += WetSample;
743 else
745 WetBuffer[j][FRONT_LEFT] += WetSample*WetSend[FRONT_LEFT];
746 WetBuffer[j][FRONT_RIGHT] += WetSample*WetSend[FRONT_RIGHT];
747 WetBuffer[j][SIDE_LEFT] += WetSample*WetSend[SIDE_LEFT];
748 WetBuffer[j][SIDE_RIGHT] += WetSample*WetSend[SIDE_RIGHT];
749 WetBuffer[j][BACK_LEFT] += WetSample*WetSend[BACK_LEFT];
750 WetBuffer[j][BACK_RIGHT] += WetSample*WetSend[BACK_RIGHT];
753 else
755 //First order interpolator (front left)
756 value = (ALfloat)((ALshort)(((Data[k*Channels ]*((1L<<FRACTIONBITS)-fraction))+(Data[(k+1)*Channels ]*(fraction)))>>FRACTIONBITS));
757 DryBuffer[j][FRONT_LEFT] += value*DrySend[FRONT_LEFT];
758 WetBuffer[j][FRONT_LEFT] += value*WetSend[FRONT_LEFT];
759 //First order interpolator (front right)
760 value = (ALfloat)((ALshort)(((Data[k*Channels+1]*((1L<<FRACTIONBITS)-fraction))+(Data[(k+1)*Channels+1]*(fraction)))>>FRACTIONBITS));
761 DryBuffer[j][FRONT_RIGHT] += value*DrySend[FRONT_RIGHT];
762 WetBuffer[j][FRONT_RIGHT] += value*WetSend[FRONT_RIGHT];
763 if(Channels >= 4)
765 int i = 2;
766 if(Channels >= 6)
768 if(Channels != 7)
770 //First order interpolator (center)
771 value = (ALfloat)((ALshort)(((Data[k*Channels+i]*((1L<<FRACTIONBITS)-fraction))+(Data[(k+1)*Channels+i]*(fraction)))>>FRACTIONBITS));
772 DryBuffer[j][CENTER] += value*DrySend[CENTER];
773 WetBuffer[j][CENTER] += value*WetSend[CENTER];
774 i++;
776 //First order interpolator (lfe)
777 value = (ALfloat)((ALshort)(((Data[k*Channels+i]*((1L<<FRACTIONBITS)-fraction))+(Data[(k+1)*Channels+i]*(fraction)))>>FRACTIONBITS));
778 DryBuffer[j][LFE] += value*DrySend[LFE];
779 WetBuffer[j][LFE] += value*WetSend[LFE];
780 i++;
782 //First order interpolator (back left)
783 value = (ALfloat)((ALshort)(((Data[k*Channels+i]*((1L<<FRACTIONBITS)-fraction))+(Data[(k+1)*Channels+i]*(fraction)))>>FRACTIONBITS));
784 DryBuffer[j][BACK_LEFT] += value*DrySend[BACK_LEFT];
785 WetBuffer[j][BACK_LEFT] += value*WetSend[BACK_LEFT];
786 i++;
787 //First order interpolator (back right)
788 value = (ALfloat)((ALshort)(((Data[k*Channels+i]*((1L<<FRACTIONBITS)-fraction))+(Data[(k+1)*Channels+i]*(fraction)))>>FRACTIONBITS));
789 DryBuffer[j][BACK_RIGHT] += value*DrySend[BACK_RIGHT];
790 WetBuffer[j][BACK_RIGHT] += value*WetSend[BACK_RIGHT];
791 i++;
792 if(Channels >= 7)
794 //First order interpolator (side left)
795 value = (ALfloat)((ALshort)(((Data[k*Channels+i]*((1L<<FRACTIONBITS)-fraction))+(Data[(k+1)*Channels+i]*(fraction)))>>FRACTIONBITS));
796 DryBuffer[j][SIDE_LEFT] += value*DrySend[SIDE_LEFT];
797 WetBuffer[j][SIDE_LEFT] += value*WetSend[SIDE_LEFT];
798 i++;
799 //First order interpolator (side right)
800 value = (ALfloat)((ALshort)(((Data[k*Channels+i]*((1L<<FRACTIONBITS)-fraction))+(Data[(k+1)*Channels+i]*(fraction)))>>FRACTIONBITS));
801 DryBuffer[j][SIDE_RIGHT] += value*DrySend[SIDE_RIGHT];
802 WetBuffer[j][SIDE_RIGHT] += value*WetSend[SIDE_RIGHT];
803 i++;
807 DataPosFrac += increment;
808 j++;
810 DataPosInt += (DataPosFrac>>FRACTIONBITS);
811 DataPosFrac = (DataPosFrac&FRACTIONMASK);
813 //Update source info
814 ALSource->position = DataPosInt;
815 ALSource->position_fraction = DataPosFrac;
816 ALSource->LastDrySample = DrySample;
817 ALSource->LastWetSample = WetSample;
820 //Handle looping sources
821 if(!Buffer || DataPosInt >= DataSize)
823 //queueing
824 if(ALSource->queue)
826 Looping = ALSource->bLooping;
827 if(ALSource->BuffersPlayed < (ALSource->BuffersInQueue-1))
829 BufferListItem = ALSource->queue;
830 for(loop = 0; loop <= ALSource->BuffersPlayed; loop++)
832 if(BufferListItem)
834 if(!Looping)
835 BufferListItem->bufferstate = PROCESSED;
836 BufferListItem = BufferListItem->next;
839 if(!Looping)
840 ALSource->BuffersProcessed++;
841 if(BufferListItem)
842 ALSource->ulBufferID = BufferListItem->buffer;
843 ALSource->position = DataPosInt-DataSize;
844 ALSource->position_fraction = DataPosFrac;
845 ALSource->BuffersPlayed++;
847 else
849 if(!Looping)
851 /* alSourceStop */
852 ALSource->state = AL_STOPPED;
853 ALSource->inuse = AL_FALSE;
854 ALSource->BuffersPlayed = ALSource->BuffersProcessed = ALSource->BuffersInQueue;
855 BufferListItem = ALSource->queue;
856 while(BufferListItem != NULL)
858 BufferListItem->bufferstate = PROCESSED;
859 BufferListItem = BufferListItem->next;
862 else
864 /* alSourceRewind */
865 /* alSourcePlay */
866 ALSource->state = AL_PLAYING;
867 ALSource->inuse = AL_TRUE;
868 ALSource->play = AL_TRUE;
869 ALSource->BuffersPlayed = 0;
870 ALSource->BufferPosition = 0;
871 ALSource->lBytesPlayed = 0;
872 ALSource->BuffersProcessed = 0;
873 BufferListItem = ALSource->queue;
874 while(BufferListItem != NULL)
876 BufferListItem->bufferstate = PENDING;
877 BufferListItem = BufferListItem->next;
879 ALSource->ulBufferID = ALSource->queue->buffer;
881 ALSource->position = DataPosInt-DataSize;
882 ALSource->position_fraction = DataPosFrac;
888 //Get source state
889 State = ALSource->state;
892 ALSource = ALSource->next;
895 // effect slot processing
896 while(ALEffectSlot)
898 if(ALEffectSlot->effect.type == AL_EFFECT_REVERB)
900 ALfloat *DelayBuffer = ALEffectSlot->ReverbBuffer;
901 ALuint Pos = ALEffectSlot->ReverbPos;
902 ALuint LatePos = ALEffectSlot->ReverbLatePos;
903 ALuint ReflectPos = ALEffectSlot->ReverbReflectPos;
904 ALuint Length = ALEffectSlot->ReverbLength;
905 ALfloat DecayGain = ALEffectSlot->ReverbDecayGain;
906 ALfloat DecayHFRatio = ALEffectSlot->effect.Reverb.DecayHFRatio;
907 ALfloat Gain = ALEffectSlot->effect.Reverb.Gain;
908 ALfloat ReflectGain = ALEffectSlot->effect.Reverb.ReflectionsGain;
909 ALfloat LateReverbGain = ALEffectSlot->effect.Reverb.LateReverbGain;
910 ALfloat LastDecaySample = ALEffectSlot->LastDecaySample;
911 ALfloat sample;
913 for(i = 0;i < SamplesToDo;i++)
915 DelayBuffer[Pos] = ReverbBuffer[i] * Gain;
917 sample = DelayBuffer[ReflectPos] * ReflectGain;
919 DelayBuffer[LatePos] *= LateReverbGain;
921 Pos = (Pos+1) % Length;
922 DelayBuffer[Pos] *= DecayHFRatio;
923 DelayBuffer[Pos] += LastDecaySample * (1.0f-DecayHFRatio);
924 LastDecaySample = DelayBuffer[Pos];
925 DelayBuffer[Pos] *= DecayGain;
927 DelayBuffer[LatePos] += DelayBuffer[Pos];
929 sample += DelayBuffer[LatePos];
931 WetBuffer[i][FRONT_LEFT] += sample;
932 WetBuffer[i][FRONT_RIGHT] += sample;
933 WetBuffer[i][SIDE_LEFT] += sample;
934 WetBuffer[i][SIDE_RIGHT] += sample;
935 WetBuffer[i][BACK_LEFT] += sample;
936 WetBuffer[i][BACK_RIGHT] += sample;
938 LatePos = (LatePos+1) % Length;
939 ReflectPos = (ReflectPos+1) % Length;
942 ALEffectSlot->ReverbPos = Pos;
943 ALEffectSlot->ReverbLatePos = LatePos;
944 ALEffectSlot->ReverbReflectPos = ReflectPos;
945 ALEffectSlot->LastDecaySample = LastDecaySample;
948 ALEffectSlot = ALEffectSlot->next;
951 //Post processing loop
952 switch(format)
954 case AL_FORMAT_MONO8:
955 for(i = 0;i < SamplesToDo;i++)
957 ((ALubyte*)buffer)[0] = (ALubyte)((aluF2S(DryBuffer[i][FRONT_LEFT]+DryBuffer[i][FRONT_RIGHT]+
958 WetBuffer[i][FRONT_LEFT]+WetBuffer[i][FRONT_RIGHT])>>8)+128);
959 buffer = ((ALubyte*)buffer) + 1;
961 break;
962 case AL_FORMAT_STEREO8:
963 if(ALContext && ALContext->bs2b)
965 for(i = 0;i < SamplesToDo;i++)
967 float samples[2];
968 samples[0] = DryBuffer[i][FRONT_LEFT] +WetBuffer[i][FRONT_LEFT];
969 samples[1] = DryBuffer[i][FRONT_RIGHT]+WetBuffer[i][FRONT_RIGHT];
970 bs2b_cross_feed(ALContext->bs2b, samples);
971 ((ALubyte*)buffer)[0] = (ALubyte)((aluF2S(samples[0])>>8)+128);
972 ((ALubyte*)buffer)[1] = (ALubyte)((aluF2S(samples[1])>>8)+128);
973 buffer = ((ALubyte*)buffer) + 2;
976 else
978 for(i = 0;i < SamplesToDo;i++)
980 ((ALubyte*)buffer)[0] = (ALubyte)((aluF2S(DryBuffer[i][FRONT_LEFT] +WetBuffer[i][FRONT_LEFT])>>8)+128);
981 ((ALubyte*)buffer)[1] = (ALubyte)((aluF2S(DryBuffer[i][FRONT_RIGHT]+WetBuffer[i][FRONT_RIGHT])>>8)+128);
982 buffer = ((ALubyte*)buffer) + 2;
985 break;
986 case AL_FORMAT_QUAD8:
987 for(i = 0;i < SamplesToDo;i++)
989 ((ALubyte*)buffer)[0] = (ALubyte)((aluF2S(DryBuffer[i][FRONT_LEFT] +WetBuffer[i][FRONT_LEFT])>>8)+128);
990 ((ALubyte*)buffer)[1] = (ALubyte)((aluF2S(DryBuffer[i][FRONT_RIGHT]+WetBuffer[i][FRONT_RIGHT])>>8)+128);
991 ((ALubyte*)buffer)[2] = (ALubyte)((aluF2S(DryBuffer[i][BACK_LEFT] +WetBuffer[i][BACK_LEFT])>>8)+128);
992 ((ALubyte*)buffer)[3] = (ALubyte)((aluF2S(DryBuffer[i][BACK_RIGHT] +WetBuffer[i][BACK_RIGHT])>>8)+128);
993 buffer = ((ALubyte*)buffer) + 4;
995 break;
996 case AL_FORMAT_51CHN8:
997 for(i = 0;i < SamplesToDo;i++)
999 ((ALubyte*)buffer)[0] = (ALubyte)((aluF2S(DryBuffer[i][FRONT_LEFT] +WetBuffer[i][FRONT_LEFT])>>8)+128);
1000 ((ALubyte*)buffer)[1] = (ALubyte)((aluF2S(DryBuffer[i][FRONT_RIGHT]+WetBuffer[i][FRONT_RIGHT])>>8)+128);
1001 #ifdef _WIN32 /* Of course, Windows can't use the same ordering... */
1002 ((ALubyte*)buffer)[2] = (ALubyte)((aluF2S(DryBuffer[i][CENTER] +WetBuffer[i][CENTER])>>8)+128);
1003 ((ALubyte*)buffer)[3] = (ALubyte)((aluF2S(DryBuffer[i][LFE] +WetBuffer[i][LFE])>>8)+128);
1004 ((ALubyte*)buffer)[4] = (ALubyte)((aluF2S(DryBuffer[i][BACK_LEFT] +WetBuffer[i][BACK_LEFT])>>8)+128);
1005 ((ALubyte*)buffer)[5] = (ALubyte)((aluF2S(DryBuffer[i][BACK_RIGHT] +WetBuffer[i][BACK_RIGHT])>>8)+128);
1006 #else
1007 ((ALubyte*)buffer)[2] = (ALubyte)((aluF2S(DryBuffer[i][BACK_LEFT] +WetBuffer[i][BACK_LEFT])>>8)+128);
1008 ((ALubyte*)buffer)[3] = (ALubyte)((aluF2S(DryBuffer[i][BACK_RIGHT] +WetBuffer[i][BACK_RIGHT])>>8)+128);
1009 ((ALubyte*)buffer)[4] = (ALubyte)((aluF2S(DryBuffer[i][CENTER] +WetBuffer[i][CENTER])>>8)+128);
1010 ((ALubyte*)buffer)[5] = (ALubyte)((aluF2S(DryBuffer[i][LFE] +WetBuffer[i][LFE])>>8)+128);
1011 #endif
1012 buffer = ((ALubyte*)buffer) + 6;
1014 break;
1015 case AL_FORMAT_61CHN8:
1016 for(i = 0;i < SamplesToDo;i++)
1018 ((ALubyte*)buffer)[0] = (ALubyte)((aluF2S(DryBuffer[i][FRONT_LEFT] +WetBuffer[i][FRONT_LEFT])>>8)+128);
1019 ((ALubyte*)buffer)[1] = (ALubyte)((aluF2S(DryBuffer[i][FRONT_RIGHT]+WetBuffer[i][FRONT_RIGHT])>>8)+128);
1020 #ifdef _WIN32
1021 ((ALubyte*)buffer)[2] = (ALubyte)((aluF2S(DryBuffer[i][LFE] +WetBuffer[i][LFE])>>8)+128);
1022 ((ALubyte*)buffer)[3] = (ALubyte)((aluF2S(DryBuffer[i][BACK_LEFT] +WetBuffer[i][BACK_LEFT])>>8)+128);
1023 ((ALubyte*)buffer)[4] = (ALubyte)((aluF2S(DryBuffer[i][BACK_RIGHT] +WetBuffer[i][BACK_RIGHT])>>8)+128);
1024 #else
1025 ((ALubyte*)buffer)[2] = (ALubyte)((aluF2S(DryBuffer[i][BACK_LEFT] +WetBuffer[i][BACK_LEFT])>>8)+128);
1026 ((ALubyte*)buffer)[3] = (ALubyte)((aluF2S(DryBuffer[i][BACK_RIGHT] +WetBuffer[i][BACK_RIGHT])>>8)+128);
1027 ((ALubyte*)buffer)[4] = (ALubyte)((aluF2S(DryBuffer[i][LFE] +WetBuffer[i][LFE])>>8)+128);
1028 #endif
1029 ((ALubyte*)buffer)[5] = (ALubyte)((aluF2S(DryBuffer[i][SIDE_LEFT] +WetBuffer[i][SIDE_LEFT])>>8)+128);
1030 ((ALubyte*)buffer)[6] = (ALubyte)((aluF2S(DryBuffer[i][SIDE_RIGHT] +WetBuffer[i][SIDE_RIGHT])>>8)+128);
1031 buffer = ((ALubyte*)buffer) + 7;
1033 break;
1034 case AL_FORMAT_71CHN8:
1035 for(i = 0;i < SamplesToDo;i++)
1037 ((ALubyte*)buffer)[0] = (ALubyte)((aluF2S(DryBuffer[i][FRONT_LEFT] +WetBuffer[i][FRONT_LEFT])>>8)+128);
1038 ((ALubyte*)buffer)[1] = (ALubyte)((aluF2S(DryBuffer[i][FRONT_RIGHT]+WetBuffer[i][FRONT_RIGHT])>>8)+128);
1039 #ifdef _WIN32
1040 ((ALubyte*)buffer)[2] = (ALubyte)((aluF2S(DryBuffer[i][CENTER] +WetBuffer[i][CENTER])>>8)+128);
1041 ((ALubyte*)buffer)[3] = (ALubyte)((aluF2S(DryBuffer[i][LFE] +WetBuffer[i][LFE])>>8)+128);
1042 ((ALubyte*)buffer)[4] = (ALubyte)((aluF2S(DryBuffer[i][BACK_LEFT] +WetBuffer[i][BACK_LEFT])>>8)+128);
1043 ((ALubyte*)buffer)[5] = (ALubyte)((aluF2S(DryBuffer[i][BACK_RIGHT] +WetBuffer[i][BACK_RIGHT])>>8)+128);
1044 #else
1045 ((ALubyte*)buffer)[2] = (ALubyte)((aluF2S(DryBuffer[i][BACK_LEFT] +WetBuffer[i][BACK_LEFT])>>8)+128);
1046 ((ALubyte*)buffer)[3] = (ALubyte)((aluF2S(DryBuffer[i][BACK_RIGHT] +WetBuffer[i][BACK_RIGHT])>>8)+128);
1047 ((ALubyte*)buffer)[4] = (ALubyte)((aluF2S(DryBuffer[i][CENTER] +WetBuffer[i][CENTER])>>8)+128);
1048 ((ALubyte*)buffer)[5] = (ALubyte)((aluF2S(DryBuffer[i][LFE] +WetBuffer[i][LFE])>>8)+128);
1049 #endif
1050 ((ALubyte*)buffer)[6] = (ALubyte)((aluF2S(DryBuffer[i][SIDE_LEFT] +WetBuffer[i][SIDE_LEFT])>>8)+128);
1051 ((ALubyte*)buffer)[7] = (ALubyte)((aluF2S(DryBuffer[i][SIDE_RIGHT] +WetBuffer[i][SIDE_RIGHT])>>8)+128);
1052 buffer = ((ALubyte*)buffer) + 8;
1054 break;
1056 case AL_FORMAT_MONO16:
1057 for(i = 0;i < SamplesToDo;i++)
1059 ((ALshort*)buffer)[0] = aluF2S(DryBuffer[i][FRONT_LEFT]+DryBuffer[i][FRONT_RIGHT]+
1060 WetBuffer[i][FRONT_LEFT]+WetBuffer[i][FRONT_RIGHT]);
1061 buffer = ((ALshort*)buffer) + 1;
1063 break;
1064 case AL_FORMAT_STEREO16:
1065 if(ALContext && ALContext->bs2b)
1067 for(i = 0;i < SamplesToDo;i++)
1069 float samples[2];
1070 samples[0] = DryBuffer[i][FRONT_LEFT] +WetBuffer[i][FRONT_LEFT];
1071 samples[1] = DryBuffer[i][FRONT_RIGHT]+WetBuffer[i][FRONT_RIGHT];
1072 bs2b_cross_feed(ALContext->bs2b, samples);
1073 ((ALshort*)buffer)[0] = aluF2S(samples[0]);
1074 ((ALshort*)buffer)[1] = aluF2S(samples[1]);
1075 buffer = ((ALshort*)buffer) + 2;
1078 else
1080 for(i = 0;i < SamplesToDo;i++)
1082 ((ALshort*)buffer)[0] = aluF2S(DryBuffer[i][FRONT_LEFT] +WetBuffer[i][FRONT_LEFT]);
1083 ((ALshort*)buffer)[1] = aluF2S(DryBuffer[i][FRONT_RIGHT]+WetBuffer[i][FRONT_RIGHT]);
1084 buffer = ((ALshort*)buffer) + 2;
1087 break;
1088 case AL_FORMAT_QUAD16:
1089 for(i = 0;i < SamplesToDo;i++)
1091 ((ALshort*)buffer)[0] = aluF2S(DryBuffer[i][FRONT_LEFT] +WetBuffer[i][FRONT_LEFT]);
1092 ((ALshort*)buffer)[1] = aluF2S(DryBuffer[i][FRONT_RIGHT]+WetBuffer[i][FRONT_RIGHT]);
1093 ((ALshort*)buffer)[2] = aluF2S(DryBuffer[i][BACK_LEFT] +WetBuffer[i][BACK_LEFT]);
1094 ((ALshort*)buffer)[3] = aluF2S(DryBuffer[i][BACK_RIGHT] +WetBuffer[i][BACK_RIGHT]);
1095 buffer = ((ALshort*)buffer) + 4;
1097 break;
1098 case AL_FORMAT_51CHN16:
1099 for(i = 0;i < SamplesToDo;i++)
1101 ((ALshort*)buffer)[0] = aluF2S(DryBuffer[i][FRONT_LEFT] +WetBuffer[i][FRONT_LEFT]);
1102 ((ALshort*)buffer)[1] = aluF2S(DryBuffer[i][FRONT_RIGHT]+WetBuffer[i][FRONT_RIGHT]);
1103 #ifdef _WIN32
1104 ((ALshort*)buffer)[2] = aluF2S(DryBuffer[i][CENTER] +WetBuffer[i][CENTER]);
1105 ((ALshort*)buffer)[3] = aluF2S(DryBuffer[i][LFE] +WetBuffer[i][LFE]);
1106 ((ALshort*)buffer)[4] = aluF2S(DryBuffer[i][BACK_LEFT] +WetBuffer[i][BACK_LEFT]);
1107 ((ALshort*)buffer)[5] = aluF2S(DryBuffer[i][BACK_RIGHT] +WetBuffer[i][BACK_RIGHT]);
1108 #else
1109 ((ALshort*)buffer)[2] = aluF2S(DryBuffer[i][BACK_LEFT] +WetBuffer[i][BACK_LEFT]);
1110 ((ALshort*)buffer)[3] = aluF2S(DryBuffer[i][BACK_RIGHT] +WetBuffer[i][BACK_RIGHT]);
1111 ((ALshort*)buffer)[4] = aluF2S(DryBuffer[i][CENTER] +WetBuffer[i][CENTER]);
1112 ((ALshort*)buffer)[5] = aluF2S(DryBuffer[i][LFE] +WetBuffer[i][LFE]);
1113 #endif
1114 buffer = ((ALshort*)buffer) + 6;
1116 break;
1117 case AL_FORMAT_61CHN16:
1118 for(i = 0;i < SamplesToDo;i++)
1120 ((ALshort*)buffer)[0] = aluF2S(DryBuffer[i][FRONT_LEFT] +WetBuffer[i][FRONT_LEFT]);
1121 ((ALshort*)buffer)[1] = aluF2S(DryBuffer[i][FRONT_RIGHT]+WetBuffer[i][FRONT_RIGHT]);
1122 #ifdef _WIN32
1123 ((ALshort*)buffer)[2] = aluF2S(DryBuffer[i][LFE] +WetBuffer[i][LFE]);
1124 ((ALshort*)buffer)[3] = aluF2S(DryBuffer[i][BACK_LEFT] +WetBuffer[i][BACK_LEFT]);
1125 ((ALshort*)buffer)[4] = aluF2S(DryBuffer[i][BACK_RIGHT] +WetBuffer[i][BACK_RIGHT]);
1126 #else
1127 ((ALshort*)buffer)[2] = aluF2S(DryBuffer[i][BACK_LEFT] +WetBuffer[i][BACK_LEFT]);
1128 ((ALshort*)buffer)[3] = aluF2S(DryBuffer[i][BACK_RIGHT] +WetBuffer[i][BACK_RIGHT]);
1129 ((ALshort*)buffer)[4] = aluF2S(DryBuffer[i][LFE] +WetBuffer[i][LFE]);
1130 #endif
1131 ((ALshort*)buffer)[5] = aluF2S(DryBuffer[i][SIDE_LEFT] +WetBuffer[i][SIDE_LEFT]);
1132 ((ALshort*)buffer)[6] = aluF2S(DryBuffer[i][SIDE_RIGHT] +WetBuffer[i][SIDE_RIGHT]);
1133 buffer = ((ALshort*)buffer) + 7;
1135 break;
1136 case AL_FORMAT_71CHN16:
1137 for(i = 0;i < SamplesToDo;i++)
1139 ((ALshort*)buffer)[0] = aluF2S(DryBuffer[i][FRONT_LEFT] +WetBuffer[i][FRONT_LEFT]);
1140 ((ALshort*)buffer)[1] = aluF2S(DryBuffer[i][FRONT_RIGHT]+WetBuffer[i][FRONT_RIGHT]);
1141 #ifdef _WIN32
1142 ((ALshort*)buffer)[2] = aluF2S(DryBuffer[i][CENTER] +WetBuffer[i][CENTER]);
1143 ((ALshort*)buffer)[3] = aluF2S(DryBuffer[i][LFE] +WetBuffer[i][LFE]);
1144 ((ALshort*)buffer)[4] = aluF2S(DryBuffer[i][BACK_LEFT] +WetBuffer[i][BACK_LEFT]);
1145 ((ALshort*)buffer)[5] = aluF2S(DryBuffer[i][BACK_RIGHT] +WetBuffer[i][BACK_RIGHT]);
1146 #else
1147 ((ALshort*)buffer)[2] = aluF2S(DryBuffer[i][BACK_LEFT] +WetBuffer[i][BACK_LEFT]);
1148 ((ALshort*)buffer)[3] = aluF2S(DryBuffer[i][BACK_RIGHT] +WetBuffer[i][BACK_RIGHT]);
1149 ((ALshort*)buffer)[4] = aluF2S(DryBuffer[i][CENTER] +WetBuffer[i][CENTER]);
1150 ((ALshort*)buffer)[5] = aluF2S(DryBuffer[i][LFE] +WetBuffer[i][LFE]);
1151 #endif
1152 ((ALshort*)buffer)[6] = aluF2S(DryBuffer[i][SIDE_LEFT] +WetBuffer[i][SIDE_LEFT]);
1153 ((ALshort*)buffer)[7] = aluF2S(DryBuffer[i][SIDE_RIGHT] +WetBuffer[i][SIDE_RIGHT]);
1154 buffer = ((ALshort*)buffer) + 8;
1156 break;
1158 default:
1159 break;
1162 size -= SamplesToDo;
1165 ProcessContext(ALContext);