Remove unnecessary variable
[openal-soft.git] / Alc / ALu.c
blob29984948ed7cf9f405af064492fc3f01d06bddde
1 /**
2 * OpenAL cross platform audio library
3 * Copyright (C) 1999-2007 by authors.
4 * This library is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU Library General Public
6 * License as published by the Free Software Foundation; either
7 * version 2 of the License, or (at your option) any later version.
9 * This library is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12 * Library General Public License for more details.
14 * You should have received a copy of the GNU Library General Public
15 * License along with this library; if not, write to the
16 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
17 * Boston, MA 02111-1307, USA.
18 * Or go to http://www.gnu.org/copyleft/lgpl.html
21 #include "config.h"
23 #include <math.h>
24 #include <stdlib.h>
25 #include <string.h>
26 #include <ctype.h>
27 #include <assert.h>
29 #include "alMain.h"
30 #include "AL/al.h"
31 #include "AL/alc.h"
32 #include "alSource.h"
33 #include "alBuffer.h"
34 #include "alThunk.h"
35 #include "alListener.h"
36 #include "alAuxEffectSlot.h"
37 #include "alu.h"
38 #include "bs2b.h"
40 #if defined(HAVE_STDINT_H)
41 #include <stdint.h>
42 typedef int64_t ALint64;
43 #elif defined(HAVE___INT64)
44 typedef __int64 ALint64;
45 #elif (SIZEOF_LONG == 8)
46 typedef long ALint64;
47 #elif (SIZEOF_LONG_LONG == 8)
48 typedef long long ALint64;
49 #endif
51 #define FRACTIONBITS 14
52 #define FRACTIONMASK ((1L<<FRACTIONBITS)-1)
53 #define MAX_PITCH 65536
55 /* Minimum ramp length in milliseconds. The value below was chosen to
56 * adequately reduce clicks and pops from harsh gain changes. */
57 #define MIN_RAMP_LENGTH 16
59 ALboolean DuplicateStereo = AL_FALSE;
62 static __inline ALfloat aluF2F(ALfloat Value)
64 if(Value < 0.f) return Value/32768.f;
65 if(Value > 0.f) return Value/32767.f;
66 return 0.f;
69 static __inline ALshort aluF2S(ALfloat Value)
71 ALint i;
73 i = (ALint)Value;
74 i = __min( 32767, i);
75 i = __max(-32768, i);
76 return ((ALshort)i);
79 static __inline ALubyte aluF2UB(ALfloat Value)
81 ALshort i = aluF2S(Value);
82 return (i>>8)+128;
86 static __inline ALvoid aluCrossproduct(const ALfloat *inVector1, const ALfloat *inVector2, ALfloat *outVector)
88 outVector[0] = inVector1[1]*inVector2[2] - inVector1[2]*inVector2[1];
89 outVector[1] = inVector1[2]*inVector2[0] - inVector1[0]*inVector2[2];
90 outVector[2] = inVector1[0]*inVector2[1] - inVector1[1]*inVector2[0];
93 static __inline ALfloat aluDotproduct(const ALfloat *inVector1, const ALfloat *inVector2)
95 return inVector1[0]*inVector2[0] + inVector1[1]*inVector2[1] +
96 inVector1[2]*inVector2[2];
99 static __inline ALvoid aluNormalize(ALfloat *inVector)
101 ALfloat length, inverse_length;
103 length = aluSqrt(aluDotproduct(inVector, inVector));
104 if(length != 0.0f)
106 inverse_length = 1.0f/length;
107 inVector[0] *= inverse_length;
108 inVector[1] *= inverse_length;
109 inVector[2] *= inverse_length;
113 static __inline ALvoid aluMatrixVector(ALfloat *vector,ALfloat matrix[3][3])
115 ALfloat result[3];
117 result[0] = vector[0]*matrix[0][0] + vector[1]*matrix[1][0] + vector[2]*matrix[2][0];
118 result[1] = vector[0]*matrix[0][1] + vector[1]*matrix[1][1] + vector[2]*matrix[2][1];
119 result[2] = vector[0]*matrix[0][2] + vector[1]*matrix[1][2] + vector[2]*matrix[2][2];
120 memcpy(vector, result, sizeof(result));
123 static ALvoid SetSpeakerArrangement(const char *name, ALfloat SpeakerAngle[OUTPUTCHANNELS],
124 ALint Speaker2Chan[OUTPUTCHANNELS], ALint chans)
126 const char *confkey;
127 const char *next;
128 const char *sep;
129 const char *end;
130 int i, val;
132 confkey = GetConfigValue(NULL, name, "");
133 next = confkey;
134 while(next && *next)
136 confkey = next;
137 next = strchr(confkey, ',');
138 if(next)
140 do {
141 next++;
142 } while(isspace(*next));
145 sep = strchr(confkey, '=');
146 if(!sep || confkey == sep)
147 continue;
149 end = sep - 1;
150 while(isspace(*end) && end != confkey)
151 end--;
152 end++;
154 if(strncmp(confkey, "fl", end-confkey) == 0)
155 val = FRONT_LEFT;
156 else if(strncmp(confkey, "fr", end-confkey) == 0)
157 val = FRONT_RIGHT;
158 else if(strncmp(confkey, "fc", end-confkey) == 0)
159 val = FRONT_CENTER;
160 else if(strncmp(confkey, "bl", end-confkey) == 0)
161 val = BACK_LEFT;
162 else if(strncmp(confkey, "br", end-confkey) == 0)
163 val = BACK_RIGHT;
164 else if(strncmp(confkey, "bc", end-confkey) == 0)
165 val = BACK_CENTER;
166 else if(strncmp(confkey, "sl", end-confkey) == 0)
167 val = SIDE_LEFT;
168 else if(strncmp(confkey, "sr", end-confkey) == 0)
169 val = SIDE_RIGHT;
170 else
172 AL_PRINT("Unknown speaker for %s: \"%c%c\"\n", name, confkey[0], confkey[1]);
173 continue;
176 sep++;
177 while(isspace(*sep))
178 sep++;
180 for(i = 0;i < chans;i++)
182 if(Speaker2Chan[i] == val)
184 val = strtol(sep, NULL, 10);
185 if(val >= -180 && val <= 180)
186 SpeakerAngle[i] = val * M_PI/180.0f;
187 else
188 AL_PRINT("Invalid angle for speaker \"%c%c\": %d\n", confkey[0], confkey[1], val);
189 break;
194 for(i = 1;i < chans;i++)
196 if(SpeakerAngle[i] <= SpeakerAngle[i-1])
198 AL_PRINT("Speaker %d of %d does not follow previous: %f > %f\n", i, chans,
199 SpeakerAngle[i-1] * 180.0f/M_PI, SpeakerAngle[i] * 180.0f/M_PI);
200 SpeakerAngle[i] = SpeakerAngle[i-1] + 1 * 180.0f/M_PI;
205 static __inline ALfloat aluLUTpos2Angle(ALint pos)
207 if(pos < QUADRANT_NUM)
208 return aluAtan((ALfloat)pos / (ALfloat)(QUADRANT_NUM - pos));
209 if(pos < 2 * QUADRANT_NUM)
210 return M_PI_2 + aluAtan((ALfloat)(pos - QUADRANT_NUM) / (ALfloat)(2 * QUADRANT_NUM - pos));
211 if(pos < 3 * QUADRANT_NUM)
212 return aluAtan((ALfloat)(pos - 2 * QUADRANT_NUM) / (ALfloat)(3 * QUADRANT_NUM - pos)) - M_PI;
213 return aluAtan((ALfloat)(pos - 3 * QUADRANT_NUM) / (ALfloat)(4 * QUADRANT_NUM - pos)) - M_PI_2;
216 ALvoid aluInitPanning(ALCcontext *Context)
218 ALint pos, offset, s;
219 ALfloat Alpha, Theta;
220 ALfloat SpeakerAngle[OUTPUTCHANNELS];
221 ALint Speaker2Chan[OUTPUTCHANNELS];
223 for(s = 0;s < OUTPUTCHANNELS;s++)
225 int s2;
226 for(s2 = 0;s2 < OUTPUTCHANNELS;s2++)
227 Context->ChannelMatrix[s][s2] = ((s==s2) ? 1.0f : 0.0f);
230 switch(Context->Device->Format)
232 /* Mono is rendered as stereo, then downmixed during post-process */
233 case AL_FORMAT_MONO8:
234 case AL_FORMAT_MONO16:
235 case AL_FORMAT_MONO_FLOAT32:
236 Context->ChannelMatrix[FRONT_CENTER][FRONT_LEFT] = aluSqrt(0.5);
237 Context->ChannelMatrix[FRONT_CENTER][FRONT_RIGHT] = aluSqrt(0.5);
238 Context->ChannelMatrix[SIDE_LEFT][FRONT_LEFT] = 1.0f;
239 Context->ChannelMatrix[SIDE_RIGHT][FRONT_RIGHT] = 1.0f;
240 Context->ChannelMatrix[BACK_LEFT][FRONT_LEFT] = 1.0f;
241 Context->ChannelMatrix[BACK_RIGHT][FRONT_RIGHT] = 1.0f;
242 Context->ChannelMatrix[BACK_CENTER][FRONT_LEFT] = aluSqrt(0.5);
243 Context->ChannelMatrix[BACK_CENTER][FRONT_RIGHT] = aluSqrt(0.5);
244 Context->NumChan = 2;
245 Speaker2Chan[0] = FRONT_LEFT;
246 Speaker2Chan[1] = FRONT_RIGHT;
247 SpeakerAngle[0] = -90.0f * M_PI/180.0f;
248 SpeakerAngle[1] = 90.0f * M_PI/180.0f;
249 break;
251 case AL_FORMAT_STEREO8:
252 case AL_FORMAT_STEREO16:
253 case AL_FORMAT_STEREO_FLOAT32:
254 Context->ChannelMatrix[FRONT_CENTER][FRONT_LEFT] = aluSqrt(0.5);
255 Context->ChannelMatrix[FRONT_CENTER][FRONT_RIGHT] = aluSqrt(0.5);
256 Context->ChannelMatrix[SIDE_LEFT][FRONT_LEFT] = 1.0f;
257 Context->ChannelMatrix[SIDE_RIGHT][FRONT_RIGHT] = 1.0f;
258 Context->ChannelMatrix[BACK_LEFT][FRONT_LEFT] = 1.0f;
259 Context->ChannelMatrix[BACK_RIGHT][FRONT_RIGHT] = 1.0f;
260 Context->ChannelMatrix[BACK_CENTER][FRONT_LEFT] = aluSqrt(0.5);
261 Context->ChannelMatrix[BACK_CENTER][FRONT_RIGHT] = aluSqrt(0.5);
262 Context->NumChan = 2;
263 Speaker2Chan[0] = FRONT_LEFT;
264 Speaker2Chan[1] = FRONT_RIGHT;
265 SpeakerAngle[0] = -90.0f * M_PI/180.0f;
266 SpeakerAngle[1] = 90.0f * M_PI/180.0f;
267 SetSpeakerArrangement("layout_STEREO", SpeakerAngle, Speaker2Chan, Context->NumChan);
268 break;
270 case AL_FORMAT_QUAD8:
271 case AL_FORMAT_QUAD16:
272 case AL_FORMAT_QUAD32:
273 Context->ChannelMatrix[FRONT_CENTER][FRONT_LEFT] = aluSqrt(0.5);
274 Context->ChannelMatrix[FRONT_CENTER][FRONT_RIGHT] = aluSqrt(0.5);
275 Context->ChannelMatrix[SIDE_LEFT][FRONT_LEFT] = aluSqrt(0.5);
276 Context->ChannelMatrix[SIDE_LEFT][BACK_LEFT] = aluSqrt(0.5);
277 Context->ChannelMatrix[SIDE_RIGHT][FRONT_RIGHT] = aluSqrt(0.5);
278 Context->ChannelMatrix[SIDE_RIGHT][BACK_RIGHT] = aluSqrt(0.5);
279 Context->ChannelMatrix[BACK_CENTER][BACK_LEFT] = aluSqrt(0.5);
280 Context->ChannelMatrix[BACK_CENTER][BACK_RIGHT] = aluSqrt(0.5);
281 Context->NumChan = 4;
282 Speaker2Chan[0] = BACK_LEFT;
283 Speaker2Chan[1] = FRONT_LEFT;
284 Speaker2Chan[2] = FRONT_RIGHT;
285 Speaker2Chan[3] = BACK_RIGHT;
286 SpeakerAngle[0] = -135.0f * M_PI/180.0f;
287 SpeakerAngle[1] = -45.0f * M_PI/180.0f;
288 SpeakerAngle[2] = 45.0f * M_PI/180.0f;
289 SpeakerAngle[3] = 135.0f * M_PI/180.0f;
290 SetSpeakerArrangement("layout_QUAD", SpeakerAngle, Speaker2Chan, Context->NumChan);
291 break;
293 case AL_FORMAT_51CHN8:
294 case AL_FORMAT_51CHN16:
295 case AL_FORMAT_51CHN32:
296 Context->ChannelMatrix[SIDE_LEFT][FRONT_LEFT] = aluSqrt(0.5);
297 Context->ChannelMatrix[SIDE_LEFT][BACK_LEFT] = aluSqrt(0.5);
298 Context->ChannelMatrix[SIDE_RIGHT][FRONT_RIGHT] = aluSqrt(0.5);
299 Context->ChannelMatrix[SIDE_RIGHT][BACK_RIGHT] = aluSqrt(0.5);
300 Context->ChannelMatrix[BACK_CENTER][BACK_LEFT] = aluSqrt(0.5);
301 Context->ChannelMatrix[BACK_CENTER][BACK_RIGHT] = aluSqrt(0.5);
302 Context->NumChan = 5;
303 Speaker2Chan[0] = BACK_LEFT;
304 Speaker2Chan[1] = FRONT_LEFT;
305 Speaker2Chan[2] = FRONT_CENTER;
306 Speaker2Chan[3] = FRONT_RIGHT;
307 Speaker2Chan[4] = BACK_RIGHT;
308 SpeakerAngle[0] = -110.0f * M_PI/180.0f;
309 SpeakerAngle[1] = -30.0f * M_PI/180.0f;
310 SpeakerAngle[2] = 0.0f * M_PI/180.0f;
311 SpeakerAngle[3] = 30.0f * M_PI/180.0f;
312 SpeakerAngle[4] = 110.0f * M_PI/180.0f;
313 SetSpeakerArrangement("layout_51CHN", SpeakerAngle, Speaker2Chan, Context->NumChan);
314 break;
316 case AL_FORMAT_61CHN8:
317 case AL_FORMAT_61CHN16:
318 case AL_FORMAT_61CHN32:
319 Context->ChannelMatrix[BACK_LEFT][BACK_CENTER] = aluSqrt(0.5);
320 Context->ChannelMatrix[BACK_LEFT][SIDE_LEFT] = aluSqrt(0.5);
321 Context->ChannelMatrix[BACK_RIGHT][BACK_CENTER] = aluSqrt(0.5);
322 Context->ChannelMatrix[BACK_RIGHT][SIDE_RIGHT] = aluSqrt(0.5);
323 Context->NumChan = 6;
324 Speaker2Chan[0] = SIDE_LEFT;
325 Speaker2Chan[1] = FRONT_LEFT;
326 Speaker2Chan[2] = FRONT_CENTER;
327 Speaker2Chan[3] = FRONT_RIGHT;
328 Speaker2Chan[4] = SIDE_RIGHT;
329 Speaker2Chan[5] = BACK_CENTER;
330 SpeakerAngle[0] = -90.0f * M_PI/180.0f;
331 SpeakerAngle[1] = -30.0f * M_PI/180.0f;
332 SpeakerAngle[2] = 0.0f * M_PI/180.0f;
333 SpeakerAngle[3] = 30.0f * M_PI/180.0f;
334 SpeakerAngle[4] = 90.0f * M_PI/180.0f;
335 SpeakerAngle[5] = 180.0f * M_PI/180.0f;
336 SetSpeakerArrangement("layout_61CHN", SpeakerAngle, Speaker2Chan, Context->NumChan);
337 break;
339 case AL_FORMAT_71CHN8:
340 case AL_FORMAT_71CHN16:
341 case AL_FORMAT_71CHN32:
342 Context->ChannelMatrix[BACK_CENTER][BACK_LEFT] = aluSqrt(0.5);
343 Context->ChannelMatrix[BACK_CENTER][BACK_RIGHT] = aluSqrt(0.5);
344 Context->NumChan = 7;
345 Speaker2Chan[0] = BACK_LEFT;
346 Speaker2Chan[1] = SIDE_LEFT;
347 Speaker2Chan[2] = FRONT_LEFT;
348 Speaker2Chan[3] = FRONT_CENTER;
349 Speaker2Chan[4] = FRONT_RIGHT;
350 Speaker2Chan[5] = SIDE_RIGHT;
351 Speaker2Chan[6] = BACK_RIGHT;
352 SpeakerAngle[0] = -150.0f * M_PI/180.0f;
353 SpeakerAngle[1] = -90.0f * M_PI/180.0f;
354 SpeakerAngle[2] = -30.0f * M_PI/180.0f;
355 SpeakerAngle[3] = 0.0f * M_PI/180.0f;
356 SpeakerAngle[4] = 30.0f * M_PI/180.0f;
357 SpeakerAngle[5] = 90.0f * M_PI/180.0f;
358 SpeakerAngle[6] = 150.0f * M_PI/180.0f;
359 SetSpeakerArrangement("layout_71CHN", SpeakerAngle, Speaker2Chan, Context->NumChan);
360 break;
362 default:
363 assert(0);
366 for(pos = 0; pos < LUT_NUM; pos++)
368 /* source angle */
369 Theta = aluLUTpos2Angle(pos);
371 /* clear all values */
372 offset = OUTPUTCHANNELS * pos;
373 for(s = 0; s < OUTPUTCHANNELS; s++)
374 Context->PanningLUT[offset+s] = 0.0f;
376 /* set panning values */
377 for(s = 0; s < Context->NumChan - 1; s++)
379 if(Theta >= SpeakerAngle[s] && Theta < SpeakerAngle[s+1])
381 /* source between speaker s and speaker s+1 */
382 Alpha = M_PI_2 * (Theta-SpeakerAngle[s]) /
383 (SpeakerAngle[s+1]-SpeakerAngle[s]);
384 Context->PanningLUT[offset + Speaker2Chan[s]] = cos(Alpha);
385 Context->PanningLUT[offset + Speaker2Chan[s+1]] = sin(Alpha);
386 break;
389 if(s == Context->NumChan - 1)
391 /* source between last and first speaker */
392 if(Theta < SpeakerAngle[0])
393 Theta += 2.0f * M_PI;
394 Alpha = M_PI_2 * (Theta-SpeakerAngle[s]) /
395 (2.0f * M_PI + SpeakerAngle[0]-SpeakerAngle[s]);
396 Context->PanningLUT[offset + Speaker2Chan[s]] = cos(Alpha);
397 Context->PanningLUT[offset + Speaker2Chan[0]] = sin(Alpha);
402 static __inline ALint aluCart2LUTpos(ALfloat re, ALfloat im)
404 ALint pos = 0;
405 ALfloat denom = aluFabs(re) + aluFabs(im);
406 if(denom > 0.0f)
407 pos = (ALint)(QUADRANT_NUM*aluFabs(im) / denom + 0.5);
409 if(re < 0.0)
410 pos = 2 * QUADRANT_NUM - pos;
411 if(im < 0.0)
412 pos = LUT_NUM - pos;
413 return pos%LUT_NUM;
416 static ALvoid CalcSourceParams(const ALCcontext *ALContext,
417 const ALsource *ALSource, ALenum isMono,
418 ALfloat *drysend, ALfloat *wetsend,
419 ALfloat *pitch, ALfloat *drygainhf,
420 ALfloat *wetgainhf)
422 ALfloat InnerAngle,OuterAngle,Angle,Distance,DryMix;
423 ALfloat Direction[3],Position[3],SourceToListener[3];
424 ALfloat MinVolume,MaxVolume,MinDist,MaxDist,Rolloff,OuterGainHF;
425 ALfloat ConeVolume,ConeHF,SourceVolume,ListenerGain;
426 ALfloat U[3],V[3],N[3];
427 ALfloat DopplerFactor, DopplerVelocity, flSpeedOfSound;
428 ALfloat Matrix[3][3];
429 ALfloat flAttenuation;
430 ALfloat RoomAttenuation[MAX_SENDS];
431 ALfloat MetersPerUnit;
432 ALfloat RoomRolloff[MAX_SENDS];
433 ALfloat DryGainHF = 1.0f;
434 ALfloat DirGain, AmbientGain;
435 ALfloat length;
436 const ALfloat *SpeakerGain;
437 ALint NumSends;
438 ALint pos, s, i;
440 //Get context properties
441 DopplerFactor = ALContext->DopplerFactor * ALSource->DopplerFactor;
442 DopplerVelocity = ALContext->DopplerVelocity;
443 flSpeedOfSound = ALContext->flSpeedOfSound;
444 NumSends = ALContext->Device->NumAuxSends;
446 //Get listener properties
447 ListenerGain = ALContext->Listener.Gain;
448 MetersPerUnit = ALContext->Listener.MetersPerUnit;
450 //Get source properties
451 SourceVolume = ALSource->flGain;
452 memcpy(Position, ALSource->vPosition, sizeof(ALSource->vPosition));
453 memcpy(Direction, ALSource->vOrientation, sizeof(ALSource->vOrientation));
454 MinVolume = ALSource->flMinGain;
455 MaxVolume = ALSource->flMaxGain;
456 MinDist = ALSource->flRefDistance;
457 MaxDist = ALSource->flMaxDistance;
458 Rolloff = ALSource->flRollOffFactor;
459 InnerAngle = ALSource->flInnerAngle;
460 OuterAngle = ALSource->flOuterAngle;
461 OuterGainHF = ALSource->OuterGainHF;
463 //Only apply 3D calculations for mono buffers
464 if(isMono == AL_FALSE)
466 //1. Multi-channel buffers always play "normal"
467 pitch[0] = ALSource->flPitch;
469 DryMix = SourceVolume;
470 DryMix = __min(DryMix,MaxVolume);
471 DryMix = __max(DryMix,MinVolume);
473 switch(ALSource->DirectFilter.type)
475 case AL_FILTER_LOWPASS:
476 DryMix *= ALSource->DirectFilter.Gain;
477 DryGainHF *= ALSource->DirectFilter.GainHF;
478 break;
481 drysend[FRONT_LEFT] = DryMix * ListenerGain;
482 drysend[FRONT_RIGHT] = DryMix * ListenerGain;
483 drysend[SIDE_LEFT] = DryMix * ListenerGain;
484 drysend[SIDE_RIGHT] = DryMix * ListenerGain;
485 drysend[BACK_LEFT] = DryMix * ListenerGain;
486 drysend[BACK_RIGHT] = DryMix * ListenerGain;
487 drysend[FRONT_CENTER] = DryMix * ListenerGain;
488 drysend[BACK_CENTER] = DryMix * ListenerGain;
489 drysend[LFE] = DryMix * ListenerGain;
490 *drygainhf = DryGainHF;
492 for(i = 0;i < MAX_SENDS;i++)
494 wetsend[i] = 0.0f;
495 wetgainhf[i] = 1.0f;
498 return;
501 //1. Translate Listener to origin (convert to head relative)
502 // Note that Direction and SourceToListener are *not* transformed.
503 // SourceToListener is used with the source and listener velocities,
504 // which are untransformed, and Direction is used with SourceToListener
505 // for the sound cone
506 if(ALSource->bHeadRelative==AL_FALSE)
508 // Build transform matrix
509 aluCrossproduct(ALContext->Listener.Forward, ALContext->Listener.Up, U); // Right-vector
510 aluNormalize(U); // Normalized Right-vector
511 memcpy(V, ALContext->Listener.Up, sizeof(V)); // Up-vector
512 aluNormalize(V); // Normalized Up-vector
513 memcpy(N, ALContext->Listener.Forward, sizeof(N)); // At-vector
514 aluNormalize(N); // Normalized At-vector
515 Matrix[0][0] = U[0]; Matrix[0][1] = V[0]; Matrix[0][2] = -N[0];
516 Matrix[1][0] = U[1]; Matrix[1][1] = V[1]; Matrix[1][2] = -N[1];
517 Matrix[2][0] = U[2]; Matrix[2][1] = V[2]; Matrix[2][2] = -N[2];
519 // Translate source position into listener space
520 Position[0] -= ALContext->Listener.Position[0];
521 Position[1] -= ALContext->Listener.Position[1];
522 Position[2] -= ALContext->Listener.Position[2];
524 SourceToListener[0] = -Position[0];
525 SourceToListener[1] = -Position[1];
526 SourceToListener[2] = -Position[2];
528 // Transform source position into listener space
529 aluMatrixVector(Position, Matrix);
531 else
533 SourceToListener[0] = -Position[0];
534 SourceToListener[1] = -Position[1];
535 SourceToListener[2] = -Position[2];
537 aluNormalize(SourceToListener);
538 aluNormalize(Direction);
540 //2. Calculate distance attenuation
541 Distance = aluSqrt(aluDotproduct(Position, Position));
543 flAttenuation = 1.0f;
544 for(i = 0;i < MAX_SENDS;i++)
546 RoomAttenuation[i] = 1.0f;
548 RoomRolloff[i] = ALSource->RoomRolloffFactor;
549 if(ALSource->Send[i].Slot &&
550 ALSource->Send[i].Slot->effect.type == AL_EFFECT_REVERB)
551 RoomRolloff[i] += ALSource->Send[i].Slot->effect.Reverb.RoomRolloffFactor;
554 switch(ALSource->DistanceModel)
556 case AL_INVERSE_DISTANCE_CLAMPED:
557 Distance=__max(Distance,MinDist);
558 Distance=__min(Distance,MaxDist);
559 if(MaxDist < MinDist)
560 break;
561 //fall-through
562 case AL_INVERSE_DISTANCE:
563 if(MinDist > 0.0f)
565 if((MinDist + (Rolloff * (Distance - MinDist))) > 0.0f)
566 flAttenuation = MinDist / (MinDist + (Rolloff * (Distance - MinDist)));
567 for(i = 0;i < NumSends;i++)
569 if((MinDist + (RoomRolloff[i] * (Distance - MinDist))) > 0.0f)
570 RoomAttenuation[i] = MinDist / (MinDist + (RoomRolloff[i] * (Distance - MinDist)));
573 break;
575 case AL_LINEAR_DISTANCE_CLAMPED:
576 Distance=__max(Distance,MinDist);
577 Distance=__min(Distance,MaxDist);
578 if(MaxDist < MinDist)
579 break;
580 //fall-through
581 case AL_LINEAR_DISTANCE:
582 Distance=__min(Distance,MaxDist);
583 if(MaxDist != MinDist)
585 flAttenuation = 1.0f - (Rolloff*(Distance-MinDist)/(MaxDist - MinDist));
586 for(i = 0;i < NumSends;i++)
587 RoomAttenuation[i] = 1.0f - (RoomRolloff[i]*(Distance-MinDist)/(MaxDist - MinDist));
589 break;
591 case AL_EXPONENT_DISTANCE_CLAMPED:
592 Distance=__max(Distance,MinDist);
593 Distance=__min(Distance,MaxDist);
594 if(MaxDist < MinDist)
595 break;
596 //fall-through
597 case AL_EXPONENT_DISTANCE:
598 if(Distance > 0.0f && MinDist > 0.0f)
600 flAttenuation = (ALfloat)pow(Distance/MinDist, -Rolloff);
601 for(i = 0;i < NumSends;i++)
602 RoomAttenuation[i] = (ALfloat)pow(Distance/MinDist, -RoomRolloff[i]);
604 break;
606 case AL_NONE:
607 break;
610 // Source Gain + Attenuation and clamp to Min/Max Gain
611 DryMix = SourceVolume * flAttenuation;
612 DryMix = __min(DryMix,MaxVolume);
613 DryMix = __max(DryMix,MinVolume);
615 for(i = 0;i < NumSends;i++)
617 ALfloat WetMix = SourceVolume * RoomAttenuation[i];
618 WetMix = __min(WetMix,MaxVolume);
619 wetsend[i] = __max(WetMix,MinVolume);
620 wetgainhf[i] = 1.0f;
623 // Distance-based air absorption
624 if(ALSource->AirAbsorptionFactor > 0.0f && ALSource->DistanceModel != AL_NONE)
626 ALfloat dist = Distance-MinDist;
627 ALfloat absorb;
629 if(dist < 0.0f) dist = 0.0f;
630 // Absorption calculation is done in dB
631 absorb = (ALSource->AirAbsorptionFactor*AIRABSORBGAINDBHF) *
632 (dist*MetersPerUnit);
633 // Convert dB to linear gain before applying
634 absorb = pow(10.0, absorb/20.0);
635 DryGainHF *= absorb;
636 for(i = 0;i < MAX_SENDS;i++)
637 wetgainhf[i] *= absorb;
640 //3. Apply directional soundcones
641 Angle = aluAcos(aluDotproduct(Direction,SourceToListener)) * 180.0f/M_PI;
642 if(Angle >= InnerAngle && Angle <= OuterAngle)
644 ALfloat scale = (Angle-InnerAngle) / (OuterAngle-InnerAngle);
645 ConeVolume = (1.0f+(ALSource->flOuterGain-1.0f)*scale);
646 ConeHF = (1.0f+(OuterGainHF-1.0f)*scale);
647 DryMix *= ConeVolume;
648 if(ALSource->DryGainHFAuto)
649 DryGainHF *= ConeHF;
651 else if(Angle > OuterAngle)
653 ConeVolume = (1.0f+(ALSource->flOuterGain-1.0f));
654 ConeHF = (1.0f+(OuterGainHF-1.0f));
655 DryMix *= ConeVolume;
656 if(ALSource->DryGainHFAuto)
657 DryGainHF *= ConeHF;
659 else
661 ConeVolume = 1.0f;
662 ConeHF = 1.0f;
665 //4. Calculate Velocity
666 if(DopplerFactor != 0.0f)
668 ALfloat flVSS, flVLS = 0.0f;
669 ALfloat flMaxVelocity = (DopplerVelocity * flSpeedOfSound) /
670 DopplerFactor;
672 flVSS = aluDotproduct(ALSource->vVelocity, SourceToListener);
673 if(flVSS >= flMaxVelocity)
674 flVSS = (flMaxVelocity - 1.0f);
675 else if(flVSS <= -flMaxVelocity)
676 flVSS = -flMaxVelocity + 1.0f;
678 if(ALSource->bHeadRelative == AL_FALSE)
680 flVLS = aluDotproduct(ALContext->Listener.Velocity, SourceToListener);
681 if(flVLS >= flMaxVelocity)
682 flVLS = (flMaxVelocity - 1.0f);
683 else if(flVLS <= -flMaxVelocity)
684 flVLS = -flMaxVelocity + 1.0f;
687 pitch[0] = ALSource->flPitch *
688 ((flSpeedOfSound * DopplerVelocity) - (DopplerFactor * flVLS)) /
689 ((flSpeedOfSound * DopplerVelocity) - (DopplerFactor * flVSS));
691 else
692 pitch[0] = ALSource->flPitch;
694 for(i = 0;i < NumSends;i++)
696 if(ALSource->Send[i].Slot &&
697 ALSource->Send[i].Slot->effect.type != AL_EFFECT_NULL)
699 if(ALSource->WetGainAuto)
700 wetsend[i] *= ConeVolume;
701 if(ALSource->WetGainHFAuto)
702 wetgainhf[i] *= ConeHF;
704 if(ALSource->Send[i].Slot->AuxSendAuto)
706 // Apply minimal attenuation in place of missing
707 // statistical reverb model.
708 wetsend[i] *= pow(DryMix, 1.0f / 2.0f);
710 else
712 // If the slot's auxiliary send auto is off, the data sent to
713 // the effect slot is the same as the dry path, sans filter
714 // effects
715 wetsend[i] = DryMix;
716 wetgainhf[i] = DryGainHF;
719 switch(ALSource->Send[i].WetFilter.type)
721 case AL_FILTER_LOWPASS:
722 wetsend[i] *= ALSource->Send[i].WetFilter.Gain;
723 wetgainhf[i] *= ALSource->Send[i].WetFilter.GainHF;
724 break;
726 wetsend[i] *= ListenerGain;
728 else
730 wetsend[i] = 0.0f;
731 wetgainhf[i] = 1.0f;
734 for(i = NumSends;i < MAX_SENDS;i++)
736 wetsend[i] = 0.0f;
737 wetgainhf[i] = 1.0f;
740 //5. Apply filter gains and filters
741 switch(ALSource->DirectFilter.type)
743 case AL_FILTER_LOWPASS:
744 DryMix *= ALSource->DirectFilter.Gain;
745 DryGainHF *= ALSource->DirectFilter.GainHF;
746 break;
748 DryMix *= ListenerGain;
750 // Use energy-preserving panning algorithm for multi-speaker playback
751 length = aluSqrt(Position[0]*Position[0] + Position[1]*Position[1] +
752 Position[2]*Position[2]);
753 length = __max(length, MinDist);
754 if(length > 0.0f)
756 ALfloat invlen = 1.0f/length;
757 Position[0] *= invlen;
758 Position[1] *= invlen;
759 Position[2] *= invlen;
762 pos = aluCart2LUTpos(-Position[2], Position[0]);
763 SpeakerGain = &ALContext->PanningLUT[OUTPUTCHANNELS * pos];
765 DirGain = aluSqrt(Position[0]*Position[0] + Position[2]*Position[2]);
766 // elevation adjustment for directional gain. this sucks, but
767 // has low complexity
768 AmbientGain = 1.0/aluSqrt(ALContext->NumChan) * (1.0-DirGain);
769 for(s = 0; s < OUTPUTCHANNELS; s++)
771 ALfloat gain = SpeakerGain[s]*DirGain + AmbientGain;
772 drysend[s] = DryMix * gain;
774 *drygainhf = DryGainHF;
777 static __inline ALshort lerp(ALshort val1, ALshort val2, ALint frac)
779 return val1 + (((val2-val1)*frac)>>FRACTIONBITS);
782 static void MixSomeSources(ALCcontext *ALContext, float (*DryBuffer)[OUTPUTCHANNELS], ALuint SamplesToDo)
784 static float DummyBuffer[BUFFERSIZE];
785 ALfloat *WetBuffer[MAX_SENDS];
786 ALfloat (*Matrix)[OUTPUTCHANNELS] = ALContext->ChannelMatrix;
787 ALfloat DrySend[OUTPUTCHANNELS] = { 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f };
788 ALfloat dryGainStep[OUTPUTCHANNELS];
789 ALfloat wetGainStep[MAX_SENDS];
790 ALuint i, j, k, out;
791 ALsource *ALSource;
792 ALfloat value;
793 ALshort *Data;
794 ALbufferlistitem *BufferListItem;
795 ALint64 DataSize64,DataPos64;
796 FILTER *DryFilter, *WetFilter[MAX_SENDS];
797 ALfloat WetSend[MAX_SENDS];
798 ALfloat DryGainHF = 0.0f;
799 ALfloat WetGainHF[MAX_SENDS];
800 ALuint rampLength;
801 ALuint frequency;
802 ALint Looping,State;
803 ALint increment;
805 if(!(ALSource=ALContext->Source))
806 return;
808 frequency = ALContext->Device->Frequency;
810 rampLength = frequency * MIN_RAMP_LENGTH / 1000;
811 rampLength = max(rampLength, SamplesToDo);
813 another_source:
814 j = 0;
815 State = ALSource->state;
816 while(State == AL_PLAYING && j < SamplesToDo)
818 ALuint DataSize = 0;
819 ALuint DataPosInt = 0;
820 ALuint DataPosFrac = 0;
821 ALuint Buffer;
822 ALbuffer *ALBuffer;
823 ALuint Channels;
824 ALuint BufferSize;
825 ALfloat Pitch;
827 /* Get buffer info */
828 if(!(Buffer = ALSource->ulBufferID))
829 goto skipmix;
830 ALBuffer = (ALbuffer*)ALTHUNK_LOOKUPENTRY(Buffer);
832 Data = ALBuffer->data;
833 Channels = aluChannelsFromFormat(ALBuffer->format);
834 DataSize = ALBuffer->size;
835 DataSize /= Channels * aluBytesFromFormat(ALBuffer->format);
837 DataPosInt = ALSource->position;
838 DataPosFrac = ALSource->position_fraction;
840 if(DataPosInt >= DataSize)
841 goto skipmix;
843 /* Get source info */
844 DryFilter = &ALSource->iirFilter;
845 for(i = 0;i < MAX_SENDS;i++)
847 WetFilter[i] = &ALSource->Send[i].iirFilter;
848 WetBuffer[i] = (ALSource->Send[i].Slot ?
849 ALSource->Send[i].Slot->WetBuffer :
850 DummyBuffer);
853 CalcSourceParams(ALContext, ALSource, (Channels==1)?AL_TRUE:AL_FALSE,
854 DrySend, WetSend, &Pitch, &DryGainHF, WetGainHF);
855 Pitch = (Pitch*ALBuffer->frequency) / frequency;
857 if(Channels == 1)
859 ALfloat cw, a, g;
861 /* Update filter coefficients. Calculations based on the I3DL2
862 * spec. */
863 cw = cos(2.0*M_PI * LOWPASSFREQCUTOFF / frequency);
864 /* We use four chained one-pole filters, so we need to take the
865 * fourth root of the squared gain, which is the same as the square
866 * root of the base gain. */
867 /* Be careful with gains < 0.0001, as that causes the coefficient
868 * head towards 1, which will flatten the signal */
869 g = aluSqrt(__max(DryGainHF, 0.0001f));
870 a = 0.0f;
871 if(g < 0.9999f) /* 1-epsilon */
872 a = (1 - g*cw - aluSqrt(2*g*(1-cw) - g*g*(1 - cw*cw))) /
873 (1 - g);
874 DryFilter->coeff = a;
876 for(i = 0;i < MAX_SENDS;i++)
878 /* The wet path uses two chained one-pole filters, so take the
879 * base gain (square root of the squared gain) */
880 g = __max(WetGainHF[i], 0.01f);
881 a = 0.0f;
882 if(g < 0.9999f) /* 1-epsilon */
883 a = (1 - g*cw - aluSqrt(2*g*(1-cw) - g*g*(1 - cw*cw))) /
884 (1 - g);
885 WetFilter[i]->coeff = a;
888 else
890 ALfloat cw, a, g;
892 /* Multi-channel sources use two chained one-pole filters */
893 cw = cos(2.0*M_PI * LOWPASSFREQCUTOFF / frequency);
894 g = __max(DryGainHF, 0.01f);
895 a = 0.0f;
896 if(g < 0.9999f) /* 1-epsilon */
897 a = (1 - g*cw - aluSqrt(2*g*(1-cw) - g*g*(1 - cw*cw))) /
898 (1 - g);
899 DryFilter->coeff = a;
900 for(i = 0;i < MAX_SENDS;i++)
901 WetFilter[i]->coeff = 0.0f;
903 if(DuplicateStereo && Channels == 2)
905 Matrix[FRONT_LEFT][SIDE_LEFT] = 1.0f;
906 Matrix[FRONT_RIGHT][SIDE_RIGHT] = 1.0f;
907 Matrix[FRONT_LEFT][BACK_LEFT] = 1.0f;
908 Matrix[FRONT_RIGHT][BACK_RIGHT] = 1.0f;
910 else if(DuplicateStereo)
912 Matrix[FRONT_LEFT][SIDE_LEFT] = 0.0f;
913 Matrix[FRONT_RIGHT][SIDE_RIGHT] = 0.0f;
914 Matrix[FRONT_LEFT][BACK_LEFT] = 0.0f;
915 Matrix[FRONT_RIGHT][BACK_RIGHT] = 0.0f;
919 /* Compute the gain steps for each output channel */
920 if(ALSource->FirstStart)
922 ALSource->FirstStart = AL_FALSE;
923 for(i = 0;i < OUTPUTCHANNELS;i++)
924 dryGainStep[i] = 0.0f;
925 for(i = 0;i < MAX_SENDS;i++)
926 wetGainStep[i] = 0.0f;
928 else
930 for(i = 0;i < OUTPUTCHANNELS;i++)
932 dryGainStep[i] = (DrySend[i]-ALSource->DryGains[i]) / rampLength;
933 DrySend[i] = ALSource->DryGains[i];
935 for(i = 0;i < MAX_SENDS;i++)
937 wetGainStep[i] = (WetSend[i]-ALSource->WetGains[i]) / rampLength;
938 WetSend[i] = ALSource->WetGains[i];
942 /* Compute 18.14 fixed point step */
943 if(Pitch > (float)MAX_PITCH)
944 Pitch = (float)MAX_PITCH;
945 increment = (ALint)(Pitch*(ALfloat)(1L<<FRACTIONBITS));
946 if(increment <= 0)
947 increment = (1<<FRACTIONBITS);
949 /* Figure out how many samples we can mix. */
950 DataSize64 = DataSize;
951 DataSize64 <<= FRACTIONBITS;
952 DataPos64 = DataPosInt;
953 DataPos64 <<= FRACTIONBITS;
954 DataPos64 += DataPosFrac;
955 BufferSize = (ALuint)((DataSize64-DataPos64+(increment-1)) / increment);
957 BufferListItem = ALSource->queue;
958 for(i = 0;i < ALSource->BuffersPlayed && BufferListItem;i++)
959 BufferListItem = BufferListItem->next;
960 if(BufferListItem)
962 ALbuffer *NextBuf;
963 ALuint ulExtraSamples;
965 if(BufferListItem->next)
967 NextBuf = (ALbuffer*)ALTHUNK_LOOKUPENTRY(BufferListItem->next->buffer);
968 if(NextBuf && NextBuf->data)
970 ulExtraSamples = min(NextBuf->size, (ALint)(ALBuffer->padding*Channels*2));
971 memcpy(&Data[DataSize*Channels], NextBuf->data, ulExtraSamples);
974 else if(ALSource->bLooping)
976 NextBuf = (ALbuffer*)ALTHUNK_LOOKUPENTRY(ALSource->queue->buffer);
977 if(NextBuf && NextBuf->data)
979 ulExtraSamples = min(NextBuf->size, (ALint)(ALBuffer->padding*Channels*2));
980 memcpy(&Data[DataSize*Channels], NextBuf->data, ulExtraSamples);
983 else
984 memset(&Data[DataSize*Channels], 0, (ALBuffer->padding*Channels*2));
986 BufferSize = min(BufferSize, (SamplesToDo-j));
988 /* Actual sample mixing loop */
989 k = 0;
990 Data += DataPosInt*Channels;
992 if(Channels == 1) /* Mono */
994 ALfloat outsamp;
996 while(BufferSize--)
998 for(i = 0;i < OUTPUTCHANNELS;i++)
999 DrySend[i] += dryGainStep[i];
1000 for(i = 0;i < MAX_SENDS;i++)
1001 WetSend[i] += wetGainStep[i];
1003 /* First order interpolator */
1004 value = lerp(Data[k], Data[k+1], DataPosFrac);
1006 /* Direct path final mix buffer and panning */
1007 outsamp = lpFilter4P(DryFilter, 0, value);
1008 DryBuffer[j][FRONT_LEFT] += outsamp*DrySend[FRONT_LEFT];
1009 DryBuffer[j][FRONT_RIGHT] += outsamp*DrySend[FRONT_RIGHT];
1010 DryBuffer[j][SIDE_LEFT] += outsamp*DrySend[SIDE_LEFT];
1011 DryBuffer[j][SIDE_RIGHT] += outsamp*DrySend[SIDE_RIGHT];
1012 DryBuffer[j][BACK_LEFT] += outsamp*DrySend[BACK_LEFT];
1013 DryBuffer[j][BACK_RIGHT] += outsamp*DrySend[BACK_RIGHT];
1014 DryBuffer[j][FRONT_CENTER] += outsamp*DrySend[FRONT_CENTER];
1015 DryBuffer[j][BACK_CENTER] += outsamp*DrySend[BACK_CENTER];
1017 /* Room path final mix buffer and panning */
1018 for(i = 0;i < MAX_SENDS;i++)
1020 outsamp = lpFilter2P(WetFilter[i], 0, value);
1021 WetBuffer[i][j] += outsamp*WetSend[i];
1024 DataPosFrac += increment;
1025 k += DataPosFrac>>FRACTIONBITS;
1026 DataPosFrac &= FRACTIONMASK;
1027 j++;
1030 else if(Channels == 2) /* Stereo */
1032 const int chans[] = {
1033 FRONT_LEFT, FRONT_RIGHT
1036 #define DO_MIX() do { \
1037 for(i = 0;i < MAX_SENDS;i++) \
1038 WetSend[i] += wetGainStep[i]*BufferSize; \
1039 while(BufferSize--) \
1041 for(i = 0;i < OUTPUTCHANNELS;i++) \
1042 DrySend[i] += dryGainStep[i]; \
1044 for(i = 0;i < Channels;i++) \
1046 value = lerp(Data[k*Channels + i], Data[(k+1)*Channels + i], DataPosFrac); \
1047 value = lpFilter2P(DryFilter, chans[i]*2, value)*DrySend[chans[i]]; \
1048 for(out = 0;out < OUTPUTCHANNELS;out++) \
1049 DryBuffer[j][out] += value*Matrix[chans[i]][out]; \
1052 DataPosFrac += increment; \
1053 k += DataPosFrac>>FRACTIONBITS; \
1054 DataPosFrac &= FRACTIONMASK; \
1055 j++; \
1057 } while(0)
1059 DO_MIX();
1061 else if(Channels == 4) /* Quad */
1063 const int chans[] = {
1064 FRONT_LEFT, FRONT_RIGHT,
1065 BACK_LEFT, BACK_RIGHT
1068 DO_MIX();
1070 else if(Channels == 6) /* 5.1 */
1072 const int chans[] = {
1073 FRONT_LEFT, FRONT_RIGHT,
1074 FRONT_CENTER, LFE,
1075 BACK_LEFT, BACK_RIGHT
1078 DO_MIX();
1080 else if(Channels == 7) /* 6.1 */
1082 const int chans[] = {
1083 FRONT_LEFT, FRONT_RIGHT,
1084 FRONT_CENTER, LFE,
1085 BACK_CENTER,
1086 SIDE_LEFT, SIDE_RIGHT
1089 DO_MIX();
1091 else if(Channels == 8) /* 7.1 */
1093 const int chans[] = {
1094 FRONT_LEFT, FRONT_RIGHT,
1095 FRONT_CENTER, LFE,
1096 BACK_LEFT, BACK_RIGHT,
1097 SIDE_LEFT, SIDE_RIGHT
1100 DO_MIX();
1101 #undef DO_MIX
1103 else /* Unknown? */
1105 for(i = 0;i < OUTPUTCHANNELS;i++)
1106 DrySend[i] += dryGainStep[i]*BufferSize;
1107 for(i = 0;i < MAX_SENDS;i++)
1108 WetSend[i] += wetGainStep[i]*BufferSize;
1109 while(BufferSize--)
1111 DataPosFrac += increment;
1112 k += DataPosFrac>>FRACTIONBITS;
1113 DataPosFrac &= FRACTIONMASK;
1114 j++;
1117 DataPosInt += k;
1119 /* Update source info */
1120 ALSource->position = DataPosInt;
1121 ALSource->position_fraction = DataPosFrac;
1122 for(i = 0;i < OUTPUTCHANNELS;i++)
1123 ALSource->DryGains[i] = DrySend[i];
1124 for(i = 0;i < MAX_SENDS;i++)
1125 ALSource->WetGains[i] = WetSend[i];
1127 skipmix:
1128 /* Handle looping sources */
1129 if(!Buffer || DataPosInt >= DataSize)
1131 /* Queueing */
1132 if(ALSource->queue)
1134 Looping = ALSource->bLooping;
1135 if(ALSource->BuffersPlayed < (ALSource->BuffersInQueue-1))
1137 BufferListItem = ALSource->queue;
1138 for(i = 0;i <= ALSource->BuffersPlayed && BufferListItem;i++)
1140 if(!Looping)
1141 BufferListItem->bufferstate = PROCESSED;
1142 BufferListItem = BufferListItem->next;
1144 if(BufferListItem)
1145 ALSource->ulBufferID = BufferListItem->buffer;
1146 ALSource->position = DataPosInt-DataSize;
1147 ALSource->position_fraction = DataPosFrac;
1148 ALSource->BuffersPlayed++;
1150 else
1152 if(!Looping)
1154 /* alSourceStop */
1155 ALSource->state = AL_STOPPED;
1156 ALSource->inuse = AL_FALSE;
1157 ALSource->BuffersPlayed = ALSource->BuffersInQueue;
1158 BufferListItem = ALSource->queue;
1159 while(BufferListItem != NULL)
1161 BufferListItem->bufferstate = PROCESSED;
1162 BufferListItem = BufferListItem->next;
1164 ALSource->position = 0;
1165 ALSource->position_fraction = 0;
1167 else
1169 /* alSourceRewind */
1170 /* alSourcePlay */
1171 ALSource->state = AL_PLAYING;
1172 ALSource->inuse = AL_TRUE;
1173 ALSource->play = AL_TRUE;
1174 ALSource->BuffersPlayed = 0;
1175 BufferListItem = ALSource->queue;
1176 while(BufferListItem != NULL)
1178 BufferListItem->bufferstate = PENDING;
1179 BufferListItem = BufferListItem->next;
1181 ALSource->ulBufferID = ALSource->queue->buffer;
1183 if(ALSource->BuffersInQueue == 1)
1184 ALSource->position = DataPosInt%DataSize;
1185 else
1186 ALSource->position = DataPosInt-DataSize;
1187 ALSource->position_fraction = DataPosFrac;
1193 /* Get source state */
1194 State = ALSource->state;
1197 if((ALSource=ALSource->next) != NULL)
1198 goto another_source;
1201 ALvoid aluMixData(ALCdevice *device, ALvoid *buffer, ALsizei size)
1203 float (*DryBuffer)[OUTPUTCHANNELS];
1204 ALuint SamplesToDo;
1205 ALeffectslot *ALEffectSlot;
1206 ALCcontext *ALContext;
1207 int fpuState;
1208 ALuint i, c;
1210 SuspendContext(NULL);
1212 #if defined(HAVE_FESETROUND)
1213 fpuState = fegetround();
1214 fesetround(FE_TOWARDZERO);
1215 #elif defined(HAVE__CONTROLFP)
1216 fpuState = _controlfp(0, 0);
1217 _controlfp(_RC_CHOP, _MCW_RC);
1218 #else
1219 (void)fpuState;
1220 #endif
1222 DryBuffer = device->DryBuffer;
1223 while(size > 0)
1225 /* Setup variables */
1226 SamplesToDo = min(size, BUFFERSIZE);
1228 /* Clear mixing buffer */
1229 memset(DryBuffer, 0, SamplesToDo*OUTPUTCHANNELS*sizeof(ALfloat));
1231 for(c = 0;c < device->NumContexts;c++)
1233 ALContext = device->Contexts[c];
1234 SuspendContext(ALContext);
1236 MixSomeSources(ALContext, DryBuffer, SamplesToDo);
1238 /* effect slot processing */
1239 ALEffectSlot = ALContext->AuxiliaryEffectSlot;
1240 while(ALEffectSlot)
1242 if(ALEffectSlot->EffectState)
1243 ALEffect_Process(ALEffectSlot->EffectState, ALEffectSlot, SamplesToDo, ALEffectSlot->WetBuffer, DryBuffer);
1245 for(i = 0;i < SamplesToDo;i++)
1246 ALEffectSlot->WetBuffer[i] = 0.0f;
1247 ALEffectSlot = ALEffectSlot->next;
1249 ProcessContext(ALContext);
1252 //Post processing loop
1253 switch(device->Format)
1255 #define CHECK_WRITE_FORMAT(bits, type, func, isWin) \
1256 case AL_FORMAT_MONO##bits: \
1257 for(i = 0;i < SamplesToDo;i++) \
1259 ((type*)buffer)[0] = (func)(DryBuffer[i][FRONT_LEFT] + \
1260 DryBuffer[i][FRONT_RIGHT]); \
1261 buffer = ((type*)buffer) + 1; \
1263 break; \
1264 case AL_FORMAT_STEREO##bits: \
1265 if(device->Bs2b) \
1267 for(i = 0;i < SamplesToDo;i++) \
1269 float samples[2]; \
1270 samples[0] = DryBuffer[i][FRONT_LEFT]; \
1271 samples[1] = DryBuffer[i][FRONT_RIGHT]; \
1272 bs2b_cross_feed(device->Bs2b, samples); \
1273 ((type*)buffer)[0] = (func)(samples[0]); \
1274 ((type*)buffer)[1] = (func)(samples[1]); \
1275 buffer = ((type*)buffer) + 2; \
1278 else \
1280 for(i = 0;i < SamplesToDo;i++) \
1282 ((type*)buffer)[0] = (func)(DryBuffer[i][FRONT_LEFT]); \
1283 ((type*)buffer)[1] = (func)(DryBuffer[i][FRONT_RIGHT]); \
1284 buffer = ((type*)buffer) + 2; \
1287 break; \
1288 case AL_FORMAT_QUAD##bits: \
1289 for(i = 0;i < SamplesToDo;i++) \
1291 ((type*)buffer)[0] = (func)(DryBuffer[i][FRONT_LEFT]); \
1292 ((type*)buffer)[1] = (func)(DryBuffer[i][FRONT_RIGHT]); \
1293 ((type*)buffer)[2] = (func)(DryBuffer[i][BACK_LEFT]); \
1294 ((type*)buffer)[3] = (func)(DryBuffer[i][BACK_RIGHT]); \
1295 buffer = ((type*)buffer) + 4; \
1297 break; \
1298 case AL_FORMAT_51CHN##bits: \
1299 for(i = 0;i < SamplesToDo;i++) \
1301 ((type*)buffer)[0] = (func)(DryBuffer[i][FRONT_LEFT]); \
1302 ((type*)buffer)[1] = (func)(DryBuffer[i][FRONT_RIGHT]); \
1303 if(isWin) { \
1304 /* Of course, Windows can't use the same ordering... */ \
1305 ((type*)buffer)[2] = (func)(DryBuffer[i][FRONT_CENTER]); \
1306 ((type*)buffer)[3] = (func)(DryBuffer[i][LFE]); \
1307 ((type*)buffer)[4] = (func)(DryBuffer[i][BACK_LEFT]); \
1308 ((type*)buffer)[5] = (func)(DryBuffer[i][BACK_RIGHT]); \
1309 } else { \
1310 ((type*)buffer)[2] = (func)(DryBuffer[i][BACK_LEFT]); \
1311 ((type*)buffer)[3] = (func)(DryBuffer[i][BACK_RIGHT]); \
1312 ((type*)buffer)[4] = (func)(DryBuffer[i][FRONT_CENTER]); \
1313 ((type*)buffer)[5] = (func)(DryBuffer[i][LFE]); \
1315 buffer = ((type*)buffer) + 6; \
1317 break; \
1318 case AL_FORMAT_61CHN##bits: \
1319 for(i = 0;i < SamplesToDo;i++) \
1321 ((type*)buffer)[0] = (func)(DryBuffer[i][FRONT_LEFT]); \
1322 ((type*)buffer)[1] = (func)(DryBuffer[i][FRONT_RIGHT]); \
1323 ((type*)buffer)[2] = (func)(DryBuffer[i][FRONT_CENTER]); \
1324 ((type*)buffer)[3] = (func)(DryBuffer[i][LFE]); \
1325 ((type*)buffer)[4] = (func)(DryBuffer[i][BACK_CENTER]); \
1326 ((type*)buffer)[5] = (func)(DryBuffer[i][SIDE_LEFT]); \
1327 ((type*)buffer)[6] = (func)(DryBuffer[i][SIDE_RIGHT]); \
1328 buffer = ((type*)buffer) + 7; \
1330 break; \
1331 case AL_FORMAT_71CHN##bits: \
1332 for(i = 0;i < SamplesToDo;i++) \
1334 ((type*)buffer)[0] = (func)(DryBuffer[i][FRONT_LEFT]); \
1335 ((type*)buffer)[1] = (func)(DryBuffer[i][FRONT_RIGHT]); \
1336 if(isWin) { \
1337 ((type*)buffer)[2] = (func)(DryBuffer[i][FRONT_CENTER]); \
1338 ((type*)buffer)[3] = (func)(DryBuffer[i][LFE]); \
1339 ((type*)buffer)[4] = (func)(DryBuffer[i][BACK_LEFT]); \
1340 ((type*)buffer)[5] = (func)(DryBuffer[i][BACK_RIGHT]); \
1341 } else { \
1342 ((type*)buffer)[2] = (func)(DryBuffer[i][BACK_LEFT]); \
1343 ((type*)buffer)[3] = (func)(DryBuffer[i][BACK_RIGHT]); \
1344 ((type*)buffer)[4] = (func)(DryBuffer[i][FRONT_CENTER]); \
1345 ((type*)buffer)[5] = (func)(DryBuffer[i][LFE]); \
1347 ((type*)buffer)[6] = (func)(DryBuffer[i][SIDE_LEFT]); \
1348 ((type*)buffer)[7] = (func)(DryBuffer[i][SIDE_RIGHT]); \
1349 buffer = ((type*)buffer) + 8; \
1351 break;
1353 #define AL_FORMAT_MONO32 AL_FORMAT_MONO_FLOAT32
1354 #define AL_FORMAT_STEREO32 AL_FORMAT_STEREO_FLOAT32
1355 #ifdef _WIN32
1356 CHECK_WRITE_FORMAT(8, ALubyte, aluF2UB, 1)
1357 CHECK_WRITE_FORMAT(16, ALshort, aluF2S, 1)
1358 CHECK_WRITE_FORMAT(32, ALfloat, aluF2F, 1)
1359 #else
1360 CHECK_WRITE_FORMAT(8, ALubyte, aluF2UB, 0)
1361 CHECK_WRITE_FORMAT(16, ALshort, aluF2S, 0)
1362 CHECK_WRITE_FORMAT(32, ALfloat, aluF2F, 0)
1363 #endif
1364 #undef AL_FORMAT_STEREO32
1365 #undef AL_FORMAT_MONO32
1366 #undef CHECK_WRITE_FORMAT
1368 default:
1369 break;
1372 size -= SamplesToDo;
1375 #if defined(HAVE_FESETROUND)
1376 fesetround(fpuState);
1377 #elif defined(HAVE__CONTROLFP)
1378 _controlfp(fpuState, 0xfffff);
1379 #endif
1381 ProcessContext(NULL);
1384 ALvoid aluHandleDisconnect(ALCdevice *device)
1386 ALuint i;
1388 for(i = 0;i < device->NumContexts;i++)
1390 ALsource *source;
1392 SuspendContext(device->Contexts[i]);
1394 source = device->Contexts[i]->Source;
1395 while(source)
1397 if(source->state == AL_PLAYING)
1399 ALbufferlistitem *BufferListItem;
1401 source->state = AL_STOPPED;
1402 source->inuse = AL_FALSE;
1403 source->BuffersPlayed = source->BuffersInQueue;
1404 BufferListItem = source->queue;
1405 while(BufferListItem != NULL)
1407 BufferListItem->bufferstate = PROCESSED;
1408 BufferListItem = BufferListItem->next;
1410 source->position = 0;
1411 source->position_fraction = 0;
1413 source = source->next;
1415 ProcessContext(device->Contexts[i]);
1418 device->Connected = ALC_FALSE;