Make a function static that's only used in one source file
[openal-soft.git] / Alc / mixer_c.c
blobf8c3c833bba56b63a7dbfc377f939918851786b2
1 #include "config.h"
3 #include <assert.h>
5 #include "alMain.h"
6 #include "alu.h"
7 #include "alSource.h"
8 #include "alAuxEffectSlot.h"
11 static inline ALfloat do_point(const ALfloat *restrict vals, ALsizei UNUSED(frac))
12 { return vals[0]; }
13 static inline ALfloat do_lerp(const ALfloat *restrict vals, ALsizei frac)
14 { return lerp(vals[0], vals[1], frac * (1.0f/FRACTIONONE)); }
15 static inline ALfloat do_cubic(const ALfloat *restrict vals, ALsizei frac)
16 { return cubic(vals[0], vals[1], vals[2], vals[3], frac * (1.0f/FRACTIONONE)); }
18 const ALfloat *Resample_copy_C(const InterpState* UNUSED(state),
19 const ALfloat *restrict src, ALsizei UNUSED(frac), ALint UNUSED(increment),
20 ALfloat *restrict dst, ALsizei numsamples)
22 #if defined(HAVE_SSE) || defined(HAVE_NEON)
23 /* Avoid copying the source data if it's aligned like the destination. */
24 if((((intptr_t)src)&15) == (((intptr_t)dst)&15))
25 return src;
26 #endif
27 memcpy(dst, src, numsamples*sizeof(ALfloat));
28 return dst;
31 #define DECL_TEMPLATE(Tag, Sampler, O) \
32 const ALfloat *Resample_##Tag##_C(const InterpState* UNUSED(state), \
33 const ALfloat *restrict src, ALsizei frac, ALint increment, \
34 ALfloat *restrict dst, ALsizei numsamples) \
35 { \
36 ALsizei i; \
38 src -= O; \
39 for(i = 0;i < numsamples;i++) \
40 { \
41 dst[i] = Sampler(src, frac); \
43 frac += increment; \
44 src += frac>>FRACTIONBITS; \
45 frac &= FRACTIONMASK; \
46 } \
47 return dst; \
50 DECL_TEMPLATE(point, do_point, 0)
51 DECL_TEMPLATE(lerp, do_lerp, 0)
52 DECL_TEMPLATE(cubic, do_cubic, 1)
54 #undef DECL_TEMPLATE
56 const ALfloat *Resample_bsinc_C(const InterpState *state, const ALfloat *restrict src,
57 ALsizei frac, ALint increment, ALfloat *restrict dst,
58 ALsizei dstlen)
60 const ALfloat *fil, *scd, *phd, *spd;
61 const ALfloat *const filter = state->bsinc.filter;
62 const ALfloat sf = state->bsinc.sf;
63 const ALsizei m = state->bsinc.m;
64 ALsizei j_f, pi, i;
65 ALfloat pf, r;
67 src += state->bsinc.l;
68 for(i = 0;i < dstlen;i++)
70 // Calculate the phase index and factor.
71 #define FRAC_PHASE_BITDIFF (FRACTIONBITS-BSINC_PHASE_BITS)
72 pi = frac >> FRAC_PHASE_BITDIFF;
73 pf = (frac & ((1<<FRAC_PHASE_BITDIFF)-1)) * (1.0f/(1<<FRAC_PHASE_BITDIFF));
74 #undef FRAC_PHASE_BITDIFF
76 fil = ASSUME_ALIGNED(filter + m*pi*4, 16);
77 scd = ASSUME_ALIGNED(fil + m, 16);
78 phd = ASSUME_ALIGNED(scd + m, 16);
79 spd = ASSUME_ALIGNED(phd + m, 16);
81 // Apply the scale and phase interpolated filter.
82 r = 0.0f;
83 for(j_f = 0;j_f < m;j_f++)
84 r += (fil[j_f] + sf*scd[j_f] + pf*(phd[j_f] + sf*spd[j_f])) * src[j_f];
85 dst[i] = r;
87 frac += increment;
88 src += frac>>FRACTIONBITS;
89 frac &= FRACTIONMASK;
91 return dst;
95 void ALfilterState_processC(ALfilterState *filter, ALfloat *restrict dst, const ALfloat *restrict src, ALsizei numsamples)
97 ALsizei i;
98 if(LIKELY(numsamples > 1))
100 dst[0] = filter->b0 * src[0] +
101 filter->b1 * filter->x[0] +
102 filter->b2 * filter->x[1] -
103 filter->a1 * filter->y[0] -
104 filter->a2 * filter->y[1];
105 dst[1] = filter->b0 * src[1] +
106 filter->b1 * src[0] +
107 filter->b2 * filter->x[0] -
108 filter->a1 * dst[0] -
109 filter->a2 * filter->y[0];
110 for(i = 2;i < numsamples;i++)
111 dst[i] = filter->b0 * src[i] +
112 filter->b1 * src[i-1] +
113 filter->b2 * src[i-2] -
114 filter->a1 * dst[i-1] -
115 filter->a2 * dst[i-2];
116 filter->x[0] = src[i-1];
117 filter->x[1] = src[i-2];
118 filter->y[0] = dst[i-1];
119 filter->y[1] = dst[i-2];
121 else if(numsamples == 1)
123 dst[0] = filter->b0 * src[0] +
124 filter->b1 * filter->x[0] +
125 filter->b2 * filter->x[1] -
126 filter->a1 * filter->y[0] -
127 filter->a2 * filter->y[1];
128 filter->x[1] = filter->x[0];
129 filter->x[0] = src[0];
130 filter->y[1] = filter->y[0];
131 filter->y[0] = dst[0];
136 static inline void ApplyCoeffs(ALsizei Offset, ALfloat (*restrict Values)[2],
137 const ALsizei IrSize,
138 const ALfloat (*restrict Coeffs)[2],
139 ALfloat left, ALfloat right)
141 ALsizei c;
142 for(c = 0;c < IrSize;c++)
144 const ALsizei off = (Offset+c)&HRIR_MASK;
145 Values[off][0] += Coeffs[c][0] * left;
146 Values[off][1] += Coeffs[c][1] * right;
150 #define MixHrtf MixHrtf_C
151 #define MixHrtfBlend MixHrtfBlend_C
152 #define MixDirectHrtf MixDirectHrtf_C
153 #include "mixer_inc.c"
154 #undef MixHrtf
157 void Mix_C(const ALfloat *data, ALsizei OutChans, ALfloat (*restrict OutBuffer)[BUFFERSIZE],
158 ALfloat *CurrentGains, const ALfloat *TargetGains, ALsizei Counter, ALsizei OutPos,
159 ALsizei BufferSize)
161 ALfloat gain, delta, step;
162 ALsizei c;
164 delta = (Counter > 0) ? 1.0f/(ALfloat)Counter : 0.0f;
166 for(c = 0;c < OutChans;c++)
168 ALsizei pos = 0;
169 gain = CurrentGains[c];
170 step = (TargetGains[c] - gain) * delta;
171 if(fabsf(step) > FLT_EPSILON)
173 ALsizei minsize = mini(BufferSize, Counter);
174 for(;pos < minsize;pos++)
176 OutBuffer[c][OutPos+pos] += data[pos]*gain;
177 gain += step;
179 if(pos == Counter)
180 gain = TargetGains[c];
181 CurrentGains[c] = gain;
184 if(!(fabsf(gain) > GAIN_SILENCE_THRESHOLD))
185 continue;
186 for(;pos < BufferSize;pos++)
187 OutBuffer[c][OutPos+pos] += data[pos]*gain;
191 /* Basically the inverse of the above. Rather than one input going to multiple
192 * outputs (each with its own gain), it's multiple inputs (each with its own
193 * gain) going to one output. This applies one row (vs one column) of a matrix
194 * transform. And as the matrices are more or less static once set up, no
195 * stepping is necessary.
197 void MixRow_C(ALfloat *OutBuffer, const ALfloat *Gains, const ALfloat (*restrict data)[BUFFERSIZE], ALsizei InChans, ALsizei InPos, ALsizei BufferSize)
199 ALsizei c, i;
201 for(c = 0;c < InChans;c++)
203 ALfloat gain = Gains[c];
204 if(!(fabsf(gain) > GAIN_SILENCE_THRESHOLD))
205 continue;
207 for(i = 0;i < BufferSize;i++)
208 OutBuffer[i] += data[c][InPos+i] * gain;