Make a function static that's only used in one source file
[openal-soft.git] / Alc / bformatdec.c
blob0e79fd3fb964c05a937a0c2863a55656ed01d3f2
2 #include "config.h"
4 #include "bformatdec.h"
5 #include "ambdec.h"
6 #include "mixer_defs.h"
7 #include "alu.h"
9 #include "bool.h"
10 #include "threads.h"
11 #include "almalloc.h"
14 void bandsplit_init(BandSplitter *splitter, ALfloat f0norm)
16 ALfloat w = f0norm * F_TAU;
17 ALfloat cw = cosf(w);
18 if(cw > FLT_EPSILON)
19 splitter->coeff = (sinf(w) - 1.0f) / cw;
20 else
21 splitter->coeff = cw * -0.5f;
23 splitter->lp_z1 = 0.0f;
24 splitter->lp_z2 = 0.0f;
25 splitter->hp_z1 = 0.0f;
28 void bandsplit_clear(BandSplitter *splitter)
30 splitter->lp_z1 = 0.0f;
31 splitter->lp_z2 = 0.0f;
32 splitter->hp_z1 = 0.0f;
35 void bandsplit_process(BandSplitter *splitter, ALfloat *restrict hpout, ALfloat *restrict lpout,
36 const ALfloat *input, ALsizei count)
38 ALfloat coeff, d, x;
39 ALfloat z1, z2;
40 ALsizei i;
42 coeff = splitter->coeff*0.5f + 0.5f;
43 z1 = splitter->lp_z1;
44 z2 = splitter->lp_z2;
45 for(i = 0;i < count;i++)
47 x = input[i];
49 d = (x - z1) * coeff;
50 x = z1 + d;
51 z1 = x + d;
53 d = (x - z2) * coeff;
54 x = z2 + d;
55 z2 = x + d;
57 lpout[i] = x;
59 splitter->lp_z1 = z1;
60 splitter->lp_z2 = z2;
62 coeff = splitter->coeff;
63 z1 = splitter->hp_z1;
64 for(i = 0;i < count;i++)
66 x = input[i];
68 d = x - coeff*z1;
69 x = z1 + coeff*d;
70 z1 = d;
72 hpout[i] = x - lpout[i];
74 splitter->hp_z1 = z1;
78 void splitterap_init(SplitterAllpass *splitter, ALfloat f0norm)
80 ALfloat w = f0norm * F_TAU;
81 ALfloat cw = cosf(w);
82 if(cw > FLT_EPSILON)
83 splitter->coeff = (sinf(w) - 1.0f) / cw;
84 else
85 splitter->coeff = cw * -0.5f;
87 splitter->z1 = 0.0f;
90 void splitterap_clear(SplitterAllpass *splitter)
92 splitter->z1 = 0.0f;
95 void splitterap_process(SplitterAllpass *splitter, ALfloat *restrict samples, ALsizei count)
97 ALfloat coeff, d, x;
98 ALfloat z1;
99 ALsizei i;
101 coeff = splitter->coeff;
102 z1 = splitter->z1;
103 for(i = 0;i < count;i++)
105 x = samples[i];
107 d = x - coeff*z1;
108 x = z1 + coeff*d;
109 z1 = d;
111 samples[i] = x;
113 splitter->z1 = z1;
117 static const ALfloat UnitScale[MAX_AMBI_COEFFS] = {
118 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f,
119 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f
121 static const ALfloat SN3D2N3DScale[MAX_AMBI_COEFFS] = {
122 1.000000000f, /* ACN 0 (W), sqrt(1) */
123 1.732050808f, /* ACN 1 (Y), sqrt(3) */
124 1.732050808f, /* ACN 2 (Z), sqrt(3) */
125 1.732050808f, /* ACN 3 (X), sqrt(3) */
126 2.236067978f, /* ACN 4 (V), sqrt(5) */
127 2.236067978f, /* ACN 5 (T), sqrt(5) */
128 2.236067978f, /* ACN 6 (R), sqrt(5) */
129 2.236067978f, /* ACN 7 (S), sqrt(5) */
130 2.236067978f, /* ACN 8 (U), sqrt(5) */
131 2.645751311f, /* ACN 9 (Q), sqrt(7) */
132 2.645751311f, /* ACN 10 (O), sqrt(7) */
133 2.645751311f, /* ACN 11 (M), sqrt(7) */
134 2.645751311f, /* ACN 12 (K), sqrt(7) */
135 2.645751311f, /* ACN 13 (L), sqrt(7) */
136 2.645751311f, /* ACN 14 (N), sqrt(7) */
137 2.645751311f, /* ACN 15 (P), sqrt(7) */
139 static const ALfloat FuMa2N3DScale[MAX_AMBI_COEFFS] = {
140 1.414213562f, /* ACN 0 (W), sqrt(2) */
141 1.732050808f, /* ACN 1 (Y), sqrt(3) */
142 1.732050808f, /* ACN 2 (Z), sqrt(3) */
143 1.732050808f, /* ACN 3 (X), sqrt(3) */
144 1.936491673f, /* ACN 4 (V), sqrt(15)/2 */
145 1.936491673f, /* ACN 5 (T), sqrt(15)/2 */
146 2.236067978f, /* ACN 6 (R), sqrt(5) */
147 1.936491673f, /* ACN 7 (S), sqrt(15)/2 */
148 1.936491673f, /* ACN 8 (U), sqrt(15)/2 */
149 2.091650066f, /* ACN 9 (Q), sqrt(35/8) */
150 1.972026594f, /* ACN 10 (O), sqrt(35)/3 */
151 2.231093404f, /* ACN 11 (M), sqrt(224/45) */
152 2.645751311f, /* ACN 12 (K), sqrt(7) */
153 2.231093404f, /* ACN 13 (L), sqrt(224/45) */
154 1.972026594f, /* ACN 14 (N), sqrt(35)/3 */
155 2.091650066f, /* ACN 15 (P), sqrt(35/8) */
159 enum FreqBand {
160 FB_HighFreq,
161 FB_LowFreq,
162 FB_Max
165 /* These points are in AL coordinates! */
166 static const ALfloat Ambi3DPoints[8][3] = {
167 { -0.577350269f, 0.577350269f, -0.577350269f },
168 { 0.577350269f, 0.577350269f, -0.577350269f },
169 { -0.577350269f, 0.577350269f, 0.577350269f },
170 { 0.577350269f, 0.577350269f, 0.577350269f },
171 { -0.577350269f, -0.577350269f, -0.577350269f },
172 { 0.577350269f, -0.577350269f, -0.577350269f },
173 { -0.577350269f, -0.577350269f, 0.577350269f },
174 { 0.577350269f, -0.577350269f, 0.577350269f },
176 static const ALfloat Ambi3DDecoder[8][FB_Max][MAX_AMBI_COEFFS] = {
177 { { 0.25f, 0.1443375672f, 0.1443375672f, 0.1443375672f }, { 0.125f, 0.125f, 0.125f, 0.125f } },
178 { { 0.25f, -0.1443375672f, 0.1443375672f, 0.1443375672f }, { 0.125f, -0.125f, 0.125f, 0.125f } },
179 { { 0.25f, 0.1443375672f, 0.1443375672f, -0.1443375672f }, { 0.125f, 0.125f, 0.125f, -0.125f } },
180 { { 0.25f, -0.1443375672f, 0.1443375672f, -0.1443375672f }, { 0.125f, -0.125f, 0.125f, -0.125f } },
181 { { 0.25f, 0.1443375672f, -0.1443375672f, 0.1443375672f }, { 0.125f, 0.125f, -0.125f, 0.125f } },
182 { { 0.25f, -0.1443375672f, -0.1443375672f, 0.1443375672f }, { 0.125f, -0.125f, -0.125f, 0.125f } },
183 { { 0.25f, 0.1443375672f, -0.1443375672f, -0.1443375672f }, { 0.125f, 0.125f, -0.125f, -0.125f } },
184 { { 0.25f, -0.1443375672f, -0.1443375672f, -0.1443375672f }, { 0.125f, -0.125f, -0.125f, -0.125f } },
188 /* NOTE: BandSplitter filters are unused with single-band decoding */
189 typedef struct BFormatDec {
190 ALboolean Enabled[MAX_OUTPUT_CHANNELS];
192 union {
193 alignas(16) ALfloat Dual[MAX_OUTPUT_CHANNELS][FB_Max][MAX_AMBI_COEFFS];
194 alignas(16) ALfloat Single[MAX_OUTPUT_CHANNELS][MAX_AMBI_COEFFS];
195 } Matrix;
197 BandSplitter XOver[MAX_AMBI_COEFFS];
199 ALfloat (*Samples)[BUFFERSIZE];
200 /* These two alias into Samples */
201 ALfloat (*SamplesHF)[BUFFERSIZE];
202 ALfloat (*SamplesLF)[BUFFERSIZE];
204 alignas(16) ALfloat ChannelMix[BUFFERSIZE];
206 struct {
207 BandSplitter XOver;
208 ALfloat Gains[FB_Max];
209 } UpSampler[4];
211 ALsizei NumChannels;
212 ALboolean DualBand;
213 } BFormatDec;
215 BFormatDec *bformatdec_alloc()
217 return al_calloc(16, sizeof(BFormatDec));
220 void bformatdec_free(BFormatDec *dec)
222 if(dec)
224 al_free(dec->Samples);
225 dec->Samples = NULL;
226 dec->SamplesHF = NULL;
227 dec->SamplesLF = NULL;
229 memset(dec, 0, sizeof(*dec));
230 al_free(dec);
234 void bformatdec_reset(BFormatDec *dec, const AmbDecConf *conf, ALsizei chancount, ALuint srate, const ALsizei chanmap[MAX_OUTPUT_CHANNELS])
236 static const ALsizei map2DTo3D[MAX_AMBI2D_COEFFS] = {
237 0, 1, 3, 4, 8, 9, 15
239 const ALfloat *coeff_scale = UnitScale;
240 bool periphonic;
241 ALfloat ratio;
242 ALsizei i;
244 al_free(dec->Samples);
245 dec->Samples = NULL;
246 dec->SamplesHF = NULL;
247 dec->SamplesLF = NULL;
249 dec->NumChannels = chancount;
250 dec->Samples = al_calloc(16, dec->NumChannels*2 * sizeof(dec->Samples[0]));
251 dec->SamplesHF = dec->Samples;
252 dec->SamplesLF = dec->SamplesHF + dec->NumChannels;
254 for(i = 0;i < MAX_OUTPUT_CHANNELS;i++)
255 dec->Enabled[i] = AL_FALSE;
256 for(i = 0;i < conf->NumSpeakers;i++)
257 dec->Enabled[chanmap[i]] = AL_TRUE;
259 if(conf->CoeffScale == ADS_SN3D)
260 coeff_scale = SN3D2N3DScale;
261 else if(conf->CoeffScale == ADS_FuMa)
262 coeff_scale = FuMa2N3DScale;
264 memset(dec->UpSampler, 0, sizeof(dec->UpSampler));
265 ratio = 400.0f / (ALfloat)srate;
266 for(i = 0;i < 4;i++)
267 bandsplit_init(&dec->UpSampler[i].XOver, ratio);
268 if((conf->ChanMask&AMBI_PERIPHONIC_MASK))
270 periphonic = true;
272 dec->UpSampler[0].Gains[FB_HighFreq] = (dec->NumChannels > 9) ? W_SCALE3D_THIRD :
273 (dec->NumChannels > 4) ? W_SCALE3D_SECOND : 1.0f;
274 dec->UpSampler[0].Gains[FB_LowFreq] = 1.0f;
275 for(i = 1;i < 4;i++)
277 dec->UpSampler[i].Gains[FB_HighFreq] = (dec->NumChannels > 9) ? XYZ_SCALE3D_THIRD :
278 (dec->NumChannels > 4) ? XYZ_SCALE3D_SECOND : 1.0f;
279 dec->UpSampler[i].Gains[FB_LowFreq] = 1.0f;
282 else
284 periphonic = false;
286 dec->UpSampler[0].Gains[FB_HighFreq] = (dec->NumChannels > 5) ? W_SCALE2D_THIRD :
287 (dec->NumChannels > 3) ? W_SCALE2D_SECOND : 1.0f;
288 dec->UpSampler[0].Gains[FB_LowFreq] = 1.0f;
289 for(i = 1;i < 3;i++)
291 dec->UpSampler[i].Gains[FB_HighFreq] = (dec->NumChannels > 5) ? XYZ_SCALE2D_THIRD :
292 (dec->NumChannels > 3) ? XYZ_SCALE2D_SECOND : 1.0f;
293 dec->UpSampler[i].Gains[FB_LowFreq] = 1.0f;
295 dec->UpSampler[3].Gains[FB_HighFreq] = 0.0f;
296 dec->UpSampler[3].Gains[FB_LowFreq] = 0.0f;
299 memset(&dec->Matrix, 0, sizeof(dec->Matrix));
300 if(conf->FreqBands == 1)
302 dec->DualBand = AL_FALSE;
303 for(i = 0;i < conf->NumSpeakers;i++)
305 ALsizei chan = chanmap[i];
306 ALfloat gain;
307 ALsizei j, k;
309 if(!periphonic)
311 for(j = 0,k = 0;j < MAX_AMBI2D_COEFFS;j++)
313 ALsizei l = map2DTo3D[j];
314 if(j == 0) gain = conf->HFOrderGain[0];
315 else if(j == 1) gain = conf->HFOrderGain[1];
316 else if(j == 3) gain = conf->HFOrderGain[2];
317 else if(j == 5) gain = conf->HFOrderGain[3];
318 if((conf->ChanMask&(1<<l)))
319 dec->Matrix.Single[chan][j] = conf->HFMatrix[i][k++] / coeff_scale[l] *
320 gain;
323 else
325 for(j = 0,k = 0;j < MAX_AMBI_COEFFS;j++)
327 if(j == 0) gain = conf->HFOrderGain[0];
328 else if(j == 1) gain = conf->HFOrderGain[1];
329 else if(j == 4) gain = conf->HFOrderGain[2];
330 else if(j == 9) gain = conf->HFOrderGain[3];
331 if((conf->ChanMask&(1<<j)))
332 dec->Matrix.Single[chan][j] = conf->HFMatrix[i][k++] / coeff_scale[j] *
333 gain;
338 else
340 dec->DualBand = AL_TRUE;
342 ratio = conf->XOverFreq / (ALfloat)srate;
343 for(i = 0;i < MAX_AMBI_COEFFS;i++)
344 bandsplit_init(&dec->XOver[i], ratio);
346 ratio = powf(10.0f, conf->XOverRatio / 40.0f);
347 for(i = 0;i < conf->NumSpeakers;i++)
349 ALsizei chan = chanmap[i];
350 ALfloat gain;
351 ALsizei j, k;
353 if(!periphonic)
355 for(j = 0,k = 0;j < MAX_AMBI2D_COEFFS;j++)
357 ALsizei l = map2DTo3D[j];
358 if(j == 0) gain = conf->HFOrderGain[0] * ratio;
359 else if(j == 1) gain = conf->HFOrderGain[1] * ratio;
360 else if(j == 3) gain = conf->HFOrderGain[2] * ratio;
361 else if(j == 5) gain = conf->HFOrderGain[3] * ratio;
362 if((conf->ChanMask&(1<<l)))
363 dec->Matrix.Dual[chan][FB_HighFreq][j] = conf->HFMatrix[i][k++] /
364 coeff_scale[l] * gain;
366 for(j = 0,k = 0;j < MAX_AMBI2D_COEFFS;j++)
368 ALsizei l = map2DTo3D[j];
369 if(j == 0) gain = conf->LFOrderGain[0] / ratio;
370 else if(j == 1) gain = conf->LFOrderGain[1] / ratio;
371 else if(j == 3) gain = conf->LFOrderGain[2] / ratio;
372 else if(j == 5) gain = conf->LFOrderGain[3] / ratio;
373 if((conf->ChanMask&(1<<l)))
374 dec->Matrix.Dual[chan][FB_LowFreq][j] = conf->LFMatrix[i][k++] /
375 coeff_scale[l] * gain;
378 else
380 for(j = 0,k = 0;j < MAX_AMBI_COEFFS;j++)
382 if(j == 0) gain = conf->HFOrderGain[0] * ratio;
383 else if(j == 1) gain = conf->HFOrderGain[1] * ratio;
384 else if(j == 4) gain = conf->HFOrderGain[2] * ratio;
385 else if(j == 9) gain = conf->HFOrderGain[3] * ratio;
386 if((conf->ChanMask&(1<<j)))
387 dec->Matrix.Dual[chan][FB_HighFreq][j] = conf->HFMatrix[i][k++] /
388 coeff_scale[j] * gain;
390 for(j = 0,k = 0;j < MAX_AMBI_COEFFS;j++)
392 if(j == 0) gain = conf->LFOrderGain[0] / ratio;
393 else if(j == 1) gain = conf->LFOrderGain[1] / ratio;
394 else if(j == 4) gain = conf->LFOrderGain[2] / ratio;
395 else if(j == 9) gain = conf->LFOrderGain[3] / ratio;
396 if((conf->ChanMask&(1<<j)))
397 dec->Matrix.Dual[chan][FB_LowFreq][j] = conf->LFMatrix[i][k++] /
398 coeff_scale[j] * gain;
406 void bformatdec_process(struct BFormatDec *dec, ALfloat (*restrict OutBuffer)[BUFFERSIZE], ALsizei OutChannels, const ALfloat (*restrict InSamples)[BUFFERSIZE], ALsizei SamplesToDo)
408 ALsizei chan, i;
410 OutBuffer = ASSUME_ALIGNED(OutBuffer, 16);
411 if(dec->DualBand)
413 for(i = 0;i < dec->NumChannels;i++)
414 bandsplit_process(&dec->XOver[i], dec->SamplesHF[i], dec->SamplesLF[i],
415 InSamples[i], SamplesToDo);
417 for(chan = 0;chan < OutChannels;chan++)
419 if(!dec->Enabled[chan])
420 continue;
422 memset(dec->ChannelMix, 0, SamplesToDo*sizeof(ALfloat));
423 MixRowSamples(dec->ChannelMix, dec->Matrix.Dual[chan][FB_HighFreq],
424 dec->SamplesHF, dec->NumChannels, 0, SamplesToDo
426 MixRowSamples(dec->ChannelMix, dec->Matrix.Dual[chan][FB_LowFreq],
427 dec->SamplesLF, dec->NumChannels, 0, SamplesToDo
430 for(i = 0;i < SamplesToDo;i++)
431 OutBuffer[chan][i] += dec->ChannelMix[i];
434 else
436 for(chan = 0;chan < OutChannels;chan++)
438 if(!dec->Enabled[chan])
439 continue;
441 memset(dec->ChannelMix, 0, SamplesToDo*sizeof(ALfloat));
442 MixRowSamples(dec->ChannelMix, dec->Matrix.Single[chan], InSamples,
443 dec->NumChannels, 0, SamplesToDo);
445 for(i = 0;i < SamplesToDo;i++)
446 OutBuffer[chan][i] += dec->ChannelMix[i];
452 void bformatdec_upSample(struct BFormatDec *dec, ALfloat (*restrict OutBuffer)[BUFFERSIZE], const ALfloat (*restrict InSamples)[BUFFERSIZE], ALsizei InChannels, ALsizei SamplesToDo)
454 ALsizei i;
456 /* This up-sampler leverages the differences observed in dual-band second-
457 * and third-order decoder matrices compared to first-order. For the same
458 * output channel configuration, the low-frequency matrix has identical
459 * coefficients in the shared input channels, while the high-frequency
460 * matrix has extra scalars applied to the W channel and X/Y/Z channels.
461 * Mixing the first-order content into the higher-order stream with the
462 * appropriate counter-scales applied to the HF response results in the
463 * subsequent higher-order decode generating the same response as a first-
464 * order decode.
466 for(i = 0;i < InChannels;i++)
468 /* First, split the first-order components into low and high frequency
469 * bands.
471 bandsplit_process(&dec->UpSampler[i].XOver,
472 dec->Samples[FB_HighFreq], dec->Samples[FB_LowFreq],
473 InSamples[i], SamplesToDo
476 /* Now write each band to the output. */
477 MixRowSamples(OutBuffer[i], dec->UpSampler[i].Gains,
478 dec->Samples, FB_Max, 0, SamplesToDo
484 #define INVALID_UPSAMPLE_INDEX INT_MAX
486 static ALsizei GetACNIndex(const BFChannelConfig *chans, ALsizei numchans, ALsizei acn)
488 ALsizei i;
489 for(i = 0;i < numchans;i++)
491 if(chans[i].Index == acn)
492 return i;
494 return INVALID_UPSAMPLE_INDEX;
496 #define GetChannelForACN(b, a) GetACNIndex((b).Ambi.Map, (b).NumChannels, (a))
498 typedef struct AmbiUpsampler {
499 alignas(16) ALfloat Samples[FB_Max][BUFFERSIZE];
501 BandSplitter XOver[4];
503 ALfloat Gains[4][MAX_OUTPUT_CHANNELS][FB_Max];
504 } AmbiUpsampler;
506 AmbiUpsampler *ambiup_alloc()
508 return al_calloc(16, sizeof(AmbiUpsampler));
511 void ambiup_free(struct AmbiUpsampler *ambiup)
513 al_free(ambiup);
516 void ambiup_reset(struct AmbiUpsampler *ambiup, const ALCdevice *device)
518 ALfloat ratio;
519 ALsizei i;
521 ratio = 400.0f / (ALfloat)device->Frequency;
522 for(i = 0;i < 4;i++)
523 bandsplit_init(&ambiup->XOver[i], ratio);
525 memset(ambiup->Gains, 0, sizeof(ambiup->Gains));
526 if(device->Dry.CoeffCount > 0)
528 ALfloat encgains[8][MAX_OUTPUT_CHANNELS];
529 ALsizei j;
530 size_t k;
532 for(k = 0;k < COUNTOF(Ambi3DPoints);k++)
534 ALfloat coeffs[MAX_AMBI_COEFFS] = { 0.0f };
535 CalcDirectionCoeffs(Ambi3DPoints[k], 0.0f, coeffs);
536 ComputeDryPanGains(&device->Dry, coeffs, 1.0f, encgains[k]);
539 /* Combine the matrices that do the in->virt and virt->out conversions
540 * so we get a single in->out conversion. NOTE: the Encoder matrix
541 * (encgains) and output are transposed, so the input channels line up
542 * with the rows and the output channels line up with the columns.
544 for(i = 0;i < 4;i++)
546 for(j = 0;j < device->Dry.NumChannels;j++)
548 ALfloat hfgain=0.0f, lfgain=0.0f;
549 for(k = 0;k < COUNTOF(Ambi3DDecoder);k++)
551 hfgain += Ambi3DDecoder[k][FB_HighFreq][i]*encgains[k][j];
552 lfgain += Ambi3DDecoder[k][FB_LowFreq][i]*encgains[k][j];
554 ambiup->Gains[i][j][FB_HighFreq] = hfgain;
555 ambiup->Gains[i][j][FB_LowFreq] = lfgain;
559 else
561 /* Assumes full 3D/periphonic on the input and output mixes! */
562 ALfloat w_scale = (device->Dry.NumChannels > 9) ? W_SCALE3D_THIRD :
563 (device->Dry.NumChannels > 4) ? W_SCALE3D_SECOND : 1.0f;
564 ALfloat xyz_scale = (device->Dry.NumChannels > 9) ? XYZ_SCALE3D_THIRD :
565 (device->Dry.NumChannels > 4) ? XYZ_SCALE3D_SECOND : 1.0f;
566 for(i = 0;i < 4;i++)
568 ALsizei index = GetChannelForACN(device->Dry, i);
569 if(index != INVALID_UPSAMPLE_INDEX)
571 ALfloat scale = device->Dry.Ambi.Map[index].Scale;
572 ambiup->Gains[i][index][FB_HighFreq] = scale * ((i==0) ? w_scale : xyz_scale);
573 ambiup->Gains[i][index][FB_LowFreq] = scale;
579 void ambiup_process(struct AmbiUpsampler *ambiup, ALfloat (*restrict OutBuffer)[BUFFERSIZE], ALsizei OutChannels, const ALfloat (*restrict InSamples)[BUFFERSIZE], ALsizei SamplesToDo)
581 ALsizei i, j;
583 for(i = 0;i < 4;i++)
585 bandsplit_process(&ambiup->XOver[i],
586 ambiup->Samples[FB_HighFreq], ambiup->Samples[FB_LowFreq],
587 InSamples[i], SamplesToDo
590 for(j = 0;j < OutChannels;j++)
591 MixRowSamples(OutBuffer[j], ambiup->Gains[i][j],
592 ambiup->Samples, FB_Max, 0, SamplesToDo