Use the right-channel sample...
[openal-soft.git] / Alc / ALu.c
blob67c2a4bba05b6febe7577b6e3a525689d0a7182d
1 /**
2 * OpenAL cross platform audio library
3 * Copyright (C) 1999-2007 by authors.
4 * This library is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU Library General Public
6 * License as published by the Free Software Foundation; either
7 * version 2 of the License, or (at your option) any later version.
9 * This library is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12 * Library General Public License for more details.
14 * You should have received a copy of the GNU Library General Public
15 * License along with this library; if not, write to the
16 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
17 * Boston, MA 02111-1307, USA.
18 * Or go to http://www.gnu.org/copyleft/lgpl.html
21 #define _CRT_SECURE_NO_DEPRECATE // get rid of sprintf security warnings on VS2005
23 #include "config.h"
25 #include <math.h>
26 #include "alMain.h"
27 #include "AL/al.h"
28 #include "AL/alc.h"
30 #if defined(HAVE_STDINT_H)
31 #include <stdint.h>
32 typedef int64_t ALint64;
33 #elif defined(HAVE___INT64)
34 typedef __int64 ALint64;
35 #elif (SIZEOF_LONG == 8)
36 typedef long ALint64;
37 #elif (SIZEOF_LONG_LONG == 8)
38 typedef long long ALint64;
39 #endif
41 #ifdef HAVE_SQRTF
42 #define aluSqrt(x) ((ALfloat)sqrtf((float)(x)))
43 #else
44 #define aluSqrt(x) ((ALfloat)sqrt((double)(x)))
45 #endif
47 // fixes for mingw32.
48 #if defined(max) && !defined(__max)
49 #define __max max
50 #endif
51 #if defined(min) && !defined(__min)
52 #define __min min
53 #endif
55 __inline ALuint aluBytesFromFormat(ALenum format)
57 switch(format)
59 case AL_FORMAT_MONO8:
60 case AL_FORMAT_STEREO8:
61 case AL_FORMAT_QUAD8:
62 return 1;
64 case AL_FORMAT_MONO16:
65 case AL_FORMAT_STEREO16:
66 case AL_FORMAT_QUAD16:
67 return 2;
69 default:
70 return 0;
74 __inline ALuint aluChannelsFromFormat(ALenum format)
76 switch(format)
78 case AL_FORMAT_MONO8:
79 case AL_FORMAT_MONO16:
80 return 1;
82 case AL_FORMAT_STEREO8:
83 case AL_FORMAT_STEREO16:
84 return 2;
86 case AL_FORMAT_QUAD8:
87 case AL_FORMAT_QUAD16:
88 return 4;
90 default:
91 return 0;
95 static __inline ALint aluF2L(ALfloat Value)
97 if(sizeof(ALint) == 4 && sizeof(double) == 8)
99 double temp;
100 temp = Value + (((65536.0*65536.0*16.0)+(65536.0*65536.0*8.0))*65536.0);
101 return *((ALint*)&temp);
103 return (ALint)Value;
106 static __inline ALshort aluF2S(ALfloat Value)
108 ALint i;
110 i = aluF2L(Value);
111 i = __min( 32767, i);
112 i = __max(-32768, i);
113 return ((ALshort)i);
116 static __inline ALvoid aluCrossproduct(ALfloat *inVector1,ALfloat *inVector2,ALfloat *outVector)
118 outVector[0] = inVector1[1]*inVector2[2] - inVector1[2]*inVector2[1];
119 outVector[1] = inVector1[2]*inVector2[0] - inVector1[0]*inVector2[2];
120 outVector[2] = inVector1[0]*inVector2[1] - inVector1[1]*inVector2[0];
123 static __inline ALfloat aluDotproduct(ALfloat *inVector1,ALfloat *inVector2)
125 return inVector1[0]*inVector2[0] + inVector1[1]*inVector2[1] +
126 inVector1[2]*inVector2[2];
129 static __inline ALvoid aluNormalize(ALfloat *inVector)
131 ALfloat length, inverse_length;
133 length = (ALfloat)aluSqrt(aluDotproduct(inVector, inVector));
134 if(length != 0)
136 inverse_length = 1.0f/length;
137 inVector[0] *= inverse_length;
138 inVector[1] *= inverse_length;
139 inVector[2] *= inverse_length;
143 static __inline ALvoid aluMatrixVector(ALfloat *vector,ALfloat matrix[3][3])
145 ALfloat result[3];
147 result[0] = vector[0]*matrix[0][0] + vector[1]*matrix[1][0] + vector[2]*matrix[2][0];
148 result[1] = vector[0]*matrix[0][1] + vector[1]*matrix[1][1] + vector[2]*matrix[2][1];
149 result[2] = vector[0]*matrix[0][2] + vector[1]*matrix[1][2] + vector[2]*matrix[2][2];
150 memcpy(vector, result, sizeof(result));
153 static __inline ALfloat aluComputeDrySample(ALsource *source, ALfloat DryGainHF, ALfloat sample)
155 if(DryGainHF < 1.0f)
157 sample *= DryGainHF;
158 sample += source->LastDrySample * (1.0f - DryGainHF);
161 source->LastDrySample = sample;
162 return sample;
165 static __inline ALfloat aluComputeWetSample(ALsource *source, ALfloat WetGainHF, ALfloat sample)
167 if(WetGainHF < 1.0f)
169 sample *= WetGainHF;
170 sample += source->LastWetSample * (1.0f - WetGainHF);
173 source->LastWetSample = sample;
174 return sample;
177 static ALvoid CalcSourceParams(ALCcontext *ALContext, ALsource *ALSource,
178 ALenum isMono, ALenum OutputFormat,
179 ALfloat *drysend, ALfloat *wetsend,
180 ALfloat *pitch, ALfloat *drygainhf,
181 ALfloat *wetgainhf)
183 ALfloat ListenerOrientation[6],ListenerPosition[3],ListenerVelocity[3];
184 ALfloat InnerAngle,OuterAngle,OuterGain,Angle,Distance,DryMix,WetMix;
185 ALfloat Direction[3],Position[3],Velocity[3],SourceToListener[3];
186 ALfloat MinVolume,MaxVolume,MinDist,MaxDist,Rolloff,OuterGainHF;
187 ALfloat Pitch,ConeVolume,SourceVolume,PanningFB,PanningLR,ListenerGain;
188 ALfloat U[3],V[3],N[3];
189 ALfloat DopplerFactor, DopplerVelocity, flSpeedOfSound, flMaxVelocity;
190 ALfloat flVSS, flVLS;
191 ALint DistanceModel;
192 ALfloat Matrix[3][3];
193 ALint HeadRelative;
194 ALfloat flAttenuation;
195 ALfloat RoomAttenuation;
196 ALfloat MetersPerUnit;
197 ALfloat RoomRolloff;
198 ALfloat DryGainHF = 1.0f;
199 ALfloat WetGainHF = 1.0f;
201 //Get context properties
202 DopplerFactor = ALContext->DopplerFactor;
203 DistanceModel = ALContext->DistanceModel;
204 DopplerVelocity = ALContext->DopplerVelocity;
205 flSpeedOfSound = ALContext->flSpeedOfSound;
207 //Get listener properties
208 ListenerGain = ALContext->Listener.Gain;
209 MetersPerUnit = ALContext->Listener.MetersPerUnit;
210 memcpy(ListenerPosition, ALContext->Listener.Position, sizeof(ALContext->Listener.Position));
211 memcpy(ListenerVelocity, ALContext->Listener.Velocity, sizeof(ALContext->Listener.Velocity));
212 memcpy(&ListenerOrientation[0], ALContext->Listener.Forward, sizeof(ALContext->Listener.Forward));
213 memcpy(&ListenerOrientation[3], ALContext->Listener.Up, sizeof(ALContext->Listener.Up));
215 //Get source properties
216 Pitch = ALSource->flPitch;
217 SourceVolume = ALSource->flGain;
218 memcpy(Position, ALSource->vPosition, sizeof(ALSource->vPosition));
219 memcpy(Velocity, ALSource->vVelocity, sizeof(ALSource->vVelocity));
220 memcpy(Direction, ALSource->vOrientation, sizeof(ALSource->vOrientation));
221 MinVolume = ALSource->flMinGain;
222 MaxVolume = ALSource->flMaxGain;
223 MinDist = ALSource->flRefDistance;
224 MaxDist = ALSource->flMaxDistance;
225 Rolloff = ALSource->flRollOffFactor;
226 OuterGain = ALSource->flOuterGain;
227 InnerAngle = ALSource->flInnerAngle;
228 OuterAngle = ALSource->flOuterAngle;
229 HeadRelative = ALSource->bHeadRelative;
230 OuterGainHF = ALSource->OuterGainHF;
231 RoomRolloff = ALSource->RoomRolloffFactor;
233 //Only apply 3D calculations for mono buffers
234 if(isMono != AL_FALSE)
236 //1. Translate Listener to origin (convert to head relative)
237 if(HeadRelative==AL_FALSE)
239 Position[0] -= ListenerPosition[0];
240 Position[1] -= ListenerPosition[1];
241 Position[2] -= ListenerPosition[2];
244 //2. Calculate distance attenuation
245 Distance = aluSqrt(aluDotproduct(Position, Position));
247 flAttenuation = 1.0f;
248 RoomAttenuation = 1.0f;
249 switch (DistanceModel)
251 case AL_INVERSE_DISTANCE_CLAMPED:
252 Distance=__max(Distance,MinDist);
253 Distance=__min(Distance,MaxDist);
254 if (MaxDist < MinDist)
255 break;
256 //fall-through
257 case AL_INVERSE_DISTANCE:
258 if (MinDist > 0.0f)
260 if ((MinDist + (Rolloff * (Distance - MinDist))) > 0.0f)
261 flAttenuation = MinDist / (MinDist + (Rolloff * (Distance - MinDist)));
262 if ((MinDist + (RoomRolloff * (Distance - MinDist))) > 0.0f)
263 RoomAttenuation = MinDist / (MinDist + (RoomRolloff * (Distance - MinDist)));
265 break;
267 case AL_LINEAR_DISTANCE_CLAMPED:
268 Distance=__max(Distance,MinDist);
269 Distance=__min(Distance,MaxDist);
270 if (MaxDist < MinDist)
271 break;
272 //fall-through
273 case AL_LINEAR_DISTANCE:
274 Distance=__min(Distance,MaxDist);
275 if (MaxDist != MinDist)
277 flAttenuation = 1.0f - (Rolloff*(Distance-MinDist)/(MaxDist - MinDist));
278 RoomAttenuation = 1.0f - (RoomRolloff*(Distance-MinDist)/(MaxDist - MinDist));
280 break;
282 case AL_EXPONENT_DISTANCE_CLAMPED:
283 Distance=__max(Distance,MinDist);
284 Distance=__min(Distance,MaxDist);
285 if (MaxDist < MinDist)
286 break;
287 //fall-through
288 case AL_EXPONENT_DISTANCE:
289 if ((Distance > 0.0f) && (MinDist > 0.0f))
291 flAttenuation = (ALfloat)pow(Distance/MinDist, -Rolloff);
292 RoomAttenuation = (ALfloat)pow(Distance/MinDist, -RoomRolloff);
294 break;
296 case AL_NONE:
297 default:
298 flAttenuation = 1.0f;
299 RoomAttenuation = 1.0f;
300 break;
303 // Source Gain + Attenuation
304 DryMix = SourceVolume * flAttenuation;
305 WetMix = SourceVolume * ((ALSource->WetGainAuto &&
306 ALSource->Send[0].Slot.AuxSendAuto) ?
307 RoomAttenuation : 1.0f);
309 // Clamp to Min/Max Gain
310 DryMix = __min(DryMix,MaxVolume);
311 DryMix = __max(DryMix,MinVolume);
312 WetMix = __min(WetMix,MaxVolume);
313 WetMix = __max(WetMix,MinVolume);
314 //3. Apply directional soundcones
315 SourceToListener[0] = -Position[0];
316 SourceToListener[1] = -Position[1];
317 SourceToListener[2] = -Position[2];
318 aluNormalize(Direction);
319 aluNormalize(SourceToListener);
320 Angle = (ALfloat)(180.0*acos(aluDotproduct(Direction,SourceToListener))/3.141592654f);
321 if(Angle >= InnerAngle && Angle <= OuterAngle)
323 ALfloat scale = (Angle-InnerAngle) / (OuterAngle-InnerAngle);
324 ConeVolume = (1.0f+(OuterGain-1.0f)*scale);
325 if(ALSource->WetGainAuto)
326 WetMix *= ConeVolume;
327 if(ALSource->DryGainHFAuto)
328 DryGainHF *= (1.0f+(OuterGainHF-1.0f)*scale);
329 if(ALSource->WetGainHFAuto)
330 WetGainHF *= (1.0f+(OuterGainHF-1.0f)*scale);
332 else if(Angle > OuterAngle)
334 ConeVolume = (1.0f+(OuterGain-1.0f));
335 if(ALSource->WetGainAuto)
336 WetMix *= ConeVolume;
337 if(ALSource->DryGainHFAuto)
338 DryGainHF *= (1.0f+(OuterGainHF-1.0f));
339 if(ALSource->WetGainHFAuto)
340 WetGainHF *= (1.0f+(OuterGainHF-1.0f));
342 else
343 ConeVolume = 1.0f;
345 //4. Calculate Velocity
346 if(DopplerFactor != 0.0f)
348 flVLS = aluDotproduct(ListenerVelocity, SourceToListener);
349 flVSS = aluDotproduct(Velocity, SourceToListener);
351 flMaxVelocity = (DopplerVelocity * flSpeedOfSound) / DopplerFactor;
353 if (flVSS >= flMaxVelocity)
354 flVSS = (flMaxVelocity - 1.0f);
355 else if (flVSS <= -flMaxVelocity)
356 flVSS = -flMaxVelocity + 1.0f;
358 if (flVLS >= flMaxVelocity)
359 flVLS = (flMaxVelocity - 1.0f);
360 else if (flVLS <= -flMaxVelocity)
361 flVLS = -flMaxVelocity + 1.0f;
363 pitch[0] = Pitch * ((flSpeedOfSound * DopplerVelocity) - (DopplerFactor * flVLS)) /
364 ((flSpeedOfSound * DopplerVelocity) - (DopplerFactor * flVSS));
366 else
367 pitch[0] = Pitch;
369 //5. Align coordinate system axes
370 aluCrossproduct(&ListenerOrientation[0], &ListenerOrientation[3], U); // Right-vector
371 aluNormalize(U); // Normalized Right-vector
372 memcpy(V, &ListenerOrientation[3], sizeof(V)); // Up-vector
373 aluNormalize(V); // Normalized Up-vector
374 memcpy(N, &ListenerOrientation[0], sizeof(N)); // At-vector
375 aluNormalize(N); // Normalized At-vector
376 Matrix[0][0] = U[0]; Matrix[0][1] = V[0]; Matrix[0][2] = -N[0];
377 Matrix[1][0] = U[1]; Matrix[1][1] = V[1]; Matrix[1][2] = -N[1];
378 Matrix[2][0] = U[2]; Matrix[2][1] = V[2]; Matrix[2][2] = -N[2];
379 aluMatrixVector(Position, Matrix);
381 //6. Apply filter gains and filters
382 switch(ALSource->DirectFilter.filter)
384 case AL_FILTER_LOWPASS:
385 DryMix *= ALSource->DirectFilter.Gain;
386 DryGainHF *= ALSource->DirectFilter.GainHF;
387 break;
390 switch(ALSource->Send[0].WetFilter.filter)
392 case AL_FILTER_LOWPASS:
393 WetMix *= ALSource->Send[0].WetFilter.Gain;
394 WetGainHF *= ALSource->Send[0].WetFilter.GainHF;
395 break;
398 if(ALSource->AirAbsorptionFactor > 0.0f)
399 DryGainHF *= pow(ALSource->AirAbsorptionFactor * AIRABSORBGAINHF,
400 Distance * MetersPerUnit);
402 *drygainhf = DryGainHF;
403 *wetgainhf = WetGainHF;
405 //7. Convert normalized position into pannings, then into channel volumes
406 aluNormalize(Position);
407 WetMix *= ALSource->Send[0].Slot.Gain;
408 switch(OutputFormat)
410 case AL_FORMAT_MONO8:
411 case AL_FORMAT_MONO16:
412 drysend[0] = ConeVolume * ListenerGain * DryMix * aluSqrt(1.0f); //Direct
413 drysend[1] = ConeVolume * ListenerGain * DryMix * aluSqrt(1.0f); //Direct
414 wetsend[0] = ListenerGain * WetMix * aluSqrt(1.0f); //Room
415 wetsend[1] = ListenerGain * WetMix * aluSqrt(1.0f); //Room
416 break;
417 case AL_FORMAT_STEREO8:
418 case AL_FORMAT_STEREO16:
419 PanningLR = 0.5f + 0.5f*Position[0];
420 drysend[0] = ConeVolume * ListenerGain * DryMix * aluSqrt(1.0f-PanningLR); //L Direct
421 drysend[1] = ConeVolume * ListenerGain * DryMix * aluSqrt( PanningLR); //R Direct
422 wetsend[0] = ListenerGain * WetMix * aluSqrt(1.0f-PanningLR); //L Room
423 wetsend[1] = ListenerGain * WetMix * aluSqrt( PanningLR); //R Room
424 break;
425 case AL_FORMAT_QUAD8:
426 case AL_FORMAT_QUAD16:
427 // Apply a scalar so each individual speaker has more weight
428 PanningLR = 0.5f + (0.5f*Position[0]*1.41421356f);
429 PanningLR = __min(1.0f, PanningLR);
430 PanningLR = __max(0.0f, PanningLR);
431 PanningFB = 0.5f + (0.5f*Position[2]*1.41421356f);
432 PanningFB = __min(1.0f, PanningFB);
433 PanningFB = __max(0.0f, PanningFB);
434 drysend[0] = ConeVolume * ListenerGain * DryMix * aluSqrt((1.0f-PanningLR)*(1.0f-PanningFB)); //FL Direct
435 drysend[1] = ConeVolume * ListenerGain * DryMix * aluSqrt(( PanningLR)*(1.0f-PanningFB)); //FR Direct
436 drysend[2] = ConeVolume * ListenerGain * DryMix * aluSqrt((1.0f-PanningLR)*( PanningFB)); //BL Direct
437 drysend[3] = ConeVolume * ListenerGain * DryMix * aluSqrt(( PanningLR)*( PanningFB)); //BR Direct
438 wetsend[0] = ListenerGain * WetMix * aluSqrt((1.0f-PanningLR)*(1.0f-PanningFB)); //FL Room
439 wetsend[1] = ListenerGain * WetMix * aluSqrt(( PanningLR)*(1.0f-PanningFB)); //FR Room
440 wetsend[2] = ListenerGain * WetMix * aluSqrt((1.0f-PanningLR)*( PanningFB)); //BL Room
441 wetsend[3] = ListenerGain * WetMix * aluSqrt(( PanningLR)*( PanningFB)); //BR Room
442 break;
443 default:
444 break;
447 else
449 //1. Multi-channel buffers always play "normal"
450 drysend[0] = SourceVolume * 1.0f * ListenerGain;
451 drysend[1] = SourceVolume * 1.0f * ListenerGain;
452 drysend[2] = SourceVolume * 1.0f * ListenerGain;
453 drysend[3] = SourceVolume * 1.0f * ListenerGain;
454 wetsend[0] = SourceVolume * 0.0f * ListenerGain;
455 wetsend[1] = SourceVolume * 0.0f * ListenerGain;
456 wetsend[2] = SourceVolume * 0.0f * ListenerGain;
457 wetsend[3] = SourceVolume * 0.0f * ListenerGain;
459 pitch[0] = Pitch;
461 *drygainhf = DryGainHF;
462 *wetgainhf = WetGainHF;
466 ALvoid aluMixData(ALCcontext *ALContext,ALvoid *buffer,ALsizei size,ALenum format)
468 static float DryBuffer[BUFFERSIZE][OUTPUTCHANNELS];
469 static float WetBuffer[BUFFERSIZE][OUTPUTCHANNELS];
470 ALfloat DrySend[OUTPUTCHANNELS] = { 0.0f, 0.0f, 0.0f, 0.0f };
471 ALfloat WetSend[OUTPUTCHANNELS] = { 0.0f, 0.0f, 0.0f, 0.0f };
472 ALfloat DryGainHF = 0.0f;
473 ALfloat WetGainHF = 0.0f;
474 ALuint BlockAlign,BufferSize;
475 ALuint DataSize=0,DataPosInt=0,DataPosFrac=0;
476 ALuint Channels,Bits,Frequency,ulExtraSamples;
477 ALfloat Pitch;
478 ALint Looping,increment,State;
479 ALuint Buffer,fraction;
480 ALuint SamplesToDo;
481 ALsource *ALSource;
482 ALbuffer *ALBuffer;
483 ALfloat value;
484 ALshort *Data;
485 ALuint i,j,k;
486 ALbufferlistitem *BufferListItem;
487 ALuint loop;
488 ALint64 DataSize64,DataPos64;
490 SuspendContext(ALContext);
492 if(buffer)
494 //Figure output format variables
495 BlockAlign = aluChannelsFromFormat(format);
496 BlockAlign *= aluBytesFromFormat(format);
498 size /= BlockAlign;
499 while(size > 0)
501 //Setup variables
502 ALSource = (ALContext ? ALContext->Source : NULL);
503 SamplesToDo = min(size, BUFFERSIZE);
505 //Clear mixing buffer
506 memset(DryBuffer, 0, SamplesToDo*OUTPUTCHANNELS*sizeof(ALfloat));
507 memset(WetBuffer, 0, SamplesToDo*OUTPUTCHANNELS*sizeof(ALfloat));
509 //Actual mixing loop
510 while(ALSource)
512 j = 0;
513 State = ALSource->state;
514 while(State == AL_PLAYING && j < SamplesToDo)
516 DataSize = 0;
517 DataPosInt = 0;
518 DataPosFrac = 0;
520 //Get buffer info
521 if((Buffer = ALSource->ulBufferID))
523 ALBuffer = (ALbuffer*)ALTHUNK_LOOKUPENTRY(Buffer);
525 Data = ALBuffer->data;
526 Bits = aluBytesFromFormat(ALBuffer->format) * 8;
527 Channels = aluChannelsFromFormat(ALBuffer->format);
528 DataSize = ALBuffer->size;
529 Frequency = ALBuffer->frequency;
531 CalcSourceParams(ALContext, ALSource,
532 (Channels==1) ? AL_TRUE : AL_FALSE,
533 format, DrySend, WetSend, &Pitch,
534 &DryGainHF, &WetGainHF);
537 Pitch = (Pitch*Frequency) / ALContext->Frequency;
538 DataSize = DataSize / (Bits*Channels/8);
540 //Get source info
541 DataPosInt = ALSource->position;
542 DataPosFrac = ALSource->position_fraction;
544 //Compute 18.14 fixed point step
545 increment = aluF2L(Pitch*(1L<<FRACTIONBITS));
546 if(increment > (MAX_PITCH<<FRACTIONBITS))
547 increment = (MAX_PITCH<<FRACTIONBITS);
549 //Figure out how many samples we can mix.
550 //Pitch must be <= 4 (the number below !)
551 DataSize64 = DataSize+MAX_PITCH;
552 DataSize64 <<= FRACTIONBITS;
553 DataPos64 = DataPosInt;
554 DataPos64 <<= FRACTIONBITS;
555 DataPos64 += DataPosFrac;
556 BufferSize = (ALuint)((DataSize64-DataPos64) / increment);
557 BufferListItem = ALSource->queue;
558 for(loop = 0; loop < ALSource->BuffersPlayed; loop++)
560 if(BufferListItem)
561 BufferListItem = BufferListItem->next;
563 if (BufferListItem)
565 if (BufferListItem->next)
567 if(BufferListItem->next->buffer &&
568 ((ALbuffer*)ALTHUNK_LOOKUPENTRY(BufferListItem->next->buffer))->data)
570 ulExtraSamples = min(((ALbuffer*)ALTHUNK_LOOKUPENTRY(BufferListItem->next->buffer))->size, (ALint)(16*Channels));
571 memcpy(&Data[DataSize*Channels], ((ALbuffer*)ALTHUNK_LOOKUPENTRY(BufferListItem->next->buffer))->data, ulExtraSamples);
574 else if (ALSource->bLooping)
576 if (ALSource->queue->buffer)
578 if(((ALbuffer*)ALTHUNK_LOOKUPENTRY(ALSource->queue->buffer))->data)
580 ulExtraSamples = min(((ALbuffer*)ALTHUNK_LOOKUPENTRY(ALSource->queue->buffer))->size, (ALint)(16*Channels));
581 memcpy(&Data[DataSize*Channels], ((ALbuffer*)ALTHUNK_LOOKUPENTRY(ALSource->queue->buffer))->data, ulExtraSamples);
586 BufferSize = min(BufferSize, (SamplesToDo-j));
588 //Actual sample mixing loop
589 Data += DataPosInt*Channels;
590 while(BufferSize--)
592 k = DataPosFrac>>FRACTIONBITS;
593 fraction = DataPosFrac&FRACTIONMASK;
594 if(Channels==1)
596 //First order interpolator
597 ALfloat sample = (ALfloat)((ALshort)(((Data[k]*((1L<<FRACTIONBITS)-fraction))+(Data[k+1]*(fraction)))>>FRACTIONBITS));
599 //Direct path final mix buffer and panning
600 value = aluComputeDrySample(ALSource, DryGainHF, sample);
601 DryBuffer[j][0] += value*DrySend[0];
602 DryBuffer[j][1] += value*DrySend[1];
603 DryBuffer[j][2] += value*DrySend[2];
604 DryBuffer[j][3] += value*DrySend[3];
606 if(ALSource->Send[0].Slot.effectslot)
608 //Room path final mix buffer and panning
609 value = aluComputeWetSample(ALSource, WetGainHF, sample);
610 WetBuffer[j][0] += value*WetSend[0];
611 WetBuffer[j][1] += value*WetSend[1];
612 WetBuffer[j][2] += value*WetSend[2];
613 WetBuffer[j][3] += value*WetSend[3];
616 else
618 ALfloat value2;
620 //First order interpolator (left)
621 value = (ALfloat)((ALshort)(((Data[k*2 ]*((1L<<FRACTIONBITS)-fraction))+(Data[k*2+2]*(fraction)))>>FRACTIONBITS));
622 //First order interpolator (right)
623 value2 = (ALfloat)((ALshort)(((Data[k*2+1]*((1L<<FRACTIONBITS)-fraction))+(Data[k*2+3]*(fraction)))>>FRACTIONBITS));
625 //Direct path final mix buffer and panning (left)
626 DryBuffer[j][0] += value*DrySend[0];
627 //Direct path final mix buffer and panning (right)
628 DryBuffer[j][1] += value2*DrySend[1];
630 if(ALSource->Send[0].Slot.effectslot)
632 //Room path final mix buffer and panning (left)
633 WetBuffer[j][0] += value*WetSend[0];
634 //Room path final mix buffer and panning (right)
635 WetBuffer[j][1] += value2*WetSend[1];
638 DataPosFrac += increment;
639 j++;
641 DataPosInt += (DataPosFrac>>FRACTIONBITS);
642 DataPosFrac = (DataPosFrac&FRACTIONMASK);
644 //Update source info
645 ALSource->position = DataPosInt;
646 ALSource->position_fraction = DataPosFrac;
649 //Handle looping sources
650 if(!Buffer || DataPosInt >= DataSize)
652 //queueing
653 if(ALSource->queue)
655 Looping = ALSource->bLooping;
656 if(ALSource->BuffersPlayed < (ALSource->BuffersInQueue-1))
658 BufferListItem = ALSource->queue;
659 for(loop = 0; loop <= ALSource->BuffersPlayed; loop++)
661 if(BufferListItem)
663 if(!Looping)
664 BufferListItem->bufferstate = PROCESSED;
665 BufferListItem = BufferListItem->next;
668 if(!Looping)
669 ALSource->BuffersProcessed++;
670 if(BufferListItem)
671 ALSource->ulBufferID = BufferListItem->buffer;
672 ALSource->position = DataPosInt-DataSize;
673 ALSource->position_fraction = DataPosFrac;
674 ALSource->BuffersPlayed++;
676 else
678 if(!Looping)
680 /* alSourceStop */
681 ALSource->state = AL_STOPPED;
682 ALSource->inuse = AL_FALSE;
683 ALSource->BuffersPlayed = ALSource->BuffersProcessed = ALSource->BuffersInQueue;
684 BufferListItem = ALSource->queue;
685 while(BufferListItem != NULL)
687 BufferListItem->bufferstate = PROCESSED;
688 BufferListItem = BufferListItem->next;
691 else
693 /* alSourceRewind */
694 /* alSourcePlay */
695 ALSource->state = AL_PLAYING;
696 ALSource->inuse = AL_TRUE;
697 ALSource->play = AL_TRUE;
698 ALSource->BuffersPlayed = 0;
699 ALSource->BufferPosition = 0;
700 ALSource->lBytesPlayed = 0;
701 ALSource->BuffersProcessed = 0;
702 BufferListItem = ALSource->queue;
703 while(BufferListItem != NULL)
705 BufferListItem->bufferstate = PENDING;
706 BufferListItem = BufferListItem->next;
708 ALSource->ulBufferID = ALSource->queue->buffer;
710 ALSource->position = DataPosInt-DataSize;
711 ALSource->position_fraction = DataPosFrac;
717 //Get source state
718 State = ALSource->state;
721 ALSource = ALSource->next;
724 //Post processing loop
725 switch(format)
727 case AL_FORMAT_MONO8:
728 for(i = 0;i < SamplesToDo;i++)
730 *((ALubyte*)buffer) = (ALubyte)((aluF2S(DryBuffer[i][0]+DryBuffer[i][1]+WetBuffer[i][0]+WetBuffer[i][1])>>8)+128);
731 buffer = ((ALubyte*)buffer) + 1;
733 break;
734 case AL_FORMAT_STEREO8:
735 for(i = 0;i < SamplesToDo*2;i++)
737 *((ALubyte*)buffer) = (ALubyte)((aluF2S(DryBuffer[i>>1][i&1]+WetBuffer[i>>1][i&1])>>8)+128);
738 buffer = ((ALubyte*)buffer) + 1;
740 break;
741 case AL_FORMAT_QUAD8:
742 for(i = 0;i < SamplesToDo*4;i++)
744 *((ALubyte*)buffer) = (ALubyte)((aluF2S(DryBuffer[i>>2][i&3]+WetBuffer[i>>2][i&3])>>8)+128);
745 buffer = ((ALubyte*)buffer) + 1;
747 break;
748 case AL_FORMAT_MONO16:
749 for(i = 0;i < SamplesToDo;i++)
751 *((ALshort*)buffer) = aluF2S(DryBuffer[i][0]+DryBuffer[i][1]+WetBuffer[i][0]+WetBuffer[i][1]);
752 buffer = ((ALshort*)buffer) + 1;
754 break;
755 case AL_FORMAT_STEREO16:
756 default:
757 for(i = 0;i < SamplesToDo*2;i++)
759 *((ALshort*)buffer) = aluF2S(DryBuffer[i>>1][i&1]+WetBuffer[i>>1][i&1]);
760 buffer = ((ALshort*)buffer) + 1;
762 break;
763 case AL_FORMAT_QUAD16:
764 for(i = 0;i < SamplesToDo*4;i++)
766 *((ALshort*)buffer) = aluF2S(DryBuffer[i>>2][i&3]+WetBuffer[i>>2][i&3]);
767 buffer = ((ALshort*)buffer) + 1;
769 break;
772 size -= SamplesToDo;
776 ProcessContext(ALContext);