Don't force latency adjustment with PulseAudio
[openal-soft.git] / Alc / ALu.c
blobc5f81987643074622146b571a0b05bbadba6fa7a
1 /**
2 * OpenAL cross platform audio library
3 * Copyright (C) 1999-2007 by authors.
4 * This library is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU Library General Public
6 * License as published by the Free Software Foundation; either
7 * version 2 of the License, or (at your option) any later version.
9 * This library is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12 * Library General Public License for more details.
14 * You should have received a copy of the GNU Library General Public
15 * License along with this library; if not, write to the
16 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
17 * Boston, MA 02111-1307, USA.
18 * Or go to http://www.gnu.org/copyleft/lgpl.html
21 #include "config.h"
23 #include <math.h>
24 #include <stdlib.h>
25 #include <string.h>
26 #include <ctype.h>
27 #include <assert.h>
29 #include "alMain.h"
30 #include "AL/al.h"
31 #include "AL/alc.h"
32 #include "alSource.h"
33 #include "alBuffer.h"
34 #include "alThunk.h"
35 #include "alListener.h"
36 #include "alAuxEffectSlot.h"
37 #include "alu.h"
38 #include "bs2b.h"
40 #if defined(HAVE_STDINT_H)
41 #include <stdint.h>
42 typedef int64_t ALint64;
43 #elif defined(HAVE___INT64)
44 typedef __int64 ALint64;
45 #elif (SIZEOF_LONG == 8)
46 typedef long ALint64;
47 #elif (SIZEOF_LONG_LONG == 8)
48 typedef long long ALint64;
49 #endif
51 #define FRACTIONBITS 14
52 #define FRACTIONMASK ((1L<<FRACTIONBITS)-1)
53 #define MAX_PITCH 65536
55 /* Minimum ramp length in milliseconds. The value below was chosen to
56 * adequately reduce clicks and pops from harsh gain changes. */
57 #define MIN_RAMP_LENGTH 16
59 ALboolean DuplicateStereo = AL_FALSE;
62 static __inline ALfloat aluF2F(ALfloat Value)
64 return Value;
67 static __inline ALshort aluF2S(ALfloat Value)
69 ALint i;
71 if(Value < 0.0f)
73 i = (ALint)(Value*32768.0f);
74 i = max(-32768, i);
76 else
78 i = (ALint)(Value*32767.0f);
79 i = min( 32767, i);
81 return ((ALshort)i);
84 static __inline ALubyte aluF2UB(ALfloat Value)
86 ALshort i = aluF2S(Value);
87 return (i>>8)+128;
91 static __inline ALvoid aluCrossproduct(const ALfloat *inVector1, const ALfloat *inVector2, ALfloat *outVector)
93 outVector[0] = inVector1[1]*inVector2[2] - inVector1[2]*inVector2[1];
94 outVector[1] = inVector1[2]*inVector2[0] - inVector1[0]*inVector2[2];
95 outVector[2] = inVector1[0]*inVector2[1] - inVector1[1]*inVector2[0];
98 static __inline ALfloat aluDotproduct(const ALfloat *inVector1, const ALfloat *inVector2)
100 return inVector1[0]*inVector2[0] + inVector1[1]*inVector2[1] +
101 inVector1[2]*inVector2[2];
104 static __inline ALvoid aluNormalize(ALfloat *inVector)
106 ALfloat length, inverse_length;
108 length = aluSqrt(aluDotproduct(inVector, inVector));
109 if(length != 0.0f)
111 inverse_length = 1.0f/length;
112 inVector[0] *= inverse_length;
113 inVector[1] *= inverse_length;
114 inVector[2] *= inverse_length;
118 static __inline ALvoid aluMatrixVector(ALfloat *vector,ALfloat w,ALfloat matrix[4][4])
120 ALfloat temp[4] = {
121 vector[0], vector[1], vector[2], w
124 vector[0] = temp[0]*matrix[0][0] + temp[1]*matrix[1][0] + temp[2]*matrix[2][0] + temp[3]*matrix[3][0];
125 vector[1] = temp[0]*matrix[0][1] + temp[1]*matrix[1][1] + temp[2]*matrix[2][1] + temp[3]*matrix[3][1];
126 vector[2] = temp[0]*matrix[0][2] + temp[1]*matrix[1][2] + temp[2]*matrix[2][2] + temp[3]*matrix[3][2];
129 static ALvoid SetSpeakerArrangement(const char *name, ALfloat SpeakerAngle[OUTPUTCHANNELS],
130 ALint Speaker2Chan[OUTPUTCHANNELS], ALint chans)
132 const char *confkey;
133 const char *next;
134 const char *sep;
135 const char *end;
136 int i, val;
138 confkey = GetConfigValue(NULL, name, "");
139 next = confkey;
140 while(next && *next)
142 confkey = next;
143 next = strchr(confkey, ',');
144 if(next)
146 do {
147 next++;
148 } while(isspace(*next));
151 sep = strchr(confkey, '=');
152 if(!sep || confkey == sep)
153 continue;
155 end = sep - 1;
156 while(isspace(*end) && end != confkey)
157 end--;
158 end++;
160 if(strncmp(confkey, "fl", end-confkey) == 0)
161 val = FRONT_LEFT;
162 else if(strncmp(confkey, "fr", end-confkey) == 0)
163 val = FRONT_RIGHT;
164 else if(strncmp(confkey, "fc", end-confkey) == 0)
165 val = FRONT_CENTER;
166 else if(strncmp(confkey, "bl", end-confkey) == 0)
167 val = BACK_LEFT;
168 else if(strncmp(confkey, "br", end-confkey) == 0)
169 val = BACK_RIGHT;
170 else if(strncmp(confkey, "bc", end-confkey) == 0)
171 val = BACK_CENTER;
172 else if(strncmp(confkey, "sl", end-confkey) == 0)
173 val = SIDE_LEFT;
174 else if(strncmp(confkey, "sr", end-confkey) == 0)
175 val = SIDE_RIGHT;
176 else
178 AL_PRINT("Unknown speaker for %s: \"%c%c\"\n", name, confkey[0], confkey[1]);
179 continue;
182 sep++;
183 while(isspace(*sep))
184 sep++;
186 for(i = 0;i < chans;i++)
188 if(Speaker2Chan[i] == val)
190 val = strtol(sep, NULL, 10);
191 if(val >= -180 && val <= 180)
192 SpeakerAngle[i] = val * M_PI/180.0f;
193 else
194 AL_PRINT("Invalid angle for speaker \"%c%c\": %d\n", confkey[0], confkey[1], val);
195 break;
200 for(i = 1;i < chans;i++)
202 if(SpeakerAngle[i] <= SpeakerAngle[i-1])
204 AL_PRINT("Speaker %d of %d does not follow previous: %f > %f\n", i, chans,
205 SpeakerAngle[i-1] * 180.0f/M_PI, SpeakerAngle[i] * 180.0f/M_PI);
206 SpeakerAngle[i] = SpeakerAngle[i-1] + 1 * 180.0f/M_PI;
211 static __inline ALfloat aluLUTpos2Angle(ALint pos)
213 if(pos < QUADRANT_NUM)
214 return aluAtan((ALfloat)pos / (ALfloat)(QUADRANT_NUM - pos));
215 if(pos < 2 * QUADRANT_NUM)
216 return M_PI_2 + aluAtan((ALfloat)(pos - QUADRANT_NUM) / (ALfloat)(2 * QUADRANT_NUM - pos));
217 if(pos < 3 * QUADRANT_NUM)
218 return aluAtan((ALfloat)(pos - 2 * QUADRANT_NUM) / (ALfloat)(3 * QUADRANT_NUM - pos)) - M_PI;
219 return aluAtan((ALfloat)(pos - 3 * QUADRANT_NUM) / (ALfloat)(4 * QUADRANT_NUM - pos)) - M_PI_2;
222 ALvoid aluInitPanning(ALCcontext *Context)
224 ALint pos, offset, s;
225 ALfloat Alpha, Theta;
226 ALfloat SpeakerAngle[OUTPUTCHANNELS];
227 ALint Speaker2Chan[OUTPUTCHANNELS];
229 for(s = 0;s < OUTPUTCHANNELS;s++)
231 int s2;
232 for(s2 = 0;s2 < OUTPUTCHANNELS;s2++)
233 Context->ChannelMatrix[s][s2] = ((s==s2) ? 1.0f : 0.0f);
236 switch(Context->Device->Format)
238 case AL_FORMAT_MONO8:
239 case AL_FORMAT_MONO16:
240 case AL_FORMAT_MONO_FLOAT32:
241 Context->ChannelMatrix[FRONT_LEFT][FRONT_CENTER] = aluSqrt(0.5);
242 Context->ChannelMatrix[FRONT_RIGHT][FRONT_CENTER] = aluSqrt(0.5);
243 Context->ChannelMatrix[SIDE_LEFT][FRONT_CENTER] = aluSqrt(0.5);
244 Context->ChannelMatrix[SIDE_RIGHT][FRONT_CENTER] = aluSqrt(0.5);
245 Context->ChannelMatrix[BACK_LEFT][FRONT_CENTER] = aluSqrt(0.5);
246 Context->ChannelMatrix[BACK_RIGHT][FRONT_CENTER] = aluSqrt(0.5);
247 Context->ChannelMatrix[BACK_CENTER][FRONT_CENTER] = 1.0f;
248 Context->NumChan = 1;
249 Speaker2Chan[0] = FRONT_CENTER;
250 SpeakerAngle[0] = 0.0f * M_PI/180.0f;
251 break;
253 case AL_FORMAT_STEREO8:
254 case AL_FORMAT_STEREO16:
255 case AL_FORMAT_STEREO_FLOAT32:
256 Context->ChannelMatrix[FRONT_CENTER][FRONT_LEFT] = aluSqrt(0.5);
257 Context->ChannelMatrix[FRONT_CENTER][FRONT_RIGHT] = aluSqrt(0.5);
258 Context->ChannelMatrix[SIDE_LEFT][FRONT_LEFT] = 1.0f;
259 Context->ChannelMatrix[SIDE_RIGHT][FRONT_RIGHT] = 1.0f;
260 Context->ChannelMatrix[BACK_LEFT][FRONT_LEFT] = 1.0f;
261 Context->ChannelMatrix[BACK_RIGHT][FRONT_RIGHT] = 1.0f;
262 Context->ChannelMatrix[BACK_CENTER][FRONT_LEFT] = aluSqrt(0.5);
263 Context->ChannelMatrix[BACK_CENTER][FRONT_RIGHT] = aluSqrt(0.5);
264 Context->NumChan = 2;
265 Speaker2Chan[0] = FRONT_LEFT;
266 Speaker2Chan[1] = FRONT_RIGHT;
267 SpeakerAngle[0] = -90.0f * M_PI/180.0f;
268 SpeakerAngle[1] = 90.0f * M_PI/180.0f;
269 SetSpeakerArrangement("layout_STEREO", SpeakerAngle, Speaker2Chan, Context->NumChan);
270 break;
272 case AL_FORMAT_QUAD8:
273 case AL_FORMAT_QUAD16:
274 case AL_FORMAT_QUAD32:
275 Context->ChannelMatrix[FRONT_CENTER][FRONT_LEFT] = aluSqrt(0.5);
276 Context->ChannelMatrix[FRONT_CENTER][FRONT_RIGHT] = aluSqrt(0.5);
277 Context->ChannelMatrix[SIDE_LEFT][FRONT_LEFT] = aluSqrt(0.5);
278 Context->ChannelMatrix[SIDE_LEFT][BACK_LEFT] = aluSqrt(0.5);
279 Context->ChannelMatrix[SIDE_RIGHT][FRONT_RIGHT] = aluSqrt(0.5);
280 Context->ChannelMatrix[SIDE_RIGHT][BACK_RIGHT] = aluSqrt(0.5);
281 Context->ChannelMatrix[BACK_CENTER][BACK_LEFT] = aluSqrt(0.5);
282 Context->ChannelMatrix[BACK_CENTER][BACK_RIGHT] = aluSqrt(0.5);
283 Context->NumChan = 4;
284 Speaker2Chan[0] = BACK_LEFT;
285 Speaker2Chan[1] = FRONT_LEFT;
286 Speaker2Chan[2] = FRONT_RIGHT;
287 Speaker2Chan[3] = BACK_RIGHT;
288 SpeakerAngle[0] = -135.0f * M_PI/180.0f;
289 SpeakerAngle[1] = -45.0f * M_PI/180.0f;
290 SpeakerAngle[2] = 45.0f * M_PI/180.0f;
291 SpeakerAngle[3] = 135.0f * M_PI/180.0f;
292 SetSpeakerArrangement("layout_QUAD", SpeakerAngle, Speaker2Chan, Context->NumChan);
293 break;
295 case AL_FORMAT_51CHN8:
296 case AL_FORMAT_51CHN16:
297 case AL_FORMAT_51CHN32:
298 Context->ChannelMatrix[SIDE_LEFT][FRONT_LEFT] = aluSqrt(0.5);
299 Context->ChannelMatrix[SIDE_LEFT][BACK_LEFT] = aluSqrt(0.5);
300 Context->ChannelMatrix[SIDE_RIGHT][FRONT_RIGHT] = aluSqrt(0.5);
301 Context->ChannelMatrix[SIDE_RIGHT][BACK_RIGHT] = aluSqrt(0.5);
302 Context->ChannelMatrix[BACK_CENTER][BACK_LEFT] = aluSqrt(0.5);
303 Context->ChannelMatrix[BACK_CENTER][BACK_RIGHT] = aluSqrt(0.5);
304 Context->NumChan = 5;
305 Speaker2Chan[0] = BACK_LEFT;
306 Speaker2Chan[1] = FRONT_LEFT;
307 Speaker2Chan[2] = FRONT_CENTER;
308 Speaker2Chan[3] = FRONT_RIGHT;
309 Speaker2Chan[4] = BACK_RIGHT;
310 SpeakerAngle[0] = -110.0f * M_PI/180.0f;
311 SpeakerAngle[1] = -30.0f * M_PI/180.0f;
312 SpeakerAngle[2] = 0.0f * M_PI/180.0f;
313 SpeakerAngle[3] = 30.0f * M_PI/180.0f;
314 SpeakerAngle[4] = 110.0f * M_PI/180.0f;
315 SetSpeakerArrangement("layout_51CHN", SpeakerAngle, Speaker2Chan, Context->NumChan);
316 break;
318 case AL_FORMAT_61CHN8:
319 case AL_FORMAT_61CHN16:
320 case AL_FORMAT_61CHN32:
321 Context->ChannelMatrix[BACK_LEFT][BACK_CENTER] = aluSqrt(0.5);
322 Context->ChannelMatrix[BACK_LEFT][SIDE_LEFT] = aluSqrt(0.5);
323 Context->ChannelMatrix[BACK_RIGHT][BACK_CENTER] = aluSqrt(0.5);
324 Context->ChannelMatrix[BACK_RIGHT][SIDE_RIGHT] = aluSqrt(0.5);
325 Context->NumChan = 6;
326 Speaker2Chan[0] = SIDE_LEFT;
327 Speaker2Chan[1] = FRONT_LEFT;
328 Speaker2Chan[2] = FRONT_CENTER;
329 Speaker2Chan[3] = FRONT_RIGHT;
330 Speaker2Chan[4] = SIDE_RIGHT;
331 Speaker2Chan[5] = BACK_CENTER;
332 SpeakerAngle[0] = -90.0f * M_PI/180.0f;
333 SpeakerAngle[1] = -30.0f * M_PI/180.0f;
334 SpeakerAngle[2] = 0.0f * M_PI/180.0f;
335 SpeakerAngle[3] = 30.0f * M_PI/180.0f;
336 SpeakerAngle[4] = 90.0f * M_PI/180.0f;
337 SpeakerAngle[5] = 180.0f * M_PI/180.0f;
338 SetSpeakerArrangement("layout_61CHN", SpeakerAngle, Speaker2Chan, Context->NumChan);
339 break;
341 case AL_FORMAT_71CHN8:
342 case AL_FORMAT_71CHN16:
343 case AL_FORMAT_71CHN32:
344 Context->ChannelMatrix[BACK_CENTER][BACK_LEFT] = aluSqrt(0.5);
345 Context->ChannelMatrix[BACK_CENTER][BACK_RIGHT] = aluSqrt(0.5);
346 Context->NumChan = 7;
347 Speaker2Chan[0] = BACK_LEFT;
348 Speaker2Chan[1] = SIDE_LEFT;
349 Speaker2Chan[2] = FRONT_LEFT;
350 Speaker2Chan[3] = FRONT_CENTER;
351 Speaker2Chan[4] = FRONT_RIGHT;
352 Speaker2Chan[5] = SIDE_RIGHT;
353 Speaker2Chan[6] = BACK_RIGHT;
354 SpeakerAngle[0] = -150.0f * M_PI/180.0f;
355 SpeakerAngle[1] = -90.0f * M_PI/180.0f;
356 SpeakerAngle[2] = -30.0f * M_PI/180.0f;
357 SpeakerAngle[3] = 0.0f * M_PI/180.0f;
358 SpeakerAngle[4] = 30.0f * M_PI/180.0f;
359 SpeakerAngle[5] = 90.0f * M_PI/180.0f;
360 SpeakerAngle[6] = 150.0f * M_PI/180.0f;
361 SetSpeakerArrangement("layout_71CHN", SpeakerAngle, Speaker2Chan, Context->NumChan);
362 break;
364 default:
365 assert(0);
368 for(pos = 0; pos < LUT_NUM; pos++)
370 /* clear all values */
371 offset = OUTPUTCHANNELS * pos;
372 for(s = 0; s < OUTPUTCHANNELS; s++)
373 Context->PanningLUT[offset+s] = 0.0f;
375 if(Context->NumChan == 1)
377 Context->PanningLUT[offset + Speaker2Chan[0]] = 1.0f;
378 continue;
381 /* source angle */
382 Theta = aluLUTpos2Angle(pos);
384 /* set panning values */
385 for(s = 0; s < Context->NumChan - 1; s++)
387 if(Theta >= SpeakerAngle[s] && Theta < SpeakerAngle[s+1])
389 /* source between speaker s and speaker s+1 */
390 Alpha = M_PI_2 * (Theta-SpeakerAngle[s]) /
391 (SpeakerAngle[s+1]-SpeakerAngle[s]);
392 Context->PanningLUT[offset + Speaker2Chan[s]] = cos(Alpha);
393 Context->PanningLUT[offset + Speaker2Chan[s+1]] = sin(Alpha);
394 break;
397 if(s == Context->NumChan - 1)
399 /* source between last and first speaker */
400 if(Theta < SpeakerAngle[0])
401 Theta += 2.0f * M_PI;
402 Alpha = M_PI_2 * (Theta-SpeakerAngle[s]) /
403 (2.0f * M_PI + SpeakerAngle[0]-SpeakerAngle[s]);
404 Context->PanningLUT[offset + Speaker2Chan[s]] = cos(Alpha);
405 Context->PanningLUT[offset + Speaker2Chan[0]] = sin(Alpha);
410 static ALvoid CalcNonAttnSourceParams(const ALCcontext *ALContext, ALsource *ALSource)
412 ALfloat SourceVolume,ListenerGain,MinVolume,MaxVolume;
413 ALfloat DryGain, DryGainHF;
414 ALfloat WetGain[MAX_SENDS];
415 ALfloat WetGainHF[MAX_SENDS];
416 ALint NumSends, Frequency;
417 ALfloat cw;
418 ALint i;
420 //Get context properties
421 NumSends = ALContext->Device->NumAuxSends;
422 Frequency = ALContext->Device->Frequency;
424 //Get listener properties
425 ListenerGain = ALContext->Listener.Gain;
427 //Get source properties
428 SourceVolume = ALSource->flGain;
429 MinVolume = ALSource->flMinGain;
430 MaxVolume = ALSource->flMaxGain;
432 //1. Multi-channel buffers always play "normal"
433 ALSource->Params.Pitch = ALSource->flPitch;
435 DryGain = SourceVolume;
436 DryGain = __min(DryGain,MaxVolume);
437 DryGain = __max(DryGain,MinVolume);
438 DryGainHF = 1.0f;
440 switch(ALSource->DirectFilter.type)
442 case AL_FILTER_LOWPASS:
443 DryGain *= ALSource->DirectFilter.Gain;
444 DryGainHF *= ALSource->DirectFilter.GainHF;
445 break;
448 ALSource->Params.DryGains[FRONT_LEFT] = DryGain * ListenerGain;
449 ALSource->Params.DryGains[FRONT_RIGHT] = DryGain * ListenerGain;
450 ALSource->Params.DryGains[SIDE_LEFT] = DryGain * ListenerGain;
451 ALSource->Params.DryGains[SIDE_RIGHT] = DryGain * ListenerGain;
452 ALSource->Params.DryGains[BACK_LEFT] = DryGain * ListenerGain;
453 ALSource->Params.DryGains[BACK_RIGHT] = DryGain * ListenerGain;
454 ALSource->Params.DryGains[FRONT_CENTER] = DryGain * ListenerGain;
455 ALSource->Params.DryGains[BACK_CENTER] = DryGain * ListenerGain;
456 ALSource->Params.DryGains[LFE] = DryGain * ListenerGain;
458 for(i = 0;i < NumSends;i++)
460 WetGain[i] = SourceVolume;
461 WetGain[i] = __min(WetGain[i],MaxVolume);
462 WetGain[i] = __max(WetGain[i],MinVolume);
463 WetGainHF[i] = 1.0f;
465 switch(ALSource->Send[i].WetFilter.type)
467 case AL_FILTER_LOWPASS:
468 WetGain[i] *= ALSource->Send[i].WetFilter.Gain;
469 WetGainHF[i] *= ALSource->Send[i].WetFilter.GainHF;
470 break;
473 ALSource->Params.WetGains[i] = WetGain[i] * ListenerGain;
475 for(i = NumSends;i < MAX_SENDS;i++)
477 ALSource->Params.WetGains[i] = 0.0f;
478 WetGainHF[i] = 1.0f;
481 /* Update filter coefficients. Calculations based on the I3DL2
482 * spec. */
483 cw = cos(2.0*M_PI * LOWPASSFREQCUTOFF / Frequency);
485 /* We use two chained one-pole filters, so we need to take the
486 * square root of the squared gain, which is the same as the base
487 * gain. */
488 ALSource->Params.iirFilter.coeff = lpCoeffCalc(DryGainHF, cw);
490 for(i = 0;i < NumSends;i++)
492 /* We use a one-pole filter, so we need to take the squared gain */
493 ALfloat a = lpCoeffCalc(WetGainHF[i]*WetGainHF[i], cw);
494 ALSource->Params.Send[i].iirFilter.coeff = a;
498 static ALvoid CalcSourceParams(const ALCcontext *ALContext, ALsource *ALSource)
500 ALfloat InnerAngle,OuterAngle,Angle,Distance,DryMix,OrigDist;
501 ALfloat Direction[3],Position[3],SourceToListener[3];
502 ALfloat Velocity[3],ListenerVel[3];
503 ALfloat MinVolume,MaxVolume,MinDist,MaxDist,Rolloff,OuterGainHF;
504 ALfloat ConeVolume,ConeHF,SourceVolume,ListenerGain;
505 ALfloat DopplerFactor, DopplerVelocity, flSpeedOfSound;
506 ALfloat Matrix[4][4];
507 ALfloat flAttenuation, effectiveDist;
508 ALfloat RoomAttenuation[MAX_SENDS];
509 ALfloat MetersPerUnit;
510 ALfloat RoomRolloff[MAX_SENDS];
511 ALfloat DryGainHF = 1.0f;
512 ALfloat WetGain[MAX_SENDS];
513 ALfloat WetGainHF[MAX_SENDS];
514 ALfloat DirGain, AmbientGain;
515 ALfloat length;
516 const ALfloat *SpeakerGain;
517 ALuint Frequency;
518 ALint NumSends;
519 ALint pos, s, i;
520 ALfloat cw;
522 for(i = 0;i < MAX_SENDS;i++)
523 WetGainHF[i] = 1.0f;
525 //Get context properties
526 DopplerFactor = ALContext->DopplerFactor * ALSource->DopplerFactor;
527 DopplerVelocity = ALContext->DopplerVelocity;
528 flSpeedOfSound = ALContext->flSpeedOfSound;
529 NumSends = ALContext->Device->NumAuxSends;
530 Frequency = ALContext->Device->Frequency;
532 //Get listener properties
533 ListenerGain = ALContext->Listener.Gain;
534 MetersPerUnit = ALContext->Listener.MetersPerUnit;
535 memcpy(ListenerVel, ALContext->Listener.Velocity, sizeof(ALContext->Listener.Velocity));
537 //Get source properties
538 SourceVolume = ALSource->flGain;
539 memcpy(Position, ALSource->vPosition, sizeof(ALSource->vPosition));
540 memcpy(Direction, ALSource->vOrientation, sizeof(ALSource->vOrientation));
541 memcpy(Velocity, ALSource->vVelocity, sizeof(ALSource->vVelocity));
542 MinVolume = ALSource->flMinGain;
543 MaxVolume = ALSource->flMaxGain;
544 MinDist = ALSource->flRefDistance;
545 MaxDist = ALSource->flMaxDistance;
546 Rolloff = ALSource->flRollOffFactor;
547 InnerAngle = ALSource->flInnerAngle;
548 OuterAngle = ALSource->flOuterAngle;
549 OuterGainHF = ALSource->OuterGainHF;
551 //1. Translate Listener to origin (convert to head relative)
552 if(ALSource->bHeadRelative==AL_FALSE)
554 ALfloat U[3],V[3],N[3],P[3];
556 // Build transform matrix
557 memcpy(N, ALContext->Listener.Forward, sizeof(N)); // At-vector
558 aluNormalize(N); // Normalized At-vector
559 memcpy(V, ALContext->Listener.Up, sizeof(V)); // Up-vector
560 aluNormalize(V); // Normalized Up-vector
561 aluCrossproduct(N, V, U); // Right-vector
562 aluNormalize(U); // Normalized Right-vector
563 P[0] = -(ALContext->Listener.Position[0]*U[0] + // Translation
564 ALContext->Listener.Position[1]*U[1] +
565 ALContext->Listener.Position[2]*U[2]);
566 P[1] = -(ALContext->Listener.Position[0]*V[0] +
567 ALContext->Listener.Position[1]*V[1] +
568 ALContext->Listener.Position[2]*V[2]);
569 P[2] = -(ALContext->Listener.Position[0]*-N[0] +
570 ALContext->Listener.Position[1]*-N[1] +
571 ALContext->Listener.Position[2]*-N[2]);
572 Matrix[0][0] = U[0]; Matrix[0][1] = V[0]; Matrix[0][2] = -N[0]; Matrix[0][3] = 0.0f;
573 Matrix[1][0] = U[1]; Matrix[1][1] = V[1]; Matrix[1][2] = -N[1]; Matrix[1][3] = 0.0f;
574 Matrix[2][0] = U[2]; Matrix[2][1] = V[2]; Matrix[2][2] = -N[2]; Matrix[2][3] = 0.0f;
575 Matrix[3][0] = P[0]; Matrix[3][1] = P[1]; Matrix[3][2] = P[2]; Matrix[3][3] = 1.0f;
577 // Transform source position and direction into listener space
578 aluMatrixVector(Position, 1.0f, Matrix);
579 aluMatrixVector(Direction, 0.0f, Matrix);
580 // Transform source and listener velocity into listener space
581 aluMatrixVector(Velocity, 0.0f, Matrix);
582 aluMatrixVector(ListenerVel, 0.0f, Matrix);
584 else
585 ListenerVel[0] = ListenerVel[1] = ListenerVel[2] = 0.0f;
587 SourceToListener[0] = -Position[0];
588 SourceToListener[1] = -Position[1];
589 SourceToListener[2] = -Position[2];
590 aluNormalize(SourceToListener);
591 aluNormalize(Direction);
593 //2. Calculate distance attenuation
594 Distance = aluSqrt(aluDotproduct(Position, Position));
595 OrigDist = Distance;
597 flAttenuation = 1.0f;
598 for(i = 0;i < NumSends;i++)
600 RoomAttenuation[i] = 1.0f;
602 RoomRolloff[i] = ALSource->RoomRolloffFactor;
603 if(ALSource->Send[i].Slot &&
604 (ALSource->Send[i].Slot->effect.type == AL_EFFECT_REVERB ||
605 ALSource->Send[i].Slot->effect.type == AL_EFFECT_EAXREVERB))
606 RoomRolloff[i] += ALSource->Send[i].Slot->effect.Reverb.RoomRolloffFactor;
609 switch(ALContext->SourceDistanceModel ? ALSource->DistanceModel :
610 ALContext->DistanceModel)
612 case AL_INVERSE_DISTANCE_CLAMPED:
613 Distance=__max(Distance,MinDist);
614 Distance=__min(Distance,MaxDist);
615 if(MaxDist < MinDist)
616 break;
617 //fall-through
618 case AL_INVERSE_DISTANCE:
619 if(MinDist > 0.0f)
621 if((MinDist + (Rolloff * (Distance - MinDist))) > 0.0f)
622 flAttenuation = MinDist / (MinDist + (Rolloff * (Distance - MinDist)));
623 for(i = 0;i < NumSends;i++)
625 if((MinDist + (RoomRolloff[i] * (Distance - MinDist))) > 0.0f)
626 RoomAttenuation[i] = MinDist / (MinDist + (RoomRolloff[i] * (Distance - MinDist)));
629 break;
631 case AL_LINEAR_DISTANCE_CLAMPED:
632 Distance=__max(Distance,MinDist);
633 Distance=__min(Distance,MaxDist);
634 if(MaxDist < MinDist)
635 break;
636 //fall-through
637 case AL_LINEAR_DISTANCE:
638 Distance=__min(Distance,MaxDist);
639 if(MaxDist != MinDist)
641 flAttenuation = 1.0f - (Rolloff*(Distance-MinDist)/(MaxDist - MinDist));
642 for(i = 0;i < NumSends;i++)
643 RoomAttenuation[i] = 1.0f - (RoomRolloff[i]*(Distance-MinDist)/(MaxDist - MinDist));
645 break;
647 case AL_EXPONENT_DISTANCE_CLAMPED:
648 Distance=__max(Distance,MinDist);
649 Distance=__min(Distance,MaxDist);
650 if(MaxDist < MinDist)
651 break;
652 //fall-through
653 case AL_EXPONENT_DISTANCE:
654 if(Distance > 0.0f && MinDist > 0.0f)
656 flAttenuation = (ALfloat)pow(Distance/MinDist, -Rolloff);
657 for(i = 0;i < NumSends;i++)
658 RoomAttenuation[i] = (ALfloat)pow(Distance/MinDist, -RoomRolloff[i]);
660 break;
662 case AL_NONE:
663 break;
666 // Source Gain + Attenuation
667 DryMix = SourceVolume * flAttenuation;
668 for(i = 0;i < NumSends;i++)
669 WetGain[i] = SourceVolume * RoomAttenuation[i];
671 effectiveDist = 0.0f;
672 if(MinDist > 0.0f)
673 effectiveDist = (MinDist/flAttenuation - MinDist)*MetersPerUnit;
675 // Distance-based air absorption
676 if(ALSource->AirAbsorptionFactor > 0.0f && effectiveDist > 0.0f)
678 ALfloat absorb;
680 // Absorption calculation is done in dB
681 absorb = (ALSource->AirAbsorptionFactor*AIRABSORBGAINDBHF) *
682 effectiveDist;
683 // Convert dB to linear gain before applying
684 absorb = pow(10.0, absorb/20.0);
686 DryGainHF *= absorb;
689 //3. Apply directional soundcones
690 Angle = aluAcos(aluDotproduct(Direction,SourceToListener)) * 180.0f/M_PI;
691 if(Angle >= InnerAngle && Angle <= OuterAngle)
693 ALfloat scale = (Angle-InnerAngle) / (OuterAngle-InnerAngle);
694 ConeVolume = (1.0f+(ALSource->flOuterGain-1.0f)*scale);
695 ConeHF = (1.0f+(OuterGainHF-1.0f)*scale);
697 else if(Angle > OuterAngle)
699 ConeVolume = (1.0f+(ALSource->flOuterGain-1.0f));
700 ConeHF = (1.0f+(OuterGainHF-1.0f));
702 else
704 ConeVolume = 1.0f;
705 ConeHF = 1.0f;
708 // Apply some high-frequency attenuation for sources behind the listener
709 // NOTE: This should be aluDotproduct({0,0,-1}, ListenerToSource), however
710 // that is equivalent to aluDotproduct({0,0,1}, SourceToListener), which is
711 // the same as SourceToListener[2]
712 Angle = aluAcos(SourceToListener[2]) * 180.0f/M_PI;
713 // Sources within the minimum distance attenuate less
714 if(OrigDist < MinDist)
715 Angle *= OrigDist/MinDist;
716 if(Angle > 90.0f)
718 ALfloat scale = (Angle-90.0f) / (180.1f-90.0f); // .1 to account for fp errors
719 ConeHF *= 1.0f - (ALContext->Device->HeadDampen*scale);
722 DryMix *= ConeVolume;
723 if(ALSource->DryGainHFAuto)
724 DryGainHF *= ConeHF;
726 // Clamp to Min/Max Gain
727 DryMix = __min(DryMix,MaxVolume);
728 DryMix = __max(DryMix,MinVolume);
730 for(i = 0;i < NumSends;i++)
732 ALeffectslot *Slot = ALSource->Send[i].Slot;
734 if(Slot && Slot->effect.type != AL_EFFECT_NULL)
736 if(Slot->AuxSendAuto)
738 if(ALSource->WetGainAuto)
739 WetGain[i] *= ConeVolume;
740 if(ALSource->WetGainHFAuto)
741 WetGainHF[i] *= ConeHF;
743 // Clamp to Min/Max Gain
744 WetGain[i] = __min(WetGain[i],MaxVolume);
745 WetGain[i] = __max(WetGain[i],MinVolume);
747 if(Slot->effect.type == AL_EFFECT_REVERB ||
748 Slot->effect.type == AL_EFFECT_EAXREVERB)
750 /* Apply a decay-time transformation to the wet path,
751 * based on the attenuation of the dry path.
753 * Using the approximate (effective) source to listener
754 * distance, the initial decay of the reverb effect is
755 * calculated and applied to the wet path.
757 WetGain[i] *= pow(10.0, effectiveDist /
758 (SPEEDOFSOUNDMETRESPERSEC *
759 Slot->effect.Reverb.DecayTime) *
760 -60.0 / 20.0);
762 WetGainHF[i] *= pow(10.0,
763 log10(Slot->effect.Reverb.AirAbsorptionGainHF) *
764 ALSource->AirAbsorptionFactor * effectiveDist);
767 else
769 // If the slot's auxiliary send auto is off, the data sent to
770 // the effect slot is the same as the dry path, sans filter
771 // effects
772 WetGain[i] = DryMix;
773 WetGainHF[i] = DryGainHF;
776 switch(ALSource->Send[i].WetFilter.type)
778 case AL_FILTER_LOWPASS:
779 WetGain[i] *= ALSource->Send[i].WetFilter.Gain;
780 WetGainHF[i] *= ALSource->Send[i].WetFilter.GainHF;
781 break;
783 ALSource->Params.WetGains[i] = WetGain[i] * ListenerGain;
785 else
787 ALSource->Params.WetGains[i] = 0.0f;
788 WetGainHF[i] = 1.0f;
791 for(i = NumSends;i < MAX_SENDS;i++)
793 ALSource->Params.WetGains[i] = 0.0f;
794 WetGainHF[i] = 1.0f;
797 // Apply filter gains and filters
798 switch(ALSource->DirectFilter.type)
800 case AL_FILTER_LOWPASS:
801 DryMix *= ALSource->DirectFilter.Gain;
802 DryGainHF *= ALSource->DirectFilter.GainHF;
803 break;
805 DryMix *= ListenerGain;
807 // Calculate Velocity
808 if(DopplerFactor != 0.0f)
810 ALfloat flVSS, flVLS;
811 ALfloat flMaxVelocity = (DopplerVelocity * flSpeedOfSound) /
812 DopplerFactor;
814 flVSS = aluDotproduct(Velocity, SourceToListener);
815 if(flVSS >= flMaxVelocity)
816 flVSS = (flMaxVelocity - 1.0f);
817 else if(flVSS <= -flMaxVelocity)
818 flVSS = -flMaxVelocity + 1.0f;
820 flVLS = aluDotproduct(ListenerVel, SourceToListener);
821 if(flVLS >= flMaxVelocity)
822 flVLS = (flMaxVelocity - 1.0f);
823 else if(flVLS <= -flMaxVelocity)
824 flVLS = -flMaxVelocity + 1.0f;
826 ALSource->Params.Pitch = ALSource->flPitch *
827 ((flSpeedOfSound * DopplerVelocity) - (DopplerFactor * flVLS)) /
828 ((flSpeedOfSound * DopplerVelocity) - (DopplerFactor * flVSS));
830 else
831 ALSource->Params.Pitch = ALSource->flPitch;
833 // Use energy-preserving panning algorithm for multi-speaker playback
834 length = __max(OrigDist, MinDist);
835 if(length > 0.0f)
837 ALfloat invlen = 1.0f/length;
838 Position[0] *= invlen;
839 Position[1] *= invlen;
840 Position[2] *= invlen;
843 pos = aluCart2LUTpos(-Position[2], Position[0]);
844 SpeakerGain = &ALContext->PanningLUT[OUTPUTCHANNELS * pos];
846 DirGain = aluSqrt(Position[0]*Position[0] + Position[2]*Position[2]);
847 // elevation adjustment for directional gain. this sucks, but
848 // has low complexity
849 AmbientGain = 1.0/aluSqrt(ALContext->NumChan) * (1.0-DirGain);
850 for(s = 0; s < OUTPUTCHANNELS; s++)
852 ALfloat gain = SpeakerGain[s]*DirGain + AmbientGain;
853 ALSource->Params.DryGains[s] = DryMix * gain;
856 /* Update filter coefficients. */
857 cw = cos(2.0*M_PI * LOWPASSFREQCUTOFF / Frequency);
859 /* Spatialized sources use four chained one-pole filters, so we need to
860 * take the fourth root of the squared gain, which is the same as the
861 * square root of the base gain. */
862 ALSource->Params.iirFilter.coeff = lpCoeffCalc(aluSqrt(DryGainHF), cw);
864 for(i = 0;i < NumSends;i++)
866 /* The wet path uses two chained one-pole filters, so take the
867 * base gain (square root of the squared gain) */
868 ALSource->Params.Send[i].iirFilter.coeff = lpCoeffCalc(WetGainHF[i], cw);
872 static __inline ALfloat lerp(ALfloat val1, ALfloat val2, ALint frac)
874 return val1 + ((val2-val1)*(frac * (1.0f/(1<<FRACTIONBITS))));
877 static void MixSomeSources(ALCcontext *ALContext, float (*DryBuffer)[OUTPUTCHANNELS], ALuint SamplesToDo)
879 static float DummyBuffer[BUFFERSIZE];
880 ALfloat *WetBuffer[MAX_SENDS];
881 ALfloat (*Matrix)[OUTPUTCHANNELS] = ALContext->ChannelMatrix;
882 ALfloat DrySend[OUTPUTCHANNELS];
883 ALfloat dryGainStep[OUTPUTCHANNELS];
884 ALfloat wetGainStep[MAX_SENDS];
885 ALuint i, j, k, out;
886 ALsource *ALSource;
887 ALfloat value, outsamp;
888 ALbufferlistitem *BufferListItem;
889 ALint64 DataSize64,DataPos64;
890 FILTER *DryFilter, *WetFilter[MAX_SENDS];
891 ALfloat WetSend[MAX_SENDS];
892 ALuint rampLength;
893 ALuint DeviceFreq;
894 ALint increment;
895 ALuint DataPosInt, DataPosFrac;
896 ALuint Channels, Bytes;
897 ALuint Frequency;
898 ALuint BuffersPlayed;
899 ALfloat Pitch;
900 ALenum State;
902 if(!(ALSource=ALContext->Source))
903 return;
905 DeviceFreq = ALContext->Device->Frequency;
907 rampLength = DeviceFreq * MIN_RAMP_LENGTH / 1000;
908 rampLength = max(rampLength, SamplesToDo);
910 another_source:
911 if(ALSource->state != AL_PLAYING)
913 if((ALSource=ALSource->next) != NULL)
914 goto another_source;
915 return;
917 j = 0;
919 /* Find buffer format */
920 Frequency = 0;
921 Channels = 0;
922 Bytes = 0;
923 BufferListItem = ALSource->queue;
924 while(BufferListItem != NULL)
926 ALbuffer *ALBuffer;
927 if((ALBuffer=BufferListItem->buffer) != NULL)
929 Channels = aluChannelsFromFormat(ALBuffer->format);
930 Bytes = aluBytesFromFormat(ALBuffer->format);
931 Frequency = ALBuffer->frequency;
932 break;
934 BufferListItem = BufferListItem->next;
937 if(ALSource->NeedsUpdate)
939 //Only apply 3D calculations for mono buffers
940 if(Channels == 1)
941 CalcSourceParams(ALContext, ALSource);
942 else
943 CalcNonAttnSourceParams(ALContext, ALSource);
944 ALSource->NeedsUpdate = AL_FALSE;
947 /* Get source info */
948 State = ALSource->state;
949 BuffersPlayed = ALSource->BuffersPlayed;
950 DataPosInt = ALSource->position;
951 DataPosFrac = ALSource->position_fraction;
953 /* Compute 18.14 fixed point step */
954 Pitch = (ALSource->Params.Pitch*Frequency) / DeviceFreq;
955 if(Pitch > (float)MAX_PITCH) Pitch = (float)MAX_PITCH;
956 increment = (ALint)(Pitch*(ALfloat)(1L<<FRACTIONBITS));
957 if(increment <= 0) increment = (1<<FRACTIONBITS);
959 /* Compute the gain steps for each output channel */
960 if(ALSource->FirstStart)
962 for(i = 0;i < OUTPUTCHANNELS;i++)
963 DrySend[i] = ALSource->Params.DryGains[i];
964 for(i = 0;i < MAX_SENDS;i++)
965 WetSend[i] = ALSource->Params.WetGains[i];
967 else
969 for(i = 0;i < OUTPUTCHANNELS;i++)
970 DrySend[i] = ALSource->DryGains[i];
971 for(i = 0;i < MAX_SENDS;i++)
972 WetSend[i] = ALSource->WetGains[i];
975 DryFilter = &ALSource->Params.iirFilter;
976 for(i = 0;i < MAX_SENDS;i++)
978 WetFilter[i] = &ALSource->Params.Send[i].iirFilter;
979 WetBuffer[i] = (ALSource->Send[i].Slot ?
980 ALSource->Send[i].Slot->WetBuffer :
981 DummyBuffer);
984 if(DuplicateStereo && Channels == 2)
986 Matrix[FRONT_LEFT][SIDE_LEFT] = 1.0f;
987 Matrix[FRONT_RIGHT][SIDE_RIGHT] = 1.0f;
988 Matrix[FRONT_LEFT][BACK_LEFT] = 1.0f;
989 Matrix[FRONT_RIGHT][BACK_RIGHT] = 1.0f;
991 else if(DuplicateStereo)
993 Matrix[FRONT_LEFT][SIDE_LEFT] = 0.0f;
994 Matrix[FRONT_RIGHT][SIDE_RIGHT] = 0.0f;
995 Matrix[FRONT_LEFT][BACK_LEFT] = 0.0f;
996 Matrix[FRONT_RIGHT][BACK_RIGHT] = 0.0f;
999 /* Get current buffer queue item */
1000 BufferListItem = ALSource->queue;
1001 for(i = 0;i < BuffersPlayed && BufferListItem;i++)
1002 BufferListItem = BufferListItem->next;
1004 while(State == AL_PLAYING && j < SamplesToDo)
1006 ALuint DataSize = 0;
1007 ALbuffer *ALBuffer;
1008 ALfloat *Data;
1009 ALuint BufferSize;
1011 /* Get buffer info */
1012 if((ALBuffer=BufferListItem->buffer) != NULL)
1014 Data = ALBuffer->data;
1015 DataSize = ALBuffer->size;
1016 DataSize /= Channels * Bytes;
1018 if(DataPosInt >= DataSize)
1019 goto skipmix;
1021 if(BufferListItem->next)
1023 ALbuffer *NextBuf = BufferListItem->next->buffer;
1024 if(NextBuf && NextBuf->data)
1026 ALint ulExtraSamples = BUFFER_PADDING*Channels*Bytes;
1027 ulExtraSamples = min(NextBuf->size, ulExtraSamples);
1028 memcpy(&Data[DataSize*Channels], NextBuf->data, ulExtraSamples);
1031 else if(ALSource->bLooping)
1033 ALbuffer *NextBuf = ALSource->queue->buffer;
1034 if(NextBuf && NextBuf->data)
1036 ALint ulExtraSamples = BUFFER_PADDING*Channels*Bytes;
1037 ulExtraSamples = min(NextBuf->size, ulExtraSamples);
1038 memcpy(&Data[DataSize*Channels], NextBuf->data, ulExtraSamples);
1041 else
1042 memset(&Data[DataSize*Channels], 0, (BUFFER_PADDING*Channels*Bytes));
1044 /* Compute the gain steps for each output channel */
1045 for(i = 0;i < OUTPUTCHANNELS;i++)
1046 dryGainStep[i] = (ALSource->Params.DryGains[i]-DrySend[i]) /
1047 rampLength;
1048 for(i = 0;i < MAX_SENDS;i++)
1049 wetGainStep[i] = (ALSource->Params.WetGains[i]-WetSend[i]) /
1050 rampLength;
1052 /* Figure out how many samples we can mix. */
1053 DataSize64 = DataSize;
1054 DataSize64 <<= FRACTIONBITS;
1055 DataPos64 = DataPosInt;
1056 DataPos64 <<= FRACTIONBITS;
1057 DataPos64 += DataPosFrac;
1058 BufferSize = (ALuint)((DataSize64-DataPos64+(increment-1)) / increment);
1060 BufferSize = min(BufferSize, (SamplesToDo-j));
1062 /* Actual sample mixing loop */
1063 k = 0;
1064 Data += DataPosInt*Channels;
1066 if(Channels == 1) /* Mono */
1068 while(BufferSize--)
1070 for(i = 0;i < OUTPUTCHANNELS;i++)
1071 DrySend[i] += dryGainStep[i];
1072 for(i = 0;i < MAX_SENDS;i++)
1073 WetSend[i] += wetGainStep[i];
1075 /* First order interpolator */
1076 value = lerp(Data[k], Data[k+1], DataPosFrac);
1078 /* Direct path final mix buffer and panning */
1079 outsamp = lpFilter4P(DryFilter, 0, value);
1080 DryBuffer[j][FRONT_LEFT] += outsamp*DrySend[FRONT_LEFT];
1081 DryBuffer[j][FRONT_RIGHT] += outsamp*DrySend[FRONT_RIGHT];
1082 DryBuffer[j][SIDE_LEFT] += outsamp*DrySend[SIDE_LEFT];
1083 DryBuffer[j][SIDE_RIGHT] += outsamp*DrySend[SIDE_RIGHT];
1084 DryBuffer[j][BACK_LEFT] += outsamp*DrySend[BACK_LEFT];
1085 DryBuffer[j][BACK_RIGHT] += outsamp*DrySend[BACK_RIGHT];
1086 DryBuffer[j][FRONT_CENTER] += outsamp*DrySend[FRONT_CENTER];
1087 DryBuffer[j][BACK_CENTER] += outsamp*DrySend[BACK_CENTER];
1089 /* Room path final mix buffer and panning */
1090 for(i = 0;i < MAX_SENDS;i++)
1092 outsamp = lpFilter2P(WetFilter[i], 0, value);
1093 WetBuffer[i][j] += outsamp*WetSend[i];
1096 DataPosFrac += increment;
1097 k += DataPosFrac>>FRACTIONBITS;
1098 DataPosFrac &= FRACTIONMASK;
1099 j++;
1102 else if(Channels == 2) /* Stereo */
1104 const int chans[] = {
1105 FRONT_LEFT, FRONT_RIGHT
1107 const ALfloat scaler = aluSqrt(1.0f/Channels);
1109 #define DO_MIX() do { \
1110 while(BufferSize--) \
1112 for(i = 0;i < OUTPUTCHANNELS;i++) \
1113 DrySend[i] += dryGainStep[i]; \
1114 for(i = 0;i < MAX_SENDS;i++) \
1115 WetSend[i] += wetGainStep[i]; \
1117 for(i = 0;i < Channels;i++) \
1119 value = lerp(Data[k*Channels + i], Data[(k+1)*Channels + i], DataPosFrac); \
1120 outsamp = lpFilter2P(DryFilter, chans[i]*2, value)*DrySend[chans[i]]; \
1121 for(out = 0;out < OUTPUTCHANNELS;out++) \
1122 DryBuffer[j][out] += outsamp*Matrix[chans[i]][out]; \
1123 for(out = 0;out < MAX_SENDS;out++) \
1125 outsamp = lpFilter1P(WetFilter[out], chans[i], value); \
1126 WetBuffer[out][j] += outsamp*WetSend[out]*scaler; \
1130 DataPosFrac += increment; \
1131 k += DataPosFrac>>FRACTIONBITS; \
1132 DataPosFrac &= FRACTIONMASK; \
1133 j++; \
1135 } while(0)
1137 DO_MIX();
1139 else if(Channels == 4) /* Quad */
1141 const int chans[] = {
1142 FRONT_LEFT, FRONT_RIGHT,
1143 BACK_LEFT, BACK_RIGHT
1145 const ALfloat scaler = aluSqrt(1.0f/Channels);
1147 DO_MIX();
1149 else if(Channels == 6) /* 5.1 */
1151 const int chans[] = {
1152 FRONT_LEFT, FRONT_RIGHT,
1153 FRONT_CENTER, LFE,
1154 BACK_LEFT, BACK_RIGHT
1156 const ALfloat scaler = aluSqrt(1.0f/Channels);
1158 DO_MIX();
1160 else if(Channels == 7) /* 6.1 */
1162 const int chans[] = {
1163 FRONT_LEFT, FRONT_RIGHT,
1164 FRONT_CENTER, LFE,
1165 BACK_CENTER,
1166 SIDE_LEFT, SIDE_RIGHT
1168 const ALfloat scaler = aluSqrt(1.0f/Channels);
1170 DO_MIX();
1172 else if(Channels == 8) /* 7.1 */
1174 const int chans[] = {
1175 FRONT_LEFT, FRONT_RIGHT,
1176 FRONT_CENTER, LFE,
1177 BACK_LEFT, BACK_RIGHT,
1178 SIDE_LEFT, SIDE_RIGHT
1180 const ALfloat scaler = aluSqrt(1.0f/Channels);
1182 DO_MIX();
1183 #undef DO_MIX
1185 else /* Unknown? */
1187 for(i = 0;i < OUTPUTCHANNELS;i++)
1188 DrySend[i] += dryGainStep[i]*BufferSize;
1189 for(i = 0;i < MAX_SENDS;i++)
1190 WetSend[i] += wetGainStep[i]*BufferSize;
1191 while(BufferSize--)
1193 DataPosFrac += increment;
1194 k += DataPosFrac>>FRACTIONBITS;
1195 DataPosFrac &= FRACTIONMASK;
1196 j++;
1199 DataPosInt += k;
1201 skipmix:
1202 /* Handle looping sources */
1203 if(DataPosInt >= DataSize)
1205 if(BuffersPlayed < (ALSource->BuffersInQueue-1))
1207 BufferListItem = BufferListItem->next;
1208 BuffersPlayed++;
1209 DataPosInt -= DataSize;
1211 else if(ALSource->bLooping)
1213 BufferListItem = ALSource->queue;
1214 BuffersPlayed = 0;
1215 if(ALSource->BuffersInQueue == 1)
1216 DataPosInt %= DataSize;
1217 else
1218 DataPosInt -= DataSize;
1220 else
1222 State = AL_STOPPED;
1223 BufferListItem = ALSource->queue;
1224 BuffersPlayed = ALSource->BuffersInQueue;
1225 DataPosInt = 0;
1226 DataPosFrac = 0;
1231 /* Update source info */
1232 ALSource->state = State;
1233 ALSource->BuffersPlayed = BuffersPlayed;
1234 ALSource->position = DataPosInt;
1235 ALSource->position_fraction = DataPosFrac;
1236 ALSource->Buffer = BufferListItem->buffer;
1238 for(i = 0;i < OUTPUTCHANNELS;i++)
1239 ALSource->DryGains[i] = DrySend[i];
1240 for(i = 0;i < MAX_SENDS;i++)
1241 ALSource->WetGains[i] = WetSend[i];
1243 ALSource->FirstStart = AL_FALSE;
1245 if((ALSource=ALSource->next) != NULL)
1246 goto another_source;
1249 ALvoid aluMixData(ALCdevice *device, ALvoid *buffer, ALsizei size)
1251 float (*DryBuffer)[OUTPUTCHANNELS];
1252 const Channel *ChanMap;
1253 ALuint SamplesToDo;
1254 ALeffectslot *ALEffectSlot;
1255 ALCcontext *ALContext;
1256 int fpuState;
1257 ALuint i, c;
1259 SuspendContext(NULL);
1261 #if defined(HAVE_FESETROUND)
1262 fpuState = fegetround();
1263 fesetround(FE_TOWARDZERO);
1264 #elif defined(HAVE__CONTROLFP)
1265 fpuState = _controlfp(0, 0);
1266 _controlfp(_RC_CHOP, _MCW_RC);
1267 #else
1268 (void)fpuState;
1269 #endif
1271 DryBuffer = device->DryBuffer;
1272 while(size > 0)
1274 /* Setup variables */
1275 SamplesToDo = min(size, BUFFERSIZE);
1277 /* Clear mixing buffer */
1278 memset(DryBuffer, 0, SamplesToDo*OUTPUTCHANNELS*sizeof(ALfloat));
1280 for(c = 0;c < device->NumContexts;c++)
1282 ALContext = device->Contexts[c];
1283 SuspendContext(ALContext);
1285 MixSomeSources(ALContext, DryBuffer, SamplesToDo);
1287 /* effect slot processing */
1288 ALEffectSlot = ALContext->AuxiliaryEffectSlot;
1289 while(ALEffectSlot)
1291 if(ALEffectSlot->EffectState)
1292 ALEffect_Process(ALEffectSlot->EffectState, ALEffectSlot, SamplesToDo, ALEffectSlot->WetBuffer, DryBuffer);
1294 for(i = 0;i < SamplesToDo;i++)
1295 ALEffectSlot->WetBuffer[i] = 0.0f;
1296 ALEffectSlot = ALEffectSlot->next;
1298 ProcessContext(ALContext);
1301 //Post processing loop
1302 ChanMap = device->DevChannels;
1303 switch(device->Format)
1305 #define CHECK_WRITE_FORMAT(bits, type, func) \
1306 case AL_FORMAT_MONO##bits: \
1307 for(i = 0;i < SamplesToDo;i++) \
1309 ((type*)buffer)[0] = (func)(DryBuffer[i][ChanMap[0]]); \
1310 buffer = ((type*)buffer) + 1; \
1312 break; \
1313 case AL_FORMAT_STEREO##bits: \
1314 if(device->Bs2b) \
1316 for(i = 0;i < SamplesToDo;i++) \
1318 float samples[2]; \
1319 samples[0] = DryBuffer[i][ChanMap[0]]; \
1320 samples[1] = DryBuffer[i][ChanMap[1]]; \
1321 bs2b_cross_feed(device->Bs2b, samples); \
1322 ((type*)buffer)[0] = (func)(samples[0]); \
1323 ((type*)buffer)[1] = (func)(samples[1]); \
1324 buffer = ((type*)buffer) + 2; \
1327 else \
1329 for(i = 0;i < SamplesToDo;i++) \
1331 ((type*)buffer)[0] = (func)(DryBuffer[i][ChanMap[0]]); \
1332 ((type*)buffer)[1] = (func)(DryBuffer[i][ChanMap[1]]); \
1333 buffer = ((type*)buffer) + 2; \
1336 break; \
1337 case AL_FORMAT_QUAD##bits: \
1338 for(i = 0;i < SamplesToDo;i++) \
1340 ((type*)buffer)[0] = (func)(DryBuffer[i][ChanMap[0]]); \
1341 ((type*)buffer)[1] = (func)(DryBuffer[i][ChanMap[1]]); \
1342 ((type*)buffer)[2] = (func)(DryBuffer[i][ChanMap[2]]); \
1343 ((type*)buffer)[3] = (func)(DryBuffer[i][ChanMap[3]]); \
1344 buffer = ((type*)buffer) + 4; \
1346 break; \
1347 case AL_FORMAT_51CHN##bits: \
1348 for(i = 0;i < SamplesToDo;i++) \
1350 ((type*)buffer)[0] = (func)(DryBuffer[i][ChanMap[0]]); \
1351 ((type*)buffer)[1] = (func)(DryBuffer[i][ChanMap[1]]); \
1352 ((type*)buffer)[2] = (func)(DryBuffer[i][ChanMap[2]]); \
1353 ((type*)buffer)[3] = (func)(DryBuffer[i][ChanMap[3]]); \
1354 ((type*)buffer)[4] = (func)(DryBuffer[i][ChanMap[4]]); \
1355 ((type*)buffer)[5] = (func)(DryBuffer[i][ChanMap[5]]); \
1356 buffer = ((type*)buffer) + 6; \
1358 break; \
1359 case AL_FORMAT_61CHN##bits: \
1360 for(i = 0;i < SamplesToDo;i++) \
1362 ((type*)buffer)[0] = (func)(DryBuffer[i][ChanMap[0]]); \
1363 ((type*)buffer)[1] = (func)(DryBuffer[i][ChanMap[1]]); \
1364 ((type*)buffer)[2] = (func)(DryBuffer[i][ChanMap[2]]); \
1365 ((type*)buffer)[3] = (func)(DryBuffer[i][ChanMap[3]]); \
1366 ((type*)buffer)[4] = (func)(DryBuffer[i][ChanMap[4]]); \
1367 ((type*)buffer)[5] = (func)(DryBuffer[i][ChanMap[5]]); \
1368 ((type*)buffer)[6] = (func)(DryBuffer[i][ChanMap[6]]); \
1369 buffer = ((type*)buffer) + 7; \
1371 break; \
1372 case AL_FORMAT_71CHN##bits: \
1373 for(i = 0;i < SamplesToDo;i++) \
1375 ((type*)buffer)[0] = (func)(DryBuffer[i][ChanMap[0]]); \
1376 ((type*)buffer)[1] = (func)(DryBuffer[i][ChanMap[1]]); \
1377 ((type*)buffer)[2] = (func)(DryBuffer[i][ChanMap[2]]); \
1378 ((type*)buffer)[3] = (func)(DryBuffer[i][ChanMap[3]]); \
1379 ((type*)buffer)[4] = (func)(DryBuffer[i][ChanMap[4]]); \
1380 ((type*)buffer)[5] = (func)(DryBuffer[i][ChanMap[5]]); \
1381 ((type*)buffer)[6] = (func)(DryBuffer[i][ChanMap[6]]); \
1382 ((type*)buffer)[7] = (func)(DryBuffer[i][ChanMap[7]]); \
1383 buffer = ((type*)buffer) + 8; \
1385 break;
1387 #define AL_FORMAT_MONO32 AL_FORMAT_MONO_FLOAT32
1388 #define AL_FORMAT_STEREO32 AL_FORMAT_STEREO_FLOAT32
1389 CHECK_WRITE_FORMAT(8, ALubyte, aluF2UB)
1390 CHECK_WRITE_FORMAT(16, ALshort, aluF2S)
1391 CHECK_WRITE_FORMAT(32, ALfloat, aluF2F)
1392 #undef AL_FORMAT_STEREO32
1393 #undef AL_FORMAT_MONO32
1394 #undef CHECK_WRITE_FORMAT
1396 default:
1397 break;
1400 size -= SamplesToDo;
1403 #if defined(HAVE_FESETROUND)
1404 fesetround(fpuState);
1405 #elif defined(HAVE__CONTROLFP)
1406 _controlfp(fpuState, 0xfffff);
1407 #endif
1409 ProcessContext(NULL);
1412 ALvoid aluHandleDisconnect(ALCdevice *device)
1414 ALuint i;
1416 SuspendContext(NULL);
1417 for(i = 0;i < device->NumContexts;i++)
1419 ALsource *source;
1421 SuspendContext(device->Contexts[i]);
1423 source = device->Contexts[i]->Source;
1424 while(source)
1426 if(source->state == AL_PLAYING)
1428 source->state = AL_STOPPED;
1429 source->BuffersPlayed = source->BuffersInQueue;
1430 source->position = 0;
1431 source->position_fraction = 0;
1433 source = source->next;
1435 ProcessContext(device->Contexts[i]);
1438 device->Connected = ALC_FALSE;
1439 ProcessContext(NULL);