Implement AL_EFFECT_REVERB
[openal-soft.git] / Alc / ALu.c
blobc6df899c0eab2fed83460addf22d2078334f4fee
1 /**
2 * OpenAL cross platform audio library
3 * Copyright (C) 1999-2007 by authors.
4 * This library is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU Library General Public
6 * License as published by the Free Software Foundation; either
7 * version 2 of the License, or (at your option) any later version.
9 * This library is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12 * Library General Public License for more details.
14 * You should have received a copy of the GNU Library General Public
15 * License along with this library; if not, write to the
16 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
17 * Boston, MA 02111-1307, USA.
18 * Or go to http://www.gnu.org/copyleft/lgpl.html
21 #define _CRT_SECURE_NO_DEPRECATE // get rid of sprintf security warnings on VS2005
23 #include "config.h"
25 #include <math.h>
26 #include "alMain.h"
27 #include "AL/al.h"
28 #include "AL/alc.h"
29 #include "alSource.h"
30 #include "alBuffer.h"
31 #include "alThunk.h"
32 #include "alListener.h"
33 #include "alAuxEffectSlot.h"
34 #include "bs2b.h"
36 #if defined(HAVE_STDINT_H)
37 #include <stdint.h>
38 typedef int64_t ALint64;
39 #elif defined(HAVE___INT64)
40 typedef __int64 ALint64;
41 #elif (SIZEOF_LONG == 8)
42 typedef long ALint64;
43 #elif (SIZEOF_LONG_LONG == 8)
44 typedef long long ALint64;
45 #endif
47 #ifdef HAVE_SQRTF
48 #define aluSqrt(x) ((ALfloat)sqrtf((float)(x)))
49 #else
50 #define aluSqrt(x) ((ALfloat)sqrt((double)(x)))
51 #endif
53 #ifdef HAVE_ACOSF
54 #define aluAcos(x) ((ALfloat)acosf((float)(x)))
55 #else
56 #define aluAcos(x) ((ALfloat)acos((double)(x)))
57 #endif
59 // fixes for mingw32.
60 #if defined(max) && !defined(__max)
61 #define __max max
62 #endif
63 #if defined(min) && !defined(__min)
64 #define __min min
65 #endif
67 #define BUFFERSIZE 48000
68 #define FRACTIONBITS 14
69 #define FRACTIONMASK ((1L<<FRACTIONBITS)-1)
70 #define MAX_PITCH 4
72 enum {
73 FRONT_LEFT = 0,
74 FRONT_RIGHT,
75 SIDE_LEFT,
76 SIDE_RIGHT,
77 BACK_LEFT,
78 BACK_RIGHT,
79 CENTER,
80 LFE,
82 OUTPUTCHANNELS
85 /* NOTE: The AL_FORMAT_REAR* enums aren't handled here be cause they're
86 * converted to AL_FORMAT_QUAD* when loaded */
87 __inline ALuint aluBytesFromFormat(ALenum format)
89 switch(format)
91 case AL_FORMAT_MONO8:
92 case AL_FORMAT_STEREO8:
93 case AL_FORMAT_QUAD8_LOKI:
94 case AL_FORMAT_QUAD8:
95 case AL_FORMAT_51CHN8:
96 case AL_FORMAT_61CHN8:
97 case AL_FORMAT_71CHN8:
98 return 1;
100 case AL_FORMAT_MONO16:
101 case AL_FORMAT_STEREO16:
102 case AL_FORMAT_QUAD16_LOKI:
103 case AL_FORMAT_QUAD16:
104 case AL_FORMAT_51CHN16:
105 case AL_FORMAT_61CHN16:
106 case AL_FORMAT_71CHN16:
107 return 2;
109 case AL_FORMAT_MONO_FLOAT32:
110 case AL_FORMAT_STEREO_FLOAT32:
111 case AL_FORMAT_QUAD32:
112 case AL_FORMAT_51CHN32:
113 case AL_FORMAT_61CHN32:
114 case AL_FORMAT_71CHN32:
115 return 4;
117 default:
118 return 0;
122 __inline ALuint aluChannelsFromFormat(ALenum format)
124 switch(format)
126 case AL_FORMAT_MONO8:
127 case AL_FORMAT_MONO16:
128 case AL_FORMAT_MONO_FLOAT32:
129 return 1;
131 case AL_FORMAT_STEREO8:
132 case AL_FORMAT_STEREO16:
133 case AL_FORMAT_STEREO_FLOAT32:
134 return 2;
136 case AL_FORMAT_QUAD8_LOKI:
137 case AL_FORMAT_QUAD16_LOKI:
138 case AL_FORMAT_QUAD8:
139 case AL_FORMAT_QUAD16:
140 case AL_FORMAT_QUAD32:
141 return 4;
143 case AL_FORMAT_51CHN8:
144 case AL_FORMAT_51CHN16:
145 case AL_FORMAT_51CHN32:
146 return 6;
148 case AL_FORMAT_61CHN8:
149 case AL_FORMAT_61CHN16:
150 case AL_FORMAT_61CHN32:
151 return 7;
153 case AL_FORMAT_71CHN8:
154 case AL_FORMAT_71CHN16:
155 case AL_FORMAT_71CHN32:
156 return 8;
158 default:
159 return 0;
163 static __inline ALint aluF2L(ALfloat Value)
165 #if 0
166 if(sizeof(ALint) == 4 && sizeof(double) == 8)
168 double temp;
169 temp = Value + (((65536.0*65536.0*16.0)+(65536.0*65536.0*8.0))*65536.0);
170 return *((ALint*)&temp);
172 #endif
173 return (ALint)Value;
176 static __inline ALshort aluF2S(ALfloat Value)
178 ALint i;
180 i = aluF2L(Value);
181 i = __min( 32767, i);
182 i = __max(-32768, i);
183 return ((ALshort)i);
186 static __inline ALvoid aluCrossproduct(ALfloat *inVector1,ALfloat *inVector2,ALfloat *outVector)
188 outVector[0] = inVector1[1]*inVector2[2] - inVector1[2]*inVector2[1];
189 outVector[1] = inVector1[2]*inVector2[0] - inVector1[0]*inVector2[2];
190 outVector[2] = inVector1[0]*inVector2[1] - inVector1[1]*inVector2[0];
193 static __inline ALfloat aluDotproduct(ALfloat *inVector1,ALfloat *inVector2)
195 return inVector1[0]*inVector2[0] + inVector1[1]*inVector2[1] +
196 inVector1[2]*inVector2[2];
199 static __inline ALvoid aluNormalize(ALfloat *inVector)
201 ALfloat length, inverse_length;
203 length = (ALfloat)aluSqrt(aluDotproduct(inVector, inVector));
204 if(length != 0)
206 inverse_length = 1.0f/length;
207 inVector[0] *= inverse_length;
208 inVector[1] *= inverse_length;
209 inVector[2] *= inverse_length;
213 static __inline ALvoid aluMatrixVector(ALfloat *vector,ALfloat matrix[3][3])
215 ALfloat result[3];
217 result[0] = vector[0]*matrix[0][0] + vector[1]*matrix[1][0] + vector[2]*matrix[2][0];
218 result[1] = vector[0]*matrix[0][1] + vector[1]*matrix[1][1] + vector[2]*matrix[2][1];
219 result[2] = vector[0]*matrix[0][2] + vector[1]*matrix[1][2] + vector[2]*matrix[2][2];
220 memcpy(vector, result, sizeof(result));
223 static __inline ALfloat aluComputeDrySample(ALsource *source, ALfloat DryGainHF, ALfloat sample)
225 if(DryGainHF < 1.0f)
227 if(DryGainHF > 0.0f)
229 sample *= DryGainHF;
230 sample += source->LastDrySample * (1.0f-DryGainHF);
232 else
233 sample = 0.0f;
236 source->LastDrySample = sample;
237 return sample;
240 static __inline ALfloat aluComputeWetSample(ALsource *source, ALfloat WetGainHF, ALfloat sample)
242 if(WetGainHF < 1.0f)
244 if(WetGainHF > 0.0f)
246 sample *= WetGainHF;
247 sample += source->LastWetSample * (1.0f-WetGainHF);
249 else
250 sample = 0.0f;
253 source->LastWetSample = sample;
254 return sample;
257 static ALvoid CalcSourceParams(ALCcontext *ALContext, ALsource *ALSource,
258 ALenum isMono, ALenum OutputFormat,
259 ALfloat *drysend, ALfloat *wetsend,
260 ALfloat *pitch, ALfloat *drygainhf,
261 ALfloat *wetgainhf)
263 ALfloat InnerAngle,OuterAngle,Angle,Distance,DryMix,WetMix=0.0f;
264 ALfloat Direction[3],Position[3],SourceToListener[3];
265 ALfloat MinVolume,MaxVolume,MinDist,MaxDist,Rolloff,OuterGainHF;
266 ALfloat ConeVolume,SourceVolume,PanningFB,PanningLR,ListenerGain;
267 ALfloat U[3],V[3],N[3];
268 ALfloat DopplerFactor, DopplerVelocity, flSpeedOfSound, flMaxVelocity;
269 ALfloat Matrix[3][3];
270 ALfloat flAttenuation;
271 ALfloat RoomAttenuation;
272 ALfloat MetersPerUnit;
273 ALfloat RoomRolloff;
274 ALfloat DryGainHF = 1.0f;
275 ALfloat WetGainHF = 1.0f;
277 //Get context properties
278 DopplerFactor = ALContext->DopplerFactor;
279 DopplerVelocity = ALContext->DopplerVelocity;
280 flSpeedOfSound = ALContext->flSpeedOfSound;
282 //Get listener properties
283 ListenerGain = ALContext->Listener.Gain;
284 MetersPerUnit = ALContext->Listener.MetersPerUnit;
286 //Get source properties
287 SourceVolume = ALSource->flGain;
288 memcpy(Position, ALSource->vPosition, sizeof(ALSource->vPosition));
289 memcpy(Direction, ALSource->vOrientation, sizeof(ALSource->vOrientation));
290 MinVolume = ALSource->flMinGain;
291 MaxVolume = ALSource->flMaxGain;
292 MinDist = ALSource->flRefDistance;
293 MaxDist = ALSource->flMaxDistance;
294 Rolloff = ALSource->flRollOffFactor;
295 InnerAngle = ALSource->flInnerAngle;
296 OuterAngle = ALSource->flOuterAngle;
297 OuterGainHF = ALSource->OuterGainHF;
298 RoomRolloff = ALSource->RoomRolloffFactor;
300 //Only apply 3D calculations for mono buffers
301 if(isMono != AL_FALSE)
303 //1. Translate Listener to origin (convert to head relative)
304 if(ALSource->bHeadRelative==AL_FALSE)
306 Position[0] -= ALContext->Listener.Position[0];
307 Position[1] -= ALContext->Listener.Position[1];
308 Position[2] -= ALContext->Listener.Position[2];
311 //2. Calculate distance attenuation
312 Distance = aluSqrt(aluDotproduct(Position, Position));
314 if(ALSource->Send[0].Slot && !ALSource->Send[0].Slot->AuxSendAuto)
316 if(ALSource->Send[0].Slot->effect.type == AL_EFFECT_REVERB)
317 RoomRolloff = ALSource->Send[0].Slot->effect.Reverb.RoomRolloffFactor;
320 flAttenuation = 1.0f;
321 RoomAttenuation = 1.0f;
322 switch (ALContext->DistanceModel)
324 case AL_INVERSE_DISTANCE_CLAMPED:
325 Distance=__max(Distance,MinDist);
326 Distance=__min(Distance,MaxDist);
327 if (MaxDist < MinDist)
328 break;
329 //fall-through
330 case AL_INVERSE_DISTANCE:
331 if (MinDist > 0.0f)
333 if ((MinDist + (Rolloff * (Distance - MinDist))) > 0.0f)
334 flAttenuation = MinDist / (MinDist + (Rolloff * (Distance - MinDist)));
335 if ((MinDist + (RoomRolloff * (Distance - MinDist))) > 0.0f)
336 RoomAttenuation = MinDist / (MinDist + (RoomRolloff * (Distance - MinDist)));
338 break;
340 case AL_LINEAR_DISTANCE_CLAMPED:
341 Distance=__max(Distance,MinDist);
342 Distance=__min(Distance,MaxDist);
343 if (MaxDist < MinDist)
344 break;
345 //fall-through
346 case AL_LINEAR_DISTANCE:
347 Distance=__min(Distance,MaxDist);
348 if (MaxDist != MinDist)
350 flAttenuation = 1.0f - (Rolloff*(Distance-MinDist)/(MaxDist - MinDist));
351 RoomAttenuation = 1.0f - (RoomRolloff*(Distance-MinDist)/(MaxDist - MinDist));
353 break;
355 case AL_EXPONENT_DISTANCE_CLAMPED:
356 Distance=__max(Distance,MinDist);
357 Distance=__min(Distance,MaxDist);
358 if (MaxDist < MinDist)
359 break;
360 //fall-through
361 case AL_EXPONENT_DISTANCE:
362 if ((Distance > 0.0f) && (MinDist > 0.0f))
364 flAttenuation = (ALfloat)pow(Distance/MinDist, -Rolloff);
365 RoomAttenuation = (ALfloat)pow(Distance/MinDist, -RoomRolloff);
367 break;
369 case AL_NONE:
370 default:
371 flAttenuation = 1.0f;
372 RoomAttenuation = 1.0f;
373 break;
376 // Source Gain + Attenuation and clamp to Min/Max Gain
377 DryMix = SourceVolume * flAttenuation;
378 DryMix = __min(DryMix,MaxVolume);
379 DryMix = __max(DryMix,MinVolume);
381 WetMix = SourceVolume * (ALSource->WetGainAuto ?
382 RoomAttenuation : 1.0f);
383 WetMix = __min(WetMix,MaxVolume);
384 WetMix = __max(WetMix,MinVolume);
386 //3. Apply directional soundcones
387 SourceToListener[0] = -Position[0];
388 SourceToListener[1] = -Position[1];
389 SourceToListener[2] = -Position[2];
390 aluNormalize(Direction);
391 aluNormalize(SourceToListener);
392 Angle = aluAcos(aluDotproduct(Direction,SourceToListener)) * 180.0f /
393 3.141592654f;
394 if(Angle >= InnerAngle && Angle <= OuterAngle)
396 ALfloat scale = (Angle-InnerAngle) / (OuterAngle-InnerAngle);
397 ConeVolume = (1.0f+(ALSource->flOuterGain-1.0f)*scale);
398 if(ALSource->WetGainAuto)
399 WetMix *= ConeVolume;
400 if(ALSource->DryGainHFAuto)
401 DryGainHF *= (1.0f+(OuterGainHF-1.0f)*scale);
402 if(ALSource->WetGainHFAuto)
403 WetGainHF *= (1.0f+(OuterGainHF-1.0f)*scale);
405 else if(Angle > OuterAngle)
407 ConeVolume = (1.0f+(ALSource->flOuterGain-1.0f));
408 if(ALSource->WetGainAuto)
409 WetMix *= ConeVolume;
410 if(ALSource->DryGainHFAuto)
411 DryGainHF *= (1.0f+(OuterGainHF-1.0f));
412 if(ALSource->WetGainHFAuto)
413 WetGainHF *= (1.0f+(OuterGainHF-1.0f));
415 else
416 ConeVolume = 1.0f;
418 //4. Calculate Velocity
419 if(DopplerFactor != 0.0f)
421 ALfloat flVSS, flVLS;
423 flVLS = aluDotproduct(ALContext->Listener.Velocity,
424 SourceToListener);
425 flVSS = aluDotproduct(ALSource->vVelocity, SourceToListener);
427 flMaxVelocity = (DopplerVelocity * flSpeedOfSound) / DopplerFactor;
429 if (flVSS >= flMaxVelocity)
430 flVSS = (flMaxVelocity - 1.0f);
431 else if (flVSS <= -flMaxVelocity)
432 flVSS = -flMaxVelocity + 1.0f;
434 if (flVLS >= flMaxVelocity)
435 flVLS = (flMaxVelocity - 1.0f);
436 else if (flVLS <= -flMaxVelocity)
437 flVLS = -flMaxVelocity + 1.0f;
439 pitch[0] = ALSource->flPitch *
440 ((flSpeedOfSound * DopplerVelocity) - (DopplerFactor * flVLS)) /
441 ((flSpeedOfSound * DopplerVelocity) - (DopplerFactor * flVSS));
443 else
444 pitch[0] = ALSource->flPitch;
446 //5. Align coordinate system axes
447 aluCrossproduct(ALContext->Listener.Forward, ALContext->Listener.Up, U); // Right-vector
448 aluNormalize(U); // Normalized Right-vector
449 memcpy(V, ALContext->Listener.Up, sizeof(V)); // Up-vector
450 aluNormalize(V); // Normalized Up-vector
451 memcpy(N, ALContext->Listener.Forward, sizeof(N)); // At-vector
452 aluNormalize(N); // Normalized At-vector
453 Matrix[0][0] = U[0]; Matrix[0][1] = V[0]; Matrix[0][2] = -N[0];
454 Matrix[1][0] = U[1]; Matrix[1][1] = V[1]; Matrix[1][2] = -N[1];
455 Matrix[2][0] = U[2]; Matrix[2][1] = V[2]; Matrix[2][2] = -N[2];
456 aluMatrixVector(Position, Matrix);
458 //6. Apply filter gains and filters
459 switch(ALSource->DirectFilter.filter)
461 case AL_FILTER_LOWPASS:
462 DryMix *= ALSource->DirectFilter.Gain;
463 DryGainHF *= ALSource->DirectFilter.GainHF;
464 break;
467 switch(ALSource->Send[0].WetFilter.filter)
469 case AL_FILTER_LOWPASS:
470 WetMix *= ALSource->Send[0].WetFilter.Gain;
471 WetGainHF *= ALSource->Send[0].WetFilter.GainHF;
472 break;
475 if(ALSource->AirAbsorptionFactor > 0.0f)
476 DryGainHF *= pow(ALSource->AirAbsorptionFactor * AIRABSORBGAINHF,
477 Distance * MetersPerUnit);
479 if(ALSource->Send[0].Slot)
481 WetMix *= ALSource->Send[0].Slot->Gain;
483 if(ALSource->Send[0].Slot->effect.type == AL_EFFECT_REVERB)
485 WetGainHF *= ALSource->Send[0].Slot->effect.Reverb.GainHF;
486 WetGainHF *= pow(ALSource->Send[0].Slot->effect.Reverb.AirAbsorptionGainHF,
487 Distance * MetersPerUnit);
491 //7. Convert normalized position into pannings, then into channel volumes
492 aluNormalize(Position);
493 switch(aluChannelsFromFormat(OutputFormat))
495 case 1:
496 drysend[FRONT_LEFT] = ConeVolume * ListenerGain * DryMix * aluSqrt(1.0f); //Direct
497 drysend[FRONT_RIGHT] = ConeVolume * ListenerGain * DryMix * aluSqrt(1.0f); //Direct
498 if(ALSource->Send[0].Slot)
500 wetsend[FRONT_LEFT] = ListenerGain * WetMix * aluSqrt(1.0f); //Room
501 wetsend[FRONT_RIGHT] = ListenerGain * WetMix * aluSqrt(1.0f); //Room
503 else
505 wetsend[FRONT_LEFT] = 0.0f;
506 wetsend[FRONT_RIGHT] = 0.0f;
507 WetGainHF = 1.0f;
509 break;
510 case 2:
511 PanningLR = 0.5f + 0.5f*Position[0];
512 drysend[FRONT_LEFT] = ConeVolume * ListenerGain * DryMix * aluSqrt(1.0f-PanningLR); //L Direct
513 drysend[FRONT_RIGHT] = ConeVolume * ListenerGain * DryMix * aluSqrt( PanningLR); //R Direct
514 if(ALSource->Send[0].Slot)
516 wetsend[FRONT_LEFT] = ListenerGain * WetMix * aluSqrt(1.0f-PanningLR); //L Room
517 wetsend[FRONT_RIGHT] = ListenerGain * WetMix * aluSqrt( PanningLR); //R Room
519 else
521 wetsend[FRONT_LEFT] = 0.0f;
522 wetsend[FRONT_RIGHT] = 0.0f;
523 WetGainHF = 1.0f;
525 break;
526 case 4:
527 /* TODO: Add center/lfe channel in spatial calculations? */
528 case 6:
529 // Apply a scalar so each individual speaker has more weight
530 PanningLR = 0.5f + (0.5f*Position[0]*1.41421356f);
531 PanningLR = __min(1.0f, PanningLR);
532 PanningLR = __max(0.0f, PanningLR);
533 PanningFB = 0.5f + (0.5f*Position[2]*1.41421356f);
534 PanningFB = __min(1.0f, PanningFB);
535 PanningFB = __max(0.0f, PanningFB);
536 drysend[FRONT_LEFT] = ConeVolume * ListenerGain * DryMix * aluSqrt((1.0f-PanningLR)*(1.0f-PanningFB));
537 drysend[FRONT_RIGHT] = ConeVolume * ListenerGain * DryMix * aluSqrt(( PanningLR)*(1.0f-PanningFB));
538 drysend[BACK_LEFT] = ConeVolume * ListenerGain * DryMix * aluSqrt((1.0f-PanningLR)*( PanningFB));
539 drysend[BACK_RIGHT] = ConeVolume * ListenerGain * DryMix * aluSqrt(( PanningLR)*( PanningFB));
540 if(ALSource->Send[0].Slot)
542 wetsend[FRONT_LEFT] = ListenerGain * WetMix * aluSqrt((1.0f-PanningLR)*(1.0f-PanningFB));
543 wetsend[FRONT_RIGHT] = ListenerGain * WetMix * aluSqrt(( PanningLR)*(1.0f-PanningFB));
544 wetsend[BACK_LEFT] = ListenerGain * WetMix * aluSqrt((1.0f-PanningLR)*( PanningFB));
545 wetsend[BACK_RIGHT] = ListenerGain * WetMix * aluSqrt(( PanningLR)*( PanningFB));
547 else
549 wetsend[FRONT_LEFT] = 0.0f;
550 wetsend[FRONT_RIGHT] = 0.0f;
551 wetsend[BACK_LEFT] = 0.0f;
552 wetsend[BACK_RIGHT] = 0.0f;
553 WetGainHF = 1.0f;
555 break;
556 case 7:
557 case 8:
558 PanningFB = 1.0f - fabs(Position[2]*1.15470054f);
559 PanningFB = __min(1.0f, PanningFB);
560 PanningFB = __max(0.0f, PanningFB);
561 PanningLR = 0.5f + (0.5*Position[0]*((1.0f-PanningFB)*2.0f));
562 PanningLR = __min(1.0f, PanningLR);
563 PanningLR = __max(0.0f, PanningLR);
564 if(Position[2] > 0.0f)
566 drysend[BACK_LEFT] = ConeVolume * ListenerGain * DryMix * aluSqrt((1.0f-PanningLR)*(1.0f-PanningFB));
567 drysend[BACK_RIGHT] = ConeVolume * ListenerGain * DryMix * aluSqrt(( PanningLR)*(1.0f-PanningFB));
568 drysend[SIDE_LEFT] = ConeVolume * ListenerGain * DryMix * aluSqrt((1.0f-PanningLR)*( PanningFB));
569 drysend[SIDE_RIGHT] = ConeVolume * ListenerGain * DryMix * aluSqrt(( PanningLR)*( PanningFB));
570 drysend[FRONT_LEFT] = 0.0f;
571 drysend[FRONT_RIGHT] = 0.0f;
572 if(ALSource->Send[0].Slot)
574 wetsend[BACK_LEFT] = ListenerGain * WetMix * aluSqrt((1.0f-PanningLR)*(1.0f-PanningFB));
575 wetsend[BACK_RIGHT] = ListenerGain * WetMix * aluSqrt(( PanningLR)*(1.0f-PanningFB));
576 wetsend[SIDE_LEFT] = ListenerGain * WetMix * aluSqrt((1.0f-PanningLR)*( PanningFB));
577 wetsend[SIDE_RIGHT] = ListenerGain * WetMix * aluSqrt(( PanningLR)*( PanningFB));
578 wetsend[FRONT_LEFT] = 0.0f;
579 wetsend[FRONT_RIGHT] = 0.0f;
581 else
583 wetsend[FRONT_LEFT] = 0.0f;
584 wetsend[FRONT_RIGHT] = 0.0f;
585 wetsend[SIDE_LEFT] = 0.0f;
586 wetsend[SIDE_RIGHT] = 0.0f;
587 wetsend[BACK_LEFT] = 0.0f;
588 wetsend[BACK_RIGHT] = 0.0f;
589 WetGainHF = 1.0f;
592 else
594 drysend[FRONT_LEFT] = ConeVolume * ListenerGain * DryMix * aluSqrt((1.0f-PanningLR)*(1.0f-PanningFB));
595 drysend[FRONT_RIGHT] = ConeVolume * ListenerGain * DryMix * aluSqrt(( PanningLR)*(1.0f-PanningFB));
596 drysend[SIDE_LEFT] = ConeVolume * ListenerGain * DryMix * aluSqrt((1.0f-PanningLR)*( PanningFB));
597 drysend[SIDE_RIGHT] = ConeVolume * ListenerGain * DryMix * aluSqrt(( PanningLR)*( PanningFB));
598 drysend[BACK_LEFT] = 0.0f;
599 drysend[BACK_RIGHT] = 0.0f;
600 if(ALSource->Send[0].Slot)
602 wetsend[FRONT_LEFT] = ListenerGain * WetMix * aluSqrt((1.0f-PanningLR)*(1.0f-PanningFB));
603 wetsend[FRONT_RIGHT] = ListenerGain * WetMix * aluSqrt(( PanningLR)*(1.0f-PanningFB));
604 wetsend[SIDE_LEFT] = ListenerGain * WetMix * aluSqrt((1.0f-PanningLR)*( PanningFB));
605 wetsend[SIDE_RIGHT] = ListenerGain * WetMix * aluSqrt(( PanningLR)*( PanningFB));
606 wetsend[BACK_LEFT] = 0.0f;
607 wetsend[BACK_RIGHT] = 0.0f;
609 else
611 wetsend[FRONT_LEFT] = 0.0f;
612 wetsend[FRONT_RIGHT] = 0.0f;
613 wetsend[SIDE_LEFT] = 0.0f;
614 wetsend[SIDE_RIGHT] = 0.0f;
615 wetsend[BACK_LEFT] = 0.0f;
616 wetsend[BACK_RIGHT] = 0.0f;
617 WetGainHF = 1.0f;
620 default:
621 break;
624 *drygainhf = DryGainHF;
625 *wetgainhf = WetGainHF;
627 else
629 *drygainhf = DryGainHF;
630 *wetgainhf = WetGainHF;
632 //1. Multi-channel buffers always play "normal"
633 drysend[FRONT_LEFT] = SourceVolume * 1.0f * ListenerGain;
634 drysend[FRONT_RIGHT] = SourceVolume * 1.0f * ListenerGain;
635 drysend[SIDE_LEFT] = SourceVolume * 1.0f * ListenerGain;
636 drysend[SIDE_RIGHT] = SourceVolume * 1.0f * ListenerGain;
637 drysend[BACK_LEFT] = SourceVolume * 1.0f * ListenerGain;
638 drysend[BACK_RIGHT] = SourceVolume * 1.0f * ListenerGain;
639 drysend[CENTER] = SourceVolume * 1.0f * ListenerGain;
640 drysend[LFE] = SourceVolume * 1.0f * ListenerGain;
641 if(ALSource->Send[0].Slot)
643 wetsend[FRONT_LEFT] = SourceVolume * 0.0f * ListenerGain;
644 wetsend[FRONT_RIGHT] = SourceVolume * 0.0f * ListenerGain;
645 wetsend[SIDE_LEFT] = SourceVolume * 0.0f * ListenerGain;
646 wetsend[SIDE_RIGHT] = SourceVolume * 0.0f * ListenerGain;
647 wetsend[BACK_LEFT] = SourceVolume * 0.0f * ListenerGain;
648 wetsend[BACK_RIGHT] = SourceVolume * 0.0f * ListenerGain;
649 wetsend[CENTER] = SourceVolume * 0.0f * ListenerGain;
650 wetsend[LFE] = SourceVolume * 0.0f * ListenerGain;
652 else
654 wetsend[FRONT_LEFT] = 0.0f;
655 wetsend[FRONT_RIGHT] = 0.0f;
656 wetsend[SIDE_LEFT] = 0.0f;
657 wetsend[SIDE_RIGHT] = 0.0f;
658 wetsend[BACK_LEFT] = 0.0f;
659 wetsend[BACK_RIGHT] = 0.0f;
660 wetsend[CENTER] = 0.0f;
661 wetsend[LFE] = 0.0f;
662 *wetgainhf = 1.0f;
665 pitch[0] = ALSource->flPitch;
669 ALvoid aluMixData(ALCcontext *ALContext,ALvoid *buffer,ALsizei size,ALenum format)
671 static float DryBuffer[BUFFERSIZE][OUTPUTCHANNELS];
672 static float WetBuffer[BUFFERSIZE][OUTPUTCHANNELS];
673 static float ReverbBuffer[BUFFERSIZE];
674 ALfloat DrySend[OUTPUTCHANNELS] = { 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f };
675 ALfloat WetSend[OUTPUTCHANNELS] = { 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f };
676 ALfloat DryGainHF = 0.0f;
677 ALfloat WetGainHF = 0.0f;
678 ALuint BlockAlign,BufferSize;
679 ALuint DataSize=0,DataPosInt=0,DataPosFrac=0;
680 ALuint Channels,Frequency,ulExtraSamples;
681 ALboolean doReverb;
682 ALfloat Pitch;
683 ALint Looping,increment,State;
684 ALuint Buffer,fraction;
685 ALuint SamplesToDo;
686 ALsource *ALSource;
687 ALbuffer *ALBuffer;
688 ALeffectslot *ALEffectSlot;
689 ALfloat value;
690 ALshort *Data;
691 ALuint i,j,k;
692 ALbufferlistitem *BufferListItem;
693 ALuint loop;
694 ALint64 DataSize64,DataPos64;
696 SuspendContext(ALContext);
698 if(buffer)
700 //Figure output format variables
701 BlockAlign = aluChannelsFromFormat(format);
702 BlockAlign *= aluBytesFromFormat(format);
704 size /= BlockAlign;
705 while(size > 0)
707 //Setup variables
708 ALSource = (ALContext ? ALContext->Source : NULL);
709 SamplesToDo = min(size, BUFFERSIZE);
711 //Clear mixing buffer
712 memset(DryBuffer, 0, SamplesToDo*OUTPUTCHANNELS*sizeof(ALfloat));
713 memset(WetBuffer, 0, SamplesToDo*OUTPUTCHANNELS*sizeof(ALfloat));
714 memset(ReverbBuffer, 0, SamplesToDo*sizeof(ALfloat));
716 //Actual mixing loop
717 while(ALSource)
719 j = 0;
720 State = ALSource->state;
722 doReverb = ((ALSource->Send[0].Slot &&
723 ALSource->Send[0].Slot->effect.type == AL_EFFECT_REVERB) ?
724 AL_TRUE : AL_FALSE);
726 while(State == AL_PLAYING && j < SamplesToDo)
728 DataSize = 0;
729 DataPosInt = 0;
730 DataPosFrac = 0;
732 //Get buffer info
733 if((Buffer = ALSource->ulBufferID))
735 ALBuffer = (ALbuffer*)ALTHUNK_LOOKUPENTRY(Buffer);
737 Data = ALBuffer->data;
738 Channels = aluChannelsFromFormat(ALBuffer->format);
739 DataSize = ALBuffer->size;
740 Frequency = ALBuffer->frequency;
742 CalcSourceParams(ALContext, ALSource,
743 (Channels==1) ? AL_TRUE : AL_FALSE,
744 format, DrySend, WetSend, &Pitch,
745 &DryGainHF, &WetGainHF);
748 Pitch = (Pitch*Frequency) / ALContext->Frequency;
749 DataSize /= Channels * aluBytesFromFormat(ALBuffer->format);
751 //Get source info
752 DataPosInt = ALSource->position;
753 DataPosFrac = ALSource->position_fraction;
755 //Compute 18.14 fixed point step
756 increment = aluF2L(Pitch*(1L<<FRACTIONBITS));
757 if(increment > (MAX_PITCH<<FRACTIONBITS))
758 increment = (MAX_PITCH<<FRACTIONBITS);
760 //Figure out how many samples we can mix.
761 //Pitch must be <= 4 (the number below !)
762 DataSize64 = DataSize+MAX_PITCH;
763 DataSize64 <<= FRACTIONBITS;
764 DataPos64 = DataPosInt;
765 DataPos64 <<= FRACTIONBITS;
766 DataPos64 += DataPosFrac;
767 BufferSize = (ALuint)((DataSize64-DataPos64) / increment);
768 BufferListItem = ALSource->queue;
769 for(loop = 0; loop < ALSource->BuffersPlayed; loop++)
771 if(BufferListItem)
772 BufferListItem = BufferListItem->next;
774 if (BufferListItem)
776 if (BufferListItem->next)
778 if(BufferListItem->next->buffer &&
779 ((ALbuffer*)ALTHUNK_LOOKUPENTRY(BufferListItem->next->buffer))->data)
781 ulExtraSamples = min(((ALbuffer*)ALTHUNK_LOOKUPENTRY(BufferListItem->next->buffer))->size, (ALint)(16*Channels));
782 memcpy(&Data[DataSize*Channels], ((ALbuffer*)ALTHUNK_LOOKUPENTRY(BufferListItem->next->buffer))->data, ulExtraSamples);
785 else if (ALSource->bLooping)
787 if (ALSource->queue->buffer)
789 if(((ALbuffer*)ALTHUNK_LOOKUPENTRY(ALSource->queue->buffer))->data)
791 ulExtraSamples = min(((ALbuffer*)ALTHUNK_LOOKUPENTRY(ALSource->queue->buffer))->size, (ALint)(16*Channels));
792 memcpy(&Data[DataSize*Channels], ((ALbuffer*)ALTHUNK_LOOKUPENTRY(ALSource->queue->buffer))->data, ulExtraSamples);
797 BufferSize = min(BufferSize, (SamplesToDo-j));
799 //Actual sample mixing loop
800 Data += DataPosInt*Channels;
801 while(BufferSize--)
803 k = DataPosFrac>>FRACTIONBITS;
804 fraction = DataPosFrac&FRACTIONMASK;
805 if(Channels==1)
807 //First order interpolator
808 ALfloat sample = (ALfloat)((ALshort)(((Data[k]*((1L<<FRACTIONBITS)-fraction))+(Data[k+1]*(fraction)))>>FRACTIONBITS));
810 //Direct path final mix buffer and panning
811 value = aluComputeDrySample(ALSource, DryGainHF, sample);
812 DryBuffer[j][FRONT_LEFT] += value*DrySend[FRONT_LEFT];
813 DryBuffer[j][FRONT_RIGHT] += value*DrySend[FRONT_RIGHT];
814 DryBuffer[j][SIDE_LEFT] += value*DrySend[SIDE_LEFT];
815 DryBuffer[j][SIDE_RIGHT] += value*DrySend[SIDE_RIGHT];
816 DryBuffer[j][BACK_LEFT] += value*DrySend[BACK_LEFT];
817 DryBuffer[j][BACK_RIGHT] += value*DrySend[BACK_RIGHT];
818 //Room path final mix buffer and panning
819 value = aluComputeWetSample(ALSource, WetGainHF, sample);
820 if(doReverb)
821 ReverbBuffer[j] += value;
822 else
824 WetBuffer[j][FRONT_LEFT] += value*WetSend[FRONT_LEFT];
825 WetBuffer[j][FRONT_RIGHT] += value*WetSend[FRONT_RIGHT];
826 WetBuffer[j][SIDE_LEFT] += value*WetSend[SIDE_LEFT];
827 WetBuffer[j][SIDE_RIGHT] += value*WetSend[SIDE_RIGHT];
828 WetBuffer[j][BACK_LEFT] += value*WetSend[BACK_LEFT];
829 WetBuffer[j][BACK_RIGHT] += value*WetSend[BACK_RIGHT];
832 else
834 //First order interpolator (front left)
835 value = (ALfloat)((ALshort)(((Data[k*Channels ]*((1L<<FRACTIONBITS)-fraction))+(Data[(k+1)*Channels ]*(fraction)))>>FRACTIONBITS));
836 DryBuffer[j][FRONT_LEFT] += value*DrySend[FRONT_LEFT];
837 WetBuffer[j][FRONT_LEFT] += value*WetSend[FRONT_LEFT];
838 //First order interpolator (front right)
839 value = (ALfloat)((ALshort)(((Data[k*Channels+1]*((1L<<FRACTIONBITS)-fraction))+(Data[(k+1)*Channels+1]*(fraction)))>>FRACTIONBITS));
840 DryBuffer[j][FRONT_RIGHT] += value*DrySend[FRONT_RIGHT];
841 WetBuffer[j][FRONT_RIGHT] += value*WetSend[FRONT_RIGHT];
842 if(Channels >= 4)
844 int i = 2;
845 if(Channels >= 6)
847 if(Channels != 7)
849 //First order interpolator (center)
850 value = (ALfloat)((ALshort)(((Data[k*Channels+i]*((1L<<FRACTIONBITS)-fraction))+(Data[(k+1)*Channels+i]*(fraction)))>>FRACTIONBITS));
851 DryBuffer[j][CENTER] += value*DrySend[CENTER];
852 WetBuffer[j][CENTER] += value*WetSend[CENTER];
853 i++;
855 //First order interpolator (lfe)
856 value = (ALfloat)((ALshort)(((Data[k*Channels+i]*((1L<<FRACTIONBITS)-fraction))+(Data[(k+1)*Channels+i]*(fraction)))>>FRACTIONBITS));
857 DryBuffer[j][LFE] += value*DrySend[LFE];
858 WetBuffer[j][LFE] += value*WetSend[LFE];
859 i++;
861 //First order interpolator (back left)
862 value = (ALfloat)((ALshort)(((Data[k*Channels+i]*((1L<<FRACTIONBITS)-fraction))+(Data[(k+1)*Channels+i]*(fraction)))>>FRACTIONBITS));
863 DryBuffer[j][BACK_LEFT] += value*DrySend[BACK_LEFT];
864 WetBuffer[j][BACK_LEFT] += value*WetSend[BACK_LEFT];
865 i++;
866 //First order interpolator (back right)
867 value = (ALfloat)((ALshort)(((Data[k*Channels+i]*((1L<<FRACTIONBITS)-fraction))+(Data[(k+1)*Channels+i]*(fraction)))>>FRACTIONBITS));
868 DryBuffer[j][BACK_RIGHT] += value*DrySend[BACK_RIGHT];
869 WetBuffer[j][BACK_RIGHT] += value*WetSend[BACK_RIGHT];
870 i++;
871 if(Channels >= 7)
873 //First order interpolator (side left)
874 value = (ALfloat)((ALshort)(((Data[k*Channels+i]*((1L<<FRACTIONBITS)-fraction))+(Data[(k+1)*Channels+i]*(fraction)))>>FRACTIONBITS));
875 DryBuffer[j][SIDE_LEFT] += value*DrySend[SIDE_LEFT];
876 WetBuffer[j][SIDE_LEFT] += value*WetSend[SIDE_LEFT];
877 i++;
878 //First order interpolator (side right)
879 value = (ALfloat)((ALshort)(((Data[k*Channels+i]*((1L<<FRACTIONBITS)-fraction))+(Data[(k+1)*Channels+i]*(fraction)))>>FRACTIONBITS));
880 DryBuffer[j][SIDE_RIGHT] += value*DrySend[SIDE_RIGHT];
881 WetBuffer[j][SIDE_RIGHT] += value*WetSend[SIDE_RIGHT];
882 i++;
886 DataPosFrac += increment;
887 j++;
889 DataPosInt += (DataPosFrac>>FRACTIONBITS);
890 DataPosFrac = (DataPosFrac&FRACTIONMASK);
892 //Update source info
893 ALSource->position = DataPosInt;
894 ALSource->position_fraction = DataPosFrac;
897 //Handle looping sources
898 if(!Buffer || DataPosInt >= DataSize)
900 //queueing
901 if(ALSource->queue)
903 Looping = ALSource->bLooping;
904 if(ALSource->BuffersPlayed < (ALSource->BuffersInQueue-1))
906 BufferListItem = ALSource->queue;
907 for(loop = 0; loop <= ALSource->BuffersPlayed; loop++)
909 if(BufferListItem)
911 if(!Looping)
912 BufferListItem->bufferstate = PROCESSED;
913 BufferListItem = BufferListItem->next;
916 if(!Looping)
917 ALSource->BuffersProcessed++;
918 if(BufferListItem)
919 ALSource->ulBufferID = BufferListItem->buffer;
920 ALSource->position = DataPosInt-DataSize;
921 ALSource->position_fraction = DataPosFrac;
922 ALSource->BuffersPlayed++;
924 else
926 if(!Looping)
928 /* alSourceStop */
929 ALSource->state = AL_STOPPED;
930 ALSource->inuse = AL_FALSE;
931 ALSource->BuffersPlayed = ALSource->BuffersProcessed = ALSource->BuffersInQueue;
932 BufferListItem = ALSource->queue;
933 while(BufferListItem != NULL)
935 BufferListItem->bufferstate = PROCESSED;
936 BufferListItem = BufferListItem->next;
939 else
941 /* alSourceRewind */
942 /* alSourcePlay */
943 ALSource->state = AL_PLAYING;
944 ALSource->inuse = AL_TRUE;
945 ALSource->play = AL_TRUE;
946 ALSource->BuffersPlayed = 0;
947 ALSource->BufferPosition = 0;
948 ALSource->lBytesPlayed = 0;
949 ALSource->BuffersProcessed = 0;
950 BufferListItem = ALSource->queue;
951 while(BufferListItem != NULL)
953 BufferListItem->bufferstate = PENDING;
954 BufferListItem = BufferListItem->next;
956 ALSource->ulBufferID = ALSource->queue->buffer;
958 ALSource->position = DataPosInt-DataSize;
959 ALSource->position_fraction = DataPosFrac;
965 //Get source state
966 State = ALSource->state;
969 ALSource = ALSource->next;
972 ALEffectSlot = (ALContext ? ALContext->AuxiliaryEffectSlot : NULL);
973 while(ALEffectSlot)
975 if(ALEffectSlot->effect.type == AL_EFFECT_REVERB)
977 ALfloat *DelayBuffer = ALEffectSlot->ReverbBuffer;
978 ALuint Pos = ALEffectSlot->ReverbPos;
979 ALuint LatePos = ALEffectSlot->ReverbLatePos;
980 ALuint ReflectPos = ALEffectSlot->ReverbReflectPos;
981 ALuint Length = ALEffectSlot->ReverbLength;
982 ALfloat DecayGain = ALEffectSlot->ReverbDecayGain;
983 ALfloat DecayHFRatio = ALEffectSlot->effect.Reverb.DecayHFRatio;
984 ALfloat Gain = ALEffectSlot->effect.Reverb.Gain;
985 ALfloat ReflectGain = ALEffectSlot->effect.Reverb.ReflectionsGain;
986 ALfloat LateReverbGain = ALEffectSlot->effect.Reverb.LateReverbGain;
987 ALfloat LastDecaySample = ALEffectSlot->LastDecaySample;
988 ALfloat sample;
990 for(i = 0;i < SamplesToDo;i++)
992 DelayBuffer[Pos] = ReverbBuffer[i] * Gain;
994 sample = DelayBuffer[ReflectPos] * ReflectGain;
996 DelayBuffer[LatePos] *= LateReverbGain;
998 Pos = (Pos+1) % Length;
999 DelayBuffer[Pos] *= DecayHFRatio;
1000 DelayBuffer[Pos] += LastDecaySample * (1.0f-DecayHFRatio);
1001 LastDecaySample = DelayBuffer[Pos];
1002 DelayBuffer[Pos] *= DecayGain;
1004 DelayBuffer[LatePos] += DelayBuffer[Pos];
1006 sample += DelayBuffer[LatePos];
1008 WetBuffer[i][FRONT_LEFT] += sample;
1009 WetBuffer[i][FRONT_RIGHT] += sample;
1010 WetBuffer[i][SIDE_LEFT] += sample;
1011 WetBuffer[i][SIDE_RIGHT] += sample;
1012 WetBuffer[i][BACK_LEFT] += sample;
1013 WetBuffer[i][BACK_RIGHT] += sample;
1015 LatePos = (LatePos+1) % Length;
1016 ReflectPos = (ReflectPos+1) % Length;
1019 ALEffectSlot->ReverbPos = Pos;
1020 ALEffectSlot->ReverbLatePos = LatePos;
1021 ALEffectSlot->ReverbReflectPos = ReflectPos;
1022 ALEffectSlot->LastDecaySample = LastDecaySample;
1024 ALEffectSlot = ALEffectSlot->next;
1027 //Post processing loop
1028 switch(format)
1030 case AL_FORMAT_MONO8:
1031 for(i = 0;i < SamplesToDo;i++)
1033 ((ALubyte*)buffer)[0] = (ALubyte)((aluF2S(DryBuffer[i][FRONT_LEFT]+DryBuffer[i][FRONT_RIGHT]+
1034 WetBuffer[i][FRONT_LEFT]+WetBuffer[i][FRONT_RIGHT])>>8)+128);
1035 buffer = ((ALubyte*)buffer) + 1;
1037 break;
1038 case AL_FORMAT_STEREO8:
1039 if(ALContext && ALContext->bs2b)
1041 for(i = 0;i < SamplesToDo;i++)
1043 float samples[2];
1044 samples[0] = DryBuffer[i][FRONT_LEFT] +WetBuffer[i][FRONT_LEFT];
1045 samples[1] = DryBuffer[i][FRONT_RIGHT]+WetBuffer[i][FRONT_RIGHT];
1046 bs2b_cross_feed(ALContext->bs2b, samples);
1047 ((ALubyte*)buffer)[0] = (ALubyte)((aluF2S(samples[0])>>8)+128);
1048 ((ALubyte*)buffer)[1] = (ALubyte)((aluF2S(samples[1])>>8)+128);
1049 buffer = ((ALubyte*)buffer) + 2;
1052 else
1054 for(i = 0;i < SamplesToDo;i++)
1056 ((ALubyte*)buffer)[0] = (ALubyte)((aluF2S(DryBuffer[i][FRONT_LEFT] +WetBuffer[i][FRONT_LEFT])>>8)+128);
1057 ((ALubyte*)buffer)[1] = (ALubyte)((aluF2S(DryBuffer[i][FRONT_RIGHT]+WetBuffer[i][FRONT_RIGHT])>>8)+128);
1058 buffer = ((ALubyte*)buffer) + 2;
1061 break;
1062 case AL_FORMAT_QUAD8:
1063 for(i = 0;i < SamplesToDo;i++)
1065 ((ALubyte*)buffer)[0] = (ALubyte)((aluF2S(DryBuffer[i][FRONT_LEFT] +WetBuffer[i][FRONT_LEFT])>>8)+128);
1066 ((ALubyte*)buffer)[1] = (ALubyte)((aluF2S(DryBuffer[i][FRONT_RIGHT]+WetBuffer[i][FRONT_RIGHT])>>8)+128);
1067 ((ALubyte*)buffer)[2] = (ALubyte)((aluF2S(DryBuffer[i][BACK_LEFT] +WetBuffer[i][BACK_LEFT])>>8)+128);
1068 ((ALubyte*)buffer)[3] = (ALubyte)((aluF2S(DryBuffer[i][BACK_RIGHT] +WetBuffer[i][BACK_RIGHT])>>8)+128);
1069 buffer = ((ALubyte*)buffer) + 4;
1071 break;
1072 case AL_FORMAT_51CHN8:
1073 for(i = 0;i < SamplesToDo;i++)
1075 ((ALubyte*)buffer)[0] = (ALubyte)((aluF2S(DryBuffer[i][FRONT_LEFT] +WetBuffer[i][FRONT_LEFT])>>8)+128);
1076 ((ALubyte*)buffer)[1] = (ALubyte)((aluF2S(DryBuffer[i][FRONT_RIGHT]+WetBuffer[i][FRONT_RIGHT])>>8)+128);
1077 ((ALubyte*)buffer)[2] = (ALubyte)((aluF2S(DryBuffer[i][BACK_LEFT] +WetBuffer[i][BACK_LEFT])>>8)+128);
1078 ((ALubyte*)buffer)[3] = (ALubyte)((aluF2S(DryBuffer[i][BACK_RIGHT] +WetBuffer[i][BACK_RIGHT])>>8)+128);
1079 ((ALubyte*)buffer)[4] = (ALubyte)((aluF2S(DryBuffer[i][CENTER] +WetBuffer[i][CENTER])>>8)+128);
1080 ((ALubyte*)buffer)[5] = (ALubyte)((aluF2S(DryBuffer[i][LFE] +WetBuffer[i][LFE])>>8)+128);
1081 buffer = ((ALubyte*)buffer) + 6;
1083 break;
1084 case AL_FORMAT_61CHN8:
1085 for(i = 0;i < SamplesToDo;i++)
1087 ((ALubyte*)buffer)[0] = (ALubyte)((aluF2S(DryBuffer[i][FRONT_LEFT] +WetBuffer[i][FRONT_LEFT])>>8)+128);
1088 ((ALubyte*)buffer)[1] = (ALubyte)((aluF2S(DryBuffer[i][FRONT_RIGHT]+WetBuffer[i][FRONT_RIGHT])>>8)+128);
1089 ((ALubyte*)buffer)[2] = (ALubyte)((aluF2S(DryBuffer[i][SIDE_LEFT] +WetBuffer[i][SIDE_LEFT])>>8)+128);
1090 ((ALubyte*)buffer)[3] = (ALubyte)((aluF2S(DryBuffer[i][SIDE_RIGHT] +WetBuffer[i][SIDE_RIGHT])>>8)+128);
1091 ((ALubyte*)buffer)[4] = (ALubyte)((aluF2S(DryBuffer[i][BACK_LEFT] +WetBuffer[i][BACK_LEFT])>>8)+128);
1092 ((ALubyte*)buffer)[5] = (ALubyte)((aluF2S(DryBuffer[i][BACK_RIGHT] +WetBuffer[i][BACK_RIGHT])>>8)+128);
1093 ((ALubyte*)buffer)[6] = (ALubyte)((aluF2S(DryBuffer[i][LFE] +WetBuffer[i][LFE])>>8)+128);
1094 buffer = ((ALubyte*)buffer) + 7;
1096 break;
1097 case AL_FORMAT_71CHN8:
1098 for(i = 0;i < SamplesToDo;i++)
1100 ((ALubyte*)buffer)[0] = (ALubyte)((aluF2S(DryBuffer[i][FRONT_LEFT] +WetBuffer[i][FRONT_LEFT])>>8)+128);
1101 ((ALubyte*)buffer)[1] = (ALubyte)((aluF2S(DryBuffer[i][FRONT_RIGHT]+WetBuffer[i][FRONT_RIGHT])>>8)+128);
1102 ((ALubyte*)buffer)[2] = (ALubyte)((aluF2S(DryBuffer[i][SIDE_LEFT] +WetBuffer[i][SIDE_LEFT])>>8)+128);
1103 ((ALubyte*)buffer)[3] = (ALubyte)((aluF2S(DryBuffer[i][SIDE_RIGHT] +WetBuffer[i][SIDE_RIGHT])>>8)+128);
1104 ((ALubyte*)buffer)[4] = (ALubyte)((aluF2S(DryBuffer[i][BACK_LEFT] +WetBuffer[i][BACK_LEFT])>>8)+128);
1105 ((ALubyte*)buffer)[5] = (ALubyte)((aluF2S(DryBuffer[i][BACK_RIGHT] +WetBuffer[i][BACK_RIGHT])>>8)+128);
1106 ((ALubyte*)buffer)[6] = (ALubyte)((aluF2S(DryBuffer[i][CENTER] +WetBuffer[i][CENTER])>>8)+128);
1107 ((ALubyte*)buffer)[7] = (ALubyte)((aluF2S(DryBuffer[i][LFE] +WetBuffer[i][LFE])>>8)+128);
1108 buffer = ((ALubyte*)buffer) + 8;
1110 break;
1112 case AL_FORMAT_MONO16:
1113 for(i = 0;i < SamplesToDo;i++)
1115 ((ALshort*)buffer)[0] = aluF2S(DryBuffer[i][FRONT_LEFT]+DryBuffer[i][FRONT_RIGHT]+
1116 WetBuffer[i][FRONT_LEFT]+WetBuffer[i][FRONT_RIGHT]);
1117 buffer = ((ALshort*)buffer) + 1;
1119 break;
1120 case AL_FORMAT_STEREO16:
1121 if(ALContext && ALContext->bs2b)
1123 for(i = 0;i < SamplesToDo;i++)
1125 float samples[2];
1126 samples[0] = DryBuffer[i][FRONT_LEFT] +WetBuffer[i][FRONT_LEFT];
1127 samples[1] = DryBuffer[i][FRONT_RIGHT]+WetBuffer[i][FRONT_RIGHT];
1128 bs2b_cross_feed(ALContext->bs2b, samples);
1129 ((ALshort*)buffer)[0] = aluF2S(samples[0]);
1130 ((ALshort*)buffer)[1] = aluF2S(samples[1]);
1131 buffer = ((ALshort*)buffer) + 2;
1134 else
1136 for(i = 0;i < SamplesToDo;i++)
1138 ((ALshort*)buffer)[0] = aluF2S(DryBuffer[i][FRONT_LEFT] +WetBuffer[i][FRONT_LEFT]);
1139 ((ALshort*)buffer)[1] = aluF2S(DryBuffer[i][FRONT_RIGHT]+WetBuffer[i][FRONT_RIGHT]);
1140 buffer = ((ALshort*)buffer) + 2;
1143 break;
1144 case AL_FORMAT_QUAD16:
1145 for(i = 0;i < SamplesToDo;i++)
1147 ((ALshort*)buffer)[0] = aluF2S(DryBuffer[i][FRONT_LEFT] +WetBuffer[i][FRONT_LEFT]);
1148 ((ALshort*)buffer)[1] = aluF2S(DryBuffer[i][FRONT_RIGHT]+WetBuffer[i][FRONT_RIGHT]);
1149 ((ALshort*)buffer)[2] = aluF2S(DryBuffer[i][BACK_LEFT] +WetBuffer[i][BACK_LEFT]);
1150 ((ALshort*)buffer)[3] = aluF2S(DryBuffer[i][BACK_RIGHT] +WetBuffer[i][BACK_RIGHT]);
1151 buffer = ((ALshort*)buffer) + 4;
1153 break;
1154 case AL_FORMAT_51CHN16:
1155 for(i = 0;i < SamplesToDo;i++)
1157 ((ALshort*)buffer)[0] = aluF2S(DryBuffer[i][FRONT_LEFT] +WetBuffer[i][FRONT_LEFT]);
1158 ((ALshort*)buffer)[1] = aluF2S(DryBuffer[i][FRONT_RIGHT]+WetBuffer[i][FRONT_RIGHT]);
1159 ((ALshort*)buffer)[2] = aluF2S(DryBuffer[i][BACK_LEFT] +WetBuffer[i][BACK_LEFT]);
1160 ((ALshort*)buffer)[3] = aluF2S(DryBuffer[i][BACK_RIGHT] +WetBuffer[i][BACK_RIGHT]);
1161 ((ALshort*)buffer)[4] = aluF2S(DryBuffer[i][CENTER] +WetBuffer[i][CENTER]);
1162 ((ALshort*)buffer)[5] = aluF2S(DryBuffer[i][LFE] +WetBuffer[i][LFE]);
1163 buffer = ((ALshort*)buffer) + 6;
1165 break;
1166 case AL_FORMAT_61CHN16:
1167 for(i = 0;i < SamplesToDo;i++)
1169 ((ALshort*)buffer)[0] = aluF2S(DryBuffer[i][FRONT_LEFT] +WetBuffer[i][FRONT_LEFT]);
1170 ((ALshort*)buffer)[1] = aluF2S(DryBuffer[i][FRONT_RIGHT]+WetBuffer[i][FRONT_RIGHT]);
1171 ((ALshort*)buffer)[2] = aluF2S(DryBuffer[i][SIDE_LEFT] +WetBuffer[i][SIDE_LEFT]);
1172 ((ALshort*)buffer)[3] = aluF2S(DryBuffer[i][SIDE_RIGHT] +WetBuffer[i][SIDE_RIGHT]);
1173 ((ALshort*)buffer)[4] = aluF2S(DryBuffer[i][BACK_LEFT] +WetBuffer[i][BACK_LEFT]);
1174 ((ALshort*)buffer)[5] = aluF2S(DryBuffer[i][BACK_RIGHT] +WetBuffer[i][BACK_RIGHT]);
1175 ((ALshort*)buffer)[6] = aluF2S(DryBuffer[i][LFE] +WetBuffer[i][LFE]);
1176 buffer = ((ALshort*)buffer) + 7;
1178 break;
1179 case AL_FORMAT_71CHN16:
1180 for(i = 0;i < SamplesToDo;i++)
1182 ((ALshort*)buffer)[0] = aluF2S(DryBuffer[i][FRONT_LEFT] +WetBuffer[i][FRONT_LEFT]);
1183 ((ALshort*)buffer)[1] = aluF2S(DryBuffer[i][FRONT_RIGHT]+WetBuffer[i][FRONT_RIGHT]);
1184 ((ALshort*)buffer)[2] = aluF2S(DryBuffer[i][SIDE_LEFT] +WetBuffer[i][SIDE_LEFT]);
1185 ((ALshort*)buffer)[3] = aluF2S(DryBuffer[i][SIDE_RIGHT] +WetBuffer[i][SIDE_RIGHT]);
1186 ((ALshort*)buffer)[4] = aluF2S(DryBuffer[i][BACK_LEFT] +WetBuffer[i][BACK_LEFT]);
1187 ((ALshort*)buffer)[5] = aluF2S(DryBuffer[i][BACK_RIGHT] +WetBuffer[i][BACK_RIGHT]);
1188 ((ALshort*)buffer)[6] = aluF2S(DryBuffer[i][CENTER] +WetBuffer[i][CENTER]);
1189 ((ALshort*)buffer)[7] = aluF2S(DryBuffer[i][LFE] +WetBuffer[i][LFE]);
1190 buffer = ((ALshort*)buffer) + 8;
1192 break;
1194 default:
1195 break;
1198 size -= SamplesToDo;
1202 ProcessContext(ALContext);