Add 'restrict' to another parameter
[openal-soft.git] / Alc / effects / reverb.c
blob71c39f8c4c4415854e79163deabb8d9511e2fdfa
1 /**
2 * Reverb for the OpenAL cross platform audio library
3 * Copyright (C) 2008-2009 by Christopher Fitzgerald.
4 * This library is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU Library General Public
6 * License as published by the Free Software Foundation; either
7 * version 2 of the License, or (at your option) any later version.
9 * This library is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12 * Library General Public License for more details.
14 * You should have received a copy of the GNU Library General Public
15 * License along with this library; if not, write to the
16 * Free Software Foundation, Inc.,
17 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
18 * Or go to http://www.gnu.org/copyleft/lgpl.html
21 #include "config.h"
23 #include <stdio.h>
24 #include <stdlib.h>
25 #include <math.h>
27 #include "alMain.h"
28 #include "alu.h"
29 #include "alAuxEffectSlot.h"
30 #include "alEffect.h"
31 #include "alFilter.h"
32 #include "alError.h"
35 /* This is the maximum number of samples processed for each inner loop
36 * iteration. */
37 #define MAX_UPDATE_SAMPLES 256
39 typedef struct DelayLine
41 // The delay lines use sample lengths that are powers of 2 to allow the
42 // use of bit-masking instead of a modulus for wrapping.
43 ALuint Mask;
44 ALfloat *Line;
45 } DelayLine;
47 typedef struct ALreverbState {
48 DERIVE_FROM_TYPE(ALeffectState);
50 ALboolean IsEax;
52 // For HRTF and UHJ
53 ALfloat (*ExtraOut)[BUFFERSIZE];
54 ALuint ExtraChannels;
56 // All delay lines are allocated as a single buffer to reduce memory
57 // fragmentation and management code.
58 ALfloat *SampleBuffer;
59 ALuint TotalSamples;
61 // Master effect filters
62 ALfilterState LpFilter;
63 ALfilterState HpFilter; // EAX only
65 struct {
66 // Modulator delay line.
67 DelayLine Delay;
69 // The vibrato time is tracked with an index over a modulus-wrapped
70 // range (in samples).
71 ALuint Index;
72 ALuint Range;
74 // The depth of frequency change (also in samples) and its filter.
75 ALfloat Depth;
76 ALfloat Coeff;
77 ALfloat Filter;
78 } Mod; // EAX only
80 // Initial effect delay.
81 DelayLine Delay;
82 // The tap points for the initial delay. First tap goes to early
83 // reflections, the last to late reverb.
84 ALuint DelayTap[2];
86 struct {
87 // Early reflections are done with 4 delay lines.
88 ALfloat Coeff[4];
89 DelayLine Delay[4];
90 ALuint Offset[4];
92 // The gain for each output channel based on 3D panning.
93 // NOTE: With certain output modes, we may be rendering to the dry
94 // buffer and the "real" buffer. The two combined may be using more
95 // than the max output channels, so we need some extra for the real
96 // output too.
97 ALfloat PanGain[4][MAX_OUTPUT_CHANNELS*2];
98 } Early;
100 // Decorrelator delay line.
101 DelayLine Decorrelator;
102 // There are actually 4 decorrelator taps, but the first occurs at the
103 // initial sample.
104 ALuint DecoTap[3];
106 struct {
107 // Output gain for late reverb.
108 ALfloat Gain;
110 // Attenuation to compensate for the modal density and decay rate of
111 // the late lines.
112 ALfloat DensityGain;
114 // The feed-back and feed-forward all-pass coefficient.
115 ALfloat ApFeedCoeff;
117 // Mixing matrix coefficient.
118 ALfloat MixCoeff;
120 // Late reverb has 4 parallel all-pass filters.
121 ALfloat ApCoeff[4];
122 DelayLine ApDelay[4];
123 ALuint ApOffset[4];
125 // In addition to 4 cyclical delay lines.
126 ALfloat Coeff[4];
127 DelayLine Delay[4];
128 ALuint Offset[4];
130 // The cyclical delay lines are 1-pole low-pass filtered.
131 ALfloat LpCoeff[4];
132 ALfloat LpSample[4];
134 // The gain for each output channel based on 3D panning.
135 // NOTE: Add some extra in case (see note about early pan).
136 ALfloat PanGain[4][MAX_OUTPUT_CHANNELS*2];
137 } Late;
139 struct {
140 // Attenuation to compensate for the modal density and decay rate of
141 // the echo line.
142 ALfloat DensityGain;
144 // Echo delay and all-pass lines.
145 DelayLine Delay;
146 DelayLine ApDelay;
148 ALfloat Coeff;
149 ALfloat ApFeedCoeff;
150 ALfloat ApCoeff;
152 ALuint Offset;
153 ALuint ApOffset;
155 // The echo line is 1-pole low-pass filtered.
156 ALfloat LpCoeff;
157 ALfloat LpSample;
159 // Echo mixing coefficient.
160 ALfloat MixCoeff;
161 } Echo; // EAX only
163 // The current read offset for all delay lines.
164 ALuint Offset;
166 /* Temporary storage used when processing. */
167 ALfloat ReverbSamples[MAX_UPDATE_SAMPLES][4];
168 ALfloat EarlySamples[MAX_UPDATE_SAMPLES][4];
169 } ALreverbState;
171 static ALvoid ALreverbState_Destruct(ALreverbState *State)
173 al_free(State->SampleBuffer);
174 State->SampleBuffer = NULL;
175 ALeffectState_Destruct(STATIC_CAST(ALeffectState,State));
178 static ALboolean ALreverbState_deviceUpdate(ALreverbState *State, ALCdevice *Device);
179 static ALvoid ALreverbState_update(ALreverbState *State, const ALCdevice *Device, const ALeffectslot *Slot, const ALeffectProps *props);
180 static ALvoid ALreverbState_processStandard(ALreverbState *State, ALuint SamplesToDo, const ALfloat *restrict SamplesIn, ALfloat (*restrict SamplesOut)[BUFFERSIZE], ALuint NumChannels);
181 static ALvoid ALreverbState_processEax(ALreverbState *State, ALuint SamplesToDo, const ALfloat *restrict SamplesIn, ALfloat (*restrict SamplesOut)[BUFFERSIZE], ALuint NumChannels);
182 static ALvoid ALreverbState_process(ALreverbState *State, ALuint SamplesToDo, const ALfloat (*restrict SamplesIn)[BUFFERSIZE], ALfloat (*restrict SamplesOut)[BUFFERSIZE], ALuint NumChannels);
183 DECLARE_DEFAULT_ALLOCATORS(ALreverbState)
185 DEFINE_ALEFFECTSTATE_VTABLE(ALreverbState);
187 /* This is a user config option for modifying the overall output of the reverb
188 * effect.
190 ALfloat ReverbBoost = 1.0f;
192 /* Specifies whether to use a standard reverb effect in place of EAX reverb (no
193 * high-pass, modulation, or echo).
195 ALboolean EmulateEAXReverb = AL_FALSE;
197 /* This coefficient is used to define the maximum frequency range controlled
198 * by the modulation depth. The current value of 0.1 will allow it to swing
199 * from 0.9x to 1.1x. This value must be below 1. At 1 it will cause the
200 * sampler to stall on the downswing, and above 1 it will cause it to sample
201 * backwards.
203 static const ALfloat MODULATION_DEPTH_COEFF = 0.1f;
205 /* A filter is used to avoid the terrible distortion caused by changing
206 * modulation time and/or depth. To be consistent across different sample
207 * rates, the coefficient must be raised to a constant divided by the sample
208 * rate: coeff^(constant / rate).
210 static const ALfloat MODULATION_FILTER_COEFF = 0.048f;
211 static const ALfloat MODULATION_FILTER_CONST = 100000.0f;
213 // When diffusion is above 0, an all-pass filter is used to take the edge off
214 // the echo effect. It uses the following line length (in seconds).
215 static const ALfloat ECHO_ALLPASS_LENGTH = 0.0133f;
217 // Input into the late reverb is decorrelated between four channels. Their
218 // timings are dependent on a fraction and multiplier. See the
219 // UpdateDecorrelator() routine for the calculations involved.
220 static const ALfloat DECO_FRACTION = 0.15f;
221 static const ALfloat DECO_MULTIPLIER = 2.0f;
223 // All delay line lengths are specified in seconds.
225 // The lengths of the early delay lines.
226 static const ALfloat EARLY_LINE_LENGTH[4] =
228 0.0015f, 0.0045f, 0.0135f, 0.0405f
231 // The lengths of the late all-pass delay lines.
232 static const ALfloat ALLPASS_LINE_LENGTH[4] =
234 0.0151f, 0.0167f, 0.0183f, 0.0200f,
237 // The lengths of the late cyclical delay lines.
238 static const ALfloat LATE_LINE_LENGTH[4] =
240 0.0211f, 0.0311f, 0.0461f, 0.0680f
243 // The late cyclical delay lines have a variable length dependent on the
244 // effect's density parameter (inverted for some reason) and this multiplier.
245 static const ALfloat LATE_LINE_MULTIPLIER = 4.0f;
248 #if defined(_WIN32) && !defined (_M_X64) && !defined(_M_ARM)
249 /* HACK: Workaround for a modff bug in 32-bit Windows, which attempts to write
250 * a 64-bit double to the 32-bit float parameter.
252 static inline float hack_modff(float x, float *y)
254 double di;
255 double df = modf((double)x, &di);
256 *y = (float)di;
257 return (float)df;
259 #define modff hack_modff
260 #endif
263 /**************************************
264 * Device Update *
265 **************************************/
267 // Given the allocated sample buffer, this function updates each delay line
268 // offset.
269 static inline ALvoid RealizeLineOffset(ALfloat *sampleBuffer, DelayLine *Delay)
271 Delay->Line = &sampleBuffer[(ptrdiff_t)Delay->Line];
274 // Calculate the length of a delay line and store its mask and offset.
275 static ALuint CalcLineLength(ALfloat length, ptrdiff_t offset, ALuint frequency, ALuint extra, DelayLine *Delay)
277 ALuint samples;
279 // All line lengths are powers of 2, calculated from their lengths, with
280 // an additional sample in case of rounding errors.
281 samples = fastf2u(length*frequency) + extra;
282 samples = NextPowerOf2(samples + 1);
283 // All lines share a single sample buffer.
284 Delay->Mask = samples - 1;
285 Delay->Line = (ALfloat*)offset;
286 // Return the sample count for accumulation.
287 return samples;
290 /* Calculates the delay line metrics and allocates the shared sample buffer
291 * for all lines given the sample rate (frequency). If an allocation failure
292 * occurs, it returns AL_FALSE.
294 static ALboolean AllocLines(ALuint frequency, ALreverbState *State)
296 ALuint totalSamples, index;
297 ALfloat length;
299 // All delay line lengths are calculated to accomodate the full range of
300 // lengths given their respective paramters.
301 totalSamples = 0;
303 /* The modulator's line length is calculated from the maximum modulation
304 * time and depth coefficient, and halfed for the low-to-high frequency
305 * swing. An additional sample is added to keep it stable when there is no
306 * modulation.
308 length = (AL_EAXREVERB_MAX_MODULATION_TIME*MODULATION_DEPTH_COEFF/2.0f);
309 totalSamples += CalcLineLength(length, totalSamples, frequency, 1,
310 &State->Mod.Delay);
312 // The initial delay is the sum of the reflections and late reverb
313 // delays. This must include space for storing a loop update to feed the
314 // early reflections, decorrelator, and echo.
315 length = AL_EAXREVERB_MAX_REFLECTIONS_DELAY +
316 AL_EAXREVERB_MAX_LATE_REVERB_DELAY;
317 totalSamples += CalcLineLength(length, totalSamples, frequency,
318 MAX_UPDATE_SAMPLES, &State->Delay);
320 // The early reflection lines.
321 for(index = 0;index < 4;index++)
322 totalSamples += CalcLineLength(EARLY_LINE_LENGTH[index], totalSamples,
323 frequency, 0, &State->Early.Delay[index]);
325 // The decorrelator line is calculated from the lowest reverb density (a
326 // parameter value of 1). This must include space for storing a loop update
327 // to feed the late reverb.
328 length = (DECO_FRACTION * DECO_MULTIPLIER * DECO_MULTIPLIER) *
329 LATE_LINE_LENGTH[0] * (1.0f + LATE_LINE_MULTIPLIER);
330 totalSamples += CalcLineLength(length, totalSamples, frequency, MAX_UPDATE_SAMPLES,
331 &State->Decorrelator);
333 // The late all-pass lines.
334 for(index = 0;index < 4;index++)
335 totalSamples += CalcLineLength(ALLPASS_LINE_LENGTH[index], totalSamples,
336 frequency, 0, &State->Late.ApDelay[index]);
338 // The late delay lines are calculated from the lowest reverb density.
339 for(index = 0;index < 4;index++)
341 length = LATE_LINE_LENGTH[index] * (1.0f + LATE_LINE_MULTIPLIER);
342 totalSamples += CalcLineLength(length, totalSamples, frequency, 0,
343 &State->Late.Delay[index]);
346 // The echo all-pass and delay lines.
347 totalSamples += CalcLineLength(ECHO_ALLPASS_LENGTH, totalSamples,
348 frequency, 0, &State->Echo.ApDelay);
349 totalSamples += CalcLineLength(AL_EAXREVERB_MAX_ECHO_TIME, totalSamples,
350 frequency, 0, &State->Echo.Delay);
352 if(totalSamples != State->TotalSamples)
354 ALfloat *newBuffer;
356 TRACE("New reverb buffer length: %u samples (%f sec)\n", totalSamples, totalSamples/(float)frequency);
357 newBuffer = al_calloc(16, sizeof(ALfloat) * totalSamples);
358 if(!newBuffer) return AL_FALSE;
360 al_free(State->SampleBuffer);
361 State->SampleBuffer = newBuffer;
362 State->TotalSamples = totalSamples;
365 // Update all delays to reflect the new sample buffer.
366 RealizeLineOffset(State->SampleBuffer, &State->Delay);
367 RealizeLineOffset(State->SampleBuffer, &State->Decorrelator);
368 for(index = 0;index < 4;index++)
370 RealizeLineOffset(State->SampleBuffer, &State->Early.Delay[index]);
371 RealizeLineOffset(State->SampleBuffer, &State->Late.ApDelay[index]);
372 RealizeLineOffset(State->SampleBuffer, &State->Late.Delay[index]);
374 RealizeLineOffset(State->SampleBuffer, &State->Mod.Delay);
375 RealizeLineOffset(State->SampleBuffer, &State->Echo.ApDelay);
376 RealizeLineOffset(State->SampleBuffer, &State->Echo.Delay);
378 // Clear the sample buffer.
379 for(index = 0;index < State->TotalSamples;index++)
380 State->SampleBuffer[index] = 0.0f;
382 return AL_TRUE;
385 static ALboolean ALreverbState_deviceUpdate(ALreverbState *State, ALCdevice *Device)
387 ALuint frequency = Device->Frequency, index;
389 // Allocate the delay lines.
390 if(!AllocLines(frequency, State))
391 return AL_FALSE;
393 /* HRTF and UHJ will mix to the real output for ambient output. */
394 if(Device->Hrtf || Device->Uhj_Encoder)
396 State->ExtraOut = Device->RealOut.Buffer;
397 State->ExtraChannels = Device->RealOut.NumChannels;
399 else
401 State->ExtraOut = NULL;
402 State->ExtraChannels = 0;
405 // Calculate the modulation filter coefficient. Notice that the exponent
406 // is calculated given the current sample rate. This ensures that the
407 // resulting filter response over time is consistent across all sample
408 // rates.
409 State->Mod.Coeff = powf(MODULATION_FILTER_COEFF,
410 MODULATION_FILTER_CONST / frequency);
412 // The early reflection and late all-pass filter line lengths are static,
413 // so their offsets only need to be calculated once.
414 for(index = 0;index < 4;index++)
416 State->Early.Offset[index] = fastf2u(EARLY_LINE_LENGTH[index] * frequency);
417 State->Late.ApOffset[index] = fastf2u(ALLPASS_LINE_LENGTH[index] * frequency);
420 // The echo all-pass filter line length is static, so its offset only
421 // needs to be calculated once.
422 State->Echo.ApOffset = fastf2u(ECHO_ALLPASS_LENGTH * frequency);
424 return AL_TRUE;
427 /**************************************
428 * Effect Update *
429 **************************************/
431 // Calculate a decay coefficient given the length of each cycle and the time
432 // until the decay reaches -60 dB.
433 static inline ALfloat CalcDecayCoeff(ALfloat length, ALfloat decayTime)
435 return powf(0.001f/*-60 dB*/, length/decayTime);
438 // Calculate a decay length from a coefficient and the time until the decay
439 // reaches -60 dB.
440 static inline ALfloat CalcDecayLength(ALfloat coeff, ALfloat decayTime)
442 return log10f(coeff) * decayTime / log10f(0.001f)/*-60 dB*/;
445 // Calculate an attenuation to be applied to the input of any echo models to
446 // compensate for modal density and decay time.
447 static inline ALfloat CalcDensityGain(ALfloat a)
449 /* The energy of a signal can be obtained by finding the area under the
450 * squared signal. This takes the form of Sum(x_n^2), where x is the
451 * amplitude for the sample n.
453 * Decaying feedback matches exponential decay of the form Sum(a^n),
454 * where a is the attenuation coefficient, and n is the sample. The area
455 * under this decay curve can be calculated as: 1 / (1 - a).
457 * Modifying the above equation to find the squared area under the curve
458 * (for energy) yields: 1 / (1 - a^2). Input attenuation can then be
459 * calculated by inverting the square root of this approximation,
460 * yielding: 1 / sqrt(1 / (1 - a^2)), simplified to: sqrt(1 - a^2).
462 return sqrtf(1.0f - (a * a));
465 // Calculate the mixing matrix coefficients given a diffusion factor.
466 static inline ALvoid CalcMatrixCoeffs(ALfloat diffusion, ALfloat *x, ALfloat *y)
468 ALfloat n, t;
470 // The matrix is of order 4, so n is sqrt (4 - 1).
471 n = sqrtf(3.0f);
472 t = diffusion * atanf(n);
474 // Calculate the first mixing matrix coefficient.
475 *x = cosf(t);
476 // Calculate the second mixing matrix coefficient.
477 *y = sinf(t) / n;
480 // Calculate the limited HF ratio for use with the late reverb low-pass
481 // filters.
482 static ALfloat CalcLimitedHfRatio(ALfloat hfRatio, ALfloat airAbsorptionGainHF, ALfloat decayTime)
484 ALfloat limitRatio;
486 /* Find the attenuation due to air absorption in dB (converting delay
487 * time to meters using the speed of sound). Then reversing the decay
488 * equation, solve for HF ratio. The delay length is cancelled out of
489 * the equation, so it can be calculated once for all lines.
491 limitRatio = 1.0f / (CalcDecayLength(airAbsorptionGainHF, decayTime) *
492 SPEEDOFSOUNDMETRESPERSEC);
493 /* Using the limit calculated above, apply the upper bound to the HF
494 * ratio. Also need to limit the result to a minimum of 0.1, just like the
495 * HF ratio parameter. */
496 return clampf(limitRatio, 0.1f, hfRatio);
499 // Calculate the coefficient for a HF (and eventually LF) decay damping
500 // filter.
501 static inline ALfloat CalcDampingCoeff(ALfloat hfRatio, ALfloat length, ALfloat decayTime, ALfloat decayCoeff, ALfloat cw)
503 ALfloat coeff, g;
505 // Eventually this should boost the high frequencies when the ratio
506 // exceeds 1.
507 coeff = 0.0f;
508 if (hfRatio < 1.0f)
510 // Calculate the low-pass coefficient by dividing the HF decay
511 // coefficient by the full decay coefficient.
512 g = CalcDecayCoeff(length, decayTime * hfRatio) / decayCoeff;
514 // Damping is done with a 1-pole filter, so g needs to be squared.
515 g *= g;
516 if(g < 0.9999f) /* 1-epsilon */
518 /* Be careful with gains < 0.001, as that causes the coefficient
519 * head towards 1, which will flatten the signal. */
520 g = maxf(g, 0.001f);
521 coeff = (1 - g*cw - sqrtf(2*g*(1-cw) - g*g*(1 - cw*cw))) /
522 (1 - g);
525 // Very low decay times will produce minimal output, so apply an
526 // upper bound to the coefficient.
527 coeff = minf(coeff, 0.98f);
529 return coeff;
532 // Update the EAX modulation index, range, and depth. Keep in mind that this
533 // kind of vibrato is additive and not multiplicative as one may expect. The
534 // downswing will sound stronger than the upswing.
535 static ALvoid UpdateModulator(ALfloat modTime, ALfloat modDepth, ALuint frequency, ALreverbState *State)
537 ALuint range;
539 /* Modulation is calculated in two parts.
541 * The modulation time effects the sinus applied to the change in
542 * frequency. An index out of the current time range (both in samples)
543 * is incremented each sample. The range is bound to a reasonable
544 * minimum (1 sample) and when the timing changes, the index is rescaled
545 * to the new range (to keep the sinus consistent).
547 range = maxu(fastf2u(modTime*frequency), 1);
548 State->Mod.Index = (ALuint)(State->Mod.Index * (ALuint64)range /
549 State->Mod.Range);
550 State->Mod.Range = range;
552 /* The modulation depth effects the amount of frequency change over the
553 * range of the sinus. It needs to be scaled by the modulation time so
554 * that a given depth produces a consistent change in frequency over all
555 * ranges of time. Since the depth is applied to a sinus value, it needs
556 * to be halfed once for the sinus range and again for the sinus swing
557 * in time (half of it is spent decreasing the frequency, half is spent
558 * increasing it).
560 State->Mod.Depth = modDepth * MODULATION_DEPTH_COEFF * modTime / 2.0f /
561 2.0f * frequency;
564 // Update the offsets for the initial effect delay line.
565 static ALvoid UpdateDelayLine(ALfloat earlyDelay, ALfloat lateDelay, ALuint frequency, ALreverbState *State)
567 // Calculate the initial delay taps.
568 State->DelayTap[0] = fastf2u(earlyDelay * frequency);
569 State->DelayTap[1] = fastf2u((earlyDelay + lateDelay) * frequency);
572 // Update the early reflections mix and line coefficients.
573 static ALvoid UpdateEarlyLines(ALfloat lateDelay, ALreverbState *State)
575 ALuint index;
577 // Calculate the gain (coefficient) for each early delay line using the
578 // late delay time. This expands the early reflections to the start of
579 // the late reverb.
580 for(index = 0;index < 4;index++)
581 State->Early.Coeff[index] = CalcDecayCoeff(EARLY_LINE_LENGTH[index],
582 lateDelay);
585 // Update the offsets for the decorrelator line.
586 static ALvoid UpdateDecorrelator(ALfloat density, ALuint frequency, ALreverbState *State)
588 ALuint index;
589 ALfloat length;
591 /* The late reverb inputs are decorrelated to smooth the reverb tail and
592 * reduce harsh echos. The first tap occurs immediately, while the
593 * remaining taps are delayed by multiples of a fraction of the smallest
594 * cyclical delay time.
596 * offset[index] = (FRACTION (MULTIPLIER^index)) smallest_delay
598 for(index = 0;index < 3;index++)
600 length = (DECO_FRACTION * powf(DECO_MULTIPLIER, (ALfloat)index)) *
601 LATE_LINE_LENGTH[0] * (1.0f + (density * LATE_LINE_MULTIPLIER));
602 State->DecoTap[index] = fastf2u(length * frequency);
606 // Update the late reverb mix, line lengths, and line coefficients.
607 static ALvoid UpdateLateLines(ALfloat xMix, ALfloat density, ALfloat decayTime, ALfloat diffusion, ALfloat echoDepth, ALfloat hfRatio, ALfloat cw, ALuint frequency, ALreverbState *State)
609 ALfloat length;
610 ALuint index;
612 /* Calculate the late reverb gain. Since the output is tapped prior to the
613 * application of the next delay line coefficients, this gain needs to be
614 * attenuated by the 'x' mixing matrix coefficient as well. Also attenuate
615 * the late reverb when echo depth is high and diffusion is low, so the
616 * echo is slightly stronger than the decorrelated echos in the reverb
617 * tail.
619 State->Late.Gain = xMix * (1.0f - (echoDepth*0.5f*(1.0f - diffusion)));
621 /* To compensate for changes in modal density and decay time of the late
622 * reverb signal, the input is attenuated based on the maximal energy of
623 * the outgoing signal. This approximation is used to keep the apparent
624 * energy of the signal equal for all ranges of density and decay time.
626 * The average length of the cyclcical delay lines is used to calculate
627 * the attenuation coefficient.
629 length = (LATE_LINE_LENGTH[0] + LATE_LINE_LENGTH[1] +
630 LATE_LINE_LENGTH[2] + LATE_LINE_LENGTH[3]) / 4.0f;
631 length *= 1.0f + (density * LATE_LINE_MULTIPLIER);
632 State->Late.DensityGain = CalcDensityGain(
633 CalcDecayCoeff(length, decayTime)
636 // Calculate the all-pass feed-back and feed-forward coefficient.
637 State->Late.ApFeedCoeff = 0.5f * powf(diffusion, 2.0f);
639 for(index = 0;index < 4;index++)
641 // Calculate the gain (coefficient) for each all-pass line.
642 State->Late.ApCoeff[index] = CalcDecayCoeff(
643 ALLPASS_LINE_LENGTH[index], decayTime
646 // Calculate the length (in seconds) of each cyclical delay line.
647 length = LATE_LINE_LENGTH[index] *
648 (1.0f + (density * LATE_LINE_MULTIPLIER));
650 // Calculate the delay offset for each cyclical delay line.
651 State->Late.Offset[index] = fastf2u(length * frequency);
653 // Calculate the gain (coefficient) for each cyclical line.
654 State->Late.Coeff[index] = CalcDecayCoeff(length, decayTime);
656 // Calculate the damping coefficient for each low-pass filter.
657 State->Late.LpCoeff[index] = CalcDampingCoeff(
658 hfRatio, length, decayTime, State->Late.Coeff[index], cw
661 // Attenuate the cyclical line coefficients by the mixing coefficient
662 // (x).
663 State->Late.Coeff[index] *= xMix;
667 // Update the echo gain, line offset, line coefficients, and mixing
668 // coefficients.
669 static ALvoid UpdateEchoLine(ALfloat echoTime, ALfloat decayTime, ALfloat diffusion, ALfloat echoDepth, ALfloat hfRatio, ALfloat cw, ALuint frequency, ALreverbState *State)
671 // Update the offset and coefficient for the echo delay line.
672 State->Echo.Offset = fastf2u(echoTime * frequency);
674 // Calculate the decay coefficient for the echo line.
675 State->Echo.Coeff = CalcDecayCoeff(echoTime, decayTime);
677 // Calculate the energy-based attenuation coefficient for the echo delay
678 // line.
679 State->Echo.DensityGain = CalcDensityGain(State->Echo.Coeff);
681 // Calculate the echo all-pass feed coefficient.
682 State->Echo.ApFeedCoeff = 0.5f * powf(diffusion, 2.0f);
684 // Calculate the echo all-pass attenuation coefficient.
685 State->Echo.ApCoeff = CalcDecayCoeff(ECHO_ALLPASS_LENGTH, decayTime);
687 // Calculate the damping coefficient for each low-pass filter.
688 State->Echo.LpCoeff = CalcDampingCoeff(hfRatio, echoTime, decayTime,
689 State->Echo.Coeff, cw);
691 /* Calculate the echo mixing coefficient. This is applied to the output mix
692 * only, not the feedback.
694 State->Echo.MixCoeff = echoDepth;
697 // Update the early and late 3D panning gains.
698 static ALvoid UpdateMixedPanning(const ALCdevice *Device, const ALfloat *ReflectionsPan, const ALfloat *LateReverbPan, ALfloat Gain, ALfloat EarlyGain, ALfloat LateGain, ALreverbState *State)
700 ALfloat DirGains[MAX_OUTPUT_CHANNELS];
701 ALfloat coeffs[MAX_AMBI_COEFFS];
702 ALfloat length;
703 ALuint i;
705 /* With HRTF or UHJ, the normal output provides a panned reverb channel
706 * when a non-0-length vector is specified, while the real stereo output
707 * provides two other "direct" non-panned reverb channels.
709 memset(State->Early.PanGain, 0, sizeof(State->Early.PanGain));
710 length = sqrtf(ReflectionsPan[0]*ReflectionsPan[0] + ReflectionsPan[1]*ReflectionsPan[1] + ReflectionsPan[2]*ReflectionsPan[2]);
711 if(!(length > FLT_EPSILON))
713 for(i = 0;i < Device->RealOut.NumChannels;i++)
714 State->Early.PanGain[i&3][Device->Dry.NumChannels+i] = Gain * EarlyGain;
716 else
718 /* Note that EAX Reverb's panning vectors are using right-handed
719 * coordinates, rather than OpenAL's left-handed coordinates. Negate Z
720 * to fix this.
722 ALfloat pan[3] = {
723 ReflectionsPan[0] / length,
724 ReflectionsPan[1] / length,
725 -ReflectionsPan[2] / length,
727 length = minf(length, 1.0f);
729 CalcDirectionCoeffs(pan, 0.0f, coeffs);
730 ComputePanningGains(Device->Dry, coeffs, Gain, DirGains);
731 for(i = 0;i < Device->Dry.NumChannels;i++)
732 State->Early.PanGain[3][i] = DirGains[i] * EarlyGain * length;
733 for(i = 0;i < Device->RealOut.NumChannels;i++)
734 State->Early.PanGain[i&3][Device->Dry.NumChannels+i] = Gain * EarlyGain * (1.0f-length);
737 memset(State->Late.PanGain, 0, sizeof(State->Late.PanGain));
738 length = sqrtf(LateReverbPan[0]*LateReverbPan[0] + LateReverbPan[1]*LateReverbPan[1] + LateReverbPan[2]*LateReverbPan[2]);
739 if(!(length > FLT_EPSILON))
741 for(i = 0;i < Device->RealOut.NumChannels;i++)
742 State->Late.PanGain[i&3][Device->Dry.NumChannels+i] = Gain * LateGain;
744 else
746 ALfloat pan[3] = {
747 LateReverbPan[0] / length,
748 LateReverbPan[1] / length,
749 -LateReverbPan[2] / length,
751 length = minf(length, 1.0f);
753 CalcDirectionCoeffs(pan, 0.0f, coeffs);
754 ComputePanningGains(Device->Dry, coeffs, Gain, DirGains);
755 for(i = 0;i < Device->Dry.NumChannels;i++)
756 State->Late.PanGain[3][i] = DirGains[i] * LateGain * length;
757 for(i = 0;i < Device->RealOut.NumChannels;i++)
758 State->Late.PanGain[i&3][Device->Dry.NumChannels+i] = Gain * LateGain * (1.0f-length);
762 static ALvoid UpdateDirectPanning(const ALCdevice *Device, const ALfloat *ReflectionsPan, const ALfloat *LateReverbPan, ALfloat Gain, ALfloat EarlyGain, ALfloat LateGain, ALreverbState *State)
764 ALfloat AmbientGains[MAX_OUTPUT_CHANNELS];
765 ALfloat DirGains[MAX_OUTPUT_CHANNELS];
766 ALfloat coeffs[MAX_AMBI_COEFFS];
767 ALfloat length;
768 ALuint i;
770 /* Apply a boost of about 3dB to better match the expected stereo output volume. */
771 ComputeAmbientGains(Device->Dry, Gain*1.414213562f, AmbientGains);
773 memset(State->Early.PanGain, 0, sizeof(State->Early.PanGain));
774 length = sqrtf(ReflectionsPan[0]*ReflectionsPan[0] + ReflectionsPan[1]*ReflectionsPan[1] + ReflectionsPan[2]*ReflectionsPan[2]);
775 if(!(length > FLT_EPSILON))
777 for(i = 0;i < Device->Dry.NumChannels;i++)
778 State->Early.PanGain[i&3][i] = AmbientGains[i] * EarlyGain;
780 else
782 ALfloat pan[3] = {
783 ReflectionsPan[0] / length,
784 ReflectionsPan[1] / length,
785 -ReflectionsPan[2] / length,
787 length = minf(length, 1.0f);
789 CalcDirectionCoeffs(pan, 0.0f, coeffs);
790 ComputePanningGains(Device->Dry, coeffs, Gain, DirGains);
791 for(i = 0;i < Device->Dry.NumChannels;i++)
792 State->Early.PanGain[i&3][i] = lerp(AmbientGains[i], DirGains[i], length) * EarlyGain;
795 memset(State->Late.PanGain, 0, sizeof(State->Late.PanGain));
796 length = sqrtf(LateReverbPan[0]*LateReverbPan[0] + LateReverbPan[1]*LateReverbPan[1] + LateReverbPan[2]*LateReverbPan[2]);
797 if(!(length > FLT_EPSILON))
799 for(i = 0;i < Device->Dry.NumChannels;i++)
800 State->Late.PanGain[i&3][i] = AmbientGains[i] * LateGain;
802 else
804 ALfloat pan[3] = {
805 LateReverbPan[0] / length,
806 LateReverbPan[1] / length,
807 -LateReverbPan[2] / length,
809 length = minf(length, 1.0f);
811 CalcDirectionCoeffs(pan, 0.0f, coeffs);
812 ComputePanningGains(Device->Dry, coeffs, Gain, DirGains);
813 for(i = 0;i < Device->Dry.NumChannels;i++)
814 State->Late.PanGain[i&3][i] = lerp(AmbientGains[i], DirGains[i], length) * LateGain;
818 static ALvoid Update3DPanning(const ALCdevice *Device, const ALfloat *ReflectionsPan, const ALfloat *LateReverbPan, ALfloat Gain, ALfloat EarlyGain, ALfloat LateGain, ALreverbState *State)
820 static const ALfloat PanDirs[4][3] = {
821 { -0.707106781f, 0.0f, -0.707106781f }, /* Front left */
822 { 0.707106781f, 0.0f, -0.707106781f }, /* Front right */
823 { 0.707106781f, 0.0f, 0.707106781f }, /* Back right */
824 { -0.707106781f, 0.0f, 0.707106781f } /* Back left */
826 ALfloat coeffs[MAX_AMBI_COEFFS];
827 ALfloat gain[4];
828 ALfloat length;
829 ALuint i;
831 /* sqrt(0.5) would be the gain scaling when the panning vector is 0. This
832 * also equals sqrt(2/4), a nice gain scaling for the four virtual points
833 * producing an "ambient" response.
835 gain[0] = gain[1] = gain[2] = gain[3] = 0.707106781f;
836 length = sqrtf(ReflectionsPan[0]*ReflectionsPan[0] + ReflectionsPan[1]*ReflectionsPan[1] + ReflectionsPan[2]*ReflectionsPan[2]);
837 if(length > 1.0f)
839 ALfloat pan[3] = {
840 ReflectionsPan[0] / length,
841 ReflectionsPan[1] / length,
842 -ReflectionsPan[2] / length,
844 for(i = 0;i < 4;i++)
846 ALfloat dotp = pan[0]*PanDirs[i][0] + pan[1]*PanDirs[i][1] + pan[2]*PanDirs[i][2];
847 gain[i] = sqrtf(clampf(dotp*0.5f + 0.5f, 0.0f, 1.0f));
850 else if(length > FLT_EPSILON)
852 for(i = 0;i < 4;i++)
854 ALfloat dotp = ReflectionsPan[0]*PanDirs[i][0] + ReflectionsPan[1]*PanDirs[i][1] +
855 -ReflectionsPan[2]*PanDirs[i][2];
856 gain[i] = sqrtf(clampf(dotp*0.5f + 0.5f, 0.0f, 1.0f));
859 for(i = 0;i < 4;i++)
861 CalcDirectionCoeffs(PanDirs[i], 0.0f, coeffs);
862 ComputePanningGains(Device->Dry, coeffs, Gain*EarlyGain*gain[i],
863 State->Early.PanGain[i]);
866 gain[0] = gain[1] = gain[2] = gain[3] = 0.707106781f;
867 length = sqrtf(LateReverbPan[0]*LateReverbPan[0] + LateReverbPan[1]*LateReverbPan[1] + LateReverbPan[2]*LateReverbPan[2]);
868 if(length > 1.0f)
870 ALfloat pan[3] = {
871 LateReverbPan[0] / length,
872 LateReverbPan[1] / length,
873 -LateReverbPan[2] / length,
875 for(i = 0;i < 4;i++)
877 ALfloat dotp = pan[0]*PanDirs[i][0] + pan[1]*PanDirs[i][1] + pan[2]*PanDirs[i][2];
878 gain[i] = sqrtf(clampf(dotp*0.5f + 0.5f, 0.0f, 1.0f));
881 else if(length > FLT_EPSILON)
883 for(i = 0;i < 4;i++)
885 ALfloat dotp = LateReverbPan[0]*PanDirs[i][0] + LateReverbPan[1]*PanDirs[i][1] +
886 -LateReverbPan[2]*PanDirs[i][2];
887 gain[i] = sqrtf(clampf(dotp*0.5f + 0.5f, 0.0f, 1.0f));
890 for(i = 0;i < 4;i++)
892 CalcDirectionCoeffs(PanDirs[i], 0.0f, coeffs);
893 ComputePanningGains(Device->Dry, coeffs, Gain*LateGain*gain[i],
894 State->Late.PanGain[i]);
898 static ALvoid ALreverbState_update(ALreverbState *State, const ALCdevice *Device, const ALeffectslot *Slot, const ALeffectProps *props)
900 ALuint frequency = Device->Frequency;
901 ALfloat lfscale, hfscale, hfRatio;
902 ALfloat gain, gainlf, gainhf;
903 ALfloat cw, x, y;
905 if(Slot->Params.EffectType == AL_EFFECT_EAXREVERB && !EmulateEAXReverb)
906 State->IsEax = AL_TRUE;
907 else if(Slot->Params.EffectType == AL_EFFECT_REVERB || EmulateEAXReverb)
908 State->IsEax = AL_FALSE;
910 // Calculate the master filters
911 hfscale = props->Reverb.HFReference / frequency;
912 gainhf = maxf(props->Reverb.GainHF, 0.0001f);
913 ALfilterState_setParams(&State->LpFilter, ALfilterType_HighShelf,
914 gainhf, hfscale, calc_rcpQ_from_slope(gainhf, 0.75f));
915 lfscale = props->Reverb.LFReference / frequency;
916 gainlf = maxf(props->Reverb.GainLF, 0.0001f);
917 ALfilterState_setParams(&State->HpFilter, ALfilterType_LowShelf,
918 gainlf, lfscale, calc_rcpQ_from_slope(gainlf, 0.75f));
920 // Update the modulator line.
921 UpdateModulator(props->Reverb.ModulationTime, props->Reverb.ModulationDepth,
922 frequency, State);
924 // Update the initial effect delay.
925 UpdateDelayLine(props->Reverb.ReflectionsDelay, props->Reverb.LateReverbDelay,
926 frequency, State);
928 // Update the early lines.
929 UpdateEarlyLines(props->Reverb.LateReverbDelay, State);
931 // Update the decorrelator.
932 UpdateDecorrelator(props->Reverb.Density, frequency, State);
934 // Get the mixing matrix coefficients (x and y).
935 CalcMatrixCoeffs(props->Reverb.Diffusion, &x, &y);
936 // Then divide x into y to simplify the matrix calculation.
937 State->Late.MixCoeff = y / x;
939 // If the HF limit parameter is flagged, calculate an appropriate limit
940 // based on the air absorption parameter.
941 hfRatio = props->Reverb.DecayHFRatio;
942 if(props->Reverb.DecayHFLimit && props->Reverb.AirAbsorptionGainHF < 1.0f)
943 hfRatio = CalcLimitedHfRatio(hfRatio, props->Reverb.AirAbsorptionGainHF,
944 props->Reverb.DecayTime);
946 cw = cosf(F_TAU * hfscale);
947 // Update the late lines.
948 UpdateLateLines(x, props->Reverb.Density, props->Reverb.DecayTime,
949 props->Reverb.Diffusion, props->Reverb.EchoDepth,
950 hfRatio, cw, frequency, State);
952 // Update the echo line.
953 UpdateEchoLine(props->Reverb.EchoTime, props->Reverb.DecayTime,
954 props->Reverb.Diffusion, props->Reverb.EchoDepth,
955 hfRatio, cw, frequency, State);
957 gain = props->Reverb.Gain * Slot->Params.Gain * ReverbBoost;
958 // Update early and late 3D panning.
959 if(Device->Hrtf || Device->Uhj_Encoder)
960 UpdateMixedPanning(Device, props->Reverb.ReflectionsPan,
961 props->Reverb.LateReverbPan, gain,
962 props->Reverb.ReflectionsGain,
963 props->Reverb.LateReverbGain, State);
964 else if(Device->AmbiDecoder || (Device->FmtChans >= DevFmtAmbi1 &&
965 Device->FmtChans <= DevFmtAmbi3))
966 Update3DPanning(Device, props->Reverb.ReflectionsPan,
967 props->Reverb.LateReverbPan, gain,
968 props->Reverb.ReflectionsGain,
969 props->Reverb.LateReverbGain, State);
970 else
971 UpdateDirectPanning(Device, props->Reverb.ReflectionsPan,
972 props->Reverb.LateReverbPan, gain,
973 props->Reverb.ReflectionsGain,
974 props->Reverb.LateReverbGain, State);
978 /**************************************
979 * Effect Processing *
980 **************************************/
982 // Basic delay line input/output routines.
983 static inline ALfloat DelayLineOut(DelayLine *Delay, ALuint offset)
985 return Delay->Line[offset&Delay->Mask];
988 static inline ALvoid DelayLineIn(DelayLine *Delay, ALuint offset, ALfloat in)
990 Delay->Line[offset&Delay->Mask] = in;
993 // Given an input sample, this function produces modulation for the late
994 // reverb.
995 static inline ALfloat EAXModulation(ALreverbState *State, ALuint offset, ALfloat in)
997 ALfloat sinus, frac, fdelay;
998 ALfloat out0, out1;
999 ALuint delay;
1001 // Calculate the sinus rythm (dependent on modulation time and the
1002 // sampling rate). The center of the sinus is moved to reduce the delay
1003 // of the effect when the time or depth are low.
1004 sinus = 1.0f - cosf(F_TAU * State->Mod.Index / State->Mod.Range);
1006 // Step the modulation index forward, keeping it bound to its range.
1007 State->Mod.Index = (State->Mod.Index + 1) % State->Mod.Range;
1009 // The depth determines the range over which to read the input samples
1010 // from, so it must be filtered to reduce the distortion caused by even
1011 // small parameter changes.
1012 State->Mod.Filter = lerp(State->Mod.Filter, State->Mod.Depth,
1013 State->Mod.Coeff);
1015 // Calculate the read offset and fraction between it and the next sample.
1016 frac = modff(State->Mod.Filter*sinus, &fdelay);
1017 delay = fastf2u(fdelay);
1019 /* Add the incoming sample to the delay line first, so a 0 delay gets the
1020 * incoming sample.
1022 DelayLineIn(&State->Mod.Delay, offset, in);
1023 /* Get the two samples crossed by the offset delay */
1024 out0 = DelayLineOut(&State->Mod.Delay, offset - delay);
1025 out1 = DelayLineOut(&State->Mod.Delay, offset - delay - 1);
1027 // The output is obtained by linearly interpolating the two samples that
1028 // were acquired above.
1029 return lerp(out0, out1, frac);
1032 // Given some input sample, this function produces four-channel outputs for the
1033 // early reflections.
1034 static inline ALvoid EarlyReflection(ALreverbState *State, ALuint todo, ALfloat (*restrict out)[4])
1036 ALfloat d[4], v, f[4];
1037 ALuint i;
1039 for(i = 0;i < todo;i++)
1041 ALuint offset = State->Offset+i;
1043 // Obtain the decayed results of each early delay line.
1044 d[0] = DelayLineOut(&State->Early.Delay[0], offset-State->Early.Offset[0]) * State->Early.Coeff[0];
1045 d[1] = DelayLineOut(&State->Early.Delay[1], offset-State->Early.Offset[1]) * State->Early.Coeff[1];
1046 d[2] = DelayLineOut(&State->Early.Delay[2], offset-State->Early.Offset[2]) * State->Early.Coeff[2];
1047 d[3] = DelayLineOut(&State->Early.Delay[3], offset-State->Early.Offset[3]) * State->Early.Coeff[3];
1049 /* The following uses a lossless scattering junction from waveguide
1050 * theory. It actually amounts to a householder mixing matrix, which
1051 * will produce a maximally diffuse response, and means this can
1052 * probably be considered a simple feed-back delay network (FDN).
1054 * ---
1056 * v = 2/N / d_i
1057 * ---
1058 * i=1
1060 v = (d[0] + d[1] + d[2] + d[3]) * 0.5f;
1061 // The junction is loaded with the input here.
1062 v += DelayLineOut(&State->Delay, offset-State->DelayTap[0]);
1064 // Calculate the feed values for the delay lines.
1065 f[0] = v - d[0];
1066 f[1] = v - d[1];
1067 f[2] = v - d[2];
1068 f[3] = v - d[3];
1070 // Re-feed the delay lines.
1071 DelayLineIn(&State->Early.Delay[0], offset, f[0]);
1072 DelayLineIn(&State->Early.Delay[1], offset, f[1]);
1073 DelayLineIn(&State->Early.Delay[2], offset, f[2]);
1074 DelayLineIn(&State->Early.Delay[3], offset, f[3]);
1076 /* Output the results of the junction for all four channels with a
1077 * constant attenuation of 0.5.
1079 out[i][0] = f[0] * 0.5f;
1080 out[i][1] = f[1] * 0.5f;
1081 out[i][2] = f[2] * 0.5f;
1082 out[i][3] = f[3] * 0.5f;
1086 // Basic attenuated all-pass input/output routine.
1087 static inline ALfloat AllpassInOut(DelayLine *Delay, ALuint outOffset, ALuint inOffset, ALfloat in, ALfloat feedCoeff, ALfloat coeff)
1089 ALfloat out, feed;
1091 out = DelayLineOut(Delay, outOffset);
1092 feed = feedCoeff * in;
1093 DelayLineIn(Delay, inOffset, (feedCoeff * (out - feed)) + in);
1095 // The time-based attenuation is only applied to the delay output to
1096 // keep it from affecting the feed-back path (which is already controlled
1097 // by the all-pass feed coefficient).
1098 return (coeff * out) - feed;
1101 // All-pass input/output routine for late reverb.
1102 static inline ALfloat LateAllPassInOut(ALreverbState *State, ALuint offset, ALuint index, ALfloat in)
1104 return AllpassInOut(&State->Late.ApDelay[index],
1105 offset - State->Late.ApOffset[index],
1106 offset, in, State->Late.ApFeedCoeff,
1107 State->Late.ApCoeff[index]);
1110 // Low-pass filter input/output routine for late reverb.
1111 static inline ALfloat LateLowPassInOut(ALreverbState *State, ALuint index, ALfloat in)
1113 in = lerp(in, State->Late.LpSample[index], State->Late.LpCoeff[index]);
1114 State->Late.LpSample[index] = in;
1115 return in;
1118 // Given four decorrelated input samples, this function produces four-channel
1119 // output for the late reverb.
1120 static inline ALvoid LateReverb(ALreverbState *State, ALuint todo, ALfloat (*restrict out)[4])
1122 ALfloat d[4], f[4];
1123 ALuint i;
1125 // Feed the decorrelator from the energy-attenuated output of the second
1126 // delay tap.
1127 for(i = 0;i < todo;i++)
1129 ALuint offset = State->Offset+i;
1130 ALfloat sample = DelayLineOut(&State->Delay, offset - State->DelayTap[1]) *
1131 State->Late.DensityGain;
1132 DelayLineIn(&State->Decorrelator, offset, sample);
1135 for(i = 0;i < todo;i++)
1137 ALuint offset = State->Offset+i;
1139 /* Obtain four decorrelated input samples. */
1140 f[0] = DelayLineOut(&State->Decorrelator, offset);
1141 f[1] = DelayLineOut(&State->Decorrelator, offset-State->DecoTap[0]);
1142 f[2] = DelayLineOut(&State->Decorrelator, offset-State->DecoTap[1]);
1143 f[3] = DelayLineOut(&State->Decorrelator, offset-State->DecoTap[2]);
1145 /* Add the decayed results of the cyclical delay lines, then pass the
1146 * results through the low-pass filters.
1148 f[0] += DelayLineOut(&State->Late.Delay[0], offset-State->Late.Offset[0]) * State->Late.Coeff[0];
1149 f[1] += DelayLineOut(&State->Late.Delay[1], offset-State->Late.Offset[1]) * State->Late.Coeff[1];
1150 f[2] += DelayLineOut(&State->Late.Delay[2], offset-State->Late.Offset[2]) * State->Late.Coeff[2];
1151 f[3] += DelayLineOut(&State->Late.Delay[3], offset-State->Late.Offset[3]) * State->Late.Coeff[3];
1153 // This is where the feed-back cycles from line 0 to 1 to 3 to 2 and
1154 // back to 0.
1155 d[0] = LateLowPassInOut(State, 2, f[2]);
1156 d[1] = LateLowPassInOut(State, 0, f[0]);
1157 d[2] = LateLowPassInOut(State, 3, f[3]);
1158 d[3] = LateLowPassInOut(State, 1, f[1]);
1160 // To help increase diffusion, run each line through an all-pass filter.
1161 // When there is no diffusion, the shortest all-pass filter will feed
1162 // the shortest delay line.
1163 d[0] = LateAllPassInOut(State, offset, 0, d[0]);
1164 d[1] = LateAllPassInOut(State, offset, 1, d[1]);
1165 d[2] = LateAllPassInOut(State, offset, 2, d[2]);
1166 d[3] = LateAllPassInOut(State, offset, 3, d[3]);
1168 /* Late reverb is done with a modified feed-back delay network (FDN)
1169 * topology. Four input lines are each fed through their own all-pass
1170 * filter and then into the mixing matrix. The four outputs of the
1171 * mixing matrix are then cycled back to the inputs. Each output feeds
1172 * a different input to form a circlular feed cycle.
1174 * The mixing matrix used is a 4D skew-symmetric rotation matrix
1175 * derived using a single unitary rotational parameter:
1177 * [ d, a, b, c ] 1 = a^2 + b^2 + c^2 + d^2
1178 * [ -a, d, c, -b ]
1179 * [ -b, -c, d, a ]
1180 * [ -c, b, -a, d ]
1182 * The rotation is constructed from the effect's diffusion parameter,
1183 * yielding: 1 = x^2 + 3 y^2; where a, b, and c are the coefficient y
1184 * with differing signs, and d is the coefficient x. The matrix is
1185 * thus:
1187 * [ x, y, -y, y ] n = sqrt(matrix_order - 1)
1188 * [ -y, x, y, y ] t = diffusion_parameter * atan(n)
1189 * [ y, -y, x, y ] x = cos(t)
1190 * [ -y, -y, -y, x ] y = sin(t) / n
1192 * To reduce the number of multiplies, the x coefficient is applied
1193 * with the cyclical delay line coefficients. Thus only the y
1194 * coefficient is applied when mixing, and is modified to be: y / x.
1196 f[0] = d[0] + (State->Late.MixCoeff * ( d[1] + -d[2] + d[3]));
1197 f[1] = d[1] + (State->Late.MixCoeff * (-d[0] + d[2] + d[3]));
1198 f[2] = d[2] + (State->Late.MixCoeff * ( d[0] + -d[1] + d[3]));
1199 f[3] = d[3] + (State->Late.MixCoeff * (-d[0] + -d[1] + -d[2] ));
1201 // Output the results of the matrix for all four channels, attenuated by
1202 // the late reverb gain (which is attenuated by the 'x' mix coefficient).
1203 out[i][0] = State->Late.Gain * f[0];
1204 out[i][1] = State->Late.Gain * f[1];
1205 out[i][2] = State->Late.Gain * f[2];
1206 out[i][3] = State->Late.Gain * f[3];
1208 // Re-feed the cyclical delay lines.
1209 DelayLineIn(&State->Late.Delay[0], offset, f[0]);
1210 DelayLineIn(&State->Late.Delay[1], offset, f[1]);
1211 DelayLineIn(&State->Late.Delay[2], offset, f[2]);
1212 DelayLineIn(&State->Late.Delay[3], offset, f[3]);
1216 // Given an input sample, this function mixes echo into the four-channel late
1217 // reverb.
1218 static inline ALvoid EAXEcho(ALreverbState *State, ALuint todo, ALfloat (*restrict late)[4])
1220 ALfloat out, feed;
1221 ALuint i;
1223 for(i = 0;i < todo;i++)
1225 ALuint offset = State->Offset+i;
1227 // Get the latest attenuated echo sample for output.
1228 feed = DelayLineOut(&State->Echo.Delay, offset-State->Echo.Offset) *
1229 State->Echo.Coeff;
1231 // Mix the output into the late reverb channels.
1232 out = State->Echo.MixCoeff * feed;
1233 late[i][0] += out;
1234 late[i][1] += out;
1235 late[i][2] += out;
1236 late[i][3] += out;
1238 // Mix the energy-attenuated input with the output and pass it through
1239 // the echo low-pass filter.
1240 feed += DelayLineOut(&State->Delay, offset-State->DelayTap[1]) *
1241 State->Echo.DensityGain;
1242 feed = lerp(feed, State->Echo.LpSample, State->Echo.LpCoeff);
1243 State->Echo.LpSample = feed;
1245 // Then the echo all-pass filter.
1246 feed = AllpassInOut(&State->Echo.ApDelay, offset-State->Echo.ApOffset,
1247 offset, feed, State->Echo.ApFeedCoeff,
1248 State->Echo.ApCoeff);
1250 // Feed the delay with the mixed and filtered sample.
1251 DelayLineIn(&State->Echo.Delay, offset, feed);
1255 // Perform the non-EAX reverb pass on a given input sample, resulting in
1256 // four-channel output.
1257 static inline ALvoid VerbPass(ALreverbState *State, ALuint todo, const ALfloat *input, ALfloat (*restrict early)[4], ALfloat (*restrict late)[4])
1259 ALuint i;
1261 // Low-pass filter the incoming samples (use the early buffer as temp storage).
1262 ALfilterState_process(&State->LpFilter, &early[0][0], input, todo);
1263 for(i = 0;i < todo;i++)
1264 DelayLineIn(&State->Delay, State->Offset+i, early[i>>2][i&3]);
1266 // Calculate the early reflection from the first delay tap.
1267 EarlyReflection(State, todo, early);
1269 // Calculate the late reverb from the decorrelator taps.
1270 LateReverb(State, todo, late);
1272 // Step all delays forward one sample.
1273 State->Offset += todo;
1276 // Perform the EAX reverb pass on a given input sample, resulting in four-
1277 // channel output.
1278 static inline ALvoid EAXVerbPass(ALreverbState *State, ALuint todo, const ALfloat *input, ALfloat (*restrict early)[4], ALfloat (*restrict late)[4])
1280 ALuint i;
1282 // Band-pass and modulate the incoming samples (use the early buffer as temp storage).
1283 ALfilterState_process(&State->LpFilter, &early[0][0], input, todo);
1284 ALfilterState_process(&State->HpFilter, &early[MAX_UPDATE_SAMPLES/4][0], &early[0][0], todo);
1286 for(i = 0;i < todo;i++)
1288 ALfloat sample = early[(MAX_UPDATE_SAMPLES/4)+(i>>2)][i&3];
1290 // Perform any modulation on the input.
1291 sample = EAXModulation(State, State->Offset+i, sample);
1293 // Feed the initial delay line.
1294 DelayLineIn(&State->Delay, State->Offset+i, sample);
1297 // Calculate the early reflection from the first delay tap.
1298 EarlyReflection(State, todo, early);
1300 // Calculate the late reverb from the decorrelator taps.
1301 LateReverb(State, todo, late);
1303 // Calculate and mix in any echo.
1304 EAXEcho(State, todo, late);
1306 // Step all delays forward.
1307 State->Offset += todo;
1310 static ALvoid ALreverbState_processStandard(ALreverbState *State, ALuint SamplesToDo, const ALfloat *restrict SamplesIn, ALfloat (*restrict SamplesOut)[BUFFERSIZE], ALuint NumChannels)
1312 ALfloat (*restrict early)[4] = State->EarlySamples;
1313 ALfloat (*restrict late)[4] = State->ReverbSamples;
1314 ALuint index, c, i, l;
1315 ALfloat gain;
1317 /* Process reverb for these samples. */
1318 for(index = 0;index < SamplesToDo;)
1320 ALuint todo = minu(SamplesToDo-index, MAX_UPDATE_SAMPLES);
1322 VerbPass(State, todo, &SamplesIn[index], early, late);
1324 for(l = 0;l < 4;l++)
1326 for(c = 0;c < NumChannels;c++)
1328 gain = State->Early.PanGain[l][c];
1329 if(fabsf(gain) > GAIN_SILENCE_THRESHOLD)
1331 for(i = 0;i < todo;i++)
1332 SamplesOut[c][index+i] += gain*early[i][l];
1334 gain = State->Late.PanGain[l][c];
1335 if(fabsf(gain) > GAIN_SILENCE_THRESHOLD)
1337 for(i = 0;i < todo;i++)
1338 SamplesOut[c][index+i] += gain*late[i][l];
1341 for(c = 0;c < State->ExtraChannels;c++)
1343 gain = State->Early.PanGain[l][NumChannels+c];
1344 if(fabsf(gain) > GAIN_SILENCE_THRESHOLD)
1346 for(i = 0;i < todo;i++)
1347 State->ExtraOut[c][index+i] += gain*early[i][l];
1349 gain = State->Late.PanGain[l][NumChannels+c];
1350 if(fabsf(gain) > GAIN_SILENCE_THRESHOLD)
1352 for(i = 0;i < todo;i++)
1353 State->ExtraOut[c][index+i] += gain*late[i][l];
1358 index += todo;
1362 static ALvoid ALreverbState_processEax(ALreverbState *State, ALuint SamplesToDo, const ALfloat *restrict SamplesIn, ALfloat (*restrict SamplesOut)[BUFFERSIZE], ALuint NumChannels)
1364 ALfloat (*restrict early)[4] = State->EarlySamples;
1365 ALfloat (*restrict late)[4] = State->ReverbSamples;
1366 ALuint index, c, i, l;
1367 ALfloat gain;
1369 /* Process reverb for these samples. */
1370 for(index = 0;index < SamplesToDo;)
1372 ALuint todo = minu(SamplesToDo-index, MAX_UPDATE_SAMPLES);
1374 EAXVerbPass(State, todo, &SamplesIn[index], early, late);
1376 for(l = 0;l < 4;l++)
1378 for(c = 0;c < NumChannels;c++)
1380 gain = State->Early.PanGain[l][c];
1381 if(fabsf(gain) > GAIN_SILENCE_THRESHOLD)
1383 for(i = 0;i < todo;i++)
1384 SamplesOut[c][index+i] += gain*early[i][l];
1386 gain = State->Late.PanGain[l][c];
1387 if(fabsf(gain) > GAIN_SILENCE_THRESHOLD)
1389 for(i = 0;i < todo;i++)
1390 SamplesOut[c][index+i] += gain*late[i][l];
1393 for(c = 0;c < State->ExtraChannels;c++)
1395 gain = State->Early.PanGain[l][NumChannels+c];
1396 if(fabsf(gain) > GAIN_SILENCE_THRESHOLD)
1398 for(i = 0;i < todo;i++)
1399 State->ExtraOut[c][index+i] += gain*early[i][l];
1401 gain = State->Late.PanGain[l][NumChannels+c];
1402 if(fabsf(gain) > GAIN_SILENCE_THRESHOLD)
1404 for(i = 0;i < todo;i++)
1405 State->ExtraOut[c][index+i] += gain*late[i][l];
1410 index += todo;
1414 static ALvoid ALreverbState_process(ALreverbState *State, ALuint SamplesToDo, const ALfloat (*restrict SamplesIn)[BUFFERSIZE], ALfloat (*restrict SamplesOut)[BUFFERSIZE], ALuint NumChannels)
1416 if(State->IsEax)
1417 ALreverbState_processEax(State, SamplesToDo, SamplesIn[0], SamplesOut, NumChannels);
1418 else
1419 ALreverbState_processStandard(State, SamplesToDo, SamplesIn[0], SamplesOut, NumChannels);
1423 typedef struct ALreverbStateFactory {
1424 DERIVE_FROM_TYPE(ALeffectStateFactory);
1425 } ALreverbStateFactory;
1427 static ALeffectState *ALreverbStateFactory_create(ALreverbStateFactory* UNUSED(factory))
1429 ALreverbState *state;
1430 ALuint index, l;
1432 state = ALreverbState_New(sizeof(*state));
1433 if(!state) return NULL;
1434 SET_VTABLE2(ALreverbState, ALeffectState, state);
1436 state->IsEax = AL_FALSE;
1437 state->ExtraChannels = 0;
1439 state->TotalSamples = 0;
1440 state->SampleBuffer = NULL;
1442 ALfilterState_clear(&state->LpFilter);
1443 ALfilterState_clear(&state->HpFilter);
1445 state->Mod.Delay.Mask = 0;
1446 state->Mod.Delay.Line = NULL;
1447 state->Mod.Index = 0;
1448 state->Mod.Range = 1;
1449 state->Mod.Depth = 0.0f;
1450 state->Mod.Coeff = 0.0f;
1451 state->Mod.Filter = 0.0f;
1453 state->Delay.Mask = 0;
1454 state->Delay.Line = NULL;
1455 state->DelayTap[0] = 0;
1456 state->DelayTap[1] = 0;
1458 for(index = 0;index < 4;index++)
1460 state->Early.Coeff[index] = 0.0f;
1461 state->Early.Delay[index].Mask = 0;
1462 state->Early.Delay[index].Line = NULL;
1463 state->Early.Offset[index] = 0;
1466 state->Decorrelator.Mask = 0;
1467 state->Decorrelator.Line = NULL;
1468 state->DecoTap[0] = 0;
1469 state->DecoTap[1] = 0;
1470 state->DecoTap[2] = 0;
1472 state->Late.Gain = 0.0f;
1473 state->Late.DensityGain = 0.0f;
1474 state->Late.ApFeedCoeff = 0.0f;
1475 state->Late.MixCoeff = 0.0f;
1476 for(index = 0;index < 4;index++)
1478 state->Late.ApCoeff[index] = 0.0f;
1479 state->Late.ApDelay[index].Mask = 0;
1480 state->Late.ApDelay[index].Line = NULL;
1481 state->Late.ApOffset[index] = 0;
1483 state->Late.Coeff[index] = 0.0f;
1484 state->Late.Delay[index].Mask = 0;
1485 state->Late.Delay[index].Line = NULL;
1486 state->Late.Offset[index] = 0;
1488 state->Late.LpCoeff[index] = 0.0f;
1489 state->Late.LpSample[index] = 0.0f;
1492 for(l = 0;l < 4;l++)
1494 for(index = 0;index < MAX_OUTPUT_CHANNELS;index++)
1496 state->Early.PanGain[l][index] = 0.0f;
1497 state->Late.PanGain[l][index] = 0.0f;
1501 state->Echo.DensityGain = 0.0f;
1502 state->Echo.Delay.Mask = 0;
1503 state->Echo.Delay.Line = NULL;
1504 state->Echo.ApDelay.Mask = 0;
1505 state->Echo.ApDelay.Line = NULL;
1506 state->Echo.Coeff = 0.0f;
1507 state->Echo.ApFeedCoeff = 0.0f;
1508 state->Echo.ApCoeff = 0.0f;
1509 state->Echo.Offset = 0;
1510 state->Echo.ApOffset = 0;
1511 state->Echo.LpCoeff = 0.0f;
1512 state->Echo.LpSample = 0.0f;
1513 state->Echo.MixCoeff = 0.0f;
1515 state->Offset = 0;
1517 return STATIC_CAST(ALeffectState, state);
1520 DEFINE_ALEFFECTSTATEFACTORY_VTABLE(ALreverbStateFactory);
1522 ALeffectStateFactory *ALreverbStateFactory_getFactory(void)
1524 static ALreverbStateFactory ReverbFactory = { { GET_VTABLE2(ALreverbStateFactory, ALeffectStateFactory) } };
1526 return STATIC_CAST(ALeffectStateFactory, &ReverbFactory);
1530 void ALeaxreverb_setParami(ALeffect *effect, ALCcontext *context, ALenum param, ALint val)
1532 ALeffectProps *props = &effect->Props;
1533 switch(param)
1535 case AL_EAXREVERB_DECAY_HFLIMIT:
1536 if(!(val >= AL_EAXREVERB_MIN_DECAY_HFLIMIT && val <= AL_EAXREVERB_MAX_DECAY_HFLIMIT))
1537 SET_ERROR_AND_RETURN(context, AL_INVALID_VALUE);
1538 props->Reverb.DecayHFLimit = val;
1539 break;
1541 default:
1542 SET_ERROR_AND_RETURN(context, AL_INVALID_ENUM);
1545 void ALeaxreverb_setParamiv(ALeffect *effect, ALCcontext *context, ALenum param, const ALint *vals)
1547 ALeaxreverb_setParami(effect, context, param, vals[0]);
1549 void ALeaxreverb_setParamf(ALeffect *effect, ALCcontext *context, ALenum param, ALfloat val)
1551 ALeffectProps *props = &effect->Props;
1552 switch(param)
1554 case AL_EAXREVERB_DENSITY:
1555 if(!(val >= AL_EAXREVERB_MIN_DENSITY && val <= AL_EAXREVERB_MAX_DENSITY))
1556 SET_ERROR_AND_RETURN(context, AL_INVALID_VALUE);
1557 props->Reverb.Density = val;
1558 break;
1560 case AL_EAXREVERB_DIFFUSION:
1561 if(!(val >= AL_EAXREVERB_MIN_DIFFUSION && val <= AL_EAXREVERB_MAX_DIFFUSION))
1562 SET_ERROR_AND_RETURN(context, AL_INVALID_VALUE);
1563 props->Reverb.Diffusion = val;
1564 break;
1566 case AL_EAXREVERB_GAIN:
1567 if(!(val >= AL_EAXREVERB_MIN_GAIN && val <= AL_EAXREVERB_MAX_GAIN))
1568 SET_ERROR_AND_RETURN(context, AL_INVALID_VALUE);
1569 props->Reverb.Gain = val;
1570 break;
1572 case AL_EAXREVERB_GAINHF:
1573 if(!(val >= AL_EAXREVERB_MIN_GAINHF && val <= AL_EAXREVERB_MAX_GAINHF))
1574 SET_ERROR_AND_RETURN(context, AL_INVALID_VALUE);
1575 props->Reverb.GainHF = val;
1576 break;
1578 case AL_EAXREVERB_GAINLF:
1579 if(!(val >= AL_EAXREVERB_MIN_GAINLF && val <= AL_EAXREVERB_MAX_GAINLF))
1580 SET_ERROR_AND_RETURN(context, AL_INVALID_VALUE);
1581 props->Reverb.GainLF = val;
1582 break;
1584 case AL_EAXREVERB_DECAY_TIME:
1585 if(!(val >= AL_EAXREVERB_MIN_DECAY_TIME && val <= AL_EAXREVERB_MAX_DECAY_TIME))
1586 SET_ERROR_AND_RETURN(context, AL_INVALID_VALUE);
1587 props->Reverb.DecayTime = val;
1588 break;
1590 case AL_EAXREVERB_DECAY_HFRATIO:
1591 if(!(val >= AL_EAXREVERB_MIN_DECAY_HFRATIO && val <= AL_EAXREVERB_MAX_DECAY_HFRATIO))
1592 SET_ERROR_AND_RETURN(context, AL_INVALID_VALUE);
1593 props->Reverb.DecayHFRatio = val;
1594 break;
1596 case AL_EAXREVERB_DECAY_LFRATIO:
1597 if(!(val >= AL_EAXREVERB_MIN_DECAY_LFRATIO && val <= AL_EAXREVERB_MAX_DECAY_LFRATIO))
1598 SET_ERROR_AND_RETURN(context, AL_INVALID_VALUE);
1599 props->Reverb.DecayLFRatio = val;
1600 break;
1602 case AL_EAXREVERB_REFLECTIONS_GAIN:
1603 if(!(val >= AL_EAXREVERB_MIN_REFLECTIONS_GAIN && val <= AL_EAXREVERB_MAX_REFLECTIONS_GAIN))
1604 SET_ERROR_AND_RETURN(context, AL_INVALID_VALUE);
1605 props->Reverb.ReflectionsGain = val;
1606 break;
1608 case AL_EAXREVERB_REFLECTIONS_DELAY:
1609 if(!(val >= AL_EAXREVERB_MIN_REFLECTIONS_DELAY && val <= AL_EAXREVERB_MAX_REFLECTIONS_DELAY))
1610 SET_ERROR_AND_RETURN(context, AL_INVALID_VALUE);
1611 props->Reverb.ReflectionsDelay = val;
1612 break;
1614 case AL_EAXREVERB_LATE_REVERB_GAIN:
1615 if(!(val >= AL_EAXREVERB_MIN_LATE_REVERB_GAIN && val <= AL_EAXREVERB_MAX_LATE_REVERB_GAIN))
1616 SET_ERROR_AND_RETURN(context, AL_INVALID_VALUE);
1617 props->Reverb.LateReverbGain = val;
1618 break;
1620 case AL_EAXREVERB_LATE_REVERB_DELAY:
1621 if(!(val >= AL_EAXREVERB_MIN_LATE_REVERB_DELAY && val <= AL_EAXREVERB_MAX_LATE_REVERB_DELAY))
1622 SET_ERROR_AND_RETURN(context, AL_INVALID_VALUE);
1623 props->Reverb.LateReverbDelay = val;
1624 break;
1626 case AL_EAXREVERB_AIR_ABSORPTION_GAINHF:
1627 if(!(val >= AL_EAXREVERB_MIN_AIR_ABSORPTION_GAINHF && val <= AL_EAXREVERB_MAX_AIR_ABSORPTION_GAINHF))
1628 SET_ERROR_AND_RETURN(context, AL_INVALID_VALUE);
1629 props->Reverb.AirAbsorptionGainHF = val;
1630 break;
1632 case AL_EAXREVERB_ECHO_TIME:
1633 if(!(val >= AL_EAXREVERB_MIN_ECHO_TIME && val <= AL_EAXREVERB_MAX_ECHO_TIME))
1634 SET_ERROR_AND_RETURN(context, AL_INVALID_VALUE);
1635 props->Reverb.EchoTime = val;
1636 break;
1638 case AL_EAXREVERB_ECHO_DEPTH:
1639 if(!(val >= AL_EAXREVERB_MIN_ECHO_DEPTH && val <= AL_EAXREVERB_MAX_ECHO_DEPTH))
1640 SET_ERROR_AND_RETURN(context, AL_INVALID_VALUE);
1641 props->Reverb.EchoDepth = val;
1642 break;
1644 case AL_EAXREVERB_MODULATION_TIME:
1645 if(!(val >= AL_EAXREVERB_MIN_MODULATION_TIME && val <= AL_EAXREVERB_MAX_MODULATION_TIME))
1646 SET_ERROR_AND_RETURN(context, AL_INVALID_VALUE);
1647 props->Reverb.ModulationTime = val;
1648 break;
1650 case AL_EAXREVERB_MODULATION_DEPTH:
1651 if(!(val >= AL_EAXREVERB_MIN_MODULATION_DEPTH && val <= AL_EAXREVERB_MAX_MODULATION_DEPTH))
1652 SET_ERROR_AND_RETURN(context, AL_INVALID_VALUE);
1653 props->Reverb.ModulationDepth = val;
1654 break;
1656 case AL_EAXREVERB_HFREFERENCE:
1657 if(!(val >= AL_EAXREVERB_MIN_HFREFERENCE && val <= AL_EAXREVERB_MAX_HFREFERENCE))
1658 SET_ERROR_AND_RETURN(context, AL_INVALID_VALUE);
1659 props->Reverb.HFReference = val;
1660 break;
1662 case AL_EAXREVERB_LFREFERENCE:
1663 if(!(val >= AL_EAXREVERB_MIN_LFREFERENCE && val <= AL_EAXREVERB_MAX_LFREFERENCE))
1664 SET_ERROR_AND_RETURN(context, AL_INVALID_VALUE);
1665 props->Reverb.LFReference = val;
1666 break;
1668 case AL_EAXREVERB_ROOM_ROLLOFF_FACTOR:
1669 if(!(val >= AL_EAXREVERB_MIN_ROOM_ROLLOFF_FACTOR && val <= AL_EAXREVERB_MAX_ROOM_ROLLOFF_FACTOR))
1670 SET_ERROR_AND_RETURN(context, AL_INVALID_VALUE);
1671 props->Reverb.RoomRolloffFactor = val;
1672 break;
1674 default:
1675 SET_ERROR_AND_RETURN(context, AL_INVALID_ENUM);
1678 void ALeaxreverb_setParamfv(ALeffect *effect, ALCcontext *context, ALenum param, const ALfloat *vals)
1680 ALeffectProps *props = &effect->Props;
1681 switch(param)
1683 case AL_EAXREVERB_REFLECTIONS_PAN:
1684 if(!(isfinite(vals[0]) && isfinite(vals[1]) && isfinite(vals[2])))
1685 SET_ERROR_AND_RETURN(context, AL_INVALID_VALUE);
1686 props->Reverb.ReflectionsPan[0] = vals[0];
1687 props->Reverb.ReflectionsPan[1] = vals[1];
1688 props->Reverb.ReflectionsPan[2] = vals[2];
1689 break;
1690 case AL_EAXREVERB_LATE_REVERB_PAN:
1691 if(!(isfinite(vals[0]) && isfinite(vals[1]) && isfinite(vals[2])))
1692 SET_ERROR_AND_RETURN(context, AL_INVALID_VALUE);
1693 props->Reverb.LateReverbPan[0] = vals[0];
1694 props->Reverb.LateReverbPan[1] = vals[1];
1695 props->Reverb.LateReverbPan[2] = vals[2];
1696 break;
1698 default:
1699 ALeaxreverb_setParamf(effect, context, param, vals[0]);
1700 break;
1704 void ALeaxreverb_getParami(const ALeffect *effect, ALCcontext *context, ALenum param, ALint *val)
1706 const ALeffectProps *props = &effect->Props;
1707 switch(param)
1709 case AL_EAXREVERB_DECAY_HFLIMIT:
1710 *val = props->Reverb.DecayHFLimit;
1711 break;
1713 default:
1714 SET_ERROR_AND_RETURN(context, AL_INVALID_ENUM);
1717 void ALeaxreverb_getParamiv(const ALeffect *effect, ALCcontext *context, ALenum param, ALint *vals)
1719 ALeaxreverb_getParami(effect, context, param, vals);
1721 void ALeaxreverb_getParamf(const ALeffect *effect, ALCcontext *context, ALenum param, ALfloat *val)
1723 const ALeffectProps *props = &effect->Props;
1724 switch(param)
1726 case AL_EAXREVERB_DENSITY:
1727 *val = props->Reverb.Density;
1728 break;
1730 case AL_EAXREVERB_DIFFUSION:
1731 *val = props->Reverb.Diffusion;
1732 break;
1734 case AL_EAXREVERB_GAIN:
1735 *val = props->Reverb.Gain;
1736 break;
1738 case AL_EAXREVERB_GAINHF:
1739 *val = props->Reverb.GainHF;
1740 break;
1742 case AL_EAXREVERB_GAINLF:
1743 *val = props->Reverb.GainLF;
1744 break;
1746 case AL_EAXREVERB_DECAY_TIME:
1747 *val = props->Reverb.DecayTime;
1748 break;
1750 case AL_EAXREVERB_DECAY_HFRATIO:
1751 *val = props->Reverb.DecayHFRatio;
1752 break;
1754 case AL_EAXREVERB_DECAY_LFRATIO:
1755 *val = props->Reverb.DecayLFRatio;
1756 break;
1758 case AL_EAXREVERB_REFLECTIONS_GAIN:
1759 *val = props->Reverb.ReflectionsGain;
1760 break;
1762 case AL_EAXREVERB_REFLECTIONS_DELAY:
1763 *val = props->Reverb.ReflectionsDelay;
1764 break;
1766 case AL_EAXREVERB_LATE_REVERB_GAIN:
1767 *val = props->Reverb.LateReverbGain;
1768 break;
1770 case AL_EAXREVERB_LATE_REVERB_DELAY:
1771 *val = props->Reverb.LateReverbDelay;
1772 break;
1774 case AL_EAXREVERB_AIR_ABSORPTION_GAINHF:
1775 *val = props->Reverb.AirAbsorptionGainHF;
1776 break;
1778 case AL_EAXREVERB_ECHO_TIME:
1779 *val = props->Reverb.EchoTime;
1780 break;
1782 case AL_EAXREVERB_ECHO_DEPTH:
1783 *val = props->Reverb.EchoDepth;
1784 break;
1786 case AL_EAXREVERB_MODULATION_TIME:
1787 *val = props->Reverb.ModulationTime;
1788 break;
1790 case AL_EAXREVERB_MODULATION_DEPTH:
1791 *val = props->Reverb.ModulationDepth;
1792 break;
1794 case AL_EAXREVERB_HFREFERENCE:
1795 *val = props->Reverb.HFReference;
1796 break;
1798 case AL_EAXREVERB_LFREFERENCE:
1799 *val = props->Reverb.LFReference;
1800 break;
1802 case AL_EAXREVERB_ROOM_ROLLOFF_FACTOR:
1803 *val = props->Reverb.RoomRolloffFactor;
1804 break;
1806 default:
1807 SET_ERROR_AND_RETURN(context, AL_INVALID_ENUM);
1810 void ALeaxreverb_getParamfv(const ALeffect *effect, ALCcontext *context, ALenum param, ALfloat *vals)
1812 const ALeffectProps *props = &effect->Props;
1813 switch(param)
1815 case AL_EAXREVERB_REFLECTIONS_PAN:
1816 vals[0] = props->Reverb.ReflectionsPan[0];
1817 vals[1] = props->Reverb.ReflectionsPan[1];
1818 vals[2] = props->Reverb.ReflectionsPan[2];
1819 break;
1820 case AL_EAXREVERB_LATE_REVERB_PAN:
1821 vals[0] = props->Reverb.LateReverbPan[0];
1822 vals[1] = props->Reverb.LateReverbPan[1];
1823 vals[2] = props->Reverb.LateReverbPan[2];
1824 break;
1826 default:
1827 ALeaxreverb_getParamf(effect, context, param, vals);
1828 break;
1832 DEFINE_ALEFFECT_VTABLE(ALeaxreverb);
1834 void ALreverb_setParami(ALeffect *effect, ALCcontext *context, ALenum param, ALint val)
1836 ALeffectProps *props = &effect->Props;
1837 switch(param)
1839 case AL_REVERB_DECAY_HFLIMIT:
1840 if(!(val >= AL_REVERB_MIN_DECAY_HFLIMIT && val <= AL_REVERB_MAX_DECAY_HFLIMIT))
1841 SET_ERROR_AND_RETURN(context, AL_INVALID_VALUE);
1842 props->Reverb.DecayHFLimit = val;
1843 break;
1845 default:
1846 SET_ERROR_AND_RETURN(context, AL_INVALID_ENUM);
1849 void ALreverb_setParamiv(ALeffect *effect, ALCcontext *context, ALenum param, const ALint *vals)
1851 ALreverb_setParami(effect, context, param, vals[0]);
1853 void ALreverb_setParamf(ALeffect *effect, ALCcontext *context, ALenum param, ALfloat val)
1855 ALeffectProps *props = &effect->Props;
1856 switch(param)
1858 case AL_REVERB_DENSITY:
1859 if(!(val >= AL_REVERB_MIN_DENSITY && val <= AL_REVERB_MAX_DENSITY))
1860 SET_ERROR_AND_RETURN(context, AL_INVALID_VALUE);
1861 props->Reverb.Density = val;
1862 break;
1864 case AL_REVERB_DIFFUSION:
1865 if(!(val >= AL_REVERB_MIN_DIFFUSION && val <= AL_REVERB_MAX_DIFFUSION))
1866 SET_ERROR_AND_RETURN(context, AL_INVALID_VALUE);
1867 props->Reverb.Diffusion = val;
1868 break;
1870 case AL_REVERB_GAIN:
1871 if(!(val >= AL_REVERB_MIN_GAIN && val <= AL_REVERB_MAX_GAIN))
1872 SET_ERROR_AND_RETURN(context, AL_INVALID_VALUE);
1873 props->Reverb.Gain = val;
1874 break;
1876 case AL_REVERB_GAINHF:
1877 if(!(val >= AL_REVERB_MIN_GAINHF && val <= AL_REVERB_MAX_GAINHF))
1878 SET_ERROR_AND_RETURN(context, AL_INVALID_VALUE);
1879 props->Reverb.GainHF = val;
1880 break;
1882 case AL_REVERB_DECAY_TIME:
1883 if(!(val >= AL_REVERB_MIN_DECAY_TIME && val <= AL_REVERB_MAX_DECAY_TIME))
1884 SET_ERROR_AND_RETURN(context, AL_INVALID_VALUE);
1885 props->Reverb.DecayTime = val;
1886 break;
1888 case AL_REVERB_DECAY_HFRATIO:
1889 if(!(val >= AL_REVERB_MIN_DECAY_HFRATIO && val <= AL_REVERB_MAX_DECAY_HFRATIO))
1890 SET_ERROR_AND_RETURN(context, AL_INVALID_VALUE);
1891 props->Reverb.DecayHFRatio = val;
1892 break;
1894 case AL_REVERB_REFLECTIONS_GAIN:
1895 if(!(val >= AL_REVERB_MIN_REFLECTIONS_GAIN && val <= AL_REVERB_MAX_REFLECTIONS_GAIN))
1896 SET_ERROR_AND_RETURN(context, AL_INVALID_VALUE);
1897 props->Reverb.ReflectionsGain = val;
1898 break;
1900 case AL_REVERB_REFLECTIONS_DELAY:
1901 if(!(val >= AL_REVERB_MIN_REFLECTIONS_DELAY && val <= AL_REVERB_MAX_REFLECTIONS_DELAY))
1902 SET_ERROR_AND_RETURN(context, AL_INVALID_VALUE);
1903 props->Reverb.ReflectionsDelay = val;
1904 break;
1906 case AL_REVERB_LATE_REVERB_GAIN:
1907 if(!(val >= AL_REVERB_MIN_LATE_REVERB_GAIN && val <= AL_REVERB_MAX_LATE_REVERB_GAIN))
1908 SET_ERROR_AND_RETURN(context, AL_INVALID_VALUE);
1909 props->Reverb.LateReverbGain = val;
1910 break;
1912 case AL_REVERB_LATE_REVERB_DELAY:
1913 if(!(val >= AL_REVERB_MIN_LATE_REVERB_DELAY && val <= AL_REVERB_MAX_LATE_REVERB_DELAY))
1914 SET_ERROR_AND_RETURN(context, AL_INVALID_VALUE);
1915 props->Reverb.LateReverbDelay = val;
1916 break;
1918 case AL_REVERB_AIR_ABSORPTION_GAINHF:
1919 if(!(val >= AL_REVERB_MIN_AIR_ABSORPTION_GAINHF && val <= AL_REVERB_MAX_AIR_ABSORPTION_GAINHF))
1920 SET_ERROR_AND_RETURN(context, AL_INVALID_VALUE);
1921 props->Reverb.AirAbsorptionGainHF = val;
1922 break;
1924 case AL_REVERB_ROOM_ROLLOFF_FACTOR:
1925 if(!(val >= AL_REVERB_MIN_ROOM_ROLLOFF_FACTOR && val <= AL_REVERB_MAX_ROOM_ROLLOFF_FACTOR))
1926 SET_ERROR_AND_RETURN(context, AL_INVALID_VALUE);
1927 props->Reverb.RoomRolloffFactor = val;
1928 break;
1930 default:
1931 SET_ERROR_AND_RETURN(context, AL_INVALID_ENUM);
1934 void ALreverb_setParamfv(ALeffect *effect, ALCcontext *context, ALenum param, const ALfloat *vals)
1936 ALreverb_setParamf(effect, context, param, vals[0]);
1939 void ALreverb_getParami(const ALeffect *effect, ALCcontext *context, ALenum param, ALint *val)
1941 const ALeffectProps *props = &effect->Props;
1942 switch(param)
1944 case AL_REVERB_DECAY_HFLIMIT:
1945 *val = props->Reverb.DecayHFLimit;
1946 break;
1948 default:
1949 SET_ERROR_AND_RETURN(context, AL_INVALID_ENUM);
1952 void ALreverb_getParamiv(const ALeffect *effect, ALCcontext *context, ALenum param, ALint *vals)
1954 ALreverb_getParami(effect, context, param, vals);
1956 void ALreverb_getParamf(const ALeffect *effect, ALCcontext *context, ALenum param, ALfloat *val)
1958 const ALeffectProps *props = &effect->Props;
1959 switch(param)
1961 case AL_REVERB_DENSITY:
1962 *val = props->Reverb.Density;
1963 break;
1965 case AL_REVERB_DIFFUSION:
1966 *val = props->Reverb.Diffusion;
1967 break;
1969 case AL_REVERB_GAIN:
1970 *val = props->Reverb.Gain;
1971 break;
1973 case AL_REVERB_GAINHF:
1974 *val = props->Reverb.GainHF;
1975 break;
1977 case AL_REVERB_DECAY_TIME:
1978 *val = props->Reverb.DecayTime;
1979 break;
1981 case AL_REVERB_DECAY_HFRATIO:
1982 *val = props->Reverb.DecayHFRatio;
1983 break;
1985 case AL_REVERB_REFLECTIONS_GAIN:
1986 *val = props->Reverb.ReflectionsGain;
1987 break;
1989 case AL_REVERB_REFLECTIONS_DELAY:
1990 *val = props->Reverb.ReflectionsDelay;
1991 break;
1993 case AL_REVERB_LATE_REVERB_GAIN:
1994 *val = props->Reverb.LateReverbGain;
1995 break;
1997 case AL_REVERB_LATE_REVERB_DELAY:
1998 *val = props->Reverb.LateReverbDelay;
1999 break;
2001 case AL_REVERB_AIR_ABSORPTION_GAINHF:
2002 *val = props->Reverb.AirAbsorptionGainHF;
2003 break;
2005 case AL_REVERB_ROOM_ROLLOFF_FACTOR:
2006 *val = props->Reverb.RoomRolloffFactor;
2007 break;
2009 default:
2010 SET_ERROR_AND_RETURN(context, AL_INVALID_ENUM);
2013 void ALreverb_getParamfv(const ALeffect *effect, ALCcontext *context, ALenum param, ALfloat *vals)
2015 ALreverb_getParamf(effect, context, param, vals);
2018 DEFINE_ALEFFECT_VTABLE(ALreverb);