Remove unneeded variables
[openal-soft.git] / Alc / ALu.c
blobdda46631d72f1c41217e4694b78900734091c065
1 /**
2 * OpenAL cross platform audio library
3 * Copyright (C) 1999-2007 by authors.
4 * This library is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU Library General Public
6 * License as published by the Free Software Foundation; either
7 * version 2 of the License, or (at your option) any later version.
9 * This library is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12 * Library General Public License for more details.
14 * You should have received a copy of the GNU Library General Public
15 * License along with this library; if not, write to the
16 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
17 * Boston, MA 02111-1307, USA.
18 * Or go to http://www.gnu.org/copyleft/lgpl.html
21 #define _CRT_SECURE_NO_DEPRECATE // get rid of sprintf security warnings on VS2005
23 #include "config.h"
25 #include <math.h>
26 #include "alMain.h"
27 #include "AL/al.h"
28 #include "AL/alc.h"
29 #include "alSource.h"
30 #include "alBuffer.h"
31 #include "alThunk.h"
32 #include "alListener.h"
33 #include "bs2b.h"
35 #if defined(HAVE_STDINT_H)
36 #include <stdint.h>
37 typedef int64_t ALint64;
38 #elif defined(HAVE___INT64)
39 typedef __int64 ALint64;
40 #elif (SIZEOF_LONG == 8)
41 typedef long ALint64;
42 #elif (SIZEOF_LONG_LONG == 8)
43 typedef long long ALint64;
44 #endif
46 #ifdef HAVE_SQRTF
47 #define aluSqrt(x) ((ALfloat)sqrtf((float)(x)))
48 #else
49 #define aluSqrt(x) ((ALfloat)sqrt((double)(x)))
50 #endif
52 #ifdef HAVE_ACOSF
53 #define aluAcos(x) ((ALfloat)acosf((float)(x)))
54 #else
55 #define aluAcos(x) ((ALfloat)acos((double)(x)))
56 #endif
58 // fixes for mingw32.
59 #if defined(max) && !defined(__max)
60 #define __max max
61 #endif
62 #if defined(min) && !defined(__min)
63 #define __min min
64 #endif
66 #define BUFFERSIZE 48000
67 #define FRACTIONBITS 14
68 #define FRACTIONMASK ((1L<<FRACTIONBITS)-1)
69 #define MAX_PITCH 4
71 enum {
72 FRONT_LEFT = 0,
73 FRONT_RIGHT,
74 SIDE_LEFT,
75 SIDE_RIGHT,
76 BACK_LEFT,
77 BACK_RIGHT,
78 CENTER,
79 LFE,
81 OUTPUTCHANNELS
84 /* NOTE: The AL_FORMAT_REAR* enums aren't handled here be cause they're
85 * converted to AL_FORMAT_QUAD* when loaded */
86 __inline ALuint aluBytesFromFormat(ALenum format)
88 switch(format)
90 case AL_FORMAT_MONO8:
91 case AL_FORMAT_STEREO8:
92 case AL_FORMAT_QUAD8_LOKI:
93 case AL_FORMAT_QUAD8:
94 case AL_FORMAT_51CHN8:
95 case AL_FORMAT_61CHN8:
96 case AL_FORMAT_71CHN8:
97 return 1;
99 case AL_FORMAT_MONO16:
100 case AL_FORMAT_STEREO16:
101 case AL_FORMAT_QUAD16_LOKI:
102 case AL_FORMAT_QUAD16:
103 case AL_FORMAT_51CHN16:
104 case AL_FORMAT_61CHN16:
105 case AL_FORMAT_71CHN16:
106 return 2;
108 case AL_FORMAT_MONO_FLOAT32:
109 case AL_FORMAT_STEREO_FLOAT32:
110 case AL_FORMAT_QUAD32:
111 case AL_FORMAT_51CHN32:
112 case AL_FORMAT_61CHN32:
113 case AL_FORMAT_71CHN32:
114 return 4;
116 default:
117 return 0;
121 __inline ALuint aluChannelsFromFormat(ALenum format)
123 switch(format)
125 case AL_FORMAT_MONO8:
126 case AL_FORMAT_MONO16:
127 case AL_FORMAT_MONO_FLOAT32:
128 return 1;
130 case AL_FORMAT_STEREO8:
131 case AL_FORMAT_STEREO16:
132 case AL_FORMAT_STEREO_FLOAT32:
133 return 2;
135 case AL_FORMAT_QUAD8_LOKI:
136 case AL_FORMAT_QUAD16_LOKI:
137 case AL_FORMAT_QUAD8:
138 case AL_FORMAT_QUAD16:
139 case AL_FORMAT_QUAD32:
140 return 4;
142 case AL_FORMAT_51CHN8:
143 case AL_FORMAT_51CHN16:
144 case AL_FORMAT_51CHN32:
145 return 6;
147 case AL_FORMAT_61CHN8:
148 case AL_FORMAT_61CHN16:
149 case AL_FORMAT_61CHN32:
150 return 7;
152 case AL_FORMAT_71CHN8:
153 case AL_FORMAT_71CHN16:
154 case AL_FORMAT_71CHN32:
155 return 8;
157 default:
158 return 0;
162 static __inline ALint aluF2L(ALfloat Value)
164 #if 0
165 if(sizeof(ALint) == 4 && sizeof(double) == 8)
167 double temp;
168 temp = Value + (((65536.0*65536.0*16.0)+(65536.0*65536.0*8.0))*65536.0);
169 return *((ALint*)&temp);
171 #endif
172 return (ALint)Value;
175 static __inline ALshort aluF2S(ALfloat Value)
177 ALint i;
179 i = aluF2L(Value);
180 i = __min( 32767, i);
181 i = __max(-32768, i);
182 return ((ALshort)i);
185 static __inline ALvoid aluCrossproduct(ALfloat *inVector1,ALfloat *inVector2,ALfloat *outVector)
187 outVector[0] = inVector1[1]*inVector2[2] - inVector1[2]*inVector2[1];
188 outVector[1] = inVector1[2]*inVector2[0] - inVector1[0]*inVector2[2];
189 outVector[2] = inVector1[0]*inVector2[1] - inVector1[1]*inVector2[0];
192 static __inline ALfloat aluDotproduct(ALfloat *inVector1,ALfloat *inVector2)
194 return inVector1[0]*inVector2[0] + inVector1[1]*inVector2[1] +
195 inVector1[2]*inVector2[2];
198 static __inline ALvoid aluNormalize(ALfloat *inVector)
200 ALfloat length, inverse_length;
202 length = (ALfloat)aluSqrt(aluDotproduct(inVector, inVector));
203 if(length != 0)
205 inverse_length = 1.0f/length;
206 inVector[0] *= inverse_length;
207 inVector[1] *= inverse_length;
208 inVector[2] *= inverse_length;
212 static __inline ALvoid aluMatrixVector(ALfloat *vector,ALfloat matrix[3][3])
214 ALfloat result[3];
216 result[0] = vector[0]*matrix[0][0] + vector[1]*matrix[1][0] + vector[2]*matrix[2][0];
217 result[1] = vector[0]*matrix[0][1] + vector[1]*matrix[1][1] + vector[2]*matrix[2][1];
218 result[2] = vector[0]*matrix[0][2] + vector[1]*matrix[1][2] + vector[2]*matrix[2][2];
219 memcpy(vector, result, sizeof(result));
222 static __inline ALfloat aluComputeDrySample(ALsource *source, ALfloat DryGainHF, ALfloat sample)
224 if(DryGainHF < 1.0f)
226 if(DryGainHF > 0.0f)
228 sample *= DryGainHF;
229 sample += source->LastDrySample * (1.0f-DryGainHF);
231 else
232 sample = 0.0f;
235 source->LastDrySample = sample;
236 return sample;
239 static __inline ALfloat aluComputeWetSample(ALsource *source, ALfloat WetGainHF, ALfloat sample)
241 if(WetGainHF < 1.0f)
243 if(WetGainHF > 0.0f)
245 sample *= WetGainHF;
246 sample += source->LastWetSample * (1.0f-WetGainHF);
248 else
249 sample = 0.0f;
252 source->LastWetSample = sample;
253 return sample;
256 static ALvoid CalcSourceParams(ALCcontext *ALContext, ALsource *ALSource,
257 ALenum isMono, ALenum OutputFormat,
258 ALfloat *drysend, ALfloat *wetsend,
259 ALfloat *pitch, ALfloat *drygainhf,
260 ALfloat *wetgainhf)
262 ALfloat InnerAngle,OuterAngle,Angle,Distance,DryMix,WetMix;
263 ALfloat Direction[3],Position[3],SourceToListener[3];
264 ALfloat MinVolume,MaxVolume,MinDist,MaxDist,Rolloff,OuterGainHF;
265 ALfloat ConeVolume,SourceVolume,PanningFB,PanningLR,ListenerGain;
266 ALfloat U[3],V[3],N[3];
267 ALfloat DopplerFactor, DopplerVelocity, flSpeedOfSound, flMaxVelocity;
268 ALfloat Matrix[3][3];
269 ALfloat flAttenuation;
270 ALfloat RoomAttenuation;
271 ALfloat MetersPerUnit;
272 ALfloat RoomRolloff;
273 ALfloat DryGainHF = 1.0f;
274 ALfloat WetGainHF = 1.0f;
276 //Get context properties
277 DopplerFactor = ALContext->DopplerFactor;
278 DopplerVelocity = ALContext->DopplerVelocity;
279 flSpeedOfSound = ALContext->flSpeedOfSound;
281 //Get listener properties
282 ListenerGain = ALContext->Listener.Gain;
283 MetersPerUnit = ALContext->Listener.MetersPerUnit;
285 //Get source properties
286 SourceVolume = ALSource->flGain;
287 memcpy(Position, ALSource->vPosition, sizeof(ALSource->vPosition));
288 memcpy(Direction, ALSource->vOrientation, sizeof(ALSource->vOrientation));
289 MinVolume = ALSource->flMinGain;
290 MaxVolume = ALSource->flMaxGain;
291 MinDist = ALSource->flRefDistance;
292 MaxDist = ALSource->flMaxDistance;
293 Rolloff = ALSource->flRollOffFactor;
294 InnerAngle = ALSource->flInnerAngle;
295 OuterAngle = ALSource->flOuterAngle;
296 OuterGainHF = ALSource->OuterGainHF;
297 RoomRolloff = ALSource->RoomRolloffFactor;
299 //Only apply 3D calculations for mono buffers
300 if(isMono != AL_FALSE)
302 //1. Translate Listener to origin (convert to head relative)
303 if(ALSource->bHeadRelative==AL_FALSE)
305 Position[0] -= ALContext->Listener.Position[0];
306 Position[1] -= ALContext->Listener.Position[1];
307 Position[2] -= ALContext->Listener.Position[2];
310 //2. Calculate distance attenuation
311 Distance = aluSqrt(aluDotproduct(Position, Position));
313 flAttenuation = 1.0f;
314 RoomAttenuation = 1.0f;
315 switch (ALContext->DistanceModel)
317 case AL_INVERSE_DISTANCE_CLAMPED:
318 Distance=__max(Distance,MinDist);
319 Distance=__min(Distance,MaxDist);
320 if (MaxDist < MinDist)
321 break;
322 //fall-through
323 case AL_INVERSE_DISTANCE:
324 if (MinDist > 0.0f)
326 if ((MinDist + (Rolloff * (Distance - MinDist))) > 0.0f)
327 flAttenuation = MinDist / (MinDist + (Rolloff * (Distance - MinDist)));
328 if ((MinDist + (RoomRolloff * (Distance - MinDist))) > 0.0f)
329 RoomAttenuation = MinDist / (MinDist + (RoomRolloff * (Distance - MinDist)));
331 break;
333 case AL_LINEAR_DISTANCE_CLAMPED:
334 Distance=__max(Distance,MinDist);
335 Distance=__min(Distance,MaxDist);
336 if (MaxDist < MinDist)
337 break;
338 //fall-through
339 case AL_LINEAR_DISTANCE:
340 Distance=__min(Distance,MaxDist);
341 if (MaxDist != MinDist)
343 flAttenuation = 1.0f - (Rolloff*(Distance-MinDist)/(MaxDist - MinDist));
344 RoomAttenuation = 1.0f - (RoomRolloff*(Distance-MinDist)/(MaxDist - MinDist));
346 break;
348 case AL_EXPONENT_DISTANCE_CLAMPED:
349 Distance=__max(Distance,MinDist);
350 Distance=__min(Distance,MaxDist);
351 if (MaxDist < MinDist)
352 break;
353 //fall-through
354 case AL_EXPONENT_DISTANCE:
355 if ((Distance > 0.0f) && (MinDist > 0.0f))
357 flAttenuation = (ALfloat)pow(Distance/MinDist, -Rolloff);
358 RoomAttenuation = (ALfloat)pow(Distance/MinDist, -RoomRolloff);
360 break;
362 case AL_NONE:
363 default:
364 flAttenuation = 1.0f;
365 RoomAttenuation = 1.0f;
366 break;
369 // Source Gain + Attenuation
370 DryMix = SourceVolume * flAttenuation;
371 WetMix = SourceVolume * ((ALSource->WetGainAuto &&
372 ALSource->Send[0].Slot.AuxSendAuto) ?
373 RoomAttenuation : 1.0f);
375 // Clamp to Min/Max Gain
376 DryMix = __min(DryMix,MaxVolume);
377 DryMix = __max(DryMix,MinVolume);
378 WetMix = __min(WetMix,MaxVolume);
379 WetMix = __max(WetMix,MinVolume);
380 //3. Apply directional soundcones
381 SourceToListener[0] = -Position[0];
382 SourceToListener[1] = -Position[1];
383 SourceToListener[2] = -Position[2];
384 aluNormalize(Direction);
385 aluNormalize(SourceToListener);
386 Angle = aluAcos(aluDotproduct(Direction,SourceToListener)) * 180.0f /
387 3.141592654f;
388 if(Angle >= InnerAngle && Angle <= OuterAngle)
390 ALfloat scale = (Angle-InnerAngle) / (OuterAngle-InnerAngle);
391 ConeVolume = (1.0f+(ALSource->flOuterGain-1.0f)*scale);
392 if(ALSource->WetGainAuto)
393 WetMix *= ConeVolume;
394 if(ALSource->DryGainHFAuto)
395 DryGainHF *= (1.0f+(OuterGainHF-1.0f)*scale);
396 if(ALSource->WetGainHFAuto)
397 WetGainHF *= (1.0f+(OuterGainHF-1.0f)*scale);
399 else if(Angle > OuterAngle)
401 ConeVolume = (1.0f+(ALSource->flOuterGain-1.0f));
402 if(ALSource->WetGainAuto)
403 WetMix *= ConeVolume;
404 if(ALSource->DryGainHFAuto)
405 DryGainHF *= (1.0f+(OuterGainHF-1.0f));
406 if(ALSource->WetGainHFAuto)
407 WetGainHF *= (1.0f+(OuterGainHF-1.0f));
409 else
410 ConeVolume = 1.0f;
412 //4. Calculate Velocity
413 if(DopplerFactor != 0.0f)
415 ALfloat flVSS, flVLS;
417 flVLS = aluDotproduct(ALContext->Listener.Velocity,
418 SourceToListener);
419 flVSS = aluDotproduct(ALSource->vVelocity, SourceToListener);
421 flMaxVelocity = (DopplerVelocity * flSpeedOfSound) / DopplerFactor;
423 if (flVSS >= flMaxVelocity)
424 flVSS = (flMaxVelocity - 1.0f);
425 else if (flVSS <= -flMaxVelocity)
426 flVSS = -flMaxVelocity + 1.0f;
428 if (flVLS >= flMaxVelocity)
429 flVLS = (flMaxVelocity - 1.0f);
430 else if (flVLS <= -flMaxVelocity)
431 flVLS = -flMaxVelocity + 1.0f;
433 pitch[0] = ALSource->flPitch *
434 ((flSpeedOfSound * DopplerVelocity) - (DopplerFactor * flVLS)) /
435 ((flSpeedOfSound * DopplerVelocity) - (DopplerFactor * flVSS));
437 else
438 pitch[0] = ALSource->flPitch;
440 //5. Align coordinate system axes
441 aluCrossproduct(ALContext->Listener.Forward, ALContext->Listener.Up, U); // Right-vector
442 aluNormalize(U); // Normalized Right-vector
443 memcpy(V, ALContext->Listener.Up, sizeof(V)); // Up-vector
444 aluNormalize(V); // Normalized Up-vector
445 memcpy(N, ALContext->Listener.Forward, sizeof(N)); // At-vector
446 aluNormalize(N); // Normalized At-vector
447 Matrix[0][0] = U[0]; Matrix[0][1] = V[0]; Matrix[0][2] = -N[0];
448 Matrix[1][0] = U[1]; Matrix[1][1] = V[1]; Matrix[1][2] = -N[1];
449 Matrix[2][0] = U[2]; Matrix[2][1] = V[2]; Matrix[2][2] = -N[2];
450 aluMatrixVector(Position, Matrix);
452 //6. Apply filter gains and filters
453 switch(ALSource->DirectFilter.filter)
455 case AL_FILTER_LOWPASS:
456 DryMix *= ALSource->DirectFilter.Gain;
457 DryGainHF *= ALSource->DirectFilter.GainHF;
458 break;
461 switch(ALSource->Send[0].WetFilter.filter)
463 case AL_FILTER_LOWPASS:
464 WetMix *= ALSource->Send[0].WetFilter.Gain;
465 WetGainHF *= ALSource->Send[0].WetFilter.GainHF;
466 break;
469 if(ALSource->AirAbsorptionFactor > 0.0f)
470 DryGainHF *= pow(ALSource->AirAbsorptionFactor * AIRABSORBGAINHF,
471 Distance * MetersPerUnit);
473 WetMix *= ALSource->Send[0].Slot.Gain;
475 //7. Convert normalized position into pannings, then into channel volumes
476 aluNormalize(Position);
477 switch(aluChannelsFromFormat(OutputFormat))
479 case 1:
480 drysend[FRONT_LEFT] = ConeVolume * ListenerGain * DryMix * aluSqrt(1.0f); //Direct
481 drysend[FRONT_RIGHT] = ConeVolume * ListenerGain * DryMix * aluSqrt(1.0f); //Direct
482 if(ALSource->Send[0].Slot.effectslot)
484 wetsend[FRONT_LEFT] = ListenerGain * WetMix * aluSqrt(1.0f); //Room
485 wetsend[FRONT_RIGHT] = ListenerGain * WetMix * aluSqrt(1.0f); //Room
487 else
489 wetsend[FRONT_LEFT] = 0.0f;
490 wetsend[FRONT_RIGHT] = 0.0f;
491 WetGainHF = 1.0f;
493 break;
494 case 2:
495 PanningLR = 0.5f + 0.5f*Position[0];
496 drysend[FRONT_LEFT] = ConeVolume * ListenerGain * DryMix * aluSqrt(1.0f-PanningLR); //L Direct
497 drysend[FRONT_RIGHT] = ConeVolume * ListenerGain * DryMix * aluSqrt( PanningLR); //R Direct
498 if(ALSource->Send[0].Slot.effectslot)
500 wetsend[FRONT_LEFT] = ListenerGain * WetMix * aluSqrt(1.0f-PanningLR); //L Room
501 wetsend[FRONT_RIGHT] = ListenerGain * WetMix * aluSqrt( PanningLR); //R Room
503 else
505 wetsend[FRONT_LEFT] = 0.0f;
506 wetsend[FRONT_RIGHT] = 0.0f;
507 WetGainHF = 1.0f;
509 break;
510 case 4:
511 /* TODO: Add center/lfe channel in spatial calculations? */
512 case 6:
513 // Apply a scalar so each individual speaker has more weight
514 PanningLR = 0.5f + (0.5f*Position[0]*1.41421356f);
515 PanningLR = __min(1.0f, PanningLR);
516 PanningLR = __max(0.0f, PanningLR);
517 PanningFB = 0.5f + (0.5f*Position[2]*1.41421356f);
518 PanningFB = __min(1.0f, PanningFB);
519 PanningFB = __max(0.0f, PanningFB);
520 drysend[FRONT_LEFT] = ConeVolume * ListenerGain * DryMix * aluSqrt((1.0f-PanningLR)*(1.0f-PanningFB));
521 drysend[FRONT_RIGHT] = ConeVolume * ListenerGain * DryMix * aluSqrt(( PanningLR)*(1.0f-PanningFB));
522 drysend[BACK_LEFT] = ConeVolume * ListenerGain * DryMix * aluSqrt((1.0f-PanningLR)*( PanningFB));
523 drysend[BACK_RIGHT] = ConeVolume * ListenerGain * DryMix * aluSqrt(( PanningLR)*( PanningFB));
524 if(ALSource->Send[0].Slot.effectslot)
526 wetsend[FRONT_LEFT] = ListenerGain * WetMix * aluSqrt((1.0f-PanningLR)*(1.0f-PanningFB));
527 wetsend[FRONT_RIGHT] = ListenerGain * WetMix * aluSqrt(( PanningLR)*(1.0f-PanningFB));
528 wetsend[BACK_LEFT] = ListenerGain * WetMix * aluSqrt((1.0f-PanningLR)*( PanningFB));
529 wetsend[BACK_RIGHT] = ListenerGain * WetMix * aluSqrt(( PanningLR)*( PanningFB));
531 else
533 wetsend[FRONT_LEFT] = 0.0f;
534 wetsend[FRONT_RIGHT] = 0.0f;
535 wetsend[BACK_LEFT] = 0.0f;
536 wetsend[BACK_RIGHT] = 0.0f;
537 WetGainHF = 1.0f;
539 break;
540 case 7:
541 case 8:
542 PanningFB = 1.0f - fabs(Position[2]*1.15470054f);
543 PanningFB = __min(1.0f, PanningFB);
544 PanningFB = __max(0.0f, PanningFB);
545 PanningLR = 0.5f + (0.5*Position[0]*((1.0f-PanningFB)*2.0f));
546 PanningLR = __min(1.0f, PanningLR);
547 PanningLR = __max(0.0f, PanningLR);
548 if(Position[2] > 0.0f)
550 drysend[BACK_LEFT] = ConeVolume * ListenerGain * DryMix * aluSqrt((1.0f-PanningLR)*(1.0f-PanningFB));
551 drysend[BACK_RIGHT] = ConeVolume * ListenerGain * DryMix * aluSqrt(( PanningLR)*(1.0f-PanningFB));
552 drysend[SIDE_LEFT] = ConeVolume * ListenerGain * DryMix * aluSqrt((1.0f-PanningLR)*( PanningFB));
553 drysend[SIDE_RIGHT] = ConeVolume * ListenerGain * DryMix * aluSqrt(( PanningLR)*( PanningFB));
554 drysend[FRONT_LEFT] = 0.0f;
555 drysend[FRONT_RIGHT] = 0.0f;
556 if(ALSource->Send[0].Slot.effectslot)
558 wetsend[BACK_LEFT] = ListenerGain * WetMix * aluSqrt((1.0f-PanningLR)*(1.0f-PanningFB));
559 wetsend[BACK_RIGHT] = ListenerGain * WetMix * aluSqrt(( PanningLR)*(1.0f-PanningFB));
560 wetsend[SIDE_LEFT] = ListenerGain * WetMix * aluSqrt((1.0f-PanningLR)*( PanningFB));
561 wetsend[SIDE_RIGHT] = ListenerGain * WetMix * aluSqrt(( PanningLR)*( PanningFB));
562 wetsend[FRONT_LEFT] = 0.0f;
563 wetsend[FRONT_RIGHT] = 0.0f;
565 else
567 wetsend[FRONT_LEFT] = 0.0f;
568 wetsend[FRONT_RIGHT] = 0.0f;
569 wetsend[SIDE_LEFT] = 0.0f;
570 wetsend[SIDE_RIGHT] = 0.0f;
571 wetsend[BACK_LEFT] = 0.0f;
572 wetsend[BACK_RIGHT] = 0.0f;
573 WetGainHF = 1.0f;
576 else
578 drysend[FRONT_LEFT] = ConeVolume * ListenerGain * DryMix * aluSqrt((1.0f-PanningLR)*(1.0f-PanningFB));
579 drysend[FRONT_RIGHT] = ConeVolume * ListenerGain * DryMix * aluSqrt(( PanningLR)*(1.0f-PanningFB));
580 drysend[SIDE_LEFT] = ConeVolume * ListenerGain * DryMix * aluSqrt((1.0f-PanningLR)*( PanningFB));
581 drysend[SIDE_RIGHT] = ConeVolume * ListenerGain * DryMix * aluSqrt(( PanningLR)*( PanningFB));
582 drysend[BACK_LEFT] = 0.0f;
583 drysend[BACK_RIGHT] = 0.0f;
584 if(ALSource->Send[0].Slot.effectslot)
586 wetsend[FRONT_LEFT] = ListenerGain * WetMix * aluSqrt((1.0f-PanningLR)*(1.0f-PanningFB));
587 wetsend[FRONT_RIGHT] = ListenerGain * WetMix * aluSqrt(( PanningLR)*(1.0f-PanningFB));
588 wetsend[SIDE_LEFT] = ListenerGain * WetMix * aluSqrt((1.0f-PanningLR)*( PanningFB));
589 wetsend[SIDE_RIGHT] = ListenerGain * WetMix * aluSqrt(( PanningLR)*( PanningFB));
590 wetsend[BACK_LEFT] = 0.0f;
591 wetsend[BACK_RIGHT] = 0.0f;
593 else
595 wetsend[FRONT_LEFT] = 0.0f;
596 wetsend[FRONT_RIGHT] = 0.0f;
597 wetsend[SIDE_LEFT] = 0.0f;
598 wetsend[SIDE_RIGHT] = 0.0f;
599 wetsend[BACK_LEFT] = 0.0f;
600 wetsend[BACK_RIGHT] = 0.0f;
601 WetGainHF = 1.0f;
604 default:
605 break;
608 *drygainhf = DryGainHF;
609 *wetgainhf = WetGainHF;
611 else
613 *drygainhf = DryGainHF;
614 *wetgainhf = WetGainHF;
616 //1. Multi-channel buffers always play "normal"
617 drysend[FRONT_LEFT] = SourceVolume * 1.0f * ListenerGain;
618 drysend[FRONT_RIGHT] = SourceVolume * 1.0f * ListenerGain;
619 drysend[SIDE_LEFT] = SourceVolume * 1.0f * ListenerGain;
620 drysend[SIDE_RIGHT] = SourceVolume * 1.0f * ListenerGain;
621 drysend[BACK_LEFT] = SourceVolume * 1.0f * ListenerGain;
622 drysend[BACK_RIGHT] = SourceVolume * 1.0f * ListenerGain;
623 drysend[CENTER] = SourceVolume * 1.0f * ListenerGain;
624 drysend[LFE] = SourceVolume * 1.0f * ListenerGain;
625 if(ALSource->Send[0].Slot.effectslot)
627 wetsend[FRONT_LEFT] = SourceVolume * 0.0f * ListenerGain;
628 wetsend[FRONT_RIGHT] = SourceVolume * 0.0f * ListenerGain;
629 wetsend[SIDE_LEFT] = SourceVolume * 0.0f * ListenerGain;
630 wetsend[SIDE_RIGHT] = SourceVolume * 0.0f * ListenerGain;
631 wetsend[BACK_LEFT] = SourceVolume * 0.0f * ListenerGain;
632 wetsend[BACK_RIGHT] = SourceVolume * 0.0f * ListenerGain;
633 wetsend[CENTER] = SourceVolume * 0.0f * ListenerGain;
634 wetsend[LFE] = SourceVolume * 0.0f * ListenerGain;
636 else
638 wetsend[FRONT_LEFT] = 0.0f;
639 wetsend[FRONT_RIGHT] = 0.0f;
640 wetsend[SIDE_LEFT] = 0.0f;
641 wetsend[SIDE_RIGHT] = 0.0f;
642 wetsend[BACK_LEFT] = 0.0f;
643 wetsend[BACK_RIGHT] = 0.0f;
644 wetsend[CENTER] = 0.0f;
645 wetsend[LFE] = 0.0f;
646 *wetgainhf = 1.0f;
649 pitch[0] = ALSource->flPitch;
653 ALvoid aluMixData(ALCcontext *ALContext,ALvoid *buffer,ALsizei size,ALenum format)
655 static float DryBuffer[BUFFERSIZE][OUTPUTCHANNELS];
656 static float WetBuffer[BUFFERSIZE][OUTPUTCHANNELS];
657 ALfloat DrySend[OUTPUTCHANNELS] = { 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f };
658 ALfloat WetSend[OUTPUTCHANNELS] = { 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f };
659 ALfloat DryGainHF = 0.0f;
660 ALfloat WetGainHF = 0.0f;
661 ALuint BlockAlign,BufferSize;
662 ALuint DataSize=0,DataPosInt=0,DataPosFrac=0;
663 ALuint Channels,Frequency,ulExtraSamples;
664 ALfloat Pitch;
665 ALint Looping,increment,State;
666 ALuint Buffer,fraction;
667 ALuint SamplesToDo;
668 ALsource *ALSource;
669 ALbuffer *ALBuffer;
670 ALfloat value;
671 ALshort *Data;
672 ALuint i,j,k;
673 ALbufferlistitem *BufferListItem;
674 ALuint loop;
675 ALint64 DataSize64,DataPos64;
677 SuspendContext(ALContext);
679 if(buffer)
681 //Figure output format variables
682 BlockAlign = aluChannelsFromFormat(format);
683 BlockAlign *= aluBytesFromFormat(format);
685 size /= BlockAlign;
686 while(size > 0)
688 //Setup variables
689 ALSource = (ALContext ? ALContext->Source : NULL);
690 SamplesToDo = min(size, BUFFERSIZE);
692 //Clear mixing buffer
693 memset(DryBuffer, 0, SamplesToDo*OUTPUTCHANNELS*sizeof(ALfloat));
694 memset(WetBuffer, 0, SamplesToDo*OUTPUTCHANNELS*sizeof(ALfloat));
696 //Actual mixing loop
697 while(ALSource)
699 j = 0;
700 State = ALSource->state;
701 while(State == AL_PLAYING && j < SamplesToDo)
703 DataSize = 0;
704 DataPosInt = 0;
705 DataPosFrac = 0;
707 //Get buffer info
708 if((Buffer = ALSource->ulBufferID))
710 ALBuffer = (ALbuffer*)ALTHUNK_LOOKUPENTRY(Buffer);
712 Data = ALBuffer->data;
713 Channels = aluChannelsFromFormat(ALBuffer->format);
714 DataSize = ALBuffer->size;
715 Frequency = ALBuffer->frequency;
717 CalcSourceParams(ALContext, ALSource,
718 (Channels==1) ? AL_TRUE : AL_FALSE,
719 format, DrySend, WetSend, &Pitch,
720 &DryGainHF, &WetGainHF);
723 Pitch = (Pitch*Frequency) / ALContext->Frequency;
724 DataSize /= Channels * aluBytesFromFormat(ALBuffer->format);
726 //Get source info
727 DataPosInt = ALSource->position;
728 DataPosFrac = ALSource->position_fraction;
730 //Compute 18.14 fixed point step
731 increment = aluF2L(Pitch*(1L<<FRACTIONBITS));
732 if(increment > (MAX_PITCH<<FRACTIONBITS))
733 increment = (MAX_PITCH<<FRACTIONBITS);
735 //Figure out how many samples we can mix.
736 //Pitch must be <= 4 (the number below !)
737 DataSize64 = DataSize+MAX_PITCH;
738 DataSize64 <<= FRACTIONBITS;
739 DataPos64 = DataPosInt;
740 DataPos64 <<= FRACTIONBITS;
741 DataPos64 += DataPosFrac;
742 BufferSize = (ALuint)((DataSize64-DataPos64) / increment);
743 BufferListItem = ALSource->queue;
744 for(loop = 0; loop < ALSource->BuffersPlayed; loop++)
746 if(BufferListItem)
747 BufferListItem = BufferListItem->next;
749 if (BufferListItem)
751 if (BufferListItem->next)
753 if(BufferListItem->next->buffer &&
754 ((ALbuffer*)ALTHUNK_LOOKUPENTRY(BufferListItem->next->buffer))->data)
756 ulExtraSamples = min(((ALbuffer*)ALTHUNK_LOOKUPENTRY(BufferListItem->next->buffer))->size, (ALint)(16*Channels));
757 memcpy(&Data[DataSize*Channels], ((ALbuffer*)ALTHUNK_LOOKUPENTRY(BufferListItem->next->buffer))->data, ulExtraSamples);
760 else if (ALSource->bLooping)
762 if (ALSource->queue->buffer)
764 if(((ALbuffer*)ALTHUNK_LOOKUPENTRY(ALSource->queue->buffer))->data)
766 ulExtraSamples = min(((ALbuffer*)ALTHUNK_LOOKUPENTRY(ALSource->queue->buffer))->size, (ALint)(16*Channels));
767 memcpy(&Data[DataSize*Channels], ((ALbuffer*)ALTHUNK_LOOKUPENTRY(ALSource->queue->buffer))->data, ulExtraSamples);
772 BufferSize = min(BufferSize, (SamplesToDo-j));
774 //Actual sample mixing loop
775 Data += DataPosInt*Channels;
776 while(BufferSize--)
778 k = DataPosFrac>>FRACTIONBITS;
779 fraction = DataPosFrac&FRACTIONMASK;
780 if(Channels==1)
782 //First order interpolator
783 ALfloat sample = (ALfloat)((ALshort)(((Data[k]*((1L<<FRACTIONBITS)-fraction))+(Data[k+1]*(fraction)))>>FRACTIONBITS));
785 //Direct path final mix buffer and panning
786 value = aluComputeDrySample(ALSource, DryGainHF, sample);
787 DryBuffer[j][FRONT_LEFT] += value*DrySend[FRONT_LEFT];
788 DryBuffer[j][FRONT_RIGHT] += value*DrySend[FRONT_RIGHT];
789 DryBuffer[j][SIDE_LEFT] += value*DrySend[SIDE_LEFT];
790 DryBuffer[j][SIDE_RIGHT] += value*DrySend[SIDE_RIGHT];
791 DryBuffer[j][BACK_LEFT] += value*DrySend[BACK_LEFT];
792 DryBuffer[j][BACK_RIGHT] += value*DrySend[BACK_RIGHT];
793 //Room path final mix buffer and panning
794 value = aluComputeWetSample(ALSource, WetGainHF, sample);
795 WetBuffer[j][FRONT_LEFT] += value*WetSend[FRONT_LEFT];
796 WetBuffer[j][FRONT_RIGHT] += value*WetSend[FRONT_RIGHT];
797 WetBuffer[j][SIDE_LEFT] += value*WetSend[SIDE_LEFT];
798 WetBuffer[j][SIDE_RIGHT] += value*WetSend[SIDE_RIGHT];
799 WetBuffer[j][BACK_LEFT] += value*WetSend[BACK_LEFT];
800 WetBuffer[j][BACK_RIGHT] += value*WetSend[BACK_RIGHT];
802 else
804 //First order interpolator (front left)
805 value = (ALfloat)((ALshort)(((Data[k*Channels ]*((1L<<FRACTIONBITS)-fraction))+(Data[(k+1)*Channels ]*(fraction)))>>FRACTIONBITS));
806 DryBuffer[j][FRONT_LEFT] += value*DrySend[FRONT_LEFT];
807 WetBuffer[j][FRONT_LEFT] += value*WetSend[FRONT_LEFT];
808 //First order interpolator (front right)
809 value = (ALfloat)((ALshort)(((Data[k*Channels+1]*((1L<<FRACTIONBITS)-fraction))+(Data[(k+1)*Channels+1]*(fraction)))>>FRACTIONBITS));
810 DryBuffer[j][FRONT_RIGHT] += value*DrySend[FRONT_RIGHT];
811 WetBuffer[j][FRONT_RIGHT] += value*WetSend[FRONT_RIGHT];
812 if(Channels >= 4)
814 int i = 2;
815 if(Channels >= 6)
817 if(Channels != 7)
819 //First order interpolator (center)
820 value = (ALfloat)((ALshort)(((Data[k*Channels+i]*((1L<<FRACTIONBITS)-fraction))+(Data[(k+1)*Channels+i]*(fraction)))>>FRACTIONBITS));
821 DryBuffer[j][CENTER] += value*DrySend[CENTER];
822 WetBuffer[j][CENTER] += value*WetSend[CENTER];
823 i++;
825 //First order interpolator (lfe)
826 value = (ALfloat)((ALshort)(((Data[k*Channels+i]*((1L<<FRACTIONBITS)-fraction))+(Data[(k+1)*Channels+i]*(fraction)))>>FRACTIONBITS));
827 DryBuffer[j][LFE] += value*DrySend[LFE];
828 WetBuffer[j][LFE] += value*WetSend[LFE];
829 i++;
831 //First order interpolator (back left)
832 value = (ALfloat)((ALshort)(((Data[k*Channels+i]*((1L<<FRACTIONBITS)-fraction))+(Data[(k+1)*Channels+i]*(fraction)))>>FRACTIONBITS));
833 DryBuffer[j][BACK_LEFT] += value*DrySend[BACK_LEFT];
834 WetBuffer[j][BACK_LEFT] += value*WetSend[BACK_LEFT];
835 i++;
836 //First order interpolator (back right)
837 value = (ALfloat)((ALshort)(((Data[k*Channels+i]*((1L<<FRACTIONBITS)-fraction))+(Data[(k+1)*Channels+i]*(fraction)))>>FRACTIONBITS));
838 DryBuffer[j][BACK_RIGHT] += value*DrySend[BACK_RIGHT];
839 WetBuffer[j][BACK_RIGHT] += value*WetSend[BACK_RIGHT];
840 i++;
841 if(Channels >= 7)
843 //First order interpolator (side left)
844 value = (ALfloat)((ALshort)(((Data[k*Channels+i]*((1L<<FRACTIONBITS)-fraction))+(Data[(k+1)*Channels+i]*(fraction)))>>FRACTIONBITS));
845 DryBuffer[j][SIDE_LEFT] += value*DrySend[SIDE_LEFT];
846 WetBuffer[j][SIDE_LEFT] += value*WetSend[SIDE_LEFT];
847 i++;
848 //First order interpolator (side right)
849 value = (ALfloat)((ALshort)(((Data[k*Channels+i]*((1L<<FRACTIONBITS)-fraction))+(Data[(k+1)*Channels+i]*(fraction)))>>FRACTIONBITS));
850 DryBuffer[j][SIDE_RIGHT] += value*DrySend[SIDE_RIGHT];
851 WetBuffer[j][SIDE_RIGHT] += value*WetSend[SIDE_RIGHT];
852 i++;
856 DataPosFrac += increment;
857 j++;
859 DataPosInt += (DataPosFrac>>FRACTIONBITS);
860 DataPosFrac = (DataPosFrac&FRACTIONMASK);
862 //Update source info
863 ALSource->position = DataPosInt;
864 ALSource->position_fraction = DataPosFrac;
867 //Handle looping sources
868 if(!Buffer || DataPosInt >= DataSize)
870 //queueing
871 if(ALSource->queue)
873 Looping = ALSource->bLooping;
874 if(ALSource->BuffersPlayed < (ALSource->BuffersInQueue-1))
876 BufferListItem = ALSource->queue;
877 for(loop = 0; loop <= ALSource->BuffersPlayed; loop++)
879 if(BufferListItem)
881 if(!Looping)
882 BufferListItem->bufferstate = PROCESSED;
883 BufferListItem = BufferListItem->next;
886 if(!Looping)
887 ALSource->BuffersProcessed++;
888 if(BufferListItem)
889 ALSource->ulBufferID = BufferListItem->buffer;
890 ALSource->position = DataPosInt-DataSize;
891 ALSource->position_fraction = DataPosFrac;
892 ALSource->BuffersPlayed++;
894 else
896 if(!Looping)
898 /* alSourceStop */
899 ALSource->state = AL_STOPPED;
900 ALSource->inuse = AL_FALSE;
901 ALSource->BuffersPlayed = ALSource->BuffersProcessed = ALSource->BuffersInQueue;
902 BufferListItem = ALSource->queue;
903 while(BufferListItem != NULL)
905 BufferListItem->bufferstate = PROCESSED;
906 BufferListItem = BufferListItem->next;
909 else
911 /* alSourceRewind */
912 /* alSourcePlay */
913 ALSource->state = AL_PLAYING;
914 ALSource->inuse = AL_TRUE;
915 ALSource->play = AL_TRUE;
916 ALSource->BuffersPlayed = 0;
917 ALSource->BufferPosition = 0;
918 ALSource->lBytesPlayed = 0;
919 ALSource->BuffersProcessed = 0;
920 BufferListItem = ALSource->queue;
921 while(BufferListItem != NULL)
923 BufferListItem->bufferstate = PENDING;
924 BufferListItem = BufferListItem->next;
926 ALSource->ulBufferID = ALSource->queue->buffer;
928 ALSource->position = DataPosInt-DataSize;
929 ALSource->position_fraction = DataPosFrac;
935 //Get source state
936 State = ALSource->state;
939 ALSource = ALSource->next;
942 //Post processing loop
943 switch(format)
945 case AL_FORMAT_MONO8:
946 for(i = 0;i < SamplesToDo;i++)
948 ((ALubyte*)buffer)[0] = (ALubyte)((aluF2S(DryBuffer[i][FRONT_LEFT]+DryBuffer[i][FRONT_RIGHT]+
949 WetBuffer[i][FRONT_LEFT]+WetBuffer[i][FRONT_RIGHT])>>8)+128);
950 buffer = ((ALubyte*)buffer) + 1;
952 break;
953 case AL_FORMAT_STEREO8:
954 if(ALContext->bs2b)
956 for(i = 0;i < SamplesToDo;i++)
958 float samples[2];
959 samples[0] = DryBuffer[i][FRONT_LEFT] +WetBuffer[i][FRONT_LEFT];
960 samples[1] = DryBuffer[i][FRONT_RIGHT]+WetBuffer[i][FRONT_RIGHT];
961 bs2b_cross_feed(ALContext->bs2b, samples);
962 ((ALubyte*)buffer)[0] = (ALubyte)((aluF2S(samples[0])>>8)+128);
963 ((ALubyte*)buffer)[1] = (ALubyte)((aluF2S(samples[1])>>8)+128);
964 buffer = ((ALubyte*)buffer) + 2;
967 else
969 for(i = 0;i < SamplesToDo;i++)
971 ((ALubyte*)buffer)[0] = (ALubyte)((aluF2S(DryBuffer[i][FRONT_LEFT] +WetBuffer[i][FRONT_LEFT])>>8)+128);
972 ((ALubyte*)buffer)[1] = (ALubyte)((aluF2S(DryBuffer[i][FRONT_RIGHT]+WetBuffer[i][FRONT_RIGHT])>>8)+128);
973 buffer = ((ALubyte*)buffer) + 2;
976 break;
977 case AL_FORMAT_QUAD8:
978 for(i = 0;i < SamplesToDo;i++)
980 ((ALubyte*)buffer)[0] = (ALubyte)((aluF2S(DryBuffer[i][FRONT_LEFT] +WetBuffer[i][FRONT_LEFT])>>8)+128);
981 ((ALubyte*)buffer)[1] = (ALubyte)((aluF2S(DryBuffer[i][FRONT_RIGHT]+WetBuffer[i][FRONT_RIGHT])>>8)+128);
982 ((ALubyte*)buffer)[2] = (ALubyte)((aluF2S(DryBuffer[i][BACK_LEFT] +WetBuffer[i][BACK_LEFT])>>8)+128);
983 ((ALubyte*)buffer)[3] = (ALubyte)((aluF2S(DryBuffer[i][BACK_RIGHT] +WetBuffer[i][BACK_RIGHT])>>8)+128);
984 buffer = ((ALubyte*)buffer) + 4;
986 break;
987 case AL_FORMAT_51CHN8:
988 for(i = 0;i < SamplesToDo;i++)
990 ((ALubyte*)buffer)[0] = (ALubyte)((aluF2S(DryBuffer[i][FRONT_LEFT] +WetBuffer[i][FRONT_LEFT])>>8)+128);
991 ((ALubyte*)buffer)[1] = (ALubyte)((aluF2S(DryBuffer[i][FRONT_RIGHT]+WetBuffer[i][FRONT_RIGHT])>>8)+128);
992 ((ALubyte*)buffer)[2] = (ALubyte)((aluF2S(DryBuffer[i][BACK_LEFT] +WetBuffer[i][BACK_LEFT])>>8)+128);
993 ((ALubyte*)buffer)[3] = (ALubyte)((aluF2S(DryBuffer[i][BACK_RIGHT] +WetBuffer[i][BACK_RIGHT])>>8)+128);
994 ((ALubyte*)buffer)[4] = (ALubyte)((aluF2S(DryBuffer[i][CENTER] +WetBuffer[i][CENTER])>>8)+128);
995 ((ALubyte*)buffer)[5] = (ALubyte)((aluF2S(DryBuffer[i][LFE] +WetBuffer[i][LFE])>>8)+128);
996 buffer = ((ALubyte*)buffer) + 6;
998 break;
999 case AL_FORMAT_61CHN8:
1000 for(i = 0;i < SamplesToDo;i++)
1002 ((ALubyte*)buffer)[0] = (ALubyte)((aluF2S(DryBuffer[i][FRONT_LEFT] +WetBuffer[i][FRONT_LEFT])>>8)+128);
1003 ((ALubyte*)buffer)[1] = (ALubyte)((aluF2S(DryBuffer[i][FRONT_RIGHT]+WetBuffer[i][FRONT_RIGHT])>>8)+128);
1004 ((ALubyte*)buffer)[2] = (ALubyte)((aluF2S(DryBuffer[i][SIDE_LEFT] +WetBuffer[i][SIDE_LEFT])>>8)+128);
1005 ((ALubyte*)buffer)[3] = (ALubyte)((aluF2S(DryBuffer[i][SIDE_RIGHT] +WetBuffer[i][SIDE_RIGHT])>>8)+128);
1006 ((ALubyte*)buffer)[4] = (ALubyte)((aluF2S(DryBuffer[i][BACK_LEFT] +WetBuffer[i][BACK_LEFT])>>8)+128);
1007 ((ALubyte*)buffer)[5] = (ALubyte)((aluF2S(DryBuffer[i][BACK_RIGHT] +WetBuffer[i][BACK_RIGHT])>>8)+128);
1008 ((ALubyte*)buffer)[6] = (ALubyte)((aluF2S(DryBuffer[i][LFE] +WetBuffer[i][LFE])>>8)+128);
1009 buffer = ((ALubyte*)buffer) + 7;
1011 break;
1012 case AL_FORMAT_71CHN8:
1013 for(i = 0;i < SamplesToDo;i++)
1015 ((ALubyte*)buffer)[0] = (ALubyte)((aluF2S(DryBuffer[i][FRONT_LEFT] +WetBuffer[i][FRONT_LEFT])>>8)+128);
1016 ((ALubyte*)buffer)[1] = (ALubyte)((aluF2S(DryBuffer[i][FRONT_RIGHT]+WetBuffer[i][FRONT_RIGHT])>>8)+128);
1017 ((ALubyte*)buffer)[2] = (ALubyte)((aluF2S(DryBuffer[i][SIDE_LEFT] +WetBuffer[i][SIDE_LEFT])>>8)+128);
1018 ((ALubyte*)buffer)[3] = (ALubyte)((aluF2S(DryBuffer[i][SIDE_RIGHT] +WetBuffer[i][SIDE_RIGHT])>>8)+128);
1019 ((ALubyte*)buffer)[4] = (ALubyte)((aluF2S(DryBuffer[i][BACK_LEFT] +WetBuffer[i][BACK_LEFT])>>8)+128);
1020 ((ALubyte*)buffer)[5] = (ALubyte)((aluF2S(DryBuffer[i][BACK_RIGHT] +WetBuffer[i][BACK_RIGHT])>>8)+128);
1021 ((ALubyte*)buffer)[6] = (ALubyte)((aluF2S(DryBuffer[i][CENTER] +WetBuffer[i][CENTER])>>8)+128);
1022 ((ALubyte*)buffer)[7] = (ALubyte)((aluF2S(DryBuffer[i][LFE] +WetBuffer[i][LFE])>>8)+128);
1023 buffer = ((ALubyte*)buffer) + 8;
1025 break;
1027 case AL_FORMAT_MONO16:
1028 for(i = 0;i < SamplesToDo;i++)
1030 ((ALshort*)buffer)[0] = aluF2S(DryBuffer[i][FRONT_LEFT]+DryBuffer[i][FRONT_RIGHT]+
1031 WetBuffer[i][FRONT_LEFT]+WetBuffer[i][FRONT_RIGHT]);
1032 buffer = ((ALshort*)buffer) + 1;
1034 break;
1035 case AL_FORMAT_STEREO16:
1036 if(ALContext->bs2b)
1038 for(i = 0;i < SamplesToDo;i++)
1040 float samples[2];
1041 samples[0] = DryBuffer[i][FRONT_LEFT] +WetBuffer[i][FRONT_LEFT];
1042 samples[1] = DryBuffer[i][FRONT_RIGHT]+WetBuffer[i][FRONT_RIGHT];
1043 bs2b_cross_feed(ALContext->bs2b, samples);
1044 ((ALshort*)buffer)[0] = aluF2S(samples[0]);
1045 ((ALshort*)buffer)[1] = aluF2S(samples[1]);
1046 buffer = ((ALshort*)buffer) + 2;
1049 else
1051 for(i = 0;i < SamplesToDo;i++)
1053 ((ALshort*)buffer)[0] = aluF2S(DryBuffer[i][FRONT_LEFT] +WetBuffer[i][FRONT_LEFT]);
1054 ((ALshort*)buffer)[1] = aluF2S(DryBuffer[i][FRONT_RIGHT]+WetBuffer[i][FRONT_RIGHT]);
1055 buffer = ((ALshort*)buffer) + 2;
1058 break;
1059 case AL_FORMAT_QUAD16:
1060 for(i = 0;i < SamplesToDo;i++)
1062 ((ALshort*)buffer)[0] = aluF2S(DryBuffer[i][FRONT_LEFT] +WetBuffer[i][FRONT_LEFT]);
1063 ((ALshort*)buffer)[1] = aluF2S(DryBuffer[i][FRONT_RIGHT]+WetBuffer[i][FRONT_RIGHT]);
1064 ((ALshort*)buffer)[2] = aluF2S(DryBuffer[i][BACK_LEFT] +WetBuffer[i][BACK_LEFT]);
1065 ((ALshort*)buffer)[3] = aluF2S(DryBuffer[i][BACK_RIGHT] +WetBuffer[i][BACK_RIGHT]);
1066 buffer = ((ALshort*)buffer) + 4;
1068 break;
1069 case AL_FORMAT_51CHN16:
1070 for(i = 0;i < SamplesToDo;i++)
1072 ((ALshort*)buffer)[0] = aluF2S(DryBuffer[i][FRONT_LEFT] +WetBuffer[i][FRONT_LEFT]);
1073 ((ALshort*)buffer)[1] = aluF2S(DryBuffer[i][FRONT_RIGHT]+WetBuffer[i][FRONT_RIGHT]);
1074 ((ALshort*)buffer)[2] = aluF2S(DryBuffer[i][BACK_LEFT] +WetBuffer[i][BACK_LEFT]);
1075 ((ALshort*)buffer)[3] = aluF2S(DryBuffer[i][BACK_RIGHT] +WetBuffer[i][BACK_RIGHT]);
1076 ((ALshort*)buffer)[4] = aluF2S(DryBuffer[i][CENTER] +WetBuffer[i][CENTER]);
1077 ((ALshort*)buffer)[5] = aluF2S(DryBuffer[i][LFE] +WetBuffer[i][LFE]);
1078 buffer = ((ALshort*)buffer) + 6;
1080 break;
1081 case AL_FORMAT_61CHN16:
1082 for(i = 0;i < SamplesToDo;i++)
1084 ((ALshort*)buffer)[0] = aluF2S(DryBuffer[i][FRONT_LEFT] +WetBuffer[i][FRONT_LEFT]);
1085 ((ALshort*)buffer)[1] = aluF2S(DryBuffer[i][FRONT_RIGHT]+WetBuffer[i][FRONT_RIGHT]);
1086 ((ALshort*)buffer)[2] = aluF2S(DryBuffer[i][SIDE_LEFT] +WetBuffer[i][SIDE_LEFT]);
1087 ((ALshort*)buffer)[3] = aluF2S(DryBuffer[i][SIDE_RIGHT] +WetBuffer[i][SIDE_RIGHT]);
1088 ((ALshort*)buffer)[4] = aluF2S(DryBuffer[i][BACK_LEFT] +WetBuffer[i][BACK_LEFT]);
1089 ((ALshort*)buffer)[5] = aluF2S(DryBuffer[i][BACK_RIGHT] +WetBuffer[i][BACK_RIGHT]);
1090 ((ALshort*)buffer)[6] = aluF2S(DryBuffer[i][LFE] +WetBuffer[i][LFE]);
1091 buffer = ((ALshort*)buffer) + 7;
1093 break;
1094 case AL_FORMAT_71CHN16:
1095 for(i = 0;i < SamplesToDo;i++)
1097 ((ALshort*)buffer)[0] = aluF2S(DryBuffer[i][FRONT_LEFT] +WetBuffer[i][FRONT_LEFT]);
1098 ((ALshort*)buffer)[1] = aluF2S(DryBuffer[i][FRONT_RIGHT]+WetBuffer[i][FRONT_RIGHT]);
1099 ((ALshort*)buffer)[2] = aluF2S(DryBuffer[i][SIDE_LEFT] +WetBuffer[i][SIDE_LEFT]);
1100 ((ALshort*)buffer)[3] = aluF2S(DryBuffer[i][SIDE_RIGHT] +WetBuffer[i][SIDE_RIGHT]);
1101 ((ALshort*)buffer)[4] = aluF2S(DryBuffer[i][BACK_LEFT] +WetBuffer[i][BACK_LEFT]);
1102 ((ALshort*)buffer)[5] = aluF2S(DryBuffer[i][BACK_RIGHT] +WetBuffer[i][BACK_RIGHT]);
1103 ((ALshort*)buffer)[6] = aluF2S(DryBuffer[i][CENTER] +WetBuffer[i][CENTER]);
1104 ((ALshort*)buffer)[7] = aluF2S(DryBuffer[i][LFE] +WetBuffer[i][LFE]);
1105 buffer = ((ALshort*)buffer) + 8;
1107 break;
1109 default:
1110 break;
1113 size -= SamplesToDo;
1117 ProcessContext(ALContext);