Store some more HRTF info in the DirectParams struct
[openal-soft.git] / Alc / ALu.c
blob821160a85af3e25078f78e58a22b8eb80e3156ca
1 /**
2 * OpenAL cross platform audio library
3 * Copyright (C) 1999-2007 by authors.
4 * This library is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU Library General Public
6 * License as published by the Free Software Foundation; either
7 * version 2 of the License, or (at your option) any later version.
9 * This library is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12 * Library General Public License for more details.
14 * You should have received a copy of the GNU Library General Public
15 * License along with this library; if not, write to the
16 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
17 * Boston, MA 02111-1307, USA.
18 * Or go to http://www.gnu.org/copyleft/lgpl.html
21 #include "config.h"
23 #include <math.h>
24 #include <stdlib.h>
25 #include <string.h>
26 #include <ctype.h>
27 #include <assert.h>
29 #include "alMain.h"
30 #include "alSource.h"
31 #include "alBuffer.h"
32 #include "alListener.h"
33 #include "alAuxEffectSlot.h"
34 #include "alu.h"
35 #include "bs2b.h"
37 #include "mixer_defs.h"
40 struct ChanMap {
41 enum Channel channel;
42 ALfloat angle;
45 /* Cone scalar */
46 ALfloat ConeScale = 1.0f;
48 /* Localized Z scalar for mono sources */
49 ALfloat ZScale = 1.0f;
52 static ResamplerFunc SelectResampler(enum Resampler Resampler, ALuint increment)
54 if(increment == FRACTIONONE)
55 return Resample_copy32_C;
56 switch(Resampler)
58 case PointResampler:
59 return Resample_point32_C;
60 case LinearResampler:
61 return Resample_lerp32_C;
62 case CubicResampler:
63 return Resample_cubic32_C;
64 case ResamplerMax:
65 /* Shouldn't happen */
66 break;
69 return Resample_point32_C;
73 static DryMixerFunc SelectHrtfMixer(void)
75 #ifdef HAVE_SSE
76 if((CPUCapFlags&CPU_CAP_SSE))
77 return MixDirect_Hrtf_SSE;
78 #endif
79 #ifdef HAVE_NEON
80 if((CPUCapFlags&CPU_CAP_NEON))
81 return MixDirect_Hrtf_Neon;
82 #endif
84 return MixDirect_Hrtf_C;
87 static DryMixerFunc SelectDirectMixer(void)
89 #ifdef HAVE_SSE
90 if((CPUCapFlags&CPU_CAP_SSE))
91 return MixDirect_SSE;
92 #endif
94 return MixDirect_C;
97 static WetMixerFunc SelectSendMixer(void)
99 #ifdef HAVE_SSE
100 if((CPUCapFlags&CPU_CAP_SSE))
101 return MixSend_SSE;
102 #endif
104 return MixSend_C;
108 static __inline ALvoid aluMatrixVector(ALfloat *vector, ALfloat w, ALfloat (*RESTRICT matrix)[4])
110 ALfloat temp[4] = {
111 vector[0], vector[1], vector[2], w
114 vector[0] = temp[0]*matrix[0][0] + temp[1]*matrix[1][0] + temp[2]*matrix[2][0] + temp[3]*matrix[3][0];
115 vector[1] = temp[0]*matrix[0][1] + temp[1]*matrix[1][1] + temp[2]*matrix[2][1] + temp[3]*matrix[3][1];
116 vector[2] = temp[0]*matrix[0][2] + temp[1]*matrix[1][2] + temp[2]*matrix[2][2] + temp[3]*matrix[3][2];
120 static ALvoid CalcListenerParams(ALlistener *Listener)
122 ALfloat N[3], V[3], U[3], P[3];
124 /* AT then UP */
125 N[0] = Listener->Forward[0];
126 N[1] = Listener->Forward[1];
127 N[2] = Listener->Forward[2];
128 aluNormalize(N);
129 V[0] = Listener->Up[0];
130 V[1] = Listener->Up[1];
131 V[2] = Listener->Up[2];
132 aluNormalize(V);
133 /* Build and normalize right-vector */
134 aluCrossproduct(N, V, U);
135 aluNormalize(U);
137 Listener->Params.Matrix[0][0] = U[0];
138 Listener->Params.Matrix[0][1] = V[0];
139 Listener->Params.Matrix[0][2] = -N[0];
140 Listener->Params.Matrix[0][3] = 0.0f;
141 Listener->Params.Matrix[1][0] = U[1];
142 Listener->Params.Matrix[1][1] = V[1];
143 Listener->Params.Matrix[1][2] = -N[1];
144 Listener->Params.Matrix[1][3] = 0.0f;
145 Listener->Params.Matrix[2][0] = U[2];
146 Listener->Params.Matrix[2][1] = V[2];
147 Listener->Params.Matrix[2][2] = -N[2];
148 Listener->Params.Matrix[2][3] = 0.0f;
149 Listener->Params.Matrix[3][0] = 0.0f;
150 Listener->Params.Matrix[3][1] = 0.0f;
151 Listener->Params.Matrix[3][2] = 0.0f;
152 Listener->Params.Matrix[3][3] = 1.0f;
154 P[0] = Listener->Position[0];
155 P[1] = Listener->Position[1];
156 P[2] = Listener->Position[2];
157 aluMatrixVector(P, 1.0f, Listener->Params.Matrix);
158 Listener->Params.Matrix[3][0] = -P[0];
159 Listener->Params.Matrix[3][1] = -P[1];
160 Listener->Params.Matrix[3][2] = -P[2];
162 Listener->Params.Velocity[0] = Listener->Velocity[0];
163 Listener->Params.Velocity[1] = Listener->Velocity[1];
164 Listener->Params.Velocity[2] = Listener->Velocity[2];
165 aluMatrixVector(Listener->Params.Velocity, 0.0f, Listener->Params.Matrix);
168 ALvoid CalcNonAttnSourceParams(ALsource *ALSource, const ALCcontext *ALContext)
170 static const struct ChanMap MonoMap[1] = { { FrontCenter, 0.0f } };
171 static const struct ChanMap StereoMap[2] = {
172 { FrontLeft, -30.0f * F_PI/180.0f },
173 { FrontRight, 30.0f * F_PI/180.0f }
175 static const struct ChanMap StereoWideMap[2] = {
176 { FrontLeft, -90.0f * F_PI/180.0f },
177 { FrontRight, 90.0f * F_PI/180.0f }
179 static const struct ChanMap RearMap[2] = {
180 { BackLeft, -150.0f * F_PI/180.0f },
181 { BackRight, 150.0f * F_PI/180.0f }
183 static const struct ChanMap QuadMap[4] = {
184 { FrontLeft, -45.0f * F_PI/180.0f },
185 { FrontRight, 45.0f * F_PI/180.0f },
186 { BackLeft, -135.0f * F_PI/180.0f },
187 { BackRight, 135.0f * F_PI/180.0f }
189 static const struct ChanMap X51Map[6] = {
190 { FrontLeft, -30.0f * F_PI/180.0f },
191 { FrontRight, 30.0f * F_PI/180.0f },
192 { FrontCenter, 0.0f * F_PI/180.0f },
193 { LFE, 0.0f },
194 { BackLeft, -110.0f * F_PI/180.0f },
195 { BackRight, 110.0f * F_PI/180.0f }
197 static const struct ChanMap X61Map[7] = {
198 { FrontLeft, -30.0f * F_PI/180.0f },
199 { FrontRight, 30.0f * F_PI/180.0f },
200 { FrontCenter, 0.0f * F_PI/180.0f },
201 { LFE, 0.0f },
202 { BackCenter, 180.0f * F_PI/180.0f },
203 { SideLeft, -90.0f * F_PI/180.0f },
204 { SideRight, 90.0f * F_PI/180.0f }
206 static const struct ChanMap X71Map[8] = {
207 { FrontLeft, -30.0f * F_PI/180.0f },
208 { FrontRight, 30.0f * F_PI/180.0f },
209 { FrontCenter, 0.0f * F_PI/180.0f },
210 { LFE, 0.0f },
211 { BackLeft, -150.0f * F_PI/180.0f },
212 { BackRight, 150.0f * F_PI/180.0f },
213 { SideLeft, -90.0f * F_PI/180.0f },
214 { SideRight, 90.0f * F_PI/180.0f }
217 ALCdevice *Device = ALContext->Device;
218 ALfloat SourceVolume,ListenerGain,MinVolume,MaxVolume;
219 ALbufferlistitem *BufferListItem;
220 enum FmtChannels Channels;
221 ALfloat (*SrcMatrix)[MaxChannels];
222 ALfloat DryGain, DryGainHF;
223 ALfloat WetGain[MAX_SENDS];
224 ALfloat WetGainHF[MAX_SENDS];
225 ALint NumSends, Frequency;
226 const struct ChanMap *chans = NULL;
227 enum Resampler Resampler;
228 ALint num_channels = 0;
229 ALboolean DirectChannels;
230 ALfloat hwidth = 0.0f;
231 ALfloat Pitch;
232 ALfloat cw;
233 ALint i, c;
235 /* Get device properties */
236 NumSends = Device->NumAuxSends;
237 Frequency = Device->Frequency;
239 /* Get listener properties */
240 ListenerGain = ALContext->Listener->Gain;
242 /* Get source properties */
243 SourceVolume = ALSource->Gain;
244 MinVolume = ALSource->MinGain;
245 MaxVolume = ALSource->MaxGain;
246 Pitch = ALSource->Pitch;
247 Resampler = ALSource->Resampler;
248 DirectChannels = ALSource->DirectChannels;
250 /* Calculate the stepping value */
251 Channels = FmtMono;
252 BufferListItem = ALSource->queue;
253 while(BufferListItem != NULL)
255 ALbuffer *ALBuffer;
256 if((ALBuffer=BufferListItem->buffer) != NULL)
258 ALsizei maxstep = BUFFERSIZE;
259 maxstep -= ResamplerPadding[Resampler] +
260 ResamplerPrePadding[Resampler] + 1;
261 maxstep = mini(maxstep, INT_MAX>>FRACTIONBITS);
263 Pitch = Pitch * ALBuffer->Frequency / Frequency;
264 if(Pitch > (ALfloat)maxstep)
265 ALSource->Params.Step = maxstep<<FRACTIONBITS;
266 else
268 ALSource->Params.Step = fastf2i(Pitch*FRACTIONONE);
269 if(ALSource->Params.Step == 0)
270 ALSource->Params.Step = 1;
272 ALSource->Params.Resample = SelectResampler(Resampler, ALSource->Params.Step);
274 Channels = ALBuffer->FmtChannels;
275 break;
277 BufferListItem = BufferListItem->next;
279 if(!DirectChannels && Device->Hrtf)
280 ALSource->Params.DryMix = SelectHrtfMixer();
281 else
282 ALSource->Params.DryMix = SelectDirectMixer();
283 ALSource->Params.WetMix = SelectSendMixer();
285 /* Calculate gains */
286 DryGain = clampf(SourceVolume, MinVolume, MaxVolume);
287 DryGain *= ALSource->DirectGain * ListenerGain;
288 DryGainHF = ALSource->DirectGainHF;
289 for(i = 0;i < NumSends;i++)
291 WetGain[i] = clampf(SourceVolume, MinVolume, MaxVolume);
292 WetGain[i] *= ALSource->Send[i].Gain * ListenerGain;
293 WetGainHF[i] = ALSource->Send[i].GainHF;
296 SrcMatrix = ALSource->Params.Direct.Gains;
297 for(i = 0;i < MaxChannels;i++)
299 for(c = 0;c < MaxChannels;c++)
300 SrcMatrix[i][c] = 0.0f;
302 switch(Channels)
304 case FmtMono:
305 chans = MonoMap;
306 num_channels = 1;
307 break;
309 case FmtStereo:
310 if(!(Device->Flags&DEVICE_WIDE_STEREO))
311 chans = StereoMap;
312 else
314 chans = StereoWideMap;
315 hwidth = 60.0f * F_PI/180.0f;
317 num_channels = 2;
318 break;
320 case FmtRear:
321 chans = RearMap;
322 num_channels = 2;
323 break;
325 case FmtQuad:
326 chans = QuadMap;
327 num_channels = 4;
328 break;
330 case FmtX51:
331 chans = X51Map;
332 num_channels = 6;
333 break;
335 case FmtX61:
336 chans = X61Map;
337 num_channels = 7;
338 break;
340 case FmtX71:
341 chans = X71Map;
342 num_channels = 8;
343 break;
346 if(DirectChannels != AL_FALSE)
348 for(c = 0;c < num_channels;c++)
350 for(i = 0;i < (ALint)Device->NumChan;i++)
352 enum Channel chan = Device->Speaker2Chan[i];
353 if(chan == chans[c].channel)
355 SrcMatrix[c][chan] = DryGain;
356 break;
361 else if(Device->Hrtf)
363 for(c = 0;c < num_channels;c++)
365 if(chans[c].channel == LFE)
367 /* Skip LFE */
368 ALSource->Params.Direct.Hrtf.Delay[c][0] = 0;
369 ALSource->Params.Direct.Hrtf.Delay[c][1] = 0;
370 for(i = 0;i < HRIR_LENGTH;i++)
372 ALSource->Params.Direct.Hrtf.Coeffs[c][i][0] = 0.0f;
373 ALSource->Params.Direct.Hrtf.Coeffs[c][i][1] = 0.0f;
376 else
378 /* Get the static HRIR coefficients and delays for this
379 * channel. */
380 GetLerpedHrtfCoeffs(Device->Hrtf,
381 0.0f, chans[c].angle, DryGain,
382 ALSource->Params.Direct.Hrtf.Coeffs[c],
383 ALSource->Params.Direct.Hrtf.Delay[c]);
386 ALSource->Hrtf.Counter = 0;
387 ALSource->Params.Direct.Hrtf.IrSize = GetHrtfIrSize(Device->Hrtf);
389 ALSource->Params.Direct.hrtfState = &ALSource->Hrtf;
391 else
393 DryGain *= lerp(1.0f, 1.0f/sqrtf((float)Device->NumChan), hwidth/F_PI);
394 for(c = 0;c < num_channels;c++)
396 /* Special-case LFE */
397 if(chans[c].channel == LFE)
399 SrcMatrix[c][chans[c].channel] = DryGain;
400 continue;
402 ComputeAngleGains(Device, chans[c].angle, hwidth, DryGain,
403 SrcMatrix[c]);
406 for(i = 0;i < NumSends;i++)
408 ALeffectslot *Slot = ALSource->Send[i].Slot;
410 if(!Slot && i == 0)
411 Slot = Device->DefaultSlot;
412 if(Slot && Slot->effect.type == AL_EFFECT_NULL)
413 Slot = NULL;
414 ALSource->Params.Send[i].Slot = Slot;
415 ALSource->Params.Send[i].Gain = WetGain[i];
418 /* Update filter coefficients. Calculations based on the I3DL2
419 * spec. */
420 cw = cosf(F_PI*2.0f * LOWPASSFREQREF / Frequency);
422 /* We use two chained one-pole filters, so we need to take the
423 * square root of the squared gain, which is the same as the base
424 * gain. */
425 ALSource->Params.Direct.iirFilter.coeff = lpCoeffCalc(DryGainHF, cw);
426 for(i = 0;i < NumSends;i++)
428 ALfloat a = lpCoeffCalc(WetGainHF[i], cw);
429 ALSource->Params.Send[i].iirFilter.coeff = a;
433 ALvoid CalcSourceParams(ALsource *ALSource, const ALCcontext *ALContext)
435 const ALCdevice *Device = ALContext->Device;
436 ALfloat Velocity[3],Direction[3],Position[3],SourceToListener[3];
437 ALfloat InnerAngle,OuterAngle,Angle,Distance,ClampedDist;
438 ALfloat MinVolume,MaxVolume,MinDist,MaxDist,Rolloff;
439 ALfloat ConeVolume,ConeHF,SourceVolume,ListenerGain;
440 ALfloat DopplerFactor, SpeedOfSound;
441 ALfloat AirAbsorptionFactor;
442 ALfloat RoomAirAbsorption[MAX_SENDS];
443 ALbufferlistitem *BufferListItem;
444 ALfloat Attenuation;
445 ALfloat RoomAttenuation[MAX_SENDS];
446 ALfloat MetersPerUnit;
447 ALfloat RoomRolloffBase;
448 ALfloat RoomRolloff[MAX_SENDS];
449 ALfloat DecayDistance[MAX_SENDS];
450 ALfloat DryGain;
451 ALfloat DryGainHF;
452 ALboolean DryGainHFAuto;
453 ALfloat WetGain[MAX_SENDS];
454 ALfloat WetGainHF[MAX_SENDS];
455 ALboolean WetGainAuto;
456 ALboolean WetGainHFAuto;
457 enum Resampler Resampler;
458 ALfloat Pitch;
459 ALuint Frequency;
460 ALint NumSends;
461 ALfloat cw;
462 ALint i, j;
464 DryGainHF = 1.0f;
465 for(i = 0;i < MAX_SENDS;i++)
466 WetGainHF[i] = 1.0f;
468 /* Get context/device properties */
469 DopplerFactor = ALContext->DopplerFactor * ALSource->DopplerFactor;
470 SpeedOfSound = ALContext->SpeedOfSound * ALContext->DopplerVelocity;
471 NumSends = Device->NumAuxSends;
472 Frequency = Device->Frequency;
474 /* Get listener properties */
475 ListenerGain = ALContext->Listener->Gain;
476 MetersPerUnit = ALContext->Listener->MetersPerUnit;
478 /* Get source properties */
479 SourceVolume = ALSource->Gain;
480 MinVolume = ALSource->MinGain;
481 MaxVolume = ALSource->MaxGain;
482 Pitch = ALSource->Pitch;
483 Resampler = ALSource->Resampler;
484 Position[0] = ALSource->Position[0];
485 Position[1] = ALSource->Position[1];
486 Position[2] = ALSource->Position[2];
487 Direction[0] = ALSource->Orientation[0];
488 Direction[1] = ALSource->Orientation[1];
489 Direction[2] = ALSource->Orientation[2];
490 Velocity[0] = ALSource->Velocity[0];
491 Velocity[1] = ALSource->Velocity[1];
492 Velocity[2] = ALSource->Velocity[2];
493 MinDist = ALSource->RefDistance;
494 MaxDist = ALSource->MaxDistance;
495 Rolloff = ALSource->RollOffFactor;
496 InnerAngle = ALSource->InnerAngle;
497 OuterAngle = ALSource->OuterAngle;
498 AirAbsorptionFactor = ALSource->AirAbsorptionFactor;
499 DryGainHFAuto = ALSource->DryGainHFAuto;
500 WetGainAuto = ALSource->WetGainAuto;
501 WetGainHFAuto = ALSource->WetGainHFAuto;
502 RoomRolloffBase = ALSource->RoomRolloffFactor;
503 for(i = 0;i < NumSends;i++)
505 ALeffectslot *Slot = ALSource->Send[i].Slot;
507 if(!Slot && i == 0)
508 Slot = Device->DefaultSlot;
509 if(!Slot || Slot->effect.type == AL_EFFECT_NULL)
511 Slot = NULL;
512 RoomRolloff[i] = 0.0f;
513 DecayDistance[i] = 0.0f;
514 RoomAirAbsorption[i] = 1.0f;
516 else if(Slot->AuxSendAuto)
518 RoomRolloff[i] = RoomRolloffBase;
519 if(IsReverbEffect(Slot->effect.type))
521 RoomRolloff[i] += Slot->effect.Reverb.RoomRolloffFactor;
522 DecayDistance[i] = Slot->effect.Reverb.DecayTime *
523 SPEEDOFSOUNDMETRESPERSEC;
524 RoomAirAbsorption[i] = Slot->effect.Reverb.AirAbsorptionGainHF;
526 else
528 DecayDistance[i] = 0.0f;
529 RoomAirAbsorption[i] = 1.0f;
532 else
534 /* If the slot's auxiliary send auto is off, the data sent to the
535 * effect slot is the same as the dry path, sans filter effects */
536 RoomRolloff[i] = Rolloff;
537 DecayDistance[i] = 0.0f;
538 RoomAirAbsorption[i] = AIRABSORBGAINHF;
541 ALSource->Params.Send[i].Slot = Slot;
544 /* Transform source to listener space (convert to head relative) */
545 if(ALSource->HeadRelative == AL_FALSE)
547 ALfloat (*RESTRICT Matrix)[4] = ALContext->Listener->Params.Matrix;
548 /* Transform source vectors */
549 aluMatrixVector(Position, 1.0f, Matrix);
550 aluMatrixVector(Direction, 0.0f, Matrix);
551 aluMatrixVector(Velocity, 0.0f, Matrix);
553 else
555 const ALfloat *ListenerVel = ALContext->Listener->Params.Velocity;
556 /* Offset the source velocity to be relative of the listener velocity */
557 Velocity[0] += ListenerVel[0];
558 Velocity[1] += ListenerVel[1];
559 Velocity[2] += ListenerVel[2];
562 SourceToListener[0] = -Position[0];
563 SourceToListener[1] = -Position[1];
564 SourceToListener[2] = -Position[2];
565 aluNormalize(SourceToListener);
566 aluNormalize(Direction);
568 /* Calculate distance attenuation */
569 Distance = sqrtf(aluDotproduct(Position, Position));
570 ClampedDist = Distance;
572 Attenuation = 1.0f;
573 for(i = 0;i < NumSends;i++)
574 RoomAttenuation[i] = 1.0f;
575 switch(ALContext->SourceDistanceModel ? ALSource->DistanceModel :
576 ALContext->DistanceModel)
578 case InverseDistanceClamped:
579 ClampedDist = clampf(ClampedDist, MinDist, MaxDist);
580 if(MaxDist < MinDist)
581 break;
582 /*fall-through*/
583 case InverseDistance:
584 if(MinDist > 0.0f)
586 if((MinDist + (Rolloff * (ClampedDist - MinDist))) > 0.0f)
587 Attenuation = MinDist / (MinDist + (Rolloff * (ClampedDist - MinDist)));
588 for(i = 0;i < NumSends;i++)
590 if((MinDist + (RoomRolloff[i] * (ClampedDist - MinDist))) > 0.0f)
591 RoomAttenuation[i] = MinDist / (MinDist + (RoomRolloff[i] * (ClampedDist - MinDist)));
594 break;
596 case LinearDistanceClamped:
597 ClampedDist = clampf(ClampedDist, MinDist, MaxDist);
598 if(MaxDist < MinDist)
599 break;
600 /*fall-through*/
601 case LinearDistance:
602 if(MaxDist != MinDist)
604 Attenuation = 1.0f - (Rolloff*(ClampedDist-MinDist)/(MaxDist - MinDist));
605 Attenuation = maxf(Attenuation, 0.0f);
606 for(i = 0;i < NumSends;i++)
608 RoomAttenuation[i] = 1.0f - (RoomRolloff[i]*(ClampedDist-MinDist)/(MaxDist - MinDist));
609 RoomAttenuation[i] = maxf(RoomAttenuation[i], 0.0f);
612 break;
614 case ExponentDistanceClamped:
615 ClampedDist = clampf(ClampedDist, MinDist, MaxDist);
616 if(MaxDist < MinDist)
617 break;
618 /*fall-through*/
619 case ExponentDistance:
620 if(ClampedDist > 0.0f && MinDist > 0.0f)
622 Attenuation = powf(ClampedDist/MinDist, -Rolloff);
623 for(i = 0;i < NumSends;i++)
624 RoomAttenuation[i] = powf(ClampedDist/MinDist, -RoomRolloff[i]);
626 break;
628 case DisableDistance:
629 ClampedDist = MinDist;
630 break;
633 /* Source Gain + Attenuation */
634 DryGain = SourceVolume * Attenuation;
635 for(i = 0;i < NumSends;i++)
636 WetGain[i] = SourceVolume * RoomAttenuation[i];
638 /* Distance-based air absorption */
639 if(AirAbsorptionFactor > 0.0f && ClampedDist > MinDist)
641 ALfloat meters = maxf(ClampedDist-MinDist, 0.0f) * MetersPerUnit;
642 DryGainHF *= powf(AIRABSORBGAINHF, AirAbsorptionFactor*meters);
643 for(i = 0;i < NumSends;i++)
644 WetGainHF[i] *= powf(RoomAirAbsorption[i], AirAbsorptionFactor*meters);
647 if(WetGainAuto)
649 ALfloat ApparentDist = 1.0f/maxf(Attenuation, 0.00001f) - 1.0f;
651 /* Apply a decay-time transformation to the wet path, based on the
652 * attenuation of the dry path.
654 * Using the apparent distance, based on the distance attenuation, the
655 * initial decay of the reverb effect is calculated and applied to the
656 * wet path.
658 for(i = 0;i < NumSends;i++)
660 if(DecayDistance[i] > 0.0f)
661 WetGain[i] *= powf(0.001f/*-60dB*/, ApparentDist/DecayDistance[i]);
665 /* Calculate directional soundcones */
666 Angle = acosf(aluDotproduct(Direction,SourceToListener)) * ConeScale * (360.0f/F_PI);
667 if(Angle > InnerAngle && Angle <= OuterAngle)
669 ALfloat scale = (Angle-InnerAngle) / (OuterAngle-InnerAngle);
670 ConeVolume = lerp(1.0f, ALSource->OuterGain, scale);
671 ConeHF = lerp(1.0f, ALSource->OuterGainHF, scale);
673 else if(Angle > OuterAngle)
675 ConeVolume = ALSource->OuterGain;
676 ConeHF = ALSource->OuterGainHF;
678 else
680 ConeVolume = 1.0f;
681 ConeHF = 1.0f;
684 DryGain *= ConeVolume;
685 if(WetGainAuto)
687 for(i = 0;i < NumSends;i++)
688 WetGain[i] *= ConeVolume;
690 if(DryGainHFAuto)
691 DryGainHF *= ConeHF;
692 if(WetGainHFAuto)
694 for(i = 0;i < NumSends;i++)
695 WetGainHF[i] *= ConeHF;
698 /* Clamp to Min/Max Gain */
699 DryGain = clampf(DryGain, MinVolume, MaxVolume);
700 for(i = 0;i < NumSends;i++)
701 WetGain[i] = clampf(WetGain[i], MinVolume, MaxVolume);
703 /* Apply gain and frequency filters */
704 DryGain *= ALSource->DirectGain * ListenerGain;
705 DryGainHF *= ALSource->DirectGainHF;
706 for(i = 0;i < NumSends;i++)
708 WetGain[i] *= ALSource->Send[i].Gain * ListenerGain;
709 WetGainHF[i] *= ALSource->Send[i].GainHF;
712 /* Calculate velocity-based doppler effect */
713 if(DopplerFactor > 0.0f)
715 const ALfloat *ListenerVel = ALContext->Listener->Params.Velocity;
716 ALfloat VSS, VLS;
718 if(SpeedOfSound < 1.0f)
720 DopplerFactor *= 1.0f/SpeedOfSound;
721 SpeedOfSound = 1.0f;
724 VSS = aluDotproduct(Velocity, SourceToListener) * DopplerFactor;
725 VLS = aluDotproduct(ListenerVel, SourceToListener) * DopplerFactor;
727 Pitch *= clampf(SpeedOfSound-VLS, 1.0f, SpeedOfSound*2.0f - 1.0f) /
728 clampf(SpeedOfSound-VSS, 1.0f, SpeedOfSound*2.0f - 1.0f);
731 BufferListItem = ALSource->queue;
732 while(BufferListItem != NULL)
734 ALbuffer *ALBuffer;
735 if((ALBuffer=BufferListItem->buffer) != NULL)
737 /* Calculate fixed-point stepping value, based on the pitch, buffer
738 * frequency, and output frequency. */
739 ALsizei maxstep = BUFFERSIZE;
740 maxstep -= ResamplerPadding[Resampler] +
741 ResamplerPrePadding[Resampler] + 1;
742 maxstep = mini(maxstep, INT_MAX>>FRACTIONBITS);
744 Pitch = Pitch * ALBuffer->Frequency / Frequency;
745 if(Pitch > (ALfloat)maxstep)
746 ALSource->Params.Step = maxstep<<FRACTIONBITS;
747 else
749 ALSource->Params.Step = fastf2i(Pitch*FRACTIONONE);
750 if(ALSource->Params.Step == 0)
751 ALSource->Params.Step = 1;
753 ALSource->Params.Resample = SelectResampler(Resampler, ALSource->Params.Step);
755 break;
757 BufferListItem = BufferListItem->next;
759 if(Device->Hrtf)
760 ALSource->Params.DryMix = SelectHrtfMixer();
761 else
762 ALSource->Params.DryMix = SelectDirectMixer();
763 ALSource->Params.WetMix = SelectSendMixer();
765 if(Device->Hrtf)
767 /* Use a binaural HRTF algorithm for stereo headphone playback */
768 ALfloat delta, ev = 0.0f, az = 0.0f;
770 if(Distance > FLT_EPSILON)
772 ALfloat invlen = 1.0f/Distance;
773 Position[0] *= invlen;
774 Position[1] *= invlen;
775 Position[2] *= invlen;
777 /* Calculate elevation and azimuth only when the source is not at
778 * the listener. This prevents +0 and -0 Z from producing
779 * inconsistent panning. Also, clamp Y in case FP precision errors
780 * cause it to land outside of -1..+1. */
781 ev = asinf(clampf(Position[1], -1.0f, 1.0f));
782 az = atan2f(Position[0], -Position[2]*ZScale);
785 /* Check to see if the HRIR is already moving. */
786 if(ALSource->Hrtf.Moving)
788 /* Calculate the normalized HRTF transition factor (delta). */
789 delta = CalcHrtfDelta(ALSource->Params.Direct.Hrtf.Gain, DryGain,
790 ALSource->Params.Direct.Hrtf.Dir, Position);
791 /* If the delta is large enough, get the moving HRIR target
792 * coefficients, target delays, steppping values, and counter. */
793 if(delta > 0.001f)
795 ALSource->Hrtf.Counter = GetMovingHrtfCoeffs(Device->Hrtf,
796 ev, az, DryGain, delta,
797 ALSource->Hrtf.Counter,
798 ALSource->Params.Direct.Hrtf.Coeffs[0],
799 ALSource->Params.Direct.Hrtf.Delay[0],
800 ALSource->Params.Direct.Hrtf.CoeffStep,
801 ALSource->Params.Direct.Hrtf.DelayStep);
802 ALSource->Params.Direct.Hrtf.Gain = DryGain;
803 ALSource->Params.Direct.Hrtf.Dir[0] = Position[0];
804 ALSource->Params.Direct.Hrtf.Dir[1] = Position[1];
805 ALSource->Params.Direct.Hrtf.Dir[2] = Position[2];
808 else
810 /* Get the initial (static) HRIR coefficients and delays. */
811 GetLerpedHrtfCoeffs(Device->Hrtf, ev, az, DryGain,
812 ALSource->Params.Direct.Hrtf.Coeffs[0],
813 ALSource->Params.Direct.Hrtf.Delay[0]);
814 ALSource->Hrtf.Counter = 0;
815 ALSource->Hrtf.Moving = AL_TRUE;
816 ALSource->Params.Direct.Hrtf.Gain = DryGain;
817 ALSource->Params.Direct.Hrtf.Dir[0] = Position[0];
818 ALSource->Params.Direct.Hrtf.Dir[1] = Position[1];
819 ALSource->Params.Direct.Hrtf.Dir[2] = Position[2];
821 ALSource->Params.Direct.Hrtf.IrSize = GetHrtfIrSize(Device->Hrtf);
823 ALSource->Params.Direct.hrtfState = &ALSource->Hrtf;
825 else
827 ALfloat (*Matrix)[MaxChannels] = ALSource->Params.Direct.Gains;
828 ALfloat DirGain = 0.0f;
829 ALfloat AmbientGain;
831 for(i = 0;i < MaxChannels;i++)
833 for(j = 0;j < MaxChannels;j++)
834 Matrix[i][j] = 0.0f;
837 /* Normalize the length, and compute panned gains. */
838 if(Distance > FLT_EPSILON)
840 ALfloat invlen = 1.0f/Distance;
841 Position[0] *= invlen;
842 Position[1] *= invlen;
843 Position[2] *= invlen;
845 DirGain = sqrtf(Position[0]*Position[0] + Position[2]*Position[2]);
846 ComputeAngleGains(Device, atan2f(Position[0], -Position[2]*ZScale), 0.0f,
847 DryGain*DirGain, Matrix[0]);
850 /* Adjustment for vertical offsets. Not the greatest, but simple
851 * enough. */
852 AmbientGain = DryGain * sqrtf(1.0f/Device->NumChan) * (1.0f-DirGain);
853 for(i = 0;i < (ALint)Device->NumChan;i++)
855 enum Channel chan = Device->Speaker2Chan[i];
856 Matrix[0][chan] = maxf(Matrix[0][chan], AmbientGain);
859 for(i = 0;i < NumSends;i++)
860 ALSource->Params.Send[i].Gain = WetGain[i];
862 /* Update filter coefficients. */
863 cw = cosf(F_PI*2.0f * LOWPASSFREQREF / Frequency);
865 ALSource->Params.Direct.iirFilter.coeff = lpCoeffCalc(DryGainHF, cw);
866 for(i = 0;i < NumSends;i++)
868 ALfloat a = lpCoeffCalc(WetGainHF[i], cw);
869 ALSource->Params.Send[i].iirFilter.coeff = a;
874 static __inline ALfloat aluF2F(ALfloat val)
875 { return val; }
876 static __inline ALint aluF2I(ALfloat val)
878 if(val > 1.0f) return 2147483647;
879 if(val < -1.0f) return -2147483647-1;
880 return fastf2i((ALfloat)(val*2147483647.0));
882 static __inline ALuint aluF2UI(ALfloat val)
883 { return aluF2I(val)+2147483648u; }
884 static __inline ALshort aluF2S(ALfloat val)
885 { return aluF2I(val)>>16; }
886 static __inline ALushort aluF2US(ALfloat val)
887 { return aluF2S(val)+32768; }
888 static __inline ALbyte aluF2B(ALfloat val)
889 { return aluF2I(val)>>24; }
890 static __inline ALubyte aluF2UB(ALfloat val)
891 { return aluF2B(val)+128; }
893 #define DECL_TEMPLATE(T, func) \
894 static int Write_##T(ALCdevice *device, T *RESTRICT buffer, \
895 ALuint SamplesToDo) \
897 ALfloat (*RESTRICT DryBuffer)[BUFFERSIZE] = device->DryBuffer; \
898 ALuint numchans = ChannelsFromDevFmt(device->FmtChans); \
899 const enum Channel *ChanMap = device->DevChannels; \
900 ALuint i, j; \
902 for(j = 0;j < numchans;j++) \
904 T *RESTRICT out = buffer + j; \
905 enum Channel chan = ChanMap[j]; \
907 for(i = 0;i < SamplesToDo;i++) \
908 out[i*numchans] = func(DryBuffer[chan][i]); \
910 return SamplesToDo*numchans*sizeof(T); \
913 DECL_TEMPLATE(ALfloat, aluF2F)
914 DECL_TEMPLATE(ALuint, aluF2UI)
915 DECL_TEMPLATE(ALint, aluF2I)
916 DECL_TEMPLATE(ALushort, aluF2US)
917 DECL_TEMPLATE(ALshort, aluF2S)
918 DECL_TEMPLATE(ALubyte, aluF2UB)
919 DECL_TEMPLATE(ALbyte, aluF2B)
921 #undef DECL_TEMPLATE
924 ALvoid aluMixData(ALCdevice *device, ALvoid *buffer, ALsizei size)
926 ALuint SamplesToDo;
927 ALeffectslot **slot, **slot_end;
928 ALsource **src, **src_end;
929 ALCcontext *ctx;
930 FPUCtl oldMode;
931 ALuint i, c;
933 SetMixerFPUMode(&oldMode);
935 while(size > 0)
937 SamplesToDo = minu(size, BUFFERSIZE);
938 for(c = 0;c < MaxChannels;c++)
939 memset(device->DryBuffer[c], 0, SamplesToDo*sizeof(ALfloat));
941 ALCdevice_Lock(device);
942 ctx = device->ContextList;
943 while(ctx)
945 ALenum DeferUpdates = ctx->DeferUpdates;
946 ALenum UpdateSources = AL_FALSE;
948 if(!DeferUpdates)
949 UpdateSources = ExchangeInt(&ctx->UpdateSources, AL_FALSE);
951 if(UpdateSources)
952 CalcListenerParams(ctx->Listener);
954 /* source processing */
955 src = ctx->ActiveSources;
956 src_end = src + ctx->ActiveSourceCount;
957 while(src != src_end)
959 if((*src)->state != AL_PLAYING)
961 --(ctx->ActiveSourceCount);
962 *src = *(--src_end);
963 continue;
966 if(!DeferUpdates && (ExchangeInt(&(*src)->NeedsUpdate, AL_FALSE) ||
967 UpdateSources))
968 ALsource_Update(*src, ctx);
970 MixSource(*src, device, SamplesToDo);
971 src++;
974 /* effect slot processing */
975 slot = ctx->ActiveEffectSlots;
976 slot_end = slot + ctx->ActiveEffectSlotCount;
977 while(slot != slot_end)
979 ALfloat offset = (*slot)->ClickRemoval[0];
980 if(offset < (1.0f/32768.0f))
981 offset = 0.0f;
982 else for(i = 0;i < SamplesToDo;i++)
984 (*slot)->WetBuffer[0][i] += offset;
985 offset -= offset * (1.0f/256.0f);
987 (*slot)->ClickRemoval[0] = offset + (*slot)->PendingClicks[0];
988 (*slot)->PendingClicks[0] = 0.0f;
990 if(!DeferUpdates && ExchangeInt(&(*slot)->NeedsUpdate, AL_FALSE))
991 ALeffectState_Update((*slot)->EffectState, device, *slot);
993 ALeffectState_Process((*slot)->EffectState, SamplesToDo,
994 (*slot)->WetBuffer[0], device->DryBuffer);
996 for(i = 0;i < SamplesToDo;i++)
997 (*slot)->WetBuffer[0][i] = 0.0f;
999 slot++;
1002 ctx = ctx->next;
1005 slot = &device->DefaultSlot;
1006 if(*slot != NULL)
1008 ALfloat offset = (*slot)->ClickRemoval[0];
1009 if(offset < (1.0f/32768.0f))
1010 offset = 0.0f;
1011 else for(i = 0;i < SamplesToDo;i++)
1013 (*slot)->WetBuffer[0][i] += offset;
1014 offset -= offset * (1.0f/256.0f);
1016 (*slot)->ClickRemoval[0] = offset + (*slot)->PendingClicks[0];
1017 (*slot)->PendingClicks[0] = 0.0f;
1019 if(ExchangeInt(&(*slot)->NeedsUpdate, AL_FALSE))
1020 ALeffectState_Update((*slot)->EffectState, device, *slot);
1022 ALeffectState_Process((*slot)->EffectState, SamplesToDo,
1023 (*slot)->WetBuffer[0], device->DryBuffer);
1025 for(i = 0;i < SamplesToDo;i++)
1026 (*slot)->WetBuffer[0][i] = 0.0f;
1028 ALCdevice_Unlock(device);
1030 /* Click-removal. Could do better; this only really handles immediate
1031 * changes between updates where a predictive sample could be
1032 * generated. Delays caused by effects and HRTF aren't caught. */
1033 if(device->FmtChans == DevFmtMono)
1035 ALfloat offset = device->ClickRemoval[FrontCenter];
1036 if(offset < (1.0f/32768.0f))
1037 offset = 0.0f;
1038 else for(i = 0;i < SamplesToDo;i++)
1040 device->DryBuffer[FrontCenter][i] += offset;
1041 offset -= offset * (1.0f/256.0f);
1043 device->ClickRemoval[FrontCenter] = offset + device->PendingClicks[FrontCenter];
1044 device->PendingClicks[FrontCenter] = 0.0f;
1046 else if(device->FmtChans == DevFmtStereo)
1048 /* Assumes the first two channels are FrontLeft and FrontRight */
1049 for(c = 0;c < 2;c++)
1051 ALfloat offset = device->ClickRemoval[c];
1052 if(offset < (1.0f/32768.0f))
1053 offset = 0.0f;
1054 else for(i = 0;i < SamplesToDo;i++)
1056 device->DryBuffer[c][i] += offset;
1057 offset -= offset * (1.0f/256.0f);
1059 device->ClickRemoval[c] = offset + device->PendingClicks[c];
1060 device->PendingClicks[c] = 0.0f;
1062 if(device->Bs2b)
1064 float samples[2];
1065 for(i = 0;i < SamplesToDo;i++)
1067 samples[0] = device->DryBuffer[FrontLeft][i];
1068 samples[1] = device->DryBuffer[FrontRight][i];
1069 bs2b_cross_feed(device->Bs2b, samples);
1070 device->DryBuffer[FrontLeft][i] = samples[0];
1071 device->DryBuffer[FrontRight][i] = samples[1];
1075 else
1077 for(c = 0;c < MaxChannels;c++)
1079 ALfloat offset = device->ClickRemoval[c];
1080 if(offset < (1.0f/32768.0f))
1081 offset = 0.0f;
1082 else for(i = 0;i < SamplesToDo;i++)
1084 device->DryBuffer[c][i] += offset;
1085 offset -= offset * (1.0f/256.0f);
1087 device->ClickRemoval[c] = offset + device->PendingClicks[c];
1088 device->PendingClicks[c] = 0.0f;
1092 if(buffer)
1094 int bytes = 0;
1095 switch(device->FmtType)
1097 case DevFmtByte:
1098 bytes = Write_ALbyte(device, buffer, SamplesToDo);
1099 break;
1100 case DevFmtUByte:
1101 bytes = Write_ALubyte(device, buffer, SamplesToDo);
1102 break;
1103 case DevFmtShort:
1104 bytes = Write_ALshort(device, buffer, SamplesToDo);
1105 break;
1106 case DevFmtUShort:
1107 bytes = Write_ALushort(device, buffer, SamplesToDo);
1108 break;
1109 case DevFmtInt:
1110 bytes = Write_ALint(device, buffer, SamplesToDo);
1111 break;
1112 case DevFmtUInt:
1113 bytes = Write_ALuint(device, buffer, SamplesToDo);
1114 break;
1115 case DevFmtFloat:
1116 bytes = Write_ALfloat(device, buffer, SamplesToDo);
1117 break;
1120 buffer = (ALubyte*)buffer + bytes;
1123 size -= SamplesToDo;
1126 RestoreFPUMode(&oldMode);
1130 ALvoid aluHandleDisconnect(ALCdevice *device)
1132 ALCcontext *Context;
1134 ALCdevice_Lock(device);
1135 device->Connected = ALC_FALSE;
1137 Context = device->ContextList;
1138 while(Context)
1140 ALsource **src, **src_end;
1142 src = Context->ActiveSources;
1143 src_end = src + Context->ActiveSourceCount;
1144 while(src != src_end)
1146 if((*src)->state == AL_PLAYING)
1148 (*src)->state = AL_STOPPED;
1149 (*src)->BuffersPlayed = (*src)->BuffersInQueue;
1150 (*src)->position = 0;
1151 (*src)->position_fraction = 0;
1153 src++;
1155 Context->ActiveSourceCount = 0;
1157 Context = Context->next;
1159 ALCdevice_Unlock(device);