Print SCoPs under CLooG format.
[official-gcc/graphite-test-results.git] / gcc / tree-ssa-structalias.c
blob5138e72feb481a7ff7e98bade209d53761cb958a
1 /* Tree based points-to analysis
2 Copyright (C) 2005, 2006, 2007, 2008, 2009 Free Software Foundation, Inc.
3 Contributed by Daniel Berlin <dberlin@dberlin.org>
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify
8 under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "ggc.h"
26 #include "obstack.h"
27 #include "bitmap.h"
28 #include "flags.h"
29 #include "rtl.h"
30 #include "tm_p.h"
31 #include "hard-reg-set.h"
32 #include "basic-block.h"
33 #include "output.h"
34 #include "tree.h"
35 #include "tree-flow.h"
36 #include "tree-inline.h"
37 #include "varray.h"
38 #include "diagnostic.h"
39 #include "toplev.h"
40 #include "gimple.h"
41 #include "hashtab.h"
42 #include "function.h"
43 #include "cgraph.h"
44 #include "tree-pass.h"
45 #include "timevar.h"
46 #include "alloc-pool.h"
47 #include "splay-tree.h"
48 #include "params.h"
49 #include "cgraph.h"
50 #include "alias.h"
51 #include "pointer-set.h"
53 /* The idea behind this analyzer is to generate set constraints from the
54 program, then solve the resulting constraints in order to generate the
55 points-to sets.
57 Set constraints are a way of modeling program analysis problems that
58 involve sets. They consist of an inclusion constraint language,
59 describing the variables (each variable is a set) and operations that
60 are involved on the variables, and a set of rules that derive facts
61 from these operations. To solve a system of set constraints, you derive
62 all possible facts under the rules, which gives you the correct sets
63 as a consequence.
65 See "Efficient Field-sensitive pointer analysis for C" by "David
66 J. Pearce and Paul H. J. Kelly and Chris Hankin, at
67 http://citeseer.ist.psu.edu/pearce04efficient.html
69 Also see "Ultra-fast Aliasing Analysis using CLA: A Million Lines
70 of C Code in a Second" by ""Nevin Heintze and Olivier Tardieu" at
71 http://citeseer.ist.psu.edu/heintze01ultrafast.html
73 There are three types of real constraint expressions, DEREF,
74 ADDRESSOF, and SCALAR. Each constraint expression consists
75 of a constraint type, a variable, and an offset.
77 SCALAR is a constraint expression type used to represent x, whether
78 it appears on the LHS or the RHS of a statement.
79 DEREF is a constraint expression type used to represent *x, whether
80 it appears on the LHS or the RHS of a statement.
81 ADDRESSOF is a constraint expression used to represent &x, whether
82 it appears on the LHS or the RHS of a statement.
84 Each pointer variable in the program is assigned an integer id, and
85 each field of a structure variable is assigned an integer id as well.
87 Structure variables are linked to their list of fields through a "next
88 field" in each variable that points to the next field in offset
89 order.
90 Each variable for a structure field has
92 1. "size", that tells the size in bits of that field.
93 2. "fullsize, that tells the size in bits of the entire structure.
94 3. "offset", that tells the offset in bits from the beginning of the
95 structure to this field.
97 Thus,
98 struct f
100 int a;
101 int b;
102 } foo;
103 int *bar;
105 looks like
107 foo.a -> id 1, size 32, offset 0, fullsize 64, next foo.b
108 foo.b -> id 2, size 32, offset 32, fullsize 64, next NULL
109 bar -> id 3, size 32, offset 0, fullsize 32, next NULL
112 In order to solve the system of set constraints, the following is
113 done:
115 1. Each constraint variable x has a solution set associated with it,
116 Sol(x).
118 2. Constraints are separated into direct, copy, and complex.
119 Direct constraints are ADDRESSOF constraints that require no extra
120 processing, such as P = &Q
121 Copy constraints are those of the form P = Q.
122 Complex constraints are all the constraints involving dereferences
123 and offsets (including offsetted copies).
125 3. All direct constraints of the form P = &Q are processed, such
126 that Q is added to Sol(P)
128 4. All complex constraints for a given constraint variable are stored in a
129 linked list attached to that variable's node.
131 5. A directed graph is built out of the copy constraints. Each
132 constraint variable is a node in the graph, and an edge from
133 Q to P is added for each copy constraint of the form P = Q
135 6. The graph is then walked, and solution sets are
136 propagated along the copy edges, such that an edge from Q to P
137 causes Sol(P) <- Sol(P) union Sol(Q).
139 7. As we visit each node, all complex constraints associated with
140 that node are processed by adding appropriate copy edges to the graph, or the
141 appropriate variables to the solution set.
143 8. The process of walking the graph is iterated until no solution
144 sets change.
146 Prior to walking the graph in steps 6 and 7, We perform static
147 cycle elimination on the constraint graph, as well
148 as off-line variable substitution.
150 TODO: Adding offsets to pointer-to-structures can be handled (IE not punted
151 on and turned into anything), but isn't. You can just see what offset
152 inside the pointed-to struct it's going to access.
154 TODO: Constant bounded arrays can be handled as if they were structs of the
155 same number of elements.
157 TODO: Modeling heap and incoming pointers becomes much better if we
158 add fields to them as we discover them, which we could do.
160 TODO: We could handle unions, but to be honest, it's probably not
161 worth the pain or slowdown. */
163 static GTY ((if_marked ("tree_map_marked_p"), param_is (struct tree_map)))
164 htab_t heapvar_for_stmt;
166 static bool use_field_sensitive = true;
167 static int in_ipa_mode = 0;
169 /* Used for predecessor bitmaps. */
170 static bitmap_obstack predbitmap_obstack;
172 /* Used for points-to sets. */
173 static bitmap_obstack pta_obstack;
175 /* Used for oldsolution members of variables. */
176 static bitmap_obstack oldpta_obstack;
178 /* Used for per-solver-iteration bitmaps. */
179 static bitmap_obstack iteration_obstack;
181 static unsigned int create_variable_info_for (tree, const char *);
182 typedef struct constraint_graph *constraint_graph_t;
183 static void unify_nodes (constraint_graph_t, unsigned int, unsigned int, bool);
185 struct constraint;
186 typedef struct constraint *constraint_t;
188 DEF_VEC_P(constraint_t);
189 DEF_VEC_ALLOC_P(constraint_t,heap);
191 #define EXECUTE_IF_IN_NONNULL_BITMAP(a, b, c, d) \
192 if (a) \
193 EXECUTE_IF_SET_IN_BITMAP (a, b, c, d)
195 static struct constraint_stats
197 unsigned int total_vars;
198 unsigned int nonpointer_vars;
199 unsigned int unified_vars_static;
200 unsigned int unified_vars_dynamic;
201 unsigned int iterations;
202 unsigned int num_edges;
203 unsigned int num_implicit_edges;
204 unsigned int points_to_sets_created;
205 } stats;
207 struct variable_info
209 /* ID of this variable */
210 unsigned int id;
212 /* True if this is a variable created by the constraint analysis, such as
213 heap variables and constraints we had to break up. */
214 unsigned int is_artificial_var : 1;
216 /* True if this is a special variable whose solution set should not be
217 changed. */
218 unsigned int is_special_var : 1;
220 /* True for variables whose size is not known or variable. */
221 unsigned int is_unknown_size_var : 1;
223 /* True for (sub-)fields that represent a whole variable. */
224 unsigned int is_full_var : 1;
226 /* True if this is a heap variable. */
227 unsigned int is_heap_var : 1;
229 /* True if this is a variable tracking a restrict pointer source. */
230 unsigned int is_restrict_var : 1;
232 /* True if this field may contain pointers. */
233 unsigned int may_have_pointers : 1;
235 /* True if this represents a global variable. */
236 unsigned int is_global_var : 1;
238 /* A link to the variable for the next field in this structure. */
239 struct variable_info *next;
241 /* Offset of this variable, in bits, from the base variable */
242 unsigned HOST_WIDE_INT offset;
244 /* Size of the variable, in bits. */
245 unsigned HOST_WIDE_INT size;
247 /* Full size of the base variable, in bits. */
248 unsigned HOST_WIDE_INT fullsize;
250 /* Name of this variable */
251 const char *name;
253 /* Tree that this variable is associated with. */
254 tree decl;
256 /* Points-to set for this variable. */
257 bitmap solution;
259 /* Old points-to set for this variable. */
260 bitmap oldsolution;
262 typedef struct variable_info *varinfo_t;
264 static varinfo_t first_vi_for_offset (varinfo_t, unsigned HOST_WIDE_INT);
265 static varinfo_t first_or_preceding_vi_for_offset (varinfo_t,
266 unsigned HOST_WIDE_INT);
267 static varinfo_t lookup_vi_for_tree (tree);
269 /* Pool of variable info structures. */
270 static alloc_pool variable_info_pool;
272 DEF_VEC_P(varinfo_t);
274 DEF_VEC_ALLOC_P(varinfo_t, heap);
276 /* Table of variable info structures for constraint variables.
277 Indexed directly by variable info id. */
278 static VEC(varinfo_t,heap) *varmap;
280 /* Return the varmap element N */
282 static inline varinfo_t
283 get_varinfo (unsigned int n)
285 return VEC_index (varinfo_t, varmap, n);
288 /* Static IDs for the special variables. */
289 enum { nothing_id = 0, anything_id = 1, readonly_id = 2,
290 escaped_id = 3, nonlocal_id = 4, callused_id = 5,
291 storedanything_id = 6, integer_id = 7 };
293 struct GTY(()) heapvar_map {
294 struct tree_map map;
295 unsigned HOST_WIDE_INT offset;
298 static int
299 heapvar_map_eq (const void *p1, const void *p2)
301 const struct heapvar_map *h1 = (const struct heapvar_map *)p1;
302 const struct heapvar_map *h2 = (const struct heapvar_map *)p2;
303 return (h1->map.base.from == h2->map.base.from
304 && h1->offset == h2->offset);
307 static unsigned int
308 heapvar_map_hash (struct heapvar_map *h)
310 return iterative_hash_host_wide_int (h->offset,
311 htab_hash_pointer (h->map.base.from));
314 /* Lookup a heap var for FROM, and return it if we find one. */
316 static tree
317 heapvar_lookup (tree from, unsigned HOST_WIDE_INT offset)
319 struct heapvar_map *h, in;
320 in.map.base.from = from;
321 in.offset = offset;
322 h = (struct heapvar_map *) htab_find_with_hash (heapvar_for_stmt, &in,
323 heapvar_map_hash (&in));
324 if (h)
325 return h->map.to;
326 return NULL_TREE;
329 /* Insert a mapping FROM->TO in the heap var for statement
330 hashtable. */
332 static void
333 heapvar_insert (tree from, unsigned HOST_WIDE_INT offset, tree to)
335 struct heapvar_map *h;
336 void **loc;
338 h = GGC_NEW (struct heapvar_map);
339 h->map.base.from = from;
340 h->offset = offset;
341 h->map.hash = heapvar_map_hash (h);
342 h->map.to = to;
343 loc = htab_find_slot_with_hash (heapvar_for_stmt, h, h->map.hash, INSERT);
344 gcc_assert (*loc == NULL);
345 *(struct heapvar_map **) loc = h;
348 /* Return a new variable info structure consisting for a variable
349 named NAME, and using constraint graph node NODE. Append it
350 to the vector of variable info structures. */
352 static varinfo_t
353 new_var_info (tree t, const char *name)
355 unsigned index = VEC_length (varinfo_t, varmap);
356 varinfo_t ret = (varinfo_t) pool_alloc (variable_info_pool);
358 ret->id = index;
359 ret->name = name;
360 ret->decl = t;
361 /* Vars without decl are artificial and do not have sub-variables. */
362 ret->is_artificial_var = (t == NULL_TREE);
363 ret->is_special_var = false;
364 ret->is_unknown_size_var = false;
365 ret->is_full_var = (t == NULL_TREE);
366 ret->is_heap_var = false;
367 ret->is_restrict_var = false;
368 ret->may_have_pointers = true;
369 ret->is_global_var = (t == NULL_TREE);
370 if (t && DECL_P (t))
371 ret->is_global_var = is_global_var (t);
372 ret->solution = BITMAP_ALLOC (&pta_obstack);
373 ret->oldsolution = BITMAP_ALLOC (&oldpta_obstack);
374 ret->next = NULL;
376 VEC_safe_push (varinfo_t, heap, varmap, ret);
378 return ret;
381 typedef enum {SCALAR, DEREF, ADDRESSOF} constraint_expr_type;
383 /* An expression that appears in a constraint. */
385 struct constraint_expr
387 /* Constraint type. */
388 constraint_expr_type type;
390 /* Variable we are referring to in the constraint. */
391 unsigned int var;
393 /* Offset, in bits, of this constraint from the beginning of
394 variables it ends up referring to.
396 IOW, in a deref constraint, we would deref, get the result set,
397 then add OFFSET to each member. */
398 HOST_WIDE_INT offset;
401 /* Use 0x8000... as special unknown offset. */
402 #define UNKNOWN_OFFSET ((HOST_WIDE_INT)-1 << (HOST_BITS_PER_WIDE_INT-1))
404 typedef struct constraint_expr ce_s;
405 DEF_VEC_O(ce_s);
406 DEF_VEC_ALLOC_O(ce_s, heap);
407 static void get_constraint_for_1 (tree, VEC(ce_s, heap) **, bool);
408 static void get_constraint_for (tree, VEC(ce_s, heap) **);
409 static void do_deref (VEC (ce_s, heap) **);
411 /* Our set constraints are made up of two constraint expressions, one
412 LHS, and one RHS.
414 As described in the introduction, our set constraints each represent an
415 operation between set valued variables.
417 struct constraint
419 struct constraint_expr lhs;
420 struct constraint_expr rhs;
423 /* List of constraints that we use to build the constraint graph from. */
425 static VEC(constraint_t,heap) *constraints;
426 static alloc_pool constraint_pool;
428 /* The constraint graph is represented as an array of bitmaps
429 containing successor nodes. */
431 struct constraint_graph
433 /* Size of this graph, which may be different than the number of
434 nodes in the variable map. */
435 unsigned int size;
437 /* Explicit successors of each node. */
438 bitmap *succs;
440 /* Implicit predecessors of each node (Used for variable
441 substitution). */
442 bitmap *implicit_preds;
444 /* Explicit predecessors of each node (Used for variable substitution). */
445 bitmap *preds;
447 /* Indirect cycle representatives, or -1 if the node has no indirect
448 cycles. */
449 int *indirect_cycles;
451 /* Representative node for a node. rep[a] == a unless the node has
452 been unified. */
453 unsigned int *rep;
455 /* Equivalence class representative for a label. This is used for
456 variable substitution. */
457 int *eq_rep;
459 /* Pointer equivalence label for a node. All nodes with the same
460 pointer equivalence label can be unified together at some point
461 (either during constraint optimization or after the constraint
462 graph is built). */
463 unsigned int *pe;
465 /* Pointer equivalence representative for a label. This is used to
466 handle nodes that are pointer equivalent but not location
467 equivalent. We can unite these once the addressof constraints
468 are transformed into initial points-to sets. */
469 int *pe_rep;
471 /* Pointer equivalence label for each node, used during variable
472 substitution. */
473 unsigned int *pointer_label;
475 /* Location equivalence label for each node, used during location
476 equivalence finding. */
477 unsigned int *loc_label;
479 /* Pointed-by set for each node, used during location equivalence
480 finding. This is pointed-by rather than pointed-to, because it
481 is constructed using the predecessor graph. */
482 bitmap *pointed_by;
484 /* Points to sets for pointer equivalence. This is *not* the actual
485 points-to sets for nodes. */
486 bitmap *points_to;
488 /* Bitmap of nodes where the bit is set if the node is a direct
489 node. Used for variable substitution. */
490 sbitmap direct_nodes;
492 /* Bitmap of nodes where the bit is set if the node is address
493 taken. Used for variable substitution. */
494 bitmap address_taken;
496 /* Vector of complex constraints for each graph node. Complex
497 constraints are those involving dereferences or offsets that are
498 not 0. */
499 VEC(constraint_t,heap) **complex;
502 static constraint_graph_t graph;
504 /* During variable substitution and the offline version of indirect
505 cycle finding, we create nodes to represent dereferences and
506 address taken constraints. These represent where these start and
507 end. */
508 #define FIRST_REF_NODE (VEC_length (varinfo_t, varmap))
509 #define LAST_REF_NODE (FIRST_REF_NODE + (FIRST_REF_NODE - 1))
511 /* Return the representative node for NODE, if NODE has been unioned
512 with another NODE.
513 This function performs path compression along the way to finding
514 the representative. */
516 static unsigned int
517 find (unsigned int node)
519 gcc_assert (node < graph->size);
520 if (graph->rep[node] != node)
521 return graph->rep[node] = find (graph->rep[node]);
522 return node;
525 /* Union the TO and FROM nodes to the TO nodes.
526 Note that at some point in the future, we may want to do
527 union-by-rank, in which case we are going to have to return the
528 node we unified to. */
530 static bool
531 unite (unsigned int to, unsigned int from)
533 gcc_assert (to < graph->size && from < graph->size);
534 if (to != from && graph->rep[from] != to)
536 graph->rep[from] = to;
537 return true;
539 return false;
542 /* Create a new constraint consisting of LHS and RHS expressions. */
544 static constraint_t
545 new_constraint (const struct constraint_expr lhs,
546 const struct constraint_expr rhs)
548 constraint_t ret = (constraint_t) pool_alloc (constraint_pool);
549 ret->lhs = lhs;
550 ret->rhs = rhs;
551 return ret;
554 /* Print out constraint C to FILE. */
556 static void
557 dump_constraint (FILE *file, constraint_t c)
559 if (c->lhs.type == ADDRESSOF)
560 fprintf (file, "&");
561 else if (c->lhs.type == DEREF)
562 fprintf (file, "*");
563 fprintf (file, "%s", get_varinfo (c->lhs.var)->name);
564 if (c->lhs.offset == UNKNOWN_OFFSET)
565 fprintf (file, " + UNKNOWN");
566 else if (c->lhs.offset != 0)
567 fprintf (file, " + " HOST_WIDE_INT_PRINT_DEC, c->lhs.offset);
568 fprintf (file, " = ");
569 if (c->rhs.type == ADDRESSOF)
570 fprintf (file, "&");
571 else if (c->rhs.type == DEREF)
572 fprintf (file, "*");
573 fprintf (file, "%s", get_varinfo (c->rhs.var)->name);
574 if (c->rhs.offset == UNKNOWN_OFFSET)
575 fprintf (file, " + UNKNOWN");
576 else if (c->rhs.offset != 0)
577 fprintf (file, " + " HOST_WIDE_INT_PRINT_DEC, c->rhs.offset);
578 fprintf (file, "\n");
582 void debug_constraint (constraint_t);
583 void debug_constraints (void);
584 void debug_constraint_graph (void);
585 void debug_solution_for_var (unsigned int);
586 void debug_sa_points_to_info (void);
588 /* Print out constraint C to stderr. */
590 void
591 debug_constraint (constraint_t c)
593 dump_constraint (stderr, c);
596 /* Print out all constraints to FILE */
598 static void
599 dump_constraints (FILE *file)
601 int i;
602 constraint_t c;
603 for (i = 0; VEC_iterate (constraint_t, constraints, i, c); i++)
604 dump_constraint (file, c);
607 /* Print out all constraints to stderr. */
609 void
610 debug_constraints (void)
612 dump_constraints (stderr);
615 /* Print out to FILE the edge in the constraint graph that is created by
616 constraint c. The edge may have a label, depending on the type of
617 constraint that it represents. If complex1, e.g: a = *b, then the label
618 is "=*", if complex2, e.g: *a = b, then the label is "*=", if
619 complex with an offset, e.g: a = b + 8, then the label is "+".
620 Otherwise the edge has no label. */
622 static void
623 dump_constraint_edge (FILE *file, constraint_t c)
625 if (c->rhs.type != ADDRESSOF)
627 const char *src = get_varinfo (c->rhs.var)->name;
628 const char *dst = get_varinfo (c->lhs.var)->name;
629 fprintf (file, " \"%s\" -> \"%s\" ", src, dst);
630 /* Due to preprocessing of constraints, instructions like *a = *b are
631 illegal; thus, we do not have to handle such cases. */
632 if (c->lhs.type == DEREF)
633 fprintf (file, " [ label=\"*=\" ] ;\n");
634 else if (c->rhs.type == DEREF)
635 fprintf (file, " [ label=\"=*\" ] ;\n");
636 else
638 /* We must check the case where the constraint is an offset.
639 In this case, it is treated as a complex constraint. */
640 if (c->rhs.offset != c->lhs.offset)
641 fprintf (file, " [ label=\"+\" ] ;\n");
642 else
643 fprintf (file, " ;\n");
648 /* Print the constraint graph in dot format. */
650 static void
651 dump_constraint_graph (FILE *file)
653 unsigned int i=0, size;
654 constraint_t c;
656 /* Only print the graph if it has already been initialized: */
657 if (!graph)
658 return;
660 /* Print the constraints used to produce the constraint graph. The
661 constraints will be printed as comments in the dot file: */
662 fprintf (file, "\n\n/* Constraints used in the constraint graph:\n");
663 dump_constraints (file);
664 fprintf (file, "*/\n");
666 /* Prints the header of the dot file: */
667 fprintf (file, "\n\n// The constraint graph in dot format:\n");
668 fprintf (file, "strict digraph {\n");
669 fprintf (file, " node [\n shape = box\n ]\n");
670 fprintf (file, " edge [\n fontsize = \"12\"\n ]\n");
671 fprintf (file, "\n // List of nodes in the constraint graph:\n");
673 /* The next lines print the nodes in the graph. In order to get the
674 number of nodes in the graph, we must choose the minimum between the
675 vector VEC (varinfo_t, varmap) and graph->size. If the graph has not
676 yet been initialized, then graph->size == 0, otherwise we must only
677 read nodes that have an entry in VEC (varinfo_t, varmap). */
678 size = VEC_length (varinfo_t, varmap);
679 size = size < graph->size ? size : graph->size;
680 for (i = 0; i < size; i++)
682 const char *name = get_varinfo (graph->rep[i])->name;
683 fprintf (file, " \"%s\" ;\n", name);
686 /* Go over the list of constraints printing the edges in the constraint
687 graph. */
688 fprintf (file, "\n // The constraint edges:\n");
689 for (i = 0; VEC_iterate (constraint_t, constraints, i, c); i++)
690 if (c)
691 dump_constraint_edge (file, c);
693 /* Prints the tail of the dot file. By now, only the closing bracket. */
694 fprintf (file, "}\n\n\n");
697 /* Print out the constraint graph to stderr. */
699 void
700 debug_constraint_graph (void)
702 dump_constraint_graph (stderr);
705 /* SOLVER FUNCTIONS
707 The solver is a simple worklist solver, that works on the following
708 algorithm:
710 sbitmap changed_nodes = all zeroes;
711 changed_count = 0;
712 For each node that is not already collapsed:
713 changed_count++;
714 set bit in changed nodes
716 while (changed_count > 0)
718 compute topological ordering for constraint graph
720 find and collapse cycles in the constraint graph (updating
721 changed if necessary)
723 for each node (n) in the graph in topological order:
724 changed_count--;
726 Process each complex constraint associated with the node,
727 updating changed if necessary.
729 For each outgoing edge from n, propagate the solution from n to
730 the destination of the edge, updating changed as necessary.
732 } */
734 /* Return true if two constraint expressions A and B are equal. */
736 static bool
737 constraint_expr_equal (struct constraint_expr a, struct constraint_expr b)
739 return a.type == b.type && a.var == b.var && a.offset == b.offset;
742 /* Return true if constraint expression A is less than constraint expression
743 B. This is just arbitrary, but consistent, in order to give them an
744 ordering. */
746 static bool
747 constraint_expr_less (struct constraint_expr a, struct constraint_expr b)
749 if (a.type == b.type)
751 if (a.var == b.var)
752 return a.offset < b.offset;
753 else
754 return a.var < b.var;
756 else
757 return a.type < b.type;
760 /* Return true if constraint A is less than constraint B. This is just
761 arbitrary, but consistent, in order to give them an ordering. */
763 static bool
764 constraint_less (const constraint_t a, const constraint_t b)
766 if (constraint_expr_less (a->lhs, b->lhs))
767 return true;
768 else if (constraint_expr_less (b->lhs, a->lhs))
769 return false;
770 else
771 return constraint_expr_less (a->rhs, b->rhs);
774 /* Return true if two constraints A and B are equal. */
776 static bool
777 constraint_equal (struct constraint a, struct constraint b)
779 return constraint_expr_equal (a.lhs, b.lhs)
780 && constraint_expr_equal (a.rhs, b.rhs);
784 /* Find a constraint LOOKFOR in the sorted constraint vector VEC */
786 static constraint_t
787 constraint_vec_find (VEC(constraint_t,heap) *vec,
788 struct constraint lookfor)
790 unsigned int place;
791 constraint_t found;
793 if (vec == NULL)
794 return NULL;
796 place = VEC_lower_bound (constraint_t, vec, &lookfor, constraint_less);
797 if (place >= VEC_length (constraint_t, vec))
798 return NULL;
799 found = VEC_index (constraint_t, vec, place);
800 if (!constraint_equal (*found, lookfor))
801 return NULL;
802 return found;
805 /* Union two constraint vectors, TO and FROM. Put the result in TO. */
807 static void
808 constraint_set_union (VEC(constraint_t,heap) **to,
809 VEC(constraint_t,heap) **from)
811 int i;
812 constraint_t c;
814 for (i = 0; VEC_iterate (constraint_t, *from, i, c); i++)
816 if (constraint_vec_find (*to, *c) == NULL)
818 unsigned int place = VEC_lower_bound (constraint_t, *to, c,
819 constraint_less);
820 VEC_safe_insert (constraint_t, heap, *to, place, c);
825 /* Expands the solution in SET to all sub-fields of variables included.
826 Union the expanded result into RESULT. */
828 static void
829 solution_set_expand (bitmap result, bitmap set)
831 bitmap_iterator bi;
832 bitmap vars = NULL;
833 unsigned j;
835 /* In a first pass record all variables we need to add all
836 sub-fields off. This avoids quadratic behavior. */
837 EXECUTE_IF_SET_IN_BITMAP (set, 0, j, bi)
839 varinfo_t v = get_varinfo (j);
840 if (v->is_artificial_var
841 || v->is_full_var)
842 continue;
843 v = lookup_vi_for_tree (v->decl);
844 if (vars == NULL)
845 vars = BITMAP_ALLOC (NULL);
846 bitmap_set_bit (vars, v->id);
849 /* In the second pass now do the addition to the solution and
850 to speed up solving add it to the delta as well. */
851 if (vars != NULL)
853 EXECUTE_IF_SET_IN_BITMAP (vars, 0, j, bi)
855 varinfo_t v = get_varinfo (j);
856 for (; v != NULL; v = v->next)
857 bitmap_set_bit (result, v->id);
859 BITMAP_FREE (vars);
863 /* Take a solution set SET, add OFFSET to each member of the set, and
864 overwrite SET with the result when done. */
866 static void
867 solution_set_add (bitmap set, HOST_WIDE_INT offset)
869 bitmap result = BITMAP_ALLOC (&iteration_obstack);
870 unsigned int i;
871 bitmap_iterator bi;
873 /* If the offset is unknown we have to expand the solution to
874 all subfields. */
875 if (offset == UNKNOWN_OFFSET)
877 solution_set_expand (set, set);
878 return;
881 EXECUTE_IF_SET_IN_BITMAP (set, 0, i, bi)
883 varinfo_t vi = get_varinfo (i);
885 /* If this is a variable with just one field just set its bit
886 in the result. */
887 if (vi->is_artificial_var
888 || vi->is_unknown_size_var
889 || vi->is_full_var)
890 bitmap_set_bit (result, i);
891 else
893 unsigned HOST_WIDE_INT fieldoffset = vi->offset + offset;
895 /* If the offset makes the pointer point to before the
896 variable use offset zero for the field lookup. */
897 if (offset < 0
898 && fieldoffset > vi->offset)
899 fieldoffset = 0;
901 if (offset != 0)
902 vi = first_or_preceding_vi_for_offset (vi, fieldoffset);
904 bitmap_set_bit (result, vi->id);
905 /* If the result is not exactly at fieldoffset include the next
906 field as well. See get_constraint_for_ptr_offset for more
907 rationale. */
908 if (vi->offset != fieldoffset
909 && vi->next != NULL)
910 bitmap_set_bit (result, vi->next->id);
914 bitmap_copy (set, result);
915 BITMAP_FREE (result);
918 /* Union solution sets TO and FROM, and add INC to each member of FROM in the
919 process. */
921 static bool
922 set_union_with_increment (bitmap to, bitmap from, HOST_WIDE_INT inc)
924 if (inc == 0)
925 return bitmap_ior_into (to, from);
926 else
928 bitmap tmp;
929 bool res;
931 tmp = BITMAP_ALLOC (&iteration_obstack);
932 bitmap_copy (tmp, from);
933 solution_set_add (tmp, inc);
934 res = bitmap_ior_into (to, tmp);
935 BITMAP_FREE (tmp);
936 return res;
940 /* Insert constraint C into the list of complex constraints for graph
941 node VAR. */
943 static void
944 insert_into_complex (constraint_graph_t graph,
945 unsigned int var, constraint_t c)
947 VEC (constraint_t, heap) *complex = graph->complex[var];
948 unsigned int place = VEC_lower_bound (constraint_t, complex, c,
949 constraint_less);
951 /* Only insert constraints that do not already exist. */
952 if (place >= VEC_length (constraint_t, complex)
953 || !constraint_equal (*c, *VEC_index (constraint_t, complex, place)))
954 VEC_safe_insert (constraint_t, heap, graph->complex[var], place, c);
958 /* Condense two variable nodes into a single variable node, by moving
959 all associated info from SRC to TO. */
961 static void
962 merge_node_constraints (constraint_graph_t graph, unsigned int to,
963 unsigned int from)
965 unsigned int i;
966 constraint_t c;
968 gcc_assert (find (from) == to);
970 /* Move all complex constraints from src node into to node */
971 for (i = 0; VEC_iterate (constraint_t, graph->complex[from], i, c); i++)
973 /* In complex constraints for node src, we may have either
974 a = *src, and *src = a, or an offseted constraint which are
975 always added to the rhs node's constraints. */
977 if (c->rhs.type == DEREF)
978 c->rhs.var = to;
979 else if (c->lhs.type == DEREF)
980 c->lhs.var = to;
981 else
982 c->rhs.var = to;
984 constraint_set_union (&graph->complex[to], &graph->complex[from]);
985 VEC_free (constraint_t, heap, graph->complex[from]);
986 graph->complex[from] = NULL;
990 /* Remove edges involving NODE from GRAPH. */
992 static void
993 clear_edges_for_node (constraint_graph_t graph, unsigned int node)
995 if (graph->succs[node])
996 BITMAP_FREE (graph->succs[node]);
999 /* Merge GRAPH nodes FROM and TO into node TO. */
1001 static void
1002 merge_graph_nodes (constraint_graph_t graph, unsigned int to,
1003 unsigned int from)
1005 if (graph->indirect_cycles[from] != -1)
1007 /* If we have indirect cycles with the from node, and we have
1008 none on the to node, the to node has indirect cycles from the
1009 from node now that they are unified.
1010 If indirect cycles exist on both, unify the nodes that they
1011 are in a cycle with, since we know they are in a cycle with
1012 each other. */
1013 if (graph->indirect_cycles[to] == -1)
1014 graph->indirect_cycles[to] = graph->indirect_cycles[from];
1017 /* Merge all the successor edges. */
1018 if (graph->succs[from])
1020 if (!graph->succs[to])
1021 graph->succs[to] = BITMAP_ALLOC (&pta_obstack);
1022 bitmap_ior_into (graph->succs[to],
1023 graph->succs[from]);
1026 clear_edges_for_node (graph, from);
1030 /* Add an indirect graph edge to GRAPH, going from TO to FROM if
1031 it doesn't exist in the graph already. */
1033 static void
1034 add_implicit_graph_edge (constraint_graph_t graph, unsigned int to,
1035 unsigned int from)
1037 if (to == from)
1038 return;
1040 if (!graph->implicit_preds[to])
1041 graph->implicit_preds[to] = BITMAP_ALLOC (&predbitmap_obstack);
1043 if (bitmap_set_bit (graph->implicit_preds[to], from))
1044 stats.num_implicit_edges++;
1047 /* Add a predecessor graph edge to GRAPH, going from TO to FROM if
1048 it doesn't exist in the graph already.
1049 Return false if the edge already existed, true otherwise. */
1051 static void
1052 add_pred_graph_edge (constraint_graph_t graph, unsigned int to,
1053 unsigned int from)
1055 if (!graph->preds[to])
1056 graph->preds[to] = BITMAP_ALLOC (&predbitmap_obstack);
1057 bitmap_set_bit (graph->preds[to], from);
1060 /* Add a graph edge to GRAPH, going from FROM to TO if
1061 it doesn't exist in the graph already.
1062 Return false if the edge already existed, true otherwise. */
1064 static bool
1065 add_graph_edge (constraint_graph_t graph, unsigned int to,
1066 unsigned int from)
1068 if (to == from)
1070 return false;
1072 else
1074 bool r = false;
1076 if (!graph->succs[from])
1077 graph->succs[from] = BITMAP_ALLOC (&pta_obstack);
1078 if (bitmap_set_bit (graph->succs[from], to))
1080 r = true;
1081 if (to < FIRST_REF_NODE && from < FIRST_REF_NODE)
1082 stats.num_edges++;
1084 return r;
1089 /* Return true if {DEST.SRC} is an existing graph edge in GRAPH. */
1091 static bool
1092 valid_graph_edge (constraint_graph_t graph, unsigned int src,
1093 unsigned int dest)
1095 return (graph->succs[dest]
1096 && bitmap_bit_p (graph->succs[dest], src));
1099 /* Initialize the constraint graph structure to contain SIZE nodes. */
1101 static void
1102 init_graph (unsigned int size)
1104 unsigned int j;
1106 graph = XCNEW (struct constraint_graph);
1107 graph->size = size;
1108 graph->succs = XCNEWVEC (bitmap, graph->size);
1109 graph->indirect_cycles = XNEWVEC (int, graph->size);
1110 graph->rep = XNEWVEC (unsigned int, graph->size);
1111 graph->complex = XCNEWVEC (VEC(constraint_t, heap) *, size);
1112 graph->pe = XCNEWVEC (unsigned int, graph->size);
1113 graph->pe_rep = XNEWVEC (int, graph->size);
1115 for (j = 0; j < graph->size; j++)
1117 graph->rep[j] = j;
1118 graph->pe_rep[j] = -1;
1119 graph->indirect_cycles[j] = -1;
1123 /* Build the constraint graph, adding only predecessor edges right now. */
1125 static void
1126 build_pred_graph (void)
1128 int i;
1129 constraint_t c;
1130 unsigned int j;
1132 graph->implicit_preds = XCNEWVEC (bitmap, graph->size);
1133 graph->preds = XCNEWVEC (bitmap, graph->size);
1134 graph->pointer_label = XCNEWVEC (unsigned int, graph->size);
1135 graph->loc_label = XCNEWVEC (unsigned int, graph->size);
1136 graph->pointed_by = XCNEWVEC (bitmap, graph->size);
1137 graph->points_to = XCNEWVEC (bitmap, graph->size);
1138 graph->eq_rep = XNEWVEC (int, graph->size);
1139 graph->direct_nodes = sbitmap_alloc (graph->size);
1140 graph->address_taken = BITMAP_ALLOC (&predbitmap_obstack);
1141 sbitmap_zero (graph->direct_nodes);
1143 for (j = 0; j < FIRST_REF_NODE; j++)
1145 if (!get_varinfo (j)->is_special_var)
1146 SET_BIT (graph->direct_nodes, j);
1149 for (j = 0; j < graph->size; j++)
1150 graph->eq_rep[j] = -1;
1152 for (j = 0; j < VEC_length (varinfo_t, varmap); j++)
1153 graph->indirect_cycles[j] = -1;
1155 for (i = 0; VEC_iterate (constraint_t, constraints, i, c); i++)
1157 struct constraint_expr lhs = c->lhs;
1158 struct constraint_expr rhs = c->rhs;
1159 unsigned int lhsvar = lhs.var;
1160 unsigned int rhsvar = rhs.var;
1162 if (lhs.type == DEREF)
1164 /* *x = y. */
1165 if (rhs.offset == 0 && lhs.offset == 0 && rhs.type == SCALAR)
1166 add_pred_graph_edge (graph, FIRST_REF_NODE + lhsvar, rhsvar);
1168 else if (rhs.type == DEREF)
1170 /* x = *y */
1171 if (rhs.offset == 0 && lhs.offset == 0 && lhs.type == SCALAR)
1172 add_pred_graph_edge (graph, lhsvar, FIRST_REF_NODE + rhsvar);
1173 else
1174 RESET_BIT (graph->direct_nodes, lhsvar);
1176 else if (rhs.type == ADDRESSOF)
1178 varinfo_t v;
1180 /* x = &y */
1181 if (graph->points_to[lhsvar] == NULL)
1182 graph->points_to[lhsvar] = BITMAP_ALLOC (&predbitmap_obstack);
1183 bitmap_set_bit (graph->points_to[lhsvar], rhsvar);
1185 if (graph->pointed_by[rhsvar] == NULL)
1186 graph->pointed_by[rhsvar] = BITMAP_ALLOC (&predbitmap_obstack);
1187 bitmap_set_bit (graph->pointed_by[rhsvar], lhsvar);
1189 /* Implicitly, *x = y */
1190 add_implicit_graph_edge (graph, FIRST_REF_NODE + lhsvar, rhsvar);
1192 /* All related variables are no longer direct nodes. */
1193 RESET_BIT (graph->direct_nodes, rhsvar);
1194 v = get_varinfo (rhsvar);
1195 if (!v->is_full_var)
1197 v = lookup_vi_for_tree (v->decl);
1200 RESET_BIT (graph->direct_nodes, v->id);
1201 v = v->next;
1203 while (v != NULL);
1205 bitmap_set_bit (graph->address_taken, rhsvar);
1207 else if (lhsvar > anything_id
1208 && lhsvar != rhsvar && lhs.offset == 0 && rhs.offset == 0)
1210 /* x = y */
1211 add_pred_graph_edge (graph, lhsvar, rhsvar);
1212 /* Implicitly, *x = *y */
1213 add_implicit_graph_edge (graph, FIRST_REF_NODE + lhsvar,
1214 FIRST_REF_NODE + rhsvar);
1216 else if (lhs.offset != 0 || rhs.offset != 0)
1218 if (rhs.offset != 0)
1219 RESET_BIT (graph->direct_nodes, lhs.var);
1220 else if (lhs.offset != 0)
1221 RESET_BIT (graph->direct_nodes, rhs.var);
1226 /* Build the constraint graph, adding successor edges. */
1228 static void
1229 build_succ_graph (void)
1231 unsigned i, t;
1232 constraint_t c;
1234 for (i = 0; VEC_iterate (constraint_t, constraints, i, c); i++)
1236 struct constraint_expr lhs;
1237 struct constraint_expr rhs;
1238 unsigned int lhsvar;
1239 unsigned int rhsvar;
1241 if (!c)
1242 continue;
1244 lhs = c->lhs;
1245 rhs = c->rhs;
1246 lhsvar = find (lhs.var);
1247 rhsvar = find (rhs.var);
1249 if (lhs.type == DEREF)
1251 if (rhs.offset == 0 && lhs.offset == 0 && rhs.type == SCALAR)
1252 add_graph_edge (graph, FIRST_REF_NODE + lhsvar, rhsvar);
1254 else if (rhs.type == DEREF)
1256 if (rhs.offset == 0 && lhs.offset == 0 && lhs.type == SCALAR)
1257 add_graph_edge (graph, lhsvar, FIRST_REF_NODE + rhsvar);
1259 else if (rhs.type == ADDRESSOF)
1261 /* x = &y */
1262 gcc_assert (find (rhs.var) == rhs.var);
1263 bitmap_set_bit (get_varinfo (lhsvar)->solution, rhsvar);
1265 else if (lhsvar > anything_id
1266 && lhsvar != rhsvar && lhs.offset == 0 && rhs.offset == 0)
1268 add_graph_edge (graph, lhsvar, rhsvar);
1272 /* Add edges from STOREDANYTHING to all non-direct nodes that can
1273 receive pointers. */
1274 t = find (storedanything_id);
1275 for (i = integer_id + 1; i < FIRST_REF_NODE; ++i)
1277 if (!TEST_BIT (graph->direct_nodes, i)
1278 && get_varinfo (i)->may_have_pointers)
1279 add_graph_edge (graph, find (i), t);
1282 /* Everything stored to ANYTHING also potentially escapes. */
1283 add_graph_edge (graph, find (escaped_id), t);
1287 /* Changed variables on the last iteration. */
1288 static unsigned int changed_count;
1289 static sbitmap changed;
1291 /* Strongly Connected Component visitation info. */
1293 struct scc_info
1295 sbitmap visited;
1296 sbitmap deleted;
1297 unsigned int *dfs;
1298 unsigned int *node_mapping;
1299 int current_index;
1300 VEC(unsigned,heap) *scc_stack;
1304 /* Recursive routine to find strongly connected components in GRAPH.
1305 SI is the SCC info to store the information in, and N is the id of current
1306 graph node we are processing.
1308 This is Tarjan's strongly connected component finding algorithm, as
1309 modified by Nuutila to keep only non-root nodes on the stack.
1310 The algorithm can be found in "On finding the strongly connected
1311 connected components in a directed graph" by Esko Nuutila and Eljas
1312 Soisalon-Soininen, in Information Processing Letters volume 49,
1313 number 1, pages 9-14. */
1315 static void
1316 scc_visit (constraint_graph_t graph, struct scc_info *si, unsigned int n)
1318 unsigned int i;
1319 bitmap_iterator bi;
1320 unsigned int my_dfs;
1322 SET_BIT (si->visited, n);
1323 si->dfs[n] = si->current_index ++;
1324 my_dfs = si->dfs[n];
1326 /* Visit all the successors. */
1327 EXECUTE_IF_IN_NONNULL_BITMAP (graph->succs[n], 0, i, bi)
1329 unsigned int w;
1331 if (i > LAST_REF_NODE)
1332 break;
1334 w = find (i);
1335 if (TEST_BIT (si->deleted, w))
1336 continue;
1338 if (!TEST_BIT (si->visited, w))
1339 scc_visit (graph, si, w);
1341 unsigned int t = find (w);
1342 unsigned int nnode = find (n);
1343 gcc_assert (nnode == n);
1345 if (si->dfs[t] < si->dfs[nnode])
1346 si->dfs[n] = si->dfs[t];
1350 /* See if any components have been identified. */
1351 if (si->dfs[n] == my_dfs)
1353 if (VEC_length (unsigned, si->scc_stack) > 0
1354 && si->dfs[VEC_last (unsigned, si->scc_stack)] >= my_dfs)
1356 bitmap scc = BITMAP_ALLOC (NULL);
1357 unsigned int lowest_node;
1358 bitmap_iterator bi;
1360 bitmap_set_bit (scc, n);
1362 while (VEC_length (unsigned, si->scc_stack) != 0
1363 && si->dfs[VEC_last (unsigned, si->scc_stack)] >= my_dfs)
1365 unsigned int w = VEC_pop (unsigned, si->scc_stack);
1367 bitmap_set_bit (scc, w);
1370 lowest_node = bitmap_first_set_bit (scc);
1371 gcc_assert (lowest_node < FIRST_REF_NODE);
1373 /* Collapse the SCC nodes into a single node, and mark the
1374 indirect cycles. */
1375 EXECUTE_IF_SET_IN_BITMAP (scc, 0, i, bi)
1377 if (i < FIRST_REF_NODE)
1379 if (unite (lowest_node, i))
1380 unify_nodes (graph, lowest_node, i, false);
1382 else
1384 unite (lowest_node, i);
1385 graph->indirect_cycles[i - FIRST_REF_NODE] = lowest_node;
1389 SET_BIT (si->deleted, n);
1391 else
1392 VEC_safe_push (unsigned, heap, si->scc_stack, n);
1395 /* Unify node FROM into node TO, updating the changed count if
1396 necessary when UPDATE_CHANGED is true. */
1398 static void
1399 unify_nodes (constraint_graph_t graph, unsigned int to, unsigned int from,
1400 bool update_changed)
1403 gcc_assert (to != from && find (to) == to);
1404 if (dump_file && (dump_flags & TDF_DETAILS))
1405 fprintf (dump_file, "Unifying %s to %s\n",
1406 get_varinfo (from)->name,
1407 get_varinfo (to)->name);
1409 if (update_changed)
1410 stats.unified_vars_dynamic++;
1411 else
1412 stats.unified_vars_static++;
1414 merge_graph_nodes (graph, to, from);
1415 merge_node_constraints (graph, to, from);
1417 /* Mark TO as changed if FROM was changed. If TO was already marked
1418 as changed, decrease the changed count. */
1420 if (update_changed && TEST_BIT (changed, from))
1422 RESET_BIT (changed, from);
1423 if (!TEST_BIT (changed, to))
1424 SET_BIT (changed, to);
1425 else
1427 gcc_assert (changed_count > 0);
1428 changed_count--;
1431 if (get_varinfo (from)->solution)
1433 /* If the solution changes because of the merging, we need to mark
1434 the variable as changed. */
1435 if (bitmap_ior_into (get_varinfo (to)->solution,
1436 get_varinfo (from)->solution))
1438 if (update_changed && !TEST_BIT (changed, to))
1440 SET_BIT (changed, to);
1441 changed_count++;
1445 BITMAP_FREE (get_varinfo (from)->solution);
1446 BITMAP_FREE (get_varinfo (from)->oldsolution);
1448 if (stats.iterations > 0)
1450 BITMAP_FREE (get_varinfo (to)->oldsolution);
1451 get_varinfo (to)->oldsolution = BITMAP_ALLOC (&oldpta_obstack);
1454 if (valid_graph_edge (graph, to, to))
1456 if (graph->succs[to])
1457 bitmap_clear_bit (graph->succs[to], to);
1461 /* Information needed to compute the topological ordering of a graph. */
1463 struct topo_info
1465 /* sbitmap of visited nodes. */
1466 sbitmap visited;
1467 /* Array that stores the topological order of the graph, *in
1468 reverse*. */
1469 VEC(unsigned,heap) *topo_order;
1473 /* Initialize and return a topological info structure. */
1475 static struct topo_info *
1476 init_topo_info (void)
1478 size_t size = graph->size;
1479 struct topo_info *ti = XNEW (struct topo_info);
1480 ti->visited = sbitmap_alloc (size);
1481 sbitmap_zero (ti->visited);
1482 ti->topo_order = VEC_alloc (unsigned, heap, 1);
1483 return ti;
1487 /* Free the topological sort info pointed to by TI. */
1489 static void
1490 free_topo_info (struct topo_info *ti)
1492 sbitmap_free (ti->visited);
1493 VEC_free (unsigned, heap, ti->topo_order);
1494 free (ti);
1497 /* Visit the graph in topological order, and store the order in the
1498 topo_info structure. */
1500 static void
1501 topo_visit (constraint_graph_t graph, struct topo_info *ti,
1502 unsigned int n)
1504 bitmap_iterator bi;
1505 unsigned int j;
1507 SET_BIT (ti->visited, n);
1509 if (graph->succs[n])
1510 EXECUTE_IF_SET_IN_BITMAP (graph->succs[n], 0, j, bi)
1512 if (!TEST_BIT (ti->visited, j))
1513 topo_visit (graph, ti, j);
1516 VEC_safe_push (unsigned, heap, ti->topo_order, n);
1519 /* Process a constraint C that represents x = *(y + off), using DELTA as the
1520 starting solution for y. */
1522 static void
1523 do_sd_constraint (constraint_graph_t graph, constraint_t c,
1524 bitmap delta)
1526 unsigned int lhs = c->lhs.var;
1527 bool flag = false;
1528 bitmap sol = get_varinfo (lhs)->solution;
1529 unsigned int j;
1530 bitmap_iterator bi;
1531 HOST_WIDE_INT roffset = c->rhs.offset;
1533 /* Our IL does not allow this. */
1534 gcc_assert (c->lhs.offset == 0);
1536 /* If the solution of Y contains anything it is good enough to transfer
1537 this to the LHS. */
1538 if (bitmap_bit_p (delta, anything_id))
1540 flag |= bitmap_set_bit (sol, anything_id);
1541 goto done;
1544 /* If we do not know at with offset the rhs is dereferenced compute
1545 the reachability set of DELTA, conservatively assuming it is
1546 dereferenced at all valid offsets. */
1547 if (roffset == UNKNOWN_OFFSET)
1549 solution_set_expand (delta, delta);
1550 /* No further offset processing is necessary. */
1551 roffset = 0;
1554 /* For each variable j in delta (Sol(y)), add
1555 an edge in the graph from j to x, and union Sol(j) into Sol(x). */
1556 EXECUTE_IF_SET_IN_BITMAP (delta, 0, j, bi)
1558 varinfo_t v = get_varinfo (j);
1559 HOST_WIDE_INT fieldoffset = v->offset + roffset;
1560 unsigned int t;
1562 if (v->is_full_var)
1563 fieldoffset = v->offset;
1564 else if (roffset != 0)
1565 v = first_vi_for_offset (v, fieldoffset);
1566 /* If the access is outside of the variable we can ignore it. */
1567 if (!v)
1568 continue;
1572 t = find (v->id);
1574 /* Adding edges from the special vars is pointless.
1575 They don't have sets that can change. */
1576 if (get_varinfo (t)->is_special_var)
1577 flag |= bitmap_ior_into (sol, get_varinfo (t)->solution);
1578 /* Merging the solution from ESCAPED needlessly increases
1579 the set. Use ESCAPED as representative instead. */
1580 else if (v->id == escaped_id)
1581 flag |= bitmap_set_bit (sol, escaped_id);
1582 else if (add_graph_edge (graph, lhs, t))
1583 flag |= bitmap_ior_into (sol, get_varinfo (t)->solution);
1585 /* If the variable is not exactly at the requested offset
1586 we have to include the next one. */
1587 if (v->offset == (unsigned HOST_WIDE_INT)fieldoffset
1588 || v->next == NULL)
1589 break;
1591 v = v->next;
1592 fieldoffset = v->offset;
1594 while (1);
1597 done:
1598 /* If the LHS solution changed, mark the var as changed. */
1599 if (flag)
1601 get_varinfo (lhs)->solution = sol;
1602 if (!TEST_BIT (changed, lhs))
1604 SET_BIT (changed, lhs);
1605 changed_count++;
1610 /* Process a constraint C that represents *(x + off) = y using DELTA
1611 as the starting solution for x. */
1613 static void
1614 do_ds_constraint (constraint_t c, bitmap delta)
1616 unsigned int rhs = c->rhs.var;
1617 bitmap sol = get_varinfo (rhs)->solution;
1618 unsigned int j;
1619 bitmap_iterator bi;
1620 HOST_WIDE_INT loff = c->lhs.offset;
1622 /* Our IL does not allow this. */
1623 gcc_assert (c->rhs.offset == 0);
1625 /* If the solution of y contains ANYTHING simply use the ANYTHING
1626 solution. This avoids needlessly increasing the points-to sets. */
1627 if (bitmap_bit_p (sol, anything_id))
1628 sol = get_varinfo (find (anything_id))->solution;
1630 /* If the solution for x contains ANYTHING we have to merge the
1631 solution of y into all pointer variables which we do via
1632 STOREDANYTHING. */
1633 if (bitmap_bit_p (delta, anything_id))
1635 unsigned t = find (storedanything_id);
1636 if (add_graph_edge (graph, t, rhs))
1638 if (bitmap_ior_into (get_varinfo (t)->solution, sol))
1640 if (!TEST_BIT (changed, t))
1642 SET_BIT (changed, t);
1643 changed_count++;
1647 return;
1650 /* If we do not know at with offset the rhs is dereferenced compute
1651 the reachability set of DELTA, conservatively assuming it is
1652 dereferenced at all valid offsets. */
1653 if (loff == UNKNOWN_OFFSET)
1655 solution_set_expand (delta, delta);
1656 loff = 0;
1659 /* For each member j of delta (Sol(x)), add an edge from y to j and
1660 union Sol(y) into Sol(j) */
1661 EXECUTE_IF_SET_IN_BITMAP (delta, 0, j, bi)
1663 varinfo_t v = get_varinfo (j);
1664 unsigned int t;
1665 HOST_WIDE_INT fieldoffset = v->offset + loff;
1667 /* If v is a global variable then this is an escape point. */
1668 if (v->is_global_var)
1670 t = find (escaped_id);
1671 if (add_graph_edge (graph, t, rhs)
1672 && bitmap_ior_into (get_varinfo (t)->solution, sol)
1673 && !TEST_BIT (changed, t))
1675 SET_BIT (changed, t);
1676 changed_count++;
1680 if (v->is_special_var)
1681 continue;
1683 if (v->is_full_var)
1684 fieldoffset = v->offset;
1685 else if (loff != 0)
1686 v = first_vi_for_offset (v, fieldoffset);
1687 /* If the access is outside of the variable we can ignore it. */
1688 if (!v)
1689 continue;
1693 if (v->may_have_pointers)
1695 t = find (v->id);
1696 if (add_graph_edge (graph, t, rhs)
1697 && bitmap_ior_into (get_varinfo (t)->solution, sol)
1698 && !TEST_BIT (changed, t))
1700 SET_BIT (changed, t);
1701 changed_count++;
1705 /* If the variable is not exactly at the requested offset
1706 we have to include the next one. */
1707 if (v->offset == (unsigned HOST_WIDE_INT)fieldoffset
1708 || v->next == NULL)
1709 break;
1711 v = v->next;
1712 fieldoffset = v->offset;
1714 while (1);
1718 /* Handle a non-simple (simple meaning requires no iteration),
1719 constraint (IE *x = &y, x = *y, *x = y, and x = y with offsets involved). */
1721 static void
1722 do_complex_constraint (constraint_graph_t graph, constraint_t c, bitmap delta)
1724 if (c->lhs.type == DEREF)
1726 if (c->rhs.type == ADDRESSOF)
1728 gcc_unreachable();
1730 else
1732 /* *x = y */
1733 do_ds_constraint (c, delta);
1736 else if (c->rhs.type == DEREF)
1738 /* x = *y */
1739 if (!(get_varinfo (c->lhs.var)->is_special_var))
1740 do_sd_constraint (graph, c, delta);
1742 else
1744 bitmap tmp;
1745 bitmap solution;
1746 bool flag = false;
1748 gcc_assert (c->rhs.type == SCALAR && c->lhs.type == SCALAR);
1749 solution = get_varinfo (c->rhs.var)->solution;
1750 tmp = get_varinfo (c->lhs.var)->solution;
1752 flag = set_union_with_increment (tmp, solution, c->rhs.offset);
1754 if (flag)
1756 get_varinfo (c->lhs.var)->solution = tmp;
1757 if (!TEST_BIT (changed, c->lhs.var))
1759 SET_BIT (changed, c->lhs.var);
1760 changed_count++;
1766 /* Initialize and return a new SCC info structure. */
1768 static struct scc_info *
1769 init_scc_info (size_t size)
1771 struct scc_info *si = XNEW (struct scc_info);
1772 size_t i;
1774 si->current_index = 0;
1775 si->visited = sbitmap_alloc (size);
1776 sbitmap_zero (si->visited);
1777 si->deleted = sbitmap_alloc (size);
1778 sbitmap_zero (si->deleted);
1779 si->node_mapping = XNEWVEC (unsigned int, size);
1780 si->dfs = XCNEWVEC (unsigned int, size);
1782 for (i = 0; i < size; i++)
1783 si->node_mapping[i] = i;
1785 si->scc_stack = VEC_alloc (unsigned, heap, 1);
1786 return si;
1789 /* Free an SCC info structure pointed to by SI */
1791 static void
1792 free_scc_info (struct scc_info *si)
1794 sbitmap_free (si->visited);
1795 sbitmap_free (si->deleted);
1796 free (si->node_mapping);
1797 free (si->dfs);
1798 VEC_free (unsigned, heap, si->scc_stack);
1799 free (si);
1803 /* Find indirect cycles in GRAPH that occur, using strongly connected
1804 components, and note them in the indirect cycles map.
1806 This technique comes from Ben Hardekopf and Calvin Lin,
1807 "It Pays to be Lazy: Fast and Accurate Pointer Analysis for Millions of
1808 Lines of Code", submitted to PLDI 2007. */
1810 static void
1811 find_indirect_cycles (constraint_graph_t graph)
1813 unsigned int i;
1814 unsigned int size = graph->size;
1815 struct scc_info *si = init_scc_info (size);
1817 for (i = 0; i < MIN (LAST_REF_NODE, size); i ++ )
1818 if (!TEST_BIT (si->visited, i) && find (i) == i)
1819 scc_visit (graph, si, i);
1821 free_scc_info (si);
1824 /* Compute a topological ordering for GRAPH, and store the result in the
1825 topo_info structure TI. */
1827 static void
1828 compute_topo_order (constraint_graph_t graph,
1829 struct topo_info *ti)
1831 unsigned int i;
1832 unsigned int size = graph->size;
1834 for (i = 0; i != size; ++i)
1835 if (!TEST_BIT (ti->visited, i) && find (i) == i)
1836 topo_visit (graph, ti, i);
1839 /* Structure used to for hash value numbering of pointer equivalence
1840 classes. */
1842 typedef struct equiv_class_label
1844 hashval_t hashcode;
1845 unsigned int equivalence_class;
1846 bitmap labels;
1847 } *equiv_class_label_t;
1848 typedef const struct equiv_class_label *const_equiv_class_label_t;
1850 /* A hashtable for mapping a bitmap of labels->pointer equivalence
1851 classes. */
1852 static htab_t pointer_equiv_class_table;
1854 /* A hashtable for mapping a bitmap of labels->location equivalence
1855 classes. */
1856 static htab_t location_equiv_class_table;
1858 /* Hash function for a equiv_class_label_t */
1860 static hashval_t
1861 equiv_class_label_hash (const void *p)
1863 const_equiv_class_label_t const ecl = (const_equiv_class_label_t) p;
1864 return ecl->hashcode;
1867 /* Equality function for two equiv_class_label_t's. */
1869 static int
1870 equiv_class_label_eq (const void *p1, const void *p2)
1872 const_equiv_class_label_t const eql1 = (const_equiv_class_label_t) p1;
1873 const_equiv_class_label_t const eql2 = (const_equiv_class_label_t) p2;
1874 return (eql1->hashcode == eql2->hashcode
1875 && bitmap_equal_p (eql1->labels, eql2->labels));
1878 /* Lookup a equivalence class in TABLE by the bitmap of LABELS it
1879 contains. */
1881 static unsigned int
1882 equiv_class_lookup (htab_t table, bitmap labels)
1884 void **slot;
1885 struct equiv_class_label ecl;
1887 ecl.labels = labels;
1888 ecl.hashcode = bitmap_hash (labels);
1890 slot = htab_find_slot_with_hash (table, &ecl,
1891 ecl.hashcode, NO_INSERT);
1892 if (!slot)
1893 return 0;
1894 else
1895 return ((equiv_class_label_t) *slot)->equivalence_class;
1899 /* Add an equivalence class named EQUIVALENCE_CLASS with labels LABELS
1900 to TABLE. */
1902 static void
1903 equiv_class_add (htab_t table, unsigned int equivalence_class,
1904 bitmap labels)
1906 void **slot;
1907 equiv_class_label_t ecl = XNEW (struct equiv_class_label);
1909 ecl->labels = labels;
1910 ecl->equivalence_class = equivalence_class;
1911 ecl->hashcode = bitmap_hash (labels);
1913 slot = htab_find_slot_with_hash (table, ecl,
1914 ecl->hashcode, INSERT);
1915 gcc_assert (!*slot);
1916 *slot = (void *) ecl;
1919 /* Perform offline variable substitution.
1921 This is a worst case quadratic time way of identifying variables
1922 that must have equivalent points-to sets, including those caused by
1923 static cycles, and single entry subgraphs, in the constraint graph.
1925 The technique is described in "Exploiting Pointer and Location
1926 Equivalence to Optimize Pointer Analysis. In the 14th International
1927 Static Analysis Symposium (SAS), August 2007." It is known as the
1928 "HU" algorithm, and is equivalent to value numbering the collapsed
1929 constraint graph including evaluating unions.
1931 The general method of finding equivalence classes is as follows:
1932 Add fake nodes (REF nodes) and edges for *a = b and a = *b constraints.
1933 Initialize all non-REF nodes to be direct nodes.
1934 For each constraint a = a U {b}, we set pts(a) = pts(a) u {fresh
1935 variable}
1936 For each constraint containing the dereference, we also do the same
1937 thing.
1939 We then compute SCC's in the graph and unify nodes in the same SCC,
1940 including pts sets.
1942 For each non-collapsed node x:
1943 Visit all unvisited explicit incoming edges.
1944 Ignoring all non-pointers, set pts(x) = Union of pts(a) for y
1945 where y->x.
1946 Lookup the equivalence class for pts(x).
1947 If we found one, equivalence_class(x) = found class.
1948 Otherwise, equivalence_class(x) = new class, and new_class is
1949 added to the lookup table.
1951 All direct nodes with the same equivalence class can be replaced
1952 with a single representative node.
1953 All unlabeled nodes (label == 0) are not pointers and all edges
1954 involving them can be eliminated.
1955 We perform these optimizations during rewrite_constraints
1957 In addition to pointer equivalence class finding, we also perform
1958 location equivalence class finding. This is the set of variables
1959 that always appear together in points-to sets. We use this to
1960 compress the size of the points-to sets. */
1962 /* Current maximum pointer equivalence class id. */
1963 static int pointer_equiv_class;
1965 /* Current maximum location equivalence class id. */
1966 static int location_equiv_class;
1968 /* Recursive routine to find strongly connected components in GRAPH,
1969 and label it's nodes with DFS numbers. */
1971 static void
1972 condense_visit (constraint_graph_t graph, struct scc_info *si, unsigned int n)
1974 unsigned int i;
1975 bitmap_iterator bi;
1976 unsigned int my_dfs;
1978 gcc_assert (si->node_mapping[n] == n);
1979 SET_BIT (si->visited, n);
1980 si->dfs[n] = si->current_index ++;
1981 my_dfs = si->dfs[n];
1983 /* Visit all the successors. */
1984 EXECUTE_IF_IN_NONNULL_BITMAP (graph->preds[n], 0, i, bi)
1986 unsigned int w = si->node_mapping[i];
1988 if (TEST_BIT (si->deleted, w))
1989 continue;
1991 if (!TEST_BIT (si->visited, w))
1992 condense_visit (graph, si, w);
1994 unsigned int t = si->node_mapping[w];
1995 unsigned int nnode = si->node_mapping[n];
1996 gcc_assert (nnode == n);
1998 if (si->dfs[t] < si->dfs[nnode])
1999 si->dfs[n] = si->dfs[t];
2003 /* Visit all the implicit predecessors. */
2004 EXECUTE_IF_IN_NONNULL_BITMAP (graph->implicit_preds[n], 0, i, bi)
2006 unsigned int w = si->node_mapping[i];
2008 if (TEST_BIT (si->deleted, w))
2009 continue;
2011 if (!TEST_BIT (si->visited, w))
2012 condense_visit (graph, si, w);
2014 unsigned int t = si->node_mapping[w];
2015 unsigned int nnode = si->node_mapping[n];
2016 gcc_assert (nnode == n);
2018 if (si->dfs[t] < si->dfs[nnode])
2019 si->dfs[n] = si->dfs[t];
2023 /* See if any components have been identified. */
2024 if (si->dfs[n] == my_dfs)
2026 while (VEC_length (unsigned, si->scc_stack) != 0
2027 && si->dfs[VEC_last (unsigned, si->scc_stack)] >= my_dfs)
2029 unsigned int w = VEC_pop (unsigned, si->scc_stack);
2030 si->node_mapping[w] = n;
2032 if (!TEST_BIT (graph->direct_nodes, w))
2033 RESET_BIT (graph->direct_nodes, n);
2035 /* Unify our nodes. */
2036 if (graph->preds[w])
2038 if (!graph->preds[n])
2039 graph->preds[n] = BITMAP_ALLOC (&predbitmap_obstack);
2040 bitmap_ior_into (graph->preds[n], graph->preds[w]);
2042 if (graph->implicit_preds[w])
2044 if (!graph->implicit_preds[n])
2045 graph->implicit_preds[n] = BITMAP_ALLOC (&predbitmap_obstack);
2046 bitmap_ior_into (graph->implicit_preds[n],
2047 graph->implicit_preds[w]);
2049 if (graph->points_to[w])
2051 if (!graph->points_to[n])
2052 graph->points_to[n] = BITMAP_ALLOC (&predbitmap_obstack);
2053 bitmap_ior_into (graph->points_to[n],
2054 graph->points_to[w]);
2057 SET_BIT (si->deleted, n);
2059 else
2060 VEC_safe_push (unsigned, heap, si->scc_stack, n);
2063 /* Label pointer equivalences. */
2065 static void
2066 label_visit (constraint_graph_t graph, struct scc_info *si, unsigned int n)
2068 unsigned int i;
2069 bitmap_iterator bi;
2070 SET_BIT (si->visited, n);
2072 if (!graph->points_to[n])
2073 graph->points_to[n] = BITMAP_ALLOC (&predbitmap_obstack);
2075 /* Label and union our incoming edges's points to sets. */
2076 EXECUTE_IF_IN_NONNULL_BITMAP (graph->preds[n], 0, i, bi)
2078 unsigned int w = si->node_mapping[i];
2079 if (!TEST_BIT (si->visited, w))
2080 label_visit (graph, si, w);
2082 /* Skip unused edges */
2083 if (w == n || graph->pointer_label[w] == 0)
2084 continue;
2086 if (graph->points_to[w])
2087 bitmap_ior_into(graph->points_to[n], graph->points_to[w]);
2089 /* Indirect nodes get fresh variables. */
2090 if (!TEST_BIT (graph->direct_nodes, n))
2091 bitmap_set_bit (graph->points_to[n], FIRST_REF_NODE + n);
2093 if (!bitmap_empty_p (graph->points_to[n]))
2095 unsigned int label = equiv_class_lookup (pointer_equiv_class_table,
2096 graph->points_to[n]);
2097 if (!label)
2099 label = pointer_equiv_class++;
2100 equiv_class_add (pointer_equiv_class_table,
2101 label, graph->points_to[n]);
2103 graph->pointer_label[n] = label;
2107 /* Perform offline variable substitution, discovering equivalence
2108 classes, and eliminating non-pointer variables. */
2110 static struct scc_info *
2111 perform_var_substitution (constraint_graph_t graph)
2113 unsigned int i;
2114 unsigned int size = graph->size;
2115 struct scc_info *si = init_scc_info (size);
2117 bitmap_obstack_initialize (&iteration_obstack);
2118 pointer_equiv_class_table = htab_create (511, equiv_class_label_hash,
2119 equiv_class_label_eq, free);
2120 location_equiv_class_table = htab_create (511, equiv_class_label_hash,
2121 equiv_class_label_eq, free);
2122 pointer_equiv_class = 1;
2123 location_equiv_class = 1;
2125 /* Condense the nodes, which means to find SCC's, count incoming
2126 predecessors, and unite nodes in SCC's. */
2127 for (i = 0; i < FIRST_REF_NODE; i++)
2128 if (!TEST_BIT (si->visited, si->node_mapping[i]))
2129 condense_visit (graph, si, si->node_mapping[i]);
2131 sbitmap_zero (si->visited);
2132 /* Actually the label the nodes for pointer equivalences */
2133 for (i = 0; i < FIRST_REF_NODE; i++)
2134 if (!TEST_BIT (si->visited, si->node_mapping[i]))
2135 label_visit (graph, si, si->node_mapping[i]);
2137 /* Calculate location equivalence labels. */
2138 for (i = 0; i < FIRST_REF_NODE; i++)
2140 bitmap pointed_by;
2141 bitmap_iterator bi;
2142 unsigned int j;
2143 unsigned int label;
2145 if (!graph->pointed_by[i])
2146 continue;
2147 pointed_by = BITMAP_ALLOC (&iteration_obstack);
2149 /* Translate the pointed-by mapping for pointer equivalence
2150 labels. */
2151 EXECUTE_IF_SET_IN_BITMAP (graph->pointed_by[i], 0, j, bi)
2153 bitmap_set_bit (pointed_by,
2154 graph->pointer_label[si->node_mapping[j]]);
2156 /* The original pointed_by is now dead. */
2157 BITMAP_FREE (graph->pointed_by[i]);
2159 /* Look up the location equivalence label if one exists, or make
2160 one otherwise. */
2161 label = equiv_class_lookup (location_equiv_class_table,
2162 pointed_by);
2163 if (label == 0)
2165 label = location_equiv_class++;
2166 equiv_class_add (location_equiv_class_table,
2167 label, pointed_by);
2169 else
2171 if (dump_file && (dump_flags & TDF_DETAILS))
2172 fprintf (dump_file, "Found location equivalence for node %s\n",
2173 get_varinfo (i)->name);
2174 BITMAP_FREE (pointed_by);
2176 graph->loc_label[i] = label;
2180 if (dump_file && (dump_flags & TDF_DETAILS))
2181 for (i = 0; i < FIRST_REF_NODE; i++)
2183 bool direct_node = TEST_BIT (graph->direct_nodes, i);
2184 fprintf (dump_file,
2185 "Equivalence classes for %s node id %d:%s are pointer: %d"
2186 ", location:%d\n",
2187 direct_node ? "Direct node" : "Indirect node", i,
2188 get_varinfo (i)->name,
2189 graph->pointer_label[si->node_mapping[i]],
2190 graph->loc_label[si->node_mapping[i]]);
2193 /* Quickly eliminate our non-pointer variables. */
2195 for (i = 0; i < FIRST_REF_NODE; i++)
2197 unsigned int node = si->node_mapping[i];
2199 if (graph->pointer_label[node] == 0)
2201 if (dump_file && (dump_flags & TDF_DETAILS))
2202 fprintf (dump_file,
2203 "%s is a non-pointer variable, eliminating edges.\n",
2204 get_varinfo (node)->name);
2205 stats.nonpointer_vars++;
2206 clear_edges_for_node (graph, node);
2210 return si;
2213 /* Free information that was only necessary for variable
2214 substitution. */
2216 static void
2217 free_var_substitution_info (struct scc_info *si)
2219 free_scc_info (si);
2220 free (graph->pointer_label);
2221 free (graph->loc_label);
2222 free (graph->pointed_by);
2223 free (graph->points_to);
2224 free (graph->eq_rep);
2225 sbitmap_free (graph->direct_nodes);
2226 htab_delete (pointer_equiv_class_table);
2227 htab_delete (location_equiv_class_table);
2228 bitmap_obstack_release (&iteration_obstack);
2231 /* Return an existing node that is equivalent to NODE, which has
2232 equivalence class LABEL, if one exists. Return NODE otherwise. */
2234 static unsigned int
2235 find_equivalent_node (constraint_graph_t graph,
2236 unsigned int node, unsigned int label)
2238 /* If the address version of this variable is unused, we can
2239 substitute it for anything else with the same label.
2240 Otherwise, we know the pointers are equivalent, but not the
2241 locations, and we can unite them later. */
2243 if (!bitmap_bit_p (graph->address_taken, node))
2245 gcc_assert (label < graph->size);
2247 if (graph->eq_rep[label] != -1)
2249 /* Unify the two variables since we know they are equivalent. */
2250 if (unite (graph->eq_rep[label], node))
2251 unify_nodes (graph, graph->eq_rep[label], node, false);
2252 return graph->eq_rep[label];
2254 else
2256 graph->eq_rep[label] = node;
2257 graph->pe_rep[label] = node;
2260 else
2262 gcc_assert (label < graph->size);
2263 graph->pe[node] = label;
2264 if (graph->pe_rep[label] == -1)
2265 graph->pe_rep[label] = node;
2268 return node;
2271 /* Unite pointer equivalent but not location equivalent nodes in
2272 GRAPH. This may only be performed once variable substitution is
2273 finished. */
2275 static void
2276 unite_pointer_equivalences (constraint_graph_t graph)
2278 unsigned int i;
2280 /* Go through the pointer equivalences and unite them to their
2281 representative, if they aren't already. */
2282 for (i = 0; i < FIRST_REF_NODE; i++)
2284 unsigned int label = graph->pe[i];
2285 if (label)
2287 int label_rep = graph->pe_rep[label];
2289 if (label_rep == -1)
2290 continue;
2292 label_rep = find (label_rep);
2293 if (label_rep >= 0 && unite (label_rep, find (i)))
2294 unify_nodes (graph, label_rep, i, false);
2299 /* Move complex constraints to the GRAPH nodes they belong to. */
2301 static void
2302 move_complex_constraints (constraint_graph_t graph)
2304 int i;
2305 constraint_t c;
2307 for (i = 0; VEC_iterate (constraint_t, constraints, i, c); i++)
2309 if (c)
2311 struct constraint_expr lhs = c->lhs;
2312 struct constraint_expr rhs = c->rhs;
2314 if (lhs.type == DEREF)
2316 insert_into_complex (graph, lhs.var, c);
2318 else if (rhs.type == DEREF)
2320 if (!(get_varinfo (lhs.var)->is_special_var))
2321 insert_into_complex (graph, rhs.var, c);
2323 else if (rhs.type != ADDRESSOF && lhs.var > anything_id
2324 && (lhs.offset != 0 || rhs.offset != 0))
2326 insert_into_complex (graph, rhs.var, c);
2333 /* Optimize and rewrite complex constraints while performing
2334 collapsing of equivalent nodes. SI is the SCC_INFO that is the
2335 result of perform_variable_substitution. */
2337 static void
2338 rewrite_constraints (constraint_graph_t graph,
2339 struct scc_info *si)
2341 int i;
2342 unsigned int j;
2343 constraint_t c;
2345 for (j = 0; j < graph->size; j++)
2346 gcc_assert (find (j) == j);
2348 for (i = 0; VEC_iterate (constraint_t, constraints, i, c); i++)
2350 struct constraint_expr lhs = c->lhs;
2351 struct constraint_expr rhs = c->rhs;
2352 unsigned int lhsvar = find (lhs.var);
2353 unsigned int rhsvar = find (rhs.var);
2354 unsigned int lhsnode, rhsnode;
2355 unsigned int lhslabel, rhslabel;
2357 lhsnode = si->node_mapping[lhsvar];
2358 rhsnode = si->node_mapping[rhsvar];
2359 lhslabel = graph->pointer_label[lhsnode];
2360 rhslabel = graph->pointer_label[rhsnode];
2362 /* See if it is really a non-pointer variable, and if so, ignore
2363 the constraint. */
2364 if (lhslabel == 0)
2366 if (dump_file && (dump_flags & TDF_DETAILS))
2369 fprintf (dump_file, "%s is a non-pointer variable,"
2370 "ignoring constraint:",
2371 get_varinfo (lhs.var)->name);
2372 dump_constraint (dump_file, c);
2374 VEC_replace (constraint_t, constraints, i, NULL);
2375 continue;
2378 if (rhslabel == 0)
2380 if (dump_file && (dump_flags & TDF_DETAILS))
2383 fprintf (dump_file, "%s is a non-pointer variable,"
2384 "ignoring constraint:",
2385 get_varinfo (rhs.var)->name);
2386 dump_constraint (dump_file, c);
2388 VEC_replace (constraint_t, constraints, i, NULL);
2389 continue;
2392 lhsvar = find_equivalent_node (graph, lhsvar, lhslabel);
2393 rhsvar = find_equivalent_node (graph, rhsvar, rhslabel);
2394 c->lhs.var = lhsvar;
2395 c->rhs.var = rhsvar;
2400 /* Eliminate indirect cycles involving NODE. Return true if NODE was
2401 part of an SCC, false otherwise. */
2403 static bool
2404 eliminate_indirect_cycles (unsigned int node)
2406 if (graph->indirect_cycles[node] != -1
2407 && !bitmap_empty_p (get_varinfo (node)->solution))
2409 unsigned int i;
2410 VEC(unsigned,heap) *queue = NULL;
2411 int queuepos;
2412 unsigned int to = find (graph->indirect_cycles[node]);
2413 bitmap_iterator bi;
2415 /* We can't touch the solution set and call unify_nodes
2416 at the same time, because unify_nodes is going to do
2417 bitmap unions into it. */
2419 EXECUTE_IF_SET_IN_BITMAP (get_varinfo (node)->solution, 0, i, bi)
2421 if (find (i) == i && i != to)
2423 if (unite (to, i))
2424 VEC_safe_push (unsigned, heap, queue, i);
2428 for (queuepos = 0;
2429 VEC_iterate (unsigned, queue, queuepos, i);
2430 queuepos++)
2432 unify_nodes (graph, to, i, true);
2434 VEC_free (unsigned, heap, queue);
2435 return true;
2437 return false;
2440 /* Solve the constraint graph GRAPH using our worklist solver.
2441 This is based on the PW* family of solvers from the "Efficient Field
2442 Sensitive Pointer Analysis for C" paper.
2443 It works by iterating over all the graph nodes, processing the complex
2444 constraints and propagating the copy constraints, until everything stops
2445 changed. This corresponds to steps 6-8 in the solving list given above. */
2447 static void
2448 solve_graph (constraint_graph_t graph)
2450 unsigned int size = graph->size;
2451 unsigned int i;
2452 bitmap pts;
2454 changed_count = 0;
2455 changed = sbitmap_alloc (size);
2456 sbitmap_zero (changed);
2458 /* Mark all initial non-collapsed nodes as changed. */
2459 for (i = 0; i < size; i++)
2461 varinfo_t ivi = get_varinfo (i);
2462 if (find (i) == i && !bitmap_empty_p (ivi->solution)
2463 && ((graph->succs[i] && !bitmap_empty_p (graph->succs[i]))
2464 || VEC_length (constraint_t, graph->complex[i]) > 0))
2466 SET_BIT (changed, i);
2467 changed_count++;
2471 /* Allocate a bitmap to be used to store the changed bits. */
2472 pts = BITMAP_ALLOC (&pta_obstack);
2474 while (changed_count > 0)
2476 unsigned int i;
2477 struct topo_info *ti = init_topo_info ();
2478 stats.iterations++;
2480 bitmap_obstack_initialize (&iteration_obstack);
2482 compute_topo_order (graph, ti);
2484 while (VEC_length (unsigned, ti->topo_order) != 0)
2487 i = VEC_pop (unsigned, ti->topo_order);
2489 /* If this variable is not a representative, skip it. */
2490 if (find (i) != i)
2491 continue;
2493 /* In certain indirect cycle cases, we may merge this
2494 variable to another. */
2495 if (eliminate_indirect_cycles (i) && find (i) != i)
2496 continue;
2498 /* If the node has changed, we need to process the
2499 complex constraints and outgoing edges again. */
2500 if (TEST_BIT (changed, i))
2502 unsigned int j;
2503 constraint_t c;
2504 bitmap solution;
2505 VEC(constraint_t,heap) *complex = graph->complex[i];
2506 bool solution_empty;
2508 RESET_BIT (changed, i);
2509 changed_count--;
2511 /* Compute the changed set of solution bits. */
2512 bitmap_and_compl (pts, get_varinfo (i)->solution,
2513 get_varinfo (i)->oldsolution);
2515 if (bitmap_empty_p (pts))
2516 continue;
2518 bitmap_ior_into (get_varinfo (i)->oldsolution, pts);
2520 solution = get_varinfo (i)->solution;
2521 solution_empty = bitmap_empty_p (solution);
2523 /* Process the complex constraints */
2524 for (j = 0; VEC_iterate (constraint_t, complex, j, c); j++)
2526 /* XXX: This is going to unsort the constraints in
2527 some cases, which will occasionally add duplicate
2528 constraints during unification. This does not
2529 affect correctness. */
2530 c->lhs.var = find (c->lhs.var);
2531 c->rhs.var = find (c->rhs.var);
2533 /* The only complex constraint that can change our
2534 solution to non-empty, given an empty solution,
2535 is a constraint where the lhs side is receiving
2536 some set from elsewhere. */
2537 if (!solution_empty || c->lhs.type != DEREF)
2538 do_complex_constraint (graph, c, pts);
2541 solution_empty = bitmap_empty_p (solution);
2543 if (!solution_empty)
2545 bitmap_iterator bi;
2546 unsigned eff_escaped_id = find (escaped_id);
2548 /* Propagate solution to all successors. */
2549 EXECUTE_IF_IN_NONNULL_BITMAP (graph->succs[i],
2550 0, j, bi)
2552 bitmap tmp;
2553 bool flag;
2555 unsigned int to = find (j);
2556 tmp = get_varinfo (to)->solution;
2557 flag = false;
2559 /* Don't try to propagate to ourselves. */
2560 if (to == i)
2561 continue;
2563 /* If we propagate from ESCAPED use ESCAPED as
2564 placeholder. */
2565 if (i == eff_escaped_id)
2566 flag = bitmap_set_bit (tmp, escaped_id);
2567 else
2568 flag = set_union_with_increment (tmp, pts, 0);
2570 if (flag)
2572 get_varinfo (to)->solution = tmp;
2573 if (!TEST_BIT (changed, to))
2575 SET_BIT (changed, to);
2576 changed_count++;
2583 free_topo_info (ti);
2584 bitmap_obstack_release (&iteration_obstack);
2587 BITMAP_FREE (pts);
2588 sbitmap_free (changed);
2589 bitmap_obstack_release (&oldpta_obstack);
2592 /* Map from trees to variable infos. */
2593 static struct pointer_map_t *vi_for_tree;
2596 /* Insert ID as the variable id for tree T in the vi_for_tree map. */
2598 static void
2599 insert_vi_for_tree (tree t, varinfo_t vi)
2601 void **slot = pointer_map_insert (vi_for_tree, t);
2602 gcc_assert (vi);
2603 gcc_assert (*slot == NULL);
2604 *slot = vi;
2607 /* Find the variable info for tree T in VI_FOR_TREE. If T does not
2608 exist in the map, return NULL, otherwise, return the varinfo we found. */
2610 static varinfo_t
2611 lookup_vi_for_tree (tree t)
2613 void **slot = pointer_map_contains (vi_for_tree, t);
2614 if (slot == NULL)
2615 return NULL;
2617 return (varinfo_t) *slot;
2620 /* Return a printable name for DECL */
2622 static const char *
2623 alias_get_name (tree decl)
2625 const char *res = get_name (decl);
2626 char *temp;
2627 int num_printed = 0;
2629 if (res != NULL)
2630 return res;
2632 res = "NULL";
2633 if (!dump_file)
2634 return res;
2636 if (TREE_CODE (decl) == SSA_NAME)
2638 num_printed = asprintf (&temp, "%s_%u",
2639 alias_get_name (SSA_NAME_VAR (decl)),
2640 SSA_NAME_VERSION (decl));
2642 else if (DECL_P (decl))
2644 num_printed = asprintf (&temp, "D.%u", DECL_UID (decl));
2646 if (num_printed > 0)
2648 res = ggc_strdup (temp);
2649 free (temp);
2651 return res;
2654 /* Find the variable id for tree T in the map.
2655 If T doesn't exist in the map, create an entry for it and return it. */
2657 static varinfo_t
2658 get_vi_for_tree (tree t)
2660 void **slot = pointer_map_contains (vi_for_tree, t);
2661 if (slot == NULL)
2662 return get_varinfo (create_variable_info_for (t, alias_get_name (t)));
2664 return (varinfo_t) *slot;
2667 /* Get a scalar constraint expression for a new temporary variable. */
2669 static struct constraint_expr
2670 new_scalar_tmp_constraint_exp (const char *name)
2672 struct constraint_expr tmp;
2673 varinfo_t vi;
2675 vi = new_var_info (NULL_TREE, name);
2676 vi->offset = 0;
2677 vi->size = -1;
2678 vi->fullsize = -1;
2679 vi->is_full_var = 1;
2681 tmp.var = vi->id;
2682 tmp.type = SCALAR;
2683 tmp.offset = 0;
2685 return tmp;
2688 /* Get a constraint expression vector from an SSA_VAR_P node.
2689 If address_p is true, the result will be taken its address of. */
2691 static void
2692 get_constraint_for_ssa_var (tree t, VEC(ce_s, heap) **results, bool address_p)
2694 struct constraint_expr cexpr;
2695 varinfo_t vi;
2697 /* We allow FUNCTION_DECLs here even though it doesn't make much sense. */
2698 gcc_assert (SSA_VAR_P (t) || DECL_P (t));
2700 /* For parameters, get at the points-to set for the actual parm
2701 decl. */
2702 if (TREE_CODE (t) == SSA_NAME
2703 && TREE_CODE (SSA_NAME_VAR (t)) == PARM_DECL
2704 && SSA_NAME_IS_DEFAULT_DEF (t))
2706 get_constraint_for_ssa_var (SSA_NAME_VAR (t), results, address_p);
2707 return;
2710 vi = get_vi_for_tree (t);
2711 cexpr.var = vi->id;
2712 cexpr.type = SCALAR;
2713 cexpr.offset = 0;
2714 /* If we determine the result is "anything", and we know this is readonly,
2715 say it points to readonly memory instead. */
2716 if (cexpr.var == anything_id && TREE_READONLY (t))
2718 gcc_unreachable ();
2719 cexpr.type = ADDRESSOF;
2720 cexpr.var = readonly_id;
2723 /* If we are not taking the address of the constraint expr, add all
2724 sub-fiels of the variable as well. */
2725 if (!address_p
2726 && !vi->is_full_var)
2728 for (; vi; vi = vi->next)
2730 cexpr.var = vi->id;
2731 VEC_safe_push (ce_s, heap, *results, &cexpr);
2733 return;
2736 VEC_safe_push (ce_s, heap, *results, &cexpr);
2739 /* Process constraint T, performing various simplifications and then
2740 adding it to our list of overall constraints. */
2742 static void
2743 process_constraint (constraint_t t)
2745 struct constraint_expr rhs = t->rhs;
2746 struct constraint_expr lhs = t->lhs;
2748 gcc_assert (rhs.var < VEC_length (varinfo_t, varmap));
2749 gcc_assert (lhs.var < VEC_length (varinfo_t, varmap));
2751 /* If we didn't get any useful constraint from the lhs we get
2752 &ANYTHING as fallback from get_constraint_for. Deal with
2753 it here by turning it into *ANYTHING. */
2754 if (lhs.type == ADDRESSOF
2755 && lhs.var == anything_id)
2756 lhs.type = DEREF;
2758 /* ADDRESSOF on the lhs is invalid. */
2759 gcc_assert (lhs.type != ADDRESSOF);
2761 /* This can happen in our IR with things like n->a = *p */
2762 if (rhs.type == DEREF && lhs.type == DEREF && rhs.var != anything_id)
2764 /* Split into tmp = *rhs, *lhs = tmp */
2765 struct constraint_expr tmplhs;
2766 tmplhs = new_scalar_tmp_constraint_exp ("doubledereftmp");
2767 process_constraint (new_constraint (tmplhs, rhs));
2768 process_constraint (new_constraint (lhs, tmplhs));
2770 else if (rhs.type == ADDRESSOF && lhs.type == DEREF)
2772 /* Split into tmp = &rhs, *lhs = tmp */
2773 struct constraint_expr tmplhs;
2774 tmplhs = new_scalar_tmp_constraint_exp ("derefaddrtmp");
2775 process_constraint (new_constraint (tmplhs, rhs));
2776 process_constraint (new_constraint (lhs, tmplhs));
2778 else
2780 gcc_assert (rhs.type != ADDRESSOF || rhs.offset == 0);
2781 VEC_safe_push (constraint_t, heap, constraints, t);
2785 /* Return true if T is a type that could contain pointers. */
2787 static bool
2788 type_could_have_pointers (tree type)
2790 if (POINTER_TYPE_P (type))
2791 return true;
2793 if (TREE_CODE (type) == ARRAY_TYPE)
2794 return type_could_have_pointers (TREE_TYPE (type));
2796 return AGGREGATE_TYPE_P (type);
2799 /* Return true if T is a variable of a type that could contain
2800 pointers. */
2802 static bool
2803 could_have_pointers (tree t)
2805 return type_could_have_pointers (TREE_TYPE (t));
2808 /* Return the position, in bits, of FIELD_DECL from the beginning of its
2809 structure. */
2811 static HOST_WIDE_INT
2812 bitpos_of_field (const tree fdecl)
2815 if (!host_integerp (DECL_FIELD_OFFSET (fdecl), 0)
2816 || !host_integerp (DECL_FIELD_BIT_OFFSET (fdecl), 0))
2817 return -1;
2819 return (TREE_INT_CST_LOW (DECL_FIELD_OFFSET (fdecl)) * 8
2820 + TREE_INT_CST_LOW (DECL_FIELD_BIT_OFFSET (fdecl)));
2824 /* Get constraint expressions for offsetting PTR by OFFSET. Stores the
2825 resulting constraint expressions in *RESULTS. */
2827 static void
2828 get_constraint_for_ptr_offset (tree ptr, tree offset,
2829 VEC (ce_s, heap) **results)
2831 struct constraint_expr c;
2832 unsigned int j, n;
2833 HOST_WIDE_INT rhsunitoffset, rhsoffset;
2835 /* If we do not do field-sensitive PTA adding offsets to pointers
2836 does not change the points-to solution. */
2837 if (!use_field_sensitive)
2839 get_constraint_for (ptr, results);
2840 return;
2843 /* If the offset is not a non-negative integer constant that fits
2844 in a HOST_WIDE_INT, we have to fall back to a conservative
2845 solution which includes all sub-fields of all pointed-to
2846 variables of ptr. */
2847 if (offset == NULL_TREE
2848 || !host_integerp (offset, 0))
2849 rhsoffset = UNKNOWN_OFFSET;
2850 else
2852 /* Make sure the bit-offset also fits. */
2853 rhsunitoffset = TREE_INT_CST_LOW (offset);
2854 rhsoffset = rhsunitoffset * BITS_PER_UNIT;
2855 if (rhsunitoffset != rhsoffset / BITS_PER_UNIT)
2856 rhsoffset = UNKNOWN_OFFSET;
2859 get_constraint_for (ptr, results);
2860 if (rhsoffset == 0)
2861 return;
2863 /* As we are eventually appending to the solution do not use
2864 VEC_iterate here. */
2865 n = VEC_length (ce_s, *results);
2866 for (j = 0; j < n; j++)
2868 varinfo_t curr;
2869 c = *VEC_index (ce_s, *results, j);
2870 curr = get_varinfo (c.var);
2872 if (c.type == ADDRESSOF
2873 /* If this varinfo represents a full variable just use it. */
2874 && curr->is_full_var)
2875 c.offset = 0;
2876 else if (c.type == ADDRESSOF
2877 /* If we do not know the offset add all subfields. */
2878 && rhsoffset == UNKNOWN_OFFSET)
2880 varinfo_t temp = lookup_vi_for_tree (curr->decl);
2883 struct constraint_expr c2;
2884 c2.var = temp->id;
2885 c2.type = ADDRESSOF;
2886 c2.offset = 0;
2887 if (c2.var != c.var)
2888 VEC_safe_push (ce_s, heap, *results, &c2);
2889 temp = temp->next;
2891 while (temp);
2893 else if (c.type == ADDRESSOF)
2895 varinfo_t temp;
2896 unsigned HOST_WIDE_INT offset = curr->offset + rhsoffset;
2898 /* Search the sub-field which overlaps with the
2899 pointed-to offset. If the result is outside of the variable
2900 we have to provide a conservative result, as the variable is
2901 still reachable from the resulting pointer (even though it
2902 technically cannot point to anything). The last and first
2903 sub-fields are such conservative results.
2904 ??? If we always had a sub-field for &object + 1 then
2905 we could represent this in a more precise way. */
2906 if (rhsoffset < 0
2907 && curr->offset < offset)
2908 offset = 0;
2909 temp = first_or_preceding_vi_for_offset (curr, offset);
2911 /* If the found variable is not exactly at the pointed to
2912 result, we have to include the next variable in the
2913 solution as well. Otherwise two increments by offset / 2
2914 do not result in the same or a conservative superset
2915 solution. */
2916 if (temp->offset != offset
2917 && temp->next != NULL)
2919 struct constraint_expr c2;
2920 c2.var = temp->next->id;
2921 c2.type = ADDRESSOF;
2922 c2.offset = 0;
2923 VEC_safe_push (ce_s, heap, *results, &c2);
2925 c.var = temp->id;
2926 c.offset = 0;
2928 else
2929 c.offset = rhsoffset;
2931 VEC_replace (ce_s, *results, j, &c);
2936 /* Given a COMPONENT_REF T, return the constraint_expr vector for it.
2937 If address_p is true the result will be taken its address of. */
2939 static void
2940 get_constraint_for_component_ref (tree t, VEC(ce_s, heap) **results,
2941 bool address_p)
2943 tree orig_t = t;
2944 HOST_WIDE_INT bitsize = -1;
2945 HOST_WIDE_INT bitmaxsize = -1;
2946 HOST_WIDE_INT bitpos;
2947 tree forzero;
2948 struct constraint_expr *result;
2950 /* Some people like to do cute things like take the address of
2951 &0->a.b */
2952 forzero = t;
2953 while (!SSA_VAR_P (forzero) && !CONSTANT_CLASS_P (forzero))
2954 forzero = TREE_OPERAND (forzero, 0);
2956 if (CONSTANT_CLASS_P (forzero) && integer_zerop (forzero))
2958 struct constraint_expr temp;
2960 temp.offset = 0;
2961 temp.var = integer_id;
2962 temp.type = SCALAR;
2963 VEC_safe_push (ce_s, heap, *results, &temp);
2964 return;
2967 t = get_ref_base_and_extent (t, &bitpos, &bitsize, &bitmaxsize);
2969 /* Pretend to take the address of the base, we'll take care of
2970 adding the required subset of sub-fields below. */
2971 get_constraint_for_1 (t, results, true);
2972 gcc_assert (VEC_length (ce_s, *results) == 1);
2973 result = VEC_last (ce_s, *results);
2975 if (result->type == SCALAR
2976 && get_varinfo (result->var)->is_full_var)
2977 /* For single-field vars do not bother about the offset. */
2978 result->offset = 0;
2979 else if (result->type == SCALAR)
2981 /* In languages like C, you can access one past the end of an
2982 array. You aren't allowed to dereference it, so we can
2983 ignore this constraint. When we handle pointer subtraction,
2984 we may have to do something cute here. */
2986 if ((unsigned HOST_WIDE_INT)bitpos < get_varinfo (result->var)->fullsize
2987 && bitmaxsize != 0)
2989 /* It's also not true that the constraint will actually start at the
2990 right offset, it may start in some padding. We only care about
2991 setting the constraint to the first actual field it touches, so
2992 walk to find it. */
2993 struct constraint_expr cexpr = *result;
2994 varinfo_t curr;
2995 VEC_pop (ce_s, *results);
2996 cexpr.offset = 0;
2997 for (curr = get_varinfo (cexpr.var); curr; curr = curr->next)
2999 if (ranges_overlap_p (curr->offset, curr->size,
3000 bitpos, bitmaxsize))
3002 cexpr.var = curr->id;
3003 VEC_safe_push (ce_s, heap, *results, &cexpr);
3004 if (address_p)
3005 break;
3008 /* If we are going to take the address of this field then
3009 to be able to compute reachability correctly add at least
3010 the last field of the variable. */
3011 if (address_p
3012 && VEC_length (ce_s, *results) == 0)
3014 curr = get_varinfo (cexpr.var);
3015 while (curr->next != NULL)
3016 curr = curr->next;
3017 cexpr.var = curr->id;
3018 VEC_safe_push (ce_s, heap, *results, &cexpr);
3020 else
3021 /* Assert that we found *some* field there. The user couldn't be
3022 accessing *only* padding. */
3023 /* Still the user could access one past the end of an array
3024 embedded in a struct resulting in accessing *only* padding. */
3025 gcc_assert (VEC_length (ce_s, *results) >= 1
3026 || ref_contains_array_ref (orig_t));
3028 else if (bitmaxsize == 0)
3030 if (dump_file && (dump_flags & TDF_DETAILS))
3031 fprintf (dump_file, "Access to zero-sized part of variable,"
3032 "ignoring\n");
3034 else
3035 if (dump_file && (dump_flags & TDF_DETAILS))
3036 fprintf (dump_file, "Access to past the end of variable, ignoring\n");
3038 else if (result->type == DEREF)
3040 /* If we do not know exactly where the access goes say so. Note
3041 that only for non-structure accesses we know that we access
3042 at most one subfiled of any variable. */
3043 if (bitpos == -1
3044 || bitsize != bitmaxsize
3045 || AGGREGATE_TYPE_P (TREE_TYPE (orig_t)))
3046 result->offset = UNKNOWN_OFFSET;
3047 else
3048 result->offset = bitpos;
3050 else if (result->type == ADDRESSOF)
3052 /* We can end up here for component references on a
3053 VIEW_CONVERT_EXPR <>(&foobar). */
3054 result->type = SCALAR;
3055 result->var = anything_id;
3056 result->offset = 0;
3058 else
3059 gcc_unreachable ();
3063 /* Dereference the constraint expression CONS, and return the result.
3064 DEREF (ADDRESSOF) = SCALAR
3065 DEREF (SCALAR) = DEREF
3066 DEREF (DEREF) = (temp = DEREF1; result = DEREF(temp))
3067 This is needed so that we can handle dereferencing DEREF constraints. */
3069 static void
3070 do_deref (VEC (ce_s, heap) **constraints)
3072 struct constraint_expr *c;
3073 unsigned int i = 0;
3075 for (i = 0; VEC_iterate (ce_s, *constraints, i, c); i++)
3077 if (c->type == SCALAR)
3078 c->type = DEREF;
3079 else if (c->type == ADDRESSOF)
3080 c->type = SCALAR;
3081 else if (c->type == DEREF)
3083 struct constraint_expr tmplhs;
3084 tmplhs = new_scalar_tmp_constraint_exp ("dereftmp");
3085 process_constraint (new_constraint (tmplhs, *c));
3086 c->var = tmplhs.var;
3088 else
3089 gcc_unreachable ();
3093 static void get_constraint_for_1 (tree, VEC (ce_s, heap) **, bool);
3095 /* Given a tree T, return the constraint expression for taking the
3096 address of it. */
3098 static void
3099 get_constraint_for_address_of (tree t, VEC (ce_s, heap) **results)
3101 struct constraint_expr *c;
3102 unsigned int i;
3104 get_constraint_for_1 (t, results, true);
3106 for (i = 0; VEC_iterate (ce_s, *results, i, c); i++)
3108 if (c->type == DEREF)
3109 c->type = SCALAR;
3110 else
3111 c->type = ADDRESSOF;
3115 /* Given a tree T, return the constraint expression for it. */
3117 static void
3118 get_constraint_for_1 (tree t, VEC (ce_s, heap) **results, bool address_p)
3120 struct constraint_expr temp;
3122 /* x = integer is all glommed to a single variable, which doesn't
3123 point to anything by itself. That is, of course, unless it is an
3124 integer constant being treated as a pointer, in which case, we
3125 will return that this is really the addressof anything. This
3126 happens below, since it will fall into the default case. The only
3127 case we know something about an integer treated like a pointer is
3128 when it is the NULL pointer, and then we just say it points to
3129 NULL.
3131 Do not do that if -fno-delete-null-pointer-checks though, because
3132 in that case *NULL does not fail, so it _should_ alias *anything.
3133 It is not worth adding a new option or renaming the existing one,
3134 since this case is relatively obscure. */
3135 if (flag_delete_null_pointer_checks
3136 && ((TREE_CODE (t) == INTEGER_CST
3137 && integer_zerop (t))
3138 /* The only valid CONSTRUCTORs in gimple with pointer typed
3139 elements are zero-initializer. */
3140 || TREE_CODE (t) == CONSTRUCTOR))
3142 temp.var = nothing_id;
3143 temp.type = ADDRESSOF;
3144 temp.offset = 0;
3145 VEC_safe_push (ce_s, heap, *results, &temp);
3146 return;
3149 /* String constants are read-only. */
3150 if (TREE_CODE (t) == STRING_CST)
3152 temp.var = readonly_id;
3153 temp.type = SCALAR;
3154 temp.offset = 0;
3155 VEC_safe_push (ce_s, heap, *results, &temp);
3156 return;
3159 switch (TREE_CODE_CLASS (TREE_CODE (t)))
3161 case tcc_expression:
3163 switch (TREE_CODE (t))
3165 case ADDR_EXPR:
3166 get_constraint_for_address_of (TREE_OPERAND (t, 0), results);
3167 return;
3168 default:;
3170 break;
3172 case tcc_reference:
3174 switch (TREE_CODE (t))
3176 case INDIRECT_REF:
3178 get_constraint_for_1 (TREE_OPERAND (t, 0), results, address_p);
3179 do_deref (results);
3180 return;
3182 case ARRAY_REF:
3183 case ARRAY_RANGE_REF:
3184 case COMPONENT_REF:
3185 get_constraint_for_component_ref (t, results, address_p);
3186 return;
3187 case VIEW_CONVERT_EXPR:
3188 get_constraint_for_1 (TREE_OPERAND (t, 0), results, address_p);
3189 return;
3190 /* We are missing handling for TARGET_MEM_REF here. */
3191 default:;
3193 break;
3195 case tcc_exceptional:
3197 switch (TREE_CODE (t))
3199 case SSA_NAME:
3201 get_constraint_for_ssa_var (t, results, address_p);
3202 return;
3204 default:;
3206 break;
3208 case tcc_declaration:
3210 get_constraint_for_ssa_var (t, results, address_p);
3211 return;
3213 default:;
3216 /* The default fallback is a constraint from anything. */
3217 temp.type = ADDRESSOF;
3218 temp.var = anything_id;
3219 temp.offset = 0;
3220 VEC_safe_push (ce_s, heap, *results, &temp);
3223 /* Given a gimple tree T, return the constraint expression vector for it. */
3225 static void
3226 get_constraint_for (tree t, VEC (ce_s, heap) **results)
3228 gcc_assert (VEC_length (ce_s, *results) == 0);
3230 get_constraint_for_1 (t, results, false);
3234 /* Efficiently generates constraints from all entries in *RHSC to all
3235 entries in *LHSC. */
3237 static void
3238 process_all_all_constraints (VEC (ce_s, heap) *lhsc, VEC (ce_s, heap) *rhsc)
3240 struct constraint_expr *lhsp, *rhsp;
3241 unsigned i, j;
3243 if (VEC_length (ce_s, lhsc) <= 1
3244 || VEC_length (ce_s, rhsc) <= 1)
3246 for (i = 0; VEC_iterate (ce_s, lhsc, i, lhsp); ++i)
3247 for (j = 0; VEC_iterate (ce_s, rhsc, j, rhsp); ++j)
3248 process_constraint (new_constraint (*lhsp, *rhsp));
3250 else
3252 struct constraint_expr tmp;
3253 tmp = new_scalar_tmp_constraint_exp ("allalltmp");
3254 for (i = 0; VEC_iterate (ce_s, rhsc, i, rhsp); ++i)
3255 process_constraint (new_constraint (tmp, *rhsp));
3256 for (i = 0; VEC_iterate (ce_s, lhsc, i, lhsp); ++i)
3257 process_constraint (new_constraint (*lhsp, tmp));
3261 /* Handle aggregate copies by expanding into copies of the respective
3262 fields of the structures. */
3264 static void
3265 do_structure_copy (tree lhsop, tree rhsop)
3267 struct constraint_expr *lhsp, *rhsp;
3268 VEC (ce_s, heap) *lhsc = NULL, *rhsc = NULL;
3269 unsigned j;
3271 get_constraint_for (lhsop, &lhsc);
3272 get_constraint_for (rhsop, &rhsc);
3273 lhsp = VEC_index (ce_s, lhsc, 0);
3274 rhsp = VEC_index (ce_s, rhsc, 0);
3275 if (lhsp->type == DEREF
3276 || (lhsp->type == ADDRESSOF && lhsp->var == anything_id)
3277 || rhsp->type == DEREF)
3278 process_all_all_constraints (lhsc, rhsc);
3279 else if (lhsp->type == SCALAR
3280 && (rhsp->type == SCALAR
3281 || rhsp->type == ADDRESSOF))
3283 HOST_WIDE_INT lhssize, lhsmaxsize, lhsoffset;
3284 HOST_WIDE_INT rhssize, rhsmaxsize, rhsoffset;
3285 unsigned k = 0;
3286 get_ref_base_and_extent (lhsop, &lhsoffset, &lhssize, &lhsmaxsize);
3287 get_ref_base_and_extent (rhsop, &rhsoffset, &rhssize, &rhsmaxsize);
3288 for (j = 0; VEC_iterate (ce_s, lhsc, j, lhsp);)
3290 varinfo_t lhsv, rhsv;
3291 rhsp = VEC_index (ce_s, rhsc, k);
3292 lhsv = get_varinfo (lhsp->var);
3293 rhsv = get_varinfo (rhsp->var);
3294 if (lhsv->may_have_pointers
3295 && ranges_overlap_p (lhsv->offset + rhsoffset, lhsv->size,
3296 rhsv->offset + lhsoffset, rhsv->size))
3297 process_constraint (new_constraint (*lhsp, *rhsp));
3298 if (lhsv->offset + rhsoffset + lhsv->size
3299 > rhsv->offset + lhsoffset + rhsv->size)
3301 ++k;
3302 if (k >= VEC_length (ce_s, rhsc))
3303 break;
3305 else
3306 ++j;
3309 else
3310 gcc_unreachable ();
3312 VEC_free (ce_s, heap, lhsc);
3313 VEC_free (ce_s, heap, rhsc);
3316 /* Create a constraint ID = OP. */
3318 static void
3319 make_constraint_to (unsigned id, tree op)
3321 VEC(ce_s, heap) *rhsc = NULL;
3322 struct constraint_expr *c;
3323 struct constraint_expr includes;
3324 unsigned int j;
3326 includes.var = id;
3327 includes.offset = 0;
3328 includes.type = SCALAR;
3330 get_constraint_for (op, &rhsc);
3331 for (j = 0; VEC_iterate (ce_s, rhsc, j, c); j++)
3332 process_constraint (new_constraint (includes, *c));
3333 VEC_free (ce_s, heap, rhsc);
3336 /* Create a constraint ID = &FROM. */
3338 static void
3339 make_constraint_from (varinfo_t vi, int from)
3341 struct constraint_expr lhs, rhs;
3343 lhs.var = vi->id;
3344 lhs.offset = 0;
3345 lhs.type = SCALAR;
3347 rhs.var = from;
3348 rhs.offset = 0;
3349 rhs.type = ADDRESSOF;
3350 process_constraint (new_constraint (lhs, rhs));
3353 /* Create a constraint ID = FROM. */
3355 static void
3356 make_copy_constraint (varinfo_t vi, int from)
3358 struct constraint_expr lhs, rhs;
3360 lhs.var = vi->id;
3361 lhs.offset = 0;
3362 lhs.type = SCALAR;
3364 rhs.var = from;
3365 rhs.offset = 0;
3366 rhs.type = SCALAR;
3367 process_constraint (new_constraint (lhs, rhs));
3370 /* Make constraints necessary to make OP escape. */
3372 static void
3373 make_escape_constraint (tree op)
3375 make_constraint_to (escaped_id, op);
3378 /* Create a new artificial heap variable with NAME and make a
3379 constraint from it to LHS. Return the created variable. */
3381 static varinfo_t
3382 make_constraint_from_heapvar (varinfo_t lhs, const char *name)
3384 varinfo_t vi;
3385 tree heapvar = heapvar_lookup (lhs->decl, lhs->offset);
3387 if (heapvar == NULL_TREE)
3389 var_ann_t ann;
3390 heapvar = create_tmp_var_raw (ptr_type_node, name);
3391 DECL_EXTERNAL (heapvar) = 1;
3393 heapvar_insert (lhs->decl, lhs->offset, heapvar);
3395 ann = get_var_ann (heapvar);
3396 ann->is_heapvar = 1;
3399 /* For global vars we need to add a heapvar to the list of referenced
3400 vars of a different function than it was created for originally. */
3401 if (gimple_referenced_vars (cfun))
3402 add_referenced_var (heapvar);
3404 vi = new_var_info (heapvar, name);
3405 vi->is_artificial_var = true;
3406 vi->is_heap_var = true;
3407 vi->is_unknown_size_var = true;
3408 vi->offset = 0;
3409 vi->fullsize = ~0;
3410 vi->size = ~0;
3411 vi->is_full_var = true;
3412 insert_vi_for_tree (heapvar, vi);
3414 make_constraint_from (lhs, vi->id);
3416 return vi;
3419 /* Create a new artificial heap variable with NAME and make a
3420 constraint from it to LHS. Set flags according to a tag used
3421 for tracking restrict pointers. */
3423 static void
3424 make_constraint_from_restrict (varinfo_t lhs, const char *name)
3426 varinfo_t vi;
3427 vi = make_constraint_from_heapvar (lhs, name);
3428 vi->is_restrict_var = 1;
3429 vi->is_global_var = 0;
3430 vi->is_special_var = 1;
3431 vi->may_have_pointers = 0;
3434 /* For non-IPA mode, generate constraints necessary for a call on the
3435 RHS. */
3437 static void
3438 handle_rhs_call (gimple stmt, VEC(ce_s, heap) **results)
3440 struct constraint_expr rhsc;
3441 unsigned i;
3443 for (i = 0; i < gimple_call_num_args (stmt); ++i)
3445 tree arg = gimple_call_arg (stmt, i);
3447 /* Find those pointers being passed, and make sure they end up
3448 pointing to anything. */
3449 if (could_have_pointers (arg))
3450 make_escape_constraint (arg);
3453 /* The static chain escapes as well. */
3454 if (gimple_call_chain (stmt))
3455 make_escape_constraint (gimple_call_chain (stmt));
3457 /* And if we applied NRV the address of the return slot escapes as well. */
3458 if (gimple_call_return_slot_opt_p (stmt)
3459 && gimple_call_lhs (stmt) != NULL_TREE
3460 && TREE_ADDRESSABLE (TREE_TYPE (gimple_call_lhs (stmt))))
3462 VEC(ce_s, heap) *tmpc = NULL;
3463 struct constraint_expr lhsc, *c;
3464 get_constraint_for_address_of (gimple_call_lhs (stmt), &tmpc);
3465 lhsc.var = escaped_id;
3466 lhsc.offset = 0;
3467 lhsc.type = SCALAR;
3468 for (i = 0; VEC_iterate (ce_s, tmpc, i, c); ++i)
3469 process_constraint (new_constraint (lhsc, *c));
3470 VEC_free(ce_s, heap, tmpc);
3473 /* Regular functions return nonlocal memory. */
3474 rhsc.var = nonlocal_id;
3475 rhsc.offset = 0;
3476 rhsc.type = SCALAR;
3477 VEC_safe_push (ce_s, heap, *results, &rhsc);
3480 /* For non-IPA mode, generate constraints necessary for a call
3481 that returns a pointer and assigns it to LHS. This simply makes
3482 the LHS point to global and escaped variables. */
3484 static void
3485 handle_lhs_call (tree lhs, int flags, VEC(ce_s, heap) *rhsc, tree fndecl)
3487 VEC(ce_s, heap) *lhsc = NULL;
3489 get_constraint_for (lhs, &lhsc);
3491 if (flags & ECF_MALLOC)
3493 varinfo_t vi;
3494 vi = make_constraint_from_heapvar (get_vi_for_tree (lhs), "HEAP");
3495 /* We delay marking allocated storage global until we know if
3496 it escapes. */
3497 DECL_EXTERNAL (vi->decl) = 0;
3498 vi->is_global_var = 0;
3499 /* If this is not a real malloc call assume the memory was
3500 initialized and thus may point to global memory. All
3501 builtin functions with the malloc attribute behave in a sane way. */
3502 if (!fndecl
3503 || DECL_BUILT_IN_CLASS (fndecl) != BUILT_IN_NORMAL)
3504 make_constraint_from (vi, nonlocal_id);
3506 else if (VEC_length (ce_s, rhsc) > 0)
3508 /* If the store is to a global decl make sure to
3509 add proper escape constraints. */
3510 lhs = get_base_address (lhs);
3511 if (lhs
3512 && DECL_P (lhs)
3513 && is_global_var (lhs))
3515 struct constraint_expr tmpc;
3516 tmpc.var = escaped_id;
3517 tmpc.offset = 0;
3518 tmpc.type = SCALAR;
3519 VEC_safe_push (ce_s, heap, lhsc, &tmpc);
3521 process_all_all_constraints (lhsc, rhsc);
3523 VEC_free (ce_s, heap, lhsc);
3526 /* For non-IPA mode, generate constraints necessary for a call of a
3527 const function that returns a pointer in the statement STMT. */
3529 static void
3530 handle_const_call (gimple stmt, VEC(ce_s, heap) **results)
3532 struct constraint_expr rhsc;
3533 unsigned int k;
3535 /* Treat nested const functions the same as pure functions as far
3536 as the static chain is concerned. */
3537 if (gimple_call_chain (stmt))
3539 make_constraint_to (callused_id, gimple_call_chain (stmt));
3540 rhsc.var = callused_id;
3541 rhsc.offset = 0;
3542 rhsc.type = SCALAR;
3543 VEC_safe_push (ce_s, heap, *results, &rhsc);
3546 /* May return arguments. */
3547 for (k = 0; k < gimple_call_num_args (stmt); ++k)
3549 tree arg = gimple_call_arg (stmt, k);
3551 if (could_have_pointers (arg))
3553 VEC(ce_s, heap) *argc = NULL;
3554 unsigned i;
3555 struct constraint_expr *argp;
3556 get_constraint_for (arg, &argc);
3557 for (i = 0; VEC_iterate (ce_s, argc, i, argp); ++i)
3558 VEC_safe_push (ce_s, heap, *results, argp);
3559 VEC_free(ce_s, heap, argc);
3563 /* May return addresses of globals. */
3564 rhsc.var = nonlocal_id;
3565 rhsc.offset = 0;
3566 rhsc.type = ADDRESSOF;
3567 VEC_safe_push (ce_s, heap, *results, &rhsc);
3570 /* For non-IPA mode, generate constraints necessary for a call to a
3571 pure function in statement STMT. */
3573 static void
3574 handle_pure_call (gimple stmt, VEC(ce_s, heap) **results)
3576 struct constraint_expr rhsc;
3577 unsigned i;
3578 bool need_callused = false;
3580 /* Memory reached from pointer arguments is call-used. */
3581 for (i = 0; i < gimple_call_num_args (stmt); ++i)
3583 tree arg = gimple_call_arg (stmt, i);
3585 if (could_have_pointers (arg))
3587 make_constraint_to (callused_id, arg);
3588 need_callused = true;
3592 /* The static chain is used as well. */
3593 if (gimple_call_chain (stmt))
3595 make_constraint_to (callused_id, gimple_call_chain (stmt));
3596 need_callused = true;
3599 /* Pure functions may return callused and nonlocal memory. */
3600 if (need_callused)
3602 rhsc.var = callused_id;
3603 rhsc.offset = 0;
3604 rhsc.type = SCALAR;
3605 VEC_safe_push (ce_s, heap, *results, &rhsc);
3607 rhsc.var = nonlocal_id;
3608 rhsc.offset = 0;
3609 rhsc.type = SCALAR;
3610 VEC_safe_push (ce_s, heap, *results, &rhsc);
3613 /* Walk statement T setting up aliasing constraints according to the
3614 references found in T. This function is the main part of the
3615 constraint builder. AI points to auxiliary alias information used
3616 when building alias sets and computing alias grouping heuristics. */
3618 static void
3619 find_func_aliases (gimple origt)
3621 gimple t = origt;
3622 VEC(ce_s, heap) *lhsc = NULL;
3623 VEC(ce_s, heap) *rhsc = NULL;
3624 struct constraint_expr *c;
3626 /* Now build constraints expressions. */
3627 if (gimple_code (t) == GIMPLE_PHI)
3629 gcc_assert (!AGGREGATE_TYPE_P (TREE_TYPE (gimple_phi_result (t))));
3631 /* Only care about pointers and structures containing
3632 pointers. */
3633 if (could_have_pointers (gimple_phi_result (t)))
3635 size_t i;
3636 unsigned int j;
3638 /* For a phi node, assign all the arguments to
3639 the result. */
3640 get_constraint_for (gimple_phi_result (t), &lhsc);
3641 for (i = 0; i < gimple_phi_num_args (t); i++)
3643 tree strippedrhs = PHI_ARG_DEF (t, i);
3645 STRIP_NOPS (strippedrhs);
3646 get_constraint_for (gimple_phi_arg_def (t, i), &rhsc);
3648 for (j = 0; VEC_iterate (ce_s, lhsc, j, c); j++)
3650 struct constraint_expr *c2;
3651 while (VEC_length (ce_s, rhsc) > 0)
3653 c2 = VEC_last (ce_s, rhsc);
3654 process_constraint (new_constraint (*c, *c2));
3655 VEC_pop (ce_s, rhsc);
3661 /* In IPA mode, we need to generate constraints to pass call
3662 arguments through their calls. There are two cases,
3663 either a GIMPLE_CALL returning a value, or just a plain
3664 GIMPLE_CALL when we are not.
3666 In non-ipa mode, we need to generate constraints for each
3667 pointer passed by address. */
3668 else if (is_gimple_call (t))
3670 tree fndecl = gimple_call_fndecl (t);
3671 if (fndecl != NULL_TREE
3672 && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
3673 /* ??? All builtins that are handled here need to be handled
3674 in the alias-oracle query functions explicitly! */
3675 switch (DECL_FUNCTION_CODE (fndecl))
3677 /* All the following functions return a pointer to the same object
3678 as their first argument points to. The functions do not add
3679 to the ESCAPED solution. The functions make the first argument
3680 pointed to memory point to what the second argument pointed to
3681 memory points to. */
3682 case BUILT_IN_STRCPY:
3683 case BUILT_IN_STRNCPY:
3684 case BUILT_IN_BCOPY:
3685 case BUILT_IN_MEMCPY:
3686 case BUILT_IN_MEMMOVE:
3687 case BUILT_IN_MEMPCPY:
3688 case BUILT_IN_STPCPY:
3689 case BUILT_IN_STPNCPY:
3690 case BUILT_IN_STRCAT:
3691 case BUILT_IN_STRNCAT:
3693 tree res = gimple_call_lhs (t);
3694 tree dest = gimple_call_arg (t, (DECL_FUNCTION_CODE (fndecl)
3695 == BUILT_IN_BCOPY ? 1 : 0));
3696 tree src = gimple_call_arg (t, (DECL_FUNCTION_CODE (fndecl)
3697 == BUILT_IN_BCOPY ? 0 : 1));
3698 if (res != NULL_TREE)
3700 get_constraint_for (res, &lhsc);
3701 if (DECL_FUNCTION_CODE (fndecl) == BUILT_IN_MEMPCPY
3702 || DECL_FUNCTION_CODE (fndecl) == BUILT_IN_STPCPY
3703 || DECL_FUNCTION_CODE (fndecl) == BUILT_IN_STPNCPY)
3704 get_constraint_for_ptr_offset (dest, NULL_TREE, &rhsc);
3705 else
3706 get_constraint_for (dest, &rhsc);
3707 process_all_all_constraints (lhsc, rhsc);
3708 VEC_free (ce_s, heap, lhsc);
3709 VEC_free (ce_s, heap, rhsc);
3711 get_constraint_for_ptr_offset (dest, NULL_TREE, &lhsc);
3712 get_constraint_for_ptr_offset (src, NULL_TREE, &rhsc);
3713 do_deref (&lhsc);
3714 do_deref (&rhsc);
3715 process_all_all_constraints (lhsc, rhsc);
3716 VEC_free (ce_s, heap, lhsc);
3717 VEC_free (ce_s, heap, rhsc);
3718 return;
3720 case BUILT_IN_MEMSET:
3722 tree res = gimple_call_lhs (t);
3723 tree dest = gimple_call_arg (t, 0);
3724 unsigned i;
3725 ce_s *lhsp;
3726 struct constraint_expr ac;
3727 if (res != NULL_TREE)
3729 get_constraint_for (res, &lhsc);
3730 get_constraint_for (dest, &rhsc);
3731 process_all_all_constraints (lhsc, rhsc);
3732 VEC_free (ce_s, heap, lhsc);
3733 VEC_free (ce_s, heap, rhsc);
3735 get_constraint_for_ptr_offset (dest, NULL_TREE, &lhsc);
3736 do_deref (&lhsc);
3737 if (flag_delete_null_pointer_checks
3738 && integer_zerop (gimple_call_arg (t, 1)))
3740 ac.type = ADDRESSOF;
3741 ac.var = nothing_id;
3743 else
3745 ac.type = SCALAR;
3746 ac.var = integer_id;
3748 ac.offset = 0;
3749 for (i = 0; VEC_iterate (ce_s, lhsc, i, lhsp); ++i)
3750 process_constraint (new_constraint (*lhsp, ac));
3751 VEC_free (ce_s, heap, lhsc);
3752 return;
3754 /* All the following functions do not return pointers, do not
3755 modify the points-to sets of memory reachable from their
3756 arguments and do not add to the ESCAPED solution. */
3757 case BUILT_IN_SINCOS:
3758 case BUILT_IN_SINCOSF:
3759 case BUILT_IN_SINCOSL:
3760 case BUILT_IN_FREXP:
3761 case BUILT_IN_FREXPF:
3762 case BUILT_IN_FREXPL:
3763 case BUILT_IN_GAMMA_R:
3764 case BUILT_IN_GAMMAF_R:
3765 case BUILT_IN_GAMMAL_R:
3766 case BUILT_IN_LGAMMA_R:
3767 case BUILT_IN_LGAMMAF_R:
3768 case BUILT_IN_LGAMMAL_R:
3769 case BUILT_IN_MODF:
3770 case BUILT_IN_MODFF:
3771 case BUILT_IN_MODFL:
3772 case BUILT_IN_REMQUO:
3773 case BUILT_IN_REMQUOF:
3774 case BUILT_IN_REMQUOL:
3775 case BUILT_IN_FREE:
3776 return;
3777 /* printf-style functions may have hooks to set pointers to
3778 point to somewhere into the generated string. Leave them
3779 for a later excercise... */
3780 default:
3781 /* Fallthru to general call handling. */;
3783 if (!in_ipa_mode
3784 || (fndecl
3785 && !lookup_vi_for_tree (fndecl)))
3787 VEC(ce_s, heap) *rhsc = NULL;
3788 int flags = gimple_call_flags (t);
3790 /* Const functions can return their arguments and addresses
3791 of global memory but not of escaped memory. */
3792 if (flags & (ECF_CONST|ECF_NOVOPS))
3794 if (gimple_call_lhs (t)
3795 && could_have_pointers (gimple_call_lhs (t)))
3796 handle_const_call (t, &rhsc);
3798 /* Pure functions can return addresses in and of memory
3799 reachable from their arguments, but they are not an escape
3800 point for reachable memory of their arguments. */
3801 else if (flags & (ECF_PURE|ECF_LOOPING_CONST_OR_PURE))
3802 handle_pure_call (t, &rhsc);
3803 else
3804 handle_rhs_call (t, &rhsc);
3805 if (gimple_call_lhs (t)
3806 && could_have_pointers (gimple_call_lhs (t)))
3807 handle_lhs_call (gimple_call_lhs (t), flags, rhsc, fndecl);
3808 VEC_free (ce_s, heap, rhsc);
3810 else
3812 tree lhsop;
3813 varinfo_t fi;
3814 int i = 1;
3815 size_t j;
3816 tree decl;
3818 lhsop = gimple_call_lhs (t);
3819 decl = gimple_call_fndecl (t);
3821 /* If we can directly resolve the function being called, do so.
3822 Otherwise, it must be some sort of indirect expression that
3823 we should still be able to handle. */
3824 if (decl)
3825 fi = get_vi_for_tree (decl);
3826 else
3828 decl = gimple_call_fn (t);
3829 fi = get_vi_for_tree (decl);
3832 /* Assign all the passed arguments to the appropriate incoming
3833 parameters of the function. */
3834 for (j = 0; j < gimple_call_num_args (t); j++)
3836 struct constraint_expr lhs ;
3837 struct constraint_expr *rhsp;
3838 tree arg = gimple_call_arg (t, j);
3840 get_constraint_for (arg, &rhsc);
3841 if (TREE_CODE (decl) != FUNCTION_DECL)
3843 lhs.type = DEREF;
3844 lhs.var = fi->id;
3845 lhs.offset = i;
3847 else
3849 lhs.type = SCALAR;
3850 lhs.var = first_vi_for_offset (fi, i)->id;
3851 lhs.offset = 0;
3853 while (VEC_length (ce_s, rhsc) != 0)
3855 rhsp = VEC_last (ce_s, rhsc);
3856 process_constraint (new_constraint (lhs, *rhsp));
3857 VEC_pop (ce_s, rhsc);
3859 i++;
3862 /* If we are returning a value, assign it to the result. */
3863 if (lhsop)
3865 struct constraint_expr rhs;
3866 struct constraint_expr *lhsp;
3867 unsigned int j = 0;
3869 get_constraint_for (lhsop, &lhsc);
3870 if (TREE_CODE (decl) != FUNCTION_DECL)
3872 rhs.type = DEREF;
3873 rhs.var = fi->id;
3874 rhs.offset = i;
3876 else
3878 rhs.type = SCALAR;
3879 rhs.var = first_vi_for_offset (fi, i)->id;
3880 rhs.offset = 0;
3882 for (j = 0; VEC_iterate (ce_s, lhsc, j, lhsp); j++)
3883 process_constraint (new_constraint (*lhsp, rhs));
3887 /* Otherwise, just a regular assignment statement. Only care about
3888 operations with pointer result, others are dealt with as escape
3889 points if they have pointer operands. */
3890 else if (is_gimple_assign (t)
3891 && could_have_pointers (gimple_assign_lhs (t)))
3893 /* Otherwise, just a regular assignment statement. */
3894 tree lhsop = gimple_assign_lhs (t);
3895 tree rhsop = (gimple_num_ops (t) == 2) ? gimple_assign_rhs1 (t) : NULL;
3897 if (rhsop && AGGREGATE_TYPE_P (TREE_TYPE (lhsop)))
3898 do_structure_copy (lhsop, rhsop);
3899 else
3901 struct constraint_expr temp;
3902 get_constraint_for (lhsop, &lhsc);
3904 if (gimple_assign_rhs_code (t) == POINTER_PLUS_EXPR)
3905 get_constraint_for_ptr_offset (gimple_assign_rhs1 (t),
3906 gimple_assign_rhs2 (t), &rhsc);
3907 else if ((CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (t))
3908 && !(POINTER_TYPE_P (gimple_expr_type (t))
3909 && !POINTER_TYPE_P (TREE_TYPE (rhsop))))
3910 || gimple_assign_single_p (t))
3911 get_constraint_for (rhsop, &rhsc);
3912 else
3914 temp.type = ADDRESSOF;
3915 temp.var = anything_id;
3916 temp.offset = 0;
3917 VEC_safe_push (ce_s, heap, rhsc, &temp);
3919 process_all_all_constraints (lhsc, rhsc);
3921 /* If there is a store to a global variable the rhs escapes. */
3922 if ((lhsop = get_base_address (lhsop)) != NULL_TREE
3923 && DECL_P (lhsop)
3924 && is_global_var (lhsop))
3925 make_escape_constraint (rhsop);
3926 /* If this is a conversion of a non-restrict pointer to a
3927 restrict pointer track it with a new heapvar. */
3928 else if (gimple_assign_cast_p (t)
3929 && POINTER_TYPE_P (TREE_TYPE (rhsop))
3930 && POINTER_TYPE_P (TREE_TYPE (lhsop))
3931 && !TYPE_RESTRICT (TREE_TYPE (rhsop))
3932 && TYPE_RESTRICT (TREE_TYPE (lhsop)))
3933 make_constraint_from_restrict (get_vi_for_tree (lhsop),
3934 "CAST_RESTRICT");
3936 /* For conversions of pointers to non-pointers the pointer escapes. */
3937 else if (gimple_assign_cast_p (t)
3938 && POINTER_TYPE_P (TREE_TYPE (gimple_assign_rhs1 (t)))
3939 && !POINTER_TYPE_P (TREE_TYPE (gimple_assign_lhs (t))))
3941 make_escape_constraint (gimple_assign_rhs1 (t));
3943 /* Handle escapes through return. */
3944 else if (gimple_code (t) == GIMPLE_RETURN
3945 && gimple_return_retval (t) != NULL_TREE
3946 && could_have_pointers (gimple_return_retval (t)))
3948 make_escape_constraint (gimple_return_retval (t));
3950 /* Handle asms conservatively by adding escape constraints to everything. */
3951 else if (gimple_code (t) == GIMPLE_ASM)
3953 unsigned i, noutputs;
3954 const char **oconstraints;
3955 const char *constraint;
3956 bool allows_mem, allows_reg, is_inout;
3958 noutputs = gimple_asm_noutputs (t);
3959 oconstraints = XALLOCAVEC (const char *, noutputs);
3961 for (i = 0; i < noutputs; ++i)
3963 tree link = gimple_asm_output_op (t, i);
3964 tree op = TREE_VALUE (link);
3966 constraint = TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (link)));
3967 oconstraints[i] = constraint;
3968 parse_output_constraint (&constraint, i, 0, 0, &allows_mem,
3969 &allows_reg, &is_inout);
3971 /* A memory constraint makes the address of the operand escape. */
3972 if (!allows_reg && allows_mem)
3973 make_escape_constraint (build_fold_addr_expr (op));
3975 /* The asm may read global memory, so outputs may point to
3976 any global memory. */
3977 if (op && could_have_pointers (op))
3979 VEC(ce_s, heap) *lhsc = NULL;
3980 struct constraint_expr rhsc, *lhsp;
3981 unsigned j;
3982 get_constraint_for (op, &lhsc);
3983 rhsc.var = nonlocal_id;
3984 rhsc.offset = 0;
3985 rhsc.type = SCALAR;
3986 for (j = 0; VEC_iterate (ce_s, lhsc, j, lhsp); j++)
3987 process_constraint (new_constraint (*lhsp, rhsc));
3988 VEC_free (ce_s, heap, lhsc);
3991 for (i = 0; i < gimple_asm_ninputs (t); ++i)
3993 tree link = gimple_asm_input_op (t, i);
3994 tree op = TREE_VALUE (link);
3996 constraint = TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (link)));
3998 parse_input_constraint (&constraint, 0, 0, noutputs, 0, oconstraints,
3999 &allows_mem, &allows_reg);
4001 /* A memory constraint makes the address of the operand escape. */
4002 if (!allows_reg && allows_mem)
4003 make_escape_constraint (build_fold_addr_expr (op));
4004 /* Strictly we'd only need the constraint to ESCAPED if
4005 the asm clobbers memory, otherwise using CALLUSED
4006 would be enough. */
4007 else if (op && could_have_pointers (op))
4008 make_escape_constraint (op);
4012 VEC_free (ce_s, heap, rhsc);
4013 VEC_free (ce_s, heap, lhsc);
4017 /* Find the first varinfo in the same variable as START that overlaps with
4018 OFFSET. Return NULL if we can't find one. */
4020 static varinfo_t
4021 first_vi_for_offset (varinfo_t start, unsigned HOST_WIDE_INT offset)
4023 /* If the offset is outside of the variable, bail out. */
4024 if (offset >= start->fullsize)
4025 return NULL;
4027 /* If we cannot reach offset from start, lookup the first field
4028 and start from there. */
4029 if (start->offset > offset)
4030 start = lookup_vi_for_tree (start->decl);
4032 while (start)
4034 /* We may not find a variable in the field list with the actual
4035 offset when when we have glommed a structure to a variable.
4036 In that case, however, offset should still be within the size
4037 of the variable. */
4038 if (offset >= start->offset
4039 && (offset - start->offset) < start->size)
4040 return start;
4042 start= start->next;
4045 return NULL;
4048 /* Find the first varinfo in the same variable as START that overlaps with
4049 OFFSET. If there is no such varinfo the varinfo directly preceding
4050 OFFSET is returned. */
4052 static varinfo_t
4053 first_or_preceding_vi_for_offset (varinfo_t start,
4054 unsigned HOST_WIDE_INT offset)
4056 /* If we cannot reach offset from start, lookup the first field
4057 and start from there. */
4058 if (start->offset > offset)
4059 start = lookup_vi_for_tree (start->decl);
4061 /* We may not find a variable in the field list with the actual
4062 offset when when we have glommed a structure to a variable.
4063 In that case, however, offset should still be within the size
4064 of the variable.
4065 If we got beyond the offset we look for return the field
4066 directly preceding offset which may be the last field. */
4067 while (start->next
4068 && offset >= start->offset
4069 && !((offset - start->offset) < start->size))
4070 start = start->next;
4072 return start;
4076 /* Insert the varinfo FIELD into the field list for BASE, at the front
4077 of the list. */
4079 static void
4080 insert_into_field_list (varinfo_t base, varinfo_t field)
4082 varinfo_t prev = base;
4083 varinfo_t curr = base->next;
4085 field->next = curr;
4086 prev->next = field;
4089 /* Insert the varinfo FIELD into the field list for BASE, ordered by
4090 offset. */
4092 static void
4093 insert_into_field_list_sorted (varinfo_t base, varinfo_t field)
4095 varinfo_t prev = base;
4096 varinfo_t curr = base->next;
4098 if (curr == NULL)
4100 prev->next = field;
4101 field->next = NULL;
4103 else
4105 while (curr)
4107 if (field->offset <= curr->offset)
4108 break;
4109 prev = curr;
4110 curr = curr->next;
4112 field->next = prev->next;
4113 prev->next = field;
4117 /* This structure is used during pushing fields onto the fieldstack
4118 to track the offset of the field, since bitpos_of_field gives it
4119 relative to its immediate containing type, and we want it relative
4120 to the ultimate containing object. */
4122 struct fieldoff
4124 /* Offset from the base of the base containing object to this field. */
4125 HOST_WIDE_INT offset;
4127 /* Size, in bits, of the field. */
4128 unsigned HOST_WIDE_INT size;
4130 unsigned has_unknown_size : 1;
4132 unsigned may_have_pointers : 1;
4134 unsigned only_restrict_pointers : 1;
4136 typedef struct fieldoff fieldoff_s;
4138 DEF_VEC_O(fieldoff_s);
4139 DEF_VEC_ALLOC_O(fieldoff_s,heap);
4141 /* qsort comparison function for two fieldoff's PA and PB */
4143 static int
4144 fieldoff_compare (const void *pa, const void *pb)
4146 const fieldoff_s *foa = (const fieldoff_s *)pa;
4147 const fieldoff_s *fob = (const fieldoff_s *)pb;
4148 unsigned HOST_WIDE_INT foasize, fobsize;
4150 if (foa->offset < fob->offset)
4151 return -1;
4152 else if (foa->offset > fob->offset)
4153 return 1;
4155 foasize = foa->size;
4156 fobsize = fob->size;
4157 if (foasize < fobsize)
4158 return -1;
4159 else if (foasize > fobsize)
4160 return 1;
4161 return 0;
4164 /* Sort a fieldstack according to the field offset and sizes. */
4165 static void
4166 sort_fieldstack (VEC(fieldoff_s,heap) *fieldstack)
4168 qsort (VEC_address (fieldoff_s, fieldstack),
4169 VEC_length (fieldoff_s, fieldstack),
4170 sizeof (fieldoff_s),
4171 fieldoff_compare);
4174 /* Return true if V is a tree that we can have subvars for.
4175 Normally, this is any aggregate type. Also complex
4176 types which are not gimple registers can have subvars. */
4178 static inline bool
4179 var_can_have_subvars (const_tree v)
4181 /* Volatile variables should never have subvars. */
4182 if (TREE_THIS_VOLATILE (v))
4183 return false;
4185 /* Non decls or memory tags can never have subvars. */
4186 if (!DECL_P (v))
4187 return false;
4189 /* Aggregates without overlapping fields can have subvars. */
4190 if (TREE_CODE (TREE_TYPE (v)) == RECORD_TYPE)
4191 return true;
4193 return false;
4196 /* Given a TYPE, and a vector of field offsets FIELDSTACK, push all
4197 the fields of TYPE onto fieldstack, recording their offsets along
4198 the way.
4200 OFFSET is used to keep track of the offset in this entire
4201 structure, rather than just the immediately containing structure.
4202 Returns the number of fields pushed. */
4204 static int
4205 push_fields_onto_fieldstack (tree type, VEC(fieldoff_s,heap) **fieldstack,
4206 HOST_WIDE_INT offset)
4208 tree field;
4209 int count = 0;
4211 if (TREE_CODE (type) != RECORD_TYPE)
4212 return 0;
4214 /* If the vector of fields is growing too big, bail out early.
4215 Callers check for VEC_length <= MAX_FIELDS_FOR_FIELD_SENSITIVE, make
4216 sure this fails. */
4217 if (VEC_length (fieldoff_s, *fieldstack) > MAX_FIELDS_FOR_FIELD_SENSITIVE)
4218 return 0;
4220 for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
4221 if (TREE_CODE (field) == FIELD_DECL)
4223 bool push = false;
4224 int pushed = 0;
4225 HOST_WIDE_INT foff = bitpos_of_field (field);
4227 if (!var_can_have_subvars (field)
4228 || TREE_CODE (TREE_TYPE (field)) == QUAL_UNION_TYPE
4229 || TREE_CODE (TREE_TYPE (field)) == UNION_TYPE)
4230 push = true;
4231 else if (!(pushed = push_fields_onto_fieldstack
4232 (TREE_TYPE (field), fieldstack, offset + foff))
4233 && (DECL_SIZE (field)
4234 && !integer_zerop (DECL_SIZE (field))))
4235 /* Empty structures may have actual size, like in C++. So
4236 see if we didn't push any subfields and the size is
4237 nonzero, push the field onto the stack. */
4238 push = true;
4240 if (push)
4242 fieldoff_s *pair = NULL;
4243 bool has_unknown_size = false;
4245 if (!VEC_empty (fieldoff_s, *fieldstack))
4246 pair = VEC_last (fieldoff_s, *fieldstack);
4248 if (!DECL_SIZE (field)
4249 || !host_integerp (DECL_SIZE (field), 1))
4250 has_unknown_size = true;
4252 /* If adjacent fields do not contain pointers merge them. */
4253 if (pair
4254 && !pair->may_have_pointers
4255 && !could_have_pointers (field)
4256 && !pair->has_unknown_size
4257 && !has_unknown_size
4258 && pair->offset + (HOST_WIDE_INT)pair->size == offset + foff)
4260 pair = VEC_last (fieldoff_s, *fieldstack);
4261 pair->size += TREE_INT_CST_LOW (DECL_SIZE (field));
4263 else
4265 pair = VEC_safe_push (fieldoff_s, heap, *fieldstack, NULL);
4266 pair->offset = offset + foff;
4267 pair->has_unknown_size = has_unknown_size;
4268 if (!has_unknown_size)
4269 pair->size = TREE_INT_CST_LOW (DECL_SIZE (field));
4270 else
4271 pair->size = -1;
4272 pair->may_have_pointers = could_have_pointers (field);
4273 pair->only_restrict_pointers
4274 = (!has_unknown_size
4275 && POINTER_TYPE_P (TREE_TYPE (field))
4276 && TYPE_RESTRICT (TREE_TYPE (field)));
4277 count++;
4280 else
4281 count += pushed;
4284 return count;
4287 /* Count the number of arguments DECL has, and set IS_VARARGS to true
4288 if it is a varargs function. */
4290 static unsigned int
4291 count_num_arguments (tree decl, bool *is_varargs)
4293 unsigned int num = 0;
4294 tree t;
4296 /* Capture named arguments for K&R functions. They do not
4297 have a prototype and thus no TYPE_ARG_TYPES. */
4298 for (t = DECL_ARGUMENTS (decl); t; t = TREE_CHAIN (t))
4299 ++num;
4301 /* Check if the function has variadic arguments. */
4302 for (t = TYPE_ARG_TYPES (TREE_TYPE (decl)); t; t = TREE_CHAIN (t))
4303 if (TREE_VALUE (t) == void_type_node)
4304 break;
4305 if (!t)
4306 *is_varargs = true;
4308 return num;
4311 /* Creation function node for DECL, using NAME, and return the index
4312 of the variable we've created for the function. */
4314 static unsigned int
4315 create_function_info_for (tree decl, const char *name)
4317 varinfo_t vi;
4318 tree arg;
4319 unsigned int i;
4320 bool is_varargs = false;
4322 /* Create the variable info. */
4324 vi = new_var_info (decl, name);
4325 vi->offset = 0;
4326 vi->size = 1;
4327 vi->fullsize = count_num_arguments (decl, &is_varargs) + 1;
4328 insert_vi_for_tree (vi->decl, vi);
4330 stats.total_vars++;
4332 /* If it's varargs, we don't know how many arguments it has, so we
4333 can't do much. */
4334 if (is_varargs)
4336 vi->fullsize = ~0;
4337 vi->size = ~0;
4338 vi->is_unknown_size_var = true;
4339 return vi->id;
4342 arg = DECL_ARGUMENTS (decl);
4344 /* Set up variables for each argument. */
4345 for (i = 1; i < vi->fullsize; i++)
4347 varinfo_t argvi;
4348 const char *newname;
4349 char *tempname;
4350 tree argdecl = decl;
4352 if (arg)
4353 argdecl = arg;
4355 asprintf (&tempname, "%s.arg%d", name, i-1);
4356 newname = ggc_strdup (tempname);
4357 free (tempname);
4359 argvi = new_var_info (argdecl, newname);
4360 argvi->offset = i;
4361 argvi->size = 1;
4362 argvi->is_full_var = true;
4363 argvi->fullsize = vi->fullsize;
4364 insert_into_field_list_sorted (vi, argvi);
4365 stats.total_vars ++;
4366 if (arg)
4368 insert_vi_for_tree (arg, argvi);
4369 arg = TREE_CHAIN (arg);
4373 /* Create a variable for the return var. */
4374 if (DECL_RESULT (decl) != NULL
4375 || !VOID_TYPE_P (TREE_TYPE (TREE_TYPE (decl))))
4377 varinfo_t resultvi;
4378 const char *newname;
4379 char *tempname;
4380 tree resultdecl = decl;
4382 vi->fullsize ++;
4384 if (DECL_RESULT (decl))
4385 resultdecl = DECL_RESULT (decl);
4387 asprintf (&tempname, "%s.result", name);
4388 newname = ggc_strdup (tempname);
4389 free (tempname);
4391 resultvi = new_var_info (resultdecl, newname);
4392 resultvi->offset = i;
4393 resultvi->size = 1;
4394 resultvi->fullsize = vi->fullsize;
4395 resultvi->is_full_var = true;
4396 insert_into_field_list_sorted (vi, resultvi);
4397 stats.total_vars ++;
4398 if (DECL_RESULT (decl))
4399 insert_vi_for_tree (DECL_RESULT (decl), resultvi);
4402 return vi->id;
4406 /* Return true if FIELDSTACK contains fields that overlap.
4407 FIELDSTACK is assumed to be sorted by offset. */
4409 static bool
4410 check_for_overlaps (VEC (fieldoff_s,heap) *fieldstack)
4412 fieldoff_s *fo = NULL;
4413 unsigned int i;
4414 HOST_WIDE_INT lastoffset = -1;
4416 for (i = 0; VEC_iterate (fieldoff_s, fieldstack, i, fo); i++)
4418 if (fo->offset == lastoffset)
4419 return true;
4420 lastoffset = fo->offset;
4422 return false;
4425 /* Create a varinfo structure for NAME and DECL, and add it to VARMAP.
4426 This will also create any varinfo structures necessary for fields
4427 of DECL. */
4429 static unsigned int
4430 create_variable_info_for (tree decl, const char *name)
4432 varinfo_t vi;
4433 tree decl_type = TREE_TYPE (decl);
4434 tree declsize = DECL_P (decl) ? DECL_SIZE (decl) : TYPE_SIZE (decl_type);
4435 VEC (fieldoff_s,heap) *fieldstack = NULL;
4437 if (var_can_have_subvars (decl) && use_field_sensitive)
4438 push_fields_onto_fieldstack (decl_type, &fieldstack, 0);
4440 /* If the variable doesn't have subvars, we may end up needing to
4441 sort the field list and create fake variables for all the
4442 fields. */
4443 vi = new_var_info (decl, name);
4444 vi->offset = 0;
4445 vi->may_have_pointers = could_have_pointers (decl);
4446 if (!declsize
4447 || !host_integerp (declsize, 1))
4449 vi->is_unknown_size_var = true;
4450 vi->fullsize = ~0;
4451 vi->size = ~0;
4453 else
4455 vi->fullsize = TREE_INT_CST_LOW (declsize);
4456 vi->size = vi->fullsize;
4459 insert_vi_for_tree (vi->decl, vi);
4460 if (vi->is_global_var
4461 && (!flag_whole_program || !in_ipa_mode)
4462 && vi->may_have_pointers)
4464 if (POINTER_TYPE_P (TREE_TYPE (decl))
4465 && TYPE_RESTRICT (TREE_TYPE (decl)))
4466 make_constraint_from_restrict (vi, "GLOBAL_RESTRICT");
4467 make_copy_constraint (vi, nonlocal_id);
4470 stats.total_vars++;
4471 if (use_field_sensitive
4472 && !vi->is_unknown_size_var
4473 && var_can_have_subvars (decl)
4474 && VEC_length (fieldoff_s, fieldstack) > 1
4475 && VEC_length (fieldoff_s, fieldstack) <= MAX_FIELDS_FOR_FIELD_SENSITIVE)
4477 fieldoff_s *fo = NULL;
4478 bool notokay = false;
4479 unsigned int i;
4481 for (i = 0; !notokay && VEC_iterate (fieldoff_s, fieldstack, i, fo); i++)
4483 if (fo->has_unknown_size
4484 || fo->offset < 0)
4486 notokay = true;
4487 break;
4491 /* We can't sort them if we have a field with a variable sized type,
4492 which will make notokay = true. In that case, we are going to return
4493 without creating varinfos for the fields anyway, so sorting them is a
4494 waste to boot. */
4495 if (!notokay)
4497 sort_fieldstack (fieldstack);
4498 /* Due to some C++ FE issues, like PR 22488, we might end up
4499 what appear to be overlapping fields even though they,
4500 in reality, do not overlap. Until the C++ FE is fixed,
4501 we will simply disable field-sensitivity for these cases. */
4502 notokay = check_for_overlaps (fieldstack);
4506 if (VEC_length (fieldoff_s, fieldstack) != 0)
4507 fo = VEC_index (fieldoff_s, fieldstack, 0);
4509 if (fo == NULL || notokay)
4511 vi->is_unknown_size_var = 1;
4512 vi->fullsize = ~0;
4513 vi->size = ~0;
4514 vi->is_full_var = true;
4515 VEC_free (fieldoff_s, heap, fieldstack);
4516 return vi->id;
4519 vi->size = fo->size;
4520 vi->offset = fo->offset;
4521 vi->may_have_pointers = fo->may_have_pointers;
4522 if (vi->is_global_var
4523 && (!flag_whole_program || !in_ipa_mode)
4524 && vi->may_have_pointers)
4526 if (fo->only_restrict_pointers)
4527 make_constraint_from_restrict (vi, "GLOBAL_RESTRICT");
4529 for (i = VEC_length (fieldoff_s, fieldstack) - 1;
4530 i >= 1 && VEC_iterate (fieldoff_s, fieldstack, i, fo);
4531 i--)
4533 varinfo_t newvi;
4534 const char *newname = "NULL";
4535 char *tempname;
4537 if (dump_file)
4539 asprintf (&tempname, "%s." HOST_WIDE_INT_PRINT_DEC
4540 "+" HOST_WIDE_INT_PRINT_DEC,
4541 vi->name, fo->offset, fo->size);
4542 newname = ggc_strdup (tempname);
4543 free (tempname);
4545 newvi = new_var_info (decl, newname);
4546 newvi->offset = fo->offset;
4547 newvi->size = fo->size;
4548 newvi->fullsize = vi->fullsize;
4549 newvi->may_have_pointers = fo->may_have_pointers;
4550 insert_into_field_list (vi, newvi);
4551 if ((newvi->is_global_var || TREE_CODE (decl) == PARM_DECL)
4552 && newvi->may_have_pointers)
4554 if (fo->only_restrict_pointers)
4555 make_constraint_from_restrict (newvi, "GLOBAL_RESTRICT");
4556 if (newvi->is_global_var && !in_ipa_mode)
4557 make_copy_constraint (newvi, nonlocal_id);
4560 stats.total_vars++;
4563 else
4564 vi->is_full_var = true;
4566 VEC_free (fieldoff_s, heap, fieldstack);
4568 return vi->id;
4571 /* Print out the points-to solution for VAR to FILE. */
4573 static void
4574 dump_solution_for_var (FILE *file, unsigned int var)
4576 varinfo_t vi = get_varinfo (var);
4577 unsigned int i;
4578 bitmap_iterator bi;
4580 if (find (var) != var)
4582 varinfo_t vipt = get_varinfo (find (var));
4583 fprintf (file, "%s = same as %s\n", vi->name, vipt->name);
4585 else
4587 fprintf (file, "%s = { ", vi->name);
4588 EXECUTE_IF_SET_IN_BITMAP (vi->solution, 0, i, bi)
4590 fprintf (file, "%s ", get_varinfo (i)->name);
4592 fprintf (file, "}\n");
4596 /* Print the points-to solution for VAR to stdout. */
4598 void
4599 debug_solution_for_var (unsigned int var)
4601 dump_solution_for_var (stdout, var);
4604 /* Create varinfo structures for all of the variables in the
4605 function for intraprocedural mode. */
4607 static void
4608 intra_create_variable_infos (void)
4610 tree t;
4612 /* For each incoming pointer argument arg, create the constraint ARG
4613 = NONLOCAL or a dummy variable if flag_argument_noalias is set. */
4614 for (t = DECL_ARGUMENTS (current_function_decl); t; t = TREE_CHAIN (t))
4616 varinfo_t p;
4618 if (!could_have_pointers (t))
4619 continue;
4621 /* For restrict qualified pointers to objects passed by
4622 reference build a real representative for the pointed-to object. */
4623 if (DECL_BY_REFERENCE (t)
4624 && POINTER_TYPE_P (TREE_TYPE (t))
4625 && TYPE_RESTRICT (TREE_TYPE (t)))
4627 struct constraint_expr lhsc, rhsc;
4628 varinfo_t vi;
4629 tree heapvar = heapvar_lookup (t, 0);
4630 if (heapvar == NULL_TREE)
4632 var_ann_t ann;
4633 heapvar = create_tmp_var_raw (TREE_TYPE (TREE_TYPE (t)),
4634 "PARM_NOALIAS");
4635 DECL_EXTERNAL (heapvar) = 1;
4636 heapvar_insert (t, 0, heapvar);
4637 ann = get_var_ann (heapvar);
4638 ann->is_heapvar = 1;
4640 if (gimple_referenced_vars (cfun))
4641 add_referenced_var (heapvar);
4642 lhsc.var = get_vi_for_tree (t)->id;
4643 lhsc.type = SCALAR;
4644 lhsc.offset = 0;
4645 rhsc.var = (vi = get_vi_for_tree (heapvar))->id;
4646 rhsc.type = ADDRESSOF;
4647 rhsc.offset = 0;
4648 process_constraint (new_constraint (lhsc, rhsc));
4649 vi->is_restrict_var = 1;
4650 continue;
4653 for (p = get_vi_for_tree (t); p; p = p->next)
4654 if (p->may_have_pointers)
4655 make_constraint_from (p, nonlocal_id);
4656 if (POINTER_TYPE_P (TREE_TYPE (t))
4657 && TYPE_RESTRICT (TREE_TYPE (t)))
4658 make_constraint_from_restrict (get_vi_for_tree (t), "PARM_RESTRICT");
4661 /* Add a constraint for a result decl that is passed by reference. */
4662 if (DECL_RESULT (cfun->decl)
4663 && DECL_BY_REFERENCE (DECL_RESULT (cfun->decl)))
4665 varinfo_t p, result_vi = get_vi_for_tree (DECL_RESULT (cfun->decl));
4667 for (p = result_vi; p; p = p->next)
4668 make_constraint_from (p, nonlocal_id);
4671 /* Add a constraint for the incoming static chain parameter. */
4672 if (cfun->static_chain_decl != NULL_TREE)
4674 varinfo_t p, chain_vi = get_vi_for_tree (cfun->static_chain_decl);
4676 for (p = chain_vi; p; p = p->next)
4677 make_constraint_from (p, nonlocal_id);
4681 /* Structure used to put solution bitmaps in a hashtable so they can
4682 be shared among variables with the same points-to set. */
4684 typedef struct shared_bitmap_info
4686 bitmap pt_vars;
4687 hashval_t hashcode;
4688 } *shared_bitmap_info_t;
4689 typedef const struct shared_bitmap_info *const_shared_bitmap_info_t;
4691 static htab_t shared_bitmap_table;
4693 /* Hash function for a shared_bitmap_info_t */
4695 static hashval_t
4696 shared_bitmap_hash (const void *p)
4698 const_shared_bitmap_info_t const bi = (const_shared_bitmap_info_t) p;
4699 return bi->hashcode;
4702 /* Equality function for two shared_bitmap_info_t's. */
4704 static int
4705 shared_bitmap_eq (const void *p1, const void *p2)
4707 const_shared_bitmap_info_t const sbi1 = (const_shared_bitmap_info_t) p1;
4708 const_shared_bitmap_info_t const sbi2 = (const_shared_bitmap_info_t) p2;
4709 return bitmap_equal_p (sbi1->pt_vars, sbi2->pt_vars);
4712 /* Lookup a bitmap in the shared bitmap hashtable, and return an already
4713 existing instance if there is one, NULL otherwise. */
4715 static bitmap
4716 shared_bitmap_lookup (bitmap pt_vars)
4718 void **slot;
4719 struct shared_bitmap_info sbi;
4721 sbi.pt_vars = pt_vars;
4722 sbi.hashcode = bitmap_hash (pt_vars);
4724 slot = htab_find_slot_with_hash (shared_bitmap_table, &sbi,
4725 sbi.hashcode, NO_INSERT);
4726 if (!slot)
4727 return NULL;
4728 else
4729 return ((shared_bitmap_info_t) *slot)->pt_vars;
4733 /* Add a bitmap to the shared bitmap hashtable. */
4735 static void
4736 shared_bitmap_add (bitmap pt_vars)
4738 void **slot;
4739 shared_bitmap_info_t sbi = XNEW (struct shared_bitmap_info);
4741 sbi->pt_vars = pt_vars;
4742 sbi->hashcode = bitmap_hash (pt_vars);
4744 slot = htab_find_slot_with_hash (shared_bitmap_table, sbi,
4745 sbi->hashcode, INSERT);
4746 gcc_assert (!*slot);
4747 *slot = (void *) sbi;
4751 /* Set bits in INTO corresponding to the variable uids in solution set FROM. */
4753 static void
4754 set_uids_in_ptset (bitmap into, bitmap from, struct pt_solution *pt)
4756 unsigned int i;
4757 bitmap_iterator bi;
4759 EXECUTE_IF_SET_IN_BITMAP (from, 0, i, bi)
4761 varinfo_t vi = get_varinfo (i);
4763 /* The only artificial variables that are allowed in a may-alias
4764 set are heap variables. */
4765 if (vi->is_artificial_var && !vi->is_heap_var)
4766 continue;
4768 if (TREE_CODE (vi->decl) == VAR_DECL
4769 || TREE_CODE (vi->decl) == PARM_DECL
4770 || TREE_CODE (vi->decl) == RESULT_DECL)
4772 /* Add the decl to the points-to set. Note that the points-to
4773 set contains global variables. */
4774 bitmap_set_bit (into, DECL_UID (vi->decl));
4775 if (vi->is_global_var)
4776 pt->vars_contains_global = true;
4782 /* Compute the points-to solution *PT for the variable VI. */
4784 static void
4785 find_what_var_points_to (varinfo_t orig_vi, struct pt_solution *pt)
4787 unsigned int i;
4788 bitmap_iterator bi;
4789 bitmap finished_solution;
4790 bitmap result;
4791 varinfo_t vi;
4793 memset (pt, 0, sizeof (struct pt_solution));
4795 /* This variable may have been collapsed, let's get the real
4796 variable. */
4797 vi = get_varinfo (find (orig_vi->id));
4799 /* Translate artificial variables into SSA_NAME_PTR_INFO
4800 attributes. */
4801 EXECUTE_IF_SET_IN_BITMAP (vi->solution, 0, i, bi)
4803 varinfo_t vi = get_varinfo (i);
4805 if (vi->is_artificial_var)
4807 if (vi->id == nothing_id)
4808 pt->null = 1;
4809 else if (vi->id == escaped_id)
4810 pt->escaped = 1;
4811 else if (vi->id == callused_id)
4812 gcc_unreachable ();
4813 else if (vi->id == nonlocal_id)
4814 pt->nonlocal = 1;
4815 else if (vi->is_heap_var)
4816 /* We represent heapvars in the points-to set properly. */
4818 else if (vi->id == readonly_id)
4819 /* Nobody cares. */
4821 else if (vi->id == anything_id
4822 || vi->id == integer_id)
4823 pt->anything = 1;
4825 if (vi->is_restrict_var)
4826 pt->vars_contains_restrict = true;
4829 /* Instead of doing extra work, simply do not create
4830 elaborate points-to information for pt_anything pointers. */
4831 if (pt->anything
4832 && (orig_vi->is_artificial_var
4833 || !pt->vars_contains_restrict))
4834 return;
4836 /* Share the final set of variables when possible. */
4837 finished_solution = BITMAP_GGC_ALLOC ();
4838 stats.points_to_sets_created++;
4840 set_uids_in_ptset (finished_solution, vi->solution, pt);
4841 result = shared_bitmap_lookup (finished_solution);
4842 if (!result)
4844 shared_bitmap_add (finished_solution);
4845 pt->vars = finished_solution;
4847 else
4849 pt->vars = result;
4850 bitmap_clear (finished_solution);
4854 /* Given a pointer variable P, fill in its points-to set. */
4856 static void
4857 find_what_p_points_to (tree p)
4859 struct ptr_info_def *pi;
4860 tree lookup_p = p;
4861 varinfo_t vi;
4863 /* For parameters, get at the points-to set for the actual parm
4864 decl. */
4865 if (TREE_CODE (p) == SSA_NAME
4866 && TREE_CODE (SSA_NAME_VAR (p)) == PARM_DECL
4867 && SSA_NAME_IS_DEFAULT_DEF (p))
4868 lookup_p = SSA_NAME_VAR (p);
4870 vi = lookup_vi_for_tree (lookup_p);
4871 if (!vi)
4872 return;
4874 pi = get_ptr_info (p);
4875 find_what_var_points_to (vi, &pi->pt);
4879 /* Query statistics for points-to solutions. */
4881 static struct {
4882 unsigned HOST_WIDE_INT pt_solution_includes_may_alias;
4883 unsigned HOST_WIDE_INT pt_solution_includes_no_alias;
4884 unsigned HOST_WIDE_INT pt_solutions_intersect_may_alias;
4885 unsigned HOST_WIDE_INT pt_solutions_intersect_no_alias;
4886 } pta_stats;
4888 void
4889 dump_pta_stats (FILE *s)
4891 fprintf (s, "\nPTA query stats:\n");
4892 fprintf (s, " pt_solution_includes: "
4893 HOST_WIDE_INT_PRINT_DEC" disambiguations, "
4894 HOST_WIDE_INT_PRINT_DEC" queries\n",
4895 pta_stats.pt_solution_includes_no_alias,
4896 pta_stats.pt_solution_includes_no_alias
4897 + pta_stats.pt_solution_includes_may_alias);
4898 fprintf (s, " pt_solutions_intersect: "
4899 HOST_WIDE_INT_PRINT_DEC" disambiguations, "
4900 HOST_WIDE_INT_PRINT_DEC" queries\n",
4901 pta_stats.pt_solutions_intersect_no_alias,
4902 pta_stats.pt_solutions_intersect_no_alias
4903 + pta_stats.pt_solutions_intersect_may_alias);
4907 /* Reset the points-to solution *PT to a conservative default
4908 (point to anything). */
4910 void
4911 pt_solution_reset (struct pt_solution *pt)
4913 memset (pt, 0, sizeof (struct pt_solution));
4914 pt->anything = true;
4917 /* Set the points-to solution *PT to point only to the variables
4918 in VARS. */
4920 void
4921 pt_solution_set (struct pt_solution *pt, bitmap vars)
4923 bitmap_iterator bi;
4924 unsigned i;
4926 memset (pt, 0, sizeof (struct pt_solution));
4927 pt->vars = vars;
4928 EXECUTE_IF_SET_IN_BITMAP (vars, 0, i, bi)
4930 tree var = referenced_var_lookup (i);
4931 if (is_global_var (var))
4933 pt->vars_contains_global = true;
4934 break;
4939 /* Return true if the points-to solution *PT is empty. */
4941 static bool
4942 pt_solution_empty_p (struct pt_solution *pt)
4944 if (pt->anything
4945 || pt->nonlocal)
4946 return false;
4948 if (pt->vars
4949 && !bitmap_empty_p (pt->vars))
4950 return false;
4952 /* If the solution includes ESCAPED, check if that is empty. */
4953 if (pt->escaped
4954 && !pt_solution_empty_p (&cfun->gimple_df->escaped))
4955 return false;
4957 return true;
4960 /* Return true if the points-to solution *PT includes global memory. */
4962 bool
4963 pt_solution_includes_global (struct pt_solution *pt)
4965 if (pt->anything
4966 || pt->nonlocal
4967 || pt->vars_contains_global)
4968 return true;
4970 if (pt->escaped)
4971 return pt_solution_includes_global (&cfun->gimple_df->escaped);
4973 return false;
4976 /* Return true if the points-to solution *PT includes the variable
4977 declaration DECL. */
4979 static bool
4980 pt_solution_includes_1 (struct pt_solution *pt, const_tree decl)
4982 if (pt->anything)
4983 return true;
4985 if (pt->nonlocal
4986 && is_global_var (decl))
4987 return true;
4989 if (pt->vars
4990 && bitmap_bit_p (pt->vars, DECL_UID (decl)))
4991 return true;
4993 /* If the solution includes ESCAPED, check it. */
4994 if (pt->escaped
4995 && pt_solution_includes_1 (&cfun->gimple_df->escaped, decl))
4996 return true;
4998 return false;
5001 bool
5002 pt_solution_includes (struct pt_solution *pt, const_tree decl)
5004 bool res = pt_solution_includes_1 (pt, decl);
5005 if (res)
5006 ++pta_stats.pt_solution_includes_may_alias;
5007 else
5008 ++pta_stats.pt_solution_includes_no_alias;
5009 return res;
5012 /* Return true if both points-to solutions PT1 and PT2 have a non-empty
5013 intersection. */
5015 static bool
5016 pt_solutions_intersect_1 (struct pt_solution *pt1, struct pt_solution *pt2)
5018 if (pt1->anything || pt2->anything)
5019 return true;
5021 /* If either points to unknown global memory and the other points to
5022 any global memory they alias. */
5023 if ((pt1->nonlocal
5024 && (pt2->nonlocal
5025 || pt2->vars_contains_global))
5026 || (pt2->nonlocal
5027 && pt1->vars_contains_global))
5028 return true;
5030 /* Check the escaped solution if required. */
5031 if ((pt1->escaped || pt2->escaped)
5032 && !pt_solution_empty_p (&cfun->gimple_df->escaped))
5034 /* If both point to escaped memory and that solution
5035 is not empty they alias. */
5036 if (pt1->escaped && pt2->escaped)
5037 return true;
5039 /* If either points to escaped memory see if the escaped solution
5040 intersects with the other. */
5041 if ((pt1->escaped
5042 && pt_solutions_intersect_1 (&cfun->gimple_df->escaped, pt2))
5043 || (pt2->escaped
5044 && pt_solutions_intersect_1 (&cfun->gimple_df->escaped, pt1)))
5045 return true;
5048 /* Now both pointers alias if their points-to solution intersects. */
5049 return (pt1->vars
5050 && pt2->vars
5051 && bitmap_intersect_p (pt1->vars, pt2->vars));
5054 bool
5055 pt_solutions_intersect (struct pt_solution *pt1, struct pt_solution *pt2)
5057 bool res = pt_solutions_intersect_1 (pt1, pt2);
5058 if (res)
5059 ++pta_stats.pt_solutions_intersect_may_alias;
5060 else
5061 ++pta_stats.pt_solutions_intersect_no_alias;
5062 return res;
5065 /* Return true if both points-to solutions PT1 and PT2 for two restrict
5066 qualified pointers are possibly based on the same pointer. */
5068 bool
5069 pt_solutions_same_restrict_base (struct pt_solution *pt1,
5070 struct pt_solution *pt2)
5072 /* If we deal with points-to solutions of two restrict qualified
5073 pointers solely rely on the pointed-to variable bitmap intersection.
5074 For two pointers that are based on each other the bitmaps will
5075 intersect. */
5076 if (pt1->vars_contains_restrict
5077 && pt2->vars_contains_restrict)
5079 gcc_assert (pt1->vars && pt2->vars);
5080 return bitmap_intersect_p (pt1->vars, pt2->vars);
5083 return true;
5087 /* Dump points-to information to OUTFILE. */
5089 static void
5090 dump_sa_points_to_info (FILE *outfile)
5092 unsigned int i;
5094 fprintf (outfile, "\nPoints-to sets\n\n");
5096 if (dump_flags & TDF_STATS)
5098 fprintf (outfile, "Stats:\n");
5099 fprintf (outfile, "Total vars: %d\n", stats.total_vars);
5100 fprintf (outfile, "Non-pointer vars: %d\n",
5101 stats.nonpointer_vars);
5102 fprintf (outfile, "Statically unified vars: %d\n",
5103 stats.unified_vars_static);
5104 fprintf (outfile, "Dynamically unified vars: %d\n",
5105 stats.unified_vars_dynamic);
5106 fprintf (outfile, "Iterations: %d\n", stats.iterations);
5107 fprintf (outfile, "Number of edges: %d\n", stats.num_edges);
5108 fprintf (outfile, "Number of implicit edges: %d\n",
5109 stats.num_implicit_edges);
5112 for (i = 0; i < VEC_length (varinfo_t, varmap); i++)
5113 dump_solution_for_var (outfile, i);
5117 /* Debug points-to information to stderr. */
5119 void
5120 debug_sa_points_to_info (void)
5122 dump_sa_points_to_info (stderr);
5126 /* Initialize the always-existing constraint variables for NULL
5127 ANYTHING, READONLY, and INTEGER */
5129 static void
5130 init_base_vars (void)
5132 struct constraint_expr lhs, rhs;
5133 varinfo_t var_anything;
5134 varinfo_t var_nothing;
5135 varinfo_t var_readonly;
5136 varinfo_t var_escaped;
5137 varinfo_t var_nonlocal;
5138 varinfo_t var_callused;
5139 varinfo_t var_storedanything;
5140 varinfo_t var_integer;
5142 /* Create the NULL variable, used to represent that a variable points
5143 to NULL. */
5144 var_nothing = new_var_info (NULL_TREE, "NULL");
5145 gcc_assert (var_nothing->id == nothing_id);
5146 var_nothing->is_artificial_var = 1;
5147 var_nothing->offset = 0;
5148 var_nothing->size = ~0;
5149 var_nothing->fullsize = ~0;
5150 var_nothing->is_special_var = 1;
5152 /* Create the ANYTHING variable, used to represent that a variable
5153 points to some unknown piece of memory. */
5154 var_anything = new_var_info (NULL_TREE, "ANYTHING");
5155 gcc_assert (var_anything->id == anything_id);
5156 var_anything->is_artificial_var = 1;
5157 var_anything->size = ~0;
5158 var_anything->offset = 0;
5159 var_anything->next = NULL;
5160 var_anything->fullsize = ~0;
5161 var_anything->is_special_var = 1;
5163 /* Anything points to anything. This makes deref constraints just
5164 work in the presence of linked list and other p = *p type loops,
5165 by saying that *ANYTHING = ANYTHING. */
5166 lhs.type = SCALAR;
5167 lhs.var = anything_id;
5168 lhs.offset = 0;
5169 rhs.type = ADDRESSOF;
5170 rhs.var = anything_id;
5171 rhs.offset = 0;
5173 /* This specifically does not use process_constraint because
5174 process_constraint ignores all anything = anything constraints, since all
5175 but this one are redundant. */
5176 VEC_safe_push (constraint_t, heap, constraints, new_constraint (lhs, rhs));
5178 /* Create the READONLY variable, used to represent that a variable
5179 points to readonly memory. */
5180 var_readonly = new_var_info (NULL_TREE, "READONLY");
5181 gcc_assert (var_readonly->id == readonly_id);
5182 var_readonly->is_artificial_var = 1;
5183 var_readonly->offset = 0;
5184 var_readonly->size = ~0;
5185 var_readonly->fullsize = ~0;
5186 var_readonly->next = NULL;
5187 var_readonly->is_special_var = 1;
5189 /* readonly memory points to anything, in order to make deref
5190 easier. In reality, it points to anything the particular
5191 readonly variable can point to, but we don't track this
5192 separately. */
5193 lhs.type = SCALAR;
5194 lhs.var = readonly_id;
5195 lhs.offset = 0;
5196 rhs.type = ADDRESSOF;
5197 rhs.var = readonly_id; /* FIXME */
5198 rhs.offset = 0;
5199 process_constraint (new_constraint (lhs, rhs));
5201 /* Create the ESCAPED variable, used to represent the set of escaped
5202 memory. */
5203 var_escaped = new_var_info (NULL_TREE, "ESCAPED");
5204 gcc_assert (var_escaped->id == escaped_id);
5205 var_escaped->is_artificial_var = 1;
5206 var_escaped->offset = 0;
5207 var_escaped->size = ~0;
5208 var_escaped->fullsize = ~0;
5209 var_escaped->is_special_var = 0;
5211 /* Create the NONLOCAL variable, used to represent the set of nonlocal
5212 memory. */
5213 var_nonlocal = new_var_info (NULL_TREE, "NONLOCAL");
5214 gcc_assert (var_nonlocal->id == nonlocal_id);
5215 var_nonlocal->is_artificial_var = 1;
5216 var_nonlocal->offset = 0;
5217 var_nonlocal->size = ~0;
5218 var_nonlocal->fullsize = ~0;
5219 var_nonlocal->is_special_var = 1;
5221 /* ESCAPED = *ESCAPED, because escaped is may-deref'd at calls, etc. */
5222 lhs.type = SCALAR;
5223 lhs.var = escaped_id;
5224 lhs.offset = 0;
5225 rhs.type = DEREF;
5226 rhs.var = escaped_id;
5227 rhs.offset = 0;
5228 process_constraint (new_constraint (lhs, rhs));
5230 /* ESCAPED = ESCAPED + UNKNOWN_OFFSET, because if a sub-field escapes the
5231 whole variable escapes. */
5232 lhs.type = SCALAR;
5233 lhs.var = escaped_id;
5234 lhs.offset = 0;
5235 rhs.type = SCALAR;
5236 rhs.var = escaped_id;
5237 rhs.offset = UNKNOWN_OFFSET;
5238 process_constraint (new_constraint (lhs, rhs));
5240 /* *ESCAPED = NONLOCAL. This is true because we have to assume
5241 everything pointed to by escaped points to what global memory can
5242 point to. */
5243 lhs.type = DEREF;
5244 lhs.var = escaped_id;
5245 lhs.offset = 0;
5246 rhs.type = SCALAR;
5247 rhs.var = nonlocal_id;
5248 rhs.offset = 0;
5249 process_constraint (new_constraint (lhs, rhs));
5251 /* NONLOCAL = &NONLOCAL, NONLOCAL = &ESCAPED. This is true because
5252 global memory may point to global memory and escaped memory. */
5253 lhs.type = SCALAR;
5254 lhs.var = nonlocal_id;
5255 lhs.offset = 0;
5256 rhs.type = ADDRESSOF;
5257 rhs.var = nonlocal_id;
5258 rhs.offset = 0;
5259 process_constraint (new_constraint (lhs, rhs));
5260 rhs.type = ADDRESSOF;
5261 rhs.var = escaped_id;
5262 rhs.offset = 0;
5263 process_constraint (new_constraint (lhs, rhs));
5265 /* Create the CALLUSED variable, used to represent the set of call-used
5266 memory. */
5267 var_callused = new_var_info (NULL_TREE, "CALLUSED");
5268 gcc_assert (var_callused->id == callused_id);
5269 var_callused->is_artificial_var = 1;
5270 var_callused->offset = 0;
5271 var_callused->size = ~0;
5272 var_callused->fullsize = ~0;
5273 var_callused->is_special_var = 0;
5275 /* CALLUSED = *CALLUSED, because call-used is may-deref'd at calls, etc. */
5276 lhs.type = SCALAR;
5277 lhs.var = callused_id;
5278 lhs.offset = 0;
5279 rhs.type = DEREF;
5280 rhs.var = callused_id;
5281 rhs.offset = 0;
5282 process_constraint (new_constraint (lhs, rhs));
5284 /* CALLUSED = CALLUSED + UNKNOWN, because if a sub-field is call-used the
5285 whole variable is call-used. */
5286 lhs.type = SCALAR;
5287 lhs.var = callused_id;
5288 lhs.offset = 0;
5289 rhs.type = SCALAR;
5290 rhs.var = callused_id;
5291 rhs.offset = UNKNOWN_OFFSET;
5292 process_constraint (new_constraint (lhs, rhs));
5294 /* Create the STOREDANYTHING variable, used to represent the set of
5295 variables stored to *ANYTHING. */
5296 var_storedanything = new_var_info (NULL_TREE, "STOREDANYTHING");
5297 gcc_assert (var_storedanything->id == storedanything_id);
5298 var_storedanything->is_artificial_var = 1;
5299 var_storedanything->offset = 0;
5300 var_storedanything->size = ~0;
5301 var_storedanything->fullsize = ~0;
5302 var_storedanything->is_special_var = 0;
5304 /* Create the INTEGER variable, used to represent that a variable points
5305 to what an INTEGER "points to". */
5306 var_integer = new_var_info (NULL_TREE, "INTEGER");
5307 gcc_assert (var_integer->id == integer_id);
5308 var_integer->is_artificial_var = 1;
5309 var_integer->size = ~0;
5310 var_integer->fullsize = ~0;
5311 var_integer->offset = 0;
5312 var_integer->next = NULL;
5313 var_integer->is_special_var = 1;
5315 /* INTEGER = ANYTHING, because we don't know where a dereference of
5316 a random integer will point to. */
5317 lhs.type = SCALAR;
5318 lhs.var = integer_id;
5319 lhs.offset = 0;
5320 rhs.type = ADDRESSOF;
5321 rhs.var = anything_id;
5322 rhs.offset = 0;
5323 process_constraint (new_constraint (lhs, rhs));
5326 /* Initialize things necessary to perform PTA */
5328 static void
5329 init_alias_vars (void)
5331 use_field_sensitive = (MAX_FIELDS_FOR_FIELD_SENSITIVE > 1);
5333 bitmap_obstack_initialize (&pta_obstack);
5334 bitmap_obstack_initialize (&oldpta_obstack);
5335 bitmap_obstack_initialize (&predbitmap_obstack);
5337 constraint_pool = create_alloc_pool ("Constraint pool",
5338 sizeof (struct constraint), 30);
5339 variable_info_pool = create_alloc_pool ("Variable info pool",
5340 sizeof (struct variable_info), 30);
5341 constraints = VEC_alloc (constraint_t, heap, 8);
5342 varmap = VEC_alloc (varinfo_t, heap, 8);
5343 vi_for_tree = pointer_map_create ();
5345 memset (&stats, 0, sizeof (stats));
5346 shared_bitmap_table = htab_create (511, shared_bitmap_hash,
5347 shared_bitmap_eq, free);
5348 init_base_vars ();
5351 /* Remove the REF and ADDRESS edges from GRAPH, as well as all the
5352 predecessor edges. */
5354 static void
5355 remove_preds_and_fake_succs (constraint_graph_t graph)
5357 unsigned int i;
5359 /* Clear the implicit ref and address nodes from the successor
5360 lists. */
5361 for (i = 0; i < FIRST_REF_NODE; i++)
5363 if (graph->succs[i])
5364 bitmap_clear_range (graph->succs[i], FIRST_REF_NODE,
5365 FIRST_REF_NODE * 2);
5368 /* Free the successor list for the non-ref nodes. */
5369 for (i = FIRST_REF_NODE; i < graph->size; i++)
5371 if (graph->succs[i])
5372 BITMAP_FREE (graph->succs[i]);
5375 /* Now reallocate the size of the successor list as, and blow away
5376 the predecessor bitmaps. */
5377 graph->size = VEC_length (varinfo_t, varmap);
5378 graph->succs = XRESIZEVEC (bitmap, graph->succs, graph->size);
5380 free (graph->implicit_preds);
5381 graph->implicit_preds = NULL;
5382 free (graph->preds);
5383 graph->preds = NULL;
5384 bitmap_obstack_release (&predbitmap_obstack);
5387 /* Initialize the heapvar for statement mapping. */
5389 static void
5390 init_alias_heapvars (void)
5392 if (!heapvar_for_stmt)
5393 heapvar_for_stmt = htab_create_ggc (11, tree_map_hash, heapvar_map_eq,
5394 NULL);
5397 /* Delete the heapvar for statement mapping. */
5399 void
5400 delete_alias_heapvars (void)
5402 if (heapvar_for_stmt)
5403 htab_delete (heapvar_for_stmt);
5404 heapvar_for_stmt = NULL;
5407 /* Solve the constraint set. */
5409 static void
5410 solve_constraints (void)
5412 struct scc_info *si;
5414 if (dump_file)
5416 fprintf (dump_file, "Points-to analysis\n\nConstraints:\n\n");
5417 dump_constraints (dump_file);
5420 if (dump_file)
5421 fprintf (dump_file,
5422 "\nCollapsing static cycles and doing variable "
5423 "substitution\n");
5425 init_graph (VEC_length (varinfo_t, varmap) * 2);
5427 if (dump_file)
5428 fprintf (dump_file, "Building predecessor graph\n");
5429 build_pred_graph ();
5431 if (dump_file)
5432 fprintf (dump_file, "Detecting pointer and location "
5433 "equivalences\n");
5434 si = perform_var_substitution (graph);
5436 if (dump_file)
5437 fprintf (dump_file, "Rewriting constraints and unifying "
5438 "variables\n");
5439 rewrite_constraints (graph, si);
5441 build_succ_graph ();
5442 free_var_substitution_info (si);
5444 if (dump_file && (dump_flags & TDF_GRAPH))
5445 dump_constraint_graph (dump_file);
5447 move_complex_constraints (graph);
5449 if (dump_file)
5450 fprintf (dump_file, "Uniting pointer but not location equivalent "
5451 "variables\n");
5452 unite_pointer_equivalences (graph);
5454 if (dump_file)
5455 fprintf (dump_file, "Finding indirect cycles\n");
5456 find_indirect_cycles (graph);
5458 /* Implicit nodes and predecessors are no longer necessary at this
5459 point. */
5460 remove_preds_and_fake_succs (graph);
5462 if (dump_file)
5463 fprintf (dump_file, "Solving graph\n");
5465 solve_graph (graph);
5467 if (dump_file)
5468 dump_sa_points_to_info (dump_file);
5471 /* Create points-to sets for the current function. See the comments
5472 at the start of the file for an algorithmic overview. */
5474 static void
5475 compute_points_to_sets (void)
5477 basic_block bb;
5478 unsigned i;
5479 varinfo_t vi;
5481 timevar_push (TV_TREE_PTA);
5483 init_alias_vars ();
5484 init_alias_heapvars ();
5486 intra_create_variable_infos ();
5488 /* Now walk all statements and derive aliases. */
5489 FOR_EACH_BB (bb)
5491 gimple_stmt_iterator gsi;
5493 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
5495 gimple phi = gsi_stmt (gsi);
5497 if (is_gimple_reg (gimple_phi_result (phi)))
5498 find_func_aliases (phi);
5501 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
5503 gimple stmt = gsi_stmt (gsi);
5505 find_func_aliases (stmt);
5509 /* From the constraints compute the points-to sets. */
5510 solve_constraints ();
5512 /* Compute the points-to sets for ESCAPED and CALLUSED used for
5513 call-clobber analysis. */
5514 find_what_var_points_to (get_varinfo (escaped_id),
5515 &cfun->gimple_df->escaped);
5516 find_what_var_points_to (get_varinfo (callused_id),
5517 &cfun->gimple_df->callused);
5519 /* Make sure the ESCAPED solution (which is used as placeholder in
5520 other solutions) does not reference itself. This simplifies
5521 points-to solution queries. */
5522 cfun->gimple_df->escaped.escaped = 0;
5524 /* Mark escaped HEAP variables as global. */
5525 for (i = 0; VEC_iterate (varinfo_t, varmap, i, vi); ++i)
5526 if (vi->is_heap_var
5527 && !vi->is_restrict_var
5528 && !vi->is_global_var)
5529 DECL_EXTERNAL (vi->decl) = vi->is_global_var
5530 = pt_solution_includes (&cfun->gimple_df->escaped, vi->decl);
5532 /* Compute the points-to sets for pointer SSA_NAMEs. */
5533 for (i = 0; i < num_ssa_names; ++i)
5535 tree ptr = ssa_name (i);
5536 if (ptr
5537 && POINTER_TYPE_P (TREE_TYPE (ptr)))
5538 find_what_p_points_to (ptr);
5541 timevar_pop (TV_TREE_PTA);
5545 /* Delete created points-to sets. */
5547 static void
5548 delete_points_to_sets (void)
5550 unsigned int i;
5552 htab_delete (shared_bitmap_table);
5553 if (dump_file && (dump_flags & TDF_STATS))
5554 fprintf (dump_file, "Points to sets created:%d\n",
5555 stats.points_to_sets_created);
5557 pointer_map_destroy (vi_for_tree);
5558 bitmap_obstack_release (&pta_obstack);
5559 VEC_free (constraint_t, heap, constraints);
5561 for (i = 0; i < graph->size; i++)
5562 VEC_free (constraint_t, heap, graph->complex[i]);
5563 free (graph->complex);
5565 free (graph->rep);
5566 free (graph->succs);
5567 free (graph->pe);
5568 free (graph->pe_rep);
5569 free (graph->indirect_cycles);
5570 free (graph);
5572 VEC_free (varinfo_t, heap, varmap);
5573 free_alloc_pool (variable_info_pool);
5574 free_alloc_pool (constraint_pool);
5578 /* Compute points-to information for every SSA_NAME pointer in the
5579 current function and compute the transitive closure of escaped
5580 variables to re-initialize the call-clobber states of local variables. */
5582 unsigned int
5583 compute_may_aliases (void)
5585 /* For each pointer P_i, determine the sets of variables that P_i may
5586 point-to. Compute the reachability set of escaped and call-used
5587 variables. */
5588 compute_points_to_sets ();
5590 /* Debugging dumps. */
5591 if (dump_file)
5593 dump_alias_info (dump_file);
5595 if (dump_flags & TDF_DETAILS)
5596 dump_referenced_vars (dump_file);
5599 /* Deallocate memory used by aliasing data structures and the internal
5600 points-to solution. */
5601 delete_points_to_sets ();
5603 gcc_assert (!need_ssa_update_p (cfun));
5605 return 0;
5608 static bool
5609 gate_tree_pta (void)
5611 return flag_tree_pta;
5614 /* A dummy pass to cause points-to information to be computed via
5615 TODO_rebuild_alias. */
5617 struct gimple_opt_pass pass_build_alias =
5620 GIMPLE_PASS,
5621 "alias", /* name */
5622 gate_tree_pta, /* gate */
5623 NULL, /* execute */
5624 NULL, /* sub */
5625 NULL, /* next */
5626 0, /* static_pass_number */
5627 TV_NONE, /* tv_id */
5628 PROP_cfg | PROP_ssa, /* properties_required */
5629 0, /* properties_provided */
5630 0, /* properties_destroyed */
5631 0, /* todo_flags_start */
5632 TODO_rebuild_alias | TODO_dump_func /* todo_flags_finish */
5636 /* A dummy pass to cause points-to information to be computed via
5637 TODO_rebuild_alias. */
5639 struct gimple_opt_pass pass_build_ealias =
5642 GIMPLE_PASS,
5643 "ealias", /* name */
5644 gate_tree_pta, /* gate */
5645 NULL, /* execute */
5646 NULL, /* sub */
5647 NULL, /* next */
5648 0, /* static_pass_number */
5649 TV_NONE, /* tv_id */
5650 PROP_cfg | PROP_ssa, /* properties_required */
5651 0, /* properties_provided */
5652 0, /* properties_destroyed */
5653 0, /* todo_flags_start */
5654 TODO_rebuild_alias | TODO_dump_func /* todo_flags_finish */
5659 /* Return true if we should execute IPA PTA. */
5660 static bool
5661 gate_ipa_pta (void)
5663 return (optimize
5664 && flag_ipa_pta
5665 /* Don't bother doing anything if the program has errors. */
5666 && !(errorcount || sorrycount));
5669 /* Execute the driver for IPA PTA. */
5670 static unsigned int
5671 ipa_pta_execute (void)
5673 struct cgraph_node *node;
5675 in_ipa_mode = 1;
5677 init_alias_heapvars ();
5678 init_alias_vars ();
5680 /* Build the constraints. */
5681 for (node = cgraph_nodes; node; node = node->next)
5683 /* Nodes without a body are not interesting. Especially do not
5684 visit clones at this point for now - we get duplicate decls
5685 there for inline clones at least. */
5686 if (!gimple_has_body_p (node->decl)
5687 || node->clone_of)
5688 continue;
5690 /* It does not make sense to have graph edges into or out of
5691 externally visible functions. There is no extra information
5692 we can gather from them. */
5693 if (node->local.externally_visible)
5694 continue;
5696 create_function_info_for (node->decl,
5697 cgraph_node_name (node));
5700 for (node = cgraph_nodes; node; node = node->next)
5702 struct function *func;
5703 basic_block bb;
5704 tree old_func_decl;
5706 /* Nodes without a body are not interesting. */
5707 if (!gimple_has_body_p (node->decl)
5708 || node->clone_of)
5709 continue;
5711 if (dump_file)
5712 fprintf (dump_file,
5713 "Generating constraints for %s\n",
5714 cgraph_node_name (node));
5716 func = DECL_STRUCT_FUNCTION (node->decl);
5717 old_func_decl = current_function_decl;
5718 push_cfun (func);
5719 current_function_decl = node->decl;
5721 /* For externally visible functions use local constraints for
5722 their arguments. For local functions we see all callers
5723 and thus do not need initial constraints for parameters. */
5724 if (node->local.externally_visible)
5725 intra_create_variable_infos ();
5727 /* Build constriants for the function body. */
5728 FOR_EACH_BB_FN (bb, func)
5730 gimple_stmt_iterator gsi;
5732 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi);
5733 gsi_next (&gsi))
5735 gimple phi = gsi_stmt (gsi);
5737 if (is_gimple_reg (gimple_phi_result (phi)))
5738 find_func_aliases (phi);
5741 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
5743 gimple stmt = gsi_stmt (gsi);
5745 find_func_aliases (stmt);
5749 current_function_decl = old_func_decl;
5750 pop_cfun ();
5753 /* From the constraints compute the points-to sets. */
5754 solve_constraints ();
5756 delete_points_to_sets ();
5758 in_ipa_mode = 0;
5760 return 0;
5763 struct simple_ipa_opt_pass pass_ipa_pta =
5766 SIMPLE_IPA_PASS,
5767 "pta", /* name */
5768 gate_ipa_pta, /* gate */
5769 ipa_pta_execute, /* execute */
5770 NULL, /* sub */
5771 NULL, /* next */
5772 0, /* static_pass_number */
5773 TV_IPA_PTA, /* tv_id */
5774 0, /* properties_required */
5775 0, /* properties_provided */
5776 0, /* properties_destroyed */
5777 0, /* todo_flags_start */
5778 TODO_update_ssa /* todo_flags_finish */
5783 #include "gt-tree-ssa-structalias.h"