Print SCoPs under CLooG format.
[official-gcc/graphite-test-results.git] / gcc / tree-into-ssa.c
blobc90049ed337016e963b8192b64db9e19c1739622
1 /* Rewrite a program in Normal form into SSA.
2 Copyright (C) 2001, 2002, 2003, 2004, 2005, 2007, 2008, 2009, 2010
3 Free Software Foundation, Inc.
4 Contributed by Diego Novillo <dnovillo@redhat.com>
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
11 any later version.
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "tree.h"
27 #include "flags.h"
28 #include "rtl.h"
29 #include "tm_p.h"
30 #include "langhooks.h"
31 #include "hard-reg-set.h"
32 #include "basic-block.h"
33 #include "output.h"
34 #include "expr.h"
35 #include "function.h"
36 #include "diagnostic.h"
37 #include "bitmap.h"
38 #include "tree-flow.h"
39 #include "gimple.h"
40 #include "tree-inline.h"
41 #include "varray.h"
42 #include "timevar.h"
43 #include "hashtab.h"
44 #include "tree-dump.h"
45 #include "tree-pass.h"
46 #include "cfgloop.h"
47 #include "domwalk.h"
48 #include "ggc.h"
49 #include "params.h"
50 #include "vecprim.h"
53 /* This file builds the SSA form for a function as described in:
54 R. Cytron, J. Ferrante, B. Rosen, M. Wegman, and K. Zadeck. Efficiently
55 Computing Static Single Assignment Form and the Control Dependence
56 Graph. ACM Transactions on Programming Languages and Systems,
57 13(4):451-490, October 1991. */
59 /* Structure to map a variable VAR to the set of blocks that contain
60 definitions for VAR. */
61 struct def_blocks_d
63 /* The variable. */
64 tree var;
66 /* Blocks that contain definitions of VAR. Bit I will be set if the
67 Ith block contains a definition of VAR. */
68 bitmap def_blocks;
70 /* Blocks that contain a PHI node for VAR. */
71 bitmap phi_blocks;
73 /* Blocks where VAR is live-on-entry. Similar semantics as
74 DEF_BLOCKS. */
75 bitmap livein_blocks;
79 /* Each entry in DEF_BLOCKS contains an element of type STRUCT
80 DEF_BLOCKS_D, mapping a variable VAR to a bitmap describing all the
81 basic blocks where VAR is defined (assigned a new value). It also
82 contains a bitmap of all the blocks where VAR is live-on-entry
83 (i.e., there is a use of VAR in block B without a preceding
84 definition in B). The live-on-entry information is used when
85 computing PHI pruning heuristics. */
86 static htab_t def_blocks;
88 /* Stack of trees used to restore the global currdefs to its original
89 state after completing rewriting of a block and its dominator
90 children. Its elements have the following properties:
92 - An SSA_NAME (N) indicates that the current definition of the
93 underlying variable should be set to the given SSA_NAME. If the
94 symbol associated with the SSA_NAME is not a GIMPLE register, the
95 next slot in the stack must be a _DECL node (SYM). In this case,
96 the name N in the previous slot is the current reaching
97 definition for SYM.
99 - A _DECL node indicates that the underlying variable has no
100 current definition.
102 - A NULL node at the top entry is used to mark the last slot
103 associated with the current block. */
104 static VEC(tree,heap) *block_defs_stack;
107 /* Set of existing SSA names being replaced by update_ssa. */
108 static sbitmap old_ssa_names;
110 /* Set of new SSA names being added by update_ssa. Note that both
111 NEW_SSA_NAMES and OLD_SSA_NAMES are dense bitmaps because most of
112 the operations done on them are presence tests. */
113 static sbitmap new_ssa_names;
115 sbitmap interesting_blocks;
117 /* Set of SSA names that have been marked to be released after they
118 were registered in the replacement table. They will be finally
119 released after we finish updating the SSA web. */
120 static bitmap names_to_release;
122 static VEC(gimple_vec, heap) *phis_to_rewrite;
124 /* The bitmap of non-NULL elements of PHIS_TO_REWRITE. */
125 static bitmap blocks_with_phis_to_rewrite;
127 /* Growth factor for NEW_SSA_NAMES and OLD_SSA_NAMES. These sets need
128 to grow as the callers to register_new_name_mapping will typically
129 create new names on the fly. FIXME. Currently set to 1/3 to avoid
130 frequent reallocations but still need to find a reasonable growth
131 strategy. */
132 #define NAME_SETS_GROWTH_FACTOR (MAX (3, num_ssa_names / 3))
134 /* Tuple used to represent replacement mappings. */
135 struct repl_map_d
137 tree name;
138 bitmap set;
142 /* NEW -> OLD_SET replacement table. If we are replacing several
143 existing SSA names O_1, O_2, ..., O_j with a new name N_i,
144 then REPL_TBL[N_i] = { O_1, O_2, ..., O_j }. */
145 static htab_t repl_tbl;
147 /* The function the SSA updating data structures have been initialized for.
148 NULL if they need to be initialized by register_new_name_mapping. */
149 static struct function *update_ssa_initialized_fn = NULL;
151 /* Statistics kept by update_ssa to use in the virtual mapping
152 heuristic. If the number of virtual mappings is beyond certain
153 threshold, the updater will switch from using the mappings into
154 renaming the virtual symbols from scratch. In some cases, the
155 large number of name mappings for virtual names causes significant
156 slowdowns in the PHI insertion code. */
157 struct update_ssa_stats_d
159 unsigned num_virtual_mappings;
160 unsigned num_total_mappings;
161 bitmap virtual_symbols;
162 unsigned num_virtual_symbols;
164 static struct update_ssa_stats_d update_ssa_stats;
166 /* Global data to attach to the main dominator walk structure. */
167 struct mark_def_sites_global_data
169 /* This bitmap contains the variables which are set before they
170 are used in a basic block. */
171 bitmap kills;
175 /* Information stored for SSA names. */
176 struct ssa_name_info
178 /* The current reaching definition replacing this SSA name. */
179 tree current_def;
181 /* This field indicates whether or not the variable may need PHI nodes.
182 See the enum's definition for more detailed information about the
183 states. */
184 ENUM_BITFIELD (need_phi_state) need_phi_state : 2;
186 /* Age of this record (so that info_for_ssa_name table can be cleared
187 quickly); if AGE < CURRENT_INFO_FOR_SSA_NAME_AGE, then the fields
188 are assumed to be null. */
189 unsigned age;
192 /* The information associated with names. */
193 typedef struct ssa_name_info *ssa_name_info_p;
194 DEF_VEC_P (ssa_name_info_p);
195 DEF_VEC_ALLOC_P (ssa_name_info_p, heap);
197 static VEC(ssa_name_info_p, heap) *info_for_ssa_name;
198 static unsigned current_info_for_ssa_name_age;
200 /* The set of blocks affected by update_ssa. */
201 static bitmap blocks_to_update;
203 /* The main entry point to the SSA renamer (rewrite_blocks) may be
204 called several times to do different, but related, tasks.
205 Initially, we need it to rename the whole program into SSA form.
206 At other times, we may need it to only rename into SSA newly
207 exposed symbols. Finally, we can also call it to incrementally fix
208 an already built SSA web. */
209 enum rewrite_mode {
210 /* Convert the whole function into SSA form. */
211 REWRITE_ALL,
213 /* Incrementally update the SSA web by replacing existing SSA
214 names with new ones. See update_ssa for details. */
215 REWRITE_UPDATE
221 /* Prototypes for debugging functions. */
222 extern void dump_tree_ssa (FILE *);
223 extern void debug_tree_ssa (void);
224 extern void debug_def_blocks (void);
225 extern void dump_tree_ssa_stats (FILE *);
226 extern void debug_tree_ssa_stats (void);
227 extern void dump_update_ssa (FILE *);
228 extern void debug_update_ssa (void);
229 extern void dump_names_replaced_by (FILE *, tree);
230 extern void debug_names_replaced_by (tree);
231 extern void dump_def_blocks (FILE *);
232 extern void debug_def_blocks (void);
233 extern void dump_defs_stack (FILE *, int);
234 extern void debug_defs_stack (int);
235 extern void dump_currdefs (FILE *);
236 extern void debug_currdefs (void);
238 /* Return true if STMT needs to be rewritten. When renaming a subset
239 of the variables, not all statements will be processed. This is
240 decided in mark_def_sites. */
242 static inline bool
243 rewrite_uses_p (gimple stmt)
245 return gimple_visited_p (stmt);
249 /* Set the rewrite marker on STMT to the value given by REWRITE_P. */
251 static inline void
252 set_rewrite_uses (gimple stmt, bool rewrite_p)
254 gimple_set_visited (stmt, rewrite_p);
258 /* Return true if the DEFs created by statement STMT should be
259 registered when marking new definition sites. This is slightly
260 different than rewrite_uses_p: it's used by update_ssa to
261 distinguish statements that need to have both uses and defs
262 processed from those that only need to have their defs processed.
263 Statements that define new SSA names only need to have their defs
264 registered, but they don't need to have their uses renamed. */
266 static inline bool
267 register_defs_p (gimple stmt)
269 return gimple_plf (stmt, GF_PLF_1) != 0;
273 /* If REGISTER_DEFS_P is true, mark STMT to have its DEFs registered. */
275 static inline void
276 set_register_defs (gimple stmt, bool register_defs_p)
278 gimple_set_plf (stmt, GF_PLF_1, register_defs_p);
282 /* Get the information associated with NAME. */
284 static inline ssa_name_info_p
285 get_ssa_name_ann (tree name)
287 unsigned ver = SSA_NAME_VERSION (name);
288 unsigned len = VEC_length (ssa_name_info_p, info_for_ssa_name);
289 struct ssa_name_info *info;
291 if (ver >= len)
293 unsigned new_len = num_ssa_names;
295 VEC_reserve (ssa_name_info_p, heap, info_for_ssa_name, new_len);
296 while (len++ < new_len)
298 struct ssa_name_info *info = XCNEW (struct ssa_name_info);
299 info->age = current_info_for_ssa_name_age;
300 VEC_quick_push (ssa_name_info_p, info_for_ssa_name, info);
304 info = VEC_index (ssa_name_info_p, info_for_ssa_name, ver);
305 if (info->age < current_info_for_ssa_name_age)
307 info->need_phi_state = NEED_PHI_STATE_UNKNOWN;
308 info->current_def = NULL_TREE;
309 info->age = current_info_for_ssa_name_age;
312 return info;
316 /* Clears info for SSA names. */
318 static void
319 clear_ssa_name_info (void)
321 current_info_for_ssa_name_age++;
325 /* Get phi_state field for VAR. */
327 static inline enum need_phi_state
328 get_phi_state (tree var)
330 if (TREE_CODE (var) == SSA_NAME)
331 return get_ssa_name_ann (var)->need_phi_state;
332 else
333 return var_ann (var)->need_phi_state;
337 /* Sets phi_state field for VAR to STATE. */
339 static inline void
340 set_phi_state (tree var, enum need_phi_state state)
342 if (TREE_CODE (var) == SSA_NAME)
343 get_ssa_name_ann (var)->need_phi_state = state;
344 else
345 var_ann (var)->need_phi_state = state;
349 /* Return the current definition for VAR. */
351 tree
352 get_current_def (tree var)
354 if (TREE_CODE (var) == SSA_NAME)
355 return get_ssa_name_ann (var)->current_def;
356 else
357 return var_ann (var)->current_def;
361 /* Sets current definition of VAR to DEF. */
363 void
364 set_current_def (tree var, tree def)
366 if (TREE_CODE (var) == SSA_NAME)
367 get_ssa_name_ann (var)->current_def = def;
368 else
369 var_ann (var)->current_def = def;
373 /* Compute global livein information given the set of blocks where
374 an object is locally live at the start of the block (LIVEIN)
375 and the set of blocks where the object is defined (DEF_BLOCKS).
377 Note: This routine augments the existing local livein information
378 to include global livein (i.e., it modifies the underlying bitmap
379 for LIVEIN). */
381 void
382 compute_global_livein (bitmap livein ATTRIBUTE_UNUSED, bitmap def_blocks ATTRIBUTE_UNUSED)
384 basic_block bb, *worklist, *tos;
385 unsigned i;
386 bitmap_iterator bi;
388 tos = worklist
389 = (basic_block *) xmalloc (sizeof (basic_block) * (last_basic_block + 1));
391 EXECUTE_IF_SET_IN_BITMAP (livein, 0, i, bi)
392 *tos++ = BASIC_BLOCK (i);
394 /* Iterate until the worklist is empty. */
395 while (tos != worklist)
397 edge e;
398 edge_iterator ei;
400 /* Pull a block off the worklist. */
401 bb = *--tos;
403 /* For each predecessor block. */
404 FOR_EACH_EDGE (e, ei, bb->preds)
406 basic_block pred = e->src;
407 int pred_index = pred->index;
409 /* None of this is necessary for the entry block. */
410 if (pred != ENTRY_BLOCK_PTR
411 && ! bitmap_bit_p (livein, pred_index)
412 && ! bitmap_bit_p (def_blocks, pred_index))
414 *tos++ = pred;
415 bitmap_set_bit (livein, pred_index);
420 free (worklist);
424 /* Cleans up the REWRITE_THIS_STMT and REGISTER_DEFS_IN_THIS_STMT flags for
425 all statements in basic block BB. */
427 static void
428 initialize_flags_in_bb (basic_block bb)
430 gimple stmt;
431 gimple_stmt_iterator gsi;
433 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
435 gimple phi = gsi_stmt (gsi);
436 set_rewrite_uses (phi, false);
437 set_register_defs (phi, false);
440 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
442 stmt = gsi_stmt (gsi);
444 /* We are going to use the operand cache API, such as
445 SET_USE, SET_DEF, and FOR_EACH_IMM_USE_FAST. The operand
446 cache for each statement should be up-to-date. */
447 gcc_assert (!gimple_modified_p (stmt));
448 set_rewrite_uses (stmt, false);
449 set_register_defs (stmt, false);
453 /* Mark block BB as interesting for update_ssa. */
455 static void
456 mark_block_for_update (basic_block bb)
458 gcc_assert (blocks_to_update != NULL);
459 if (bitmap_bit_p (blocks_to_update, bb->index))
460 return;
461 bitmap_set_bit (blocks_to_update, bb->index);
462 initialize_flags_in_bb (bb);
465 /* Return the set of blocks where variable VAR is defined and the blocks
466 where VAR is live on entry (livein). If no entry is found in
467 DEF_BLOCKS, a new one is created and returned. */
469 static inline struct def_blocks_d *
470 get_def_blocks_for (tree var)
472 struct def_blocks_d db, *db_p;
473 void **slot;
475 db.var = var;
476 slot = htab_find_slot (def_blocks, (void *) &db, INSERT);
477 if (*slot == NULL)
479 db_p = XNEW (struct def_blocks_d);
480 db_p->var = var;
481 db_p->def_blocks = BITMAP_ALLOC (NULL);
482 db_p->phi_blocks = BITMAP_ALLOC (NULL);
483 db_p->livein_blocks = BITMAP_ALLOC (NULL);
484 *slot = (void *) db_p;
486 else
487 db_p = (struct def_blocks_d *) *slot;
489 return db_p;
493 /* Mark block BB as the definition site for variable VAR. PHI_P is true if
494 VAR is defined by a PHI node. */
496 static void
497 set_def_block (tree var, basic_block bb, bool phi_p)
499 struct def_blocks_d *db_p;
500 enum need_phi_state state;
502 state = get_phi_state (var);
503 db_p = get_def_blocks_for (var);
505 /* Set the bit corresponding to the block where VAR is defined. */
506 bitmap_set_bit (db_p->def_blocks, bb->index);
507 if (phi_p)
508 bitmap_set_bit (db_p->phi_blocks, bb->index);
510 /* Keep track of whether or not we may need to insert PHI nodes.
512 If we are in the UNKNOWN state, then this is the first definition
513 of VAR. Additionally, we have not seen any uses of VAR yet, so
514 we do not need a PHI node for this variable at this time (i.e.,
515 transition to NEED_PHI_STATE_NO).
517 If we are in any other state, then we either have multiple definitions
518 of this variable occurring in different blocks or we saw a use of the
519 variable which was not dominated by the block containing the
520 definition(s). In this case we may need a PHI node, so enter
521 state NEED_PHI_STATE_MAYBE. */
522 if (state == NEED_PHI_STATE_UNKNOWN)
523 set_phi_state (var, NEED_PHI_STATE_NO);
524 else
525 set_phi_state (var, NEED_PHI_STATE_MAYBE);
529 /* Mark block BB as having VAR live at the entry to BB. */
531 static void
532 set_livein_block (tree var, basic_block bb)
534 struct def_blocks_d *db_p;
535 enum need_phi_state state = get_phi_state (var);
537 db_p = get_def_blocks_for (var);
539 /* Set the bit corresponding to the block where VAR is live in. */
540 bitmap_set_bit (db_p->livein_blocks, bb->index);
542 /* Keep track of whether or not we may need to insert PHI nodes.
544 If we reach here in NEED_PHI_STATE_NO, see if this use is dominated
545 by the single block containing the definition(s) of this variable. If
546 it is, then we remain in NEED_PHI_STATE_NO, otherwise we transition to
547 NEED_PHI_STATE_MAYBE. */
548 if (state == NEED_PHI_STATE_NO)
550 int def_block_index = bitmap_first_set_bit (db_p->def_blocks);
552 if (def_block_index == -1
553 || ! dominated_by_p (CDI_DOMINATORS, bb,
554 BASIC_BLOCK (def_block_index)))
555 set_phi_state (var, NEED_PHI_STATE_MAYBE);
557 else
558 set_phi_state (var, NEED_PHI_STATE_MAYBE);
562 /* Return true if symbol SYM is marked for renaming. */
564 static inline bool
565 symbol_marked_for_renaming (tree sym)
567 return bitmap_bit_p (SYMS_TO_RENAME (cfun), DECL_UID (sym));
571 /* Return true if NAME is in OLD_SSA_NAMES. */
573 static inline bool
574 is_old_name (tree name)
576 unsigned ver = SSA_NAME_VERSION (name);
577 if (!new_ssa_names)
578 return false;
579 return ver < new_ssa_names->n_bits && TEST_BIT (old_ssa_names, ver);
583 /* Return true if NAME is in NEW_SSA_NAMES. */
585 static inline bool
586 is_new_name (tree name)
588 unsigned ver = SSA_NAME_VERSION (name);
589 if (!new_ssa_names)
590 return false;
591 return ver < new_ssa_names->n_bits && TEST_BIT (new_ssa_names, ver);
595 /* Hashing and equality functions for REPL_TBL. */
597 static hashval_t
598 repl_map_hash (const void *p)
600 return htab_hash_pointer ((const void *)((const struct repl_map_d *)p)->name);
603 static int
604 repl_map_eq (const void *p1, const void *p2)
606 return ((const struct repl_map_d *)p1)->name
607 == ((const struct repl_map_d *)p2)->name;
610 static void
611 repl_map_free (void *p)
613 BITMAP_FREE (((struct repl_map_d *)p)->set);
614 free (p);
618 /* Return the names replaced by NEW_TREE (i.e., REPL_TBL[NEW_TREE].SET). */
620 static inline bitmap
621 names_replaced_by (tree new_tree)
623 struct repl_map_d m;
624 void **slot;
626 m.name = new_tree;
627 slot = htab_find_slot (repl_tbl, (void *) &m, NO_INSERT);
629 /* If N was not registered in the replacement table, return NULL. */
630 if (slot == NULL || *slot == NULL)
631 return NULL;
633 return ((struct repl_map_d *) *slot)->set;
637 /* Add OLD to REPL_TBL[NEW_TREE].SET. */
639 static inline void
640 add_to_repl_tbl (tree new_tree, tree old)
642 struct repl_map_d m, *mp;
643 void **slot;
645 m.name = new_tree;
646 slot = htab_find_slot (repl_tbl, (void *) &m, INSERT);
647 if (*slot == NULL)
649 mp = XNEW (struct repl_map_d);
650 mp->name = new_tree;
651 mp->set = BITMAP_ALLOC (NULL);
652 *slot = (void *) mp;
654 else
655 mp = (struct repl_map_d *) *slot;
657 bitmap_set_bit (mp->set, SSA_NAME_VERSION (old));
661 /* Add a new mapping NEW_TREE -> OLD REPL_TBL. Every entry N_i in REPL_TBL
662 represents the set of names O_1 ... O_j replaced by N_i. This is
663 used by update_ssa and its helpers to introduce new SSA names in an
664 already formed SSA web. */
666 static void
667 add_new_name_mapping (tree new_tree, tree old)
669 timevar_push (TV_TREE_SSA_INCREMENTAL);
671 /* OLD and NEW_TREE must be different SSA names for the same symbol. */
672 gcc_assert (new_tree != old && SSA_NAME_VAR (new_tree) == SSA_NAME_VAR (old));
674 /* If this mapping is for virtual names, we will need to update
675 virtual operands. If this is a mapping for .MEM, then we gather
676 the symbols associated with each name. */
677 if (!is_gimple_reg (new_tree))
679 tree sym;
681 update_ssa_stats.num_virtual_mappings++;
682 update_ssa_stats.num_virtual_symbols++;
684 /* Keep counts of virtual mappings and symbols to use in the
685 virtual mapping heuristic. If we have large numbers of
686 virtual mappings for a relatively low number of symbols, it
687 will make more sense to rename the symbols from scratch.
688 Otherwise, the insertion of PHI nodes for each of the old
689 names in these mappings will be very slow. */
690 sym = SSA_NAME_VAR (new_tree);
691 bitmap_set_bit (update_ssa_stats.virtual_symbols, DECL_UID (sym));
694 /* We may need to grow NEW_SSA_NAMES and OLD_SSA_NAMES because our
695 caller may have created new names since the set was created. */
696 if (new_ssa_names->n_bits <= num_ssa_names - 1)
698 unsigned int new_sz = num_ssa_names + NAME_SETS_GROWTH_FACTOR;
699 new_ssa_names = sbitmap_resize (new_ssa_names, new_sz, 0);
700 old_ssa_names = sbitmap_resize (old_ssa_names, new_sz, 0);
703 /* Update the REPL_TBL table. */
704 add_to_repl_tbl (new_tree, old);
706 /* If OLD had already been registered as a new name, then all the
707 names that OLD replaces should also be replaced by NEW_TREE. */
708 if (is_new_name (old))
709 bitmap_ior_into (names_replaced_by (new_tree), names_replaced_by (old));
711 /* Register NEW_TREE and OLD in NEW_SSA_NAMES and OLD_SSA_NAMES,
712 respectively. */
713 SET_BIT (new_ssa_names, SSA_NAME_VERSION (new_tree));
714 SET_BIT (old_ssa_names, SSA_NAME_VERSION (old));
716 /* Update mapping counter to use in the virtual mapping heuristic. */
717 update_ssa_stats.num_total_mappings++;
719 timevar_pop (TV_TREE_SSA_INCREMENTAL);
723 /* Call back for walk_dominator_tree used to collect definition sites
724 for every variable in the function. For every statement S in block
727 1- Variables defined by S in the DEFS of S are marked in the bitmap
728 KILLS.
730 2- If S uses a variable VAR and there is no preceding kill of VAR,
731 then it is marked in the LIVEIN_BLOCKS bitmap associated with VAR.
733 This information is used to determine which variables are live
734 across block boundaries to reduce the number of PHI nodes
735 we create. */
737 static void
738 mark_def_sites (basic_block bb, gimple stmt, bitmap kills)
740 tree def;
741 use_operand_p use_p;
742 ssa_op_iter iter;
744 /* Since this is the first time that we rewrite the program into SSA
745 form, force an operand scan on every statement. */
746 update_stmt (stmt);
748 gcc_assert (blocks_to_update == NULL);
749 set_register_defs (stmt, false);
750 set_rewrite_uses (stmt, false);
752 if (is_gimple_debug (stmt))
753 return;
755 /* If a variable is used before being set, then the variable is live
756 across a block boundary, so mark it live-on-entry to BB. */
757 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_USE)
759 tree sym = USE_FROM_PTR (use_p);
760 gcc_assert (DECL_P (sym));
761 if (!bitmap_bit_p (kills, DECL_UID (sym)))
762 set_livein_block (sym, bb);
763 set_rewrite_uses (stmt, true);
766 /* Now process the defs. Mark BB as the definition block and add
767 each def to the set of killed symbols. */
768 FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_DEF)
770 gcc_assert (DECL_P (def));
771 set_def_block (def, bb, false);
772 bitmap_set_bit (kills, DECL_UID (def));
773 set_register_defs (stmt, true);
776 /* If we found the statement interesting then also mark the block BB
777 as interesting. */
778 if (rewrite_uses_p (stmt) || register_defs_p (stmt))
779 SET_BIT (interesting_blocks, bb->index);
782 /* Structure used by prune_unused_phi_nodes to record bounds of the intervals
783 in the dfs numbering of the dominance tree. */
785 struct dom_dfsnum
787 /* Basic block whose index this entry corresponds to. */
788 unsigned bb_index;
790 /* The dfs number of this node. */
791 unsigned dfs_num;
794 /* Compares two entries of type struct dom_dfsnum by dfs_num field. Callback
795 for qsort. */
797 static int
798 cmp_dfsnum (const void *a, const void *b)
800 const struct dom_dfsnum *const da = (const struct dom_dfsnum *) a;
801 const struct dom_dfsnum *const db = (const struct dom_dfsnum *) b;
803 return (int) da->dfs_num - (int) db->dfs_num;
806 /* Among the intervals starting at the N points specified in DEFS, find
807 the one that contains S, and return its bb_index. */
809 static unsigned
810 find_dfsnum_interval (struct dom_dfsnum *defs, unsigned n, unsigned s)
812 unsigned f = 0, t = n, m;
814 while (t > f + 1)
816 m = (f + t) / 2;
817 if (defs[m].dfs_num <= s)
818 f = m;
819 else
820 t = m;
823 return defs[f].bb_index;
826 /* Clean bits from PHIS for phi nodes whose value cannot be used in USES.
827 KILLS is a bitmap of blocks where the value is defined before any use. */
829 static void
830 prune_unused_phi_nodes (bitmap phis, bitmap kills, bitmap uses)
832 VEC(int, heap) *worklist;
833 bitmap_iterator bi;
834 unsigned i, b, p, u, top;
835 bitmap live_phis;
836 basic_block def_bb, use_bb;
837 edge e;
838 edge_iterator ei;
839 bitmap to_remove;
840 struct dom_dfsnum *defs;
841 unsigned n_defs, adef;
843 if (bitmap_empty_p (uses))
845 bitmap_clear (phis);
846 return;
849 /* The phi must dominate a use, or an argument of a live phi. Also, we
850 do not create any phi nodes in def blocks, unless they are also livein. */
851 to_remove = BITMAP_ALLOC (NULL);
852 bitmap_and_compl (to_remove, kills, uses);
853 bitmap_and_compl_into (phis, to_remove);
854 if (bitmap_empty_p (phis))
856 BITMAP_FREE (to_remove);
857 return;
860 /* We want to remove the unnecessary phi nodes, but we do not want to compute
861 liveness information, as that may be linear in the size of CFG, and if
862 there are lot of different variables to rewrite, this may lead to quadratic
863 behavior.
865 Instead, we basically emulate standard dce. We put all uses to worklist,
866 then for each of them find the nearest def that dominates them. If this
867 def is a phi node, we mark it live, and if it was not live before, we
868 add the predecessors of its basic block to the worklist.
870 To quickly locate the nearest def that dominates use, we use dfs numbering
871 of the dominance tree (that is already available in order to speed up
872 queries). For each def, we have the interval given by the dfs number on
873 entry to and on exit from the corresponding subtree in the dominance tree.
874 The nearest dominator for a given use is the smallest of these intervals
875 that contains entry and exit dfs numbers for the basic block with the use.
876 If we store the bounds for all the uses to an array and sort it, we can
877 locate the nearest dominating def in logarithmic time by binary search.*/
878 bitmap_ior (to_remove, kills, phis);
879 n_defs = bitmap_count_bits (to_remove);
880 defs = XNEWVEC (struct dom_dfsnum, 2 * n_defs + 1);
881 defs[0].bb_index = 1;
882 defs[0].dfs_num = 0;
883 adef = 1;
884 EXECUTE_IF_SET_IN_BITMAP (to_remove, 0, i, bi)
886 def_bb = BASIC_BLOCK (i);
887 defs[adef].bb_index = i;
888 defs[adef].dfs_num = bb_dom_dfs_in (CDI_DOMINATORS, def_bb);
889 defs[adef + 1].bb_index = i;
890 defs[adef + 1].dfs_num = bb_dom_dfs_out (CDI_DOMINATORS, def_bb);
891 adef += 2;
893 BITMAP_FREE (to_remove);
894 gcc_assert (adef == 2 * n_defs + 1);
895 qsort (defs, adef, sizeof (struct dom_dfsnum), cmp_dfsnum);
896 gcc_assert (defs[0].bb_index == 1);
898 /* Now each DEFS entry contains the number of the basic block to that the
899 dfs number corresponds. Change them to the number of basic block that
900 corresponds to the interval following the dfs number. Also, for the
901 dfs_out numbers, increase the dfs number by one (so that it corresponds
902 to the start of the following interval, not to the end of the current
903 one). We use WORKLIST as a stack. */
904 worklist = VEC_alloc (int, heap, n_defs + 1);
905 VEC_quick_push (int, worklist, 1);
906 top = 1;
907 n_defs = 1;
908 for (i = 1; i < adef; i++)
910 b = defs[i].bb_index;
911 if (b == top)
913 /* This is a closing element. Interval corresponding to the top
914 of the stack after removing it follows. */
915 VEC_pop (int, worklist);
916 top = VEC_index (int, worklist, VEC_length (int, worklist) - 1);
917 defs[n_defs].bb_index = top;
918 defs[n_defs].dfs_num = defs[i].dfs_num + 1;
920 else
922 /* Opening element. Nothing to do, just push it to the stack and move
923 it to the correct position. */
924 defs[n_defs].bb_index = defs[i].bb_index;
925 defs[n_defs].dfs_num = defs[i].dfs_num;
926 VEC_quick_push (int, worklist, b);
927 top = b;
930 /* If this interval starts at the same point as the previous one, cancel
931 the previous one. */
932 if (defs[n_defs].dfs_num == defs[n_defs - 1].dfs_num)
933 defs[n_defs - 1].bb_index = defs[n_defs].bb_index;
934 else
935 n_defs++;
937 VEC_pop (int, worklist);
938 gcc_assert (VEC_empty (int, worklist));
940 /* Now process the uses. */
941 live_phis = BITMAP_ALLOC (NULL);
942 EXECUTE_IF_SET_IN_BITMAP (uses, 0, i, bi)
944 VEC_safe_push (int, heap, worklist, i);
947 while (!VEC_empty (int, worklist))
949 b = VEC_pop (int, worklist);
950 if (b == ENTRY_BLOCK)
951 continue;
953 /* If there is a phi node in USE_BB, it is made live. Otherwise,
954 find the def that dominates the immediate dominator of USE_BB
955 (the kill in USE_BB does not dominate the use). */
956 if (bitmap_bit_p (phis, b))
957 p = b;
958 else
960 use_bb = get_immediate_dominator (CDI_DOMINATORS, BASIC_BLOCK (b));
961 p = find_dfsnum_interval (defs, n_defs,
962 bb_dom_dfs_in (CDI_DOMINATORS, use_bb));
963 if (!bitmap_bit_p (phis, p))
964 continue;
967 /* If the phi node is already live, there is nothing to do. */
968 if (bitmap_bit_p (live_phis, p))
969 continue;
971 /* Mark the phi as live, and add the new uses to the worklist. */
972 bitmap_set_bit (live_phis, p);
973 def_bb = BASIC_BLOCK (p);
974 FOR_EACH_EDGE (e, ei, def_bb->preds)
976 u = e->src->index;
977 if (bitmap_bit_p (uses, u))
978 continue;
980 /* In case there is a kill directly in the use block, do not record
981 the use (this is also necessary for correctness, as we assume that
982 uses dominated by a def directly in their block have been filtered
983 out before). */
984 if (bitmap_bit_p (kills, u))
985 continue;
987 bitmap_set_bit (uses, u);
988 VEC_safe_push (int, heap, worklist, u);
992 VEC_free (int, heap, worklist);
993 bitmap_copy (phis, live_phis);
994 BITMAP_FREE (live_phis);
995 free (defs);
998 /* Return the set of blocks where variable VAR is defined and the blocks
999 where VAR is live on entry (livein). Return NULL, if no entry is
1000 found in DEF_BLOCKS. */
1002 static inline struct def_blocks_d *
1003 find_def_blocks_for (tree var)
1005 struct def_blocks_d dm;
1006 dm.var = var;
1007 return (struct def_blocks_d *) htab_find (def_blocks, &dm);
1011 /* Retrieve or create a default definition for symbol SYM. */
1013 static inline tree
1014 get_default_def_for (tree sym)
1016 tree ddef = gimple_default_def (cfun, sym);
1018 if (ddef == NULL_TREE)
1020 ddef = make_ssa_name (sym, gimple_build_nop ());
1021 set_default_def (sym, ddef);
1024 return ddef;
1028 /* Marks phi node PHI in basic block BB for rewrite. */
1030 static void
1031 mark_phi_for_rewrite (basic_block bb, gimple phi)
1033 gimple_vec phis;
1034 unsigned i, idx = bb->index;
1036 if (rewrite_uses_p (phi))
1037 return;
1039 set_rewrite_uses (phi, true);
1041 if (!blocks_with_phis_to_rewrite)
1042 return;
1044 bitmap_set_bit (blocks_with_phis_to_rewrite, idx);
1045 VEC_reserve (gimple_vec, heap, phis_to_rewrite, last_basic_block + 1);
1046 for (i = VEC_length (gimple_vec, phis_to_rewrite); i <= idx; i++)
1047 VEC_quick_push (gimple_vec, phis_to_rewrite, NULL);
1049 phis = VEC_index (gimple_vec, phis_to_rewrite, idx);
1050 if (!phis)
1051 phis = VEC_alloc (gimple, heap, 10);
1053 VEC_safe_push (gimple, heap, phis, phi);
1054 VEC_replace (gimple_vec, phis_to_rewrite, idx, phis);
1057 /* Insert PHI nodes for variable VAR using the iterated dominance
1058 frontier given in PHI_INSERTION_POINTS. If UPDATE_P is true, this
1059 function assumes that the caller is incrementally updating the
1060 existing SSA form, in which case VAR may be an SSA name instead of
1061 a symbol.
1063 PHI_INSERTION_POINTS is updated to reflect nodes that already had a
1064 PHI node for VAR. On exit, only the nodes that received a PHI node
1065 for VAR will be present in PHI_INSERTION_POINTS. */
1067 static void
1068 insert_phi_nodes_for (tree var, bitmap phi_insertion_points, bool update_p)
1070 unsigned bb_index;
1071 edge e;
1072 gimple phi;
1073 basic_block bb;
1074 bitmap_iterator bi;
1075 struct def_blocks_d *def_map;
1077 def_map = find_def_blocks_for (var);
1078 gcc_assert (def_map);
1080 /* Remove the blocks where we already have PHI nodes for VAR. */
1081 bitmap_and_compl_into (phi_insertion_points, def_map->phi_blocks);
1083 /* Remove obviously useless phi nodes. */
1084 prune_unused_phi_nodes (phi_insertion_points, def_map->def_blocks,
1085 def_map->livein_blocks);
1087 /* And insert the PHI nodes. */
1088 EXECUTE_IF_SET_IN_BITMAP (phi_insertion_points, 0, bb_index, bi)
1090 bb = BASIC_BLOCK (bb_index);
1091 if (update_p)
1092 mark_block_for_update (bb);
1094 phi = NULL;
1096 if (TREE_CODE (var) == SSA_NAME)
1098 /* If we are rewriting SSA names, create the LHS of the PHI
1099 node by duplicating VAR. This is useful in the case of
1100 pointers, to also duplicate pointer attributes (alias
1101 information, in particular). */
1102 edge_iterator ei;
1103 tree new_lhs;
1105 gcc_assert (update_p);
1106 phi = create_phi_node (var, bb);
1108 new_lhs = duplicate_ssa_name (var, phi);
1109 gimple_phi_set_result (phi, new_lhs);
1110 add_new_name_mapping (new_lhs, var);
1112 /* Add VAR to every argument slot of PHI. We need VAR in
1113 every argument so that rewrite_update_phi_arguments knows
1114 which name is this PHI node replacing. If VAR is a
1115 symbol marked for renaming, this is not necessary, the
1116 renamer will use the symbol on the LHS to get its
1117 reaching definition. */
1118 FOR_EACH_EDGE (e, ei, bb->preds)
1119 add_phi_arg (phi, var, e, UNKNOWN_LOCATION);
1121 else
1123 tree tracked_var;
1125 gcc_assert (DECL_P (var));
1126 phi = create_phi_node (var, bb);
1128 tracked_var = target_for_debug_bind (var);
1129 if (tracked_var)
1131 gimple note = gimple_build_debug_bind (tracked_var,
1132 PHI_RESULT (phi),
1133 phi);
1134 gimple_stmt_iterator si = gsi_after_labels (bb);
1135 gsi_insert_before (&si, note, GSI_SAME_STMT);
1139 /* Mark this PHI node as interesting for update_ssa. */
1140 set_register_defs (phi, true);
1141 mark_phi_for_rewrite (bb, phi);
1146 /* Insert PHI nodes at the dominance frontier of blocks with variable
1147 definitions. DFS contains the dominance frontier information for
1148 the flowgraph. */
1150 static void
1151 insert_phi_nodes (bitmap *dfs)
1153 referenced_var_iterator rvi;
1154 bitmap_iterator bi;
1155 tree var;
1156 bitmap vars;
1157 unsigned uid;
1159 timevar_push (TV_TREE_INSERT_PHI_NODES);
1161 /* Do two stages to avoid code generation differences for UID
1162 differences but no UID ordering differences. */
1164 vars = BITMAP_ALLOC (NULL);
1165 FOR_EACH_REFERENCED_VAR (var, rvi)
1167 struct def_blocks_d *def_map;
1169 def_map = find_def_blocks_for (var);
1170 if (def_map == NULL)
1171 continue;
1173 if (get_phi_state (var) != NEED_PHI_STATE_NO)
1174 bitmap_set_bit (vars, DECL_UID (var));
1177 EXECUTE_IF_SET_IN_BITMAP (vars, 0, uid, bi)
1179 tree var = referenced_var (uid);
1180 struct def_blocks_d *def_map;
1181 bitmap idf;
1183 def_map = find_def_blocks_for (var);
1184 idf = compute_idf (def_map->def_blocks, dfs);
1185 insert_phi_nodes_for (var, idf, false);
1186 BITMAP_FREE (idf);
1189 BITMAP_FREE (vars);
1191 timevar_pop (TV_TREE_INSERT_PHI_NODES);
1195 /* Push SYM's current reaching definition into BLOCK_DEFS_STACK and
1196 register DEF (an SSA_NAME) to be a new definition for SYM. */
1198 static void
1199 register_new_def (tree def, tree sym)
1201 tree currdef;
1203 /* If this variable is set in a single basic block and all uses are
1204 dominated by the set(s) in that single basic block, then there is
1205 no reason to record anything for this variable in the block local
1206 definition stacks. Doing so just wastes time and memory.
1208 This is the same test to prune the set of variables which may
1209 need PHI nodes. So we just use that information since it's already
1210 computed and available for us to use. */
1211 if (get_phi_state (sym) == NEED_PHI_STATE_NO)
1213 set_current_def (sym, def);
1214 return;
1217 currdef = get_current_def (sym);
1219 /* If SYM is not a GIMPLE register, then CURRDEF may be a name whose
1220 SSA_NAME_VAR is not necessarily SYM. In this case, also push SYM
1221 in the stack so that we know which symbol is being defined by
1222 this SSA name when we unwind the stack. */
1223 if (currdef && !is_gimple_reg (sym))
1224 VEC_safe_push (tree, heap, block_defs_stack, sym);
1226 /* Push the current reaching definition into BLOCK_DEFS_STACK. This
1227 stack is later used by the dominator tree callbacks to restore
1228 the reaching definitions for all the variables defined in the
1229 block after a recursive visit to all its immediately dominated
1230 blocks. If there is no current reaching definition, then just
1231 record the underlying _DECL node. */
1232 VEC_safe_push (tree, heap, block_defs_stack, currdef ? currdef : sym);
1234 /* Set the current reaching definition for SYM to be DEF. */
1235 set_current_def (sym, def);
1239 /* Perform a depth-first traversal of the dominator tree looking for
1240 variables to rename. BB is the block where to start searching.
1241 Renaming is a five step process:
1243 1- Every definition made by PHI nodes at the start of the blocks is
1244 registered as the current definition for the corresponding variable.
1246 2- Every statement in BB is rewritten. USE and VUSE operands are
1247 rewritten with their corresponding reaching definition. DEF and
1248 VDEF targets are registered as new definitions.
1250 3- All the PHI nodes in successor blocks of BB are visited. The
1251 argument corresponding to BB is replaced with its current reaching
1252 definition.
1254 4- Recursively rewrite every dominator child block of BB.
1256 5- Restore (in reverse order) the current reaching definition for every
1257 new definition introduced in this block. This is done so that when
1258 we return from the recursive call, all the current reaching
1259 definitions are restored to the names that were valid in the
1260 dominator parent of BB. */
1262 /* Return the current definition for variable VAR. If none is found,
1263 create a new SSA name to act as the zeroth definition for VAR. */
1265 static tree
1266 get_reaching_def (tree var)
1268 tree currdef;
1270 /* Lookup the current reaching definition for VAR. */
1271 currdef = get_current_def (var);
1273 /* If there is no reaching definition for VAR, create and register a
1274 default definition for it (if needed). */
1275 if (currdef == NULL_TREE)
1277 tree sym = DECL_P (var) ? var : SSA_NAME_VAR (var);
1278 currdef = get_default_def_for (sym);
1279 set_current_def (var, currdef);
1282 /* Return the current reaching definition for VAR, or the default
1283 definition, if we had to create one. */
1284 return currdef;
1288 /* SSA Rewriting Step 2. Rewrite every variable used in each statement in
1289 the block with its immediate reaching definitions. Update the current
1290 definition of a variable when a new real or virtual definition is found. */
1292 static void
1293 rewrite_stmt (gimple_stmt_iterator si)
1295 use_operand_p use_p;
1296 def_operand_p def_p;
1297 ssa_op_iter iter;
1298 gimple stmt = gsi_stmt (si);
1300 /* If mark_def_sites decided that we don't need to rewrite this
1301 statement, ignore it. */
1302 gcc_assert (blocks_to_update == NULL);
1303 if (!rewrite_uses_p (stmt) && !register_defs_p (stmt))
1304 return;
1306 if (dump_file && (dump_flags & TDF_DETAILS))
1308 fprintf (dump_file, "Renaming statement ");
1309 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
1310 fprintf (dump_file, "\n");
1313 /* Step 1. Rewrite USES in the statement. */
1314 if (rewrite_uses_p (stmt))
1315 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_USE)
1317 tree var = USE_FROM_PTR (use_p);
1318 gcc_assert (DECL_P (var));
1319 SET_USE (use_p, get_reaching_def (var));
1322 /* Step 2. Register the statement's DEF operands. */
1323 if (register_defs_p (stmt))
1324 FOR_EACH_SSA_DEF_OPERAND (def_p, stmt, iter, SSA_OP_DEF)
1326 tree var = DEF_FROM_PTR (def_p);
1327 tree name = make_ssa_name (var, stmt);
1328 tree tracked_var;
1329 gcc_assert (DECL_P (var));
1330 SET_DEF (def_p, name);
1331 register_new_def (DEF_FROM_PTR (def_p), var);
1333 tracked_var = target_for_debug_bind (var);
1334 if (tracked_var)
1336 gimple note = gimple_build_debug_bind (tracked_var, name, stmt);
1337 gsi_insert_after (&si, note, GSI_SAME_STMT);
1343 /* SSA Rewriting Step 3. Visit all the successor blocks of BB looking for
1344 PHI nodes. For every PHI node found, add a new argument containing the
1345 current reaching definition for the variable and the edge through which
1346 that definition is reaching the PHI node. */
1348 static void
1349 rewrite_add_phi_arguments (basic_block bb)
1351 edge e;
1352 edge_iterator ei;
1354 FOR_EACH_EDGE (e, ei, bb->succs)
1356 gimple phi;
1357 gimple_stmt_iterator gsi;
1359 for (gsi = gsi_start_phis (e->dest); !gsi_end_p (gsi);
1360 gsi_next (&gsi))
1362 tree currdef;
1363 gimple stmt;
1365 phi = gsi_stmt (gsi);
1366 currdef = get_reaching_def (SSA_NAME_VAR (gimple_phi_result (phi)));
1367 stmt = SSA_NAME_DEF_STMT (currdef);
1368 add_phi_arg (phi, currdef, e, gimple_location (stmt));
1373 /* SSA Rewriting Step 1. Initialization, create a block local stack
1374 of reaching definitions for new SSA names produced in this block
1375 (BLOCK_DEFS). Register new definitions for every PHI node in the
1376 block. */
1378 static void
1379 rewrite_enter_block (struct dom_walk_data *walk_data ATTRIBUTE_UNUSED,
1380 basic_block bb)
1382 gimple phi;
1383 gimple_stmt_iterator gsi;
1385 if (dump_file && (dump_flags & TDF_DETAILS))
1386 fprintf (dump_file, "\n\nRenaming block #%d\n\n", bb->index);
1388 /* Mark the unwind point for this block. */
1389 VEC_safe_push (tree, heap, block_defs_stack, NULL_TREE);
1391 /* Step 1. Register new definitions for every PHI node in the block.
1392 Conceptually, all the PHI nodes are executed in parallel and each PHI
1393 node introduces a new version for the associated variable. */
1394 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1396 tree result;
1398 phi = gsi_stmt (gsi);
1399 result = gimple_phi_result (phi);
1400 gcc_assert (is_gimple_reg (result));
1401 register_new_def (result, SSA_NAME_VAR (result));
1404 /* Step 2. Rewrite every variable used in each statement in the block
1405 with its immediate reaching definitions. Update the current definition
1406 of a variable when a new real or virtual definition is found. */
1407 if (TEST_BIT (interesting_blocks, bb->index))
1408 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1409 rewrite_stmt (gsi);
1411 /* Step 3. Visit all the successor blocks of BB looking for PHI nodes.
1412 For every PHI node found, add a new argument containing the current
1413 reaching definition for the variable and the edge through which that
1414 definition is reaching the PHI node. */
1415 rewrite_add_phi_arguments (bb);
1420 /* Called after visiting all the statements in basic block BB and all
1421 of its dominator children. Restore CURRDEFS to its original value. */
1423 static void
1424 rewrite_leave_block (struct dom_walk_data *walk_data ATTRIBUTE_UNUSED,
1425 basic_block bb ATTRIBUTE_UNUSED)
1427 /* Restore CURRDEFS to its original state. */
1428 while (VEC_length (tree, block_defs_stack) > 0)
1430 tree tmp = VEC_pop (tree, block_defs_stack);
1431 tree saved_def, var;
1433 if (tmp == NULL_TREE)
1434 break;
1436 if (TREE_CODE (tmp) == SSA_NAME)
1438 /* If we recorded an SSA_NAME, then make the SSA_NAME the
1439 current definition of its underlying variable. Note that
1440 if the SSA_NAME is not for a GIMPLE register, the symbol
1441 being defined is stored in the next slot in the stack.
1442 This mechanism is needed because an SSA name for a
1443 non-register symbol may be the definition for more than
1444 one symbol (e.g., SFTs, aliased variables, etc). */
1445 saved_def = tmp;
1446 var = SSA_NAME_VAR (saved_def);
1447 if (!is_gimple_reg (var))
1448 var = VEC_pop (tree, block_defs_stack);
1450 else
1452 /* If we recorded anything else, it must have been a _DECL
1453 node and its current reaching definition must have been
1454 NULL. */
1455 saved_def = NULL;
1456 var = tmp;
1459 set_current_def (var, saved_def);
1464 /* Dump bitmap SET (assumed to contain VAR_DECLs) to FILE. */
1466 void
1467 dump_decl_set (FILE *file, bitmap set)
1469 if (set)
1471 bitmap_iterator bi;
1472 unsigned i;
1474 fprintf (file, "{ ");
1476 EXECUTE_IF_SET_IN_BITMAP (set, 0, i, bi)
1478 print_generic_expr (file, referenced_var (i), 0);
1479 fprintf (file, " ");
1482 fprintf (file, "}");
1484 else
1485 fprintf (file, "NIL");
1489 /* Dump bitmap SET (assumed to contain VAR_DECLs) to FILE. */
1491 void
1492 debug_decl_set (bitmap set)
1494 dump_decl_set (stderr, set);
1495 fprintf (stderr, "\n");
1499 /* Dump the renaming stack (block_defs_stack) to FILE. Traverse the
1500 stack up to a maximum of N levels. If N is -1, the whole stack is
1501 dumped. New levels are created when the dominator tree traversal
1502 used for renaming enters a new sub-tree. */
1504 void
1505 dump_defs_stack (FILE *file, int n)
1507 int i, j;
1509 fprintf (file, "\n\nRenaming stack");
1510 if (n > 0)
1511 fprintf (file, " (up to %d levels)", n);
1512 fprintf (file, "\n\n");
1514 i = 1;
1515 fprintf (file, "Level %d (current level)\n", i);
1516 for (j = (int) VEC_length (tree, block_defs_stack) - 1; j >= 0; j--)
1518 tree name, var;
1520 name = VEC_index (tree, block_defs_stack, j);
1521 if (name == NULL_TREE)
1523 i++;
1524 if (n > 0 && i > n)
1525 break;
1526 fprintf (file, "\nLevel %d\n", i);
1527 continue;
1530 if (DECL_P (name))
1532 var = name;
1533 name = NULL_TREE;
1535 else
1537 var = SSA_NAME_VAR (name);
1538 if (!is_gimple_reg (var))
1540 j--;
1541 var = VEC_index (tree, block_defs_stack, j);
1545 fprintf (file, " Previous CURRDEF (");
1546 print_generic_expr (file, var, 0);
1547 fprintf (file, ") = ");
1548 if (name)
1549 print_generic_expr (file, name, 0);
1550 else
1551 fprintf (file, "<NIL>");
1552 fprintf (file, "\n");
1557 /* Dump the renaming stack (block_defs_stack) to stderr. Traverse the
1558 stack up to a maximum of N levels. If N is -1, the whole stack is
1559 dumped. New levels are created when the dominator tree traversal
1560 used for renaming enters a new sub-tree. */
1562 void
1563 debug_defs_stack (int n)
1565 dump_defs_stack (stderr, n);
1569 /* Dump the current reaching definition of every symbol to FILE. */
1571 void
1572 dump_currdefs (FILE *file)
1574 referenced_var_iterator i;
1575 tree var;
1577 fprintf (file, "\n\nCurrent reaching definitions\n\n");
1578 FOR_EACH_REFERENCED_VAR (var, i)
1579 if (SYMS_TO_RENAME (cfun) == NULL
1580 || bitmap_bit_p (SYMS_TO_RENAME (cfun), DECL_UID (var)))
1582 fprintf (file, "CURRDEF (");
1583 print_generic_expr (file, var, 0);
1584 fprintf (file, ") = ");
1585 if (get_current_def (var))
1586 print_generic_expr (file, get_current_def (var), 0);
1587 else
1588 fprintf (file, "<NIL>");
1589 fprintf (file, "\n");
1594 /* Dump the current reaching definition of every symbol to stderr. */
1596 void
1597 debug_currdefs (void)
1599 dump_currdefs (stderr);
1603 /* Dump SSA information to FILE. */
1605 void
1606 dump_tree_ssa (FILE *file)
1608 const char *funcname
1609 = lang_hooks.decl_printable_name (current_function_decl, 2);
1611 fprintf (file, "SSA renaming information for %s\n\n", funcname);
1613 dump_def_blocks (file);
1614 dump_defs_stack (file, -1);
1615 dump_currdefs (file);
1616 dump_tree_ssa_stats (file);
1620 /* Dump SSA information to stderr. */
1622 void
1623 debug_tree_ssa (void)
1625 dump_tree_ssa (stderr);
1629 /* Dump statistics for the hash table HTAB. */
1631 static void
1632 htab_statistics (FILE *file, htab_t htab)
1634 fprintf (file, "size %ld, %ld elements, %f collision/search ratio\n",
1635 (long) htab_size (htab),
1636 (long) htab_elements (htab),
1637 htab_collisions (htab));
1641 /* Dump SSA statistics on FILE. */
1643 void
1644 dump_tree_ssa_stats (FILE *file)
1646 if (def_blocks || repl_tbl)
1647 fprintf (file, "\nHash table statistics:\n");
1649 if (def_blocks)
1651 fprintf (file, " def_blocks: ");
1652 htab_statistics (file, def_blocks);
1655 if (repl_tbl)
1657 fprintf (file, " repl_tbl: ");
1658 htab_statistics (file, repl_tbl);
1661 if (def_blocks || repl_tbl)
1662 fprintf (file, "\n");
1666 /* Dump SSA statistics on stderr. */
1668 void
1669 debug_tree_ssa_stats (void)
1671 dump_tree_ssa_stats (stderr);
1675 /* Hashing and equality functions for DEF_BLOCKS. */
1677 static hashval_t
1678 def_blocks_hash (const void *p)
1680 return htab_hash_pointer
1681 ((const void *)((const struct def_blocks_d *)p)->var);
1684 static int
1685 def_blocks_eq (const void *p1, const void *p2)
1687 return ((const struct def_blocks_d *)p1)->var
1688 == ((const struct def_blocks_d *)p2)->var;
1692 /* Free memory allocated by one entry in DEF_BLOCKS. */
1694 static void
1695 def_blocks_free (void *p)
1697 struct def_blocks_d *entry = (struct def_blocks_d *) p;
1698 BITMAP_FREE (entry->def_blocks);
1699 BITMAP_FREE (entry->phi_blocks);
1700 BITMAP_FREE (entry->livein_blocks);
1701 free (entry);
1705 /* Callback for htab_traverse to dump the DEF_BLOCKS hash table. */
1707 static int
1708 debug_def_blocks_r (void **slot, void *data)
1710 FILE *file = (FILE *) data;
1711 struct def_blocks_d *db_p = (struct def_blocks_d *) *slot;
1713 fprintf (file, "VAR: ");
1714 print_generic_expr (file, db_p->var, dump_flags);
1715 bitmap_print (file, db_p->def_blocks, ", DEF_BLOCKS: { ", "}");
1716 bitmap_print (file, db_p->livein_blocks, ", LIVEIN_BLOCKS: { ", "}");
1717 bitmap_print (file, db_p->phi_blocks, ", PHI_BLOCKS: { ", "}\n");
1719 return 1;
1723 /* Dump the DEF_BLOCKS hash table on FILE. */
1725 void
1726 dump_def_blocks (FILE *file)
1728 fprintf (file, "\n\nDefinition and live-in blocks:\n\n");
1729 if (def_blocks)
1730 htab_traverse (def_blocks, debug_def_blocks_r, file);
1734 /* Dump the DEF_BLOCKS hash table on stderr. */
1736 void
1737 debug_def_blocks (void)
1739 dump_def_blocks (stderr);
1743 /* Register NEW_NAME to be the new reaching definition for OLD_NAME. */
1745 static inline void
1746 register_new_update_single (tree new_name, tree old_name)
1748 tree currdef = get_current_def (old_name);
1750 /* Push the current reaching definition into BLOCK_DEFS_STACK.
1751 This stack is later used by the dominator tree callbacks to
1752 restore the reaching definitions for all the variables
1753 defined in the block after a recursive visit to all its
1754 immediately dominated blocks. */
1755 VEC_reserve (tree, heap, block_defs_stack, 2);
1756 VEC_quick_push (tree, block_defs_stack, currdef);
1757 VEC_quick_push (tree, block_defs_stack, old_name);
1759 /* Set the current reaching definition for OLD_NAME to be
1760 NEW_NAME. */
1761 set_current_def (old_name, new_name);
1765 /* Register NEW_NAME to be the new reaching definition for all the
1766 names in OLD_NAMES. Used by the incremental SSA update routines to
1767 replace old SSA names with new ones. */
1769 static inline void
1770 register_new_update_set (tree new_name, bitmap old_names)
1772 bitmap_iterator bi;
1773 unsigned i;
1775 EXECUTE_IF_SET_IN_BITMAP (old_names, 0, i, bi)
1776 register_new_update_single (new_name, ssa_name (i));
1781 /* If the operand pointed to by USE_P is a name in OLD_SSA_NAMES or
1782 it is a symbol marked for renaming, replace it with USE_P's current
1783 reaching definition. */
1785 static inline void
1786 maybe_replace_use (use_operand_p use_p)
1788 tree rdef = NULL_TREE;
1789 tree use = USE_FROM_PTR (use_p);
1790 tree sym = DECL_P (use) ? use : SSA_NAME_VAR (use);
1792 if (symbol_marked_for_renaming (sym))
1793 rdef = get_reaching_def (sym);
1794 else if (is_old_name (use))
1795 rdef = get_reaching_def (use);
1797 if (rdef && rdef != use)
1798 SET_USE (use_p, rdef);
1802 /* Same as maybe_replace_use, but without introducing default stmts,
1803 returning false to indicate a need to do so. */
1805 static inline bool
1806 maybe_replace_use_in_debug_stmt (use_operand_p use_p)
1808 tree rdef = NULL_TREE;
1809 tree use = USE_FROM_PTR (use_p);
1810 tree sym = DECL_P (use) ? use : SSA_NAME_VAR (use);
1812 if (symbol_marked_for_renaming (sym))
1813 rdef = get_current_def (sym);
1814 else if (is_old_name (use))
1816 rdef = get_current_def (use);
1817 /* We can't assume that, if there's no current definition, the
1818 default one should be used. It could be the case that we've
1819 rearranged blocks so that the earlier definition no longer
1820 dominates the use. */
1821 if (!rdef && SSA_NAME_IS_DEFAULT_DEF (use))
1822 rdef = use;
1824 else
1825 rdef = use;
1827 if (rdef && rdef != use)
1828 SET_USE (use_p, rdef);
1830 return rdef != NULL_TREE;
1834 /* If the operand pointed to by DEF_P is an SSA name in NEW_SSA_NAMES
1835 or OLD_SSA_NAMES, or if it is a symbol marked for renaming,
1836 register it as the current definition for the names replaced by
1837 DEF_P. */
1839 static inline void
1840 maybe_register_def (def_operand_p def_p, gimple stmt,
1841 gimple_stmt_iterator gsi)
1843 tree def = DEF_FROM_PTR (def_p);
1844 tree sym = DECL_P (def) ? def : SSA_NAME_VAR (def);
1846 /* If DEF is a naked symbol that needs renaming, create a new
1847 name for it. */
1848 if (symbol_marked_for_renaming (sym))
1850 if (DECL_P (def))
1852 tree tracked_var;
1854 def = make_ssa_name (def, stmt);
1855 SET_DEF (def_p, def);
1857 tracked_var = target_for_debug_bind (sym);
1858 if (tracked_var)
1860 gimple note = gimple_build_debug_bind (tracked_var, def, stmt);
1861 /* If stmt ends the bb, insert the debug stmt on the single
1862 non-EH edge from the stmt. */
1863 if (gsi_one_before_end_p (gsi) && stmt_ends_bb_p (stmt))
1865 basic_block bb = gsi_bb (gsi);
1866 edge_iterator ei;
1867 edge e, ef = NULL;
1868 FOR_EACH_EDGE (e, ei, bb->succs)
1869 if (!(e->flags & EDGE_EH))
1871 gcc_assert (!ef);
1872 ef = e;
1874 gcc_assert (ef
1875 && single_pred_p (ef->dest)
1876 && !phi_nodes (ef->dest)
1877 && ef->dest != EXIT_BLOCK_PTR);
1878 gsi_insert_on_edge_immediate (ef, note);
1880 else
1881 gsi_insert_after (&gsi, note, GSI_SAME_STMT);
1885 register_new_update_single (def, sym);
1887 else
1889 /* If DEF is a new name, register it as a new definition
1890 for all the names replaced by DEF. */
1891 if (is_new_name (def))
1892 register_new_update_set (def, names_replaced_by (def));
1894 /* If DEF is an old name, register DEF as a new
1895 definition for itself. */
1896 if (is_old_name (def))
1897 register_new_update_single (def, def);
1902 /* Update every variable used in the statement pointed-to by SI. The
1903 statement is assumed to be in SSA form already. Names in
1904 OLD_SSA_NAMES used by SI will be updated to their current reaching
1905 definition. Names in OLD_SSA_NAMES or NEW_SSA_NAMES defined by SI
1906 will be registered as a new definition for their corresponding name
1907 in OLD_SSA_NAMES. */
1909 static void
1910 rewrite_update_stmt (gimple stmt, gimple_stmt_iterator gsi)
1912 use_operand_p use_p;
1913 def_operand_p def_p;
1914 ssa_op_iter iter;
1916 /* Only update marked statements. */
1917 if (!rewrite_uses_p (stmt) && !register_defs_p (stmt))
1918 return;
1920 if (dump_file && (dump_flags & TDF_DETAILS))
1922 fprintf (dump_file, "Updating SSA information for statement ");
1923 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
1924 fprintf (dump_file, "\n");
1927 /* Rewrite USES included in OLD_SSA_NAMES and USES whose underlying
1928 symbol is marked for renaming. */
1929 if (rewrite_uses_p (stmt))
1931 if (is_gimple_debug (stmt))
1933 bool failed = false;
1935 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_USE)
1936 if (!maybe_replace_use_in_debug_stmt (use_p))
1938 failed = true;
1939 break;
1942 if (failed)
1944 /* DOM sometimes threads jumps in such a way that a
1945 debug stmt ends up referencing a SSA variable that no
1946 longer dominates the debug stmt, but such that all
1947 incoming definitions refer to the same definition in
1948 an earlier dominator. We could try to recover that
1949 definition somehow, but this will have to do for now.
1951 Introducing a default definition, which is what
1952 maybe_replace_use() would do in such cases, may
1953 modify code generation, for the otherwise-unused
1954 default definition would never go away, modifying SSA
1955 version numbers all over. */
1956 gimple_debug_bind_reset_value (stmt);
1957 update_stmt (stmt);
1960 else
1962 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_ALL_USES)
1963 maybe_replace_use (use_p);
1967 /* Register definitions of names in NEW_SSA_NAMES and OLD_SSA_NAMES.
1968 Also register definitions for names whose underlying symbol is
1969 marked for renaming. */
1970 if (register_defs_p (stmt))
1971 FOR_EACH_SSA_DEF_OPERAND (def_p, stmt, iter, SSA_OP_ALL_DEFS)
1972 maybe_register_def (def_p, stmt, gsi);
1976 /* Visit all the successor blocks of BB looking for PHI nodes. For
1977 every PHI node found, check if any of its arguments is in
1978 OLD_SSA_NAMES. If so, and if the argument has a current reaching
1979 definition, replace it. */
1981 static void
1982 rewrite_update_phi_arguments (basic_block bb)
1984 edge e;
1985 edge_iterator ei;
1986 unsigned i;
1988 FOR_EACH_EDGE (e, ei, bb->succs)
1990 gimple phi;
1991 gimple_vec phis;
1993 if (!bitmap_bit_p (blocks_with_phis_to_rewrite, e->dest->index))
1994 continue;
1996 phis = VEC_index (gimple_vec, phis_to_rewrite, e->dest->index);
1997 for (i = 0; VEC_iterate (gimple, phis, i, phi); i++)
1999 tree arg, lhs_sym, reaching_def = NULL;
2000 use_operand_p arg_p;
2002 gcc_assert (rewrite_uses_p (phi));
2004 arg_p = PHI_ARG_DEF_PTR_FROM_EDGE (phi, e);
2005 arg = USE_FROM_PTR (arg_p);
2007 if (arg && !DECL_P (arg) && TREE_CODE (arg) != SSA_NAME)
2008 continue;
2010 lhs_sym = SSA_NAME_VAR (gimple_phi_result (phi));
2012 if (arg == NULL_TREE)
2014 /* When updating a PHI node for a recently introduced
2015 symbol we may find NULL arguments. That's why we
2016 take the symbol from the LHS of the PHI node. */
2017 reaching_def = get_reaching_def (lhs_sym);
2020 else
2022 tree sym = DECL_P (arg) ? arg : SSA_NAME_VAR (arg);
2024 if (symbol_marked_for_renaming (sym))
2025 reaching_def = get_reaching_def (sym);
2026 else if (is_old_name (arg))
2027 reaching_def = get_reaching_def (arg);
2030 /* Update the argument if there is a reaching def. */
2031 if (reaching_def)
2033 gimple stmt;
2034 source_location locus;
2035 int arg_i = PHI_ARG_INDEX_FROM_USE (arg_p);
2037 SET_USE (arg_p, reaching_def);
2038 stmt = SSA_NAME_DEF_STMT (reaching_def);
2040 /* Single element PHI nodes behave like copies, so get the
2041 location from the phi argument. */
2042 if (gimple_code (stmt) == GIMPLE_PHI &&
2043 gimple_phi_num_args (stmt) == 1)
2044 locus = gimple_phi_arg_location (stmt, 0);
2045 else
2046 locus = gimple_location (stmt);
2048 gimple_phi_arg_set_location (phi, arg_i, locus);
2052 if (e->flags & EDGE_ABNORMAL)
2053 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (USE_FROM_PTR (arg_p)) = 1;
2059 /* Initialization of block data structures for the incremental SSA
2060 update pass. Create a block local stack of reaching definitions
2061 for new SSA names produced in this block (BLOCK_DEFS). Register
2062 new definitions for every PHI node in the block. */
2064 static void
2065 rewrite_update_enter_block (struct dom_walk_data *walk_data ATTRIBUTE_UNUSED,
2066 basic_block bb)
2068 edge e;
2069 edge_iterator ei;
2070 bool is_abnormal_phi;
2071 gimple_stmt_iterator gsi;
2073 if (dump_file && (dump_flags & TDF_DETAILS))
2074 fprintf (dump_file, "\n\nRegistering new PHI nodes in block #%d\n\n",
2075 bb->index);
2077 /* Mark the unwind point for this block. */
2078 VEC_safe_push (tree, heap, block_defs_stack, NULL_TREE);
2080 if (!bitmap_bit_p (blocks_to_update, bb->index))
2081 return;
2083 /* Mark the LHS if any of the arguments flows through an abnormal
2084 edge. */
2085 is_abnormal_phi = false;
2086 FOR_EACH_EDGE (e, ei, bb->preds)
2087 if (e->flags & EDGE_ABNORMAL)
2089 is_abnormal_phi = true;
2090 break;
2093 /* If any of the PHI nodes is a replacement for a name in
2094 OLD_SSA_NAMES or it's one of the names in NEW_SSA_NAMES, then
2095 register it as a new definition for its corresponding name. Also
2096 register definitions for names whose underlying symbols are
2097 marked for renaming. */
2098 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
2100 tree lhs, lhs_sym;
2101 gimple phi = gsi_stmt (gsi);
2103 if (!register_defs_p (phi))
2104 continue;
2106 lhs = gimple_phi_result (phi);
2107 lhs_sym = SSA_NAME_VAR (lhs);
2109 if (symbol_marked_for_renaming (lhs_sym))
2110 register_new_update_single (lhs, lhs_sym);
2111 else
2114 /* If LHS is a new name, register a new definition for all
2115 the names replaced by LHS. */
2116 if (is_new_name (lhs))
2117 register_new_update_set (lhs, names_replaced_by (lhs));
2119 /* If LHS is an OLD name, register it as a new definition
2120 for itself. */
2121 if (is_old_name (lhs))
2122 register_new_update_single (lhs, lhs);
2125 if (is_abnormal_phi)
2126 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (lhs) = 1;
2129 /* Step 2. Rewrite every variable used in each statement in the block. */
2130 if (TEST_BIT (interesting_blocks, bb->index))
2132 gcc_assert (bitmap_bit_p (blocks_to_update, bb->index));
2133 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
2134 rewrite_update_stmt (gsi_stmt (gsi), gsi);
2137 /* Step 3. Update PHI nodes. */
2138 rewrite_update_phi_arguments (bb);
2141 /* Called after visiting block BB. Unwind BLOCK_DEFS_STACK to restore
2142 the current reaching definition of every name re-written in BB to
2143 the original reaching definition before visiting BB. This
2144 unwinding must be done in the opposite order to what is done in
2145 register_new_update_set. */
2147 static void
2148 rewrite_update_leave_block (struct dom_walk_data *walk_data ATTRIBUTE_UNUSED,
2149 basic_block bb ATTRIBUTE_UNUSED)
2151 while (VEC_length (tree, block_defs_stack) > 0)
2153 tree var = VEC_pop (tree, block_defs_stack);
2154 tree saved_def;
2156 /* NULL indicates the unwind stop point for this block (see
2157 rewrite_update_enter_block). */
2158 if (var == NULL)
2159 return;
2161 saved_def = VEC_pop (tree, block_defs_stack);
2162 set_current_def (var, saved_def);
2167 /* Rewrite the actual blocks, statements, and PHI arguments, to be in SSA
2168 form.
2170 ENTRY indicates the block where to start. Every block dominated by
2171 ENTRY will be rewritten.
2173 WHAT indicates what actions will be taken by the renamer (see enum
2174 rewrite_mode).
2176 BLOCKS are the set of interesting blocks for the dominator walker
2177 to process. If this set is NULL, then all the nodes dominated
2178 by ENTRY are walked. Otherwise, blocks dominated by ENTRY that
2179 are not present in BLOCKS are ignored. */
2181 static void
2182 rewrite_blocks (basic_block entry, enum rewrite_mode what)
2184 struct dom_walk_data walk_data;
2186 /* Rewrite all the basic blocks in the program. */
2187 timevar_push (TV_TREE_SSA_REWRITE_BLOCKS);
2189 /* Setup callbacks for the generic dominator tree walker. */
2190 memset (&walk_data, 0, sizeof (walk_data));
2192 walk_data.dom_direction = CDI_DOMINATORS;
2194 if (what == REWRITE_ALL)
2196 walk_data.before_dom_children = rewrite_enter_block;
2197 walk_data.after_dom_children = rewrite_leave_block;
2199 else if (what == REWRITE_UPDATE)
2201 walk_data.before_dom_children = rewrite_update_enter_block;
2202 walk_data.after_dom_children = rewrite_update_leave_block;
2204 else
2205 gcc_unreachable ();
2207 block_defs_stack = VEC_alloc (tree, heap, 10);
2209 /* Initialize the dominator walker. */
2210 init_walk_dominator_tree (&walk_data);
2212 /* Recursively walk the dominator tree rewriting each statement in
2213 each basic block. */
2214 walk_dominator_tree (&walk_data, entry);
2216 /* Finalize the dominator walker. */
2217 fini_walk_dominator_tree (&walk_data);
2219 /* Debugging dumps. */
2220 if (dump_file && (dump_flags & TDF_STATS))
2222 dump_dfa_stats (dump_file);
2223 if (def_blocks)
2224 dump_tree_ssa_stats (dump_file);
2227 VEC_free (tree, heap, block_defs_stack);
2229 timevar_pop (TV_TREE_SSA_REWRITE_BLOCKS);
2233 /* Block processing routine for mark_def_sites. Clear the KILLS bitmap
2234 at the start of each block, and call mark_def_sites for each statement. */
2236 static void
2237 mark_def_sites_block (struct dom_walk_data *walk_data, basic_block bb)
2239 struct mark_def_sites_global_data *gd;
2240 bitmap kills;
2241 gimple_stmt_iterator gsi;
2243 gd = (struct mark_def_sites_global_data *) walk_data->global_data;
2244 kills = gd->kills;
2246 bitmap_clear (kills);
2247 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
2248 mark_def_sites (bb, gsi_stmt (gsi), kills);
2252 /* Mark the definition site blocks for each variable, so that we know
2253 where the variable is actually live.
2255 The INTERESTING_BLOCKS global will be filled in with all the blocks
2256 that should be processed by the renamer. It is assumed that the
2257 caller has already initialized and zeroed it. */
2259 static void
2260 mark_def_site_blocks (void)
2262 struct dom_walk_data walk_data;
2263 struct mark_def_sites_global_data mark_def_sites_global_data;
2265 /* Setup callbacks for the generic dominator tree walker to find and
2266 mark definition sites. */
2267 walk_data.dom_direction = CDI_DOMINATORS;
2268 walk_data.initialize_block_local_data = NULL;
2269 walk_data.before_dom_children = mark_def_sites_block;
2270 walk_data.after_dom_children = NULL;
2272 /* Notice that this bitmap is indexed using variable UIDs, so it must be
2273 large enough to accommodate all the variables referenced in the
2274 function, not just the ones we are renaming. */
2275 mark_def_sites_global_data.kills = BITMAP_ALLOC (NULL);
2276 walk_data.global_data = &mark_def_sites_global_data;
2278 /* We do not have any local data. */
2279 walk_data.block_local_data_size = 0;
2281 /* Initialize the dominator walker. */
2282 init_walk_dominator_tree (&walk_data);
2284 /* Recursively walk the dominator tree. */
2285 walk_dominator_tree (&walk_data, ENTRY_BLOCK_PTR);
2287 /* Finalize the dominator walker. */
2288 fini_walk_dominator_tree (&walk_data);
2290 /* We no longer need this bitmap, clear and free it. */
2291 BITMAP_FREE (mark_def_sites_global_data.kills);
2295 /* Initialize internal data needed during renaming. */
2297 static void
2298 init_ssa_renamer (void)
2300 tree var;
2301 referenced_var_iterator rvi;
2303 cfun->gimple_df->in_ssa_p = false;
2305 /* Allocate memory for the DEF_BLOCKS hash table. */
2306 gcc_assert (def_blocks == NULL);
2307 def_blocks = htab_create (num_referenced_vars, def_blocks_hash,
2308 def_blocks_eq, def_blocks_free);
2310 FOR_EACH_REFERENCED_VAR(var, rvi)
2311 set_current_def (var, NULL_TREE);
2315 /* Deallocate internal data structures used by the renamer. */
2317 static void
2318 fini_ssa_renamer (void)
2320 if (def_blocks)
2322 htab_delete (def_blocks);
2323 def_blocks = NULL;
2326 cfun->gimple_df->in_ssa_p = true;
2329 /* Main entry point into the SSA builder. The renaming process
2330 proceeds in four main phases:
2332 1- Compute dominance frontier and immediate dominators, needed to
2333 insert PHI nodes and rename the function in dominator tree
2334 order.
2336 2- Find and mark all the blocks that define variables
2337 (mark_def_site_blocks).
2339 3- Insert PHI nodes at dominance frontiers (insert_phi_nodes).
2341 4- Rename all the blocks (rewrite_blocks) and statements in the program.
2343 Steps 3 and 4 are done using the dominator tree walker
2344 (walk_dominator_tree). */
2346 static unsigned int
2347 rewrite_into_ssa (void)
2349 bitmap *dfs;
2350 basic_block bb;
2352 timevar_push (TV_TREE_SSA_OTHER);
2354 /* Initialize operand data structures. */
2355 init_ssa_operands ();
2357 /* Initialize internal data needed by the renamer. */
2358 init_ssa_renamer ();
2360 /* Initialize the set of interesting blocks. The callback
2361 mark_def_sites will add to this set those blocks that the renamer
2362 should process. */
2363 interesting_blocks = sbitmap_alloc (last_basic_block);
2364 sbitmap_zero (interesting_blocks);
2366 /* Initialize dominance frontier. */
2367 dfs = XNEWVEC (bitmap, last_basic_block);
2368 FOR_EACH_BB (bb)
2369 dfs[bb->index] = BITMAP_ALLOC (NULL);
2371 /* 1- Compute dominance frontiers. */
2372 calculate_dominance_info (CDI_DOMINATORS);
2373 compute_dominance_frontiers (dfs);
2375 /* 2- Find and mark definition sites. */
2376 mark_def_site_blocks ();
2378 /* 3- Insert PHI nodes at dominance frontiers of definition blocks. */
2379 insert_phi_nodes (dfs);
2381 /* 4- Rename all the blocks. */
2382 rewrite_blocks (ENTRY_BLOCK_PTR, REWRITE_ALL);
2384 /* Free allocated memory. */
2385 FOR_EACH_BB (bb)
2386 BITMAP_FREE (dfs[bb->index]);
2387 free (dfs);
2389 sbitmap_free (interesting_blocks);
2391 fini_ssa_renamer ();
2393 timevar_pop (TV_TREE_SSA_OTHER);
2394 return 0;
2398 struct gimple_opt_pass pass_build_ssa =
2401 GIMPLE_PASS,
2402 "ssa", /* name */
2403 NULL, /* gate */
2404 rewrite_into_ssa, /* execute */
2405 NULL, /* sub */
2406 NULL, /* next */
2407 0, /* static_pass_number */
2408 TV_NONE, /* tv_id */
2409 PROP_cfg | PROP_referenced_vars, /* properties_required */
2410 PROP_ssa, /* properties_provided */
2411 0, /* properties_destroyed */
2412 0, /* todo_flags_start */
2413 TODO_dump_func
2414 | TODO_update_ssa_only_virtuals
2415 | TODO_verify_ssa
2416 | TODO_remove_unused_locals /* todo_flags_finish */
2421 /* Mark the definition of VAR at STMT and BB as interesting for the
2422 renamer. BLOCKS is the set of blocks that need updating. */
2424 static void
2425 mark_def_interesting (tree var, gimple stmt, basic_block bb, bool insert_phi_p)
2427 gcc_assert (bitmap_bit_p (blocks_to_update, bb->index));
2428 set_register_defs (stmt, true);
2430 if (insert_phi_p)
2432 bool is_phi_p = gimple_code (stmt) == GIMPLE_PHI;
2434 set_def_block (var, bb, is_phi_p);
2436 /* If VAR is an SSA name in NEW_SSA_NAMES, this is a definition
2437 site for both itself and all the old names replaced by it. */
2438 if (TREE_CODE (var) == SSA_NAME && is_new_name (var))
2440 bitmap_iterator bi;
2441 unsigned i;
2442 bitmap set = names_replaced_by (var);
2443 if (set)
2444 EXECUTE_IF_SET_IN_BITMAP (set, 0, i, bi)
2445 set_def_block (ssa_name (i), bb, is_phi_p);
2451 /* Mark the use of VAR at STMT and BB as interesting for the
2452 renamer. INSERT_PHI_P is true if we are going to insert new PHI
2453 nodes. */
2455 static inline void
2456 mark_use_interesting (tree var, gimple stmt, basic_block bb, bool insert_phi_p)
2458 basic_block def_bb = gimple_bb (stmt);
2460 mark_block_for_update (def_bb);
2461 mark_block_for_update (bb);
2463 if (gimple_code (stmt) == GIMPLE_PHI)
2464 mark_phi_for_rewrite (def_bb, stmt);
2465 else
2467 set_rewrite_uses (stmt, true);
2469 if (is_gimple_debug (stmt))
2470 return;
2473 /* If VAR has not been defined in BB, then it is live-on-entry
2474 to BB. Note that we cannot just use the block holding VAR's
2475 definition because if VAR is one of the names in OLD_SSA_NAMES,
2476 it will have several definitions (itself and all the names that
2477 replace it). */
2478 if (insert_phi_p)
2480 struct def_blocks_d *db_p = get_def_blocks_for (var);
2481 if (!bitmap_bit_p (db_p->def_blocks, bb->index))
2482 set_livein_block (var, bb);
2487 /* Do a dominator walk starting at BB processing statements that
2488 reference symbols in SYMS_TO_RENAME. This is very similar to
2489 mark_def_sites, but the scan handles statements whose operands may
2490 already be SSA names.
2492 If INSERT_PHI_P is true, mark those uses as live in the
2493 corresponding block. This is later used by the PHI placement
2494 algorithm to make PHI pruning decisions.
2496 FIXME. Most of this would be unnecessary if we could associate a
2497 symbol to all the SSA names that reference it. But that
2498 sounds like it would be expensive to maintain. Still, it
2499 would be interesting to see if it makes better sense to do
2500 that. */
2502 static void
2503 prepare_block_for_update (basic_block bb, bool insert_phi_p)
2505 basic_block son;
2506 gimple_stmt_iterator si;
2507 edge e;
2508 edge_iterator ei;
2510 mark_block_for_update (bb);
2512 /* Process PHI nodes marking interesting those that define or use
2513 the symbols that we are interested in. */
2514 for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si))
2516 gimple phi = gsi_stmt (si);
2517 tree lhs_sym, lhs = gimple_phi_result (phi);
2519 lhs_sym = DECL_P (lhs) ? lhs : SSA_NAME_VAR (lhs);
2521 if (!symbol_marked_for_renaming (lhs_sym))
2522 continue;
2524 mark_def_interesting (lhs_sym, phi, bb, insert_phi_p);
2526 /* Mark the uses in phi nodes as interesting. It would be more correct
2527 to process the arguments of the phi nodes of the successor edges of
2528 BB at the end of prepare_block_for_update, however, that turns out
2529 to be significantly more expensive. Doing it here is conservatively
2530 correct -- it may only cause us to believe a value to be live in a
2531 block that also contains its definition, and thus insert a few more
2532 phi nodes for it. */
2533 FOR_EACH_EDGE (e, ei, bb->preds)
2534 mark_use_interesting (lhs_sym, phi, e->src, insert_phi_p);
2537 /* Process the statements. */
2538 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
2540 gimple stmt;
2541 ssa_op_iter i;
2542 use_operand_p use_p;
2543 def_operand_p def_p;
2545 stmt = gsi_stmt (si);
2547 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, i, SSA_OP_ALL_USES)
2549 tree use = USE_FROM_PTR (use_p);
2550 tree sym = DECL_P (use) ? use : SSA_NAME_VAR (use);
2551 if (symbol_marked_for_renaming (sym))
2552 mark_use_interesting (sym, stmt, bb, insert_phi_p);
2555 FOR_EACH_SSA_DEF_OPERAND (def_p, stmt, i, SSA_OP_ALL_DEFS)
2557 tree def = DEF_FROM_PTR (def_p);
2558 tree sym = DECL_P (def) ? def : SSA_NAME_VAR (def);
2559 if (symbol_marked_for_renaming (sym))
2560 mark_def_interesting (sym, stmt, bb, insert_phi_p);
2564 /* Now visit all the blocks dominated by BB. */
2565 for (son = first_dom_son (CDI_DOMINATORS, bb);
2566 son;
2567 son = next_dom_son (CDI_DOMINATORS, son))
2568 prepare_block_for_update (son, insert_phi_p);
2572 /* Helper for prepare_names_to_update. Mark all the use sites for
2573 NAME as interesting. BLOCKS and INSERT_PHI_P are as in
2574 prepare_names_to_update. */
2576 static void
2577 prepare_use_sites_for (tree name, bool insert_phi_p)
2579 use_operand_p use_p;
2580 imm_use_iterator iter;
2582 FOR_EACH_IMM_USE_FAST (use_p, iter, name)
2584 gimple stmt = USE_STMT (use_p);
2585 basic_block bb = gimple_bb (stmt);
2587 if (gimple_code (stmt) == GIMPLE_PHI)
2589 int ix = PHI_ARG_INDEX_FROM_USE (use_p);
2590 edge e = gimple_phi_arg_edge (stmt, ix);
2591 mark_use_interesting (name, stmt, e->src, insert_phi_p);
2593 else
2595 /* For regular statements, mark this as an interesting use
2596 for NAME. */
2597 mark_use_interesting (name, stmt, bb, insert_phi_p);
2603 /* Helper for prepare_names_to_update. Mark the definition site for
2604 NAME as interesting. BLOCKS and INSERT_PHI_P are as in
2605 prepare_names_to_update. */
2607 static void
2608 prepare_def_site_for (tree name, bool insert_phi_p)
2610 gimple stmt;
2611 basic_block bb;
2613 gcc_assert (names_to_release == NULL
2614 || !bitmap_bit_p (names_to_release, SSA_NAME_VERSION (name)));
2616 stmt = SSA_NAME_DEF_STMT (name);
2617 bb = gimple_bb (stmt);
2618 if (bb)
2620 gcc_assert (bb->index < last_basic_block);
2621 mark_block_for_update (bb);
2622 mark_def_interesting (name, stmt, bb, insert_phi_p);
2627 /* Mark definition and use sites of names in NEW_SSA_NAMES and
2628 OLD_SSA_NAMES. INSERT_PHI_P is true if the caller wants to insert
2629 PHI nodes for newly created names. */
2631 static void
2632 prepare_names_to_update (bool insert_phi_p)
2634 unsigned i = 0;
2635 bitmap_iterator bi;
2636 sbitmap_iterator sbi;
2638 /* If a name N from NEW_SSA_NAMES is also marked to be released,
2639 remove it from NEW_SSA_NAMES so that we don't try to visit its
2640 defining basic block (which most likely doesn't exist). Notice
2641 that we cannot do the same with names in OLD_SSA_NAMES because we
2642 want to replace existing instances. */
2643 if (names_to_release)
2644 EXECUTE_IF_SET_IN_BITMAP (names_to_release, 0, i, bi)
2645 RESET_BIT (new_ssa_names, i);
2647 /* First process names in NEW_SSA_NAMES. Otherwise, uses of old
2648 names may be considered to be live-in on blocks that contain
2649 definitions for their replacements. */
2650 EXECUTE_IF_SET_IN_SBITMAP (new_ssa_names, 0, i, sbi)
2651 prepare_def_site_for (ssa_name (i), insert_phi_p);
2653 /* If an old name is in NAMES_TO_RELEASE, we cannot remove it from
2654 OLD_SSA_NAMES, but we have to ignore its definition site. */
2655 EXECUTE_IF_SET_IN_SBITMAP (old_ssa_names, 0, i, sbi)
2657 if (names_to_release == NULL || !bitmap_bit_p (names_to_release, i))
2658 prepare_def_site_for (ssa_name (i), insert_phi_p);
2659 prepare_use_sites_for (ssa_name (i), insert_phi_p);
2664 /* Dump all the names replaced by NAME to FILE. */
2666 void
2667 dump_names_replaced_by (FILE *file, tree name)
2669 unsigned i;
2670 bitmap old_set;
2671 bitmap_iterator bi;
2673 print_generic_expr (file, name, 0);
2674 fprintf (file, " -> { ");
2676 old_set = names_replaced_by (name);
2677 EXECUTE_IF_SET_IN_BITMAP (old_set, 0, i, bi)
2679 print_generic_expr (file, ssa_name (i), 0);
2680 fprintf (file, " ");
2683 fprintf (file, "}\n");
2687 /* Dump all the names replaced by NAME to stderr. */
2689 void
2690 debug_names_replaced_by (tree name)
2692 dump_names_replaced_by (stderr, name);
2696 /* Dump SSA update information to FILE. */
2698 void
2699 dump_update_ssa (FILE *file)
2701 unsigned i = 0;
2702 bitmap_iterator bi;
2704 if (!need_ssa_update_p (cfun))
2705 return;
2707 if (new_ssa_names && sbitmap_first_set_bit (new_ssa_names) >= 0)
2709 sbitmap_iterator sbi;
2711 fprintf (file, "\nSSA replacement table\n");
2712 fprintf (file, "N_i -> { O_1 ... O_j } means that N_i replaces "
2713 "O_1, ..., O_j\n\n");
2715 EXECUTE_IF_SET_IN_SBITMAP (new_ssa_names, 0, i, sbi)
2716 dump_names_replaced_by (file, ssa_name (i));
2718 fprintf (file, "\n");
2719 fprintf (file, "Number of virtual NEW -> OLD mappings: %7u\n",
2720 update_ssa_stats.num_virtual_mappings);
2721 fprintf (file, "Number of real NEW -> OLD mappings: %7u\n",
2722 update_ssa_stats.num_total_mappings
2723 - update_ssa_stats.num_virtual_mappings);
2724 fprintf (file, "Number of total NEW -> OLD mappings: %7u\n",
2725 update_ssa_stats.num_total_mappings);
2727 fprintf (file, "\nNumber of virtual symbols: %u\n",
2728 update_ssa_stats.num_virtual_symbols);
2731 if (!bitmap_empty_p (SYMS_TO_RENAME (cfun)))
2733 fprintf (file, "\n\nSymbols to be put in SSA form\n\n");
2734 dump_decl_set (file, SYMS_TO_RENAME (cfun));
2735 fprintf (file, "\n");
2738 if (names_to_release && !bitmap_empty_p (names_to_release))
2740 fprintf (file, "\n\nSSA names to release after updating the SSA web\n\n");
2741 EXECUTE_IF_SET_IN_BITMAP (names_to_release, 0, i, bi)
2743 print_generic_expr (file, ssa_name (i), 0);
2744 fprintf (file, " ");
2748 fprintf (file, "\n\n");
2752 /* Dump SSA update information to stderr. */
2754 void
2755 debug_update_ssa (void)
2757 dump_update_ssa (stderr);
2761 /* Initialize data structures used for incremental SSA updates. */
2763 static void
2764 init_update_ssa (struct function *fn)
2766 /* Reserve more space than the current number of names. The calls to
2767 add_new_name_mapping are typically done after creating new SSA
2768 names, so we'll need to reallocate these arrays. */
2769 old_ssa_names = sbitmap_alloc (num_ssa_names + NAME_SETS_GROWTH_FACTOR);
2770 sbitmap_zero (old_ssa_names);
2772 new_ssa_names = sbitmap_alloc (num_ssa_names + NAME_SETS_GROWTH_FACTOR);
2773 sbitmap_zero (new_ssa_names);
2775 repl_tbl = htab_create (20, repl_map_hash, repl_map_eq, repl_map_free);
2776 names_to_release = NULL;
2777 memset (&update_ssa_stats, 0, sizeof (update_ssa_stats));
2778 update_ssa_stats.virtual_symbols = BITMAP_ALLOC (NULL);
2779 update_ssa_initialized_fn = fn;
2783 /* Deallocate data structures used for incremental SSA updates. */
2785 void
2786 delete_update_ssa (void)
2788 unsigned i;
2789 bitmap_iterator bi;
2791 sbitmap_free (old_ssa_names);
2792 old_ssa_names = NULL;
2794 sbitmap_free (new_ssa_names);
2795 new_ssa_names = NULL;
2797 htab_delete (repl_tbl);
2798 repl_tbl = NULL;
2800 bitmap_clear (SYMS_TO_RENAME (update_ssa_initialized_fn));
2801 BITMAP_FREE (update_ssa_stats.virtual_symbols);
2803 if (names_to_release)
2805 EXECUTE_IF_SET_IN_BITMAP (names_to_release, 0, i, bi)
2806 release_ssa_name (ssa_name (i));
2807 BITMAP_FREE (names_to_release);
2810 clear_ssa_name_info ();
2812 fini_ssa_renamer ();
2814 if (blocks_with_phis_to_rewrite)
2815 EXECUTE_IF_SET_IN_BITMAP (blocks_with_phis_to_rewrite, 0, i, bi)
2817 gimple_vec phis = VEC_index (gimple_vec, phis_to_rewrite, i);
2819 VEC_free (gimple, heap, phis);
2820 VEC_replace (gimple_vec, phis_to_rewrite, i, NULL);
2823 BITMAP_FREE (blocks_with_phis_to_rewrite);
2824 BITMAP_FREE (blocks_to_update);
2825 update_ssa_initialized_fn = NULL;
2829 /* Create a new name for OLD_NAME in statement STMT and replace the
2830 operand pointed to by DEF_P with the newly created name. Return
2831 the new name and register the replacement mapping <NEW, OLD> in
2832 update_ssa's tables. */
2834 tree
2835 create_new_def_for (tree old_name, gimple stmt, def_operand_p def)
2837 tree new_name = duplicate_ssa_name (old_name, stmt);
2839 SET_DEF (def, new_name);
2841 if (gimple_code (stmt) == GIMPLE_PHI)
2843 edge e;
2844 edge_iterator ei;
2845 basic_block bb = gimple_bb (stmt);
2847 /* If needed, mark NEW_NAME as occurring in an abnormal PHI node. */
2848 FOR_EACH_EDGE (e, ei, bb->preds)
2849 if (e->flags & EDGE_ABNORMAL)
2851 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (new_name) = 1;
2852 break;
2856 register_new_name_mapping (new_name, old_name);
2858 /* For the benefit of passes that will be updating the SSA form on
2859 their own, set the current reaching definition of OLD_NAME to be
2860 NEW_NAME. */
2861 set_current_def (old_name, new_name);
2863 return new_name;
2867 /* Register name NEW to be a replacement for name OLD. This function
2868 must be called for every replacement that should be performed by
2869 update_ssa. */
2871 void
2872 register_new_name_mapping (tree new_tree, tree old)
2874 if (!update_ssa_initialized_fn)
2875 init_update_ssa (cfun);
2877 gcc_assert (update_ssa_initialized_fn == cfun);
2879 add_new_name_mapping (new_tree, old);
2883 /* Register symbol SYM to be renamed by update_ssa. */
2885 void
2886 mark_sym_for_renaming (tree sym)
2888 bitmap_set_bit (SYMS_TO_RENAME (cfun), DECL_UID (sym));
2892 /* Register all the symbols in SET to be renamed by update_ssa. */
2894 void
2895 mark_set_for_renaming (bitmap set)
2897 bitmap_iterator bi;
2898 unsigned i;
2900 if (set == NULL || bitmap_empty_p (set))
2901 return;
2903 EXECUTE_IF_SET_IN_BITMAP (set, 0, i, bi)
2904 mark_sym_for_renaming (referenced_var (i));
2908 /* Return true if there is any work to be done by update_ssa
2909 for function FN. */
2911 bool
2912 need_ssa_update_p (struct function *fn)
2914 gcc_assert (fn != NULL);
2915 return (update_ssa_initialized_fn == fn
2916 || (fn->gimple_df
2917 && !bitmap_empty_p (SYMS_TO_RENAME (fn))));
2920 /* Return true if SSA name mappings have been registered for SSA updating. */
2922 bool
2923 name_mappings_registered_p (void)
2925 if (!update_ssa_initialized_fn)
2926 return false;
2928 gcc_assert (update_ssa_initialized_fn == cfun);
2930 return repl_tbl && htab_elements (repl_tbl) > 0;
2933 /* Return true if name N has been registered in the replacement table. */
2935 bool
2936 name_registered_for_update_p (tree n ATTRIBUTE_UNUSED)
2938 if (!update_ssa_initialized_fn)
2939 return false;
2941 gcc_assert (update_ssa_initialized_fn == cfun);
2943 return is_new_name (n) || is_old_name (n);
2947 /* Return the set of all the SSA names marked to be replaced. */
2949 bitmap
2950 ssa_names_to_replace (void)
2952 unsigned i = 0;
2953 bitmap ret;
2954 sbitmap_iterator sbi;
2956 gcc_assert (update_ssa_initialized_fn == NULL
2957 || update_ssa_initialized_fn == cfun);
2959 ret = BITMAP_ALLOC (NULL);
2960 EXECUTE_IF_SET_IN_SBITMAP (old_ssa_names, 0, i, sbi)
2961 bitmap_set_bit (ret, i);
2963 return ret;
2967 /* Mark NAME to be released after update_ssa has finished. */
2969 void
2970 release_ssa_name_after_update_ssa (tree name)
2972 gcc_assert (cfun && update_ssa_initialized_fn == cfun);
2974 if (names_to_release == NULL)
2975 names_to_release = BITMAP_ALLOC (NULL);
2977 bitmap_set_bit (names_to_release, SSA_NAME_VERSION (name));
2981 /* Insert new PHI nodes to replace VAR. DFS contains dominance
2982 frontier information. BLOCKS is the set of blocks to be updated.
2984 This is slightly different than the regular PHI insertion
2985 algorithm. The value of UPDATE_FLAGS controls how PHI nodes for
2986 real names (i.e., GIMPLE registers) are inserted:
2988 - If UPDATE_FLAGS == TODO_update_ssa, we are only interested in PHI
2989 nodes inside the region affected by the block that defines VAR
2990 and the blocks that define all its replacements. All these
2991 definition blocks are stored in DEF_BLOCKS[VAR]->DEF_BLOCKS.
2993 First, we compute the entry point to the region (ENTRY). This is
2994 given by the nearest common dominator to all the definition
2995 blocks. When computing the iterated dominance frontier (IDF), any
2996 block not strictly dominated by ENTRY is ignored.
2998 We then call the standard PHI insertion algorithm with the pruned
2999 IDF.
3001 - If UPDATE_FLAGS == TODO_update_ssa_full_phi, the IDF for real
3002 names is not pruned. PHI nodes are inserted at every IDF block. */
3004 static void
3005 insert_updated_phi_nodes_for (tree var, bitmap *dfs, bitmap blocks,
3006 unsigned update_flags)
3008 basic_block entry;
3009 struct def_blocks_d *db;
3010 bitmap idf, pruned_idf;
3011 bitmap_iterator bi;
3012 unsigned i;
3014 #if defined ENABLE_CHECKING
3015 if (TREE_CODE (var) == SSA_NAME)
3016 gcc_assert (is_old_name (var));
3017 else
3018 gcc_assert (symbol_marked_for_renaming (var));
3019 #endif
3021 /* Get all the definition sites for VAR. */
3022 db = find_def_blocks_for (var);
3024 /* No need to do anything if there were no definitions to VAR. */
3025 if (db == NULL || bitmap_empty_p (db->def_blocks))
3026 return;
3028 /* Compute the initial iterated dominance frontier. */
3029 idf = compute_idf (db->def_blocks, dfs);
3030 pruned_idf = BITMAP_ALLOC (NULL);
3032 if (TREE_CODE (var) == SSA_NAME)
3034 if (update_flags == TODO_update_ssa)
3036 /* If doing regular SSA updates for GIMPLE registers, we are
3037 only interested in IDF blocks dominated by the nearest
3038 common dominator of all the definition blocks. */
3039 entry = nearest_common_dominator_for_set (CDI_DOMINATORS,
3040 db->def_blocks);
3041 if (entry != ENTRY_BLOCK_PTR)
3042 EXECUTE_IF_SET_IN_BITMAP (idf, 0, i, bi)
3043 if (BASIC_BLOCK (i) != entry
3044 && dominated_by_p (CDI_DOMINATORS, BASIC_BLOCK (i), entry))
3045 bitmap_set_bit (pruned_idf, i);
3047 else
3049 /* Otherwise, do not prune the IDF for VAR. */
3050 gcc_assert (update_flags == TODO_update_ssa_full_phi);
3051 bitmap_copy (pruned_idf, idf);
3054 else
3056 /* Otherwise, VAR is a symbol that needs to be put into SSA form
3057 for the first time, so we need to compute the full IDF for
3058 it. */
3059 bitmap_copy (pruned_idf, idf);
3062 if (!bitmap_empty_p (pruned_idf))
3064 /* Make sure that PRUNED_IDF blocks and all their feeding blocks
3065 are included in the region to be updated. The feeding blocks
3066 are important to guarantee that the PHI arguments are renamed
3067 properly. */
3069 /* FIXME, this is not needed if we are updating symbols. We are
3070 already starting at the ENTRY block anyway. */
3071 bitmap_ior_into (blocks, pruned_idf);
3072 EXECUTE_IF_SET_IN_BITMAP (pruned_idf, 0, i, bi)
3074 edge e;
3075 edge_iterator ei;
3076 basic_block bb = BASIC_BLOCK (i);
3078 FOR_EACH_EDGE (e, ei, bb->preds)
3079 if (e->src->index >= 0)
3080 bitmap_set_bit (blocks, e->src->index);
3083 insert_phi_nodes_for (var, pruned_idf, true);
3086 BITMAP_FREE (pruned_idf);
3087 BITMAP_FREE (idf);
3091 /* Heuristic to determine whether SSA name mappings for virtual names
3092 should be discarded and their symbols rewritten from scratch. When
3093 there is a large number of mappings for virtual names, the
3094 insertion of PHI nodes for the old names in the mappings takes
3095 considerable more time than if we inserted PHI nodes for the
3096 symbols instead.
3098 Currently the heuristic takes these stats into account:
3100 - Number of mappings for virtual SSA names.
3101 - Number of distinct virtual symbols involved in those mappings.
3103 If the number of virtual mappings is much larger than the number of
3104 virtual symbols, then it will be faster to compute PHI insertion
3105 spots for the symbols. Even if this involves traversing the whole
3106 CFG, which is what happens when symbols are renamed from scratch. */
3108 static bool
3109 switch_virtuals_to_full_rewrite_p (void)
3111 if (update_ssa_stats.num_virtual_mappings < (unsigned) MIN_VIRTUAL_MAPPINGS)
3112 return false;
3114 if (update_ssa_stats.num_virtual_mappings
3115 > (unsigned) VIRTUAL_MAPPINGS_TO_SYMS_RATIO
3116 * update_ssa_stats.num_virtual_symbols)
3117 return true;
3119 return false;
3123 /* Remove every virtual mapping and mark all the affected virtual
3124 symbols for renaming. */
3126 static void
3127 switch_virtuals_to_full_rewrite (void)
3129 unsigned i = 0;
3130 sbitmap_iterator sbi;
3132 if (dump_file)
3134 fprintf (dump_file, "\nEnabled virtual name mapping heuristic.\n");
3135 fprintf (dump_file, "\tNumber of virtual mappings: %7u\n",
3136 update_ssa_stats.num_virtual_mappings);
3137 fprintf (dump_file, "\tNumber of unique virtual symbols: %7u\n",
3138 update_ssa_stats.num_virtual_symbols);
3139 fprintf (dump_file, "Updating FUD-chains from top of CFG will be "
3140 "faster than processing\nthe name mappings.\n\n");
3143 /* Remove all virtual names from NEW_SSA_NAMES and OLD_SSA_NAMES.
3144 Note that it is not really necessary to remove the mappings from
3145 REPL_TBL, that would only waste time. */
3146 EXECUTE_IF_SET_IN_SBITMAP (new_ssa_names, 0, i, sbi)
3147 if (!is_gimple_reg (ssa_name (i)))
3148 RESET_BIT (new_ssa_names, i);
3150 EXECUTE_IF_SET_IN_SBITMAP (old_ssa_names, 0, i, sbi)
3151 if (!is_gimple_reg (ssa_name (i)))
3152 RESET_BIT (old_ssa_names, i);
3154 mark_set_for_renaming (update_ssa_stats.virtual_symbols);
3158 /* Given a set of newly created SSA names (NEW_SSA_NAMES) and a set of
3159 existing SSA names (OLD_SSA_NAMES), update the SSA form so that:
3161 1- The names in OLD_SSA_NAMES dominated by the definitions of
3162 NEW_SSA_NAMES are all re-written to be reached by the
3163 appropriate definition from NEW_SSA_NAMES.
3165 2- If needed, new PHI nodes are added to the iterated dominance
3166 frontier of the blocks where each of NEW_SSA_NAMES are defined.
3168 The mapping between OLD_SSA_NAMES and NEW_SSA_NAMES is setup by
3169 calling register_new_name_mapping for every pair of names that the
3170 caller wants to replace.
3172 The caller identifies the new names that have been inserted and the
3173 names that need to be replaced by calling register_new_name_mapping
3174 for every pair <NEW, OLD>. Note that the function assumes that the
3175 new names have already been inserted in the IL.
3177 For instance, given the following code:
3179 1 L0:
3180 2 x_1 = PHI (0, x_5)
3181 3 if (x_1 < 10)
3182 4 if (x_1 > 7)
3183 5 y_2 = 0
3184 6 else
3185 7 y_3 = x_1 + x_7
3186 8 endif
3187 9 x_5 = x_1 + 1
3188 10 goto L0;
3189 11 endif
3191 Suppose that we insert new names x_10 and x_11 (lines 4 and 8).
3193 1 L0:
3194 2 x_1 = PHI (0, x_5)
3195 3 if (x_1 < 10)
3196 4 x_10 = ...
3197 5 if (x_1 > 7)
3198 6 y_2 = 0
3199 7 else
3200 8 x_11 = ...
3201 9 y_3 = x_1 + x_7
3202 10 endif
3203 11 x_5 = x_1 + 1
3204 12 goto L0;
3205 13 endif
3207 We want to replace all the uses of x_1 with the new definitions of
3208 x_10 and x_11. Note that the only uses that should be replaced are
3209 those at lines 5, 9 and 11. Also, the use of x_7 at line 9 should
3210 *not* be replaced (this is why we cannot just mark symbol 'x' for
3211 renaming).
3213 Additionally, we may need to insert a PHI node at line 11 because
3214 that is a merge point for x_10 and x_11. So the use of x_1 at line
3215 11 will be replaced with the new PHI node. The insertion of PHI
3216 nodes is optional. They are not strictly necessary to preserve the
3217 SSA form, and depending on what the caller inserted, they may not
3218 even be useful for the optimizers. UPDATE_FLAGS controls various
3219 aspects of how update_ssa operates, see the documentation for
3220 TODO_update_ssa*. */
3222 void
3223 update_ssa (unsigned update_flags)
3225 basic_block bb, start_bb;
3226 bitmap_iterator bi;
3227 unsigned i = 0;
3228 bool insert_phi_p;
3229 sbitmap_iterator sbi;
3231 if (!need_ssa_update_p (cfun))
3232 return;
3234 timevar_push (TV_TREE_SSA_INCREMENTAL);
3236 if (!update_ssa_initialized_fn)
3237 init_update_ssa (cfun);
3238 gcc_assert (update_ssa_initialized_fn == cfun);
3240 blocks_with_phis_to_rewrite = BITMAP_ALLOC (NULL);
3241 if (!phis_to_rewrite)
3242 phis_to_rewrite = VEC_alloc (gimple_vec, heap, last_basic_block);
3243 blocks_to_update = BITMAP_ALLOC (NULL);
3245 /* Ensure that the dominance information is up-to-date. */
3246 calculate_dominance_info (CDI_DOMINATORS);
3248 /* Only one update flag should be set. */
3249 gcc_assert (update_flags == TODO_update_ssa
3250 || update_flags == TODO_update_ssa_no_phi
3251 || update_flags == TODO_update_ssa_full_phi
3252 || update_flags == TODO_update_ssa_only_virtuals);
3254 /* If we only need to update virtuals, remove all the mappings for
3255 real names before proceeding. The caller is responsible for
3256 having dealt with the name mappings before calling update_ssa. */
3257 if (update_flags == TODO_update_ssa_only_virtuals)
3259 sbitmap_zero (old_ssa_names);
3260 sbitmap_zero (new_ssa_names);
3261 htab_empty (repl_tbl);
3264 insert_phi_p = (update_flags != TODO_update_ssa_no_phi);
3266 if (insert_phi_p)
3268 /* If the caller requested PHI nodes to be added, initialize
3269 live-in information data structures (DEF_BLOCKS). */
3271 /* For each SSA name N, the DEF_BLOCKS table describes where the
3272 name is defined, which blocks have PHI nodes for N, and which
3273 blocks have uses of N (i.e., N is live-on-entry in those
3274 blocks). */
3275 def_blocks = htab_create (num_ssa_names, def_blocks_hash,
3276 def_blocks_eq, def_blocks_free);
3278 else
3280 def_blocks = NULL;
3283 /* Heuristic to avoid massive slow downs when the replacement
3284 mappings include lots of virtual names. */
3285 if (insert_phi_p && switch_virtuals_to_full_rewrite_p ())
3286 switch_virtuals_to_full_rewrite ();
3288 /* If there are names defined in the replacement table, prepare
3289 definition and use sites for all the names in NEW_SSA_NAMES and
3290 OLD_SSA_NAMES. */
3291 if (sbitmap_first_set_bit (new_ssa_names) >= 0)
3293 prepare_names_to_update (insert_phi_p);
3295 /* If all the names in NEW_SSA_NAMES had been marked for
3296 removal, and there are no symbols to rename, then there's
3297 nothing else to do. */
3298 if (sbitmap_first_set_bit (new_ssa_names) < 0
3299 && bitmap_empty_p (SYMS_TO_RENAME (cfun)))
3300 goto done;
3303 /* Next, determine the block at which to start the renaming process. */
3304 if (!bitmap_empty_p (SYMS_TO_RENAME (cfun)))
3306 /* If we have to rename some symbols from scratch, we need to
3307 start the process at the root of the CFG. FIXME, it should
3308 be possible to determine the nearest block that had a
3309 definition for each of the symbols that are marked for
3310 updating. For now this seems more work than it's worth. */
3311 start_bb = ENTRY_BLOCK_PTR;
3313 /* Traverse the CFG looking for existing definitions and uses of
3314 symbols in SYMS_TO_RENAME. Mark interesting blocks and
3315 statements and set local live-in information for the PHI
3316 placement heuristics. */
3317 prepare_block_for_update (start_bb, insert_phi_p);
3319 else
3321 /* Otherwise, the entry block to the region is the nearest
3322 common dominator for the blocks in BLOCKS. */
3323 start_bb = nearest_common_dominator_for_set (CDI_DOMINATORS,
3324 blocks_to_update);
3327 /* If requested, insert PHI nodes at the iterated dominance frontier
3328 of every block, creating new definitions for names in OLD_SSA_NAMES
3329 and for symbols in SYMS_TO_RENAME. */
3330 if (insert_phi_p)
3332 bitmap *dfs;
3334 /* If the caller requested PHI nodes to be added, compute
3335 dominance frontiers. */
3336 dfs = XNEWVEC (bitmap, last_basic_block);
3337 FOR_EACH_BB (bb)
3338 dfs[bb->index] = BITMAP_ALLOC (NULL);
3339 compute_dominance_frontiers (dfs);
3341 if (sbitmap_first_set_bit (old_ssa_names) >= 0)
3343 sbitmap_iterator sbi;
3345 /* insert_update_phi_nodes_for will call add_new_name_mapping
3346 when inserting new PHI nodes, so the set OLD_SSA_NAMES
3347 will grow while we are traversing it (but it will not
3348 gain any new members). Copy OLD_SSA_NAMES to a temporary
3349 for traversal. */
3350 sbitmap tmp = sbitmap_alloc (old_ssa_names->n_bits);
3351 sbitmap_copy (tmp, old_ssa_names);
3352 EXECUTE_IF_SET_IN_SBITMAP (tmp, 0, i, sbi)
3353 insert_updated_phi_nodes_for (ssa_name (i), dfs, blocks_to_update,
3354 update_flags);
3355 sbitmap_free (tmp);
3358 EXECUTE_IF_SET_IN_BITMAP (SYMS_TO_RENAME (cfun), 0, i, bi)
3359 insert_updated_phi_nodes_for (referenced_var (i), dfs, blocks_to_update,
3360 update_flags);
3362 FOR_EACH_BB (bb)
3363 BITMAP_FREE (dfs[bb->index]);
3364 free (dfs);
3366 /* Insertion of PHI nodes may have added blocks to the region.
3367 We need to re-compute START_BB to include the newly added
3368 blocks. */
3369 if (start_bb != ENTRY_BLOCK_PTR)
3370 start_bb = nearest_common_dominator_for_set (CDI_DOMINATORS,
3371 blocks_to_update);
3374 /* Reset the current definition for name and symbol before renaming
3375 the sub-graph. */
3376 EXECUTE_IF_SET_IN_SBITMAP (old_ssa_names, 0, i, sbi)
3377 set_current_def (ssa_name (i), NULL_TREE);
3379 EXECUTE_IF_SET_IN_BITMAP (SYMS_TO_RENAME (cfun), 0, i, bi)
3380 set_current_def (referenced_var (i), NULL_TREE);
3382 /* Now start the renaming process at START_BB. */
3383 interesting_blocks = sbitmap_alloc (last_basic_block);
3384 sbitmap_zero (interesting_blocks);
3385 EXECUTE_IF_SET_IN_BITMAP (blocks_to_update, 0, i, bi)
3386 SET_BIT (interesting_blocks, i);
3388 rewrite_blocks (start_bb, REWRITE_UPDATE);
3390 sbitmap_free (interesting_blocks);
3392 /* Debugging dumps. */
3393 if (dump_file)
3395 int c;
3396 unsigned i;
3398 dump_update_ssa (dump_file);
3400 fprintf (dump_file, "Incremental SSA update started at block: %d\n\n",
3401 start_bb->index);
3403 c = 0;
3404 EXECUTE_IF_SET_IN_BITMAP (blocks_to_update, 0, i, bi)
3405 c++;
3406 fprintf (dump_file, "Number of blocks in CFG: %d\n", last_basic_block);
3407 fprintf (dump_file, "Number of blocks to update: %d (%3.0f%%)\n\n",
3408 c, PERCENT (c, last_basic_block));
3410 if (dump_flags & TDF_DETAILS)
3412 fprintf (dump_file, "Affected blocks: ");
3413 EXECUTE_IF_SET_IN_BITMAP (blocks_to_update, 0, i, bi)
3414 fprintf (dump_file, "%u ", i);
3415 fprintf (dump_file, "\n");
3418 fprintf (dump_file, "\n\n");
3421 /* Free allocated memory. */
3422 done:
3423 delete_update_ssa ();
3425 timevar_pop (TV_TREE_SSA_INCREMENTAL);