Print SCoPs under CLooG format.
[official-gcc/graphite-test-results.git] / gcc / lto-streamer.c
blob0b44845bcebeb9ae726e5bbf9136b7f18111afd1
1 /* Miscellaneous utilities for GIMPLE streaming. Things that are used
2 in both input and output are here.
4 Copyright 2009, 2010 Free Software Foundation, Inc.
5 Contributed by Doug Kwan <dougkwan@google.com>
7 This file is part of GCC.
9 GCC is free software; you can redistribute it and/or modify it under
10 the terms of the GNU General Public License as published by the Free
11 Software Foundation; either version 3, or (at your option) any later
12 version.
14 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
15 WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 for more details.
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING3. If not see
21 <http://www.gnu.org/licenses/>. */
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "tm.h"
27 #include "toplev.h"
28 #include "flags.h"
29 #include "tree.h"
30 #include "gimple.h"
31 #include "tree-flow.h"
32 #include "diagnostic.h"
33 #include "bitmap.h"
34 #include "vec.h"
35 #include "lto-streamer.h"
37 /* Statistics gathered during LTO, WPA and LTRANS. */
38 struct lto_stats_d lto_stats;
40 /* LTO uses bitmaps with different life-times. So use a seperate
41 obstack for all LTO bitmaps. */
42 static bitmap_obstack lto_obstack;
43 static bool lto_obstack_initialized;
46 /* Return a string representing LTO tag TAG. */
48 const char *
49 lto_tag_name (enum LTO_tags tag)
51 if (lto_tag_is_tree_code_p (tag))
53 /* For tags representing tree nodes, return the name of the
54 associated tree code. */
55 return tree_code_name[lto_tag_to_tree_code (tag)];
58 if (lto_tag_is_gimple_code_p (tag))
60 /* For tags representing gimple statements, return the name of
61 the associated gimple code. */
62 return gimple_code_name[lto_tag_to_gimple_code (tag)];
65 switch (tag)
67 case LTO_null:
68 return "LTO_null";
69 case LTO_bb0:
70 return "LTO_bb0";
71 case LTO_bb1:
72 return "LTO_bb1";
73 case LTO_eh_region:
74 return "LTO_eh_region";
75 case LTO_function:
76 return "LTO_function";
77 case LTO_eh_table:
78 return "LTO_eh_table";
79 case LTO_ert_cleanup:
80 return "LTO_ert_cleanup";
81 case LTO_ert_try:
82 return "LTO_ert_try";
83 case LTO_ert_allowed_exceptions:
84 return "LTO_ert_allowed_exceptions";
85 case LTO_ert_must_not_throw:
86 return "LTO_ert_must_not_throw";
87 case LTO_tree_pickle_reference:
88 return "LTO_tree_pickle_reference";
89 case LTO_field_decl_ref:
90 return "LTO_field_decl_ref";
91 case LTO_function_decl_ref:
92 return "LTO_function_decl_ref";
93 case LTO_label_decl_ref:
94 return "LTO_label_decl_ref";
95 case LTO_namespace_decl_ref:
96 return "LTO_namespace_decl_ref";
97 case LTO_result_decl_ref:
98 return "LTO_result_decl_ref";
99 case LTO_ssa_name_ref:
100 return "LTO_ssa_name_ref";
101 case LTO_type_decl_ref:
102 return "LTO_type_decl_ref";
103 case LTO_type_ref:
104 return "LTO_type_ref";
105 case LTO_global_decl_ref:
106 return "LTO_global_decl_ref";
107 default:
108 return "LTO_UNKNOWN";
113 /* Allocate a bitmap from heap. Initializes the LTO obstack if necessary. */
115 bitmap
116 lto_bitmap_alloc (void)
118 if (!lto_obstack_initialized)
120 bitmap_obstack_initialize (&lto_obstack);
121 lto_obstack_initialized = true;
123 return BITMAP_ALLOC (&lto_obstack);
126 /* Free bitmap B. */
128 void
129 lto_bitmap_free (bitmap b)
131 BITMAP_FREE (b);
135 /* Get a section name for a particular type or name. The NAME field
136 is only used if SECTION_TYPE is LTO_section_function_body or
137 LTO_static_initializer. For all others it is ignored. The callee
138 of this function is responcible to free the returned name. */
140 char *
141 lto_get_section_name (int section_type, const char *name)
143 switch (section_type)
145 case LTO_section_function_body:
146 gcc_assert (name != NULL);
147 if (name[0] == '*')
148 name++;
149 return concat (LTO_SECTION_NAME_PREFIX, name, NULL);
151 case LTO_section_static_initializer:
152 return concat (LTO_SECTION_NAME_PREFIX, ".statics", NULL);
154 case LTO_section_symtab:
155 return concat (LTO_SECTION_NAME_PREFIX, ".symtab", NULL);
157 case LTO_section_decls:
158 return concat (LTO_SECTION_NAME_PREFIX, ".decls", NULL);
160 case LTO_section_cgraph:
161 return concat (LTO_SECTION_NAME_PREFIX, ".cgraph", NULL);
163 case LTO_section_jump_functions:
164 return concat (LTO_SECTION_NAME_PREFIX, ".jmpfuncs", NULL);
166 case LTO_section_ipa_pure_const:
167 return concat (LTO_SECTION_NAME_PREFIX, ".pureconst", NULL);
169 case LTO_section_ipa_reference:
170 return concat (LTO_SECTION_NAME_PREFIX, ".reference", NULL);
172 case LTO_section_wpa_fixup:
173 return concat (LTO_SECTION_NAME_PREFIX, ".wpa_fixup", NULL);
175 case LTO_section_opts:
176 return concat (LTO_SECTION_NAME_PREFIX, ".opts", NULL);
178 default:
179 internal_error ("bytecode stream: unexpected LTO section %s", name);
184 /* Show various memory usage statistics related to LTO. */
186 void
187 print_lto_report (void)
189 const char *s = (flag_lto) ? "LTO" : (flag_wpa) ? "WPA" : "LTRANS";
190 unsigned i;
192 fprintf (stderr, "%s statistics\n", s);
193 fprintf (stderr, "[%s] # of input files: "
194 HOST_WIDE_INT_PRINT_UNSIGNED "\n", s, lto_stats.num_input_files);
196 fprintf (stderr, "[%s] # of input cgraph nodes: "
197 HOST_WIDE_INT_PRINT_UNSIGNED "\n", s,
198 lto_stats.num_input_cgraph_nodes);
200 fprintf (stderr, "[%s] # of function bodies: "
201 HOST_WIDE_INT_PRINT_UNSIGNED "\n", s,
202 lto_stats.num_function_bodies);
204 fprintf (stderr, "[%s] ", s);
205 print_gimple_types_stats ();
207 for (i = 0; i < NUM_TREE_CODES; i++)
208 if (lto_stats.num_trees[i])
209 fprintf (stderr, "[%s] # of '%s' objects read: "
210 HOST_WIDE_INT_PRINT_UNSIGNED "\n", s,
211 tree_code_name[i], lto_stats.num_trees[i]);
213 if (flag_lto)
215 fprintf (stderr, "[%s] Compression: "
216 HOST_WIDE_INT_PRINT_UNSIGNED " output bytes, "
217 HOST_WIDE_INT_PRINT_UNSIGNED " compressed bytes", s,
218 lto_stats.num_output_il_bytes,
219 lto_stats.num_compressed_il_bytes);
220 if (lto_stats.num_output_il_bytes > 0)
222 const float dividend = (float) lto_stats.num_compressed_il_bytes;
223 const float divisor = (float) lto_stats.num_output_il_bytes;
224 fprintf (stderr, " (ratio: %f)", dividend / divisor);
226 fprintf (stderr, "\n");
229 if (flag_wpa)
231 fprintf (stderr, "[%s] # of output files: "
232 HOST_WIDE_INT_PRINT_UNSIGNED "\n", s,
233 lto_stats.num_output_files);
235 fprintf (stderr, "[%s] # of output cgraph nodes: "
236 HOST_WIDE_INT_PRINT_UNSIGNED "\n", s,
237 lto_stats.num_output_cgraph_nodes);
239 fprintf (stderr, "[%s] # callgraph partitions: "
240 HOST_WIDE_INT_PRINT_UNSIGNED "\n", s,
241 lto_stats.num_cgraph_partitions);
243 fprintf (stderr, "[%s] Compression: "
244 HOST_WIDE_INT_PRINT_UNSIGNED " input bytes, "
245 HOST_WIDE_INT_PRINT_UNSIGNED " uncompressed bytes", s,
246 lto_stats.num_input_il_bytes,
247 lto_stats.num_uncompressed_il_bytes);
248 if (lto_stats.num_input_il_bytes > 0)
250 const float dividend = (float) lto_stats.num_uncompressed_il_bytes;
251 const float divisor = (float) lto_stats.num_input_il_bytes;
252 fprintf (stderr, " (ratio: %f)", dividend / divisor);
254 fprintf (stderr, "\n");
257 for (i = 0; i < LTO_N_SECTION_TYPES; i++)
258 fprintf (stderr, "[%s] Size of mmap'd section %s: "
259 HOST_WIDE_INT_PRINT_UNSIGNED " bytes\n", s,
260 lto_section_name[i], lto_stats.section_size[i]);
264 /* Create a new bitpack. */
266 struct bitpack_d *
267 bitpack_create (void)
269 return XCNEW (struct bitpack_d);
273 /* Free the memory used by bitpack BP. */
275 void
276 bitpack_delete (struct bitpack_d *bp)
278 VEC_free (bitpack_word_t, heap, bp->values);
279 free (bp);
283 /* Return an index to the word in bitpack BP that contains the
284 next NBITS. */
286 static inline unsigned
287 bp_get_next_word (struct bitpack_d *bp, unsigned nbits)
289 unsigned last, ix;
291 /* In principle, the next word to use is determined by the
292 number of bits already processed in BP. */
293 ix = bp->num_bits / BITS_PER_BITPACK_WORD;
295 /* All the encoded bit patterns in BP are contiguous, therefore if
296 the next NBITS would straddle over two different words, move the
297 index to the next word and update the number of encoded bits
298 by adding up the hole of unused bits created by this move. */
299 bp->first_unused_bit %= BITS_PER_BITPACK_WORD;
300 last = bp->first_unused_bit + nbits - 1;
301 if (last >= BITS_PER_BITPACK_WORD)
303 ix++;
304 bp->num_bits += (BITS_PER_BITPACK_WORD - bp->first_unused_bit);
305 bp->first_unused_bit = 0;
308 return ix;
312 /* Pack NBITS of value VAL into bitpack BP. */
314 void
315 bp_pack_value (struct bitpack_d *bp, bitpack_word_t val, unsigned nbits)
317 unsigned ix;
318 bitpack_word_t word;
320 /* We cannot encode more bits than BITS_PER_BITPACK_WORD. */
321 gcc_assert (nbits > 0 && nbits <= BITS_PER_BITPACK_WORD);
323 /* Compute which word will contain the next NBITS. */
324 ix = bp_get_next_word (bp, nbits);
325 if (ix >= VEC_length (bitpack_word_t, bp->values))
327 /* If there is no room left in the last word of the values
328 array, add a new word. Additionally, we should only
329 need to add a single word, since every pack operation cannot
330 use more bits than fit in a single word. */
331 gcc_assert (ix < VEC_length (bitpack_word_t, bp->values) + 1);
332 VEC_safe_push (bitpack_word_t, heap, bp->values, 0);
335 /* Grab the last word to pack VAL into. */
336 word = VEC_index (bitpack_word_t, bp->values, ix);
338 /* To fit VAL in WORD, we need to shift VAL to the left to
339 skip the bottom BP->FIRST_UNUSED_BIT bits. */
340 gcc_assert (BITS_PER_BITPACK_WORD >= bp->first_unused_bit + nbits);
341 val <<= bp->first_unused_bit;
343 /* Update WORD with VAL. */
344 word |= val;
346 /* Update BP. */
347 VEC_replace (bitpack_word_t, bp->values, ix, word);
348 bp->num_bits += nbits;
349 bp->first_unused_bit += nbits;
353 /* Unpack the next NBITS from bitpack BP. */
355 bitpack_word_t
356 bp_unpack_value (struct bitpack_d *bp, unsigned nbits)
358 bitpack_word_t val, word, mask;
359 unsigned ix;
361 /* We cannot decode more bits than BITS_PER_BITPACK_WORD. */
362 gcc_assert (nbits > 0 && nbits <= BITS_PER_BITPACK_WORD);
364 /* Compute which word contains the next NBITS. */
365 ix = bp_get_next_word (bp, nbits);
366 word = VEC_index (bitpack_word_t, bp->values, ix);
368 /* Compute the mask to get NBITS from WORD. */
369 mask = (nbits == BITS_PER_BITPACK_WORD)
370 ? (bitpack_word_t) -1
371 : ((bitpack_word_t) 1 << nbits) - 1;
373 /* Shift WORD to the right to skip over the bits already decoded
374 in word. */
375 word >>= bp->first_unused_bit;
377 /* Apply the mask to obtain the requested value. */
378 val = word & mask;
380 /* Update BP->NUM_BITS for the next unpack operation. */
381 bp->num_bits += nbits;
382 bp->first_unused_bit += nbits;
384 return val;
388 /* Check that all the TS_* structures handled by the lto_output_* and
389 lto_input_* routines are exactly ALL the structures defined in
390 treestruct.def. */
392 static void
393 check_handled_ts_structures (void)
395 bool handled_p[LAST_TS_ENUM];
396 unsigned i;
398 memset (&handled_p, 0, sizeof (handled_p));
400 /* These are the TS_* structures that are either handled or
401 explicitly ignored by the streamer routines. */
402 handled_p[TS_BASE] = true;
403 handled_p[TS_COMMON] = true;
404 handled_p[TS_INT_CST] = true;
405 handled_p[TS_REAL_CST] = true;
406 handled_p[TS_FIXED_CST] = true;
407 handled_p[TS_VECTOR] = true;
408 handled_p[TS_STRING] = true;
409 handled_p[TS_COMPLEX] = true;
410 handled_p[TS_IDENTIFIER] = true;
411 handled_p[TS_DECL_MINIMAL] = true;
412 handled_p[TS_DECL_COMMON] = true;
413 handled_p[TS_DECL_WRTL] = true;
414 handled_p[TS_DECL_NON_COMMON] = true;
415 handled_p[TS_DECL_WITH_VIS] = true;
416 handled_p[TS_FIELD_DECL] = true;
417 handled_p[TS_VAR_DECL] = true;
418 handled_p[TS_PARM_DECL] = true;
419 handled_p[TS_LABEL_DECL] = true;
420 handled_p[TS_RESULT_DECL] = true;
421 handled_p[TS_CONST_DECL] = true;
422 handled_p[TS_TYPE_DECL] = true;
423 handled_p[TS_FUNCTION_DECL] = true;
424 handled_p[TS_TYPE] = true;
425 handled_p[TS_LIST] = true;
426 handled_p[TS_VEC] = true;
427 handled_p[TS_EXP] = true;
428 handled_p[TS_SSA_NAME] = true;
429 handled_p[TS_BLOCK] = true;
430 handled_p[TS_BINFO] = true;
431 handled_p[TS_STATEMENT_LIST] = true;
432 handled_p[TS_CONSTRUCTOR] = true;
433 handled_p[TS_OMP_CLAUSE] = true;
434 handled_p[TS_OPTIMIZATION] = true;
435 handled_p[TS_TARGET_OPTION] = true;
437 /* Anything not marked above will trigger the following assertion.
438 If this assertion triggers, it means that there is a new TS_*
439 structure that should be handled by the streamer. */
440 for (i = 0; i < LAST_TS_ENUM; i++)
441 gcc_assert (handled_p[i]);
445 /* Helper for lto_streamer_cache_insert_1. Add T to CACHE->NODES at
446 slot IX. Add OFFSET to CACHE->OFFSETS at slot IX. */
448 static void
449 lto_streamer_cache_add_to_node_array (struct lto_streamer_cache_d *cache,
450 int ix, tree t, unsigned offset)
452 gcc_assert (ix >= 0);
454 /* Grow the array of nodes and offsets to accomodate T at IX. */
455 if (ix >= (int) VEC_length (tree, cache->nodes))
457 size_t sz = ix + (20 + ix) / 4;
458 VEC_safe_grow_cleared (tree, gc, cache->nodes, sz);
459 VEC_safe_grow_cleared (unsigned, heap, cache->offsets, sz);
462 VEC_replace (tree, cache->nodes, ix, t);
463 VEC_replace (unsigned, cache->offsets, ix, offset);
467 /* Helper for lto_streamer_cache_insert and lto_streamer_cache_insert_at.
468 CACHE, T, IX_P and OFFSET_P are as in lto_streamer_cache_insert.
470 If INSERT_AT_NEXT_SLOT_P is true, T is inserted at the next available
471 slot in the cache. Otherwise, T is inserted at the position indicated
472 in *IX_P.
474 If T already existed in CACHE, return true. Otherwise,
475 return false. */
477 static bool
478 lto_streamer_cache_insert_1 (struct lto_streamer_cache_d *cache,
479 tree t, int *ix_p, unsigned *offset_p,
480 bool insert_at_next_slot_p)
482 void **slot;
483 struct tree_int_map d_entry, *entry;
484 int ix;
485 unsigned offset;
486 bool existed_p;
488 gcc_assert (t);
490 d_entry.base.from = t;
491 slot = htab_find_slot (cache->node_map, &d_entry, INSERT);
492 if (*slot == NULL)
494 /* Determine the next slot to use in the cache. */
495 if (insert_at_next_slot_p)
496 ix = cache->next_slot++;
497 else
498 ix = *ix_p;
500 entry = XCNEW (struct tree_int_map);
501 entry->base.from = t;
502 entry->to = (unsigned) ix;
503 *slot = entry;
505 /* If no offset was given, store the invalid offset -1. */
506 offset = (offset_p) ? *offset_p : (unsigned) -1;
508 lto_streamer_cache_add_to_node_array (cache, ix, t, offset);
510 /* Indicate that the item was not present in the cache. */
511 existed_p = false;
513 else
515 entry = (struct tree_int_map *) *slot;
516 ix = (int) entry->to;
517 offset = VEC_index (unsigned, cache->offsets, ix);
519 if (!insert_at_next_slot_p && ix != *ix_p)
521 /* If the caller wants to insert T at a specific slot
522 location, and ENTRY->TO does not match *IX_P, add T to
523 the requested location slot. This situation arises when
524 streaming builtin functions.
526 For instance, on the writer side we could have two
527 FUNCTION_DECLS T1 and T2 that are represented by the same
528 builtin function. The reader will only instantiate the
529 canonical builtin, but since T1 and T2 had been
530 originally stored in different cache slots (S1 and S2),
531 the reader must be able to find the canonical builtin
532 function at slots S1 and S2. */
533 gcc_assert (lto_stream_as_builtin_p (t));
534 ix = *ix_p;
536 /* Since we are storing a builtin, the offset into the
537 stream is not necessary as we will not need to read
538 forward in the stream. */
539 lto_streamer_cache_add_to_node_array (cache, ix, t, -1);
542 /* Indicate that T was already in the cache. */
543 existed_p = true;
546 if (ix_p)
547 *ix_p = ix;
549 if (offset_p)
550 *offset_p = offset;
552 return existed_p;
556 /* Insert tree node T in CACHE. If T already existed in the cache
557 return true. Otherwise, return false.
559 If IX_P is non-null, update it with the index into the cache where
560 T has been stored.
562 *OFFSET_P represents the offset in the stream where T is physically
563 written out. The first time T is added to the cache, *OFFSET_P is
564 recorded in the cache together with T. But if T already existed
565 in the cache, *OFFSET_P is updated with the value that was recorded
566 the first time T was added to the cache.
568 If OFFSET_P is NULL, it is ignored. */
570 bool
571 lto_streamer_cache_insert (struct lto_streamer_cache_d *cache, tree t,
572 int *ix_p, unsigned *offset_p)
574 return lto_streamer_cache_insert_1 (cache, t, ix_p, offset_p, true);
578 /* Insert tree node T in CACHE at slot IX. If T already
579 existed in the cache return true. Otherwise, return false. */
581 bool
582 lto_streamer_cache_insert_at (struct lto_streamer_cache_d *cache,
583 tree t, int ix)
585 return lto_streamer_cache_insert_1 (cache, t, &ix, NULL, false);
589 /* Return true if tree node T exists in CACHE. If IX_P is
590 not NULL, write to *IX_P the index into the cache where T is stored
591 (-1 if T is not found). */
593 bool
594 lto_streamer_cache_lookup (struct lto_streamer_cache_d *cache, tree t,
595 int *ix_p)
597 void **slot;
598 struct tree_int_map d_slot;
599 bool retval;
600 int ix;
602 gcc_assert (t);
604 d_slot.base.from = t;
605 slot = htab_find_slot (cache->node_map, &d_slot, NO_INSERT);
606 if (slot == NULL)
608 retval = false;
609 ix = -1;
611 else
613 retval = true;
614 ix = (int) ((struct tree_int_map *) *slot)->to;
617 if (ix_p)
618 *ix_p = ix;
620 return retval;
624 /* Return the tree node at slot IX in CACHE. */
626 tree
627 lto_streamer_cache_get (struct lto_streamer_cache_d *cache, int ix)
629 gcc_assert (cache);
631 /* If the reader is requesting an index beyond the length of the
632 cache, it will need to read ahead. Return NULL_TREE to indicate
633 that. */
634 if ((unsigned) ix >= VEC_length (tree, cache->nodes))
635 return NULL_TREE;
637 return VEC_index (tree, cache->nodes, (unsigned) ix);
641 /* Record NODE in COMMON_NODES if it is not NULL and is not already in
642 SEEN_NODES. */
644 static void
645 lto_record_common_node (tree *nodep, VEC(tree, heap) **common_nodes,
646 struct pointer_set_t *seen_nodes)
648 tree node = *nodep;
650 if (node == NULL_TREE)
651 return;
653 if (TYPE_P (node))
654 *nodep = node = gimple_register_type (node);
656 /* Return if node is already seen. */
657 if (pointer_set_insert (seen_nodes, node))
658 return;
660 VEC_safe_push (tree, heap, *common_nodes, node);
662 if (tree_node_can_be_shared (node))
664 if (POINTER_TYPE_P (node)
665 || TREE_CODE (node) == COMPLEX_TYPE
666 || TREE_CODE (node) == ARRAY_TYPE)
667 lto_record_common_node (&TREE_TYPE (node), common_nodes, seen_nodes);
672 /* Generate a vector of common nodes and make sure they are merged
673 properly according to the the gimple type table. */
675 static VEC(tree,heap) *
676 lto_get_common_nodes (void)
678 unsigned i;
679 VEC(tree,heap) *common_nodes = NULL;
680 struct pointer_set_t *seen_nodes;
682 /* The MAIN_IDENTIFIER_NODE is normally set up by the front-end, but the
683 LTO back-end must agree. Currently, the only languages that set this
684 use the name "main". */
685 if (main_identifier_node)
687 const char *main_name = IDENTIFIER_POINTER (main_identifier_node);
688 gcc_assert (strcmp (main_name, "main") == 0);
690 else
691 main_identifier_node = get_identifier ("main");
693 gcc_assert (ptrdiff_type_node == integer_type_node);
695 /* FIXME lto. In the C++ front-end, fileptr_type_node is defined as a
696 variant copy of of ptr_type_node, rather than ptr_node itself. The
697 distinction should only be relevant to the front-end, so we always
698 use the C definition here in lto1.
700 These should be assured in pass_ipa_free_lang_data. */
701 gcc_assert (fileptr_type_node == ptr_type_node);
702 gcc_assert (TYPE_MAIN_VARIANT (fileptr_type_node) == ptr_type_node);
704 seen_nodes = pointer_set_create ();
706 /* Skip itk_char. char_type_node is shared with the appropriately
707 signed variant. */
708 for (i = itk_signed_char; i < itk_none; i++)
709 lto_record_common_node (&integer_types[i], &common_nodes, seen_nodes);
711 for (i = 0; i < TYPE_KIND_LAST; i++)
712 lto_record_common_node (&sizetype_tab[i], &common_nodes, seen_nodes);
714 for (i = 0; i < TI_MAX; i++)
715 lto_record_common_node (&global_trees[i], &common_nodes, seen_nodes);
717 pointer_set_destroy (seen_nodes);
719 return common_nodes;
723 /* Assign an index to tree node T and enter it in the streamer cache
724 CACHE. */
726 static void
727 preload_common_node (struct lto_streamer_cache_d *cache, tree t)
729 gcc_assert (t);
731 lto_streamer_cache_insert (cache, t, NULL, NULL);
733 /* The FIELD_DECLs of structures should be shared, so that every
734 COMPONENT_REF uses the same tree node when referencing a field.
735 Pointer equality between FIELD_DECLs is used by the alias
736 machinery to compute overlapping memory references (See
737 nonoverlapping_component_refs_p). */
738 if (TREE_CODE (t) == RECORD_TYPE)
740 tree f;
742 for (f = TYPE_FIELDS (t); f; f = TREE_CHAIN (f))
743 preload_common_node (cache, f);
748 /* Create a cache of pickled nodes. */
750 struct lto_streamer_cache_d *
751 lto_streamer_cache_create (void)
753 struct lto_streamer_cache_d *cache;
754 VEC(tree, heap) *common_nodes;
755 unsigned i;
756 tree node;
758 cache = XCNEW (struct lto_streamer_cache_d);
760 cache->node_map = htab_create (101, tree_int_map_hash, tree_int_map_eq, NULL);
762 /* Load all the well-known tree nodes that are always created by
763 the compiler on startup. This prevents writing them out
764 unnecessarily. */
765 common_nodes = lto_get_common_nodes ();
767 for (i = 0; VEC_iterate (tree, common_nodes, i, node); i++)
768 preload_common_node (cache, node);
770 VEC_free(tree, heap, common_nodes);
772 return cache;
776 /* Delete the streamer cache C. */
778 void
779 lto_streamer_cache_delete (struct lto_streamer_cache_d *c)
781 if (c == NULL)
782 return;
784 htab_delete (c->node_map);
785 VEC_free (tree, gc, c->nodes);
786 VEC_free (unsigned, heap, c->offsets);
787 free (c);
791 /* Initialization common to the LTO reader and writer. */
793 void
794 lto_streamer_init (void)
796 /* Check that all the TS_* handled by the reader and writer routines
797 match exactly the structures defined in treestruct.def. When a
798 new TS_* astructure is added, the streamer should be updated to
799 handle it. */
800 check_handled_ts_structures ();
804 /* Gate function for all LTO streaming passes. */
806 bool
807 gate_lto_out (void)
809 return ((flag_generate_lto || in_lto_p)
810 /* Don't bother doing anything if the program has errors. */
811 && !(errorcount || sorrycount));
815 #ifdef LTO_STREAMER_DEBUG
816 /* Add a mapping between T and ORIG_T, which is the numeric value of
817 the original address of T as it was seen by the LTO writer. This
818 mapping is useful when debugging streaming problems. A debugging
819 session can be started on both reader and writer using ORIG_T
820 as a breakpoint value in both sessions.
822 Note that this mapping is transient and only valid while T is
823 being reconstructed. Once T is fully built, the mapping is
824 removed. */
826 void
827 lto_orig_address_map (tree t, intptr_t orig_t)
829 /* FIXME lto. Using the annotation field is quite hacky as it relies
830 on the GC not running while T is being rematerialized. It would
831 be cleaner to use a hash table here. */
832 t->base.ann = (union tree_ann_d *) orig_t;
836 /* Get the original address of T as it was seen by the writer. This
837 is only valid while T is being reconstructed. */
839 intptr_t
840 lto_orig_address_get (tree t)
842 return (intptr_t) t->base.ann;
846 /* Clear the mapping of T to its original address. */
848 void
849 lto_orig_address_remove (tree t)
851 t->base.ann = NULL;
853 #endif
856 /* Check that the version MAJOR.MINOR is the correct version number. */
858 void
859 lto_check_version (int major, int minor)
861 if (major != LTO_major_version || minor != LTO_minor_version)
862 fatal_error ("bytecode stream generated with LTO version %d.%d instead "
863 "of the expected %d.%d",
864 major, minor,
865 LTO_major_version, LTO_minor_version);