Print SCoPs under CLooG format.
[official-gcc/graphite-test-results.git] / gcc / ipa-struct-reorg.c
blob24b42e3ed035e6c3225aca80754949b4194d4652
1 /* Struct-reorg optimization.
2 Copyright (C) 2007, 2008, 2009, 2010 Free Software Foundation, Inc.
3 Contributed by Olga Golovanevsky <olga@il.ibm.com>
4 (Initial version of this code was developed
5 by Caroline Tice and Mostafa Hagog.)
7 This file is part of GCC.
9 GCC is free software; you can redistribute it and/or modify it under
10 the terms of the GNU General Public License as published by the Free
11 Software Foundation; either version 3, or (at your option) any later
12 version.
14 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
15 WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 for more details.
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING3. If not see
21 <http://www.gnu.org/licenses/>. */
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "tm.h"
27 #include "ggc.h"
28 #include "tree.h"
29 #include "rtl.h"
30 #include "gimple.h"
31 #include "tree-inline.h"
32 #include "tree-flow.h"
33 #include "tree-flow-inline.h"
34 #include "langhooks.h"
35 #include "pointer-set.h"
36 #include "hashtab.h"
37 #include "toplev.h"
38 #include "flags.h"
39 #include "debug.h"
40 #include "target.h"
41 #include "cgraph.h"
42 #include "diagnostic.h"
43 #include "timevar.h"
44 #include "params.h"
45 #include "fibheap.h"
46 #include "intl.h"
47 #include "function.h"
48 #include "basic-block.h"
49 #include "tree-iterator.h"
50 #include "tree-pass.h"
51 #include "ipa-struct-reorg.h"
52 #include "opts.h"
53 #include "ipa-type-escape.h"
54 #include "tree-dump.h"
55 #include "gimple.h"
57 /* This optimization implements structure peeling.
59 For example, given a structure type:
60 typedef struct
62 int a;
63 float b;
64 int c;
65 }str_t;
67 it can be peeled into two structure types as follows:
69 typedef struct and typedef struct
70 { {
71 int a; float b;
72 int c; } str_t_1;
73 }str_t_0;
75 or can be fully peeled:
77 typedef struct
79 int a;
80 }str_t_0;
82 typedef struct
84 float b;
85 }str_t_1;
87 typedef struct
89 int c;
90 }str_t_2;
92 When structure type is peeled all instances and their accesses
93 in the program are updated accordingly. For example, if there is
94 array of structures:
96 str_t A[N];
98 and structure type str_t was peeled into two structures str_t_0
99 and str_t_1 as it was shown above, then array A will be replaced
100 by two arrays as follows:
102 str_t_0 A_0[N];
103 str_t_1 A_1[N];
105 The field access of field a of element i of array A: A[i].a will be
106 replaced by an access to field a of element i of array A_0: A_0[i].a.
108 This optimization also supports dynamically allocated arrays.
109 If array of structures was allocated by malloc function:
111 str_t * p = (str_t *) malloc (sizeof (str_t) * N)
113 the allocation site will be replaced to reflect new structure types:
115 str_t_0 * p_0 = (str_t_0 *) malloc (sizeof (str_t_0) * N)
116 str_t_1 * p_1 = (str_t_1 *) malloc (sizeof (str_t_1) * N)
118 The field access through the pointer p[i].a will be changed by p_0[i].a.
120 The goal of structure peeling is to improve spatial locality.
121 For example, if one of the fields of a structure is accessed frequently
122 in the loop:
124 for (i = 0; i < N; i++)
126 ... = A[i].a;
129 the allocation of field a of str_t contiguously in memory will
130 increase the chances of fetching the field from cache.
132 The analysis part of this optimization is based on the frequency of
133 field accesses, which are collected all over the program.
134 Then the fields with the frequencies that satisfy the following condition
135 get peeled out of the structure:
137 freq(f) > C * max_field_freq_in_struct
139 where max_field_freq_in_struct is the maximum field frequency
140 in the structure. C is a constant defining which portion of
141 max_field_freq_in_struct the fields should have in order to be peeled.
143 If profiling information is provided, it is used to calculate the
144 frequency of field accesses. Otherwise, the structure is fully peeled.
146 IPA type-escape analysis is used to determine when it is safe
147 to peel a structure.
149 The optimization is activated by flag -fipa-struct-reorg. */
151 /* New variables created by this optimization.
152 When doing struct peeling, each variable of
153 the original struct type will be replaced by
154 the set of new variables corresponding to
155 the new structure types. */
156 struct new_var_data {
157 /* VAR_DECL for original struct type. */
158 tree orig_var;
159 /* Vector of new variables. */
160 VEC(tree, heap) *new_vars;
163 typedef struct new_var_data *new_var;
164 typedef const struct new_var_data *const_new_var;
166 /* This structure represents allocation site of the structure. */
167 typedef struct alloc_site
169 gimple stmt;
170 d_str str;
171 } alloc_site_t;
173 DEF_VEC_O (alloc_site_t);
174 DEF_VEC_ALLOC_O (alloc_site_t, heap);
176 /* Allocation sites that belong to the same function. */
177 struct func_alloc_sites
179 tree func;
180 /* Vector of allocation sites for function. */
181 VEC (alloc_site_t, heap) *allocs;
184 typedef struct func_alloc_sites *fallocs_t;
185 typedef const struct func_alloc_sites *const_fallocs_t;
187 /* All allocation sites in the program. */
188 htab_t alloc_sites = NULL;
190 /* New global variables. Generated once for whole program. */
191 htab_t new_global_vars;
193 /* New local variables. Generated per-function. */
194 htab_t new_local_vars;
196 /* Vector of structures to be transformed. */
197 typedef struct data_structure structure;
198 DEF_VEC_O (structure);
199 DEF_VEC_ALLOC_O (structure, heap);
200 VEC (structure, heap) *structures;
202 /* Forward declarations. */
203 static bool is_equal_types (tree, tree);
205 /* Strip structure TYPE from pointers and arrays. */
207 static inline tree
208 strip_type (tree type)
210 gcc_assert (TYPE_P (type));
212 while (POINTER_TYPE_P (type)
213 || TREE_CODE (type) == ARRAY_TYPE)
214 type = TREE_TYPE (type);
216 return type;
219 /* This function returns type of VAR. */
221 static inline tree
222 get_type_of_var (tree var)
224 if (!var)
225 return NULL;
227 if (TREE_CODE (var) == PARM_DECL)
228 return DECL_ARG_TYPE (var);
229 else
230 return TREE_TYPE (var);
233 /* Set of actions we do for each newly generated STMT. */
235 static inline void
236 finalize_stmt (gimple stmt)
238 update_stmt (stmt);
239 mark_symbols_for_renaming (stmt);
242 /* This function finalizes STMT and appends it to the list STMTS. */
244 static inline void
245 finalize_stmt_and_append (gimple_seq *stmts, gimple stmt)
247 gimple_seq_add_stmt (stmts, stmt);
248 finalize_stmt (stmt);
251 /* This function returns true if two fields FIELD1 and FIELD2 are
252 semantically equal, and false otherwise. */
254 static bool
255 compare_fields (tree field1, tree field2)
257 if (DECL_NAME (field1) && DECL_NAME (field2))
259 const char *name1 = IDENTIFIER_POINTER (DECL_NAME (field1));
260 const char *name2 = IDENTIFIER_POINTER (DECL_NAME (field2));
262 gcc_assert (name1 && name2);
264 if (strcmp (name1, name2))
265 return false;
268 else if (DECL_NAME (field1) || DECL_NAME (field2))
269 return false;
271 if (!is_equal_types (TREE_TYPE (field1), TREE_TYPE (field2)))
272 return false;
274 return true;
277 /* Given structure type SRT_TYPE and field FIELD,
278 this function is looking for a field with the same name
279 and type as FIELD in STR_TYPE. It returns it if found,
280 or NULL_TREE otherwise. */
282 static tree
283 find_field_in_struct_1 (tree str_type, tree field)
285 tree str_field;
287 if (!DECL_NAME (field))
288 return NULL;
290 for (str_field = TYPE_FIELDS (str_type); str_field;
291 str_field = TREE_CHAIN (str_field))
294 if (!DECL_NAME (str_field))
295 continue;
297 if (compare_fields (field, str_field))
298 return str_field;
301 return NULL_TREE;
304 /* Given a field declaration FIELD_DECL, this function
305 returns corresponding field entry in structure STR. */
307 static struct field_entry *
308 find_field_in_struct (d_str str, tree field_decl)
310 int i;
312 tree field = find_field_in_struct_1 (str->decl, field_decl);
314 for (i = 0; i < str->num_fields; i++)
315 if (str->fields[i].decl == field)
316 return &(str->fields[i]);
318 return NULL;
321 /* This function checks whether ARG is a result of multiplication
322 of some number by STRUCT_SIZE. If yes, the function returns true
323 and this number is filled into NUM. */
325 static bool
326 is_result_of_mult (tree arg, tree *num, tree struct_size)
328 gimple size_def_stmt = SSA_NAME_DEF_STMT (arg);
330 /* If the allocation statement was of the form
331 D.2229_10 = <alloc_func> (D.2228_9);
332 then size_def_stmt can be D.2228_9 = num.3_8 * 8; */
334 if (size_def_stmt && is_gimple_assign (size_def_stmt))
336 tree lhs = gimple_assign_lhs (size_def_stmt);
338 /* We expect temporary here. */
339 if (!is_gimple_reg (lhs))
340 return false;
342 if (gimple_assign_rhs_code (size_def_stmt) == MULT_EXPR)
344 tree arg0 = gimple_assign_rhs1 (size_def_stmt);
345 tree arg1 = gimple_assign_rhs2 (size_def_stmt);
347 if (operand_equal_p (arg0, struct_size, OEP_ONLY_CONST))
349 *num = arg1;
350 return true;
353 if (operand_equal_p (arg1, struct_size, OEP_ONLY_CONST))
355 *num = arg0;
356 return true;
361 *num = NULL_TREE;
362 return false;
366 /* This function returns true if access ACC corresponds to the pattern
367 generated by compiler when an address of element i of an array
368 of structures STR_DECL (pointed by p) is calculated (p[i]). If this
369 pattern is recognized correctly, this function returns true
370 and fills missing fields in ACC. Otherwise it returns false. */
372 static bool
373 decompose_indirect_ref_acc (tree str_decl, struct field_access_site *acc)
375 tree ref_var;
376 tree struct_size, op0, op1;
377 tree before_cast;
378 enum tree_code rhs_code;
380 ref_var = TREE_OPERAND (acc->ref, 0);
382 if (TREE_CODE (ref_var) != SSA_NAME)
383 return false;
385 acc->ref_def_stmt = SSA_NAME_DEF_STMT (ref_var);
386 if (!(acc->ref_def_stmt)
387 || (gimple_code (acc->ref_def_stmt) != GIMPLE_ASSIGN))
388 return false;
390 rhs_code = gimple_assign_rhs_code (acc->ref_def_stmt);
392 if (rhs_code != PLUS_EXPR
393 && rhs_code != MINUS_EXPR
394 && rhs_code != POINTER_PLUS_EXPR)
395 return false;
397 op0 = gimple_assign_rhs1 (acc->ref_def_stmt);
398 op1 = gimple_assign_rhs2 (acc->ref_def_stmt);
400 if (!is_array_access_through_pointer_and_index (rhs_code, op0, op1,
401 &acc->base, &acc->offset,
402 &acc->cast_stmt))
403 return false;
405 if (acc->cast_stmt)
406 before_cast = SINGLE_SSA_TREE_OPERAND (acc->cast_stmt, SSA_OP_USE);
407 else
408 before_cast = acc->offset;
410 if (!before_cast)
411 return false;
414 if (SSA_NAME_IS_DEFAULT_DEF (before_cast))
415 return false;
417 struct_size = TYPE_SIZE_UNIT (str_decl);
419 if (!is_result_of_mult (before_cast, &acc->num, struct_size))
420 return false;
422 return true;
426 /* This function checks whether the access ACC of structure type STR
427 is of the form suitable for transformation. If yes, it returns true.
428 False otherwise. */
430 static bool
431 decompose_access (tree str_decl, struct field_access_site *acc)
433 gcc_assert (acc->ref);
435 if (TREE_CODE (acc->ref) == INDIRECT_REF)
436 return decompose_indirect_ref_acc (str_decl, acc);
437 else if (TREE_CODE (acc->ref) == ARRAY_REF)
438 return true;
439 else if (TREE_CODE (acc->ref) == VAR_DECL)
440 return true;
442 return false;
445 /* This function creates empty field_access_site node. */
447 static inline struct field_access_site *
448 make_field_acc_node (void)
450 return XCNEW (struct field_access_site);
453 /* This function returns the structure field access, defined by STMT,
454 if it is already in hashtable of function accesses F_ACCS. */
456 static struct field_access_site *
457 is_in_field_accs (gimple stmt, htab_t f_accs)
459 return (struct field_access_site *)
460 htab_find_with_hash (f_accs, stmt, htab_hash_pointer (stmt));
463 /* This function adds an access ACC to the hashtable
464 F_ACCS of field accesses. */
466 static void
467 add_field_acc_to_acc_sites (struct field_access_site *acc,
468 htab_t f_accs)
470 void **slot;
472 gcc_assert (!is_in_field_accs (acc->stmt, f_accs));
473 slot = htab_find_slot_with_hash (f_accs, acc->stmt,
474 htab_hash_pointer (acc->stmt),
475 INSERT);
476 *slot = acc;
479 /* This function adds the VAR to vector of variables of
480 an access site defined by statement STMT. If access entry
481 with statement STMT does not exist in hashtable of
482 accesses ACCS, this function creates it. */
484 static void
485 add_access_to_acc_sites (gimple stmt, tree var, htab_t accs)
487 struct access_site *acc;
489 acc = (struct access_site *)
490 htab_find_with_hash (accs, stmt, htab_hash_pointer (stmt));
492 if (!acc)
494 void **slot;
496 acc = XNEW (struct access_site);
497 acc->stmt = stmt;
498 if (!is_gimple_debug (stmt))
499 acc->vars = VEC_alloc (tree, heap, 10);
500 else
501 acc->vars = NULL;
502 slot = htab_find_slot_with_hash (accs, stmt,
503 htab_hash_pointer (stmt), INSERT);
504 *slot = acc;
506 if (!is_gimple_debug (stmt))
507 VEC_safe_push (tree, heap, acc->vars, var);
510 /* This function adds NEW_DECL to function
511 referenced vars, and marks it for renaming. */
513 static void
514 finalize_var_creation (tree new_decl)
516 add_referenced_var (new_decl);
517 mark_sym_for_renaming (new_decl);
520 /* This function finalizes VAR creation if it is a global VAR_DECL. */
522 static void
523 finalize_global_creation (tree var)
525 if (TREE_CODE (var) == VAR_DECL
526 && is_global_var (var))
527 finalize_var_creation (var);
530 /* This function inserts NEW_DECL to varpool. */
532 static inline void
533 insert_global_to_varpool (tree new_decl)
535 struct varpool_node *new_node;
537 new_node = varpool_node (new_decl);
538 notice_global_symbol (new_decl);
539 varpool_mark_needed_node (new_node);
540 varpool_finalize_decl (new_decl);
543 /* This function finalizes the creation of new variables,
544 defined by *SLOT->new_vars. */
546 static int
547 finalize_new_vars_creation (void **slot, void *data ATTRIBUTE_UNUSED)
549 new_var n_var = *(new_var *) slot;
550 unsigned i;
551 tree var;
553 for (i = 0; VEC_iterate (tree, n_var->new_vars, i, var); i++)
554 finalize_var_creation (var);
555 return 1;
558 /* This function looks for the variable of NEW_TYPE type, stored in VAR.
559 It returns it, if found, and NULL_TREE otherwise. */
561 static tree
562 find_var_in_new_vars_vec (new_var var, tree new_type)
564 tree n_var;
565 unsigned i;
567 for (i = 0; VEC_iterate (tree, var->new_vars, i, n_var); i++)
569 tree type = strip_type(get_type_of_var (n_var));
570 gcc_assert (type);
572 if (type == new_type)
573 return n_var;
576 return NULL_TREE;
579 /* This function returns new_var node, the orig_var of which is DECL.
580 It looks for new_var's in NEW_VARS_HTAB. If not found,
581 the function returns NULL. */
583 static new_var
584 is_in_new_vars_htab (tree decl, htab_t new_vars_htab)
586 return (new_var) htab_find_with_hash (new_vars_htab, decl,
587 DECL_UID (decl));
590 /* Given original variable ORIG_VAR, this function returns
591 new variable corresponding to it of NEW_TYPE type. */
593 static tree
594 find_new_var_of_type (tree orig_var, tree new_type)
596 new_var var;
597 gcc_assert (orig_var && new_type);
599 if (TREE_CODE (orig_var) == SSA_NAME)
600 orig_var = SSA_NAME_VAR (orig_var);
602 var = is_in_new_vars_htab (orig_var, new_global_vars);
603 if (!var)
604 var = is_in_new_vars_htab (orig_var, new_local_vars);
605 gcc_assert (var);
606 return find_var_in_new_vars_vec (var, new_type);
609 /* This function generates stmt:
610 res = NUM * sizeof(TYPE) and returns it.
611 res is filled into RES. */
613 static gimple
614 gen_size (tree num, tree type, tree *res)
616 tree struct_size = TYPE_SIZE_UNIT (type);
617 HOST_WIDE_INT struct_size_int = TREE_INT_CST_LOW (struct_size);
618 gimple new_stmt;
620 *res = create_tmp_var (TREE_TYPE (num), NULL);
622 if (*res)
623 add_referenced_var (*res);
625 if (exact_log2 (struct_size_int) == -1)
627 tree size = build_int_cst (TREE_TYPE (num), struct_size_int);
628 new_stmt = gimple_build_assign (*res, fold_build2 (MULT_EXPR,
629 TREE_TYPE (num),
630 num, size));
632 else
634 tree C = build_int_cst (TREE_TYPE (num), exact_log2 (struct_size_int));
636 new_stmt = gimple_build_assign (*res, fold_build2 (LSHIFT_EXPR,
637 TREE_TYPE (num),
638 num, C));
641 finalize_stmt (new_stmt);
642 return new_stmt;
645 /* This function generates and returns a statement, that cast variable
646 BEFORE_CAST to NEW_TYPE. The cast result variable is stored
647 into RES_P. ORIG_CAST_STMT is the original cast statement. */
649 static gimple
650 gen_cast_stmt (tree before_cast, tree new_type, gimple orig_cast_stmt,
651 tree *res_p)
653 tree lhs, new_lhs;
654 gimple new_stmt;
656 lhs = gimple_assign_lhs (orig_cast_stmt);
657 new_lhs = find_new_var_of_type (lhs, new_type);
658 gcc_assert (new_lhs);
660 new_stmt = gimple_build_assign_with_ops (NOP_EXPR, new_lhs, before_cast, 0);
661 finalize_stmt (new_stmt);
662 *res_p = new_lhs;
663 return new_stmt;
666 /* This function builds an edge between BB and E->dest and updates
667 phi nodes of E->dest. It returns newly created edge. */
669 static edge
670 make_edge_and_fix_phis_of_dest (basic_block bb, edge e)
672 edge new_e;
673 tree arg;
674 gimple_stmt_iterator si;
676 new_e = make_edge (bb, e->dest, e->flags);
678 for (si = gsi_start_phis (new_e->dest); !gsi_end_p (si); gsi_next (&si))
680 gimple phi = gsi_stmt (si);
681 arg = PHI_ARG_DEF_FROM_EDGE (phi, e);
682 add_phi_arg (phi, arg, new_e, gimple_phi_arg_location_from_edge (phi, e));
685 return new_e;
688 /* This function inserts NEW_STMT before STMT. */
690 static void
691 insert_before_stmt (gimple stmt, gimple new_stmt)
693 gimple_stmt_iterator bsi;
695 if (!stmt || !new_stmt)
696 return;
698 bsi = gsi_for_stmt (stmt);
699 gsi_insert_before (&bsi, new_stmt, GSI_SAME_STMT);
702 /* Insert NEW_STMTS after STMT. */
704 static void
705 insert_seq_after_stmt (gimple stmt, gimple_seq new_stmts)
707 gimple_stmt_iterator bsi;
709 if (!stmt || !new_stmts)
710 return;
712 bsi = gsi_for_stmt (stmt);
713 gsi_insert_seq_after (&bsi, new_stmts, GSI_SAME_STMT);
716 /* Insert NEW_STMT after STMT. */
718 static void
719 insert_after_stmt (gimple stmt, gimple new_stmt)
721 gimple_stmt_iterator bsi;
723 if (!stmt || !new_stmt)
724 return;
726 bsi = gsi_for_stmt (stmt);
727 gsi_insert_after (&bsi, new_stmt, GSI_SAME_STMT);
730 /* This function returns vector of allocation sites
731 that appear in function FN_DECL. */
733 static fallocs_t
734 get_fallocs (tree fn_decl)
736 return (fallocs_t) htab_find_with_hash (alloc_sites, fn_decl,
737 htab_hash_pointer (fn_decl));
740 /* If ALLOC_STMT is D.2225_7 = <alloc_func> (D.2224_6);
741 and it is a part of allocation of a structure,
742 then it is usually followed by a cast stmt
743 p_8 = (struct str_t *) D.2225_7;
744 which is returned by this function. */
746 static gimple
747 get_final_alloc_stmt (gimple alloc_stmt)
749 gimple final_stmt;
750 use_operand_p use_p;
751 tree alloc_res;
753 if (!alloc_stmt)
754 return NULL;
756 if (!is_gimple_call (alloc_stmt))
757 return NULL;
759 alloc_res = gimple_get_lhs (alloc_stmt);
761 if (TREE_CODE (alloc_res) != SSA_NAME)
762 return NULL;
764 if (!single_imm_use (alloc_res, &use_p, &final_stmt))
765 return NULL;
766 else
767 return final_stmt;
770 /* This function returns true if STMT is one of allocation
771 sites of function FN_DECL. It returns false otherwise. */
773 static bool
774 is_part_of_malloc (gimple stmt, tree fn_decl)
776 fallocs_t fallocs = get_fallocs (fn_decl);
778 if (fallocs)
780 alloc_site_t *call;
781 unsigned i;
783 for (i = 0; VEC_iterate (alloc_site_t, fallocs->allocs, i, call); i++)
784 if (call->stmt == stmt
785 || get_final_alloc_stmt (call->stmt) == stmt)
786 return true;
788 return false;
791 /* Auxiliary structure for a lookup over field accesses. */
792 struct find_stmt_data
794 bool found;
795 gimple stmt;
798 /* This function looks for DATA->stmt among
799 the statements involved in the field access,
800 defined by SLOT. It stops when it's found. */
802 static int
803 find_in_field_accs (void **slot, void *data)
805 struct field_access_site *f_acc = *(struct field_access_site **) slot;
806 gimple stmt = ((struct find_stmt_data *)data)->stmt;
808 if (f_acc->stmt == stmt
809 || f_acc->ref_def_stmt == stmt
810 || f_acc->cast_stmt == stmt)
812 ((struct find_stmt_data *)data)->found = true;
813 return 0;
815 else
816 return 1;
819 /* This function checks whether STMT is part of field
820 accesses of structure STR. It returns true, if found,
821 and false otherwise. */
823 static bool
824 is_part_of_field_access (gimple stmt, d_str str)
826 int i;
828 for (i = 0; i < str->num_fields; i++)
830 struct find_stmt_data data;
831 data.found = false;
832 data.stmt = stmt;
834 if (str->fields[i].acc_sites)
835 htab_traverse (str->fields[i].acc_sites, find_in_field_accs, &data);
837 if (data.found)
838 return true;
841 return false;
844 /* Auxiliary data for exclude_from_accs function. */
846 struct exclude_data
848 tree fn_decl;
849 d_str str;
852 /* This function returns component_ref with the BASE and
853 field named FIELD_ID from structure TYPE. */
855 static inline tree
856 build_comp_ref (tree base, tree field_id, tree type)
858 tree field;
859 bool found = false;
862 /* Find field of structure type with the same name as field_id. */
863 for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
865 if (DECL_NAME (field) == field_id)
867 found = true;
868 break;
872 gcc_assert (found);
874 return build3 (COMPONENT_REF, TREE_TYPE (field), base, field, NULL_TREE);
878 /* This struct represent data used for walk_tree
879 called from function find_pos_in_stmt.
880 - ref is a tree to be found,
881 - and pos is a pointer that points to ref in stmt. */
882 struct ref_pos
884 tree *pos;
885 tree ref;
886 tree container;
890 /* This is a callback function for walk_tree, called from
891 collect_accesses_in_bb function. DATA is a pointer to ref_pos structure.
892 When *TP is equal to DATA->ref, the walk_tree stops,
893 and found position, equal to TP, is assigned to DATA->pos. */
895 static tree
896 find_pos_in_stmt_1 (tree *tp, int *walk_subtrees, void * data)
898 struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
899 struct ref_pos *r_pos = (struct ref_pos *) wi->info;
900 tree ref = r_pos->ref;
901 tree t = *tp;
903 if (t == ref || (TREE_CODE (t) == SSA_NAME && SSA_NAME_VAR (t) == ref))
905 r_pos->pos = tp;
906 return t;
909 r_pos->container = t;
910 *walk_subtrees = 1;
911 return NULL_TREE;
915 /* This function looks for the pointer of REF in STMT,
916 It returns it, if found, and NULL otherwise. */
918 static tree *
919 find_pos_in_stmt (gimple stmt, tree ref, struct ref_pos * r_pos)
921 struct walk_stmt_info wi;
923 r_pos->ref = ref;
924 r_pos->pos = NULL;
925 r_pos->container = NULL_TREE;
926 memset (&wi, 0, sizeof (wi));
927 wi.info = r_pos;
928 walk_gimple_op (stmt, find_pos_in_stmt_1, &wi);
930 return r_pos->pos;
933 /* This structure is used to represent array
934 or pointer-to wrappers of structure type.
935 For example, if type1 is structure type,
936 then for type1 ** we generate two type_wrapper
937 structures with wrap = 0 each one.
938 It's used to unwind the original type up to
939 structure type, replace it with the new structure type
940 and wrap it back in the opposite order. */
942 typedef struct type_wrapper
944 /* 0 stand for pointer wrapper, and 1 for array wrapper. */
945 bool wrap;
947 /* Relevant for arrays as domain or index. */
948 tree domain;
949 }type_wrapper_t;
951 DEF_VEC_O (type_wrapper_t);
952 DEF_VEC_ALLOC_O (type_wrapper_t, heap);
954 /* This function replace field access ACC by the new
955 field access of structure type NEW_TYPE. */
957 static void
958 replace_field_acc (struct field_access_site *acc, tree new_type)
960 tree ref_var = acc->ref;
961 tree new_ref;
962 tree lhs, rhs;
963 tree *pos;
964 tree new_acc;
965 tree field_id = DECL_NAME (acc->field_decl);
966 VEC (type_wrapper_t, heap) *wrapper = VEC_alloc (type_wrapper_t, heap, 10);
967 type_wrapper_t *wr_p = NULL;
968 struct ref_pos r_pos;
970 while (TREE_CODE (ref_var) == INDIRECT_REF
971 || TREE_CODE (ref_var) == ARRAY_REF)
973 type_wrapper_t wr;
975 if ( TREE_CODE (ref_var) == INDIRECT_REF)
977 wr.wrap = 0;
978 wr.domain = 0;
980 else
982 wr.wrap = 1;
983 wr.domain = TREE_OPERAND (ref_var, 1);
986 VEC_safe_push (type_wrapper_t, heap, wrapper, &wr);
987 ref_var = TREE_OPERAND (ref_var, 0);
990 new_ref = find_new_var_of_type (ref_var, new_type);
991 finalize_global_creation (new_ref);
993 while (VEC_length (type_wrapper_t, wrapper) != 0)
995 tree type = TREE_TYPE (TREE_TYPE (new_ref));
997 wr_p = VEC_last (type_wrapper_t, wrapper);
998 if (wr_p->wrap) /* Array. */
999 new_ref = build4 (ARRAY_REF, type, new_ref,
1000 wr_p->domain, NULL_TREE, NULL_TREE);
1001 else /* Pointer. */
1002 new_ref = build1 (INDIRECT_REF, type, new_ref);
1003 VEC_pop (type_wrapper_t, wrapper);
1006 new_acc = build_comp_ref (new_ref, field_id, new_type);
1007 VEC_free (type_wrapper_t, heap, wrapper);
1009 if (is_gimple_assign (acc->stmt))
1011 lhs = gimple_assign_lhs (acc->stmt);
1012 rhs = gimple_assign_rhs1 (acc->stmt);
1014 if (lhs == acc->comp_ref)
1015 gimple_assign_set_lhs (acc->stmt, new_acc);
1016 else if (rhs == acc->comp_ref)
1017 gimple_assign_set_rhs1 (acc->stmt, new_acc);
1018 else
1020 pos = find_pos_in_stmt (acc->stmt, acc->comp_ref, &r_pos);
1021 gcc_assert (pos);
1022 *pos = new_acc;
1025 else
1027 pos = find_pos_in_stmt (acc->stmt, acc->comp_ref, &r_pos);
1028 gcc_assert (pos);
1029 *pos = new_acc;
1032 finalize_stmt (acc->stmt);
1035 /* This function replace field access ACC by a new field access
1036 of structure type NEW_TYPE. */
1038 static void
1039 replace_field_access_stmt (struct field_access_site *acc, tree new_type)
1042 if (TREE_CODE (acc->ref) == INDIRECT_REF
1043 ||TREE_CODE (acc->ref) == ARRAY_REF
1044 ||TREE_CODE (acc->ref) == VAR_DECL)
1045 replace_field_acc (acc, new_type);
1046 else
1047 gcc_unreachable ();
1050 /* This function looks for d_str, represented by TYPE, in the structures
1051 vector. If found, it returns an index of found structure. Otherwise
1052 it returns a length of the structures vector. */
1054 static unsigned
1055 find_structure (tree type)
1057 d_str str;
1058 unsigned i;
1060 type = TYPE_MAIN_VARIANT (type);
1062 for (i = 0; VEC_iterate (structure, structures, i, str); i++)
1063 if (is_equal_types (str->decl, type))
1064 return i;
1066 return VEC_length (structure, structures);
1069 /* In this function we create new statements that have the same
1070 form as ORIG_STMT, but of type NEW_TYPE. The statements
1071 treated by this function are simple assignments,
1072 like assignments: p.8_7 = p; or statements with rhs of
1073 tree codes PLUS_EXPR and MINUS_EXPR. */
1075 static gimple
1076 create_base_plus_offset (gimple orig_stmt, tree new_type, tree offset)
1078 tree lhs;
1079 tree new_lhs;
1080 gimple new_stmt;
1081 tree new_op0 = NULL_TREE, new_op1 = NULL_TREE;
1083 lhs = gimple_assign_lhs (orig_stmt);
1085 gcc_assert (TREE_CODE (lhs) == VAR_DECL
1086 || TREE_CODE (lhs) == SSA_NAME);
1088 new_lhs = find_new_var_of_type (lhs, new_type);
1089 gcc_assert (new_lhs);
1090 finalize_var_creation (new_lhs);
1092 switch (gimple_assign_rhs_code (orig_stmt))
1094 case PLUS_EXPR:
1095 case MINUS_EXPR:
1096 case POINTER_PLUS_EXPR:
1098 tree op0 = gimple_assign_rhs1 (orig_stmt);
1099 tree op1 = gimple_assign_rhs2 (orig_stmt);
1100 unsigned str0, str1;
1101 unsigned length = VEC_length (structure, structures);
1104 str0 = find_structure (strip_type (get_type_of_var (op0)));
1105 str1 = find_structure (strip_type (get_type_of_var (op1)));
1106 gcc_assert ((str0 != length) || (str1 != length));
1108 if (str0 != length)
1109 new_op0 = find_new_var_of_type (op0, new_type);
1110 if (str1 != length)
1111 new_op1 = find_new_var_of_type (op1, new_type);
1113 if (!new_op0)
1114 new_op0 = offset;
1115 if (!new_op1)
1116 new_op1 = offset;
1118 break;
1120 default:
1121 gcc_unreachable();
1124 new_stmt = gimple_build_assign_with_ops (gimple_assign_rhs_code (orig_stmt),
1125 new_lhs, new_op0, new_op1);
1126 finalize_stmt (new_stmt);
1128 return new_stmt;
1131 /* Given a field access F_ACC of the FIELD, this function
1132 replaces it by the new field access. */
1134 static void
1135 create_new_field_access (struct field_access_site *f_acc,
1136 struct field_entry field)
1138 tree new_type = field.field_mapping;
1139 gimple new_stmt;
1140 tree size_res;
1141 gimple mult_stmt;
1142 gimple cast_stmt;
1143 tree cast_res = NULL;
1145 if (f_acc->num)
1147 mult_stmt = gen_size (f_acc->num, new_type, &size_res);
1148 insert_before_stmt (f_acc->ref_def_stmt, mult_stmt);
1151 if (f_acc->cast_stmt)
1153 cast_stmt = gen_cast_stmt (size_res, new_type,
1154 f_acc->cast_stmt, &cast_res);
1155 insert_after_stmt (f_acc->cast_stmt, cast_stmt);
1158 if (f_acc->ref_def_stmt)
1160 tree offset;
1161 if (cast_res)
1162 offset = cast_res;
1163 else
1164 offset = size_res;
1166 new_stmt = create_base_plus_offset (f_acc->ref_def_stmt,
1167 new_type, offset);
1168 insert_after_stmt (f_acc->ref_def_stmt, new_stmt);
1171 /* In stmt D.2163_19 = D.2162_18->b; we replace variable
1172 D.2162_18 by an appropriate variable of new_type type. */
1173 replace_field_access_stmt (f_acc, new_type);
1176 /* This function creates a new condition statement
1177 corresponding to the original COND_STMT, adds new basic block
1178 and redirects condition edges. NEW_VAR is a new condition
1179 variable located in the condition statement at the position POS. */
1181 static void
1182 create_new_stmts_for_cond_expr_1 (tree new_var, gimple cond_stmt, unsigned pos)
1184 gimple new_stmt;
1185 edge true_e = NULL, false_e = NULL;
1186 basic_block new_bb;
1187 gimple_stmt_iterator si;
1189 extract_true_false_edges_from_block (gimple_bb (cond_stmt),
1190 &true_e, &false_e);
1192 new_stmt = gimple_build_cond (gimple_cond_code (cond_stmt),
1193 pos == 0 ? new_var : gimple_cond_lhs (cond_stmt),
1194 pos == 1 ? new_var : gimple_cond_rhs (cond_stmt),
1195 NULL_TREE,
1196 NULL_TREE);
1198 finalize_stmt (new_stmt);
1200 /* Create new basic block after bb. */
1201 new_bb = create_empty_bb (gimple_bb (cond_stmt));
1203 /* Add new condition stmt to the new_bb. */
1204 si = gsi_start_bb (new_bb);
1205 gsi_insert_after (&si, new_stmt, GSI_NEW_STMT);
1207 /* Create false and true edges from new_bb. */
1208 make_edge_and_fix_phis_of_dest (new_bb, true_e);
1209 make_edge_and_fix_phis_of_dest (new_bb, false_e);
1211 /* Redirect one of original edges to point to new_bb. */
1212 if (gimple_cond_code (cond_stmt) == NE_EXPR)
1213 redirect_edge_succ (true_e, new_bb);
1214 else
1215 redirect_edge_succ (false_e, new_bb);
1218 /* This function creates new condition statements corresponding
1219 to original condition STMT, one for each new type, and
1220 recursively redirect edges to newly generated basic blocks. */
1222 static void
1223 create_new_stmts_for_cond_expr (gimple stmt)
1225 tree arg0, arg1, arg;
1226 unsigned str0, str1;
1227 bool s0, s1;
1228 d_str str;
1229 tree type;
1230 unsigned pos;
1231 int i;
1232 unsigned length = VEC_length (structure, structures);
1234 gcc_assert (gimple_cond_code (stmt) == EQ_EXPR
1235 || gimple_cond_code (stmt) == NE_EXPR);
1237 arg0 = gimple_cond_lhs (stmt);
1238 arg1 = gimple_cond_rhs (stmt);
1240 str0 = find_structure (strip_type (get_type_of_var (arg0)));
1241 str1 = find_structure (strip_type (get_type_of_var (arg1)));
1243 s0 = (str0 != length) ? true : false;
1244 s1 = (str1 != length) ? true : false;
1246 gcc_assert (s0 || s1);
1247 /* For now we allow only comparison with 0 or NULL. */
1248 gcc_assert (integer_zerop (arg0) || integer_zerop (arg1));
1250 str = integer_zerop (arg0) ?
1251 VEC_index (structure, structures, str1):
1252 VEC_index (structure, structures, str0);
1253 arg = integer_zerop (arg0) ? arg1 : arg0;
1254 pos = integer_zerop (arg0) ? 1 : 0;
1256 for (i = 0; VEC_iterate (tree, str->new_types, i, type); i++)
1258 tree new_arg;
1260 new_arg = find_new_var_of_type (arg, type);
1261 create_new_stmts_for_cond_expr_1 (new_arg, stmt, pos);
1265 /* This function looks for VAR in STMT, and replace it with NEW_VAR.
1266 If needed, it wraps NEW_VAR in pointers and indirect references
1267 before insertion. */
1269 static void
1270 insert_new_var_in_stmt (gimple stmt, tree var, tree new_var)
1272 struct ref_pos r_pos;
1273 tree *pos;
1275 pos = find_pos_in_stmt (stmt, var, &r_pos);
1276 gcc_assert (pos);
1278 while (r_pos.container && (TREE_CODE(r_pos.container) == INDIRECT_REF
1279 || TREE_CODE(r_pos.container) == ADDR_EXPR))
1281 tree type = TREE_TYPE (TREE_TYPE (new_var));
1283 if (TREE_CODE(r_pos.container) == INDIRECT_REF)
1284 new_var = build1 (INDIRECT_REF, type, new_var);
1285 else
1286 new_var = build_fold_addr_expr (new_var);
1287 pos = find_pos_in_stmt (stmt, r_pos.container, &r_pos);
1290 *pos = new_var;
1294 /* Create a new general access to replace original access ACC
1295 for structure type NEW_TYPE. */
1297 static gimple
1298 create_general_new_stmt (struct access_site *acc, tree new_type)
1300 gimple old_stmt = acc->stmt;
1301 tree var;
1302 gimple new_stmt = gimple_copy (old_stmt);
1303 unsigned i;
1305 /* We are really building a new stmt, clear the virtual operands. */
1306 if (gimple_has_mem_ops (new_stmt))
1308 gimple_set_vuse (new_stmt, NULL_TREE);
1309 gimple_set_vdef (new_stmt, NULL_TREE);
1312 for (i = 0; VEC_iterate (tree, acc->vars, i, var); i++)
1314 tree new_var = find_new_var_of_type (var, new_type);
1315 tree lhs, rhs = NULL_TREE;
1317 gcc_assert (new_var);
1318 finalize_var_creation (new_var);
1320 if (is_gimple_assign (new_stmt))
1322 lhs = gimple_assign_lhs (new_stmt);
1324 if (TREE_CODE (lhs) == SSA_NAME)
1325 lhs = SSA_NAME_VAR (lhs);
1326 if (gimple_assign_rhs_code (new_stmt) == SSA_NAME)
1327 rhs = SSA_NAME_VAR (gimple_assign_rhs1 (new_stmt));
1329 /* It can happen that rhs is a constructor.
1330 Then we have to replace it to be of new_type. */
1331 if (gimple_assign_rhs_code (new_stmt) == CONSTRUCTOR)
1333 /* Dealing only with empty constructors right now. */
1334 gcc_assert (VEC_empty (constructor_elt,
1335 CONSTRUCTOR_ELTS (rhs)));
1336 rhs = build_constructor (new_type, 0);
1337 gimple_assign_set_rhs1 (new_stmt, rhs);
1340 if (lhs == var)
1341 gimple_assign_set_lhs (new_stmt, new_var);
1342 else if (rhs == var)
1343 gimple_assign_set_rhs1 (new_stmt, new_var);
1344 else
1345 insert_new_var_in_stmt (new_stmt, var, new_var);
1347 else
1348 insert_new_var_in_stmt (new_stmt, var, new_var);
1351 finalize_stmt (new_stmt);
1352 return new_stmt;
1355 /* For each new type in STR this function creates new general accesses
1356 corresponding to the original access ACC. */
1358 static void
1359 create_new_stmts_for_general_acc (struct access_site *acc, d_str str)
1361 tree type;
1362 gimple stmt = acc->stmt;
1363 unsigned i;
1365 for (i = 0; VEC_iterate (tree, str->new_types, i, type); i++)
1367 gimple new_stmt;
1369 new_stmt = create_general_new_stmt (acc, type);
1370 insert_after_stmt (stmt, new_stmt);
1374 /* This function creates a new general access of structure STR
1375 to replace the access ACC. */
1377 static void
1378 create_new_general_access (struct access_site *acc, d_str str)
1380 gimple stmt = acc->stmt;
1381 switch (gimple_code (stmt))
1383 case GIMPLE_COND:
1384 create_new_stmts_for_cond_expr (stmt);
1385 break;
1387 case GIMPLE_DEBUG:
1388 /* It is very hard to maintain usable debug info after struct peeling,
1389 for now just reset all debug stmts referencing objects that have
1390 been peeled. */
1391 gimple_debug_bind_reset_value (stmt);
1392 update_stmt (stmt);
1393 break;
1395 default:
1396 create_new_stmts_for_general_acc (acc, str);
1400 /* Auxiliary data for creation of accesses. */
1401 struct create_acc_data
1403 basic_block bb;
1404 d_str str;
1405 int field_index;
1408 /* This function creates a new general access, defined by SLOT.
1409 DATA is a pointer to create_acc_data structure. */
1411 static int
1412 create_new_acc (void **slot, void *data)
1414 struct access_site *acc = *(struct access_site **) slot;
1415 basic_block bb = ((struct create_acc_data *)data)->bb;
1416 d_str str = ((struct create_acc_data *)data)->str;
1418 if (gimple_bb (acc->stmt) == bb)
1419 create_new_general_access (acc, str);
1420 return 1;
1423 /* This function creates a new field access, defined by SLOT.
1424 DATA is a pointer to create_acc_data structure. */
1426 static int
1427 create_new_field_acc (void **slot, void *data)
1429 struct field_access_site *f_acc = *(struct field_access_site **) slot;
1430 basic_block bb = ((struct create_acc_data *)data)->bb;
1431 d_str str = ((struct create_acc_data *)data)->str;
1432 int i = ((struct create_acc_data *)data)->field_index;
1434 if (gimple_bb (f_acc->stmt) == bb)
1435 create_new_field_access (f_acc, str->fields[i]);
1436 return 1;
1439 /* This function creates new accesses for the structure
1440 type STR in basic block BB. */
1442 static void
1443 create_new_accs_for_struct (d_str str, basic_block bb)
1445 int i;
1446 struct create_acc_data dt;
1448 dt.str = str;
1449 dt.bb = bb;
1450 dt.field_index = -1;
1452 for (i = 0; i < str->num_fields; i++)
1454 dt.field_index = i;
1456 if (str->fields[i].acc_sites)
1457 htab_traverse (str->fields[i].acc_sites,
1458 create_new_field_acc, &dt);
1460 if (str->accs)
1461 htab_traverse (str->accs, create_new_acc, &dt);
1464 /* This function inserts new variables from new_var,
1465 defined by SLOT, into varpool. */
1467 static int
1468 update_varpool_with_new_var (void **slot, void *data ATTRIBUTE_UNUSED)
1470 new_var n_var = *(new_var *) slot;
1471 tree var;
1472 unsigned i;
1474 for (i = 0; VEC_iterate (tree, n_var->new_vars, i, var); i++)
1475 insert_global_to_varpool (var);
1476 return 1;
1479 /* This function prints a field access site, defined by SLOT. */
1481 static int
1482 dump_field_acc (void **slot, void *data ATTRIBUTE_UNUSED)
1484 struct field_access_site *f_acc =
1485 *(struct field_access_site **) slot;
1487 fprintf(dump_file, "\n");
1488 if (f_acc->stmt)
1489 print_gimple_stmt (dump_file, f_acc->stmt, 0, 0);
1490 if (f_acc->ref_def_stmt)
1491 print_gimple_stmt (dump_file, f_acc->ref_def_stmt, 0, 0);
1492 if (f_acc->cast_stmt)
1493 print_gimple_stmt (dump_file, f_acc->cast_stmt, 0, 0);
1494 return 1;
1497 /* Print field accesses from hashtable F_ACCS. */
1499 static void
1500 dump_field_acc_sites (htab_t f_accs)
1502 if (!dump_file)
1503 return;
1505 if (f_accs)
1506 htab_traverse (f_accs, dump_field_acc, NULL);
1509 /* Hash value for fallocs_t. */
1511 static hashval_t
1512 malloc_hash (const void *x)
1514 return htab_hash_pointer (((const_fallocs_t)x)->func);
1517 /* This function returns nonzero if function of func_alloc_sites' X
1518 is equal to Y. */
1520 static int
1521 malloc_eq (const void *x, const void *y)
1523 return ((const_fallocs_t)x)->func == (const_tree)y;
1526 /* This function is a callback for traversal over a structure accesses.
1527 It frees an access represented by SLOT. */
1529 static int
1530 free_accs (void **slot, void *data ATTRIBUTE_UNUSED)
1532 struct access_site * acc = *(struct access_site **) slot;
1534 VEC_free (tree, heap, acc->vars);
1535 free (acc);
1536 return 1;
1539 /* This is a callback function for traversal over field accesses.
1540 It frees a field access represented by SLOT. */
1542 static int
1543 free_field_accs (void **slot, void *data ATTRIBUTE_UNUSED)
1545 struct field_access_site *f_acc = *(struct field_access_site **) slot;
1547 free (f_acc);
1548 return 1;
1551 /* This function inserts TYPE into vector of UNSUITABLE_TYPES,
1552 if it is not there yet. */
1554 static void
1555 add_unsuitable_type (VEC (tree, heap) **unsuitable_types, tree type)
1557 unsigned i;
1558 tree t;
1560 if (!type)
1561 return;
1563 type = TYPE_MAIN_VARIANT (type);
1565 for (i = 0; VEC_iterate (tree, *unsuitable_types, i, t); i++)
1566 if (is_equal_types (t, type))
1567 break;
1569 if (i == VEC_length (tree, *unsuitable_types))
1570 VEC_safe_push (tree, heap, *unsuitable_types, type);
1573 /* Given a type TYPE, this function returns the name of the type. */
1575 static const char *
1576 get_type_name (tree type)
1578 if (! TYPE_NAME (type))
1579 return NULL;
1581 if (TREE_CODE (TYPE_NAME (type)) == IDENTIFIER_NODE)
1582 return IDENTIFIER_POINTER (TYPE_NAME (type));
1583 else if (TREE_CODE (TYPE_NAME (type)) == TYPE_DECL
1584 && DECL_NAME (TYPE_NAME (type)))
1585 return IDENTIFIER_POINTER (DECL_NAME (TYPE_NAME (type)));
1586 else
1587 return NULL;
1590 /* This function is a temporary hack to overcome the types problem.
1591 When several compilation units are compiled together
1592 with -combine, the TYPE_MAIN_VARIANT of the same type
1593 can appear differently in different compilation units.
1594 Therefore this function first compares type names.
1595 If there are no names, structure bodies are recursively
1596 compared. */
1598 static bool
1599 is_equal_types (tree type1, tree type2)
1601 const char * name1,* name2;
1603 if ((!type1 && type2)
1604 ||(!type2 && type1))
1605 return false;
1607 if (!type1 && !type2)
1608 return true;
1610 if (TREE_CODE (type1) != TREE_CODE (type2))
1611 return false;
1613 if (type1 == type2)
1614 return true;
1616 if (TYPE_MAIN_VARIANT (type1) == TYPE_MAIN_VARIANT (type2))
1617 return true;
1619 name1 = get_type_name (type1);
1620 name2 = get_type_name (type2);
1622 if (name1 && name2)
1623 return strcmp (name1, name2) == 0;
1625 switch (TREE_CODE (type1))
1627 case POINTER_TYPE:
1628 case REFERENCE_TYPE:
1630 return is_equal_types (TREE_TYPE (type1), TREE_TYPE (type2));
1632 break;
1634 case RECORD_TYPE:
1635 case UNION_TYPE:
1636 case QUAL_UNION_TYPE:
1637 case ENUMERAL_TYPE:
1639 tree field1, field2;
1641 /* Compare fields of structure. */
1642 for (field1 = TYPE_FIELDS (type1), field2 = TYPE_FIELDS (type2);
1643 field1 && field2;
1644 field1 = TREE_CHAIN (field1), field2 = TREE_CHAIN (field2))
1646 if (!compare_fields (field1, field2))
1647 return false;
1649 if (field1 || field2)
1650 return false;
1651 else
1652 return true;
1654 break;
1656 case INTEGER_TYPE:
1658 if (TYPE_UNSIGNED (type1) == TYPE_UNSIGNED (type2)
1659 && TYPE_PRECISION (type1) == TYPE_PRECISION (type2))
1660 return true;
1662 break;
1664 case ARRAY_TYPE:
1666 tree d1, d2;
1667 tree max1, min1, max2, min2;
1669 if (!is_equal_types (TREE_TYPE (type1), TREE_TYPE (type2)))
1670 return false;
1672 d1 = TYPE_DOMAIN (type1);
1673 d2 = TYPE_DOMAIN (type2);
1675 if (!d1 || !d2)
1676 return false;
1678 max1 = TYPE_MAX_VALUE (d1);
1679 max2 = TYPE_MAX_VALUE (d2);
1680 min1 = TYPE_MIN_VALUE (d1);
1681 min2 = TYPE_MIN_VALUE (d2);
1683 if (max1 && max2 && min1 && min2
1684 && TREE_CODE (max1) == TREE_CODE (max2)
1685 && TREE_CODE (max1) == INTEGER_CST
1686 && TREE_CODE (min1) == TREE_CODE (min2)
1687 && TREE_CODE (min1) == INTEGER_CST
1688 && tree_int_cst_equal (max1, max2)
1689 && tree_int_cst_equal (min1, min2))
1690 return true;
1692 break;
1694 default:
1695 gcc_unreachable();
1698 return false;
1701 /* This function free non-field accesses from hashtable ACCS. */
1703 static void
1704 free_accesses (htab_t accs)
1706 if (accs)
1707 htab_traverse (accs, free_accs, NULL);
1708 htab_delete (accs);
1711 /* This function free field accesses hashtable F_ACCS. */
1713 static void
1714 free_field_accesses (htab_t f_accs)
1716 if (f_accs)
1717 htab_traverse (f_accs, free_field_accs, NULL);
1718 htab_delete (f_accs);
1721 /* Update call graph with new edge generated by new MALLOC_STMT.
1722 The edge origin is CONTEXT function. */
1724 static void
1725 update_cgraph_with_malloc_call (gimple malloc_stmt, tree context)
1727 struct cgraph_node *src, *dest;
1728 tree malloc_fn_decl;
1730 if (!malloc_stmt)
1731 return;
1733 malloc_fn_decl = gimple_call_fndecl (malloc_stmt);
1735 src = cgraph_node (context);
1736 dest = cgraph_node (malloc_fn_decl);
1737 cgraph_create_edge (src, dest, malloc_stmt,
1738 gimple_bb (malloc_stmt)->count,
1739 compute_call_stmt_bb_frequency
1740 (context, gimple_bb (malloc_stmt)),
1741 gimple_bb (malloc_stmt)->loop_depth);
1744 /* This function generates set of statements required
1745 to allocate number NUM of structures of type NEW_TYPE.
1746 The statements are stored in NEW_STMTS. The statement that contain
1747 call to malloc is returned. MALLOC_STMT is an original call to malloc. */
1749 static gimple
1750 create_new_malloc (gimple malloc_stmt, tree new_type, gimple_seq *new_stmts,
1751 tree num)
1753 tree new_malloc_size;
1754 tree malloc_fn_decl;
1755 gimple new_stmt;
1756 tree malloc_res;
1757 gimple call_stmt, final_stmt;
1758 tree cast_res;
1760 gcc_assert (num && malloc_stmt && new_type);
1761 *new_stmts = gimple_seq_alloc ();
1763 /* Generate argument to malloc as multiplication of num
1764 and size of new_type. */
1765 new_stmt = gen_size (num, new_type, &new_malloc_size);
1766 gimple_seq_add_stmt (new_stmts, new_stmt);
1768 /* Generate new call for malloc. */
1769 malloc_res = create_tmp_var (ptr_type_node, NULL);
1770 add_referenced_var (malloc_res);
1772 malloc_fn_decl = gimple_call_fndecl (malloc_stmt);
1773 call_stmt = gimple_build_call (malloc_fn_decl, 1, new_malloc_size);
1774 gimple_call_set_lhs (call_stmt, malloc_res);
1775 finalize_stmt_and_append (new_stmts, call_stmt);
1777 /* Create new cast statement. */
1778 final_stmt = get_final_alloc_stmt (malloc_stmt);
1779 gcc_assert (final_stmt);
1780 new_stmt = gen_cast_stmt (malloc_res, new_type, final_stmt, &cast_res);
1781 gimple_seq_add_stmt (new_stmts, new_stmt);
1783 return call_stmt;
1786 /* This function returns a tree representing
1787 the number of instances of structure STR_DECL allocated
1788 by allocation STMT. If new statements are generated,
1789 they are filled into NEW_STMTS_P. */
1791 static tree
1792 gen_num_of_structs_in_malloc (gimple stmt, tree str_decl,
1793 gimple_seq *new_stmts_p)
1795 tree arg;
1796 tree struct_size;
1797 HOST_WIDE_INT struct_size_int;
1799 if (!stmt)
1800 return NULL_TREE;
1802 /* Get malloc argument. */
1803 if (!is_gimple_call (stmt))
1804 return NULL_TREE;
1806 arg = gimple_call_arg (stmt, 0);
1808 if (TREE_CODE (arg) != SSA_NAME
1809 && !TREE_CONSTANT (arg))
1810 return NULL_TREE;
1812 struct_size = TYPE_SIZE_UNIT (str_decl);
1813 struct_size_int = TREE_INT_CST_LOW (struct_size);
1815 gcc_assert (struct_size);
1817 if (TREE_CODE (arg) == SSA_NAME)
1819 tree num;
1820 gimple div_stmt;
1822 if (is_result_of_mult (arg, &num, struct_size))
1823 return num;
1825 num = create_tmp_var (integer_type_node, NULL);
1827 if (num)
1828 add_referenced_var (num);
1830 if (exact_log2 (struct_size_int) == -1)
1831 div_stmt = gimple_build_assign_with_ops (TRUNC_DIV_EXPR, num, arg,
1832 struct_size);
1833 else
1835 tree C = build_int_cst (integer_type_node,
1836 exact_log2 (struct_size_int));
1838 div_stmt = gimple_build_assign_with_ops (RSHIFT_EXPR, num, arg, C);
1840 gimple_seq_add_stmt (new_stmts_p, div_stmt);
1841 finalize_stmt (div_stmt);
1842 return num;
1845 if (CONSTANT_CLASS_P (arg)
1846 && multiple_of_p (TREE_TYPE (struct_size), arg, struct_size))
1847 return int_const_binop (TRUNC_DIV_EXPR, arg, struct_size, 0);
1849 return NULL_TREE;
1852 /* This function is a callback for traversal on new_var's hashtable.
1853 SLOT is a pointer to new_var. This function prints to dump_file
1854 an original variable and all new variables from the new_var
1855 pointed by *SLOT. */
1857 static int
1858 dump_new_var (void **slot, void *data ATTRIBUTE_UNUSED)
1860 new_var n_var = *(new_var *) slot;
1861 tree var_type;
1862 tree var;
1863 unsigned i;
1865 var_type = get_type_of_var (n_var->orig_var);
1867 fprintf (dump_file, "\nOrig var: ");
1868 print_generic_expr (dump_file, n_var->orig_var, 0);
1869 fprintf (dump_file, " of type ");
1870 print_generic_expr (dump_file, var_type, 0);
1871 fprintf (dump_file, "\n");
1873 for (i = 0;
1874 VEC_iterate (tree, n_var->new_vars, i, var); i++)
1876 var_type = get_type_of_var (var);
1878 fprintf (dump_file, " ");
1879 print_generic_expr (dump_file, var, 0);
1880 fprintf (dump_file, " of type ");
1881 print_generic_expr (dump_file, var_type, 0);
1882 fprintf (dump_file, "\n");
1884 return 1;
1887 /* This function copies attributes form ORIG_DECL to NEW_DECL. */
1889 static inline void
1890 copy_decl_attributes (tree new_decl, tree orig_decl)
1893 DECL_ARTIFICIAL (new_decl) = 1;
1894 DECL_EXTERNAL (new_decl) = DECL_EXTERNAL (orig_decl);
1895 TREE_STATIC (new_decl) = TREE_STATIC (orig_decl);
1896 TREE_PUBLIC (new_decl) = TREE_PUBLIC (orig_decl);
1897 TREE_USED (new_decl) = TREE_USED (orig_decl);
1898 DECL_CONTEXT (new_decl) = DECL_CONTEXT (orig_decl);
1899 TREE_THIS_VOLATILE (new_decl) = TREE_THIS_VOLATILE (orig_decl);
1900 TREE_ADDRESSABLE (new_decl) = TREE_ADDRESSABLE (orig_decl);
1902 if (TREE_CODE (orig_decl) == VAR_DECL)
1904 TREE_READONLY (new_decl) = TREE_READONLY (orig_decl);
1905 DECL_TLS_MODEL (new_decl) = DECL_TLS_MODEL (orig_decl);
1909 /* This function wraps NEW_STR_TYPE in pointers or arrays wrapper
1910 the same way as a structure type is wrapped in DECL.
1911 It returns the generated type. */
1913 static inline tree
1914 gen_struct_type (tree decl, tree new_str_type)
1916 tree type_orig = get_type_of_var (decl);
1917 tree new_type = new_str_type;
1918 VEC (type_wrapper_t, heap) *wrapper = VEC_alloc (type_wrapper_t, heap, 10);
1919 type_wrapper_t wr;
1920 type_wrapper_t *wr_p;
1922 while (POINTER_TYPE_P (type_orig)
1923 || TREE_CODE (type_orig) == ARRAY_TYPE)
1925 if (POINTER_TYPE_P (type_orig))
1927 wr.wrap = 0;
1928 wr.domain = NULL_TREE;
1930 else
1932 gcc_assert (TREE_CODE (type_orig) == ARRAY_TYPE);
1933 wr.wrap = 1;
1934 wr.domain = TYPE_DOMAIN (type_orig);
1936 VEC_safe_push (type_wrapper_t, heap, wrapper, &wr);
1937 type_orig = TREE_TYPE (type_orig);
1940 while (VEC_length (type_wrapper_t, wrapper) != 0)
1942 wr_p = VEC_last (type_wrapper_t, wrapper);
1944 if (wr_p->wrap) /* Array. */
1945 new_type = build_array_type (new_type, wr_p->domain);
1946 else /* Pointer. */
1947 new_type = build_pointer_type (new_type);
1949 VEC_pop (type_wrapper_t, wrapper);
1952 VEC_free (type_wrapper_t, heap, wrapper);
1953 return new_type;
1956 /* This function generates and returns new variable name based on
1957 ORIG_DECL name, combined with index I.
1958 The form of the new name is <orig_name>.<I> . */
1960 static tree
1961 gen_var_name (tree orig_decl, unsigned HOST_WIDE_INT i)
1963 const char *old_name;
1964 char *prefix;
1965 char *new_name;
1967 if (!DECL_NAME (orig_decl)
1968 || !IDENTIFIER_POINTER (DECL_NAME (orig_decl)))
1969 return NULL;
1971 /* If the original variable has a name, create an
1972 appropriate new name for the new variable. */
1974 old_name = IDENTIFIER_POINTER (DECL_NAME (orig_decl));
1975 prefix = XALLOCAVEC (char, strlen (old_name) + 1);
1976 strcpy (prefix, old_name);
1977 ASM_FORMAT_PRIVATE_NAME (new_name, prefix, i);
1978 return get_identifier (new_name);
1981 /* This function adds NEW_NODE to hashtable of new_var's NEW_VARS_HTAB. */
1983 static void
1984 add_to_new_vars_htab (new_var new_node, htab_t new_vars_htab)
1986 void **slot;
1988 slot = htab_find_slot_with_hash (new_vars_htab, new_node->orig_var,
1989 DECL_UID (new_node->orig_var),
1990 INSERT);
1991 *slot = new_node;
1994 /* This function creates and returns new_var_data node
1995 with empty new_vars and orig_var equal to VAR. */
1997 static new_var
1998 create_new_var_node (tree var, d_str str)
2000 new_var node;
2002 node = XNEW (struct new_var_data);
2003 node->orig_var = var;
2004 node->new_vars = VEC_alloc (tree, heap, VEC_length (tree, str->new_types));
2005 return node;
2008 /* Check whether the type of VAR is potential candidate for peeling.
2009 Returns true if yes, false otherwise. If yes, TYPE_P will contain
2010 candidate type. If VAR is initialized, the type of VAR will be added
2011 to UNSUITABLE_TYPES. */
2013 static bool
2014 is_candidate (tree var, tree *type_p, VEC (tree, heap) **unsuitable_types)
2016 tree type;
2017 bool initialized = false;
2019 *type_p = NULL;
2021 if (!var)
2022 return false;
2024 /* There is no support of initialized vars. */
2025 if (TREE_CODE (var) == VAR_DECL
2026 && DECL_INITIAL (var) != NULL_TREE)
2027 initialized = true;
2029 type = get_type_of_var (var);
2031 if (type)
2033 type = TYPE_MAIN_VARIANT (strip_type (type));
2034 if (TREE_CODE (type) != RECORD_TYPE)
2035 return false;
2036 else
2038 if (initialized && unsuitable_types && *unsuitable_types)
2040 if (dump_file)
2042 fprintf (dump_file, "The type ");
2043 print_generic_expr (dump_file, type, 0);
2044 fprintf (dump_file, " is initialized...Excluded.");
2046 add_unsuitable_type (unsuitable_types, type);
2048 *type_p = type;
2049 return true;
2052 else
2053 return false;
2056 /* Hash value for field_access_site. */
2058 static hashval_t
2059 field_acc_hash (const void *x)
2061 return htab_hash_pointer (((const struct field_access_site *)x)->stmt);
2064 /* This function returns nonzero if stmt of field_access_site X
2065 is equal to Y. */
2067 static int
2068 field_acc_eq (const void *x, const void *y)
2070 return ((const struct field_access_site *)x)->stmt == (const_gimple)y;
2073 /* This function prints an access site, defined by SLOT. */
2075 static int
2076 dump_acc (void **slot, void *data ATTRIBUTE_UNUSED)
2078 struct access_site *acc = *(struct access_site **) slot;
2079 tree var;
2080 unsigned i;
2082 fprintf(dump_file, "\n");
2083 if (acc->stmt)
2084 print_gimple_stmt (dump_file, acc->stmt, 0, 0);
2085 fprintf(dump_file, " : ");
2087 for (i = 0; VEC_iterate (tree, acc->vars, i, var); i++)
2089 print_generic_expr (dump_file, var, 0);
2090 fprintf(dump_file, ", ");
2092 return 1;
2095 /* This function frees memory allocated for structure clusters,
2096 starting from CLUSTER. */
2098 static void
2099 free_struct_cluster (struct field_cluster* cluster)
2101 if (cluster)
2103 if (cluster->fields_in_cluster)
2104 sbitmap_free (cluster->fields_in_cluster);
2105 if (cluster->sibling)
2106 free_struct_cluster (cluster->sibling);
2107 free (cluster);
2111 /* Free all allocated memory under the structure node pointed by D_NODE. */
2113 static void
2114 free_data_struct (d_str d_node)
2116 int i;
2118 if (!d_node)
2119 return;
2121 if (dump_file)
2123 fprintf (dump_file, "\nRemoving data structure \"");
2124 print_generic_expr (dump_file, d_node->decl, 0);
2125 fprintf (dump_file, "\" from data_struct_list.");
2128 /* Free all space under d_node. */
2129 if (d_node->fields)
2131 for (i = 0; i < d_node->num_fields; i++)
2132 free_field_accesses (d_node->fields[i].acc_sites);
2133 free (d_node->fields);
2136 if (d_node->accs)
2137 free_accesses (d_node->accs);
2139 if (d_node->struct_clustering)
2140 free_struct_cluster (d_node->struct_clustering);
2142 if (d_node->new_types)
2143 VEC_free (tree, heap, d_node->new_types);
2146 /* This function creates new general and field accesses in BB. */
2148 static void
2149 create_new_accesses_in_bb (basic_block bb)
2151 d_str str;
2152 unsigned i;
2154 for (i = 0; VEC_iterate (structure, structures, i, str); i++)
2155 create_new_accs_for_struct (str, bb);
2158 /* This function adds allocation sites for peeled structures.
2159 M_DATA is vector of allocation sites of function CONTEXT. */
2161 static void
2162 create_new_alloc_sites (fallocs_t m_data, tree context)
2164 alloc_site_t *call;
2165 unsigned j;
2167 for (j = 0; VEC_iterate (alloc_site_t, m_data->allocs, j, call); j++)
2169 gimple stmt = call->stmt;
2170 d_str str = call->str;
2171 tree num;
2172 gimple_seq new_stmts = NULL;
2173 gimple last_stmt = get_final_alloc_stmt (stmt);
2174 unsigned i;
2175 tree type;
2177 num = gen_num_of_structs_in_malloc (stmt, str->decl, &new_stmts);
2178 if (new_stmts)
2180 gimple last_stmt_tmp = gimple_seq_last_stmt (new_stmts);
2181 insert_seq_after_stmt (last_stmt, new_stmts);
2182 last_stmt = last_stmt_tmp;
2185 /* Generate an allocation sites for each new structure type. */
2186 for (i = 0; VEC_iterate (tree, str->new_types, i, type); i++)
2188 gimple new_malloc_stmt = NULL;
2189 gimple last_stmt_tmp = NULL;
2191 new_stmts = NULL;
2192 new_malloc_stmt = create_new_malloc (stmt, type, &new_stmts, num);
2193 last_stmt_tmp = gimple_seq_last_stmt (new_stmts);
2194 insert_seq_after_stmt (last_stmt, new_stmts);
2195 update_cgraph_with_malloc_call (new_malloc_stmt, context);
2196 last_stmt = last_stmt_tmp;
2201 /* This function prints new variables from hashtable
2202 NEW_VARS_HTAB to dump_file. */
2204 static void
2205 dump_new_vars (htab_t new_vars_htab)
2207 if (!dump_file)
2208 return;
2210 if (new_vars_htab)
2211 htab_traverse (new_vars_htab, dump_new_var, NULL);
2214 /* Given an original variable ORIG_DECL of structure type STR,
2215 this function generates new variables of the types defined
2216 by STR->new_type. Generated types are saved in new_var node NODE.
2217 ORIG_DECL should has VAR_DECL tree_code. */
2219 static void
2220 create_new_var_1 (tree orig_decl, d_str str, new_var node)
2222 unsigned i;
2223 tree type;
2225 for (i = 0;
2226 VEC_iterate (tree, str->new_types, i, type); i++)
2228 tree new_decl = NULL;
2229 tree new_name;
2231 new_name = gen_var_name (orig_decl, i);
2232 type = gen_struct_type (orig_decl, type);
2234 if (is_global_var (orig_decl))
2235 new_decl = build_decl (DECL_SOURCE_LOCATION (orig_decl),
2236 VAR_DECL, new_name, type);
2237 else
2239 const char *name = new_name ? IDENTIFIER_POINTER (new_name) : NULL;
2240 new_decl = create_tmp_var (type, name);
2243 copy_decl_attributes (new_decl, orig_decl);
2244 VEC_safe_push (tree, heap, node->new_vars, new_decl);
2248 /* This function creates new variables to
2249 substitute the original variable VAR_DECL and adds
2250 them to the new_var's hashtable NEW_VARS_HTAB. */
2252 static void
2253 create_new_var (tree var_decl, htab_t new_vars_htab)
2255 new_var node;
2256 d_str str;
2257 tree type;
2258 unsigned i;
2260 if (!var_decl || is_in_new_vars_htab (var_decl, new_vars_htab))
2261 return;
2263 if (!is_candidate (var_decl, &type, NULL))
2264 return;
2266 i = find_structure (type);
2267 if (i == VEC_length (structure, structures))
2268 return;
2270 str = VEC_index (structure, structures, i);
2271 node = create_new_var_node (var_decl, str);
2272 create_new_var_1 (var_decl, str, node);
2273 add_to_new_vars_htab (node, new_vars_htab);
2276 /* Hash value for new_var. */
2278 static hashval_t
2279 new_var_hash (const void *x)
2281 return DECL_UID (((const_new_var)x)->orig_var);
2284 /* This function returns nonzero if orig_var of new_var X
2285 and tree Y have equal UIDs. */
2287 static int
2288 new_var_eq (const void *x, const void *y)
2290 if (DECL_P ((const_tree)y))
2291 return DECL_UID (((const_new_var)x)->orig_var) == DECL_UID ((const_tree)y);
2292 else
2293 return 0;
2296 /* This function check whether a structure type represented by STR
2297 escapes due to ipa-type-escape analysis. If yes, this type is added
2298 to UNSUITABLE_TYPES vector. */
2300 static void
2301 check_type_escape (d_str str, VEC (tree, heap) **unsuitable_types)
2303 tree type = str->decl;
2305 if (!ipa_type_escape_type_contained_p (type))
2307 if (dump_file)
2309 fprintf (dump_file, "\nEscaping type is ");
2310 print_generic_expr (dump_file, type, 0);
2312 add_unsuitable_type (unsuitable_types, type);
2316 /* Hash value for access_site. */
2318 static hashval_t
2319 acc_hash (const void *x)
2321 return htab_hash_pointer (((const struct access_site *)x)->stmt);
2324 /* Return nonzero if stmt of access_site X is equal to Y. */
2326 static int
2327 acc_eq (const void *x, const void *y)
2329 return ((const struct access_site *)x)->stmt == (const_gimple)y;
2332 /* Given a structure declaration STRUCT_DECL, and number of fields
2333 in the structure NUM_FIELDS, this function creates and returns
2334 corresponding field_entry's. */
2336 static struct field_entry *
2337 get_fields (tree struct_decl, int num_fields)
2339 struct field_entry *list;
2340 tree t = TYPE_FIELDS (struct_decl);
2341 int idx = 0;
2343 list = XNEWVEC (struct field_entry, num_fields);
2345 for (idx = 0 ; t; t = TREE_CHAIN (t), idx++)
2346 if (TREE_CODE (t) == FIELD_DECL)
2348 list[idx].index = idx;
2349 list[idx].decl = t;
2350 list[idx].acc_sites =
2351 htab_create (32, field_acc_hash, field_acc_eq, NULL);
2352 list[idx].count = 0;
2353 list[idx].field_mapping = NULL_TREE;
2356 return list;
2359 /* Print non-field accesses from hashtable ACCS of structure. */
2361 static void
2362 dump_access_sites (htab_t accs)
2364 if (!dump_file)
2365 return;
2367 if (accs)
2368 htab_traverse (accs, dump_acc, NULL);
2371 /* This function is a callback for alloc_sites hashtable
2372 traversal. SLOT is a pointer to fallocs_t. This function
2373 removes all allocations of the structure defined by DATA. */
2375 static int
2376 remove_str_allocs_in_func (void **slot, void *data)
2378 fallocs_t fallocs = *(fallocs_t *) slot;
2379 unsigned i = 0;
2380 alloc_site_t *call;
2382 while (VEC_iterate (alloc_site_t, fallocs->allocs, i, call))
2384 if (call->str == (d_str) data)
2385 VEC_ordered_remove (alloc_site_t, fallocs->allocs, i);
2386 else
2387 i++;
2390 return 1;
2393 /* This function remove all entries corresponding to the STR structure
2394 from alloc_sites hashtable. */
2396 static void
2397 remove_str_allocs (d_str str)
2399 if (!str)
2400 return;
2402 if (alloc_sites)
2403 htab_traverse (alloc_sites, remove_str_allocs_in_func, str);
2406 /* This function removes the structure with index I from structures vector. */
2408 static void
2409 remove_structure (unsigned i)
2411 d_str str;
2413 if (i >= VEC_length (structure, structures))
2414 return;
2416 str = VEC_index (structure, structures, i);
2418 /* Before removing the structure str, we have to remove its
2419 allocations from alloc_sites hashtable. */
2420 remove_str_allocs (str);
2421 free_data_struct (str);
2422 VEC_ordered_remove (structure, structures, i);
2425 /* Currently we support only EQ_EXPR or NE_EXPR conditions.
2426 COND_STMT is a condition statement to check. */
2428 static bool
2429 is_safe_cond_expr (gimple cond_stmt)
2431 tree arg0, arg1;
2432 unsigned str0, str1;
2433 bool s0, s1;
2434 unsigned length = VEC_length (structure, structures);
2436 if (gimple_cond_code (cond_stmt) != EQ_EXPR
2437 && gimple_cond_code (cond_stmt) != NE_EXPR)
2438 return false;
2440 arg0 = gimple_cond_lhs (cond_stmt);
2441 arg1 = gimple_cond_rhs (cond_stmt);
2443 str0 = find_structure (strip_type (get_type_of_var (arg0)));
2444 str1 = find_structure (strip_type (get_type_of_var (arg1)));
2446 s0 = (str0 != length) ? true : false;
2447 s1 = (str1 != length) ? true : false;
2449 if (!s0 && !s1)
2450 return false;
2452 /* For now we allow only comparison with 0 or NULL. */
2453 if (!integer_zerop (arg0) && !integer_zerop (arg1))
2454 return false;
2456 return true;
2459 /* This function excludes statements, that are
2460 part of allocation sites or field accesses, from the
2461 hashtable of general accesses. SLOT represents general
2462 access that will be checked. DATA is a pointer to
2463 exclude_data structure. */
2465 static int
2466 exclude_from_accs (void **slot, void *data)
2468 struct access_site *acc = *(struct access_site **) slot;
2469 tree fn_decl = ((struct exclude_data *)data)->fn_decl;
2470 d_str str = ((struct exclude_data *)data)->str;
2472 if (is_part_of_malloc (acc->stmt, fn_decl)
2473 || is_part_of_field_access (acc->stmt, str))
2475 VEC_free (tree, heap, acc->vars);
2476 free (acc);
2477 htab_clear_slot (str->accs, slot);
2479 return 1;
2482 /* Callback function for walk_tree called from collect_accesses_in_bb
2483 function. DATA is the statement which is analyzed. */
2485 static tree
2486 get_stmt_accesses (tree *tp, int *walk_subtrees, void *data)
2488 struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
2489 gimple stmt = (gimple) wi->info;
2490 tree t = *tp;
2492 if (!t)
2493 return NULL;
2495 switch (TREE_CODE (t))
2497 case BIT_FIELD_REF:
2499 tree var = TREE_OPERAND(t, 0);
2500 tree type = TYPE_MAIN_VARIANT (strip_type (get_type_of_var (var)));
2501 unsigned i = find_structure (type);
2503 if (i != VEC_length (structure, structures))
2505 if (is_gimple_debug (stmt))
2507 d_str str;
2509 str = VEC_index (structure, structures, i);
2510 add_access_to_acc_sites (stmt, NULL, str->accs);
2511 *walk_subtrees = 0;
2512 break;
2514 if (dump_file)
2516 fprintf (dump_file, "\nThe type ");
2517 print_generic_expr (dump_file, type, 0);
2518 fprintf (dump_file, " has bitfield.");
2520 remove_structure (i);
2523 break;
2525 case COMPONENT_REF:
2527 tree ref = TREE_OPERAND (t, 0);
2528 tree field_decl = TREE_OPERAND (t, 1);
2531 if ((TREE_CODE (ref) == INDIRECT_REF
2532 || TREE_CODE (ref) == ARRAY_REF
2533 || TREE_CODE (ref) == VAR_DECL)
2534 && TREE_CODE (field_decl) == FIELD_DECL)
2536 tree type = TYPE_MAIN_VARIANT (TREE_TYPE (ref));
2537 unsigned i = find_structure (type);
2539 if (i != VEC_length (structure, structures))
2541 d_str str = VEC_index (structure, structures, i);
2542 struct field_entry * field =
2543 find_field_in_struct (str, field_decl);
2545 if (is_gimple_debug (stmt))
2547 add_access_to_acc_sites (stmt, NULL, str->accs);
2548 *walk_subtrees = 0;
2549 break;
2552 if (field)
2554 struct field_access_site *acc = make_field_acc_node ();
2556 gcc_assert (acc);
2558 acc->stmt = stmt;
2559 acc->comp_ref = t;
2560 acc->ref = ref;
2561 acc->field_decl = field_decl;
2563 /* Check whether the access is of the form
2564 we can deal with. */
2565 if (!decompose_access (str->decl, acc))
2567 if (dump_file)
2569 fprintf (dump_file, "\nThe type ");
2570 print_generic_expr (dump_file, type, 0);
2571 fprintf (dump_file,
2572 " has complicate access in statement ");
2573 print_gimple_stmt (dump_file, stmt, 0, 0);
2576 remove_structure (i);
2577 free (acc);
2579 else
2581 /* Increase count of field. */
2582 basic_block bb = gimple_bb (stmt);
2583 field->count += bb->count;
2585 /* Add stmt to the acc_sites of field. */
2586 add_field_acc_to_acc_sites (acc, field->acc_sites);
2588 *walk_subtrees = 0;
2593 break;
2595 case COND_EXPR:
2597 tree cond = COND_EXPR_COND (t);
2598 int i;
2599 for (i = 0; i < TREE_CODE_LENGTH (TREE_CODE (cond)); i++)
2601 tree t = TREE_OPERAND (cond, i);
2603 *walk_subtrees = 1;
2604 walk_tree (&t, get_stmt_accesses, data, NULL);
2606 *walk_subtrees = 0;
2608 break;
2610 case VAR_DECL:
2611 case SSA_NAME:
2613 unsigned i;
2615 if (TREE_CODE (t) == SSA_NAME)
2616 t = SSA_NAME_VAR (t);
2618 i = find_structure (strip_type (get_type_of_var (t)));
2619 if (i != VEC_length (structure, structures))
2621 d_str str;
2623 str = VEC_index (structure, structures, i);
2624 add_access_to_acc_sites (stmt, t, str->accs);
2626 *walk_subtrees = 0;
2628 break;
2630 default:
2631 return NULL;
2634 return NULL;
2637 /* Free structures hashtable. */
2639 static void
2640 free_structures (void)
2642 d_str str;
2643 unsigned i;
2645 for (i = 0; VEC_iterate (structure, structures, i, str); i++)
2646 free_data_struct (str);
2648 VEC_free (structure, heap, structures);
2649 structures = NULL;
2652 /* This function is a callback for traversal over new_var's hashtable.
2653 SLOT is a pointer to new_var. This function frees memory allocated
2654 for new_var and pointed by *SLOT. */
2656 static int
2657 free_new_var (void **slot, void *data ATTRIBUTE_UNUSED)
2659 new_var n_var = *(new_var *) slot;
2661 /* Free vector of new_vars. */
2662 VEC_free (tree, heap, n_var->new_vars);
2663 free (n_var);
2664 return 1;
2667 /* Free new_vars hashtable NEW_VARS_HTAB. */
2669 static void
2670 free_new_vars_htab (htab_t new_vars_htab)
2672 if (new_vars_htab)
2673 htab_traverse (new_vars_htab, free_new_var, NULL);
2674 htab_delete (new_vars_htab);
2675 new_vars_htab = NULL;
2678 /* This function creates new general and field accesses that appear in cfun. */
2680 static void
2681 create_new_accesses_for_func (void)
2683 basic_block bb;
2685 FOR_EACH_BB_FN (bb, cfun)
2686 create_new_accesses_in_bb (bb);
2689 /* Create new allocation sites for the function represented by NODE. */
2691 static void
2692 create_new_alloc_sites_for_func (struct cgraph_node *node)
2694 fallocs_t fallocs = get_fallocs (node->decl);
2696 if (fallocs)
2697 create_new_alloc_sites (fallocs, node->decl);
2700 /* For each local variable of structure type from the vector of structures
2701 this function generates new variable(s) to replace it. */
2703 static void
2704 create_new_local_vars (void)
2706 tree var;
2707 referenced_var_iterator rvi;
2709 new_local_vars = htab_create (num_referenced_vars,
2710 new_var_hash, new_var_eq, NULL);
2712 FOR_EACH_REFERENCED_VAR (var, rvi)
2714 if (!is_global_var (var))
2715 create_new_var (var, new_local_vars);
2718 if (new_local_vars)
2719 htab_traverse (new_local_vars, finalize_new_vars_creation, NULL);
2720 dump_new_vars (new_local_vars);
2723 /* This function prints the SHIFT number of spaces to the DUMP_FILE. */
2725 static inline void
2726 print_shift (unsigned HOST_WIDE_INT shift)
2728 unsigned HOST_WIDE_INT sh = shift;
2730 while (sh--)
2731 fprintf (dump_file, " ");
2734 /* This function updates field_mapping of FIELDS in CLUSTER with NEW_TYPE. */
2736 static inline void
2737 update_fields_mapping (struct field_cluster *cluster, tree new_type,
2738 struct field_entry * fields, int num_fields)
2740 int i;
2742 for (i = 0; i < num_fields; i++)
2743 if (TEST_BIT (cluster->fields_in_cluster, i))
2744 fields[i].field_mapping = new_type;
2747 /* This functions builds structure with FIELDS,
2748 NAME and attributes similar to ORIG_STRUCT.
2749 It returns the newly created structure. */
2751 static tree
2752 build_basic_struct (tree fields, tree name, tree orig_struct)
2754 tree attributes = NULL_TREE;
2755 tree ref = 0;
2756 tree x;
2758 if (TYPE_ATTRIBUTES (orig_struct))
2759 attributes = unshare_expr (TYPE_ATTRIBUTES (orig_struct));
2760 ref = make_node (RECORD_TYPE);
2761 TYPE_SIZE (ref) = 0;
2762 decl_attributes (&ref, attributes, (int) ATTR_FLAG_TYPE_IN_PLACE);
2763 TYPE_PACKED (ref) = TYPE_PACKED (orig_struct);
2764 for (x = fields; x; x = TREE_CHAIN (x))
2766 DECL_CONTEXT (x) = ref;
2767 DECL_PACKED (x) |= TYPE_PACKED (ref);
2769 TYPE_FIELDS (ref) = fields;
2770 layout_type (ref);
2771 TYPE_NAME (ref) = name;
2773 return ref;
2776 /* This function copies FIELDS from CLUSTER into TREE_CHAIN as part
2777 of preparation for new structure building. NUM_FIELDS is a total
2778 number of fields in the structure. The function returns newly
2779 generated fields. */
2781 static tree
2782 create_fields (struct field_cluster * cluster,
2783 struct field_entry * fields, int num_fields)
2785 int i;
2786 tree new_types = NULL_TREE;
2787 tree last = NULL_TREE;
2789 for (i = 0; i < num_fields; i++)
2790 if (TEST_BIT (cluster->fields_in_cluster, i))
2792 tree new_decl = unshare_expr (fields[i].decl);
2794 if (!new_types)
2795 new_types = new_decl;
2796 else
2797 TREE_CHAIN (last) = new_decl;
2798 last = new_decl;
2801 TREE_CHAIN (last) = NULL_TREE;
2802 return new_types;
2806 /* This function creates a cluster name. The name is based on
2807 the original structure name, if it is present. It has a form:
2809 <original_struct_name>_sub.<CLUST_NUM>
2811 The original structure name is taken from the type of DECL.
2812 If an original structure name is not present, it's generated to be:
2814 struct.<STR_NUM>
2816 The function returns identifier of the new cluster name. */
2818 static inline tree
2819 gen_cluster_name (tree decl, int clust_num, int str_num)
2821 const char * orig_name = get_type_name (decl);
2822 char * tmp_name = NULL;
2823 char * prefix;
2824 char * new_name;
2825 size_t len;
2827 if (!orig_name)
2828 ASM_FORMAT_PRIVATE_NAME(tmp_name, "struct", str_num);
2830 len = strlen (tmp_name ? tmp_name : orig_name) + strlen ("_sub");
2831 prefix = XALLOCAVEC (char, len + 1);
2832 memcpy (prefix, tmp_name ? tmp_name : orig_name,
2833 strlen (tmp_name ? tmp_name : orig_name));
2834 strcpy (prefix + strlen (tmp_name ? tmp_name : orig_name), "_sub");
2836 ASM_FORMAT_PRIVATE_NAME (new_name, prefix, clust_num);
2837 return get_identifier (new_name);
2840 /* This function checks whether the structure STR has bitfields.
2841 If yes, this structure type is added to UNSUITABLE_TYPES vector. */
2843 static void
2844 check_bitfields (d_str str, VEC (tree, heap) **unsuitable_types)
2846 tree type = str->decl;
2847 int i;
2849 for (i = 0; i < str->num_fields; i++)
2850 if (DECL_BIT_FIELD (str->fields[i].decl))
2852 add_unsuitable_type (unsuitable_types, type);
2853 if (dump_file)
2855 fprintf (dump_file, "\nType ");
2856 print_generic_expr (dump_file, type, 0);
2857 fprintf (dump_file, "\nescapes due to bitfield ");
2858 print_generic_expr (dump_file, str->fields[i].decl, 0);
2860 break;
2864 /* This function adds to UNSUITABLE_TYPES those types that escape
2865 due to results of ipa-type-escape analysis. See ipa-type-escape.[c,h]. */
2867 static void
2868 exclude_escaping_types_1 (VEC (tree, heap) **unsuitable_types)
2870 d_str str;
2871 unsigned i;
2873 for (i = 0; VEC_iterate (structure, structures, i, str); i++)
2874 check_type_escape (str, unsuitable_types);
2877 /* If a structure type is a return type of any function,
2878 we cannot transform it. Such type is added to UNSUITABLE_TYPES vector. */
2880 static void
2881 exclude_returned_types (VEC (tree, heap) **unsuitable_types)
2883 struct cgraph_node *c_node;
2885 for (c_node = cgraph_nodes; c_node; c_node = c_node->next)
2887 tree ret_t = TREE_TYPE (TREE_TYPE (c_node->decl));
2889 if (ret_t)
2891 ret_t = strip_type (ret_t);
2892 if (TREE_CODE (ret_t) == RECORD_TYPE)
2894 add_unsuitable_type (unsuitable_types, TYPE_MAIN_VARIANT (ret_t));
2895 if (dump_file)
2897 fprintf (dump_file, "\nThe type \"");
2898 print_generic_expr (dump_file, ret_t, 0);
2899 fprintf (dump_file,
2900 "\" is return type of function...Excluded.");
2907 /* This function looks for parameters of local functions
2908 which are of structure types, or derived from them (arrays
2909 of structures, pointers to structures, or their combinations).
2910 We are not handling peeling of such structures right now.
2911 The found structures types are added to UNSUITABLE_TYPES vector. */
2913 static void
2914 exclude_types_passed_to_local_func (VEC (tree, heap) **unsuitable_types)
2916 struct cgraph_node *c_node;
2918 for (c_node = cgraph_nodes; c_node; c_node = c_node->next)
2919 if (cgraph_function_body_availability (c_node) == AVAIL_LOCAL)
2921 tree fn = c_node->decl;
2922 tree arg;
2924 for (arg = DECL_ARGUMENTS (fn); arg; arg = TREE_CHAIN (arg))
2926 tree type = TREE_TYPE (arg);
2928 type = strip_type (type);
2929 if (TREE_CODE (type) == RECORD_TYPE)
2931 add_unsuitable_type (unsuitable_types,
2932 TYPE_MAIN_VARIANT (type));
2933 if (dump_file)
2935 fprintf (dump_file, "\nPointer to type \"");
2936 print_generic_expr (dump_file, type, 0);
2937 fprintf (dump_file,
2938 "\" is passed to local function...Excluded.");
2945 /* This function analyzes structure form of structures
2946 potential for transformation. If we are not capable to transform
2947 structure of some form, we remove it from the structures hashtable.
2948 Right now we cannot handle nested structs, when nesting is
2949 through any level of pointers or arrays.
2951 TBD: release these constrains in future.
2953 Note, that in this function we suppose that all structures
2954 in the program are members of the structures hashtable right now,
2955 without excluding escaping types. */
2957 static void
2958 check_struct_form (d_str str, VEC (tree, heap) **unsuitable_types)
2960 int i;
2962 for (i = 0; i < str->num_fields; i++)
2964 tree f_type = strip_type(TREE_TYPE (str->fields[i].decl));
2966 if (TREE_CODE (f_type) == RECORD_TYPE)
2968 add_unsuitable_type (unsuitable_types, TYPE_MAIN_VARIANT (f_type));
2969 add_unsuitable_type (unsuitable_types, str->decl);
2970 if (dump_file)
2972 fprintf (dump_file, "\nType ");
2973 print_generic_expr (dump_file, f_type, 0);
2974 fprintf (dump_file, " is a field in the structure ");
2975 print_generic_expr (dump_file, str->decl, 0);
2976 fprintf (dump_file, ". Escaping...");
2982 /* This function adds a structure TYPE to the vector of structures,
2983 if it's not already there. */
2985 static void
2986 add_structure (tree type)
2988 struct data_structure node;
2989 unsigned i;
2990 int num_fields;
2992 type = TYPE_MAIN_VARIANT (type);
2994 i = find_structure (type);
2996 if (i != VEC_length (structure, structures))
2997 return;
2999 num_fields = fields_length (type);
3000 node.decl = type;
3001 node.num_fields = num_fields;
3002 node.fields = get_fields (type, num_fields);
3003 node.struct_clustering = NULL;
3004 node.accs = htab_create (32, acc_hash, acc_eq, NULL);
3005 node.new_types = VEC_alloc (tree, heap, num_fields);
3006 node.count = 0;
3008 VEC_safe_push (structure, heap, structures, &node);
3010 if (dump_file)
3012 fprintf (dump_file, "\nAdding data structure \"");
3013 print_generic_expr (dump_file, type, 0);
3014 fprintf (dump_file, "\" to data_struct_list.");
3018 /* This function adds an allocation site to alloc_sites hashtable.
3019 The allocation site appears in STMT of function FN_DECL and
3020 allocates the structure represented by STR. */
3022 static void
3023 add_alloc_site (tree fn_decl, gimple stmt, d_str str)
3025 fallocs_t fallocs = NULL;
3026 alloc_site_t m_call;
3028 m_call.stmt = stmt;
3029 m_call.str = str;
3031 fallocs =
3032 (fallocs_t) htab_find_with_hash (alloc_sites,
3033 fn_decl, htab_hash_pointer (fn_decl));
3035 if (!fallocs)
3037 void **slot;
3039 fallocs = XNEW (struct func_alloc_sites);
3040 fallocs->func = fn_decl;
3041 fallocs->allocs = VEC_alloc (alloc_site_t, heap, 1);
3042 slot = htab_find_slot_with_hash (alloc_sites, fn_decl,
3043 htab_hash_pointer (fn_decl), INSERT);
3044 *slot = fallocs;
3046 VEC_safe_push (alloc_site_t, heap,
3047 fallocs->allocs, &m_call);
3049 if (dump_file)
3051 fprintf (dump_file, "\nAdding stmt ");
3052 print_gimple_stmt (dump_file, stmt, 0, 0);
3053 fprintf (dump_file, " to list of mallocs.");
3057 /* This function returns true if the result of STMT, that contains a call
3058 to an allocation function, is cast to one of the structure types.
3059 STMT should be of the form: T.2 = <alloc_func> (T.1);
3060 If true, I_P contains an index of an allocated structure.
3061 Otherwise I_P contains the length of the vector of structures. */
3063 static bool
3064 is_alloc_of_struct (gimple stmt, unsigned *i_p)
3066 tree lhs;
3067 tree type;
3068 gimple final_stmt;
3070 final_stmt = get_final_alloc_stmt (stmt);
3072 if (!final_stmt)
3073 return false;
3075 /* final_stmt should be of the form:
3076 T.3 = (struct_type *) T.2; */
3078 if (gimple_code (final_stmt) != GIMPLE_ASSIGN)
3079 return false;
3081 lhs = gimple_assign_lhs (final_stmt);
3083 type = get_type_of_var (lhs);
3085 if (!type)
3086 return false;
3088 if (!POINTER_TYPE_P (type)
3089 || TREE_CODE (strip_type (type)) != RECORD_TYPE)
3090 return false;
3092 *i_p = find_structure (strip_type (type));
3094 if (*i_p == VEC_length (structure, structures))
3095 return false;
3097 return true;
3100 /* This function prints non-field and field accesses
3101 of the structure STR. */
3103 static void
3104 dump_accs (d_str str)
3106 int i;
3108 fprintf (dump_file, "\nAccess sites of struct ");
3109 print_generic_expr (dump_file, str->decl, 0);
3111 for (i = 0; i < str->num_fields; i++)
3113 fprintf (dump_file, "\nAccess site of field ");
3114 print_generic_expr (dump_file, str->fields[i].decl, 0);
3115 dump_field_acc_sites (str->fields[i].acc_sites);
3116 fprintf (dump_file, ":\n");
3118 fprintf (dump_file, "\nGeneral access sites\n");
3119 dump_access_sites (str->accs);
3122 /* This function checks whether an access statement, pointed by SLOT,
3123 is a condition we are capable to transform. It returns false if not,
3124 setting bool *DATA to false. */
3126 static int
3127 safe_cond_expr_check (void **slot, void *data)
3129 struct access_site *acc = *(struct access_site **) slot;
3131 if (gimple_code (acc->stmt) == GIMPLE_COND
3132 && !is_safe_cond_expr (acc->stmt))
3134 if (dump_file)
3136 fprintf (dump_file, "\nUnsafe conditional statement ");
3137 print_gimple_stmt (dump_file, acc->stmt, 0, 0);
3139 *(bool *) data = false;
3140 return 0;
3142 return 1;
3145 /* This function excludes statements that are part of allocation sites and
3146 field accesses from the hashtable of general accesses of the structure
3147 type STR. Only accesses that belong to the function represented by
3148 NODE are treated. */
3150 static void
3151 exclude_alloc_and_field_accs_1 (d_str str, struct cgraph_node *node)
3153 struct exclude_data dt;
3154 dt.str = str;
3155 dt.fn_decl = node->decl;
3157 if (dt.str->accs)
3158 htab_traverse (dt.str->accs, exclude_from_accs, &dt);
3161 /* Collect accesses to the structure types that appear in basic block BB. */
3163 static void
3164 collect_accesses_in_bb (basic_block bb)
3166 gimple_stmt_iterator bsi;
3167 struct walk_stmt_info wi;
3169 memset (&wi, 0, sizeof (wi));
3171 for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi))
3173 gimple stmt = gsi_stmt (bsi);
3175 /* In asm stmt we cannot always track the arguments,
3176 so we just give up. */
3177 if (gimple_code (stmt) == GIMPLE_ASM)
3179 free_structures ();
3180 break;
3183 wi.info = (void *) stmt;
3184 walk_gimple_op (stmt, get_stmt_accesses, &wi);
3188 /* This function generates cluster substructure that contains FIELDS.
3189 The cluster added to the set of clusters of the structure STR. */
3191 static void
3192 gen_cluster (sbitmap fields, d_str str)
3194 struct field_cluster *crr_cluster = XCNEW (struct field_cluster);
3196 crr_cluster->sibling = str->struct_clustering;
3197 str->struct_clustering = crr_cluster;
3198 crr_cluster->fields_in_cluster = fields;
3201 /* This function peels a field with the index I from the structure DS. */
3203 static void
3204 peel_field (int i, d_str ds)
3206 struct field_cluster *crr_cluster = XCNEW (struct field_cluster);
3208 crr_cluster->sibling = ds->struct_clustering;
3209 ds->struct_clustering = crr_cluster;
3210 crr_cluster->fields_in_cluster =
3211 sbitmap_alloc ((unsigned int) ds->num_fields);
3212 sbitmap_zero (crr_cluster->fields_in_cluster);
3213 SET_BIT (crr_cluster->fields_in_cluster, i);
3216 /* This function calculates maximum field count in
3217 the structure STR. */
3219 static gcov_type
3220 get_max_field_count (d_str str)
3222 gcov_type max = 0;
3223 int i;
3225 for (i = 0; i < str->num_fields; i++)
3226 if (str->fields[i].count > max)
3227 max = str->fields[i].count;
3229 return max;
3232 /* Do struct-reorg transformation for individual function
3233 represented by NODE. All structure types relevant
3234 for this function are transformed. */
3236 static void
3237 do_reorg_for_func (struct cgraph_node *node)
3239 create_new_local_vars ();
3240 create_new_alloc_sites_for_func (node);
3241 create_new_accesses_for_func ();
3242 update_ssa (TODO_update_ssa);
3243 cleanup_tree_cfg ();
3245 /* Free auxiliary data representing local variables. */
3246 free_new_vars_htab (new_local_vars);
3249 /* Print structure TYPE, its name, if it exists, and body.
3250 INDENT defines the level of indentation (similar
3251 to the option -i of indent command). SHIFT parameter
3252 defines a number of spaces by which a structure will
3253 be shifted right. */
3255 static void
3256 dump_struct_type (tree type, unsigned HOST_WIDE_INT indent,
3257 unsigned HOST_WIDE_INT shift)
3259 const char *struct_name;
3260 tree field;
3262 if (!type || !dump_file)
3263 return;
3265 if (TREE_CODE (type) != RECORD_TYPE)
3267 print_generic_expr (dump_file, type, 0);
3268 return;
3271 print_shift (shift);
3272 struct_name = get_type_name (type);
3273 fprintf (dump_file, "struct ");
3274 if (struct_name)
3275 fprintf (dump_file, "%s\n",struct_name);
3276 print_shift (shift);
3277 fprintf (dump_file, "{\n");
3279 for (field = TYPE_FIELDS (type); field;
3280 field = TREE_CHAIN (field))
3282 unsigned HOST_WIDE_INT s = indent;
3283 tree f_type = TREE_TYPE (field);
3285 print_shift (shift);
3286 while (s--)
3287 fprintf (dump_file, " ");
3288 dump_struct_type (f_type, indent, shift + indent);
3289 fprintf(dump_file, " ");
3290 print_generic_expr (dump_file, field, 0);
3291 fprintf(dump_file, ";\n");
3293 print_shift (shift);
3294 fprintf (dump_file, "}\n");
3297 /* This function creates new structure types to replace original type,
3298 indicated by STR->decl. The names of the new structure types are
3299 derived from the original structure type. If the original structure
3300 type has no name, we assume that its name is 'struct.<STR_NUM>'. */
3302 static void
3303 create_new_type (d_str str, int *str_num)
3305 int cluster_num = 0;
3307 struct field_cluster *cluster = str->struct_clustering;
3308 while (cluster)
3310 tree name = gen_cluster_name (str->decl, cluster_num,
3311 *str_num);
3312 tree fields;
3313 tree new_type;
3314 cluster_num++;
3316 fields = create_fields (cluster, str->fields,
3317 str->num_fields);
3318 new_type = build_basic_struct (fields, name, str->decl);
3320 update_fields_mapping (cluster, new_type,
3321 str->fields, str->num_fields);
3323 VEC_safe_push (tree, heap, str->new_types, new_type);
3324 cluster = cluster->sibling;
3326 (*str_num)++;
3329 /* This function is a callback for alloc_sites hashtable
3330 traversal. SLOT is a pointer to fallocs_t.
3331 This function frees memory pointed by *SLOT. */
3333 static int
3334 free_falloc_sites (void **slot, void *data ATTRIBUTE_UNUSED)
3336 fallocs_t fallocs = *(fallocs_t *) slot;
3338 VEC_free (alloc_site_t, heap, fallocs->allocs);
3339 free (fallocs);
3340 return 1;
3343 /* Remove structures collected in UNSUITABLE_TYPES
3344 from structures vector. */
3346 static void
3347 remove_unsuitable_types (VEC (tree, heap) *unsuitable_types)
3349 d_str str;
3350 tree type;
3351 unsigned i, j;
3353 for (j = 0; VEC_iterate (tree, unsuitable_types, j, type); j++)
3354 for (i = 0; VEC_iterate (structure, structures, i, str); i++)
3355 if (is_equal_types (str->decl, type))
3357 remove_structure (i);
3358 break;
3362 /* Exclude structure types with bitfields.
3363 We would not want to interfere with other optimizations
3364 that can be done in this case. The structure types with
3365 bitfields are added to UNSUITABLE_TYPES vector. */
3367 static void
3368 exclude_types_with_bit_fields (VEC (tree, heap) **unsuitable_types)
3370 d_str str;
3371 unsigned i;
3373 for (i = 0; VEC_iterate (structure, structures, i, str); i++)
3374 check_bitfields (str, unsuitable_types);
3377 /* This function checks three types of escape. A structure type escapes:
3379 1. if it's a type of parameter of a local function.
3380 2. if it's a type of function return value.
3381 3. if it escapes as a result of ipa-type-escape analysis.
3383 The escaping structure types are added to UNSUITABLE_TYPES vector. */
3385 static void
3386 exclude_escaping_types (VEC (tree, heap) **unsuitable_types)
3388 exclude_types_passed_to_local_func (unsuitable_types);
3389 exclude_returned_types (unsuitable_types);
3390 exclude_escaping_types_1 (unsuitable_types);
3393 /* This function analyzes whether the form of
3394 structure is such that we are capable to transform it.
3395 Nested structures are checked here. Unsuitable structure
3396 types are added to UNSUITABLE_TYPE vector. */
3398 static void
3399 analyze_struct_form (VEC (tree, heap) **unsuitable_types)
3401 d_str str;
3402 unsigned i;
3404 for (i = 0; VEC_iterate (structure, structures, i, str); i++)
3405 check_struct_form (str, unsuitable_types);
3408 /* This function looks for structure types instantiated in the program.
3409 The candidate types are added to the structures vector.
3410 Unsuitable types are collected into UNSUITABLE_TYPES vector. */
3412 static void
3413 build_data_structure (VEC (tree, heap) **unsuitable_types)
3415 tree var, type;
3416 tree var_list;
3417 struct varpool_node *current_varpool;
3418 struct cgraph_node *c_node;
3420 /* Check global variables. */
3421 FOR_EACH_STATIC_VARIABLE (current_varpool)
3423 var = current_varpool->decl;
3424 if (is_candidate (var, &type, unsuitable_types))
3425 add_structure (type);
3428 /* Now add structures that are types of function parameters and
3429 local variables. */
3430 for (c_node = cgraph_nodes; c_node; c_node = c_node->next)
3432 enum availability avail =
3433 cgraph_function_body_availability (c_node);
3435 /* We need AVAIL_AVAILABLE for main function. */
3436 if (avail == AVAIL_LOCAL || avail == AVAIL_AVAILABLE)
3438 struct function *fn = DECL_STRUCT_FUNCTION (c_node->decl);
3440 for (var = DECL_ARGUMENTS (c_node->decl); var;
3441 var = TREE_CHAIN (var))
3442 if (is_candidate (var, &type, unsuitable_types))
3443 add_structure (type);
3445 if (fn == NULL)
3447 /* Skip cones that haven't been materialized yet. */
3448 gcc_assert (c_node->clone_of
3449 && c_node->clone_of->decl != c_node->decl);
3450 continue;
3453 /* Check function local variables. */
3454 for (var_list = fn->local_decls; var_list;
3455 var_list = TREE_CHAIN (var_list))
3457 var = TREE_VALUE (var_list);
3459 if (is_candidate (var, &type, unsuitable_types))
3460 add_structure (type);
3466 /* This function returns true if the program contains
3467 a call to user defined allocation function, or other
3468 functions that can interfere with struct-reorg optimizations. */
3470 static bool
3471 program_redefines_malloc_p (void)
3473 struct cgraph_node *c_node;
3474 struct cgraph_node *c_node2;
3475 struct cgraph_edge *c_edge;
3476 tree fndecl2;
3478 for (c_node = cgraph_nodes; c_node; c_node = c_node->next)
3480 for (c_edge = c_node->callees; c_edge; c_edge = c_edge->next_callee)
3482 c_node2 = c_edge->callee;
3483 fndecl2 = c_node2->decl;
3484 if (is_gimple_call (c_edge->call_stmt))
3486 const char * fname = get_name (fndecl2);
3488 if ((gimple_call_flags (c_edge->call_stmt) & ECF_MALLOC)
3489 && (DECL_FUNCTION_CODE (fndecl2) != BUILT_IN_MALLOC)
3490 && (DECL_FUNCTION_CODE (fndecl2) != BUILT_IN_CALLOC)
3491 && (DECL_FUNCTION_CODE (fndecl2) != BUILT_IN_ALLOCA))
3492 return true;
3494 /* Check that there is no __builtin_object_size,
3495 __builtin_offsetof, or realloc's in the program. */
3496 if (DECL_FUNCTION_CODE (fndecl2) == BUILT_IN_OBJECT_SIZE
3497 || !strcmp (fname, "__builtin_offsetof")
3498 || !strcmp (fname, "realloc"))
3499 return true;
3504 return false;
3507 /* In this function we assume that an allocation statement
3509 var = (type_cast) malloc (size);
3511 is converted into the following set of statements:
3513 T.1 = size;
3514 T.2 = malloc (T.1);
3515 T.3 = (type_cast) T.2;
3516 var = T.3;
3518 In this function we collect into alloc_sites the allocation
3519 sites of variables of structure types that are present
3520 in structures vector. */
3522 static void
3523 collect_alloc_sites (void)
3525 struct cgraph_node *node;
3526 struct cgraph_edge *cs;
3528 for (node = cgraph_nodes; node; node = node->next)
3529 if (node->analyzed && node->decl)
3531 for (cs = node->callees; cs; cs = cs->next_callee)
3533 gimple stmt = cs->call_stmt;
3535 if (stmt)
3537 tree decl;
3539 if (is_gimple_call (stmt)
3540 && (decl = gimple_call_fndecl (stmt))
3541 && gimple_call_lhs (stmt))
3543 unsigned i;
3545 if (is_alloc_of_struct (stmt, &i))
3547 /* We support only malloc now. */
3548 if (DECL_FUNCTION_CODE (decl) == BUILT_IN_MALLOC)
3550 d_str str;
3552 str = VEC_index (structure, structures, i);
3553 add_alloc_site (node->decl, stmt, str);
3555 else
3557 if (dump_file)
3559 fprintf (dump_file,
3560 "\nUnsupported allocation function ");
3561 print_gimple_stmt (dump_file, stmt, 0, 0);
3563 remove_structure (i);
3572 /* Print collected accesses. */
3574 static void
3575 dump_accesses (void)
3577 d_str str;
3578 unsigned i;
3580 if (!dump_file)
3581 return;
3583 for (i = 0; VEC_iterate (structure, structures, i, str); i++)
3584 dump_accs (str);
3587 /* This function checks whether the accesses of structures in condition
3588 expressions are of the kind we are capable to transform.
3589 If not, such structures are removed from the vector of structures. */
3591 static void
3592 check_cond_exprs (void)
3594 d_str str;
3595 unsigned i;
3597 i = 0;
3598 while (VEC_iterate (structure, structures, i, str))
3600 bool safe_p = true;
3602 if (str->accs)
3603 htab_traverse (str->accs, safe_cond_expr_check, &safe_p);
3604 if (!safe_p)
3605 remove_structure (i);
3606 else
3607 i++;
3611 /* We exclude from non-field accesses of the structure
3612 all statements that will be treated as part of the structure
3613 allocation sites or field accesses. */
3615 static void
3616 exclude_alloc_and_field_accs (struct cgraph_node *node)
3618 d_str str;
3619 unsigned i;
3621 for (i = 0; VEC_iterate (structure, structures, i, str); i++)
3622 exclude_alloc_and_field_accs_1 (str, node);
3625 /* This function collects accesses of the fields of the structures
3626 that appear at function FN. */
3628 static void
3629 collect_accesses_in_func (struct function *fn)
3631 basic_block bb;
3633 if (! fn)
3634 return;
3636 /* Collect accesses for each basic blocks separately. */
3637 FOR_EACH_BB_FN (bb, fn)
3638 collect_accesses_in_bb (bb);
3641 /* This function summarizes counts of the fields into the structure count. */
3643 static void
3644 sum_counts (d_str str, gcov_type *hottest)
3646 int i;
3648 str->count = 0;
3649 for (i = 0; i < str->num_fields; i++)
3651 if (dump_file)
3653 fprintf (dump_file, "\nCounter of field \"");
3654 print_generic_expr (dump_file, str->fields[i].decl, 0);
3655 fprintf (dump_file, "\" is " HOST_WIDEST_INT_PRINT_DEC,
3656 str->fields[i].count);
3658 str->count += str->fields[i].count;
3661 if (dump_file)
3663 fprintf (dump_file, "\nCounter of struct \"");
3664 print_generic_expr (dump_file, str->decl, 0);
3665 fprintf (dump_file, "\" is " HOST_WIDEST_INT_PRINT_DEC, str->count);
3668 if (str->count > *hottest)
3669 *hottest = str->count;
3672 /* This function peels the field into separate structure if it's
3673 sufficiently hot, i.e. if its count provides at least 90% of
3674 the maximum field count in the structure. */
3676 static void
3677 peel_hot_fields (d_str str)
3679 gcov_type max_field_count;
3680 sbitmap fields_left = sbitmap_alloc (str->num_fields);
3681 int i;
3683 sbitmap_ones (fields_left);
3684 max_field_count =
3685 (gcov_type) (get_max_field_count (str)/100)*90;
3687 str->struct_clustering = NULL;
3689 for (i = 0; i < str->num_fields; i++)
3691 if (str->count >= max_field_count)
3693 RESET_BIT (fields_left, i);
3694 peel_field (i, str);
3698 i = sbitmap_first_set_bit (fields_left);
3699 if (i != -1)
3700 gen_cluster (fields_left, str);
3701 else
3702 sbitmap_free (fields_left);
3705 /* This function is a helper for do_reorg. It goes over
3706 functions in call graph and performs actual transformation
3707 on them. */
3709 static void
3710 do_reorg_1 (void)
3712 struct cgraph_node *node;
3714 /* Initialize the default bitmap obstack. */
3715 bitmap_obstack_initialize (NULL);
3717 for (node = cgraph_nodes; node; node = node->next)
3718 if (node->analyzed && node->decl)
3720 push_cfun (DECL_STRUCT_FUNCTION (node->decl));
3721 current_function_decl = node->decl;
3722 if (dump_file)
3723 fprintf (dump_file, "\nFunction to do reorg is %s: \n",
3724 (const char *) IDENTIFIER_POINTER (DECL_NAME (node->decl)));
3725 do_reorg_for_func (node);
3726 free_dominance_info (CDI_DOMINATORS);
3727 free_dominance_info (CDI_POST_DOMINATORS);
3728 current_function_decl = NULL;
3729 pop_cfun ();
3732 set_cfun (NULL);
3733 bitmap_obstack_release (NULL);
3736 /* This function creates new global struct variables.
3737 For each original variable, the set of new variables
3738 is created with the new structure types corresponding
3739 to the structure type of original variable.
3740 Only VAR_DECL variables are treated by this function. */
3742 static void
3743 create_new_global_vars (void)
3745 struct varpool_node *current_varpool;
3746 unsigned HOST_WIDE_INT i;
3747 unsigned HOST_WIDE_INT varpool_size = 0;
3749 for (i = 0; i < 2; i++)
3751 if (i)
3752 new_global_vars = htab_create (varpool_size,
3753 new_var_hash, new_var_eq, NULL);
3754 FOR_EACH_STATIC_VARIABLE(current_varpool)
3756 tree var_decl = current_varpool->decl;
3758 if (!var_decl || TREE_CODE (var_decl) != VAR_DECL)
3759 continue;
3760 if (!i)
3761 varpool_size++;
3762 else
3763 create_new_var (var_decl, new_global_vars);
3767 if (new_global_vars)
3768 htab_traverse (new_global_vars, update_varpool_with_new_var, NULL);
3771 /* Dump all new types generated by this optimization. */
3773 static void
3774 dump_new_types (void)
3776 d_str str;
3777 tree type;
3778 unsigned i, j;
3780 if (!dump_file)
3781 return;
3783 fprintf (dump_file, "\nThe following are the new types generated by"
3784 " this optimization:\n");
3786 for (i = 0; VEC_iterate (structure, structures, i, str); i++)
3788 if (dump_file)
3790 fprintf (dump_file, "\nFor type ");
3791 dump_struct_type (str->decl, 2, 0);
3792 fprintf (dump_file, "\nthe number of new types is %d\n",
3793 VEC_length (tree, str->new_types));
3795 for (j = 0; VEC_iterate (tree, str->new_types, j, type); j++)
3796 dump_struct_type (type, 2, 0);
3800 /* This function creates new types to replace old structure types. */
3802 static void
3803 create_new_types (void)
3805 d_str str;
3806 unsigned i;
3807 int str_num = 0;
3809 for (i = 0; VEC_iterate (structure, structures, i, str); i++)
3810 create_new_type (str, &str_num);
3813 /* Free allocation sites hashtable. */
3815 static void
3816 free_alloc_sites (void)
3818 if (alloc_sites)
3819 htab_traverse (alloc_sites, free_falloc_sites, NULL);
3820 htab_delete (alloc_sites);
3821 alloc_sites = NULL;
3824 /* This function collects structures potential
3825 for peeling transformation, and inserts
3826 them into structures hashtable. */
3828 static void
3829 collect_structures (void)
3831 VEC (tree, heap) *unsuitable_types = VEC_alloc (tree, heap, 32);
3833 structures = VEC_alloc (structure, heap, 32);
3835 /* If program contains user defined mallocs, we give up. */
3836 if (program_redefines_malloc_p ())
3837 return;
3839 /* Build data structures hashtable of all data structures
3840 in the program. */
3841 build_data_structure (&unsuitable_types);
3843 /* This function analyzes whether the form of
3844 structure is such that we are capable to transform it.
3845 Nested structures are checked here. */
3846 analyze_struct_form (&unsuitable_types);
3848 /* This function excludes those structure types
3849 that escape compilation unit. */
3850 exclude_escaping_types (&unsuitable_types);
3852 /* We do not want to change data layout of the structures with bitfields. */
3853 exclude_types_with_bit_fields (&unsuitable_types);
3855 remove_unsuitable_types (unsuitable_types);
3856 VEC_free (tree, heap, unsuitable_types);
3859 /* Collect structure allocation sites. In case of arrays
3860 we have nothing to do. */
3862 static void
3863 collect_allocation_sites (void)
3865 alloc_sites = htab_create (32, malloc_hash, malloc_eq, NULL);
3866 collect_alloc_sites ();
3869 /* This function collects data accesses for the
3870 structures to be transformed. For each structure
3871 field it updates the count field in field_entry. */
3873 static void
3874 collect_data_accesses (void)
3876 struct cgraph_node *c_node;
3878 for (c_node = cgraph_nodes; c_node; c_node = c_node->next)
3880 enum availability avail = cgraph_function_body_availability (c_node);
3882 if (avail == AVAIL_LOCAL || avail == AVAIL_AVAILABLE)
3884 struct function *func = DECL_STRUCT_FUNCTION (c_node->decl);
3886 collect_accesses_in_func (func);
3887 exclude_alloc_and_field_accs (c_node);
3891 check_cond_exprs ();
3892 /* Print collected accesses. */
3893 dump_accesses ();
3896 /* We do not bother to transform cold structures.
3897 Coldness of the structure is defined relatively
3898 to the highest structure count among the structures
3899 to be transformed. It's triggered by the compiler parameter
3901 --param struct-reorg-cold-struct-ratio=<value>
3903 where <value> ranges from 0 to 100. Structures with count ratios
3904 that are less than this parameter are considered to be cold. */
3906 static void
3907 exclude_cold_structs (void)
3909 gcov_type hottest = 0;
3910 unsigned i;
3911 d_str str;
3913 /* We summarize counts of fields of a structure into the structure count. */
3914 for (i = 0; VEC_iterate (structure, structures, i, str); i++)
3915 sum_counts (str, &hottest);
3917 /* Remove cold structures from structures vector. */
3918 i = 0;
3919 while (VEC_iterate (structure, structures, i, str))
3920 if (str->count * 100 < (hottest * STRUCT_REORG_COLD_STRUCT_RATIO))
3922 if (dump_file)
3924 fprintf (dump_file, "\nThe structure ");
3925 print_generic_expr (dump_file, str->decl, 0);
3926 fprintf (dump_file, " is cold.");
3928 remove_structure (i);
3930 else
3931 i++;
3934 /* This function decomposes original structure into substructures,
3935 i.e.clusters. */
3937 static void
3938 peel_structs (void)
3940 d_str str;
3941 unsigned i;
3943 for (i = 0; VEC_iterate (structure, structures, i, str); i++)
3944 peel_hot_fields (str);
3947 /* Stage 3. */
3948 /* Do the actual transformation for each structure
3949 from the structures hashtable. */
3951 static void
3952 do_reorg (void)
3954 /* Check that there is a work to do. */
3955 if (!VEC_length (structure, structures))
3957 if (dump_file)
3958 fprintf (dump_file, "\nNo structures to transform. Exiting...");
3959 return;
3961 else
3963 if (dump_file)
3965 fprintf (dump_file, "\nNumber of structures to transform is %d",
3966 VEC_length (structure, structures));
3970 /* Generate new types. */
3971 create_new_types ();
3972 dump_new_types ();
3974 /* Create new global variables. */
3975 create_new_global_vars ();
3976 dump_new_vars (new_global_vars);
3978 /* Decompose structures for each function separately. */
3979 do_reorg_1 ();
3981 /* Free auxiliary data collected for global variables. */
3982 free_new_vars_htab (new_global_vars);
3985 /* Free all auxiliary data used by this optimization. */
3987 static void
3988 free_data_structs (void)
3990 free_structures ();
3991 free_alloc_sites ();
3994 /* Perform structure decomposition (peeling). */
3996 static void
3997 reorg_structs (void)
4000 /* Stage1. */
4001 /* Collect structure types. */
4002 collect_structures ();
4004 /* Collect structure allocation sites. */
4005 collect_allocation_sites ();
4007 /* Collect structure accesses. */
4008 collect_data_accesses ();
4010 /* We transform only hot structures. */
4011 exclude_cold_structs ();
4013 /* Stage2. */
4014 /* Decompose structures into substructures, i.e. clusters. */
4015 peel_structs ();
4017 /* Stage3. */
4018 /* Do the actual transformation for each structure
4019 from the structures hashtable. */
4020 do_reorg ();
4022 /* Free all auxiliary data used by this optimization. */
4023 free_data_structs ();
4026 /* Struct-reorg optimization entry point function. */
4028 static unsigned int
4029 reorg_structs_drive (void)
4031 reorg_structs ();
4032 return 0;
4035 /* Struct-reorg optimization gate function. */
4037 static bool
4038 struct_reorg_gate (void)
4040 return flag_ipa_struct_reorg
4041 && flag_whole_program
4042 && (optimize > 0);
4045 struct simple_ipa_opt_pass pass_ipa_struct_reorg =
4048 SIMPLE_IPA_PASS,
4049 "ipa_struct_reorg", /* name */
4050 struct_reorg_gate, /* gate */
4051 reorg_structs_drive, /* execute */
4052 NULL, /* sub */
4053 NULL, /* next */
4054 0, /* static_pass_number */
4055 TV_INTEGRATION, /* tv_id */
4056 0, /* properties_required */
4057 0, /* properties_provided */
4058 0, /* properties_destroyed */
4059 TODO_verify_ssa, /* todo_flags_start */
4060 TODO_dump_func | TODO_verify_ssa /* todo_flags_finish */