Merge from mainline (167278:168000).
[official-gcc/graphite-test-results.git] / gcc / testsuite / go.test / test / chan / powser1.go
blobdc4ff53255d5f69b72478db8af50d05bd4cb7bc9
1 // $G $D/$F.go && $L $F.$A && ./$A.out
3 // Copyright 2009 The Go Authors. All rights reserved.
4 // Use of this source code is governed by a BSD-style
5 // license that can be found in the LICENSE file.
7 // Power series package
8 // A power series is a channel, along which flow rational
9 // coefficients. A denominator of zero signifies the end.
10 // Original code in Newsqueak by Doug McIlroy.
11 // See Squinting at Power Series by Doug McIlroy,
12 // http://www.cs.bell-labs.com/who/rsc/thread/squint.pdf
14 package main
16 import "os"
18 type rat struct {
19 num, den int64 // numerator, denominator
22 func (u rat) pr() {
23 if u.den==1 {
24 print(u.num)
25 } else {
26 print(u.num, "/", u.den)
28 print(" ")
31 func (u rat) eq(c rat) bool {
32 return u.num == c.num && u.den == c.den
35 type dch struct {
36 req chan int
37 dat chan rat
38 nam int
41 type dch2 [2] *dch
43 var chnames string
44 var chnameserial int
45 var seqno int
47 func mkdch() *dch {
48 c := chnameserial % len(chnames)
49 chnameserial++
50 d := new(dch)
51 d.req = make(chan int)
52 d.dat = make(chan rat)
53 d.nam = c
54 return d
57 func mkdch2() *dch2 {
58 d2 := new(dch2)
59 d2[0] = mkdch()
60 d2[1] = mkdch()
61 return d2
64 // split reads a single demand channel and replicates its
65 // output onto two, which may be read at different rates.
66 // A process is created at first demand for a rat and dies
67 // after the rat has been sent to both outputs.
69 // When multiple generations of split exist, the newest
70 // will service requests on one channel, which is
71 // always renamed to be out[0]; the oldest will service
72 // requests on the other channel, out[1]. All generations but the
73 // newest hold queued data that has already been sent to
74 // out[0]. When data has finally been sent to out[1],
75 // a signal on the release-wait channel tells the next newer
76 // generation to begin servicing out[1].
78 func dosplit(in *dch, out *dch2, wait chan int ) {
79 both := false // do not service both channels
81 select {
82 case <-out[0].req:
84 case <-wait:
85 both = true
86 select {
87 case <-out[0].req:
89 case <-out[1].req:
90 out[0], out[1] = out[1], out[0]
94 seqno++
95 in.req <- seqno
96 release := make(chan int)
97 go dosplit(in, out, release)
98 dat := <-in.dat
99 out[0].dat <- dat
100 if !both {
101 <-wait
103 <-out[1].req
104 out[1].dat <- dat
105 release <- 0
108 func split(in *dch, out *dch2) {
109 release := make(chan int)
110 go dosplit(in, out, release)
111 release <- 0
114 func put(dat rat, out *dch) {
115 <-out.req
116 out.dat <- dat
119 func get(in *dch) rat {
120 seqno++
121 in.req <- seqno
122 return <-in.dat
125 // Get one rat from each of n demand channels
127 func getn(in []*dch) []rat {
128 n := len(in)
129 if n != 2 { panic("bad n in getn") }
130 req := new([2] chan int)
131 dat := new([2] chan rat)
132 out := make([]rat, 2)
133 var i int
134 var it rat
135 for i=0; i<n; i++ {
136 req[i] = in[i].req
137 dat[i] = nil
139 for n=2*n; n>0; n-- {
140 seqno++
142 select {
143 case req[0] <- seqno:
144 dat[0] = in[0].dat
145 req[0] = nil
146 case req[1] <- seqno:
147 dat[1] = in[1].dat
148 req[1] = nil
149 case it = <-dat[0]:
150 out[0] = it
151 dat[0] = nil
152 case it = <-dat[1]:
153 out[1] = it
154 dat[1] = nil
157 return out
160 // Get one rat from each of 2 demand channels
162 func get2(in0 *dch, in1 *dch) []rat {
163 return getn([]*dch{in0, in1})
166 func copy(in *dch, out *dch) {
167 for {
168 <-out.req
169 out.dat <- get(in)
173 func repeat(dat rat, out *dch) {
174 for {
175 put(dat, out)
179 type PS *dch // power series
180 type PS2 *[2] PS // pair of power series
182 var Ones PS
183 var Twos PS
185 func mkPS() *dch {
186 return mkdch()
189 func mkPS2() *dch2 {
190 return mkdch2()
193 // Conventions
194 // Upper-case for power series.
195 // Lower-case for rationals.
196 // Input variables: U,V,...
197 // Output variables: ...,Y,Z
199 // Integer gcd; needed for rational arithmetic
201 func gcd (u, v int64) int64 {
202 if u < 0 { return gcd(-u, v) }
203 if u == 0 { return v }
204 return gcd(v%u, u)
207 // Make a rational from two ints and from one int
209 func i2tor(u, v int64) rat {
210 g := gcd(u,v)
211 var r rat
212 if v > 0 {
213 r.num = u/g
214 r.den = v/g
215 } else {
216 r.num = -u/g
217 r.den = -v/g
219 return r
222 func itor(u int64) rat {
223 return i2tor(u, 1)
226 var zero rat
227 var one rat
230 // End mark and end test
232 var finis rat
234 func end(u rat) int64 {
235 if u.den==0 { return 1 }
236 return 0
239 // Operations on rationals
241 func add(u, v rat) rat {
242 g := gcd(u.den,v.den)
243 return i2tor(u.num*(v.den/g)+v.num*(u.den/g),u.den*(v.den/g))
246 func mul(u, v rat) rat {
247 g1 := gcd(u.num,v.den)
248 g2 := gcd(u.den,v.num)
249 var r rat
250 r.num = (u.num/g1)*(v.num/g2)
251 r.den = (u.den/g2)*(v.den/g1)
252 return r
255 func neg(u rat) rat {
256 return i2tor(-u.num, u.den)
259 func sub(u, v rat) rat {
260 return add(u, neg(v))
263 func inv(u rat) rat { // invert a rat
264 if u.num == 0 { panic("zero divide in inv") }
265 return i2tor(u.den, u.num)
268 // print eval in floating point of PS at x=c to n terms
269 func evaln(c rat, U PS, n int) {
270 xn := float64(1)
271 x := float64(c.num)/float64(c.den)
272 val := float64(0)
273 for i:=0; i<n; i++ {
274 u := get(U)
275 if end(u) != 0 {
276 break
278 val = val + x * float64(u.num)/float64(u.den)
279 xn = xn*x
281 print(val, "\n")
284 // Print n terms of a power series
285 func printn(U PS, n int) {
286 done := false
287 for ; !done && n>0; n-- {
288 u := get(U)
289 if end(u) != 0 {
290 done = true
291 } else {
292 u.pr()
295 print(("\n"))
298 // Evaluate n terms of power series U at x=c
299 func eval(c rat, U PS, n int) rat {
300 if n==0 { return zero }
301 y := get(U)
302 if end(y) != 0 { return zero }
303 return add(y,mul(c,eval(c,U,n-1)))
306 // Power-series constructors return channels on which power
307 // series flow. They start an encapsulated generator that
308 // puts the terms of the series on the channel.
310 // Make a pair of power series identical to a given power series
312 func Split(U PS) *dch2 {
313 UU := mkdch2()
314 go split(U,UU)
315 return UU
318 // Add two power series
319 func Add(U, V PS) PS {
320 Z := mkPS()
321 go func() {
322 var uv []rat
323 for {
324 <-Z.req
325 uv = get2(U,V)
326 switch end(uv[0])+2*end(uv[1]) {
327 case 0:
328 Z.dat <- add(uv[0], uv[1])
329 case 1:
330 Z.dat <- uv[1]
331 copy(V,Z)
332 case 2:
333 Z.dat <- uv[0]
334 copy(U,Z)
335 case 3:
336 Z.dat <- finis
340 return Z
343 // Multiply a power series by a constant
344 func Cmul(c rat,U PS) PS {
345 Z := mkPS()
346 go func() {
347 done := false
348 for !done {
349 <-Z.req
350 u := get(U)
351 if end(u) != 0 {
352 done = true
353 } else {
354 Z.dat <- mul(c,u)
357 Z.dat <- finis
359 return Z
362 // Subtract
364 func Sub(U, V PS) PS {
365 return Add(U, Cmul(neg(one), V))
368 // Multiply a power series by the monomial x^n
370 func Monmul(U PS, n int) PS {
371 Z := mkPS()
372 go func() {
373 for ; n>0; n-- { put(zero,Z) }
374 copy(U,Z)
376 return Z
379 // Multiply by x
381 func Xmul(U PS) PS {
382 return Monmul(U,1)
385 func Rep(c rat) PS {
386 Z := mkPS()
387 go repeat(c,Z)
388 return Z
391 // Monomial c*x^n
393 func Mon(c rat, n int) PS {
394 Z:=mkPS()
395 go func() {
396 if(c.num!=0) {
397 for ; n>0; n=n-1 { put(zero,Z) }
398 put(c,Z)
400 put(finis,Z)
402 return Z
405 func Shift(c rat, U PS) PS {
406 Z := mkPS()
407 go func() {
408 put(c,Z)
409 copy(U,Z)
411 return Z
414 // simple pole at 1: 1/(1-x) = 1 1 1 1 1 ...
416 // Convert array of coefficients, constant term first
417 // to a (finite) power series
420 func Poly(a []rat) PS {
421 Z:=mkPS()
422 begin func(a []rat, Z PS) {
423 j:=0
424 done:=0
425 for j=len(a); !done&&j>0; j=j-1)
426 if(a[j-1].num!=0) done=1
427 i:=0
428 for(; i<j; i=i+1) put(a[i],Z)
429 put(finis,Z)
431 return Z
435 // Multiply. The algorithm is
436 // let U = u + x*UU
437 // let V = v + x*VV
438 // then UV = u*v + x*(u*VV+v*UU) + x*x*UU*VV
440 func Mul(U, V PS) PS {
441 Z:=mkPS()
442 go func() {
443 <-Z.req
444 uv := get2(U,V)
445 if end(uv[0])!=0 || end(uv[1]) != 0 {
446 Z.dat <- finis
447 } else {
448 Z.dat <- mul(uv[0],uv[1])
449 UU := Split(U)
450 VV := Split(V)
451 W := Add(Cmul(uv[0],VV[0]),Cmul(uv[1],UU[0]))
452 <-Z.req
453 Z.dat <- get(W)
454 copy(Add(W,Mul(UU[1],VV[1])),Z)
457 return Z
460 // Differentiate
462 func Diff(U PS) PS {
463 Z:=mkPS()
464 go func() {
465 <-Z.req
466 u := get(U)
467 if end(u) == 0 {
468 done:=false
469 for i:=1; !done; i++ {
470 u = get(U)
471 if end(u) != 0 {
472 done = true
473 } else {
474 Z.dat <- mul(itor(int64(i)),u)
475 <-Z.req
479 Z.dat <- finis
481 return Z
484 // Integrate, with const of integration
485 func Integ(c rat,U PS) PS {
486 Z:=mkPS()
487 go func() {
488 put(c,Z)
489 done:=false
490 for i:=1; !done; i++ {
491 <-Z.req
492 u := get(U)
493 if end(u) != 0 { done= true }
494 Z.dat <- mul(i2tor(1,int64(i)),u)
496 Z.dat <- finis
498 return Z
501 // Binomial theorem (1+x)^c
503 func Binom(c rat) PS {
504 Z:=mkPS()
505 go func() {
506 n := 1
507 t := itor(1)
508 for c.num!=0 {
509 put(t,Z)
510 t = mul(mul(t,c),i2tor(1,int64(n)))
511 c = sub(c,one)
514 put(finis,Z)
516 return Z
519 // Reciprocal of a power series
520 // let U = u + x*UU
521 // let Z = z + x*ZZ
522 // (u+x*UU)*(z+x*ZZ) = 1
523 // z = 1/u
524 // u*ZZ + z*UU +x*UU*ZZ = 0
525 // ZZ = -UU*(z+x*ZZ)/u
527 func Recip(U PS) PS {
528 Z:=mkPS()
529 go func() {
530 ZZ:=mkPS2()
531 <-Z.req
532 z := inv(get(U))
533 Z.dat <- z
534 split(Mul(Cmul(neg(z),U),Shift(z,ZZ[0])),ZZ)
535 copy(ZZ[1],Z)
537 return Z
540 // Exponential of a power series with constant term 0
541 // (nonzero constant term would make nonrational coefficients)
542 // bug: the constant term is simply ignored
543 // Z = exp(U)
544 // DZ = Z*DU
545 // integrate to get Z
547 func Exp(U PS) PS {
548 ZZ := mkPS2()
549 split(Integ(one,Mul(ZZ[0],Diff(U))),ZZ)
550 return ZZ[1]
553 // Substitute V for x in U, where the leading term of V is zero
554 // let U = u + x*UU
555 // let V = v + x*VV
556 // then S(U,V) = u + VV*S(V,UU)
557 // bug: a nonzero constant term is ignored
559 func Subst(U, V PS) PS {
560 Z:= mkPS()
561 go func() {
562 VV := Split(V)
563 <-Z.req
564 u := get(U)
565 Z.dat <- u
566 if end(u) == 0 {
567 if end(get(VV[0])) != 0 {
568 put(finis,Z)
569 } else {
570 copy(Mul(VV[0],Subst(U,VV[1])),Z)
574 return Z
577 // Monomial Substition: U(c x^n)
578 // Each Ui is multiplied by c^i and followed by n-1 zeros
580 func MonSubst(U PS, c0 rat, n int) PS {
581 Z:= mkPS()
582 go func() {
583 c := one
584 for {
585 <-Z.req
586 u := get(U)
587 Z.dat <- mul(u, c)
588 c = mul(c, c0)
589 if end(u) != 0 {
590 Z.dat <- finis
591 break
593 for i := 1; i < n; i++ {
594 <-Z.req
595 Z.dat <- zero
599 return Z
603 func Init() {
604 chnameserial = -1
605 seqno = 0
606 chnames = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz"
607 zero = itor(0)
608 one = itor(1)
609 finis = i2tor(1,0)
610 Ones = Rep(one)
611 Twos = Rep(itor(2))
614 func check(U PS, c rat, count int, str string) {
615 for i := 0; i < count; i++ {
616 r := get(U)
617 if !r.eq(c) {
618 print("got: ")
619 r.pr()
620 print("should get ")
621 c.pr()
622 print("\n")
623 panic(str)
628 const N=10
629 func checka(U PS, a []rat, str string) {
630 for i := 0; i < N; i++ {
631 check(U, a[i], 1, str)
635 func main() {
636 Init()
637 if len(os.Args) > 1 { // print
638 print("Ones: "); printn(Ones, 10)
639 print("Twos: "); printn(Twos, 10)
640 print("Add: "); printn(Add(Ones, Twos), 10)
641 print("Diff: "); printn(Diff(Ones), 10)
642 print("Integ: "); printn(Integ(zero, Ones), 10)
643 print("CMul: "); printn(Cmul(neg(one), Ones), 10)
644 print("Sub: "); printn(Sub(Ones, Twos), 10)
645 print("Mul: "); printn(Mul(Ones, Ones), 10)
646 print("Exp: "); printn(Exp(Ones), 15)
647 print("MonSubst: "); printn(MonSubst(Ones, neg(one), 2), 10)
648 print("ATan: "); printn(Integ(zero, MonSubst(Ones, neg(one), 2)), 10)
649 } else { // test
650 check(Ones, one, 5, "Ones")
651 check(Add(Ones, Ones), itor(2), 0, "Add Ones Ones") // 1 1 1 1 1
652 check(Add(Ones, Twos), itor(3), 0, "Add Ones Twos") // 3 3 3 3 3
653 a := make([]rat, N)
654 d := Diff(Ones)
655 for i:=0; i < N; i++ {
656 a[i] = itor(int64(i+1))
658 checka(d, a, "Diff") // 1 2 3 4 5
659 in := Integ(zero, Ones)
660 a[0] = zero // integration constant
661 for i:=1; i < N; i++ {
662 a[i] = i2tor(1, int64(i))
664 checka(in, a, "Integ") // 0 1 1/2 1/3 1/4 1/5
665 check(Cmul(neg(one), Twos), itor(-2), 10, "CMul") // -1 -1 -1 -1 -1
666 check(Sub(Ones, Twos), itor(-1), 0, "Sub Ones Twos") // -1 -1 -1 -1 -1
667 m := Mul(Ones, Ones)
668 for i:=0; i < N; i++ {
669 a[i] = itor(int64(i+1))
671 checka(m, a, "Mul") // 1 2 3 4 5
672 e := Exp(Ones)
673 a[0] = itor(1)
674 a[1] = itor(1)
675 a[2] = i2tor(3,2)
676 a[3] = i2tor(13,6)
677 a[4] = i2tor(73,24)
678 a[5] = i2tor(167,40)
679 a[6] = i2tor(4051,720)
680 a[7] = i2tor(37633,5040)
681 a[8] = i2tor(43817,4480)
682 a[9] = i2tor(4596553,362880)
683 checka(e, a, "Exp") // 1 1 3/2 13/6 73/24
684 at := Integ(zero, MonSubst(Ones, neg(one), 2))
685 for c, i := 1, 0; i < N; i++ {
686 if i%2 == 0 {
687 a[i] = zero
688 } else {
689 a[i] = i2tor(int64(c), int64(i))
690 c *= -1
693 checka(at, a, "ATan") // 0 -1 0 -1/3 0 -1/5
695 t := Revert(Integ(zero, MonSubst(Ones, neg(one), 2)))
696 a[0] = zero
697 a[1] = itor(1)
698 a[2] = zero
699 a[3] = i2tor(1,3)
700 a[4] = zero
701 a[5] = i2tor(2,15)
702 a[6] = zero
703 a[7] = i2tor(17,315)
704 a[8] = zero
705 a[9] = i2tor(62,2835)
706 checka(t, a, "Tan") // 0 1 0 1/3 0 2/15