Merge from mainline (167278:168000).
[official-gcc/graphite-test-results.git] / gcc / reload.c
blobaa9e68e59b6ed988c18d3f42fba53221e0b3e4a5
1 /* Search an insn for pseudo regs that must be in hard regs and are not.
2 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
4 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 /* This file contains subroutines used only from the file reload1.c.
23 It knows how to scan one insn for operands and values
24 that need to be copied into registers to make valid code.
25 It also finds other operands and values which are valid
26 but for which equivalent values in registers exist and
27 ought to be used instead.
29 Before processing the first insn of the function, call `init_reload'.
30 init_reload actually has to be called earlier anyway.
32 To scan an insn, call `find_reloads'. This does two things:
33 1. sets up tables describing which values must be reloaded
34 for this insn, and what kind of hard regs they must be reloaded into;
35 2. optionally record the locations where those values appear in
36 the data, so they can be replaced properly later.
37 This is done only if the second arg to `find_reloads' is nonzero.
39 The third arg to `find_reloads' specifies the number of levels
40 of indirect addressing supported by the machine. If it is zero,
41 indirect addressing is not valid. If it is one, (MEM (REG n))
42 is valid even if (REG n) did not get a hard register; if it is two,
43 (MEM (MEM (REG n))) is also valid even if (REG n) did not get a
44 hard register, and similarly for higher values.
46 Then you must choose the hard regs to reload those pseudo regs into,
47 and generate appropriate load insns before this insn and perhaps
48 also store insns after this insn. Set up the array `reload_reg_rtx'
49 to contain the REG rtx's for the registers you used. In some
50 cases `find_reloads' will return a nonzero value in `reload_reg_rtx'
51 for certain reloads. Then that tells you which register to use,
52 so you do not need to allocate one. But you still do need to add extra
53 instructions to copy the value into and out of that register.
55 Finally you must call `subst_reloads' to substitute the reload reg rtx's
56 into the locations already recorded.
58 NOTE SIDE EFFECTS:
60 find_reloads can alter the operands of the instruction it is called on.
62 1. Two operands of any sort may be interchanged, if they are in a
63 commutative instruction.
64 This happens only if find_reloads thinks the instruction will compile
65 better that way.
67 2. Pseudo-registers that are equivalent to constants are replaced
68 with those constants if they are not in hard registers.
70 1 happens every time find_reloads is called.
71 2 happens only when REPLACE is 1, which is only when
72 actually doing the reloads, not when just counting them.
74 Using a reload register for several reloads in one insn:
76 When an insn has reloads, it is considered as having three parts:
77 the input reloads, the insn itself after reloading, and the output reloads.
78 Reloads of values used in memory addresses are often needed for only one part.
80 When this is so, reload_when_needed records which part needs the reload.
81 Two reloads for different parts of the insn can share the same reload
82 register.
84 When a reload is used for addresses in multiple parts, or when it is
85 an ordinary operand, it is classified as RELOAD_OTHER, and cannot share
86 a register with any other reload. */
88 #define REG_OK_STRICT
90 /* We do not enable this with ENABLE_CHECKING, since it is awfully slow. */
91 #undef DEBUG_RELOAD
93 #include "config.h"
94 #include "system.h"
95 #include "coretypes.h"
96 #include "tm.h"
97 #include "rtl-error.h"
98 #include "tm_p.h"
99 #include "insn-config.h"
100 #include "expr.h"
101 #include "optabs.h"
102 #include "recog.h"
103 #include "df.h"
104 #include "reload.h"
105 #include "regs.h"
106 #include "addresses.h"
107 #include "hard-reg-set.h"
108 #include "flags.h"
109 #include "output.h"
110 #include "function.h"
111 #include "params.h"
112 #include "target.h"
113 #include "ira.h"
115 /* True if X is a constant that can be forced into the constant pool. */
116 #define CONST_POOL_OK_P(X) \
117 (CONSTANT_P (X) \
118 && GET_CODE (X) != HIGH \
119 && !targetm.cannot_force_const_mem (X))
121 /* True if C is a non-empty register class that has too few registers
122 to be safely used as a reload target class. */
124 static inline bool
125 small_register_class_p (reg_class_t rclass)
127 return (reg_class_size [(int) rclass] == 1
128 || (reg_class_size [(int) rclass] >= 1
129 && targetm.class_likely_spilled_p (rclass)));
133 /* All reloads of the current insn are recorded here. See reload.h for
134 comments. */
135 int n_reloads;
136 struct reload rld[MAX_RELOADS];
138 /* All the "earlyclobber" operands of the current insn
139 are recorded here. */
140 int n_earlyclobbers;
141 rtx reload_earlyclobbers[MAX_RECOG_OPERANDS];
143 int reload_n_operands;
145 /* Replacing reloads.
147 If `replace_reloads' is nonzero, then as each reload is recorded
148 an entry is made for it in the table `replacements'.
149 Then later `subst_reloads' can look through that table and
150 perform all the replacements needed. */
152 /* Nonzero means record the places to replace. */
153 static int replace_reloads;
155 /* Each replacement is recorded with a structure like this. */
156 struct replacement
158 rtx *where; /* Location to store in */
159 rtx *subreg_loc; /* Location of SUBREG if WHERE is inside
160 a SUBREG; 0 otherwise. */
161 int what; /* which reload this is for */
162 enum machine_mode mode; /* mode it must have */
165 static struct replacement replacements[MAX_RECOG_OPERANDS * ((MAX_REGS_PER_ADDRESS * 2) + 1)];
167 /* Number of replacements currently recorded. */
168 static int n_replacements;
170 /* Used to track what is modified by an operand. */
171 struct decomposition
173 int reg_flag; /* Nonzero if referencing a register. */
174 int safe; /* Nonzero if this can't conflict with anything. */
175 rtx base; /* Base address for MEM. */
176 HOST_WIDE_INT start; /* Starting offset or register number. */
177 HOST_WIDE_INT end; /* Ending offset or register number. */
180 #ifdef SECONDARY_MEMORY_NEEDED
182 /* Save MEMs needed to copy from one class of registers to another. One MEM
183 is used per mode, but normally only one or two modes are ever used.
185 We keep two versions, before and after register elimination. The one
186 after register elimination is record separately for each operand. This
187 is done in case the address is not valid to be sure that we separately
188 reload each. */
190 static rtx secondary_memlocs[NUM_MACHINE_MODES];
191 static rtx secondary_memlocs_elim[NUM_MACHINE_MODES][MAX_RECOG_OPERANDS];
192 static int secondary_memlocs_elim_used = 0;
193 #endif
195 /* The instruction we are doing reloads for;
196 so we can test whether a register dies in it. */
197 static rtx this_insn;
199 /* Nonzero if this instruction is a user-specified asm with operands. */
200 static int this_insn_is_asm;
202 /* If hard_regs_live_known is nonzero,
203 we can tell which hard regs are currently live,
204 at least enough to succeed in choosing dummy reloads. */
205 static int hard_regs_live_known;
207 /* Indexed by hard reg number,
208 element is nonnegative if hard reg has been spilled.
209 This vector is passed to `find_reloads' as an argument
210 and is not changed here. */
211 static short *static_reload_reg_p;
213 /* Set to 1 in subst_reg_equivs if it changes anything. */
214 static int subst_reg_equivs_changed;
216 /* On return from push_reload, holds the reload-number for the OUT
217 operand, which can be different for that from the input operand. */
218 static int output_reloadnum;
220 /* Compare two RTX's. */
221 #define MATCHES(x, y) \
222 (x == y || (x != 0 && (REG_P (x) \
223 ? REG_P (y) && REGNO (x) == REGNO (y) \
224 : rtx_equal_p (x, y) && ! side_effects_p (x))))
226 /* Indicates if two reloads purposes are for similar enough things that we
227 can merge their reloads. */
228 #define MERGABLE_RELOADS(when1, when2, op1, op2) \
229 ((when1) == RELOAD_OTHER || (when2) == RELOAD_OTHER \
230 || ((when1) == (when2) && (op1) == (op2)) \
231 || ((when1) == RELOAD_FOR_INPUT && (when2) == RELOAD_FOR_INPUT) \
232 || ((when1) == RELOAD_FOR_OPERAND_ADDRESS \
233 && (when2) == RELOAD_FOR_OPERAND_ADDRESS) \
234 || ((when1) == RELOAD_FOR_OTHER_ADDRESS \
235 && (when2) == RELOAD_FOR_OTHER_ADDRESS))
237 /* Nonzero if these two reload purposes produce RELOAD_OTHER when merged. */
238 #define MERGE_TO_OTHER(when1, when2, op1, op2) \
239 ((when1) != (when2) \
240 || ! ((op1) == (op2) \
241 || (when1) == RELOAD_FOR_INPUT \
242 || (when1) == RELOAD_FOR_OPERAND_ADDRESS \
243 || (when1) == RELOAD_FOR_OTHER_ADDRESS))
245 /* If we are going to reload an address, compute the reload type to
246 use. */
247 #define ADDR_TYPE(type) \
248 ((type) == RELOAD_FOR_INPUT_ADDRESS \
249 ? RELOAD_FOR_INPADDR_ADDRESS \
250 : ((type) == RELOAD_FOR_OUTPUT_ADDRESS \
251 ? RELOAD_FOR_OUTADDR_ADDRESS \
252 : (type)))
254 static int push_secondary_reload (int, rtx, int, int, enum reg_class,
255 enum machine_mode, enum reload_type,
256 enum insn_code *, secondary_reload_info *);
257 static enum reg_class find_valid_class (enum machine_mode, enum machine_mode,
258 int, unsigned int);
259 static int reload_inner_reg_of_subreg (rtx, enum machine_mode, int);
260 static void push_replacement (rtx *, int, enum machine_mode);
261 static void dup_replacements (rtx *, rtx *);
262 static void combine_reloads (void);
263 static int find_reusable_reload (rtx *, rtx, enum reg_class,
264 enum reload_type, int, int);
265 static rtx find_dummy_reload (rtx, rtx, rtx *, rtx *, enum machine_mode,
266 enum machine_mode, reg_class_t, int, int);
267 static int hard_reg_set_here_p (unsigned int, unsigned int, rtx);
268 static struct decomposition decompose (rtx);
269 static int immune_p (rtx, rtx, struct decomposition);
270 static bool alternative_allows_const_pool_ref (rtx, const char *, int);
271 static rtx find_reloads_toplev (rtx, int, enum reload_type, int, int, rtx,
272 int *);
273 static rtx make_memloc (rtx, int);
274 static int maybe_memory_address_addr_space_p (enum machine_mode, rtx,
275 addr_space_t, rtx *);
276 static int find_reloads_address (enum machine_mode, rtx *, rtx, rtx *,
277 int, enum reload_type, int, rtx);
278 static rtx subst_reg_equivs (rtx, rtx);
279 static rtx subst_indexed_address (rtx);
280 static void update_auto_inc_notes (rtx, int, int);
281 static int find_reloads_address_1 (enum machine_mode, rtx, int,
282 enum rtx_code, enum rtx_code, rtx *,
283 int, enum reload_type,int, rtx);
284 static void find_reloads_address_part (rtx, rtx *, enum reg_class,
285 enum machine_mode, int,
286 enum reload_type, int);
287 static rtx find_reloads_subreg_address (rtx, int, int, enum reload_type,
288 int, rtx);
289 static void copy_replacements_1 (rtx *, rtx *, int);
290 static int find_inc_amount (rtx, rtx);
291 static int refers_to_mem_for_reload_p (rtx);
292 static int refers_to_regno_for_reload_p (unsigned int, unsigned int,
293 rtx, rtx *);
295 /* Add NEW to reg_equiv_alt_mem_list[REGNO] if it's not present in the
296 list yet. */
298 static void
299 push_reg_equiv_alt_mem (int regno, rtx mem)
301 rtx it;
303 for (it = reg_equiv_alt_mem_list [regno]; it; it = XEXP (it, 1))
304 if (rtx_equal_p (XEXP (it, 0), mem))
305 return;
307 reg_equiv_alt_mem_list [regno]
308 = alloc_EXPR_LIST (REG_EQUIV, mem,
309 reg_equiv_alt_mem_list [regno]);
312 /* Determine if any secondary reloads are needed for loading (if IN_P is
313 nonzero) or storing (if IN_P is zero) X to or from a reload register of
314 register class RELOAD_CLASS in mode RELOAD_MODE. If secondary reloads
315 are needed, push them.
317 Return the reload number of the secondary reload we made, or -1 if
318 we didn't need one. *PICODE is set to the insn_code to use if we do
319 need a secondary reload. */
321 static int
322 push_secondary_reload (int in_p, rtx x, int opnum, int optional,
323 enum reg_class reload_class,
324 enum machine_mode reload_mode, enum reload_type type,
325 enum insn_code *picode, secondary_reload_info *prev_sri)
327 enum reg_class rclass = NO_REGS;
328 enum reg_class scratch_class;
329 enum machine_mode mode = reload_mode;
330 enum insn_code icode = CODE_FOR_nothing;
331 enum insn_code t_icode = CODE_FOR_nothing;
332 enum reload_type secondary_type;
333 int s_reload, t_reload = -1;
334 const char *scratch_constraint;
335 char letter;
336 secondary_reload_info sri;
338 if (type == RELOAD_FOR_INPUT_ADDRESS
339 || type == RELOAD_FOR_OUTPUT_ADDRESS
340 || type == RELOAD_FOR_INPADDR_ADDRESS
341 || type == RELOAD_FOR_OUTADDR_ADDRESS)
342 secondary_type = type;
343 else
344 secondary_type = in_p ? RELOAD_FOR_INPUT_ADDRESS : RELOAD_FOR_OUTPUT_ADDRESS;
346 *picode = CODE_FOR_nothing;
348 /* If X is a paradoxical SUBREG, use the inner value to determine both the
349 mode and object being reloaded. */
350 if (GET_CODE (x) == SUBREG
351 && (GET_MODE_SIZE (GET_MODE (x))
352 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)))))
354 x = SUBREG_REG (x);
355 reload_mode = GET_MODE (x);
358 /* If X is a pseudo-register that has an equivalent MEM (actually, if it
359 is still a pseudo-register by now, it *must* have an equivalent MEM
360 but we don't want to assume that), use that equivalent when seeing if
361 a secondary reload is needed since whether or not a reload is needed
362 might be sensitive to the form of the MEM. */
364 if (REG_P (x) && REGNO (x) >= FIRST_PSEUDO_REGISTER
365 && reg_equiv_mem[REGNO (x)] != 0)
366 x = reg_equiv_mem[REGNO (x)];
368 sri.icode = CODE_FOR_nothing;
369 sri.prev_sri = prev_sri;
370 rclass = (enum reg_class) targetm.secondary_reload (in_p, x, reload_class,
371 reload_mode, &sri);
372 icode = (enum insn_code) sri.icode;
374 /* If we don't need any secondary registers, done. */
375 if (rclass == NO_REGS && icode == CODE_FOR_nothing)
376 return -1;
378 if (rclass != NO_REGS)
379 t_reload = push_secondary_reload (in_p, x, opnum, optional, rclass,
380 reload_mode, type, &t_icode, &sri);
382 /* If we will be using an insn, the secondary reload is for a
383 scratch register. */
385 if (icode != CODE_FOR_nothing)
387 /* If IN_P is nonzero, the reload register will be the output in
388 operand 0. If IN_P is zero, the reload register will be the input
389 in operand 1. Outputs should have an initial "=", which we must
390 skip. */
392 /* ??? It would be useful to be able to handle only two, or more than
393 three, operands, but for now we can only handle the case of having
394 exactly three: output, input and one temp/scratch. */
395 gcc_assert (insn_data[(int) icode].n_operands == 3);
397 /* ??? We currently have no way to represent a reload that needs
398 an icode to reload from an intermediate tertiary reload register.
399 We should probably have a new field in struct reload to tag a
400 chain of scratch operand reloads onto. */
401 gcc_assert (rclass == NO_REGS);
403 scratch_constraint = insn_data[(int) icode].operand[2].constraint;
404 gcc_assert (*scratch_constraint == '=');
405 scratch_constraint++;
406 if (*scratch_constraint == '&')
407 scratch_constraint++;
408 letter = *scratch_constraint;
409 scratch_class = (letter == 'r' ? GENERAL_REGS
410 : REG_CLASS_FROM_CONSTRAINT ((unsigned char) letter,
411 scratch_constraint));
413 rclass = scratch_class;
414 mode = insn_data[(int) icode].operand[2].mode;
417 /* This case isn't valid, so fail. Reload is allowed to use the same
418 register for RELOAD_FOR_INPUT_ADDRESS and RELOAD_FOR_INPUT reloads, but
419 in the case of a secondary register, we actually need two different
420 registers for correct code. We fail here to prevent the possibility of
421 silently generating incorrect code later.
423 The convention is that secondary input reloads are valid only if the
424 secondary_class is different from class. If you have such a case, you
425 can not use secondary reloads, you must work around the problem some
426 other way.
428 Allow this when a reload_in/out pattern is being used. I.e. assume
429 that the generated code handles this case. */
431 gcc_assert (!in_p || rclass != reload_class || icode != CODE_FOR_nothing
432 || t_icode != CODE_FOR_nothing);
434 /* See if we can reuse an existing secondary reload. */
435 for (s_reload = 0; s_reload < n_reloads; s_reload++)
436 if (rld[s_reload].secondary_p
437 && (reg_class_subset_p (rclass, rld[s_reload].rclass)
438 || reg_class_subset_p (rld[s_reload].rclass, rclass))
439 && ((in_p && rld[s_reload].inmode == mode)
440 || (! in_p && rld[s_reload].outmode == mode))
441 && ((in_p && rld[s_reload].secondary_in_reload == t_reload)
442 || (! in_p && rld[s_reload].secondary_out_reload == t_reload))
443 && ((in_p && rld[s_reload].secondary_in_icode == t_icode)
444 || (! in_p && rld[s_reload].secondary_out_icode == t_icode))
445 && (small_register_class_p (rclass)
446 || targetm.small_register_classes_for_mode_p (VOIDmode))
447 && MERGABLE_RELOADS (secondary_type, rld[s_reload].when_needed,
448 opnum, rld[s_reload].opnum))
450 if (in_p)
451 rld[s_reload].inmode = mode;
452 if (! in_p)
453 rld[s_reload].outmode = mode;
455 if (reg_class_subset_p (rclass, rld[s_reload].rclass))
456 rld[s_reload].rclass = rclass;
458 rld[s_reload].opnum = MIN (rld[s_reload].opnum, opnum);
459 rld[s_reload].optional &= optional;
460 rld[s_reload].secondary_p = 1;
461 if (MERGE_TO_OTHER (secondary_type, rld[s_reload].when_needed,
462 opnum, rld[s_reload].opnum))
463 rld[s_reload].when_needed = RELOAD_OTHER;
465 break;
468 if (s_reload == n_reloads)
470 #ifdef SECONDARY_MEMORY_NEEDED
471 /* If we need a memory location to copy between the two reload regs,
472 set it up now. Note that we do the input case before making
473 the reload and the output case after. This is due to the
474 way reloads are output. */
476 if (in_p && icode == CODE_FOR_nothing
477 && SECONDARY_MEMORY_NEEDED (rclass, reload_class, mode))
479 get_secondary_mem (x, reload_mode, opnum, type);
481 /* We may have just added new reloads. Make sure we add
482 the new reload at the end. */
483 s_reload = n_reloads;
485 #endif
487 /* We need to make a new secondary reload for this register class. */
488 rld[s_reload].in = rld[s_reload].out = 0;
489 rld[s_reload].rclass = rclass;
491 rld[s_reload].inmode = in_p ? mode : VOIDmode;
492 rld[s_reload].outmode = ! in_p ? mode : VOIDmode;
493 rld[s_reload].reg_rtx = 0;
494 rld[s_reload].optional = optional;
495 rld[s_reload].inc = 0;
496 /* Maybe we could combine these, but it seems too tricky. */
497 rld[s_reload].nocombine = 1;
498 rld[s_reload].in_reg = 0;
499 rld[s_reload].out_reg = 0;
500 rld[s_reload].opnum = opnum;
501 rld[s_reload].when_needed = secondary_type;
502 rld[s_reload].secondary_in_reload = in_p ? t_reload : -1;
503 rld[s_reload].secondary_out_reload = ! in_p ? t_reload : -1;
504 rld[s_reload].secondary_in_icode = in_p ? t_icode : CODE_FOR_nothing;
505 rld[s_reload].secondary_out_icode
506 = ! in_p ? t_icode : CODE_FOR_nothing;
507 rld[s_reload].secondary_p = 1;
509 n_reloads++;
511 #ifdef SECONDARY_MEMORY_NEEDED
512 if (! in_p && icode == CODE_FOR_nothing
513 && SECONDARY_MEMORY_NEEDED (reload_class, rclass, mode))
514 get_secondary_mem (x, mode, opnum, type);
515 #endif
518 *picode = icode;
519 return s_reload;
522 /* If a secondary reload is needed, return its class. If both an intermediate
523 register and a scratch register is needed, we return the class of the
524 intermediate register. */
525 reg_class_t
526 secondary_reload_class (bool in_p, reg_class_t rclass, enum machine_mode mode,
527 rtx x)
529 enum insn_code icode;
530 secondary_reload_info sri;
532 sri.icode = CODE_FOR_nothing;
533 sri.prev_sri = NULL;
534 rclass
535 = (enum reg_class) targetm.secondary_reload (in_p, x, rclass, mode, &sri);
536 icode = (enum insn_code) sri.icode;
538 /* If there are no secondary reloads at all, we return NO_REGS.
539 If an intermediate register is needed, we return its class. */
540 if (icode == CODE_FOR_nothing || rclass != NO_REGS)
541 return rclass;
543 /* No intermediate register is needed, but we have a special reload
544 pattern, which we assume for now needs a scratch register. */
545 return scratch_reload_class (icode);
548 /* ICODE is the insn_code of a reload pattern. Check that it has exactly
549 three operands, verify that operand 2 is an output operand, and return
550 its register class.
551 ??? We'd like to be able to handle any pattern with at least 2 operands,
552 for zero or more scratch registers, but that needs more infrastructure. */
553 enum reg_class
554 scratch_reload_class (enum insn_code icode)
556 const char *scratch_constraint;
557 char scratch_letter;
558 enum reg_class rclass;
560 gcc_assert (insn_data[(int) icode].n_operands == 3);
561 scratch_constraint = insn_data[(int) icode].operand[2].constraint;
562 gcc_assert (*scratch_constraint == '=');
563 scratch_constraint++;
564 if (*scratch_constraint == '&')
565 scratch_constraint++;
566 scratch_letter = *scratch_constraint;
567 if (scratch_letter == 'r')
568 return GENERAL_REGS;
569 rclass = REG_CLASS_FROM_CONSTRAINT ((unsigned char) scratch_letter,
570 scratch_constraint);
571 gcc_assert (rclass != NO_REGS);
572 return rclass;
575 #ifdef SECONDARY_MEMORY_NEEDED
577 /* Return a memory location that will be used to copy X in mode MODE.
578 If we haven't already made a location for this mode in this insn,
579 call find_reloads_address on the location being returned. */
582 get_secondary_mem (rtx x ATTRIBUTE_UNUSED, enum machine_mode mode,
583 int opnum, enum reload_type type)
585 rtx loc;
586 int mem_valid;
588 /* By default, if MODE is narrower than a word, widen it to a word.
589 This is required because most machines that require these memory
590 locations do not support short load and stores from all registers
591 (e.g., FP registers). */
593 #ifdef SECONDARY_MEMORY_NEEDED_MODE
594 mode = SECONDARY_MEMORY_NEEDED_MODE (mode);
595 #else
596 if (GET_MODE_BITSIZE (mode) < BITS_PER_WORD && INTEGRAL_MODE_P (mode))
597 mode = mode_for_size (BITS_PER_WORD, GET_MODE_CLASS (mode), 0);
598 #endif
600 /* If we already have made a MEM for this operand in MODE, return it. */
601 if (secondary_memlocs_elim[(int) mode][opnum] != 0)
602 return secondary_memlocs_elim[(int) mode][opnum];
604 /* If this is the first time we've tried to get a MEM for this mode,
605 allocate a new one. `something_changed' in reload will get set
606 by noticing that the frame size has changed. */
608 if (secondary_memlocs[(int) mode] == 0)
610 #ifdef SECONDARY_MEMORY_NEEDED_RTX
611 secondary_memlocs[(int) mode] = SECONDARY_MEMORY_NEEDED_RTX (mode);
612 #else
613 secondary_memlocs[(int) mode]
614 = assign_stack_local (mode, GET_MODE_SIZE (mode), 0);
615 #endif
618 /* Get a version of the address doing any eliminations needed. If that
619 didn't give us a new MEM, make a new one if it isn't valid. */
621 loc = eliminate_regs (secondary_memlocs[(int) mode], VOIDmode, NULL_RTX);
622 mem_valid = strict_memory_address_addr_space_p (mode, XEXP (loc, 0),
623 MEM_ADDR_SPACE (loc));
625 if (! mem_valid && loc == secondary_memlocs[(int) mode])
626 loc = copy_rtx (loc);
628 /* The only time the call below will do anything is if the stack
629 offset is too large. In that case IND_LEVELS doesn't matter, so we
630 can just pass a zero. Adjust the type to be the address of the
631 corresponding object. If the address was valid, save the eliminated
632 address. If it wasn't valid, we need to make a reload each time, so
633 don't save it. */
635 if (! mem_valid)
637 type = (type == RELOAD_FOR_INPUT ? RELOAD_FOR_INPUT_ADDRESS
638 : type == RELOAD_FOR_OUTPUT ? RELOAD_FOR_OUTPUT_ADDRESS
639 : RELOAD_OTHER);
641 find_reloads_address (mode, &loc, XEXP (loc, 0), &XEXP (loc, 0),
642 opnum, type, 0, 0);
645 secondary_memlocs_elim[(int) mode][opnum] = loc;
646 if (secondary_memlocs_elim_used <= (int)mode)
647 secondary_memlocs_elim_used = (int)mode + 1;
648 return loc;
651 /* Clear any secondary memory locations we've made. */
653 void
654 clear_secondary_mem (void)
656 memset (secondary_memlocs, 0, sizeof secondary_memlocs);
658 #endif /* SECONDARY_MEMORY_NEEDED */
661 /* Find the largest class which has at least one register valid in
662 mode INNER, and which for every such register, that register number
663 plus N is also valid in OUTER (if in range) and is cheap to move
664 into REGNO. Such a class must exist. */
666 static enum reg_class
667 find_valid_class (enum machine_mode outer ATTRIBUTE_UNUSED,
668 enum machine_mode inner ATTRIBUTE_UNUSED, int n,
669 unsigned int dest_regno ATTRIBUTE_UNUSED)
671 int best_cost = -1;
672 int rclass;
673 int regno;
674 enum reg_class best_class = NO_REGS;
675 enum reg_class dest_class ATTRIBUTE_UNUSED = REGNO_REG_CLASS (dest_regno);
676 unsigned int best_size = 0;
677 int cost;
679 for (rclass = 1; rclass < N_REG_CLASSES; rclass++)
681 int bad = 0;
682 int good = 0;
683 for (regno = 0; regno < FIRST_PSEUDO_REGISTER - n && ! bad; regno++)
684 if (TEST_HARD_REG_BIT (reg_class_contents[rclass], regno))
686 if (HARD_REGNO_MODE_OK (regno, inner))
688 good = 1;
689 if (! TEST_HARD_REG_BIT (reg_class_contents[rclass], regno + n)
690 || ! HARD_REGNO_MODE_OK (regno + n, outer))
691 bad = 1;
695 if (bad || !good)
696 continue;
697 cost = register_move_cost (outer, (enum reg_class) rclass, dest_class);
699 if ((reg_class_size[rclass] > best_size
700 && (best_cost < 0 || best_cost >= cost))
701 || best_cost > cost)
703 best_class = (enum reg_class) rclass;
704 best_size = reg_class_size[rclass];
705 best_cost = register_move_cost (outer, (enum reg_class) rclass,
706 dest_class);
710 gcc_assert (best_size != 0);
712 return best_class;
715 /* Return the number of a previously made reload that can be combined with
716 a new one, or n_reloads if none of the existing reloads can be used.
717 OUT, RCLASS, TYPE and OPNUM are the same arguments as passed to
718 push_reload, they determine the kind of the new reload that we try to
719 combine. P_IN points to the corresponding value of IN, which can be
720 modified by this function.
721 DONT_SHARE is nonzero if we can't share any input-only reload for IN. */
723 static int
724 find_reusable_reload (rtx *p_in, rtx out, enum reg_class rclass,
725 enum reload_type type, int opnum, int dont_share)
727 rtx in = *p_in;
728 int i;
729 /* We can't merge two reloads if the output of either one is
730 earlyclobbered. */
732 if (earlyclobber_operand_p (out))
733 return n_reloads;
735 /* We can use an existing reload if the class is right
736 and at least one of IN and OUT is a match
737 and the other is at worst neutral.
738 (A zero compared against anything is neutral.)
740 For targets with small register classes, don't use existing reloads
741 unless they are for the same thing since that can cause us to need
742 more reload registers than we otherwise would. */
744 for (i = 0; i < n_reloads; i++)
745 if ((reg_class_subset_p (rclass, rld[i].rclass)
746 || reg_class_subset_p (rld[i].rclass, rclass))
747 /* If the existing reload has a register, it must fit our class. */
748 && (rld[i].reg_rtx == 0
749 || TEST_HARD_REG_BIT (reg_class_contents[(int) rclass],
750 true_regnum (rld[i].reg_rtx)))
751 && ((in != 0 && MATCHES (rld[i].in, in) && ! dont_share
752 && (out == 0 || rld[i].out == 0 || MATCHES (rld[i].out, out)))
753 || (out != 0 && MATCHES (rld[i].out, out)
754 && (in == 0 || rld[i].in == 0 || MATCHES (rld[i].in, in))))
755 && (rld[i].out == 0 || ! earlyclobber_operand_p (rld[i].out))
756 && (small_register_class_p (rclass)
757 || targetm.small_register_classes_for_mode_p (VOIDmode))
758 && MERGABLE_RELOADS (type, rld[i].when_needed, opnum, rld[i].opnum))
759 return i;
761 /* Reloading a plain reg for input can match a reload to postincrement
762 that reg, since the postincrement's value is the right value.
763 Likewise, it can match a preincrement reload, since we regard
764 the preincrementation as happening before any ref in this insn
765 to that register. */
766 for (i = 0; i < n_reloads; i++)
767 if ((reg_class_subset_p (rclass, rld[i].rclass)
768 || reg_class_subset_p (rld[i].rclass, rclass))
769 /* If the existing reload has a register, it must fit our
770 class. */
771 && (rld[i].reg_rtx == 0
772 || TEST_HARD_REG_BIT (reg_class_contents[(int) rclass],
773 true_regnum (rld[i].reg_rtx)))
774 && out == 0 && rld[i].out == 0 && rld[i].in != 0
775 && ((REG_P (in)
776 && GET_RTX_CLASS (GET_CODE (rld[i].in)) == RTX_AUTOINC
777 && MATCHES (XEXP (rld[i].in, 0), in))
778 || (REG_P (rld[i].in)
779 && GET_RTX_CLASS (GET_CODE (in)) == RTX_AUTOINC
780 && MATCHES (XEXP (in, 0), rld[i].in)))
781 && (rld[i].out == 0 || ! earlyclobber_operand_p (rld[i].out))
782 && (small_register_class_p (rclass)
783 || targetm.small_register_classes_for_mode_p (VOIDmode))
784 && MERGABLE_RELOADS (type, rld[i].when_needed,
785 opnum, rld[i].opnum))
787 /* Make sure reload_in ultimately has the increment,
788 not the plain register. */
789 if (REG_P (in))
790 *p_in = rld[i].in;
791 return i;
793 return n_reloads;
796 /* Return nonzero if X is a SUBREG which will require reloading of its
797 SUBREG_REG expression. */
799 static int
800 reload_inner_reg_of_subreg (rtx x, enum machine_mode mode, int output)
802 rtx inner;
804 /* Only SUBREGs are problematical. */
805 if (GET_CODE (x) != SUBREG)
806 return 0;
808 inner = SUBREG_REG (x);
810 /* If INNER is a constant or PLUS, then INNER must be reloaded. */
811 if (CONSTANT_P (inner) || GET_CODE (inner) == PLUS)
812 return 1;
814 /* If INNER is not a hard register, then INNER will not need to
815 be reloaded. */
816 if (!REG_P (inner)
817 || REGNO (inner) >= FIRST_PSEUDO_REGISTER)
818 return 0;
820 /* If INNER is not ok for MODE, then INNER will need reloading. */
821 if (! HARD_REGNO_MODE_OK (subreg_regno (x), mode))
822 return 1;
824 /* If the outer part is a word or smaller, INNER larger than a
825 word and the number of regs for INNER is not the same as the
826 number of words in INNER, then INNER will need reloading. */
827 return (GET_MODE_SIZE (mode) <= UNITS_PER_WORD
828 && output
829 && GET_MODE_SIZE (GET_MODE (inner)) > UNITS_PER_WORD
830 && ((GET_MODE_SIZE (GET_MODE (inner)) / UNITS_PER_WORD)
831 != (int) hard_regno_nregs[REGNO (inner)][GET_MODE (inner)]));
834 /* Return nonzero if IN can be reloaded into REGNO with mode MODE without
835 requiring an extra reload register. The caller has already found that
836 IN contains some reference to REGNO, so check that we can produce the
837 new value in a single step. E.g. if we have
838 (set (reg r13) (plus (reg r13) (const int 1))), and there is an
839 instruction that adds one to a register, this should succeed.
840 However, if we have something like
841 (set (reg r13) (plus (reg r13) (const int 999))), and the constant 999
842 needs to be loaded into a register first, we need a separate reload
843 register.
844 Such PLUS reloads are generated by find_reload_address_part.
845 The out-of-range PLUS expressions are usually introduced in the instruction
846 patterns by register elimination and substituting pseudos without a home
847 by their function-invariant equivalences. */
848 static int
849 can_reload_into (rtx in, int regno, enum machine_mode mode)
851 rtx dst, test_insn;
852 int r = 0;
853 struct recog_data save_recog_data;
855 /* For matching constraints, we often get notional input reloads where
856 we want to use the original register as the reload register. I.e.
857 technically this is a non-optional input-output reload, but IN is
858 already a valid register, and has been chosen as the reload register.
859 Speed this up, since it trivially works. */
860 if (REG_P (in))
861 return 1;
863 /* To test MEMs properly, we'd have to take into account all the reloads
864 that are already scheduled, which can become quite complicated.
865 And since we've already handled address reloads for this MEM, it
866 should always succeed anyway. */
867 if (MEM_P (in))
868 return 1;
870 /* If we can make a simple SET insn that does the job, everything should
871 be fine. */
872 dst = gen_rtx_REG (mode, regno);
873 test_insn = make_insn_raw (gen_rtx_SET (VOIDmode, dst, in));
874 save_recog_data = recog_data;
875 if (recog_memoized (test_insn) >= 0)
877 extract_insn (test_insn);
878 r = constrain_operands (1);
880 recog_data = save_recog_data;
881 return r;
884 /* Record one reload that needs to be performed.
885 IN is an rtx saying where the data are to be found before this instruction.
886 OUT says where they must be stored after the instruction.
887 (IN is zero for data not read, and OUT is zero for data not written.)
888 INLOC and OUTLOC point to the places in the instructions where
889 IN and OUT were found.
890 If IN and OUT are both nonzero, it means the same register must be used
891 to reload both IN and OUT.
893 RCLASS is a register class required for the reloaded data.
894 INMODE is the machine mode that the instruction requires
895 for the reg that replaces IN and OUTMODE is likewise for OUT.
897 If IN is zero, then OUT's location and mode should be passed as
898 INLOC and INMODE.
900 STRICT_LOW is the 1 if there is a containing STRICT_LOW_PART rtx.
902 OPTIONAL nonzero means this reload does not need to be performed:
903 it can be discarded if that is more convenient.
905 OPNUM and TYPE say what the purpose of this reload is.
907 The return value is the reload-number for this reload.
909 If both IN and OUT are nonzero, in some rare cases we might
910 want to make two separate reloads. (Actually we never do this now.)
911 Therefore, the reload-number for OUT is stored in
912 output_reloadnum when we return; the return value applies to IN.
913 Usually (presently always), when IN and OUT are nonzero,
914 the two reload-numbers are equal, but the caller should be careful to
915 distinguish them. */
918 push_reload (rtx in, rtx out, rtx *inloc, rtx *outloc,
919 enum reg_class rclass, enum machine_mode inmode,
920 enum machine_mode outmode, int strict_low, int optional,
921 int opnum, enum reload_type type)
923 int i;
924 int dont_share = 0;
925 int dont_remove_subreg = 0;
926 rtx *in_subreg_loc = 0, *out_subreg_loc = 0;
927 int secondary_in_reload = -1, secondary_out_reload = -1;
928 enum insn_code secondary_in_icode = CODE_FOR_nothing;
929 enum insn_code secondary_out_icode = CODE_FOR_nothing;
931 /* INMODE and/or OUTMODE could be VOIDmode if no mode
932 has been specified for the operand. In that case,
933 use the operand's mode as the mode to reload. */
934 if (inmode == VOIDmode && in != 0)
935 inmode = GET_MODE (in);
936 if (outmode == VOIDmode && out != 0)
937 outmode = GET_MODE (out);
939 /* If find_reloads and friends until now missed to replace a pseudo
940 with a constant of reg_equiv_constant something went wrong
941 beforehand.
942 Note that it can't simply be done here if we missed it earlier
943 since the constant might need to be pushed into the literal pool
944 and the resulting memref would probably need further
945 reloading. */
946 if (in != 0 && REG_P (in))
948 int regno = REGNO (in);
950 gcc_assert (regno < FIRST_PSEUDO_REGISTER
951 || reg_renumber[regno] >= 0
952 || reg_equiv_constant[regno] == NULL_RTX);
955 /* reg_equiv_constant only contains constants which are obviously
956 not appropriate as destination. So if we would need to replace
957 the destination pseudo with a constant we are in real
958 trouble. */
959 if (out != 0 && REG_P (out))
961 int regno = REGNO (out);
963 gcc_assert (regno < FIRST_PSEUDO_REGISTER
964 || reg_renumber[regno] >= 0
965 || reg_equiv_constant[regno] == NULL_RTX);
968 /* If we have a read-write operand with an address side-effect,
969 change either IN or OUT so the side-effect happens only once. */
970 if (in != 0 && out != 0 && MEM_P (in) && rtx_equal_p (in, out))
971 switch (GET_CODE (XEXP (in, 0)))
973 case POST_INC: case POST_DEC: case POST_MODIFY:
974 in = replace_equiv_address_nv (in, XEXP (XEXP (in, 0), 0));
975 break;
977 case PRE_INC: case PRE_DEC: case PRE_MODIFY:
978 out = replace_equiv_address_nv (out, XEXP (XEXP (out, 0), 0));
979 break;
981 default:
982 break;
985 /* If we are reloading a (SUBREG constant ...), really reload just the
986 inside expression in its own mode. Similarly for (SUBREG (PLUS ...)).
987 If we have (SUBREG:M1 (MEM:M2 ...) ...) (or an inner REG that is still
988 a pseudo and hence will become a MEM) with M1 wider than M2 and the
989 register is a pseudo, also reload the inside expression.
990 For machines that extend byte loads, do this for any SUBREG of a pseudo
991 where both M1 and M2 are a word or smaller, M1 is wider than M2, and
992 M2 is an integral mode that gets extended when loaded.
993 Similar issue for (SUBREG:M1 (REG:M2 ...) ...) for a hard register R where
994 either M1 is not valid for R or M2 is wider than a word but we only
995 need one word to store an M2-sized quantity in R.
996 (However, if OUT is nonzero, we need to reload the reg *and*
997 the subreg, so do nothing here, and let following statement handle it.)
999 Note that the case of (SUBREG (CONST_INT...)...) is handled elsewhere;
1000 we can't handle it here because CONST_INT does not indicate a mode.
1002 Similarly, we must reload the inside expression if we have a
1003 STRICT_LOW_PART (presumably, in == out in this case).
1005 Also reload the inner expression if it does not require a secondary
1006 reload but the SUBREG does.
1008 Finally, reload the inner expression if it is a register that is in
1009 the class whose registers cannot be referenced in a different size
1010 and M1 is not the same size as M2. If subreg_lowpart_p is false, we
1011 cannot reload just the inside since we might end up with the wrong
1012 register class. But if it is inside a STRICT_LOW_PART, we have
1013 no choice, so we hope we do get the right register class there. */
1015 if (in != 0 && GET_CODE (in) == SUBREG
1016 && (subreg_lowpart_p (in) || strict_low)
1017 #ifdef CANNOT_CHANGE_MODE_CLASS
1018 && !CANNOT_CHANGE_MODE_CLASS (GET_MODE (SUBREG_REG (in)), inmode, rclass)
1019 #endif
1020 && (CONSTANT_P (SUBREG_REG (in))
1021 || GET_CODE (SUBREG_REG (in)) == PLUS
1022 || strict_low
1023 || (((REG_P (SUBREG_REG (in))
1024 && REGNO (SUBREG_REG (in)) >= FIRST_PSEUDO_REGISTER)
1025 || MEM_P (SUBREG_REG (in)))
1026 && ((GET_MODE_SIZE (inmode)
1027 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))))
1028 #ifdef LOAD_EXTEND_OP
1029 || (GET_MODE_SIZE (inmode) <= UNITS_PER_WORD
1030 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
1031 <= UNITS_PER_WORD)
1032 && (GET_MODE_SIZE (inmode)
1033 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))))
1034 && INTEGRAL_MODE_P (GET_MODE (SUBREG_REG (in)))
1035 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (in))) != UNKNOWN)
1036 #endif
1037 #ifdef WORD_REGISTER_OPERATIONS
1038 || ((GET_MODE_SIZE (inmode)
1039 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))))
1040 && ((GET_MODE_SIZE (inmode) - 1) / UNITS_PER_WORD ==
1041 ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))) - 1)
1042 / UNITS_PER_WORD)))
1043 #endif
1045 || (REG_P (SUBREG_REG (in))
1046 && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER
1047 /* The case where out is nonzero
1048 is handled differently in the following statement. */
1049 && (out == 0 || subreg_lowpart_p (in))
1050 && ((GET_MODE_SIZE (inmode) <= UNITS_PER_WORD
1051 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
1052 > UNITS_PER_WORD)
1053 && ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
1054 / UNITS_PER_WORD)
1055 != (int) hard_regno_nregs[REGNO (SUBREG_REG (in))]
1056 [GET_MODE (SUBREG_REG (in))]))
1057 || ! HARD_REGNO_MODE_OK (subreg_regno (in), inmode)))
1058 || (secondary_reload_class (1, rclass, inmode, in) != NO_REGS
1059 && (secondary_reload_class (1, rclass, GET_MODE (SUBREG_REG (in)),
1060 SUBREG_REG (in))
1061 == NO_REGS))
1062 #ifdef CANNOT_CHANGE_MODE_CLASS
1063 || (REG_P (SUBREG_REG (in))
1064 && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER
1065 && REG_CANNOT_CHANGE_MODE_P
1066 (REGNO (SUBREG_REG (in)), GET_MODE (SUBREG_REG (in)), inmode))
1067 #endif
1070 in_subreg_loc = inloc;
1071 inloc = &SUBREG_REG (in);
1072 in = *inloc;
1073 #if ! defined (LOAD_EXTEND_OP) && ! defined (WORD_REGISTER_OPERATIONS)
1074 if (MEM_P (in))
1075 /* This is supposed to happen only for paradoxical subregs made by
1076 combine.c. (SUBREG (MEM)) isn't supposed to occur other ways. */
1077 gcc_assert (GET_MODE_SIZE (GET_MODE (in)) <= GET_MODE_SIZE (inmode));
1078 #endif
1079 inmode = GET_MODE (in);
1082 /* Similar issue for (SUBREG:M1 (REG:M2 ...) ...) for a hard register R where
1083 either M1 is not valid for R or M2 is wider than a word but we only
1084 need one word to store an M2-sized quantity in R.
1086 However, we must reload the inner reg *as well as* the subreg in
1087 that case. */
1089 /* Similar issue for (SUBREG constant ...) if it was not handled by the
1090 code above. This can happen if SUBREG_BYTE != 0. */
1092 if (in != 0 && reload_inner_reg_of_subreg (in, inmode, 0))
1094 enum reg_class in_class = rclass;
1096 if (REG_P (SUBREG_REG (in)))
1097 in_class
1098 = find_valid_class (inmode, GET_MODE (SUBREG_REG (in)),
1099 subreg_regno_offset (REGNO (SUBREG_REG (in)),
1100 GET_MODE (SUBREG_REG (in)),
1101 SUBREG_BYTE (in),
1102 GET_MODE (in)),
1103 REGNO (SUBREG_REG (in)));
1105 /* This relies on the fact that emit_reload_insns outputs the
1106 instructions for input reloads of type RELOAD_OTHER in the same
1107 order as the reloads. Thus if the outer reload is also of type
1108 RELOAD_OTHER, we are guaranteed that this inner reload will be
1109 output before the outer reload. */
1110 push_reload (SUBREG_REG (in), NULL_RTX, &SUBREG_REG (in), (rtx *) 0,
1111 in_class, VOIDmode, VOIDmode, 0, 0, opnum, type);
1112 dont_remove_subreg = 1;
1115 /* Similarly for paradoxical and problematical SUBREGs on the output.
1116 Note that there is no reason we need worry about the previous value
1117 of SUBREG_REG (out); even if wider than out,
1118 storing in a subreg is entitled to clobber it all
1119 (except in the case of STRICT_LOW_PART,
1120 and in that case the constraint should label it input-output.) */
1121 if (out != 0 && GET_CODE (out) == SUBREG
1122 && (subreg_lowpart_p (out) || strict_low)
1123 #ifdef CANNOT_CHANGE_MODE_CLASS
1124 && !CANNOT_CHANGE_MODE_CLASS (GET_MODE (SUBREG_REG (out)), outmode, rclass)
1125 #endif
1126 && (CONSTANT_P (SUBREG_REG (out))
1127 || strict_low
1128 || (((REG_P (SUBREG_REG (out))
1129 && REGNO (SUBREG_REG (out)) >= FIRST_PSEUDO_REGISTER)
1130 || MEM_P (SUBREG_REG (out)))
1131 && ((GET_MODE_SIZE (outmode)
1132 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (out))))
1133 #ifdef WORD_REGISTER_OPERATIONS
1134 || ((GET_MODE_SIZE (outmode)
1135 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (out))))
1136 && ((GET_MODE_SIZE (outmode) - 1) / UNITS_PER_WORD ==
1137 ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (out))) - 1)
1138 / UNITS_PER_WORD)))
1139 #endif
1141 || (REG_P (SUBREG_REG (out))
1142 && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER
1143 && ((GET_MODE_SIZE (outmode) <= UNITS_PER_WORD
1144 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (out)))
1145 > UNITS_PER_WORD)
1146 && ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (out)))
1147 / UNITS_PER_WORD)
1148 != (int) hard_regno_nregs[REGNO (SUBREG_REG (out))]
1149 [GET_MODE (SUBREG_REG (out))]))
1150 || ! HARD_REGNO_MODE_OK (subreg_regno (out), outmode)))
1151 || (secondary_reload_class (0, rclass, outmode, out) != NO_REGS
1152 && (secondary_reload_class (0, rclass, GET_MODE (SUBREG_REG (out)),
1153 SUBREG_REG (out))
1154 == NO_REGS))
1155 #ifdef CANNOT_CHANGE_MODE_CLASS
1156 || (REG_P (SUBREG_REG (out))
1157 && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER
1158 && REG_CANNOT_CHANGE_MODE_P (REGNO (SUBREG_REG (out)),
1159 GET_MODE (SUBREG_REG (out)),
1160 outmode))
1161 #endif
1164 out_subreg_loc = outloc;
1165 outloc = &SUBREG_REG (out);
1166 out = *outloc;
1167 #if ! defined (LOAD_EXTEND_OP) && ! defined (WORD_REGISTER_OPERATIONS)
1168 gcc_assert (!MEM_P (out)
1169 || GET_MODE_SIZE (GET_MODE (out))
1170 <= GET_MODE_SIZE (outmode));
1171 #endif
1172 outmode = GET_MODE (out);
1175 /* Similar issue for (SUBREG:M1 (REG:M2 ...) ...) for a hard register R where
1176 either M1 is not valid for R or M2 is wider than a word but we only
1177 need one word to store an M2-sized quantity in R.
1179 However, we must reload the inner reg *as well as* the subreg in
1180 that case. In this case, the inner reg is an in-out reload. */
1182 if (out != 0 && reload_inner_reg_of_subreg (out, outmode, 1))
1184 /* This relies on the fact that emit_reload_insns outputs the
1185 instructions for output reloads of type RELOAD_OTHER in reverse
1186 order of the reloads. Thus if the outer reload is also of type
1187 RELOAD_OTHER, we are guaranteed that this inner reload will be
1188 output after the outer reload. */
1189 dont_remove_subreg = 1;
1190 push_reload (SUBREG_REG (out), SUBREG_REG (out), &SUBREG_REG (out),
1191 &SUBREG_REG (out),
1192 find_valid_class (outmode, GET_MODE (SUBREG_REG (out)),
1193 subreg_regno_offset (REGNO (SUBREG_REG (out)),
1194 GET_MODE (SUBREG_REG (out)),
1195 SUBREG_BYTE (out),
1196 GET_MODE (out)),
1197 REGNO (SUBREG_REG (out))),
1198 VOIDmode, VOIDmode, 0, 0,
1199 opnum, RELOAD_OTHER);
1202 /* If IN appears in OUT, we can't share any input-only reload for IN. */
1203 if (in != 0 && out != 0 && MEM_P (out)
1204 && (REG_P (in) || MEM_P (in) || GET_CODE (in) == PLUS)
1205 && reg_overlap_mentioned_for_reload_p (in, XEXP (out, 0)))
1206 dont_share = 1;
1208 /* If IN is a SUBREG of a hard register, make a new REG. This
1209 simplifies some of the cases below. */
1211 if (in != 0 && GET_CODE (in) == SUBREG && REG_P (SUBREG_REG (in))
1212 && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER
1213 && ! dont_remove_subreg)
1214 in = gen_rtx_REG (GET_MODE (in), subreg_regno (in));
1216 /* Similarly for OUT. */
1217 if (out != 0 && GET_CODE (out) == SUBREG
1218 && REG_P (SUBREG_REG (out))
1219 && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER
1220 && ! dont_remove_subreg)
1221 out = gen_rtx_REG (GET_MODE (out), subreg_regno (out));
1223 /* Narrow down the class of register wanted if that is
1224 desirable on this machine for efficiency. */
1226 reg_class_t preferred_class = rclass;
1228 if (in != 0)
1229 preferred_class = targetm.preferred_reload_class (in, rclass);
1231 /* Output reloads may need analogous treatment, different in detail. */
1232 if (out != 0)
1233 preferred_class
1234 = targetm.preferred_output_reload_class (out, preferred_class);
1236 /* Discard what the target said if we cannot do it. */
1237 if (preferred_class != NO_REGS
1238 || (optional && type == RELOAD_FOR_OUTPUT))
1239 rclass = (enum reg_class) preferred_class;
1242 /* Make sure we use a class that can handle the actual pseudo
1243 inside any subreg. For example, on the 386, QImode regs
1244 can appear within SImode subregs. Although GENERAL_REGS
1245 can handle SImode, QImode needs a smaller class. */
1246 #ifdef LIMIT_RELOAD_CLASS
1247 if (in_subreg_loc)
1248 rclass = LIMIT_RELOAD_CLASS (inmode, rclass);
1249 else if (in != 0 && GET_CODE (in) == SUBREG)
1250 rclass = LIMIT_RELOAD_CLASS (GET_MODE (SUBREG_REG (in)), rclass);
1252 if (out_subreg_loc)
1253 rclass = LIMIT_RELOAD_CLASS (outmode, rclass);
1254 if (out != 0 && GET_CODE (out) == SUBREG)
1255 rclass = LIMIT_RELOAD_CLASS (GET_MODE (SUBREG_REG (out)), rclass);
1256 #endif
1258 /* Verify that this class is at least possible for the mode that
1259 is specified. */
1260 if (this_insn_is_asm)
1262 enum machine_mode mode;
1263 if (GET_MODE_SIZE (inmode) > GET_MODE_SIZE (outmode))
1264 mode = inmode;
1265 else
1266 mode = outmode;
1267 if (mode == VOIDmode)
1269 error_for_asm (this_insn, "cannot reload integer constant "
1270 "operand in %<asm%>");
1271 mode = word_mode;
1272 if (in != 0)
1273 inmode = word_mode;
1274 if (out != 0)
1275 outmode = word_mode;
1277 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1278 if (HARD_REGNO_MODE_OK (i, mode)
1279 && in_hard_reg_set_p (reg_class_contents[(int) rclass], mode, i))
1280 break;
1281 if (i == FIRST_PSEUDO_REGISTER)
1283 error_for_asm (this_insn, "impossible register constraint "
1284 "in %<asm%>");
1285 /* Avoid further trouble with this insn. */
1286 PATTERN (this_insn) = gen_rtx_USE (VOIDmode, const0_rtx);
1287 /* We used to continue here setting class to ALL_REGS, but it triggers
1288 sanity check on i386 for:
1289 void foo(long double d)
1291 asm("" :: "a" (d));
1293 Returning zero here ought to be safe as we take care in
1294 find_reloads to not process the reloads when instruction was
1295 replaced by USE. */
1297 return 0;
1301 /* Optional output reloads are always OK even if we have no register class,
1302 since the function of these reloads is only to have spill_reg_store etc.
1303 set, so that the storing insn can be deleted later. */
1304 gcc_assert (rclass != NO_REGS
1305 || (optional != 0 && type == RELOAD_FOR_OUTPUT));
1307 i = find_reusable_reload (&in, out, rclass, type, opnum, dont_share);
1309 if (i == n_reloads)
1311 /* See if we need a secondary reload register to move between CLASS
1312 and IN or CLASS and OUT. Get the icode and push any required reloads
1313 needed for each of them if so. */
1315 if (in != 0)
1316 secondary_in_reload
1317 = push_secondary_reload (1, in, opnum, optional, rclass, inmode, type,
1318 &secondary_in_icode, NULL);
1319 if (out != 0 && GET_CODE (out) != SCRATCH)
1320 secondary_out_reload
1321 = push_secondary_reload (0, out, opnum, optional, rclass, outmode,
1322 type, &secondary_out_icode, NULL);
1324 /* We found no existing reload suitable for re-use.
1325 So add an additional reload. */
1327 #ifdef SECONDARY_MEMORY_NEEDED
1328 /* If a memory location is needed for the copy, make one. */
1329 if (in != 0
1330 && (REG_P (in)
1331 || (GET_CODE (in) == SUBREG && REG_P (SUBREG_REG (in))))
1332 && reg_or_subregno (in) < FIRST_PSEUDO_REGISTER
1333 && SECONDARY_MEMORY_NEEDED (REGNO_REG_CLASS (reg_or_subregno (in)),
1334 rclass, inmode))
1335 get_secondary_mem (in, inmode, opnum, type);
1336 #endif
1338 i = n_reloads;
1339 rld[i].in = in;
1340 rld[i].out = out;
1341 rld[i].rclass = rclass;
1342 rld[i].inmode = inmode;
1343 rld[i].outmode = outmode;
1344 rld[i].reg_rtx = 0;
1345 rld[i].optional = optional;
1346 rld[i].inc = 0;
1347 rld[i].nocombine = 0;
1348 rld[i].in_reg = inloc ? *inloc : 0;
1349 rld[i].out_reg = outloc ? *outloc : 0;
1350 rld[i].opnum = opnum;
1351 rld[i].when_needed = type;
1352 rld[i].secondary_in_reload = secondary_in_reload;
1353 rld[i].secondary_out_reload = secondary_out_reload;
1354 rld[i].secondary_in_icode = secondary_in_icode;
1355 rld[i].secondary_out_icode = secondary_out_icode;
1356 rld[i].secondary_p = 0;
1358 n_reloads++;
1360 #ifdef SECONDARY_MEMORY_NEEDED
1361 if (out != 0
1362 && (REG_P (out)
1363 || (GET_CODE (out) == SUBREG && REG_P (SUBREG_REG (out))))
1364 && reg_or_subregno (out) < FIRST_PSEUDO_REGISTER
1365 && SECONDARY_MEMORY_NEEDED (rclass,
1366 REGNO_REG_CLASS (reg_or_subregno (out)),
1367 outmode))
1368 get_secondary_mem (out, outmode, opnum, type);
1369 #endif
1371 else
1373 /* We are reusing an existing reload,
1374 but we may have additional information for it.
1375 For example, we may now have both IN and OUT
1376 while the old one may have just one of them. */
1378 /* The modes can be different. If they are, we want to reload in
1379 the larger mode, so that the value is valid for both modes. */
1380 if (inmode != VOIDmode
1381 && GET_MODE_SIZE (inmode) > GET_MODE_SIZE (rld[i].inmode))
1382 rld[i].inmode = inmode;
1383 if (outmode != VOIDmode
1384 && GET_MODE_SIZE (outmode) > GET_MODE_SIZE (rld[i].outmode))
1385 rld[i].outmode = outmode;
1386 if (in != 0)
1388 rtx in_reg = inloc ? *inloc : 0;
1389 /* If we merge reloads for two distinct rtl expressions that
1390 are identical in content, there might be duplicate address
1391 reloads. Remove the extra set now, so that if we later find
1392 that we can inherit this reload, we can get rid of the
1393 address reloads altogether.
1395 Do not do this if both reloads are optional since the result
1396 would be an optional reload which could potentially leave
1397 unresolved address replacements.
1399 It is not sufficient to call transfer_replacements since
1400 choose_reload_regs will remove the replacements for address
1401 reloads of inherited reloads which results in the same
1402 problem. */
1403 if (rld[i].in != in && rtx_equal_p (in, rld[i].in)
1404 && ! (rld[i].optional && optional))
1406 /* We must keep the address reload with the lower operand
1407 number alive. */
1408 if (opnum > rld[i].opnum)
1410 remove_address_replacements (in);
1411 in = rld[i].in;
1412 in_reg = rld[i].in_reg;
1414 else
1415 remove_address_replacements (rld[i].in);
1417 /* When emitting reloads we don't necessarily look at the in-
1418 and outmode, but also directly at the operands (in and out).
1419 So we can't simply overwrite them with whatever we have found
1420 for this (to-be-merged) reload, we have to "merge" that too.
1421 Reusing another reload already verified that we deal with the
1422 same operands, just possibly in different modes. So we
1423 overwrite the operands only when the new mode is larger.
1424 See also PR33613. */
1425 if (!rld[i].in
1426 || GET_MODE_SIZE (GET_MODE (in))
1427 > GET_MODE_SIZE (GET_MODE (rld[i].in)))
1428 rld[i].in = in;
1429 if (!rld[i].in_reg
1430 || (in_reg
1431 && GET_MODE_SIZE (GET_MODE (in_reg))
1432 > GET_MODE_SIZE (GET_MODE (rld[i].in_reg))))
1433 rld[i].in_reg = in_reg;
1435 if (out != 0)
1437 if (!rld[i].out
1438 || (out
1439 && GET_MODE_SIZE (GET_MODE (out))
1440 > GET_MODE_SIZE (GET_MODE (rld[i].out))))
1441 rld[i].out = out;
1442 if (outloc
1443 && (!rld[i].out_reg
1444 || GET_MODE_SIZE (GET_MODE (*outloc))
1445 > GET_MODE_SIZE (GET_MODE (rld[i].out_reg))))
1446 rld[i].out_reg = *outloc;
1448 if (reg_class_subset_p (rclass, rld[i].rclass))
1449 rld[i].rclass = rclass;
1450 rld[i].optional &= optional;
1451 if (MERGE_TO_OTHER (type, rld[i].when_needed,
1452 opnum, rld[i].opnum))
1453 rld[i].when_needed = RELOAD_OTHER;
1454 rld[i].opnum = MIN (rld[i].opnum, opnum);
1457 /* If the ostensible rtx being reloaded differs from the rtx found
1458 in the location to substitute, this reload is not safe to combine
1459 because we cannot reliably tell whether it appears in the insn. */
1461 if (in != 0 && in != *inloc)
1462 rld[i].nocombine = 1;
1464 #if 0
1465 /* This was replaced by changes in find_reloads_address_1 and the new
1466 function inc_for_reload, which go with a new meaning of reload_inc. */
1468 /* If this is an IN/OUT reload in an insn that sets the CC,
1469 it must be for an autoincrement. It doesn't work to store
1470 the incremented value after the insn because that would clobber the CC.
1471 So we must do the increment of the value reloaded from,
1472 increment it, store it back, then decrement again. */
1473 if (out != 0 && sets_cc0_p (PATTERN (this_insn)))
1475 out = 0;
1476 rld[i].out = 0;
1477 rld[i].inc = find_inc_amount (PATTERN (this_insn), in);
1478 /* If we did not find a nonzero amount-to-increment-by,
1479 that contradicts the belief that IN is being incremented
1480 in an address in this insn. */
1481 gcc_assert (rld[i].inc != 0);
1483 #endif
1485 /* If we will replace IN and OUT with the reload-reg,
1486 record where they are located so that substitution need
1487 not do a tree walk. */
1489 if (replace_reloads)
1491 if (inloc != 0)
1493 struct replacement *r = &replacements[n_replacements++];
1494 r->what = i;
1495 r->subreg_loc = in_subreg_loc;
1496 r->where = inloc;
1497 r->mode = inmode;
1499 if (outloc != 0 && outloc != inloc)
1501 struct replacement *r = &replacements[n_replacements++];
1502 r->what = i;
1503 r->where = outloc;
1504 r->subreg_loc = out_subreg_loc;
1505 r->mode = outmode;
1509 /* If this reload is just being introduced and it has both
1510 an incoming quantity and an outgoing quantity that are
1511 supposed to be made to match, see if either one of the two
1512 can serve as the place to reload into.
1514 If one of them is acceptable, set rld[i].reg_rtx
1515 to that one. */
1517 if (in != 0 && out != 0 && in != out && rld[i].reg_rtx == 0)
1519 rld[i].reg_rtx = find_dummy_reload (in, out, inloc, outloc,
1520 inmode, outmode,
1521 rld[i].rclass, i,
1522 earlyclobber_operand_p (out));
1524 /* If the outgoing register already contains the same value
1525 as the incoming one, we can dispense with loading it.
1526 The easiest way to tell the caller that is to give a phony
1527 value for the incoming operand (same as outgoing one). */
1528 if (rld[i].reg_rtx == out
1529 && (REG_P (in) || CONSTANT_P (in))
1530 && 0 != find_equiv_reg (in, this_insn, NO_REGS, REGNO (out),
1531 static_reload_reg_p, i, inmode))
1532 rld[i].in = out;
1535 /* If this is an input reload and the operand contains a register that
1536 dies in this insn and is used nowhere else, see if it is the right class
1537 to be used for this reload. Use it if so. (This occurs most commonly
1538 in the case of paradoxical SUBREGs and in-out reloads). We cannot do
1539 this if it is also an output reload that mentions the register unless
1540 the output is a SUBREG that clobbers an entire register.
1542 Note that the operand might be one of the spill regs, if it is a
1543 pseudo reg and we are in a block where spilling has not taken place.
1544 But if there is no spilling in this block, that is OK.
1545 An explicitly used hard reg cannot be a spill reg. */
1547 if (rld[i].reg_rtx == 0 && in != 0 && hard_regs_live_known)
1549 rtx note;
1550 int regno;
1551 enum machine_mode rel_mode = inmode;
1553 if (out && GET_MODE_SIZE (outmode) > GET_MODE_SIZE (inmode))
1554 rel_mode = outmode;
1556 for (note = REG_NOTES (this_insn); note; note = XEXP (note, 1))
1557 if (REG_NOTE_KIND (note) == REG_DEAD
1558 && REG_P (XEXP (note, 0))
1559 && (regno = REGNO (XEXP (note, 0))) < FIRST_PSEUDO_REGISTER
1560 && reg_mentioned_p (XEXP (note, 0), in)
1561 /* Check that a former pseudo is valid; see find_dummy_reload. */
1562 && (ORIGINAL_REGNO (XEXP (note, 0)) < FIRST_PSEUDO_REGISTER
1563 || (! bitmap_bit_p (DF_LR_OUT (ENTRY_BLOCK_PTR),
1564 ORIGINAL_REGNO (XEXP (note, 0)))
1565 && hard_regno_nregs[regno][GET_MODE (XEXP (note, 0))] == 1))
1566 && ! refers_to_regno_for_reload_p (regno,
1567 end_hard_regno (rel_mode,
1568 regno),
1569 PATTERN (this_insn), inloc)
1570 /* If this is also an output reload, IN cannot be used as
1571 the reload register if it is set in this insn unless IN
1572 is also OUT. */
1573 && (out == 0 || in == out
1574 || ! hard_reg_set_here_p (regno,
1575 end_hard_regno (rel_mode, regno),
1576 PATTERN (this_insn)))
1577 /* ??? Why is this code so different from the previous?
1578 Is there any simple coherent way to describe the two together?
1579 What's going on here. */
1580 && (in != out
1581 || (GET_CODE (in) == SUBREG
1582 && (((GET_MODE_SIZE (GET_MODE (in)) + (UNITS_PER_WORD - 1))
1583 / UNITS_PER_WORD)
1584 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
1585 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))))
1586 /* Make sure the operand fits in the reg that dies. */
1587 && (GET_MODE_SIZE (rel_mode)
1588 <= GET_MODE_SIZE (GET_MODE (XEXP (note, 0))))
1589 && HARD_REGNO_MODE_OK (regno, inmode)
1590 && HARD_REGNO_MODE_OK (regno, outmode))
1592 unsigned int offs;
1593 unsigned int nregs = MAX (hard_regno_nregs[regno][inmode],
1594 hard_regno_nregs[regno][outmode]);
1596 for (offs = 0; offs < nregs; offs++)
1597 if (fixed_regs[regno + offs]
1598 || ! TEST_HARD_REG_BIT (reg_class_contents[(int) rclass],
1599 regno + offs))
1600 break;
1602 if (offs == nregs
1603 && (! (refers_to_regno_for_reload_p
1604 (regno, end_hard_regno (inmode, regno), in, (rtx *) 0))
1605 || can_reload_into (in, regno, inmode)))
1607 rld[i].reg_rtx = gen_rtx_REG (rel_mode, regno);
1608 break;
1613 if (out)
1614 output_reloadnum = i;
1616 return i;
1619 /* Record an additional place we must replace a value
1620 for which we have already recorded a reload.
1621 RELOADNUM is the value returned by push_reload
1622 when the reload was recorded.
1623 This is used in insn patterns that use match_dup. */
1625 static void
1626 push_replacement (rtx *loc, int reloadnum, enum machine_mode mode)
1628 if (replace_reloads)
1630 struct replacement *r = &replacements[n_replacements++];
1631 r->what = reloadnum;
1632 r->where = loc;
1633 r->subreg_loc = 0;
1634 r->mode = mode;
1638 /* Duplicate any replacement we have recorded to apply at
1639 location ORIG_LOC to also be performed at DUP_LOC.
1640 This is used in insn patterns that use match_dup. */
1642 static void
1643 dup_replacements (rtx *dup_loc, rtx *orig_loc)
1645 int i, n = n_replacements;
1647 for (i = 0; i < n; i++)
1649 struct replacement *r = &replacements[i];
1650 if (r->where == orig_loc)
1651 push_replacement (dup_loc, r->what, r->mode);
1655 /* Transfer all replacements that used to be in reload FROM to be in
1656 reload TO. */
1658 void
1659 transfer_replacements (int to, int from)
1661 int i;
1663 for (i = 0; i < n_replacements; i++)
1664 if (replacements[i].what == from)
1665 replacements[i].what = to;
1668 /* IN_RTX is the value loaded by a reload that we now decided to inherit,
1669 or a subpart of it. If we have any replacements registered for IN_RTX,
1670 cancel the reloads that were supposed to load them.
1671 Return nonzero if we canceled any reloads. */
1673 remove_address_replacements (rtx in_rtx)
1675 int i, j;
1676 char reload_flags[MAX_RELOADS];
1677 int something_changed = 0;
1679 memset (reload_flags, 0, sizeof reload_flags);
1680 for (i = 0, j = 0; i < n_replacements; i++)
1682 if (loc_mentioned_in_p (replacements[i].where, in_rtx))
1683 reload_flags[replacements[i].what] |= 1;
1684 else
1686 replacements[j++] = replacements[i];
1687 reload_flags[replacements[i].what] |= 2;
1690 /* Note that the following store must be done before the recursive calls. */
1691 n_replacements = j;
1693 for (i = n_reloads - 1; i >= 0; i--)
1695 if (reload_flags[i] == 1)
1697 deallocate_reload_reg (i);
1698 remove_address_replacements (rld[i].in);
1699 rld[i].in = 0;
1700 something_changed = 1;
1703 return something_changed;
1706 /* If there is only one output reload, and it is not for an earlyclobber
1707 operand, try to combine it with a (logically unrelated) input reload
1708 to reduce the number of reload registers needed.
1710 This is safe if the input reload does not appear in
1711 the value being output-reloaded, because this implies
1712 it is not needed any more once the original insn completes.
1714 If that doesn't work, see we can use any of the registers that
1715 die in this insn as a reload register. We can if it is of the right
1716 class and does not appear in the value being output-reloaded. */
1718 static void
1719 combine_reloads (void)
1721 int i, regno;
1722 int output_reload = -1;
1723 int secondary_out = -1;
1724 rtx note;
1726 /* Find the output reload; return unless there is exactly one
1727 and that one is mandatory. */
1729 for (i = 0; i < n_reloads; i++)
1730 if (rld[i].out != 0)
1732 if (output_reload >= 0)
1733 return;
1734 output_reload = i;
1737 if (output_reload < 0 || rld[output_reload].optional)
1738 return;
1740 /* An input-output reload isn't combinable. */
1742 if (rld[output_reload].in != 0)
1743 return;
1745 /* If this reload is for an earlyclobber operand, we can't do anything. */
1746 if (earlyclobber_operand_p (rld[output_reload].out))
1747 return;
1749 /* If there is a reload for part of the address of this operand, we would
1750 need to change it to RELOAD_FOR_OTHER_ADDRESS. But that would extend
1751 its life to the point where doing this combine would not lower the
1752 number of spill registers needed. */
1753 for (i = 0; i < n_reloads; i++)
1754 if ((rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
1755 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
1756 && rld[i].opnum == rld[output_reload].opnum)
1757 return;
1759 /* Check each input reload; can we combine it? */
1761 for (i = 0; i < n_reloads; i++)
1762 if (rld[i].in && ! rld[i].optional && ! rld[i].nocombine
1763 /* Life span of this reload must not extend past main insn. */
1764 && rld[i].when_needed != RELOAD_FOR_OUTPUT_ADDRESS
1765 && rld[i].when_needed != RELOAD_FOR_OUTADDR_ADDRESS
1766 && rld[i].when_needed != RELOAD_OTHER
1767 && (CLASS_MAX_NREGS (rld[i].rclass, rld[i].inmode)
1768 == CLASS_MAX_NREGS (rld[output_reload].rclass,
1769 rld[output_reload].outmode))
1770 && rld[i].inc == 0
1771 && rld[i].reg_rtx == 0
1772 #ifdef SECONDARY_MEMORY_NEEDED
1773 /* Don't combine two reloads with different secondary
1774 memory locations. */
1775 && (secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[i].opnum] == 0
1776 || secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum] == 0
1777 || rtx_equal_p (secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[i].opnum],
1778 secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum]))
1779 #endif
1780 && (targetm.small_register_classes_for_mode_p (VOIDmode)
1781 ? (rld[i].rclass == rld[output_reload].rclass)
1782 : (reg_class_subset_p (rld[i].rclass,
1783 rld[output_reload].rclass)
1784 || reg_class_subset_p (rld[output_reload].rclass,
1785 rld[i].rclass)))
1786 && (MATCHES (rld[i].in, rld[output_reload].out)
1787 /* Args reversed because the first arg seems to be
1788 the one that we imagine being modified
1789 while the second is the one that might be affected. */
1790 || (! reg_overlap_mentioned_for_reload_p (rld[output_reload].out,
1791 rld[i].in)
1792 /* However, if the input is a register that appears inside
1793 the output, then we also can't share.
1794 Imagine (set (mem (reg 69)) (plus (reg 69) ...)).
1795 If the same reload reg is used for both reg 69 and the
1796 result to be stored in memory, then that result
1797 will clobber the address of the memory ref. */
1798 && ! (REG_P (rld[i].in)
1799 && reg_overlap_mentioned_for_reload_p (rld[i].in,
1800 rld[output_reload].out))))
1801 && ! reload_inner_reg_of_subreg (rld[i].in, rld[i].inmode,
1802 rld[i].when_needed != RELOAD_FOR_INPUT)
1803 && (reg_class_size[(int) rld[i].rclass]
1804 || targetm.small_register_classes_for_mode_p (VOIDmode))
1805 /* We will allow making things slightly worse by combining an
1806 input and an output, but no worse than that. */
1807 && (rld[i].when_needed == RELOAD_FOR_INPUT
1808 || rld[i].when_needed == RELOAD_FOR_OUTPUT))
1810 int j;
1812 /* We have found a reload to combine with! */
1813 rld[i].out = rld[output_reload].out;
1814 rld[i].out_reg = rld[output_reload].out_reg;
1815 rld[i].outmode = rld[output_reload].outmode;
1816 /* Mark the old output reload as inoperative. */
1817 rld[output_reload].out = 0;
1818 /* The combined reload is needed for the entire insn. */
1819 rld[i].when_needed = RELOAD_OTHER;
1820 /* If the output reload had a secondary reload, copy it. */
1821 if (rld[output_reload].secondary_out_reload != -1)
1823 rld[i].secondary_out_reload
1824 = rld[output_reload].secondary_out_reload;
1825 rld[i].secondary_out_icode
1826 = rld[output_reload].secondary_out_icode;
1829 #ifdef SECONDARY_MEMORY_NEEDED
1830 /* Copy any secondary MEM. */
1831 if (secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum] != 0)
1832 secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[i].opnum]
1833 = secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum];
1834 #endif
1835 /* If required, minimize the register class. */
1836 if (reg_class_subset_p (rld[output_reload].rclass,
1837 rld[i].rclass))
1838 rld[i].rclass = rld[output_reload].rclass;
1840 /* Transfer all replacements from the old reload to the combined. */
1841 for (j = 0; j < n_replacements; j++)
1842 if (replacements[j].what == output_reload)
1843 replacements[j].what = i;
1845 return;
1848 /* If this insn has only one operand that is modified or written (assumed
1849 to be the first), it must be the one corresponding to this reload. It
1850 is safe to use anything that dies in this insn for that output provided
1851 that it does not occur in the output (we already know it isn't an
1852 earlyclobber. If this is an asm insn, give up. */
1854 if (INSN_CODE (this_insn) == -1)
1855 return;
1857 for (i = 1; i < insn_data[INSN_CODE (this_insn)].n_operands; i++)
1858 if (insn_data[INSN_CODE (this_insn)].operand[i].constraint[0] == '='
1859 || insn_data[INSN_CODE (this_insn)].operand[i].constraint[0] == '+')
1860 return;
1862 /* See if some hard register that dies in this insn and is not used in
1863 the output is the right class. Only works if the register we pick
1864 up can fully hold our output reload. */
1865 for (note = REG_NOTES (this_insn); note; note = XEXP (note, 1))
1866 if (REG_NOTE_KIND (note) == REG_DEAD
1867 && REG_P (XEXP (note, 0))
1868 && !reg_overlap_mentioned_for_reload_p (XEXP (note, 0),
1869 rld[output_reload].out)
1870 && (regno = REGNO (XEXP (note, 0))) < FIRST_PSEUDO_REGISTER
1871 && HARD_REGNO_MODE_OK (regno, rld[output_reload].outmode)
1872 && TEST_HARD_REG_BIT (reg_class_contents[(int) rld[output_reload].rclass],
1873 regno)
1874 && (hard_regno_nregs[regno][rld[output_reload].outmode]
1875 <= hard_regno_nregs[regno][GET_MODE (XEXP (note, 0))])
1876 /* Ensure that a secondary or tertiary reload for this output
1877 won't want this register. */
1878 && ((secondary_out = rld[output_reload].secondary_out_reload) == -1
1879 || (!(TEST_HARD_REG_BIT
1880 (reg_class_contents[(int) rld[secondary_out].rclass], regno))
1881 && ((secondary_out = rld[secondary_out].secondary_out_reload) == -1
1882 || !(TEST_HARD_REG_BIT
1883 (reg_class_contents[(int) rld[secondary_out].rclass],
1884 regno)))))
1885 && !fixed_regs[regno]
1886 /* Check that a former pseudo is valid; see find_dummy_reload. */
1887 && (ORIGINAL_REGNO (XEXP (note, 0)) < FIRST_PSEUDO_REGISTER
1888 || (!bitmap_bit_p (DF_LR_OUT (ENTRY_BLOCK_PTR),
1889 ORIGINAL_REGNO (XEXP (note, 0)))
1890 && hard_regno_nregs[regno][GET_MODE (XEXP (note, 0))] == 1)))
1892 rld[output_reload].reg_rtx
1893 = gen_rtx_REG (rld[output_reload].outmode, regno);
1894 return;
1898 /* Try to find a reload register for an in-out reload (expressions IN and OUT).
1899 See if one of IN and OUT is a register that may be used;
1900 this is desirable since a spill-register won't be needed.
1901 If so, return the register rtx that proves acceptable.
1903 INLOC and OUTLOC are locations where IN and OUT appear in the insn.
1904 RCLASS is the register class required for the reload.
1906 If FOR_REAL is >= 0, it is the number of the reload,
1907 and in some cases when it can be discovered that OUT doesn't need
1908 to be computed, clear out rld[FOR_REAL].out.
1910 If FOR_REAL is -1, this should not be done, because this call
1911 is just to see if a register can be found, not to find and install it.
1913 EARLYCLOBBER is nonzero if OUT is an earlyclobber operand. This
1914 puts an additional constraint on being able to use IN for OUT since
1915 IN must not appear elsewhere in the insn (it is assumed that IN itself
1916 is safe from the earlyclobber). */
1918 static rtx
1919 find_dummy_reload (rtx real_in, rtx real_out, rtx *inloc, rtx *outloc,
1920 enum machine_mode inmode, enum machine_mode outmode,
1921 reg_class_t rclass, int for_real, int earlyclobber)
1923 rtx in = real_in;
1924 rtx out = real_out;
1925 int in_offset = 0;
1926 int out_offset = 0;
1927 rtx value = 0;
1929 /* If operands exceed a word, we can't use either of them
1930 unless they have the same size. */
1931 if (GET_MODE_SIZE (outmode) != GET_MODE_SIZE (inmode)
1932 && (GET_MODE_SIZE (outmode) > UNITS_PER_WORD
1933 || GET_MODE_SIZE (inmode) > UNITS_PER_WORD))
1934 return 0;
1936 /* Note that {in,out}_offset are needed only when 'in' or 'out'
1937 respectively refers to a hard register. */
1939 /* Find the inside of any subregs. */
1940 while (GET_CODE (out) == SUBREG)
1942 if (REG_P (SUBREG_REG (out))
1943 && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER)
1944 out_offset += subreg_regno_offset (REGNO (SUBREG_REG (out)),
1945 GET_MODE (SUBREG_REG (out)),
1946 SUBREG_BYTE (out),
1947 GET_MODE (out));
1948 out = SUBREG_REG (out);
1950 while (GET_CODE (in) == SUBREG)
1952 if (REG_P (SUBREG_REG (in))
1953 && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER)
1954 in_offset += subreg_regno_offset (REGNO (SUBREG_REG (in)),
1955 GET_MODE (SUBREG_REG (in)),
1956 SUBREG_BYTE (in),
1957 GET_MODE (in));
1958 in = SUBREG_REG (in);
1961 /* Narrow down the reg class, the same way push_reload will;
1962 otherwise we might find a dummy now, but push_reload won't. */
1964 reg_class_t preferred_class = targetm.preferred_reload_class (in, rclass);
1965 if (preferred_class != NO_REGS)
1966 rclass = (enum reg_class) preferred_class;
1969 /* See if OUT will do. */
1970 if (REG_P (out)
1971 && REGNO (out) < FIRST_PSEUDO_REGISTER)
1973 unsigned int regno = REGNO (out) + out_offset;
1974 unsigned int nwords = hard_regno_nregs[regno][outmode];
1975 rtx saved_rtx;
1977 /* When we consider whether the insn uses OUT,
1978 ignore references within IN. They don't prevent us
1979 from copying IN into OUT, because those refs would
1980 move into the insn that reloads IN.
1982 However, we only ignore IN in its role as this reload.
1983 If the insn uses IN elsewhere and it contains OUT,
1984 that counts. We can't be sure it's the "same" operand
1985 so it might not go through this reload. */
1986 saved_rtx = *inloc;
1987 *inloc = const0_rtx;
1989 if (regno < FIRST_PSEUDO_REGISTER
1990 && HARD_REGNO_MODE_OK (regno, outmode)
1991 && ! refers_to_regno_for_reload_p (regno, regno + nwords,
1992 PATTERN (this_insn), outloc))
1994 unsigned int i;
1996 for (i = 0; i < nwords; i++)
1997 if (! TEST_HARD_REG_BIT (reg_class_contents[(int) rclass],
1998 regno + i))
1999 break;
2001 if (i == nwords)
2003 if (REG_P (real_out))
2004 value = real_out;
2005 else
2006 value = gen_rtx_REG (outmode, regno);
2010 *inloc = saved_rtx;
2013 /* Consider using IN if OUT was not acceptable
2014 or if OUT dies in this insn (like the quotient in a divmod insn).
2015 We can't use IN unless it is dies in this insn,
2016 which means we must know accurately which hard regs are live.
2017 Also, the result can't go in IN if IN is used within OUT,
2018 or if OUT is an earlyclobber and IN appears elsewhere in the insn. */
2019 if (hard_regs_live_known
2020 && REG_P (in)
2021 && REGNO (in) < FIRST_PSEUDO_REGISTER
2022 && (value == 0
2023 || find_reg_note (this_insn, REG_UNUSED, real_out))
2024 && find_reg_note (this_insn, REG_DEAD, real_in)
2025 && !fixed_regs[REGNO (in)]
2026 && HARD_REGNO_MODE_OK (REGNO (in),
2027 /* The only case where out and real_out might
2028 have different modes is where real_out
2029 is a subreg, and in that case, out
2030 has a real mode. */
2031 (GET_MODE (out) != VOIDmode
2032 ? GET_MODE (out) : outmode))
2033 && (ORIGINAL_REGNO (in) < FIRST_PSEUDO_REGISTER
2034 /* However only do this if we can be sure that this input
2035 operand doesn't correspond with an uninitialized pseudo.
2036 global can assign some hardreg to it that is the same as
2037 the one assigned to a different, also live pseudo (as it
2038 can ignore the conflict). We must never introduce writes
2039 to such hardregs, as they would clobber the other live
2040 pseudo. See PR 20973. */
2041 || (!bitmap_bit_p (DF_LR_OUT (ENTRY_BLOCK_PTR),
2042 ORIGINAL_REGNO (in))
2043 /* Similarly, only do this if we can be sure that the death
2044 note is still valid. global can assign some hardreg to
2045 the pseudo referenced in the note and simultaneously a
2046 subword of this hardreg to a different, also live pseudo,
2047 because only another subword of the hardreg is actually
2048 used in the insn. This cannot happen if the pseudo has
2049 been assigned exactly one hardreg. See PR 33732. */
2050 && hard_regno_nregs[REGNO (in)][GET_MODE (in)] == 1)))
2052 unsigned int regno = REGNO (in) + in_offset;
2053 unsigned int nwords = hard_regno_nregs[regno][inmode];
2055 if (! refers_to_regno_for_reload_p (regno, regno + nwords, out, (rtx*) 0)
2056 && ! hard_reg_set_here_p (regno, regno + nwords,
2057 PATTERN (this_insn))
2058 && (! earlyclobber
2059 || ! refers_to_regno_for_reload_p (regno, regno + nwords,
2060 PATTERN (this_insn), inloc)))
2062 unsigned int i;
2064 for (i = 0; i < nwords; i++)
2065 if (! TEST_HARD_REG_BIT (reg_class_contents[(int) rclass],
2066 regno + i))
2067 break;
2069 if (i == nwords)
2071 /* If we were going to use OUT as the reload reg
2072 and changed our mind, it means OUT is a dummy that
2073 dies here. So don't bother copying value to it. */
2074 if (for_real >= 0 && value == real_out)
2075 rld[for_real].out = 0;
2076 if (REG_P (real_in))
2077 value = real_in;
2078 else
2079 value = gen_rtx_REG (inmode, regno);
2084 return value;
2087 /* This page contains subroutines used mainly for determining
2088 whether the IN or an OUT of a reload can serve as the
2089 reload register. */
2091 /* Return 1 if X is an operand of an insn that is being earlyclobbered. */
2094 earlyclobber_operand_p (rtx x)
2096 int i;
2098 for (i = 0; i < n_earlyclobbers; i++)
2099 if (reload_earlyclobbers[i] == x)
2100 return 1;
2102 return 0;
2105 /* Return 1 if expression X alters a hard reg in the range
2106 from BEG_REGNO (inclusive) to END_REGNO (exclusive),
2107 either explicitly or in the guise of a pseudo-reg allocated to REGNO.
2108 X should be the body of an instruction. */
2110 static int
2111 hard_reg_set_here_p (unsigned int beg_regno, unsigned int end_regno, rtx x)
2113 if (GET_CODE (x) == SET || GET_CODE (x) == CLOBBER)
2115 rtx op0 = SET_DEST (x);
2117 while (GET_CODE (op0) == SUBREG)
2118 op0 = SUBREG_REG (op0);
2119 if (REG_P (op0))
2121 unsigned int r = REGNO (op0);
2123 /* See if this reg overlaps range under consideration. */
2124 if (r < end_regno
2125 && end_hard_regno (GET_MODE (op0), r) > beg_regno)
2126 return 1;
2129 else if (GET_CODE (x) == PARALLEL)
2131 int i = XVECLEN (x, 0) - 1;
2133 for (; i >= 0; i--)
2134 if (hard_reg_set_here_p (beg_regno, end_regno, XVECEXP (x, 0, i)))
2135 return 1;
2138 return 0;
2141 /* Return 1 if ADDR is a valid memory address for mode MODE
2142 in address space AS, and check that each pseudo reg has the
2143 proper kind of hard reg. */
2146 strict_memory_address_addr_space_p (enum machine_mode mode ATTRIBUTE_UNUSED,
2147 rtx addr, addr_space_t as)
2149 #ifdef GO_IF_LEGITIMATE_ADDRESS
2150 gcc_assert (ADDR_SPACE_GENERIC_P (as));
2151 GO_IF_LEGITIMATE_ADDRESS (mode, addr, win);
2152 return 0;
2154 win:
2155 return 1;
2156 #else
2157 return targetm.addr_space.legitimate_address_p (mode, addr, 1, as);
2158 #endif
2161 /* Like rtx_equal_p except that it allows a REG and a SUBREG to match
2162 if they are the same hard reg, and has special hacks for
2163 autoincrement and autodecrement.
2164 This is specifically intended for find_reloads to use
2165 in determining whether two operands match.
2166 X is the operand whose number is the lower of the two.
2168 The value is 2 if Y contains a pre-increment that matches
2169 a non-incrementing address in X. */
2171 /* ??? To be completely correct, we should arrange to pass
2172 for X the output operand and for Y the input operand.
2173 For now, we assume that the output operand has the lower number
2174 because that is natural in (SET output (... input ...)). */
2177 operands_match_p (rtx x, rtx y)
2179 int i;
2180 RTX_CODE code = GET_CODE (x);
2181 const char *fmt;
2182 int success_2;
2184 if (x == y)
2185 return 1;
2186 if ((code == REG || (code == SUBREG && REG_P (SUBREG_REG (x))))
2187 && (REG_P (y) || (GET_CODE (y) == SUBREG
2188 && REG_P (SUBREG_REG (y)))))
2190 int j;
2192 if (code == SUBREG)
2194 i = REGNO (SUBREG_REG (x));
2195 if (i >= FIRST_PSEUDO_REGISTER)
2196 goto slow;
2197 i += subreg_regno_offset (REGNO (SUBREG_REG (x)),
2198 GET_MODE (SUBREG_REG (x)),
2199 SUBREG_BYTE (x),
2200 GET_MODE (x));
2202 else
2203 i = REGNO (x);
2205 if (GET_CODE (y) == SUBREG)
2207 j = REGNO (SUBREG_REG (y));
2208 if (j >= FIRST_PSEUDO_REGISTER)
2209 goto slow;
2210 j += subreg_regno_offset (REGNO (SUBREG_REG (y)),
2211 GET_MODE (SUBREG_REG (y)),
2212 SUBREG_BYTE (y),
2213 GET_MODE (y));
2215 else
2216 j = REGNO (y);
2218 /* On a WORDS_BIG_ENDIAN machine, point to the last register of a
2219 multiple hard register group of scalar integer registers, so that
2220 for example (reg:DI 0) and (reg:SI 1) will be considered the same
2221 register. */
2222 if (WORDS_BIG_ENDIAN && GET_MODE_SIZE (GET_MODE (x)) > UNITS_PER_WORD
2223 && SCALAR_INT_MODE_P (GET_MODE (x))
2224 && i < FIRST_PSEUDO_REGISTER)
2225 i += hard_regno_nregs[i][GET_MODE (x)] - 1;
2226 if (WORDS_BIG_ENDIAN && GET_MODE_SIZE (GET_MODE (y)) > UNITS_PER_WORD
2227 && SCALAR_INT_MODE_P (GET_MODE (y))
2228 && j < FIRST_PSEUDO_REGISTER)
2229 j += hard_regno_nregs[j][GET_MODE (y)] - 1;
2231 return i == j;
2233 /* If two operands must match, because they are really a single
2234 operand of an assembler insn, then two postincrements are invalid
2235 because the assembler insn would increment only once.
2236 On the other hand, a postincrement matches ordinary indexing
2237 if the postincrement is the output operand. */
2238 if (code == POST_DEC || code == POST_INC || code == POST_MODIFY)
2239 return operands_match_p (XEXP (x, 0), y);
2240 /* Two preincrements are invalid
2241 because the assembler insn would increment only once.
2242 On the other hand, a preincrement matches ordinary indexing
2243 if the preincrement is the input operand.
2244 In this case, return 2, since some callers need to do special
2245 things when this happens. */
2246 if (GET_CODE (y) == PRE_DEC || GET_CODE (y) == PRE_INC
2247 || GET_CODE (y) == PRE_MODIFY)
2248 return operands_match_p (x, XEXP (y, 0)) ? 2 : 0;
2250 slow:
2252 /* Now we have disposed of all the cases in which different rtx codes
2253 can match. */
2254 if (code != GET_CODE (y))
2255 return 0;
2257 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent. */
2258 if (GET_MODE (x) != GET_MODE (y))
2259 return 0;
2261 /* MEMs refering to different address space are not equivalent. */
2262 if (code == MEM && MEM_ADDR_SPACE (x) != MEM_ADDR_SPACE (y))
2263 return 0;
2265 switch (code)
2267 case CONST_INT:
2268 case CONST_DOUBLE:
2269 case CONST_FIXED:
2270 return 0;
2272 case LABEL_REF:
2273 return XEXP (x, 0) == XEXP (y, 0);
2274 case SYMBOL_REF:
2275 return XSTR (x, 0) == XSTR (y, 0);
2277 default:
2278 break;
2281 /* Compare the elements. If any pair of corresponding elements
2282 fail to match, return 0 for the whole things. */
2284 success_2 = 0;
2285 fmt = GET_RTX_FORMAT (code);
2286 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2288 int val, j;
2289 switch (fmt[i])
2291 case 'w':
2292 if (XWINT (x, i) != XWINT (y, i))
2293 return 0;
2294 break;
2296 case 'i':
2297 if (XINT (x, i) != XINT (y, i))
2298 return 0;
2299 break;
2301 case 'e':
2302 val = operands_match_p (XEXP (x, i), XEXP (y, i));
2303 if (val == 0)
2304 return 0;
2305 /* If any subexpression returns 2,
2306 we should return 2 if we are successful. */
2307 if (val == 2)
2308 success_2 = 1;
2309 break;
2311 case '0':
2312 break;
2314 case 'E':
2315 if (XVECLEN (x, i) != XVECLEN (y, i))
2316 return 0;
2317 for (j = XVECLEN (x, i) - 1; j >= 0; --j)
2319 val = operands_match_p (XVECEXP (x, i, j), XVECEXP (y, i, j));
2320 if (val == 0)
2321 return 0;
2322 if (val == 2)
2323 success_2 = 1;
2325 break;
2327 /* It is believed that rtx's at this level will never
2328 contain anything but integers and other rtx's,
2329 except for within LABEL_REFs and SYMBOL_REFs. */
2330 default:
2331 gcc_unreachable ();
2334 return 1 + success_2;
2337 /* Describe the range of registers or memory referenced by X.
2338 If X is a register, set REG_FLAG and put the first register
2339 number into START and the last plus one into END.
2340 If X is a memory reference, put a base address into BASE
2341 and a range of integer offsets into START and END.
2342 If X is pushing on the stack, we can assume it causes no trouble,
2343 so we set the SAFE field. */
2345 static struct decomposition
2346 decompose (rtx x)
2348 struct decomposition val;
2349 int all_const = 0;
2351 memset (&val, 0, sizeof (val));
2353 switch (GET_CODE (x))
2355 case MEM:
2357 rtx base = NULL_RTX, offset = 0;
2358 rtx addr = XEXP (x, 0);
2360 if (GET_CODE (addr) == PRE_DEC || GET_CODE (addr) == PRE_INC
2361 || GET_CODE (addr) == POST_DEC || GET_CODE (addr) == POST_INC)
2363 val.base = XEXP (addr, 0);
2364 val.start = -GET_MODE_SIZE (GET_MODE (x));
2365 val.end = GET_MODE_SIZE (GET_MODE (x));
2366 val.safe = REGNO (val.base) == STACK_POINTER_REGNUM;
2367 return val;
2370 if (GET_CODE (addr) == PRE_MODIFY || GET_CODE (addr) == POST_MODIFY)
2372 if (GET_CODE (XEXP (addr, 1)) == PLUS
2373 && XEXP (addr, 0) == XEXP (XEXP (addr, 1), 0)
2374 && CONSTANT_P (XEXP (XEXP (addr, 1), 1)))
2376 val.base = XEXP (addr, 0);
2377 val.start = -INTVAL (XEXP (XEXP (addr, 1), 1));
2378 val.end = INTVAL (XEXP (XEXP (addr, 1), 1));
2379 val.safe = REGNO (val.base) == STACK_POINTER_REGNUM;
2380 return val;
2384 if (GET_CODE (addr) == CONST)
2386 addr = XEXP (addr, 0);
2387 all_const = 1;
2389 if (GET_CODE (addr) == PLUS)
2391 if (CONSTANT_P (XEXP (addr, 0)))
2393 base = XEXP (addr, 1);
2394 offset = XEXP (addr, 0);
2396 else if (CONSTANT_P (XEXP (addr, 1)))
2398 base = XEXP (addr, 0);
2399 offset = XEXP (addr, 1);
2403 if (offset == 0)
2405 base = addr;
2406 offset = const0_rtx;
2408 if (GET_CODE (offset) == CONST)
2409 offset = XEXP (offset, 0);
2410 if (GET_CODE (offset) == PLUS)
2412 if (CONST_INT_P (XEXP (offset, 0)))
2414 base = gen_rtx_PLUS (GET_MODE (base), base, XEXP (offset, 1));
2415 offset = XEXP (offset, 0);
2417 else if (CONST_INT_P (XEXP (offset, 1)))
2419 base = gen_rtx_PLUS (GET_MODE (base), base, XEXP (offset, 0));
2420 offset = XEXP (offset, 1);
2422 else
2424 base = gen_rtx_PLUS (GET_MODE (base), base, offset);
2425 offset = const0_rtx;
2428 else if (!CONST_INT_P (offset))
2430 base = gen_rtx_PLUS (GET_MODE (base), base, offset);
2431 offset = const0_rtx;
2434 if (all_const && GET_CODE (base) == PLUS)
2435 base = gen_rtx_CONST (GET_MODE (base), base);
2437 gcc_assert (CONST_INT_P (offset));
2439 val.start = INTVAL (offset);
2440 val.end = val.start + GET_MODE_SIZE (GET_MODE (x));
2441 val.base = base;
2443 break;
2445 case REG:
2446 val.reg_flag = 1;
2447 val.start = true_regnum (x);
2448 if (val.start < 0 || val.start >= FIRST_PSEUDO_REGISTER)
2450 /* A pseudo with no hard reg. */
2451 val.start = REGNO (x);
2452 val.end = val.start + 1;
2454 else
2455 /* A hard reg. */
2456 val.end = end_hard_regno (GET_MODE (x), val.start);
2457 break;
2459 case SUBREG:
2460 if (!REG_P (SUBREG_REG (x)))
2461 /* This could be more precise, but it's good enough. */
2462 return decompose (SUBREG_REG (x));
2463 val.reg_flag = 1;
2464 val.start = true_regnum (x);
2465 if (val.start < 0 || val.start >= FIRST_PSEUDO_REGISTER)
2466 return decompose (SUBREG_REG (x));
2467 else
2468 /* A hard reg. */
2469 val.end = val.start + subreg_nregs (x);
2470 break;
2472 case SCRATCH:
2473 /* This hasn't been assigned yet, so it can't conflict yet. */
2474 val.safe = 1;
2475 break;
2477 default:
2478 gcc_assert (CONSTANT_P (x));
2479 val.safe = 1;
2480 break;
2482 return val;
2485 /* Return 1 if altering Y will not modify the value of X.
2486 Y is also described by YDATA, which should be decompose (Y). */
2488 static int
2489 immune_p (rtx x, rtx y, struct decomposition ydata)
2491 struct decomposition xdata;
2493 if (ydata.reg_flag)
2494 return !refers_to_regno_for_reload_p (ydata.start, ydata.end, x, (rtx*) 0);
2495 if (ydata.safe)
2496 return 1;
2498 gcc_assert (MEM_P (y));
2499 /* If Y is memory and X is not, Y can't affect X. */
2500 if (!MEM_P (x))
2501 return 1;
2503 xdata = decompose (x);
2505 if (! rtx_equal_p (xdata.base, ydata.base))
2507 /* If bases are distinct symbolic constants, there is no overlap. */
2508 if (CONSTANT_P (xdata.base) && CONSTANT_P (ydata.base))
2509 return 1;
2510 /* Constants and stack slots never overlap. */
2511 if (CONSTANT_P (xdata.base)
2512 && (ydata.base == frame_pointer_rtx
2513 || ydata.base == hard_frame_pointer_rtx
2514 || ydata.base == stack_pointer_rtx))
2515 return 1;
2516 if (CONSTANT_P (ydata.base)
2517 && (xdata.base == frame_pointer_rtx
2518 || xdata.base == hard_frame_pointer_rtx
2519 || xdata.base == stack_pointer_rtx))
2520 return 1;
2521 /* If either base is variable, we don't know anything. */
2522 return 0;
2525 return (xdata.start >= ydata.end || ydata.start >= xdata.end);
2528 /* Similar, but calls decompose. */
2531 safe_from_earlyclobber (rtx op, rtx clobber)
2533 struct decomposition early_data;
2535 early_data = decompose (clobber);
2536 return immune_p (op, clobber, early_data);
2539 /* Main entry point of this file: search the body of INSN
2540 for values that need reloading and record them with push_reload.
2541 REPLACE nonzero means record also where the values occur
2542 so that subst_reloads can be used.
2544 IND_LEVELS says how many levels of indirection are supported by this
2545 machine; a value of zero means that a memory reference is not a valid
2546 memory address.
2548 LIVE_KNOWN says we have valid information about which hard
2549 regs are live at each point in the program; this is true when
2550 we are called from global_alloc but false when stupid register
2551 allocation has been done.
2553 RELOAD_REG_P if nonzero is a vector indexed by hard reg number
2554 which is nonnegative if the reg has been commandeered for reloading into.
2555 It is copied into STATIC_RELOAD_REG_P and referenced from there
2556 by various subroutines.
2558 Return TRUE if some operands need to be changed, because of swapping
2559 commutative operands, reg_equiv_address substitution, or whatever. */
2562 find_reloads (rtx insn, int replace, int ind_levels, int live_known,
2563 short *reload_reg_p)
2565 int insn_code_number;
2566 int i, j;
2567 int noperands;
2568 /* These start out as the constraints for the insn
2569 and they are chewed up as we consider alternatives. */
2570 const char *constraints[MAX_RECOG_OPERANDS];
2571 /* These are the preferred classes for an operand, or NO_REGS if it isn't
2572 a register. */
2573 enum reg_class preferred_class[MAX_RECOG_OPERANDS];
2574 char pref_or_nothing[MAX_RECOG_OPERANDS];
2575 /* Nonzero for a MEM operand whose entire address needs a reload.
2576 May be -1 to indicate the entire address may or may not need a reload. */
2577 int address_reloaded[MAX_RECOG_OPERANDS];
2578 /* Nonzero for an address operand that needs to be completely reloaded.
2579 May be -1 to indicate the entire operand may or may not need a reload. */
2580 int address_operand_reloaded[MAX_RECOG_OPERANDS];
2581 /* Value of enum reload_type to use for operand. */
2582 enum reload_type operand_type[MAX_RECOG_OPERANDS];
2583 /* Value of enum reload_type to use within address of operand. */
2584 enum reload_type address_type[MAX_RECOG_OPERANDS];
2585 /* Save the usage of each operand. */
2586 enum reload_usage { RELOAD_READ, RELOAD_READ_WRITE, RELOAD_WRITE } modified[MAX_RECOG_OPERANDS];
2587 int no_input_reloads = 0, no_output_reloads = 0;
2588 int n_alternatives;
2589 reg_class_t this_alternative[MAX_RECOG_OPERANDS];
2590 char this_alternative_match_win[MAX_RECOG_OPERANDS];
2591 char this_alternative_win[MAX_RECOG_OPERANDS];
2592 char this_alternative_offmemok[MAX_RECOG_OPERANDS];
2593 char this_alternative_earlyclobber[MAX_RECOG_OPERANDS];
2594 int this_alternative_matches[MAX_RECOG_OPERANDS];
2595 int swapped;
2596 reg_class_t goal_alternative[MAX_RECOG_OPERANDS];
2597 int this_alternative_number;
2598 int goal_alternative_number = 0;
2599 int operand_reloadnum[MAX_RECOG_OPERANDS];
2600 int goal_alternative_matches[MAX_RECOG_OPERANDS];
2601 int goal_alternative_matched[MAX_RECOG_OPERANDS];
2602 char goal_alternative_match_win[MAX_RECOG_OPERANDS];
2603 char goal_alternative_win[MAX_RECOG_OPERANDS];
2604 char goal_alternative_offmemok[MAX_RECOG_OPERANDS];
2605 char goal_alternative_earlyclobber[MAX_RECOG_OPERANDS];
2606 int goal_alternative_swapped;
2607 int best;
2608 int commutative;
2609 char operands_match[MAX_RECOG_OPERANDS][MAX_RECOG_OPERANDS];
2610 rtx substed_operand[MAX_RECOG_OPERANDS];
2611 rtx body = PATTERN (insn);
2612 rtx set = single_set (insn);
2613 int goal_earlyclobber = 0, this_earlyclobber;
2614 enum machine_mode operand_mode[MAX_RECOG_OPERANDS];
2615 int retval = 0;
2617 this_insn = insn;
2618 n_reloads = 0;
2619 n_replacements = 0;
2620 n_earlyclobbers = 0;
2621 replace_reloads = replace;
2622 hard_regs_live_known = live_known;
2623 static_reload_reg_p = reload_reg_p;
2625 /* JUMP_INSNs and CALL_INSNs are not allowed to have any output reloads;
2626 neither are insns that SET cc0. Insns that use CC0 are not allowed
2627 to have any input reloads. */
2628 if (JUMP_P (insn) || CALL_P (insn))
2629 no_output_reloads = 1;
2631 #ifdef HAVE_cc0
2632 if (reg_referenced_p (cc0_rtx, PATTERN (insn)))
2633 no_input_reloads = 1;
2634 if (reg_set_p (cc0_rtx, PATTERN (insn)))
2635 no_output_reloads = 1;
2636 #endif
2638 #ifdef SECONDARY_MEMORY_NEEDED
2639 /* The eliminated forms of any secondary memory locations are per-insn, so
2640 clear them out here. */
2642 if (secondary_memlocs_elim_used)
2644 memset (secondary_memlocs_elim, 0,
2645 sizeof (secondary_memlocs_elim[0]) * secondary_memlocs_elim_used);
2646 secondary_memlocs_elim_used = 0;
2648 #endif
2650 /* Dispose quickly of (set (reg..) (reg..)) if both have hard regs and it
2651 is cheap to move between them. If it is not, there may not be an insn
2652 to do the copy, so we may need a reload. */
2653 if (GET_CODE (body) == SET
2654 && REG_P (SET_DEST (body))
2655 && REGNO (SET_DEST (body)) < FIRST_PSEUDO_REGISTER
2656 && REG_P (SET_SRC (body))
2657 && REGNO (SET_SRC (body)) < FIRST_PSEUDO_REGISTER
2658 && register_move_cost (GET_MODE (SET_SRC (body)),
2659 REGNO_REG_CLASS (REGNO (SET_SRC (body))),
2660 REGNO_REG_CLASS (REGNO (SET_DEST (body)))) == 2)
2661 return 0;
2663 extract_insn (insn);
2665 noperands = reload_n_operands = recog_data.n_operands;
2666 n_alternatives = recog_data.n_alternatives;
2668 /* Just return "no reloads" if insn has no operands with constraints. */
2669 if (noperands == 0 || n_alternatives == 0)
2670 return 0;
2672 insn_code_number = INSN_CODE (insn);
2673 this_insn_is_asm = insn_code_number < 0;
2675 memcpy (operand_mode, recog_data.operand_mode,
2676 noperands * sizeof (enum machine_mode));
2677 memcpy (constraints, recog_data.constraints,
2678 noperands * sizeof (const char *));
2680 commutative = -1;
2682 /* If we will need to know, later, whether some pair of operands
2683 are the same, we must compare them now and save the result.
2684 Reloading the base and index registers will clobber them
2685 and afterward they will fail to match. */
2687 for (i = 0; i < noperands; i++)
2689 const char *p;
2690 int c;
2691 char *end;
2693 substed_operand[i] = recog_data.operand[i];
2694 p = constraints[i];
2696 modified[i] = RELOAD_READ;
2698 /* Scan this operand's constraint to see if it is an output operand,
2699 an in-out operand, is commutative, or should match another. */
2701 while ((c = *p))
2703 p += CONSTRAINT_LEN (c, p);
2704 switch (c)
2706 case '=':
2707 modified[i] = RELOAD_WRITE;
2708 break;
2709 case '+':
2710 modified[i] = RELOAD_READ_WRITE;
2711 break;
2712 case '%':
2714 /* The last operand should not be marked commutative. */
2715 gcc_assert (i != noperands - 1);
2717 /* We currently only support one commutative pair of
2718 operands. Some existing asm code currently uses more
2719 than one pair. Previously, that would usually work,
2720 but sometimes it would crash the compiler. We
2721 continue supporting that case as well as we can by
2722 silently ignoring all but the first pair. In the
2723 future we may handle it correctly. */
2724 if (commutative < 0)
2725 commutative = i;
2726 else
2727 gcc_assert (this_insn_is_asm);
2729 break;
2730 /* Use of ISDIGIT is tempting here, but it may get expensive because
2731 of locale support we don't want. */
2732 case '0': case '1': case '2': case '3': case '4':
2733 case '5': case '6': case '7': case '8': case '9':
2735 c = strtoul (p - 1, &end, 10);
2736 p = end;
2738 operands_match[c][i]
2739 = operands_match_p (recog_data.operand[c],
2740 recog_data.operand[i]);
2742 /* An operand may not match itself. */
2743 gcc_assert (c != i);
2745 /* If C can be commuted with C+1, and C might need to match I,
2746 then C+1 might also need to match I. */
2747 if (commutative >= 0)
2749 if (c == commutative || c == commutative + 1)
2751 int other = c + (c == commutative ? 1 : -1);
2752 operands_match[other][i]
2753 = operands_match_p (recog_data.operand[other],
2754 recog_data.operand[i]);
2756 if (i == commutative || i == commutative + 1)
2758 int other = i + (i == commutative ? 1 : -1);
2759 operands_match[c][other]
2760 = operands_match_p (recog_data.operand[c],
2761 recog_data.operand[other]);
2763 /* Note that C is supposed to be less than I.
2764 No need to consider altering both C and I because in
2765 that case we would alter one into the other. */
2772 /* Examine each operand that is a memory reference or memory address
2773 and reload parts of the addresses into index registers.
2774 Also here any references to pseudo regs that didn't get hard regs
2775 but are equivalent to constants get replaced in the insn itself
2776 with those constants. Nobody will ever see them again.
2778 Finally, set up the preferred classes of each operand. */
2780 for (i = 0; i < noperands; i++)
2782 RTX_CODE code = GET_CODE (recog_data.operand[i]);
2784 address_reloaded[i] = 0;
2785 address_operand_reloaded[i] = 0;
2786 operand_type[i] = (modified[i] == RELOAD_READ ? RELOAD_FOR_INPUT
2787 : modified[i] == RELOAD_WRITE ? RELOAD_FOR_OUTPUT
2788 : RELOAD_OTHER);
2789 address_type[i]
2790 = (modified[i] == RELOAD_READ ? RELOAD_FOR_INPUT_ADDRESS
2791 : modified[i] == RELOAD_WRITE ? RELOAD_FOR_OUTPUT_ADDRESS
2792 : RELOAD_OTHER);
2794 if (*constraints[i] == 0)
2795 /* Ignore things like match_operator operands. */
2797 else if (constraints[i][0] == 'p'
2798 || EXTRA_ADDRESS_CONSTRAINT (constraints[i][0], constraints[i]))
2800 address_operand_reloaded[i]
2801 = find_reloads_address (recog_data.operand_mode[i], (rtx*) 0,
2802 recog_data.operand[i],
2803 recog_data.operand_loc[i],
2804 i, operand_type[i], ind_levels, insn);
2806 /* If we now have a simple operand where we used to have a
2807 PLUS or MULT, re-recognize and try again. */
2808 if ((OBJECT_P (*recog_data.operand_loc[i])
2809 || GET_CODE (*recog_data.operand_loc[i]) == SUBREG)
2810 && (GET_CODE (recog_data.operand[i]) == MULT
2811 || GET_CODE (recog_data.operand[i]) == PLUS))
2813 INSN_CODE (insn) = -1;
2814 retval = find_reloads (insn, replace, ind_levels, live_known,
2815 reload_reg_p);
2816 return retval;
2819 recog_data.operand[i] = *recog_data.operand_loc[i];
2820 substed_operand[i] = recog_data.operand[i];
2822 /* Address operands are reloaded in their existing mode,
2823 no matter what is specified in the machine description. */
2824 operand_mode[i] = GET_MODE (recog_data.operand[i]);
2826 else if (code == MEM)
2828 address_reloaded[i]
2829 = find_reloads_address (GET_MODE (recog_data.operand[i]),
2830 recog_data.operand_loc[i],
2831 XEXP (recog_data.operand[i], 0),
2832 &XEXP (recog_data.operand[i], 0),
2833 i, address_type[i], ind_levels, insn);
2834 recog_data.operand[i] = *recog_data.operand_loc[i];
2835 substed_operand[i] = recog_data.operand[i];
2837 else if (code == SUBREG)
2839 rtx reg = SUBREG_REG (recog_data.operand[i]);
2840 rtx op
2841 = find_reloads_toplev (recog_data.operand[i], i, address_type[i],
2842 ind_levels,
2843 set != 0
2844 && &SET_DEST (set) == recog_data.operand_loc[i],
2845 insn,
2846 &address_reloaded[i]);
2848 /* If we made a MEM to load (a part of) the stackslot of a pseudo
2849 that didn't get a hard register, emit a USE with a REG_EQUAL
2850 note in front so that we might inherit a previous, possibly
2851 wider reload. */
2853 if (replace
2854 && MEM_P (op)
2855 && REG_P (reg)
2856 && (GET_MODE_SIZE (GET_MODE (reg))
2857 >= GET_MODE_SIZE (GET_MODE (op)))
2858 && reg_equiv_constant[REGNO (reg)] == 0)
2859 set_unique_reg_note (emit_insn_before (gen_rtx_USE (VOIDmode, reg),
2860 insn),
2861 REG_EQUAL, reg_equiv_memory_loc[REGNO (reg)]);
2863 substed_operand[i] = recog_data.operand[i] = op;
2865 else if (code == PLUS || GET_RTX_CLASS (code) == RTX_UNARY)
2866 /* We can get a PLUS as an "operand" as a result of register
2867 elimination. See eliminate_regs and gen_reload. We handle
2868 a unary operator by reloading the operand. */
2869 substed_operand[i] = recog_data.operand[i]
2870 = find_reloads_toplev (recog_data.operand[i], i, address_type[i],
2871 ind_levels, 0, insn,
2872 &address_reloaded[i]);
2873 else if (code == REG)
2875 /* This is equivalent to calling find_reloads_toplev.
2876 The code is duplicated for speed.
2877 When we find a pseudo always equivalent to a constant,
2878 we replace it by the constant. We must be sure, however,
2879 that we don't try to replace it in the insn in which it
2880 is being set. */
2881 int regno = REGNO (recog_data.operand[i]);
2882 if (reg_equiv_constant[regno] != 0
2883 && (set == 0 || &SET_DEST (set) != recog_data.operand_loc[i]))
2885 /* Record the existing mode so that the check if constants are
2886 allowed will work when operand_mode isn't specified. */
2888 if (operand_mode[i] == VOIDmode)
2889 operand_mode[i] = GET_MODE (recog_data.operand[i]);
2891 substed_operand[i] = recog_data.operand[i]
2892 = reg_equiv_constant[regno];
2894 if (reg_equiv_memory_loc[regno] != 0
2895 && (reg_equiv_address[regno] != 0 || num_not_at_initial_offset))
2896 /* We need not give a valid is_set_dest argument since the case
2897 of a constant equivalence was checked above. */
2898 substed_operand[i] = recog_data.operand[i]
2899 = find_reloads_toplev (recog_data.operand[i], i, address_type[i],
2900 ind_levels, 0, insn,
2901 &address_reloaded[i]);
2903 /* If the operand is still a register (we didn't replace it with an
2904 equivalent), get the preferred class to reload it into. */
2905 code = GET_CODE (recog_data.operand[i]);
2906 preferred_class[i]
2907 = ((code == REG && REGNO (recog_data.operand[i])
2908 >= FIRST_PSEUDO_REGISTER)
2909 ? reg_preferred_class (REGNO (recog_data.operand[i]))
2910 : NO_REGS);
2911 pref_or_nothing[i]
2912 = (code == REG
2913 && REGNO (recog_data.operand[i]) >= FIRST_PSEUDO_REGISTER
2914 && reg_alternate_class (REGNO (recog_data.operand[i])) == NO_REGS);
2917 /* If this is simply a copy from operand 1 to operand 0, merge the
2918 preferred classes for the operands. */
2919 if (set != 0 && noperands >= 2 && recog_data.operand[0] == SET_DEST (set)
2920 && recog_data.operand[1] == SET_SRC (set))
2922 preferred_class[0] = preferred_class[1]
2923 = reg_class_subunion[(int) preferred_class[0]][(int) preferred_class[1]];
2924 pref_or_nothing[0] |= pref_or_nothing[1];
2925 pref_or_nothing[1] |= pref_or_nothing[0];
2928 /* Now see what we need for pseudo-regs that didn't get hard regs
2929 or got the wrong kind of hard reg. For this, we must consider
2930 all the operands together against the register constraints. */
2932 best = MAX_RECOG_OPERANDS * 2 + 600;
2934 swapped = 0;
2935 goal_alternative_swapped = 0;
2936 try_swapped:
2938 /* The constraints are made of several alternatives.
2939 Each operand's constraint looks like foo,bar,... with commas
2940 separating the alternatives. The first alternatives for all
2941 operands go together, the second alternatives go together, etc.
2943 First loop over alternatives. */
2945 for (this_alternative_number = 0;
2946 this_alternative_number < n_alternatives;
2947 this_alternative_number++)
2949 /* Loop over operands for one constraint alternative. */
2950 /* LOSERS counts those that don't fit this alternative
2951 and would require loading. */
2952 int losers = 0;
2953 /* BAD is set to 1 if it some operand can't fit this alternative
2954 even after reloading. */
2955 int bad = 0;
2956 /* REJECT is a count of how undesirable this alternative says it is
2957 if any reloading is required. If the alternative matches exactly
2958 then REJECT is ignored, but otherwise it gets this much
2959 counted against it in addition to the reloading needed. Each
2960 ? counts three times here since we want the disparaging caused by
2961 a bad register class to only count 1/3 as much. */
2962 int reject = 0;
2964 if (!recog_data.alternative_enabled_p[this_alternative_number])
2966 int i;
2968 for (i = 0; i < recog_data.n_operands; i++)
2969 constraints[i] = skip_alternative (constraints[i]);
2971 continue;
2974 this_earlyclobber = 0;
2976 for (i = 0; i < noperands; i++)
2978 const char *p = constraints[i];
2979 char *end;
2980 int len;
2981 int win = 0;
2982 int did_match = 0;
2983 /* 0 => this operand can be reloaded somehow for this alternative. */
2984 int badop = 1;
2985 /* 0 => this operand can be reloaded if the alternative allows regs. */
2986 int winreg = 0;
2987 int c;
2988 int m;
2989 rtx operand = recog_data.operand[i];
2990 int offset = 0;
2991 /* Nonzero means this is a MEM that must be reloaded into a reg
2992 regardless of what the constraint says. */
2993 int force_reload = 0;
2994 int offmemok = 0;
2995 /* Nonzero if a constant forced into memory would be OK for this
2996 operand. */
2997 int constmemok = 0;
2998 int earlyclobber = 0;
3000 /* If the predicate accepts a unary operator, it means that
3001 we need to reload the operand, but do not do this for
3002 match_operator and friends. */
3003 if (UNARY_P (operand) && *p != 0)
3004 operand = XEXP (operand, 0);
3006 /* If the operand is a SUBREG, extract
3007 the REG or MEM (or maybe even a constant) within.
3008 (Constants can occur as a result of reg_equiv_constant.) */
3010 while (GET_CODE (operand) == SUBREG)
3012 /* Offset only matters when operand is a REG and
3013 it is a hard reg. This is because it is passed
3014 to reg_fits_class_p if it is a REG and all pseudos
3015 return 0 from that function. */
3016 if (REG_P (SUBREG_REG (operand))
3017 && REGNO (SUBREG_REG (operand)) < FIRST_PSEUDO_REGISTER)
3019 if (simplify_subreg_regno (REGNO (SUBREG_REG (operand)),
3020 GET_MODE (SUBREG_REG (operand)),
3021 SUBREG_BYTE (operand),
3022 GET_MODE (operand)) < 0)
3023 force_reload = 1;
3024 offset += subreg_regno_offset (REGNO (SUBREG_REG (operand)),
3025 GET_MODE (SUBREG_REG (operand)),
3026 SUBREG_BYTE (operand),
3027 GET_MODE (operand));
3029 operand = SUBREG_REG (operand);
3030 /* Force reload if this is a constant or PLUS or if there may
3031 be a problem accessing OPERAND in the outer mode. */
3032 if (CONSTANT_P (operand)
3033 || GET_CODE (operand) == PLUS
3034 /* We must force a reload of paradoxical SUBREGs
3035 of a MEM because the alignment of the inner value
3036 may not be enough to do the outer reference. On
3037 big-endian machines, it may also reference outside
3038 the object.
3040 On machines that extend byte operations and we have a
3041 SUBREG where both the inner and outer modes are no wider
3042 than a word and the inner mode is narrower, is integral,
3043 and gets extended when loaded from memory, combine.c has
3044 made assumptions about the behavior of the machine in such
3045 register access. If the data is, in fact, in memory we
3046 must always load using the size assumed to be in the
3047 register and let the insn do the different-sized
3048 accesses.
3050 This is doubly true if WORD_REGISTER_OPERATIONS. In
3051 this case eliminate_regs has left non-paradoxical
3052 subregs for push_reload to see. Make sure it does
3053 by forcing the reload.
3055 ??? When is it right at this stage to have a subreg
3056 of a mem that is _not_ to be handled specially? IMO
3057 those should have been reduced to just a mem. */
3058 || ((MEM_P (operand)
3059 || (REG_P (operand)
3060 && REGNO (operand) >= FIRST_PSEUDO_REGISTER))
3061 #ifndef WORD_REGISTER_OPERATIONS
3062 && (((GET_MODE_BITSIZE (GET_MODE (operand))
3063 < BIGGEST_ALIGNMENT)
3064 && (GET_MODE_SIZE (operand_mode[i])
3065 > GET_MODE_SIZE (GET_MODE (operand))))
3066 || BYTES_BIG_ENDIAN
3067 #ifdef LOAD_EXTEND_OP
3068 || (GET_MODE_SIZE (operand_mode[i]) <= UNITS_PER_WORD
3069 && (GET_MODE_SIZE (GET_MODE (operand))
3070 <= UNITS_PER_WORD)
3071 && (GET_MODE_SIZE (operand_mode[i])
3072 > GET_MODE_SIZE (GET_MODE (operand)))
3073 && INTEGRAL_MODE_P (GET_MODE (operand))
3074 && LOAD_EXTEND_OP (GET_MODE (operand)) != UNKNOWN)
3075 #endif
3077 #endif
3080 force_reload = 1;
3083 this_alternative[i] = NO_REGS;
3084 this_alternative_win[i] = 0;
3085 this_alternative_match_win[i] = 0;
3086 this_alternative_offmemok[i] = 0;
3087 this_alternative_earlyclobber[i] = 0;
3088 this_alternative_matches[i] = -1;
3090 /* An empty constraint or empty alternative
3091 allows anything which matched the pattern. */
3092 if (*p == 0 || *p == ',')
3093 win = 1, badop = 0;
3095 /* Scan this alternative's specs for this operand;
3096 set WIN if the operand fits any letter in this alternative.
3097 Otherwise, clear BADOP if this operand could
3098 fit some letter after reloads,
3099 or set WINREG if this operand could fit after reloads
3100 provided the constraint allows some registers. */
3103 switch ((c = *p, len = CONSTRAINT_LEN (c, p)), c)
3105 case '\0':
3106 len = 0;
3107 break;
3108 case ',':
3109 c = '\0';
3110 break;
3112 case '=': case '+': case '*':
3113 break;
3115 case '%':
3116 /* We only support one commutative marker, the first
3117 one. We already set commutative above. */
3118 break;
3120 case '?':
3121 reject += 6;
3122 break;
3124 case '!':
3125 reject = 600;
3126 break;
3128 case '#':
3129 /* Ignore rest of this alternative as far as
3130 reloading is concerned. */
3132 p++;
3133 while (*p && *p != ',');
3134 len = 0;
3135 break;
3137 case '0': case '1': case '2': case '3': case '4':
3138 case '5': case '6': case '7': case '8': case '9':
3139 m = strtoul (p, &end, 10);
3140 p = end;
3141 len = 0;
3143 this_alternative_matches[i] = m;
3144 /* We are supposed to match a previous operand.
3145 If we do, we win if that one did.
3146 If we do not, count both of the operands as losers.
3147 (This is too conservative, since most of the time
3148 only a single reload insn will be needed to make
3149 the two operands win. As a result, this alternative
3150 may be rejected when it is actually desirable.) */
3151 if ((swapped && (m != commutative || i != commutative + 1))
3152 /* If we are matching as if two operands were swapped,
3153 also pretend that operands_match had been computed
3154 with swapped.
3155 But if I is the second of those and C is the first,
3156 don't exchange them, because operands_match is valid
3157 only on one side of its diagonal. */
3158 ? (operands_match
3159 [(m == commutative || m == commutative + 1)
3160 ? 2 * commutative + 1 - m : m]
3161 [(i == commutative || i == commutative + 1)
3162 ? 2 * commutative + 1 - i : i])
3163 : operands_match[m][i])
3165 /* If we are matching a non-offsettable address where an
3166 offsettable address was expected, then we must reject
3167 this combination, because we can't reload it. */
3168 if (this_alternative_offmemok[m]
3169 && MEM_P (recog_data.operand[m])
3170 && this_alternative[m] == NO_REGS
3171 && ! this_alternative_win[m])
3172 bad = 1;
3174 did_match = this_alternative_win[m];
3176 else
3178 /* Operands don't match. */
3179 rtx value;
3180 int loc1, loc2;
3181 /* Retroactively mark the operand we had to match
3182 as a loser, if it wasn't already. */
3183 if (this_alternative_win[m])
3184 losers++;
3185 this_alternative_win[m] = 0;
3186 if (this_alternative[m] == NO_REGS)
3187 bad = 1;
3188 /* But count the pair only once in the total badness of
3189 this alternative, if the pair can be a dummy reload.
3190 The pointers in operand_loc are not swapped; swap
3191 them by hand if necessary. */
3192 if (swapped && i == commutative)
3193 loc1 = commutative + 1;
3194 else if (swapped && i == commutative + 1)
3195 loc1 = commutative;
3196 else
3197 loc1 = i;
3198 if (swapped && m == commutative)
3199 loc2 = commutative + 1;
3200 else if (swapped && m == commutative + 1)
3201 loc2 = commutative;
3202 else
3203 loc2 = m;
3204 value
3205 = find_dummy_reload (recog_data.operand[i],
3206 recog_data.operand[m],
3207 recog_data.operand_loc[loc1],
3208 recog_data.operand_loc[loc2],
3209 operand_mode[i], operand_mode[m],
3210 this_alternative[m], -1,
3211 this_alternative_earlyclobber[m]);
3213 if (value != 0)
3214 losers--;
3216 /* This can be fixed with reloads if the operand
3217 we are supposed to match can be fixed with reloads. */
3218 badop = 0;
3219 this_alternative[i] = this_alternative[m];
3221 /* If we have to reload this operand and some previous
3222 operand also had to match the same thing as this
3223 operand, we don't know how to do that. So reject this
3224 alternative. */
3225 if (! did_match || force_reload)
3226 for (j = 0; j < i; j++)
3227 if (this_alternative_matches[j]
3228 == this_alternative_matches[i])
3229 badop = 1;
3230 break;
3232 case 'p':
3233 /* All necessary reloads for an address_operand
3234 were handled in find_reloads_address. */
3235 this_alternative[i] = base_reg_class (VOIDmode, ADDRESS,
3236 SCRATCH);
3237 win = 1;
3238 badop = 0;
3239 break;
3241 case TARGET_MEM_CONSTRAINT:
3242 if (force_reload)
3243 break;
3244 if (MEM_P (operand)
3245 || (REG_P (operand)
3246 && REGNO (operand) >= FIRST_PSEUDO_REGISTER
3247 && reg_renumber[REGNO (operand)] < 0))
3248 win = 1;
3249 if (CONST_POOL_OK_P (operand))
3250 badop = 0;
3251 constmemok = 1;
3252 break;
3254 case '<':
3255 if (MEM_P (operand)
3256 && ! address_reloaded[i]
3257 && (GET_CODE (XEXP (operand, 0)) == PRE_DEC
3258 || GET_CODE (XEXP (operand, 0)) == POST_DEC))
3259 win = 1;
3260 break;
3262 case '>':
3263 if (MEM_P (operand)
3264 && ! address_reloaded[i]
3265 && (GET_CODE (XEXP (operand, 0)) == PRE_INC
3266 || GET_CODE (XEXP (operand, 0)) == POST_INC))
3267 win = 1;
3268 break;
3270 /* Memory operand whose address is not offsettable. */
3271 case 'V':
3272 if (force_reload)
3273 break;
3274 if (MEM_P (operand)
3275 && ! (ind_levels ? offsettable_memref_p (operand)
3276 : offsettable_nonstrict_memref_p (operand))
3277 /* Certain mem addresses will become offsettable
3278 after they themselves are reloaded. This is important;
3279 we don't want our own handling of unoffsettables
3280 to override the handling of reg_equiv_address. */
3281 && !(REG_P (XEXP (operand, 0))
3282 && (ind_levels == 0
3283 || reg_equiv_address[REGNO (XEXP (operand, 0))] != 0)))
3284 win = 1;
3285 break;
3287 /* Memory operand whose address is offsettable. */
3288 case 'o':
3289 if (force_reload)
3290 break;
3291 if ((MEM_P (operand)
3292 /* If IND_LEVELS, find_reloads_address won't reload a
3293 pseudo that didn't get a hard reg, so we have to
3294 reject that case. */
3295 && ((ind_levels ? offsettable_memref_p (operand)
3296 : offsettable_nonstrict_memref_p (operand))
3297 /* A reloaded address is offsettable because it is now
3298 just a simple register indirect. */
3299 || address_reloaded[i] == 1))
3300 || (REG_P (operand)
3301 && REGNO (operand) >= FIRST_PSEUDO_REGISTER
3302 && reg_renumber[REGNO (operand)] < 0
3303 /* If reg_equiv_address is nonzero, we will be
3304 loading it into a register; hence it will be
3305 offsettable, but we cannot say that reg_equiv_mem
3306 is offsettable without checking. */
3307 && ((reg_equiv_mem[REGNO (operand)] != 0
3308 && offsettable_memref_p (reg_equiv_mem[REGNO (operand)]))
3309 || (reg_equiv_address[REGNO (operand)] != 0))))
3310 win = 1;
3311 if (CONST_POOL_OK_P (operand)
3312 || MEM_P (operand))
3313 badop = 0;
3314 constmemok = 1;
3315 offmemok = 1;
3316 break;
3318 case '&':
3319 /* Output operand that is stored before the need for the
3320 input operands (and their index registers) is over. */
3321 earlyclobber = 1, this_earlyclobber = 1;
3322 break;
3324 case 'E':
3325 case 'F':
3326 if (GET_CODE (operand) == CONST_DOUBLE
3327 || (GET_CODE (operand) == CONST_VECTOR
3328 && (GET_MODE_CLASS (GET_MODE (operand))
3329 == MODE_VECTOR_FLOAT)))
3330 win = 1;
3331 break;
3333 case 'G':
3334 case 'H':
3335 if (GET_CODE (operand) == CONST_DOUBLE
3336 && CONST_DOUBLE_OK_FOR_CONSTRAINT_P (operand, c, p))
3337 win = 1;
3338 break;
3340 case 's':
3341 if (CONST_INT_P (operand)
3342 || (GET_CODE (operand) == CONST_DOUBLE
3343 && GET_MODE (operand) == VOIDmode))
3344 break;
3345 case 'i':
3346 if (CONSTANT_P (operand)
3347 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (operand)))
3348 win = 1;
3349 break;
3351 case 'n':
3352 if (CONST_INT_P (operand)
3353 || (GET_CODE (operand) == CONST_DOUBLE
3354 && GET_MODE (operand) == VOIDmode))
3355 win = 1;
3356 break;
3358 case 'I':
3359 case 'J':
3360 case 'K':
3361 case 'L':
3362 case 'M':
3363 case 'N':
3364 case 'O':
3365 case 'P':
3366 if (CONST_INT_P (operand)
3367 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (operand), c, p))
3368 win = 1;
3369 break;
3371 case 'X':
3372 force_reload = 0;
3373 win = 1;
3374 break;
3376 case 'g':
3377 if (! force_reload
3378 /* A PLUS is never a valid operand, but reload can make
3379 it from a register when eliminating registers. */
3380 && GET_CODE (operand) != PLUS
3381 /* A SCRATCH is not a valid operand. */
3382 && GET_CODE (operand) != SCRATCH
3383 && (! CONSTANT_P (operand)
3384 || ! flag_pic
3385 || LEGITIMATE_PIC_OPERAND_P (operand))
3386 && (GENERAL_REGS == ALL_REGS
3387 || !REG_P (operand)
3388 || (REGNO (operand) >= FIRST_PSEUDO_REGISTER
3389 && reg_renumber[REGNO (operand)] < 0)))
3390 win = 1;
3391 /* Drop through into 'r' case. */
3393 case 'r':
3394 this_alternative[i]
3395 = reg_class_subunion[this_alternative[i]][(int) GENERAL_REGS];
3396 goto reg;
3398 default:
3399 if (REG_CLASS_FROM_CONSTRAINT (c, p) == NO_REGS)
3401 #ifdef EXTRA_CONSTRAINT_STR
3402 if (EXTRA_MEMORY_CONSTRAINT (c, p))
3404 if (force_reload)
3405 break;
3406 if (EXTRA_CONSTRAINT_STR (operand, c, p))
3407 win = 1;
3408 /* If the address was already reloaded,
3409 we win as well. */
3410 else if (MEM_P (operand)
3411 && address_reloaded[i] == 1)
3412 win = 1;
3413 /* Likewise if the address will be reloaded because
3414 reg_equiv_address is nonzero. For reg_equiv_mem
3415 we have to check. */
3416 else if (REG_P (operand)
3417 && REGNO (operand) >= FIRST_PSEUDO_REGISTER
3418 && reg_renumber[REGNO (operand)] < 0
3419 && ((reg_equiv_mem[REGNO (operand)] != 0
3420 && EXTRA_CONSTRAINT_STR (reg_equiv_mem[REGNO (operand)], c, p))
3421 || (reg_equiv_address[REGNO (operand)] != 0)))
3422 win = 1;
3424 /* If we didn't already win, we can reload
3425 constants via force_const_mem, and other
3426 MEMs by reloading the address like for 'o'. */
3427 if (CONST_POOL_OK_P (operand)
3428 || MEM_P (operand))
3429 badop = 0;
3430 constmemok = 1;
3431 offmemok = 1;
3432 break;
3434 if (EXTRA_ADDRESS_CONSTRAINT (c, p))
3436 if (EXTRA_CONSTRAINT_STR (operand, c, p))
3437 win = 1;
3439 /* If we didn't already win, we can reload
3440 the address into a base register. */
3441 this_alternative[i] = base_reg_class (VOIDmode,
3442 ADDRESS,
3443 SCRATCH);
3444 badop = 0;
3445 break;
3448 if (EXTRA_CONSTRAINT_STR (operand, c, p))
3449 win = 1;
3450 #endif
3451 break;
3454 this_alternative[i]
3455 = (reg_class_subunion
3456 [this_alternative[i]]
3457 [(int) REG_CLASS_FROM_CONSTRAINT (c, p)]);
3458 reg:
3459 if (GET_MODE (operand) == BLKmode)
3460 break;
3461 winreg = 1;
3462 if (REG_P (operand)
3463 && reg_fits_class_p (operand, this_alternative[i],
3464 offset, GET_MODE (recog_data.operand[i])))
3465 win = 1;
3466 break;
3468 while ((p += len), c);
3470 constraints[i] = p;
3472 /* If this operand could be handled with a reg,
3473 and some reg is allowed, then this operand can be handled. */
3474 if (winreg && this_alternative[i] != NO_REGS
3475 && (win || !class_only_fixed_regs[this_alternative[i]]))
3476 badop = 0;
3478 /* Record which operands fit this alternative. */
3479 this_alternative_earlyclobber[i] = earlyclobber;
3480 if (win && ! force_reload)
3481 this_alternative_win[i] = 1;
3482 else if (did_match && ! force_reload)
3483 this_alternative_match_win[i] = 1;
3484 else
3486 int const_to_mem = 0;
3488 this_alternative_offmemok[i] = offmemok;
3489 losers++;
3490 if (badop)
3491 bad = 1;
3492 /* Alternative loses if it has no regs for a reg operand. */
3493 if (REG_P (operand)
3494 && this_alternative[i] == NO_REGS
3495 && this_alternative_matches[i] < 0)
3496 bad = 1;
3498 /* If this is a constant that is reloaded into the desired
3499 class by copying it to memory first, count that as another
3500 reload. This is consistent with other code and is
3501 required to avoid choosing another alternative when
3502 the constant is moved into memory by this function on
3503 an early reload pass. Note that the test here is
3504 precisely the same as in the code below that calls
3505 force_const_mem. */
3506 if (CONST_POOL_OK_P (operand)
3507 && ((targetm.preferred_reload_class (operand,
3508 this_alternative[i])
3509 == NO_REGS)
3510 || no_input_reloads)
3511 && operand_mode[i] != VOIDmode)
3513 const_to_mem = 1;
3514 if (this_alternative[i] != NO_REGS)
3515 losers++;
3518 /* Alternative loses if it requires a type of reload not
3519 permitted for this insn. We can always reload SCRATCH
3520 and objects with a REG_UNUSED note. */
3521 if (GET_CODE (operand) != SCRATCH
3522 && modified[i] != RELOAD_READ && no_output_reloads
3523 && ! find_reg_note (insn, REG_UNUSED, operand))
3524 bad = 1;
3525 else if (modified[i] != RELOAD_WRITE && no_input_reloads
3526 && ! const_to_mem)
3527 bad = 1;
3529 /* If we can't reload this value at all, reject this
3530 alternative. Note that we could also lose due to
3531 LIMIT_RELOAD_CLASS, but we don't check that
3532 here. */
3534 if (! CONSTANT_P (operand) && this_alternative[i] != NO_REGS)
3536 if (targetm.preferred_reload_class (operand, this_alternative[i])
3537 == NO_REGS)
3538 reject = 600;
3540 if (operand_type[i] == RELOAD_FOR_OUTPUT
3541 && (targetm.preferred_output_reload_class (operand,
3542 this_alternative[i])
3543 == NO_REGS))
3544 reject = 600;
3547 /* We prefer to reload pseudos over reloading other things,
3548 since such reloads may be able to be eliminated later.
3549 If we are reloading a SCRATCH, we won't be generating any
3550 insns, just using a register, so it is also preferred.
3551 So bump REJECT in other cases. Don't do this in the
3552 case where we are forcing a constant into memory and
3553 it will then win since we don't want to have a different
3554 alternative match then. */
3555 if (! (REG_P (operand)
3556 && REGNO (operand) >= FIRST_PSEUDO_REGISTER)
3557 && GET_CODE (operand) != SCRATCH
3558 && ! (const_to_mem && constmemok))
3559 reject += 2;
3561 /* Input reloads can be inherited more often than output
3562 reloads can be removed, so penalize output reloads. */
3563 if (operand_type[i] != RELOAD_FOR_INPUT
3564 && GET_CODE (operand) != SCRATCH)
3565 reject++;
3568 /* If this operand is a pseudo register that didn't get a hard
3569 reg and this alternative accepts some register, see if the
3570 class that we want is a subset of the preferred class for this
3571 register. If not, but it intersects that class, use the
3572 preferred class instead. If it does not intersect the preferred
3573 class, show that usage of this alternative should be discouraged;
3574 it will be discouraged more still if the register is `preferred
3575 or nothing'. We do this because it increases the chance of
3576 reusing our spill register in a later insn and avoiding a pair
3577 of memory stores and loads.
3579 Don't bother with this if this alternative will accept this
3580 operand.
3582 Don't do this for a multiword operand, since it is only a
3583 small win and has the risk of requiring more spill registers,
3584 which could cause a large loss.
3586 Don't do this if the preferred class has only one register
3587 because we might otherwise exhaust the class. */
3589 if (! win && ! did_match
3590 && this_alternative[i] != NO_REGS
3591 && GET_MODE_SIZE (operand_mode[i]) <= UNITS_PER_WORD
3592 && reg_class_size [(int) preferred_class[i]] > 0
3593 && ! small_register_class_p (preferred_class[i]))
3595 if (! reg_class_subset_p (this_alternative[i],
3596 preferred_class[i]))
3598 /* Since we don't have a way of forming the intersection,
3599 we just do something special if the preferred class
3600 is a subset of the class we have; that's the most
3601 common case anyway. */
3602 if (reg_class_subset_p (preferred_class[i],
3603 this_alternative[i]))
3604 this_alternative[i] = preferred_class[i];
3605 else
3606 reject += (2 + 2 * pref_or_nothing[i]);
3611 /* Now see if any output operands that are marked "earlyclobber"
3612 in this alternative conflict with any input operands
3613 or any memory addresses. */
3615 for (i = 0; i < noperands; i++)
3616 if (this_alternative_earlyclobber[i]
3617 && (this_alternative_win[i] || this_alternative_match_win[i]))
3619 struct decomposition early_data;
3621 early_data = decompose (recog_data.operand[i]);
3623 gcc_assert (modified[i] != RELOAD_READ);
3625 if (this_alternative[i] == NO_REGS)
3627 this_alternative_earlyclobber[i] = 0;
3628 gcc_assert (this_insn_is_asm);
3629 error_for_asm (this_insn,
3630 "%<&%> constraint used with no register class");
3633 for (j = 0; j < noperands; j++)
3634 /* Is this an input operand or a memory ref? */
3635 if ((MEM_P (recog_data.operand[j])
3636 || modified[j] != RELOAD_WRITE)
3637 && j != i
3638 /* Ignore things like match_operator operands. */
3639 && !recog_data.is_operator[j]
3640 /* Don't count an input operand that is constrained to match
3641 the early clobber operand. */
3642 && ! (this_alternative_matches[j] == i
3643 && rtx_equal_p (recog_data.operand[i],
3644 recog_data.operand[j]))
3645 /* Is it altered by storing the earlyclobber operand? */
3646 && !immune_p (recog_data.operand[j], recog_data.operand[i],
3647 early_data))
3649 /* If the output is in a non-empty few-regs class,
3650 it's costly to reload it, so reload the input instead. */
3651 if (small_register_class_p (this_alternative[i])
3652 && (REG_P (recog_data.operand[j])
3653 || GET_CODE (recog_data.operand[j]) == SUBREG))
3655 losers++;
3656 this_alternative_win[j] = 0;
3657 this_alternative_match_win[j] = 0;
3659 else
3660 break;
3662 /* If an earlyclobber operand conflicts with something,
3663 it must be reloaded, so request this and count the cost. */
3664 if (j != noperands)
3666 losers++;
3667 this_alternative_win[i] = 0;
3668 this_alternative_match_win[j] = 0;
3669 for (j = 0; j < noperands; j++)
3670 if (this_alternative_matches[j] == i
3671 && this_alternative_match_win[j])
3673 this_alternative_win[j] = 0;
3674 this_alternative_match_win[j] = 0;
3675 losers++;
3680 /* If one alternative accepts all the operands, no reload required,
3681 choose that alternative; don't consider the remaining ones. */
3682 if (losers == 0)
3684 /* Unswap these so that they are never swapped at `finish'. */
3685 if (commutative >= 0)
3687 recog_data.operand[commutative] = substed_operand[commutative];
3688 recog_data.operand[commutative + 1]
3689 = substed_operand[commutative + 1];
3691 for (i = 0; i < noperands; i++)
3693 goal_alternative_win[i] = this_alternative_win[i];
3694 goal_alternative_match_win[i] = this_alternative_match_win[i];
3695 goal_alternative[i] = this_alternative[i];
3696 goal_alternative_offmemok[i] = this_alternative_offmemok[i];
3697 goal_alternative_matches[i] = this_alternative_matches[i];
3698 goal_alternative_earlyclobber[i]
3699 = this_alternative_earlyclobber[i];
3701 goal_alternative_number = this_alternative_number;
3702 goal_alternative_swapped = swapped;
3703 goal_earlyclobber = this_earlyclobber;
3704 goto finish;
3707 /* REJECT, set by the ! and ? constraint characters and when a register
3708 would be reloaded into a non-preferred class, discourages the use of
3709 this alternative for a reload goal. REJECT is incremented by six
3710 for each ? and two for each non-preferred class. */
3711 losers = losers * 6 + reject;
3713 /* If this alternative can be made to work by reloading,
3714 and it needs less reloading than the others checked so far,
3715 record it as the chosen goal for reloading. */
3716 if (! bad)
3718 if (best > losers)
3720 for (i = 0; i < noperands; i++)
3722 goal_alternative[i] = this_alternative[i];
3723 goal_alternative_win[i] = this_alternative_win[i];
3724 goal_alternative_match_win[i]
3725 = this_alternative_match_win[i];
3726 goal_alternative_offmemok[i]
3727 = this_alternative_offmemok[i];
3728 goal_alternative_matches[i] = this_alternative_matches[i];
3729 goal_alternative_earlyclobber[i]
3730 = this_alternative_earlyclobber[i];
3732 goal_alternative_swapped = swapped;
3733 best = losers;
3734 goal_alternative_number = this_alternative_number;
3735 goal_earlyclobber = this_earlyclobber;
3740 /* If insn is commutative (it's safe to exchange a certain pair of operands)
3741 then we need to try each alternative twice,
3742 the second time matching those two operands
3743 as if we had exchanged them.
3744 To do this, really exchange them in operands.
3746 If we have just tried the alternatives the second time,
3747 return operands to normal and drop through. */
3749 if (commutative >= 0)
3751 swapped = !swapped;
3752 if (swapped)
3754 enum reg_class tclass;
3755 int t;
3757 recog_data.operand[commutative] = substed_operand[commutative + 1];
3758 recog_data.operand[commutative + 1] = substed_operand[commutative];
3759 /* Swap the duplicates too. */
3760 for (i = 0; i < recog_data.n_dups; i++)
3761 if (recog_data.dup_num[i] == commutative
3762 || recog_data.dup_num[i] == commutative + 1)
3763 *recog_data.dup_loc[i]
3764 = recog_data.operand[(int) recog_data.dup_num[i]];
3766 tclass = preferred_class[commutative];
3767 preferred_class[commutative] = preferred_class[commutative + 1];
3768 preferred_class[commutative + 1] = tclass;
3770 t = pref_or_nothing[commutative];
3771 pref_or_nothing[commutative] = pref_or_nothing[commutative + 1];
3772 pref_or_nothing[commutative + 1] = t;
3774 t = address_reloaded[commutative];
3775 address_reloaded[commutative] = address_reloaded[commutative + 1];
3776 address_reloaded[commutative + 1] = t;
3778 memcpy (constraints, recog_data.constraints,
3779 noperands * sizeof (const char *));
3780 goto try_swapped;
3782 else
3784 recog_data.operand[commutative] = substed_operand[commutative];
3785 recog_data.operand[commutative + 1]
3786 = substed_operand[commutative + 1];
3787 /* Unswap the duplicates too. */
3788 for (i = 0; i < recog_data.n_dups; i++)
3789 if (recog_data.dup_num[i] == commutative
3790 || recog_data.dup_num[i] == commutative + 1)
3791 *recog_data.dup_loc[i]
3792 = recog_data.operand[(int) recog_data.dup_num[i]];
3796 /* The operands don't meet the constraints.
3797 goal_alternative describes the alternative
3798 that we could reach by reloading the fewest operands.
3799 Reload so as to fit it. */
3801 if (best == MAX_RECOG_OPERANDS * 2 + 600)
3803 /* No alternative works with reloads?? */
3804 if (insn_code_number >= 0)
3805 fatal_insn ("unable to generate reloads for:", insn);
3806 error_for_asm (insn, "inconsistent operand constraints in an %<asm%>");
3807 /* Avoid further trouble with this insn. */
3808 PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
3809 n_reloads = 0;
3810 return 0;
3813 /* Jump to `finish' from above if all operands are valid already.
3814 In that case, goal_alternative_win is all 1. */
3815 finish:
3817 /* Right now, for any pair of operands I and J that are required to match,
3818 with I < J,
3819 goal_alternative_matches[J] is I.
3820 Set up goal_alternative_matched as the inverse function:
3821 goal_alternative_matched[I] = J. */
3823 for (i = 0; i < noperands; i++)
3824 goal_alternative_matched[i] = -1;
3826 for (i = 0; i < noperands; i++)
3827 if (! goal_alternative_win[i]
3828 && goal_alternative_matches[i] >= 0)
3829 goal_alternative_matched[goal_alternative_matches[i]] = i;
3831 for (i = 0; i < noperands; i++)
3832 goal_alternative_win[i] |= goal_alternative_match_win[i];
3834 /* If the best alternative is with operands 1 and 2 swapped,
3835 consider them swapped before reporting the reloads. Update the
3836 operand numbers of any reloads already pushed. */
3838 if (goal_alternative_swapped)
3840 rtx tem;
3842 tem = substed_operand[commutative];
3843 substed_operand[commutative] = substed_operand[commutative + 1];
3844 substed_operand[commutative + 1] = tem;
3845 tem = recog_data.operand[commutative];
3846 recog_data.operand[commutative] = recog_data.operand[commutative + 1];
3847 recog_data.operand[commutative + 1] = tem;
3848 tem = *recog_data.operand_loc[commutative];
3849 *recog_data.operand_loc[commutative]
3850 = *recog_data.operand_loc[commutative + 1];
3851 *recog_data.operand_loc[commutative + 1] = tem;
3853 for (i = 0; i < n_reloads; i++)
3855 if (rld[i].opnum == commutative)
3856 rld[i].opnum = commutative + 1;
3857 else if (rld[i].opnum == commutative + 1)
3858 rld[i].opnum = commutative;
3862 for (i = 0; i < noperands; i++)
3864 operand_reloadnum[i] = -1;
3866 /* If this is an earlyclobber operand, we need to widen the scope.
3867 The reload must remain valid from the start of the insn being
3868 reloaded until after the operand is stored into its destination.
3869 We approximate this with RELOAD_OTHER even though we know that we
3870 do not conflict with RELOAD_FOR_INPUT_ADDRESS reloads.
3872 One special case that is worth checking is when we have an
3873 output that is earlyclobber but isn't used past the insn (typically
3874 a SCRATCH). In this case, we only need have the reload live
3875 through the insn itself, but not for any of our input or output
3876 reloads.
3877 But we must not accidentally narrow the scope of an existing
3878 RELOAD_OTHER reload - leave these alone.
3880 In any case, anything needed to address this operand can remain
3881 however they were previously categorized. */
3883 if (goal_alternative_earlyclobber[i] && operand_type[i] != RELOAD_OTHER)
3884 operand_type[i]
3885 = (find_reg_note (insn, REG_UNUSED, recog_data.operand[i])
3886 ? RELOAD_FOR_INSN : RELOAD_OTHER);
3889 /* Any constants that aren't allowed and can't be reloaded
3890 into registers are here changed into memory references. */
3891 for (i = 0; i < noperands; i++)
3892 if (! goal_alternative_win[i])
3894 rtx op = recog_data.operand[i];
3895 rtx subreg = NULL_RTX;
3896 rtx plus = NULL_RTX;
3897 enum machine_mode mode = operand_mode[i];
3899 /* Reloads of SUBREGs of CONSTANT RTXs are handled later in
3900 push_reload so we have to let them pass here. */
3901 if (GET_CODE (op) == SUBREG)
3903 subreg = op;
3904 op = SUBREG_REG (op);
3905 mode = GET_MODE (op);
3908 if (GET_CODE (op) == PLUS)
3910 plus = op;
3911 op = XEXP (op, 1);
3914 if (CONST_POOL_OK_P (op)
3915 && ((targetm.preferred_reload_class (op, goal_alternative[i])
3916 == NO_REGS)
3917 || no_input_reloads)
3918 && mode != VOIDmode)
3920 int this_address_reloaded;
3921 rtx tem = force_const_mem (mode, op);
3923 /* If we stripped a SUBREG or a PLUS above add it back. */
3924 if (plus != NULL_RTX)
3925 tem = gen_rtx_PLUS (mode, XEXP (plus, 0), tem);
3927 if (subreg != NULL_RTX)
3928 tem = gen_rtx_SUBREG (operand_mode[i], tem, SUBREG_BYTE (subreg));
3930 this_address_reloaded = 0;
3931 substed_operand[i] = recog_data.operand[i]
3932 = find_reloads_toplev (tem, i, address_type[i], ind_levels,
3933 0, insn, &this_address_reloaded);
3935 /* If the alternative accepts constant pool refs directly
3936 there will be no reload needed at all. */
3937 if (plus == NULL_RTX
3938 && subreg == NULL_RTX
3939 && alternative_allows_const_pool_ref (this_address_reloaded == 0
3940 ? substed_operand[i]
3941 : NULL,
3942 recog_data.constraints[i],
3943 goal_alternative_number))
3944 goal_alternative_win[i] = 1;
3948 /* Record the values of the earlyclobber operands for the caller. */
3949 if (goal_earlyclobber)
3950 for (i = 0; i < noperands; i++)
3951 if (goal_alternative_earlyclobber[i])
3952 reload_earlyclobbers[n_earlyclobbers++] = recog_data.operand[i];
3954 /* Now record reloads for all the operands that need them. */
3955 for (i = 0; i < noperands; i++)
3956 if (! goal_alternative_win[i])
3958 /* Operands that match previous ones have already been handled. */
3959 if (goal_alternative_matches[i] >= 0)
3961 /* Handle an operand with a nonoffsettable address
3962 appearing where an offsettable address will do
3963 by reloading the address into a base register.
3965 ??? We can also do this when the operand is a register and
3966 reg_equiv_mem is not offsettable, but this is a bit tricky,
3967 so we don't bother with it. It may not be worth doing. */
3968 else if (goal_alternative_matched[i] == -1
3969 && goal_alternative_offmemok[i]
3970 && MEM_P (recog_data.operand[i]))
3972 /* If the address to be reloaded is a VOIDmode constant,
3973 use the default address mode as mode of the reload register,
3974 as would have been done by find_reloads_address. */
3975 enum machine_mode address_mode;
3976 address_mode = GET_MODE (XEXP (recog_data.operand[i], 0));
3977 if (address_mode == VOIDmode)
3979 addr_space_t as = MEM_ADDR_SPACE (recog_data.operand[i]);
3980 address_mode = targetm.addr_space.address_mode (as);
3983 operand_reloadnum[i]
3984 = push_reload (XEXP (recog_data.operand[i], 0), NULL_RTX,
3985 &XEXP (recog_data.operand[i], 0), (rtx*) 0,
3986 base_reg_class (VOIDmode, MEM, SCRATCH),
3987 address_mode,
3988 VOIDmode, 0, 0, i, RELOAD_FOR_INPUT);
3989 rld[operand_reloadnum[i]].inc
3990 = GET_MODE_SIZE (GET_MODE (recog_data.operand[i]));
3992 /* If this operand is an output, we will have made any
3993 reloads for its address as RELOAD_FOR_OUTPUT_ADDRESS, but
3994 now we are treating part of the operand as an input, so
3995 we must change these to RELOAD_FOR_INPUT_ADDRESS. */
3997 if (modified[i] == RELOAD_WRITE)
3999 for (j = 0; j < n_reloads; j++)
4001 if (rld[j].opnum == i)
4003 if (rld[j].when_needed == RELOAD_FOR_OUTPUT_ADDRESS)
4004 rld[j].when_needed = RELOAD_FOR_INPUT_ADDRESS;
4005 else if (rld[j].when_needed
4006 == RELOAD_FOR_OUTADDR_ADDRESS)
4007 rld[j].when_needed = RELOAD_FOR_INPADDR_ADDRESS;
4012 else if (goal_alternative_matched[i] == -1)
4014 operand_reloadnum[i]
4015 = push_reload ((modified[i] != RELOAD_WRITE
4016 ? recog_data.operand[i] : 0),
4017 (modified[i] != RELOAD_READ
4018 ? recog_data.operand[i] : 0),
4019 (modified[i] != RELOAD_WRITE
4020 ? recog_data.operand_loc[i] : 0),
4021 (modified[i] != RELOAD_READ
4022 ? recog_data.operand_loc[i] : 0),
4023 (enum reg_class) goal_alternative[i],
4024 (modified[i] == RELOAD_WRITE
4025 ? VOIDmode : operand_mode[i]),
4026 (modified[i] == RELOAD_READ
4027 ? VOIDmode : operand_mode[i]),
4028 (insn_code_number < 0 ? 0
4029 : insn_data[insn_code_number].operand[i].strict_low),
4030 0, i, operand_type[i]);
4032 /* In a matching pair of operands, one must be input only
4033 and the other must be output only.
4034 Pass the input operand as IN and the other as OUT. */
4035 else if (modified[i] == RELOAD_READ
4036 && modified[goal_alternative_matched[i]] == RELOAD_WRITE)
4038 operand_reloadnum[i]
4039 = push_reload (recog_data.operand[i],
4040 recog_data.operand[goal_alternative_matched[i]],
4041 recog_data.operand_loc[i],
4042 recog_data.operand_loc[goal_alternative_matched[i]],
4043 (enum reg_class) goal_alternative[i],
4044 operand_mode[i],
4045 operand_mode[goal_alternative_matched[i]],
4046 0, 0, i, RELOAD_OTHER);
4047 operand_reloadnum[goal_alternative_matched[i]] = output_reloadnum;
4049 else if (modified[i] == RELOAD_WRITE
4050 && modified[goal_alternative_matched[i]] == RELOAD_READ)
4052 operand_reloadnum[goal_alternative_matched[i]]
4053 = push_reload (recog_data.operand[goal_alternative_matched[i]],
4054 recog_data.operand[i],
4055 recog_data.operand_loc[goal_alternative_matched[i]],
4056 recog_data.operand_loc[i],
4057 (enum reg_class) goal_alternative[i],
4058 operand_mode[goal_alternative_matched[i]],
4059 operand_mode[i],
4060 0, 0, i, RELOAD_OTHER);
4061 operand_reloadnum[i] = output_reloadnum;
4063 else
4065 gcc_assert (insn_code_number < 0);
4066 error_for_asm (insn, "inconsistent operand constraints "
4067 "in an %<asm%>");
4068 /* Avoid further trouble with this insn. */
4069 PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
4070 n_reloads = 0;
4071 return 0;
4074 else if (goal_alternative_matched[i] < 0
4075 && goal_alternative_matches[i] < 0
4076 && address_operand_reloaded[i] != 1
4077 && optimize)
4079 /* For each non-matching operand that's a MEM or a pseudo-register
4080 that didn't get a hard register, make an optional reload.
4081 This may get done even if the insn needs no reloads otherwise. */
4083 rtx operand = recog_data.operand[i];
4085 while (GET_CODE (operand) == SUBREG)
4086 operand = SUBREG_REG (operand);
4087 if ((MEM_P (operand)
4088 || (REG_P (operand)
4089 && REGNO (operand) >= FIRST_PSEUDO_REGISTER))
4090 /* If this is only for an output, the optional reload would not
4091 actually cause us to use a register now, just note that
4092 something is stored here. */
4093 && (goal_alternative[i] != NO_REGS
4094 || modified[i] == RELOAD_WRITE)
4095 && ! no_input_reloads
4096 /* An optional output reload might allow to delete INSN later.
4097 We mustn't make in-out reloads on insns that are not permitted
4098 output reloads.
4099 If this is an asm, we can't delete it; we must not even call
4100 push_reload for an optional output reload in this case,
4101 because we can't be sure that the constraint allows a register,
4102 and push_reload verifies the constraints for asms. */
4103 && (modified[i] == RELOAD_READ
4104 || (! no_output_reloads && ! this_insn_is_asm)))
4105 operand_reloadnum[i]
4106 = push_reload ((modified[i] != RELOAD_WRITE
4107 ? recog_data.operand[i] : 0),
4108 (modified[i] != RELOAD_READ
4109 ? recog_data.operand[i] : 0),
4110 (modified[i] != RELOAD_WRITE
4111 ? recog_data.operand_loc[i] : 0),
4112 (modified[i] != RELOAD_READ
4113 ? recog_data.operand_loc[i] : 0),
4114 (enum reg_class) goal_alternative[i],
4115 (modified[i] == RELOAD_WRITE
4116 ? VOIDmode : operand_mode[i]),
4117 (modified[i] == RELOAD_READ
4118 ? VOIDmode : operand_mode[i]),
4119 (insn_code_number < 0 ? 0
4120 : insn_data[insn_code_number].operand[i].strict_low),
4121 1, i, operand_type[i]);
4122 /* If a memory reference remains (either as a MEM or a pseudo that
4123 did not get a hard register), yet we can't make an optional
4124 reload, check if this is actually a pseudo register reference;
4125 we then need to emit a USE and/or a CLOBBER so that reload
4126 inheritance will do the right thing. */
4127 else if (replace
4128 && (MEM_P (operand)
4129 || (REG_P (operand)
4130 && REGNO (operand) >= FIRST_PSEUDO_REGISTER
4131 && reg_renumber [REGNO (operand)] < 0)))
4133 operand = *recog_data.operand_loc[i];
4135 while (GET_CODE (operand) == SUBREG)
4136 operand = SUBREG_REG (operand);
4137 if (REG_P (operand))
4139 if (modified[i] != RELOAD_WRITE)
4140 /* We mark the USE with QImode so that we recognize
4141 it as one that can be safely deleted at the end
4142 of reload. */
4143 PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode, operand),
4144 insn), QImode);
4145 if (modified[i] != RELOAD_READ)
4146 emit_insn_after (gen_clobber (operand), insn);
4150 else if (goal_alternative_matches[i] >= 0
4151 && goal_alternative_win[goal_alternative_matches[i]]
4152 && modified[i] == RELOAD_READ
4153 && modified[goal_alternative_matches[i]] == RELOAD_WRITE
4154 && ! no_input_reloads && ! no_output_reloads
4155 && optimize)
4157 /* Similarly, make an optional reload for a pair of matching
4158 objects that are in MEM or a pseudo that didn't get a hard reg. */
4160 rtx operand = recog_data.operand[i];
4162 while (GET_CODE (operand) == SUBREG)
4163 operand = SUBREG_REG (operand);
4164 if ((MEM_P (operand)
4165 || (REG_P (operand)
4166 && REGNO (operand) >= FIRST_PSEUDO_REGISTER))
4167 && (goal_alternative[goal_alternative_matches[i]] != NO_REGS))
4168 operand_reloadnum[i] = operand_reloadnum[goal_alternative_matches[i]]
4169 = push_reload (recog_data.operand[goal_alternative_matches[i]],
4170 recog_data.operand[i],
4171 recog_data.operand_loc[goal_alternative_matches[i]],
4172 recog_data.operand_loc[i],
4173 (enum reg_class) goal_alternative[goal_alternative_matches[i]],
4174 operand_mode[goal_alternative_matches[i]],
4175 operand_mode[i],
4176 0, 1, goal_alternative_matches[i], RELOAD_OTHER);
4179 /* Perform whatever substitutions on the operands we are supposed
4180 to make due to commutativity or replacement of registers
4181 with equivalent constants or memory slots. */
4183 for (i = 0; i < noperands; i++)
4185 /* We only do this on the last pass through reload, because it is
4186 possible for some data (like reg_equiv_address) to be changed during
4187 later passes. Moreover, we lose the opportunity to get a useful
4188 reload_{in,out}_reg when we do these replacements. */
4190 if (replace)
4192 rtx substitution = substed_operand[i];
4194 *recog_data.operand_loc[i] = substitution;
4196 /* If we're replacing an operand with a LABEL_REF, we need to
4197 make sure that there's a REG_LABEL_OPERAND note attached to
4198 this instruction. */
4199 if (GET_CODE (substitution) == LABEL_REF
4200 && !find_reg_note (insn, REG_LABEL_OPERAND,
4201 XEXP (substitution, 0))
4202 /* For a JUMP_P, if it was a branch target it must have
4203 already been recorded as such. */
4204 && (!JUMP_P (insn)
4205 || !label_is_jump_target_p (XEXP (substitution, 0),
4206 insn)))
4207 add_reg_note (insn, REG_LABEL_OPERAND, XEXP (substitution, 0));
4209 else
4210 retval |= (substed_operand[i] != *recog_data.operand_loc[i]);
4213 /* If this insn pattern contains any MATCH_DUP's, make sure that
4214 they will be substituted if the operands they match are substituted.
4215 Also do now any substitutions we already did on the operands.
4217 Don't do this if we aren't making replacements because we might be
4218 propagating things allocated by frame pointer elimination into places
4219 it doesn't expect. */
4221 if (insn_code_number >= 0 && replace)
4222 for (i = insn_data[insn_code_number].n_dups - 1; i >= 0; i--)
4224 int opno = recog_data.dup_num[i];
4225 *recog_data.dup_loc[i] = *recog_data.operand_loc[opno];
4226 dup_replacements (recog_data.dup_loc[i], recog_data.operand_loc[opno]);
4229 #if 0
4230 /* This loses because reloading of prior insns can invalidate the equivalence
4231 (or at least find_equiv_reg isn't smart enough to find it any more),
4232 causing this insn to need more reload regs than it needed before.
4233 It may be too late to make the reload regs available.
4234 Now this optimization is done safely in choose_reload_regs. */
4236 /* For each reload of a reg into some other class of reg,
4237 search for an existing equivalent reg (same value now) in the right class.
4238 We can use it as long as we don't need to change its contents. */
4239 for (i = 0; i < n_reloads; i++)
4240 if (rld[i].reg_rtx == 0
4241 && rld[i].in != 0
4242 && REG_P (rld[i].in)
4243 && rld[i].out == 0)
4245 rld[i].reg_rtx
4246 = find_equiv_reg (rld[i].in, insn, rld[i].rclass, -1,
4247 static_reload_reg_p, 0, rld[i].inmode);
4248 /* Prevent generation of insn to load the value
4249 because the one we found already has the value. */
4250 if (rld[i].reg_rtx)
4251 rld[i].in = rld[i].reg_rtx;
4253 #endif
4255 /* If we detected error and replaced asm instruction by USE, forget about the
4256 reloads. */
4257 if (GET_CODE (PATTERN (insn)) == USE
4258 && CONST_INT_P (XEXP (PATTERN (insn), 0)))
4259 n_reloads = 0;
4261 /* Perhaps an output reload can be combined with another
4262 to reduce needs by one. */
4263 if (!goal_earlyclobber)
4264 combine_reloads ();
4266 /* If we have a pair of reloads for parts of an address, they are reloading
4267 the same object, the operands themselves were not reloaded, and they
4268 are for two operands that are supposed to match, merge the reloads and
4269 change the type of the surviving reload to RELOAD_FOR_OPERAND_ADDRESS. */
4271 for (i = 0; i < n_reloads; i++)
4273 int k;
4275 for (j = i + 1; j < n_reloads; j++)
4276 if ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
4277 || rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
4278 || rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS
4279 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4280 && (rld[j].when_needed == RELOAD_FOR_INPUT_ADDRESS
4281 || rld[j].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
4282 || rld[j].when_needed == RELOAD_FOR_INPADDR_ADDRESS
4283 || rld[j].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4284 && rtx_equal_p (rld[i].in, rld[j].in)
4285 && (operand_reloadnum[rld[i].opnum] < 0
4286 || rld[operand_reloadnum[rld[i].opnum]].optional)
4287 && (operand_reloadnum[rld[j].opnum] < 0
4288 || rld[operand_reloadnum[rld[j].opnum]].optional)
4289 && (goal_alternative_matches[rld[i].opnum] == rld[j].opnum
4290 || (goal_alternative_matches[rld[j].opnum]
4291 == rld[i].opnum)))
4293 for (k = 0; k < n_replacements; k++)
4294 if (replacements[k].what == j)
4295 replacements[k].what = i;
4297 if (rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS
4298 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4299 rld[i].when_needed = RELOAD_FOR_OPADDR_ADDR;
4300 else
4301 rld[i].when_needed = RELOAD_FOR_OPERAND_ADDRESS;
4302 rld[j].in = 0;
4306 /* Scan all the reloads and update their type.
4307 If a reload is for the address of an operand and we didn't reload
4308 that operand, change the type. Similarly, change the operand number
4309 of a reload when two operands match. If a reload is optional, treat it
4310 as though the operand isn't reloaded.
4312 ??? This latter case is somewhat odd because if we do the optional
4313 reload, it means the object is hanging around. Thus we need only
4314 do the address reload if the optional reload was NOT done.
4316 Change secondary reloads to be the address type of their operand, not
4317 the normal type.
4319 If an operand's reload is now RELOAD_OTHER, change any
4320 RELOAD_FOR_INPUT_ADDRESS reloads of that operand to
4321 RELOAD_FOR_OTHER_ADDRESS. */
4323 for (i = 0; i < n_reloads; i++)
4325 if (rld[i].secondary_p
4326 && rld[i].when_needed == operand_type[rld[i].opnum])
4327 rld[i].when_needed = address_type[rld[i].opnum];
4329 if ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
4330 || rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
4331 || rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS
4332 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4333 && (operand_reloadnum[rld[i].opnum] < 0
4334 || rld[operand_reloadnum[rld[i].opnum]].optional))
4336 /* If we have a secondary reload to go along with this reload,
4337 change its type to RELOAD_FOR_OPADDR_ADDR. */
4339 if ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
4340 || rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS)
4341 && rld[i].secondary_in_reload != -1)
4343 int secondary_in_reload = rld[i].secondary_in_reload;
4345 rld[secondary_in_reload].when_needed = RELOAD_FOR_OPADDR_ADDR;
4347 /* If there's a tertiary reload we have to change it also. */
4348 if (secondary_in_reload > 0
4349 && rld[secondary_in_reload].secondary_in_reload != -1)
4350 rld[rld[secondary_in_reload].secondary_in_reload].when_needed
4351 = RELOAD_FOR_OPADDR_ADDR;
4354 if ((rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
4355 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4356 && rld[i].secondary_out_reload != -1)
4358 int secondary_out_reload = rld[i].secondary_out_reload;
4360 rld[secondary_out_reload].when_needed = RELOAD_FOR_OPADDR_ADDR;
4362 /* If there's a tertiary reload we have to change it also. */
4363 if (secondary_out_reload
4364 && rld[secondary_out_reload].secondary_out_reload != -1)
4365 rld[rld[secondary_out_reload].secondary_out_reload].when_needed
4366 = RELOAD_FOR_OPADDR_ADDR;
4369 if (rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS
4370 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4371 rld[i].when_needed = RELOAD_FOR_OPADDR_ADDR;
4372 else
4373 rld[i].when_needed = RELOAD_FOR_OPERAND_ADDRESS;
4376 if ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
4377 || rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS)
4378 && operand_reloadnum[rld[i].opnum] >= 0
4379 && (rld[operand_reloadnum[rld[i].opnum]].when_needed
4380 == RELOAD_OTHER))
4381 rld[i].when_needed = RELOAD_FOR_OTHER_ADDRESS;
4383 if (goal_alternative_matches[rld[i].opnum] >= 0)
4384 rld[i].opnum = goal_alternative_matches[rld[i].opnum];
4387 /* Scan all the reloads, and check for RELOAD_FOR_OPERAND_ADDRESS reloads.
4388 If we have more than one, then convert all RELOAD_FOR_OPADDR_ADDR
4389 reloads to RELOAD_FOR_OPERAND_ADDRESS reloads.
4391 choose_reload_regs assumes that RELOAD_FOR_OPADDR_ADDR reloads never
4392 conflict with RELOAD_FOR_OPERAND_ADDRESS reloads. This is true for a
4393 single pair of RELOAD_FOR_OPADDR_ADDR/RELOAD_FOR_OPERAND_ADDRESS reloads.
4394 However, if there is more than one RELOAD_FOR_OPERAND_ADDRESS reload,
4395 then a RELOAD_FOR_OPADDR_ADDR reload conflicts with all
4396 RELOAD_FOR_OPERAND_ADDRESS reloads other than the one that uses it.
4397 This is complicated by the fact that a single operand can have more
4398 than one RELOAD_FOR_OPERAND_ADDRESS reload. It is very difficult to fix
4399 choose_reload_regs without affecting code quality, and cases that
4400 actually fail are extremely rare, so it turns out to be better to fix
4401 the problem here by not generating cases that choose_reload_regs will
4402 fail for. */
4403 /* There is a similar problem with RELOAD_FOR_INPUT_ADDRESS /
4404 RELOAD_FOR_OUTPUT_ADDRESS when there is more than one of a kind for
4405 a single operand.
4406 We can reduce the register pressure by exploiting that a
4407 RELOAD_FOR_X_ADDR_ADDR that precedes all RELOAD_FOR_X_ADDRESS reloads
4408 does not conflict with any of them, if it is only used for the first of
4409 the RELOAD_FOR_X_ADDRESS reloads. */
4411 int first_op_addr_num = -2;
4412 int first_inpaddr_num[MAX_RECOG_OPERANDS];
4413 int first_outpaddr_num[MAX_RECOG_OPERANDS];
4414 int need_change = 0;
4415 /* We use last_op_addr_reload and the contents of the above arrays
4416 first as flags - -2 means no instance encountered, -1 means exactly
4417 one instance encountered.
4418 If more than one instance has been encountered, we store the reload
4419 number of the first reload of the kind in question; reload numbers
4420 are known to be non-negative. */
4421 for (i = 0; i < noperands; i++)
4422 first_inpaddr_num[i] = first_outpaddr_num[i] = -2;
4423 for (i = n_reloads - 1; i >= 0; i--)
4425 switch (rld[i].when_needed)
4427 case RELOAD_FOR_OPERAND_ADDRESS:
4428 if (++first_op_addr_num >= 0)
4430 first_op_addr_num = i;
4431 need_change = 1;
4433 break;
4434 case RELOAD_FOR_INPUT_ADDRESS:
4435 if (++first_inpaddr_num[rld[i].opnum] >= 0)
4437 first_inpaddr_num[rld[i].opnum] = i;
4438 need_change = 1;
4440 break;
4441 case RELOAD_FOR_OUTPUT_ADDRESS:
4442 if (++first_outpaddr_num[rld[i].opnum] >= 0)
4444 first_outpaddr_num[rld[i].opnum] = i;
4445 need_change = 1;
4447 break;
4448 default:
4449 break;
4453 if (need_change)
4455 for (i = 0; i < n_reloads; i++)
4457 int first_num;
4458 enum reload_type type;
4460 switch (rld[i].when_needed)
4462 case RELOAD_FOR_OPADDR_ADDR:
4463 first_num = first_op_addr_num;
4464 type = RELOAD_FOR_OPERAND_ADDRESS;
4465 break;
4466 case RELOAD_FOR_INPADDR_ADDRESS:
4467 first_num = first_inpaddr_num[rld[i].opnum];
4468 type = RELOAD_FOR_INPUT_ADDRESS;
4469 break;
4470 case RELOAD_FOR_OUTADDR_ADDRESS:
4471 first_num = first_outpaddr_num[rld[i].opnum];
4472 type = RELOAD_FOR_OUTPUT_ADDRESS;
4473 break;
4474 default:
4475 continue;
4477 if (first_num < 0)
4478 continue;
4479 else if (i > first_num)
4480 rld[i].when_needed = type;
4481 else
4483 /* Check if the only TYPE reload that uses reload I is
4484 reload FIRST_NUM. */
4485 for (j = n_reloads - 1; j > first_num; j--)
4487 if (rld[j].when_needed == type
4488 && (rld[i].secondary_p
4489 ? rld[j].secondary_in_reload == i
4490 : reg_mentioned_p (rld[i].in, rld[j].in)))
4492 rld[i].when_needed = type;
4493 break;
4501 /* See if we have any reloads that are now allowed to be merged
4502 because we've changed when the reload is needed to
4503 RELOAD_FOR_OPERAND_ADDRESS or RELOAD_FOR_OTHER_ADDRESS. Only
4504 check for the most common cases. */
4506 for (i = 0; i < n_reloads; i++)
4507 if (rld[i].in != 0 && rld[i].out == 0
4508 && (rld[i].when_needed == RELOAD_FOR_OPERAND_ADDRESS
4509 || rld[i].when_needed == RELOAD_FOR_OPADDR_ADDR
4510 || rld[i].when_needed == RELOAD_FOR_OTHER_ADDRESS))
4511 for (j = 0; j < n_reloads; j++)
4512 if (i != j && rld[j].in != 0 && rld[j].out == 0
4513 && rld[j].when_needed == rld[i].when_needed
4514 && MATCHES (rld[i].in, rld[j].in)
4515 && rld[i].rclass == rld[j].rclass
4516 && !rld[i].nocombine && !rld[j].nocombine
4517 && rld[i].reg_rtx == rld[j].reg_rtx)
4519 rld[i].opnum = MIN (rld[i].opnum, rld[j].opnum);
4520 transfer_replacements (i, j);
4521 rld[j].in = 0;
4524 #ifdef HAVE_cc0
4525 /* If we made any reloads for addresses, see if they violate a
4526 "no input reloads" requirement for this insn. But loads that we
4527 do after the insn (such as for output addresses) are fine. */
4528 if (no_input_reloads)
4529 for (i = 0; i < n_reloads; i++)
4530 gcc_assert (rld[i].in == 0
4531 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS
4532 || rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS);
4533 #endif
4535 /* Compute reload_mode and reload_nregs. */
4536 for (i = 0; i < n_reloads; i++)
4538 rld[i].mode
4539 = (rld[i].inmode == VOIDmode
4540 || (GET_MODE_SIZE (rld[i].outmode)
4541 > GET_MODE_SIZE (rld[i].inmode)))
4542 ? rld[i].outmode : rld[i].inmode;
4544 rld[i].nregs = CLASS_MAX_NREGS (rld[i].rclass, rld[i].mode);
4547 /* Special case a simple move with an input reload and a
4548 destination of a hard reg, if the hard reg is ok, use it. */
4549 for (i = 0; i < n_reloads; i++)
4550 if (rld[i].when_needed == RELOAD_FOR_INPUT
4551 && GET_CODE (PATTERN (insn)) == SET
4552 && REG_P (SET_DEST (PATTERN (insn)))
4553 && (SET_SRC (PATTERN (insn)) == rld[i].in
4554 || SET_SRC (PATTERN (insn)) == rld[i].in_reg)
4555 && !elimination_target_reg_p (SET_DEST (PATTERN (insn))))
4557 rtx dest = SET_DEST (PATTERN (insn));
4558 unsigned int regno = REGNO (dest);
4560 if (regno < FIRST_PSEUDO_REGISTER
4561 && TEST_HARD_REG_BIT (reg_class_contents[rld[i].rclass], regno)
4562 && HARD_REGNO_MODE_OK (regno, rld[i].mode))
4564 int nr = hard_regno_nregs[regno][rld[i].mode];
4565 int ok = 1, nri;
4567 for (nri = 1; nri < nr; nri ++)
4568 if (! TEST_HARD_REG_BIT (reg_class_contents[rld[i].rclass], regno + nri))
4569 ok = 0;
4571 if (ok)
4572 rld[i].reg_rtx = dest;
4576 return retval;
4579 /* Return true if alternative number ALTNUM in constraint-string
4580 CONSTRAINT is guaranteed to accept a reloaded constant-pool reference.
4581 MEM gives the reference if it didn't need any reloads, otherwise it
4582 is null. */
4584 static bool
4585 alternative_allows_const_pool_ref (rtx mem ATTRIBUTE_UNUSED,
4586 const char *constraint, int altnum)
4588 int c;
4590 /* Skip alternatives before the one requested. */
4591 while (altnum > 0)
4593 while (*constraint++ != ',');
4594 altnum--;
4596 /* Scan the requested alternative for TARGET_MEM_CONSTRAINT or 'o'.
4597 If one of them is present, this alternative accepts the result of
4598 passing a constant-pool reference through find_reloads_toplev.
4600 The same is true of extra memory constraints if the address
4601 was reloaded into a register. However, the target may elect
4602 to disallow the original constant address, forcing it to be
4603 reloaded into a register instead. */
4604 for (; (c = *constraint) && c != ',' && c != '#';
4605 constraint += CONSTRAINT_LEN (c, constraint))
4607 if (c == TARGET_MEM_CONSTRAINT || c == 'o')
4608 return true;
4609 #ifdef EXTRA_CONSTRAINT_STR
4610 if (EXTRA_MEMORY_CONSTRAINT (c, constraint)
4611 && (mem == NULL || EXTRA_CONSTRAINT_STR (mem, c, constraint)))
4612 return true;
4613 #endif
4615 return false;
4618 /* Scan X for memory references and scan the addresses for reloading.
4619 Also checks for references to "constant" regs that we want to eliminate
4620 and replaces them with the values they stand for.
4621 We may alter X destructively if it contains a reference to such.
4622 If X is just a constant reg, we return the equivalent value
4623 instead of X.
4625 IND_LEVELS says how many levels of indirect addressing this machine
4626 supports.
4628 OPNUM and TYPE identify the purpose of the reload.
4630 IS_SET_DEST is true if X is the destination of a SET, which is not
4631 appropriate to be replaced by a constant.
4633 INSN, if nonzero, is the insn in which we do the reload. It is used
4634 to determine if we may generate output reloads, and where to put USEs
4635 for pseudos that we have to replace with stack slots.
4637 ADDRESS_RELOADED. If nonzero, is a pointer to where we put the
4638 result of find_reloads_address. */
4640 static rtx
4641 find_reloads_toplev (rtx x, int opnum, enum reload_type type,
4642 int ind_levels, int is_set_dest, rtx insn,
4643 int *address_reloaded)
4645 RTX_CODE code = GET_CODE (x);
4647 const char *fmt = GET_RTX_FORMAT (code);
4648 int i;
4649 int copied;
4651 if (code == REG)
4653 /* This code is duplicated for speed in find_reloads. */
4654 int regno = REGNO (x);
4655 if (reg_equiv_constant[regno] != 0 && !is_set_dest)
4656 x = reg_equiv_constant[regno];
4657 #if 0
4658 /* This creates (subreg (mem...)) which would cause an unnecessary
4659 reload of the mem. */
4660 else if (reg_equiv_mem[regno] != 0)
4661 x = reg_equiv_mem[regno];
4662 #endif
4663 else if (reg_equiv_memory_loc[regno]
4664 && (reg_equiv_address[regno] != 0 || num_not_at_initial_offset))
4666 rtx mem = make_memloc (x, regno);
4667 if (reg_equiv_address[regno]
4668 || ! rtx_equal_p (mem, reg_equiv_mem[regno]))
4670 /* If this is not a toplevel operand, find_reloads doesn't see
4671 this substitution. We have to emit a USE of the pseudo so
4672 that delete_output_reload can see it. */
4673 if (replace_reloads && recog_data.operand[opnum] != x)
4674 /* We mark the USE with QImode so that we recognize it
4675 as one that can be safely deleted at the end of
4676 reload. */
4677 PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode, x), insn),
4678 QImode);
4679 x = mem;
4680 i = find_reloads_address (GET_MODE (x), &x, XEXP (x, 0), &XEXP (x, 0),
4681 opnum, type, ind_levels, insn);
4682 if (!rtx_equal_p (x, mem))
4683 push_reg_equiv_alt_mem (regno, x);
4684 if (address_reloaded)
4685 *address_reloaded = i;
4688 return x;
4690 if (code == MEM)
4692 rtx tem = x;
4694 i = find_reloads_address (GET_MODE (x), &tem, XEXP (x, 0), &XEXP (x, 0),
4695 opnum, type, ind_levels, insn);
4696 if (address_reloaded)
4697 *address_reloaded = i;
4699 return tem;
4702 if (code == SUBREG && REG_P (SUBREG_REG (x)))
4704 /* Check for SUBREG containing a REG that's equivalent to a
4705 constant. If the constant has a known value, truncate it
4706 right now. Similarly if we are extracting a single-word of a
4707 multi-word constant. If the constant is symbolic, allow it
4708 to be substituted normally. push_reload will strip the
4709 subreg later. The constant must not be VOIDmode, because we
4710 will lose the mode of the register (this should never happen
4711 because one of the cases above should handle it). */
4713 int regno = REGNO (SUBREG_REG (x));
4714 rtx tem;
4716 if (regno >= FIRST_PSEUDO_REGISTER
4717 && reg_renumber[regno] < 0
4718 && reg_equiv_constant[regno] != 0)
4720 tem =
4721 simplify_gen_subreg (GET_MODE (x), reg_equiv_constant[regno],
4722 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
4723 gcc_assert (tem);
4724 if (CONSTANT_P (tem) && !LEGITIMATE_CONSTANT_P (tem))
4726 tem = force_const_mem (GET_MODE (x), tem);
4727 i = find_reloads_address (GET_MODE (tem), &tem, XEXP (tem, 0),
4728 &XEXP (tem, 0), opnum, type,
4729 ind_levels, insn);
4730 if (address_reloaded)
4731 *address_reloaded = i;
4733 return tem;
4736 /* If the subreg contains a reg that will be converted to a mem,
4737 convert the subreg to a narrower memref now.
4738 Otherwise, we would get (subreg (mem ...) ...),
4739 which would force reload of the mem.
4741 We also need to do this if there is an equivalent MEM that is
4742 not offsettable. In that case, alter_subreg would produce an
4743 invalid address on big-endian machines.
4745 For machines that extend byte loads, we must not reload using
4746 a wider mode if we have a paradoxical SUBREG. find_reloads will
4747 force a reload in that case. So we should not do anything here. */
4749 if (regno >= FIRST_PSEUDO_REGISTER
4750 #ifdef LOAD_EXTEND_OP
4751 && (GET_MODE_SIZE (GET_MODE (x))
4752 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
4753 #endif
4754 && (reg_equiv_address[regno] != 0
4755 || (reg_equiv_mem[regno] != 0
4756 && (! strict_memory_address_addr_space_p
4757 (GET_MODE (x), XEXP (reg_equiv_mem[regno], 0),
4758 MEM_ADDR_SPACE (reg_equiv_mem[regno]))
4759 || ! offsettable_memref_p (reg_equiv_mem[regno])
4760 || num_not_at_initial_offset))))
4761 x = find_reloads_subreg_address (x, 1, opnum, type, ind_levels,
4762 insn);
4765 for (copied = 0, i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4767 if (fmt[i] == 'e')
4769 rtx new_part = find_reloads_toplev (XEXP (x, i), opnum, type,
4770 ind_levels, is_set_dest, insn,
4771 address_reloaded);
4772 /* If we have replaced a reg with it's equivalent memory loc -
4773 that can still be handled here e.g. if it's in a paradoxical
4774 subreg - we must make the change in a copy, rather than using
4775 a destructive change. This way, find_reloads can still elect
4776 not to do the change. */
4777 if (new_part != XEXP (x, i) && ! CONSTANT_P (new_part) && ! copied)
4779 x = shallow_copy_rtx (x);
4780 copied = 1;
4782 XEXP (x, i) = new_part;
4785 return x;
4788 /* Return a mem ref for the memory equivalent of reg REGNO.
4789 This mem ref is not shared with anything. */
4791 static rtx
4792 make_memloc (rtx ad, int regno)
4794 /* We must rerun eliminate_regs, in case the elimination
4795 offsets have changed. */
4796 rtx tem
4797 = XEXP (eliminate_regs (reg_equiv_memory_loc[regno], VOIDmode, NULL_RTX),
4800 /* If TEM might contain a pseudo, we must copy it to avoid
4801 modifying it when we do the substitution for the reload. */
4802 if (rtx_varies_p (tem, 0))
4803 tem = copy_rtx (tem);
4805 tem = replace_equiv_address_nv (reg_equiv_memory_loc[regno], tem);
4806 tem = adjust_address_nv (tem, GET_MODE (ad), 0);
4808 /* Copy the result if it's still the same as the equivalence, to avoid
4809 modifying it when we do the substitution for the reload. */
4810 if (tem == reg_equiv_memory_loc[regno])
4811 tem = copy_rtx (tem);
4812 return tem;
4815 /* Returns true if AD could be turned into a valid memory reference
4816 to mode MODE in address space AS by reloading the part pointed to
4817 by PART into a register. */
4819 static int
4820 maybe_memory_address_addr_space_p (enum machine_mode mode, rtx ad,
4821 addr_space_t as, rtx *part)
4823 int retv;
4824 rtx tem = *part;
4825 rtx reg = gen_rtx_REG (GET_MODE (tem), max_reg_num ());
4827 *part = reg;
4828 retv = memory_address_addr_space_p (mode, ad, as);
4829 *part = tem;
4831 return retv;
4834 /* Record all reloads needed for handling memory address AD
4835 which appears in *LOC in a memory reference to mode MODE
4836 which itself is found in location *MEMREFLOC.
4837 Note that we take shortcuts assuming that no multi-reg machine mode
4838 occurs as part of an address.
4840 OPNUM and TYPE specify the purpose of this reload.
4842 IND_LEVELS says how many levels of indirect addressing this machine
4843 supports.
4845 INSN, if nonzero, is the insn in which we do the reload. It is used
4846 to determine if we may generate output reloads, and where to put USEs
4847 for pseudos that we have to replace with stack slots.
4849 Value is one if this address is reloaded or replaced as a whole; it is
4850 zero if the top level of this address was not reloaded or replaced, and
4851 it is -1 if it may or may not have been reloaded or replaced.
4853 Note that there is no verification that the address will be valid after
4854 this routine does its work. Instead, we rely on the fact that the address
4855 was valid when reload started. So we need only undo things that reload
4856 could have broken. These are wrong register types, pseudos not allocated
4857 to a hard register, and frame pointer elimination. */
4859 static int
4860 find_reloads_address (enum machine_mode mode, rtx *memrefloc, rtx ad,
4861 rtx *loc, int opnum, enum reload_type type,
4862 int ind_levels, rtx insn)
4864 addr_space_t as = memrefloc? MEM_ADDR_SPACE (*memrefloc)
4865 : ADDR_SPACE_GENERIC;
4866 int regno;
4867 int removed_and = 0;
4868 int op_index;
4869 rtx tem;
4871 /* If the address is a register, see if it is a legitimate address and
4872 reload if not. We first handle the cases where we need not reload
4873 or where we must reload in a non-standard way. */
4875 if (REG_P (ad))
4877 regno = REGNO (ad);
4879 if (reg_equiv_constant[regno] != 0)
4881 find_reloads_address_part (reg_equiv_constant[regno], loc,
4882 base_reg_class (mode, MEM, SCRATCH),
4883 GET_MODE (ad), opnum, type, ind_levels);
4884 return 1;
4887 tem = reg_equiv_memory_loc[regno];
4888 if (tem != 0)
4890 if (reg_equiv_address[regno] != 0 || num_not_at_initial_offset)
4892 tem = make_memloc (ad, regno);
4893 if (! strict_memory_address_addr_space_p (GET_MODE (tem),
4894 XEXP (tem, 0),
4895 MEM_ADDR_SPACE (tem)))
4897 rtx orig = tem;
4899 find_reloads_address (GET_MODE (tem), &tem, XEXP (tem, 0),
4900 &XEXP (tem, 0), opnum,
4901 ADDR_TYPE (type), ind_levels, insn);
4902 if (!rtx_equal_p (tem, orig))
4903 push_reg_equiv_alt_mem (regno, tem);
4905 /* We can avoid a reload if the register's equivalent memory
4906 expression is valid as an indirect memory address.
4907 But not all addresses are valid in a mem used as an indirect
4908 address: only reg or reg+constant. */
4910 if (ind_levels > 0
4911 && strict_memory_address_addr_space_p (mode, tem, as)
4912 && (REG_P (XEXP (tem, 0))
4913 || (GET_CODE (XEXP (tem, 0)) == PLUS
4914 && REG_P (XEXP (XEXP (tem, 0), 0))
4915 && CONSTANT_P (XEXP (XEXP (tem, 0), 1)))))
4917 /* TEM is not the same as what we'll be replacing the
4918 pseudo with after reload, put a USE in front of INSN
4919 in the final reload pass. */
4920 if (replace_reloads
4921 && num_not_at_initial_offset
4922 && ! rtx_equal_p (tem, reg_equiv_mem[regno]))
4924 *loc = tem;
4925 /* We mark the USE with QImode so that we
4926 recognize it as one that can be safely
4927 deleted at the end of reload. */
4928 PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode, ad),
4929 insn), QImode);
4931 /* This doesn't really count as replacing the address
4932 as a whole, since it is still a memory access. */
4934 return 0;
4936 ad = tem;
4940 /* The only remaining case where we can avoid a reload is if this is a
4941 hard register that is valid as a base register and which is not the
4942 subject of a CLOBBER in this insn. */
4944 else if (regno < FIRST_PSEUDO_REGISTER
4945 && regno_ok_for_base_p (regno, mode, MEM, SCRATCH)
4946 && ! regno_clobbered_p (regno, this_insn, mode, 0))
4947 return 0;
4949 /* If we do not have one of the cases above, we must do the reload. */
4950 push_reload (ad, NULL_RTX, loc, (rtx*) 0, base_reg_class (mode, MEM, SCRATCH),
4951 GET_MODE (ad), VOIDmode, 0, 0, opnum, type);
4952 return 1;
4955 if (strict_memory_address_addr_space_p (mode, ad, as))
4957 /* The address appears valid, so reloads are not needed.
4958 But the address may contain an eliminable register.
4959 This can happen because a machine with indirect addressing
4960 may consider a pseudo register by itself a valid address even when
4961 it has failed to get a hard reg.
4962 So do a tree-walk to find and eliminate all such regs. */
4964 /* But first quickly dispose of a common case. */
4965 if (GET_CODE (ad) == PLUS
4966 && CONST_INT_P (XEXP (ad, 1))
4967 && REG_P (XEXP (ad, 0))
4968 && reg_equiv_constant[REGNO (XEXP (ad, 0))] == 0)
4969 return 0;
4971 subst_reg_equivs_changed = 0;
4972 *loc = subst_reg_equivs (ad, insn);
4974 if (! subst_reg_equivs_changed)
4975 return 0;
4977 /* Check result for validity after substitution. */
4978 if (strict_memory_address_addr_space_p (mode, ad, as))
4979 return 0;
4982 #ifdef LEGITIMIZE_RELOAD_ADDRESS
4985 if (memrefloc && ADDR_SPACE_GENERIC_P (as))
4987 LEGITIMIZE_RELOAD_ADDRESS (ad, GET_MODE (*memrefloc), opnum, type,
4988 ind_levels, win);
4990 break;
4991 win:
4992 *memrefloc = copy_rtx (*memrefloc);
4993 XEXP (*memrefloc, 0) = ad;
4994 move_replacements (&ad, &XEXP (*memrefloc, 0));
4995 return -1;
4997 while (0);
4998 #endif
5000 /* The address is not valid. We have to figure out why. First see if
5001 we have an outer AND and remove it if so. Then analyze what's inside. */
5003 if (GET_CODE (ad) == AND)
5005 removed_and = 1;
5006 loc = &XEXP (ad, 0);
5007 ad = *loc;
5010 /* One possibility for why the address is invalid is that it is itself
5011 a MEM. This can happen when the frame pointer is being eliminated, a
5012 pseudo is not allocated to a hard register, and the offset between the
5013 frame and stack pointers is not its initial value. In that case the
5014 pseudo will have been replaced by a MEM referring to the
5015 stack pointer. */
5016 if (MEM_P (ad))
5018 /* First ensure that the address in this MEM is valid. Then, unless
5019 indirect addresses are valid, reload the MEM into a register. */
5020 tem = ad;
5021 find_reloads_address (GET_MODE (ad), &tem, XEXP (ad, 0), &XEXP (ad, 0),
5022 opnum, ADDR_TYPE (type),
5023 ind_levels == 0 ? 0 : ind_levels - 1, insn);
5025 /* If tem was changed, then we must create a new memory reference to
5026 hold it and store it back into memrefloc. */
5027 if (tem != ad && memrefloc)
5029 *memrefloc = copy_rtx (*memrefloc);
5030 copy_replacements (tem, XEXP (*memrefloc, 0));
5031 loc = &XEXP (*memrefloc, 0);
5032 if (removed_and)
5033 loc = &XEXP (*loc, 0);
5036 /* Check similar cases as for indirect addresses as above except
5037 that we can allow pseudos and a MEM since they should have been
5038 taken care of above. */
5040 if (ind_levels == 0
5041 || (GET_CODE (XEXP (tem, 0)) == SYMBOL_REF && ! indirect_symref_ok)
5042 || MEM_P (XEXP (tem, 0))
5043 || ! (REG_P (XEXP (tem, 0))
5044 || (GET_CODE (XEXP (tem, 0)) == PLUS
5045 && REG_P (XEXP (XEXP (tem, 0), 0))
5046 && CONST_INT_P (XEXP (XEXP (tem, 0), 1)))))
5048 /* Must use TEM here, not AD, since it is the one that will
5049 have any subexpressions reloaded, if needed. */
5050 push_reload (tem, NULL_RTX, loc, (rtx*) 0,
5051 base_reg_class (mode, MEM, SCRATCH), GET_MODE (tem),
5052 VOIDmode, 0,
5053 0, opnum, type);
5054 return ! removed_and;
5056 else
5057 return 0;
5060 /* If we have address of a stack slot but it's not valid because the
5061 displacement is too large, compute the sum in a register.
5062 Handle all base registers here, not just fp/ap/sp, because on some
5063 targets (namely SH) we can also get too large displacements from
5064 big-endian corrections. */
5065 else if (GET_CODE (ad) == PLUS
5066 && REG_P (XEXP (ad, 0))
5067 && REGNO (XEXP (ad, 0)) < FIRST_PSEUDO_REGISTER
5068 && CONST_INT_P (XEXP (ad, 1))
5069 && regno_ok_for_base_p (REGNO (XEXP (ad, 0)), mode, PLUS,
5070 CONST_INT))
5073 /* Unshare the MEM rtx so we can safely alter it. */
5074 if (memrefloc)
5076 *memrefloc = copy_rtx (*memrefloc);
5077 loc = &XEXP (*memrefloc, 0);
5078 if (removed_and)
5079 loc = &XEXP (*loc, 0);
5082 if (double_reg_address_ok)
5084 /* Unshare the sum as well. */
5085 *loc = ad = copy_rtx (ad);
5087 /* Reload the displacement into an index reg.
5088 We assume the frame pointer or arg pointer is a base reg. */
5089 find_reloads_address_part (XEXP (ad, 1), &XEXP (ad, 1),
5090 INDEX_REG_CLASS, GET_MODE (ad), opnum,
5091 type, ind_levels);
5092 return 0;
5094 else
5096 /* If the sum of two regs is not necessarily valid,
5097 reload the sum into a base reg.
5098 That will at least work. */
5099 find_reloads_address_part (ad, loc,
5100 base_reg_class (mode, MEM, SCRATCH),
5101 GET_MODE (ad), opnum, type, ind_levels);
5103 return ! removed_and;
5106 /* If we have an indexed stack slot, there are three possible reasons why
5107 it might be invalid: The index might need to be reloaded, the address
5108 might have been made by frame pointer elimination and hence have a
5109 constant out of range, or both reasons might apply.
5111 We can easily check for an index needing reload, but even if that is the
5112 case, we might also have an invalid constant. To avoid making the
5113 conservative assumption and requiring two reloads, we see if this address
5114 is valid when not interpreted strictly. If it is, the only problem is
5115 that the index needs a reload and find_reloads_address_1 will take care
5116 of it.
5118 Handle all base registers here, not just fp/ap/sp, because on some
5119 targets (namely SPARC) we can also get invalid addresses from preventive
5120 subreg big-endian corrections made by find_reloads_toplev. We
5121 can also get expressions involving LO_SUM (rather than PLUS) from
5122 find_reloads_subreg_address.
5124 If we decide to do something, it must be that `double_reg_address_ok'
5125 is true. We generate a reload of the base register + constant and
5126 rework the sum so that the reload register will be added to the index.
5127 This is safe because we know the address isn't shared.
5129 We check for the base register as both the first and second operand of
5130 the innermost PLUS and/or LO_SUM. */
5132 for (op_index = 0; op_index < 2; ++op_index)
5134 rtx operand, addend;
5135 enum rtx_code inner_code;
5137 if (GET_CODE (ad) != PLUS)
5138 continue;
5140 inner_code = GET_CODE (XEXP (ad, 0));
5141 if (!(GET_CODE (ad) == PLUS
5142 && CONST_INT_P (XEXP (ad, 1))
5143 && (inner_code == PLUS || inner_code == LO_SUM)))
5144 continue;
5146 operand = XEXP (XEXP (ad, 0), op_index);
5147 if (!REG_P (operand) || REGNO (operand) >= FIRST_PSEUDO_REGISTER)
5148 continue;
5150 addend = XEXP (XEXP (ad, 0), 1 - op_index);
5152 if ((regno_ok_for_base_p (REGNO (operand), mode, inner_code,
5153 GET_CODE (addend))
5154 || operand == frame_pointer_rtx
5155 #if !HARD_FRAME_POINTER_IS_FRAME_POINTER
5156 || operand == hard_frame_pointer_rtx
5157 #endif
5158 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
5159 || operand == arg_pointer_rtx
5160 #endif
5161 || operand == stack_pointer_rtx)
5162 && ! maybe_memory_address_addr_space_p
5163 (mode, ad, as, &XEXP (XEXP (ad, 0), 1 - op_index)))
5165 rtx offset_reg;
5166 enum reg_class cls;
5168 offset_reg = plus_constant (operand, INTVAL (XEXP (ad, 1)));
5170 /* Form the adjusted address. */
5171 if (GET_CODE (XEXP (ad, 0)) == PLUS)
5172 ad = gen_rtx_PLUS (GET_MODE (ad),
5173 op_index == 0 ? offset_reg : addend,
5174 op_index == 0 ? addend : offset_reg);
5175 else
5176 ad = gen_rtx_LO_SUM (GET_MODE (ad),
5177 op_index == 0 ? offset_reg : addend,
5178 op_index == 0 ? addend : offset_reg);
5179 *loc = ad;
5181 cls = base_reg_class (mode, MEM, GET_CODE (addend));
5182 find_reloads_address_part (XEXP (ad, op_index),
5183 &XEXP (ad, op_index), cls,
5184 GET_MODE (ad), opnum, type, ind_levels);
5185 find_reloads_address_1 (mode,
5186 XEXP (ad, 1 - op_index), 1, GET_CODE (ad),
5187 GET_CODE (XEXP (ad, op_index)),
5188 &XEXP (ad, 1 - op_index), opnum,
5189 type, 0, insn);
5191 return 0;
5195 /* See if address becomes valid when an eliminable register
5196 in a sum is replaced. */
5198 tem = ad;
5199 if (GET_CODE (ad) == PLUS)
5200 tem = subst_indexed_address (ad);
5201 if (tem != ad && strict_memory_address_addr_space_p (mode, tem, as))
5203 /* Ok, we win that way. Replace any additional eliminable
5204 registers. */
5206 subst_reg_equivs_changed = 0;
5207 tem = subst_reg_equivs (tem, insn);
5209 /* Make sure that didn't make the address invalid again. */
5211 if (! subst_reg_equivs_changed
5212 || strict_memory_address_addr_space_p (mode, tem, as))
5214 *loc = tem;
5215 return 0;
5219 /* If constants aren't valid addresses, reload the constant address
5220 into a register. */
5221 if (CONSTANT_P (ad) && ! strict_memory_address_addr_space_p (mode, ad, as))
5223 enum machine_mode address_mode = GET_MODE (ad);
5224 if (address_mode == VOIDmode)
5225 address_mode = targetm.addr_space.address_mode (as);
5227 /* If AD is an address in the constant pool, the MEM rtx may be shared.
5228 Unshare it so we can safely alter it. */
5229 if (memrefloc && GET_CODE (ad) == SYMBOL_REF
5230 && CONSTANT_POOL_ADDRESS_P (ad))
5232 *memrefloc = copy_rtx (*memrefloc);
5233 loc = &XEXP (*memrefloc, 0);
5234 if (removed_and)
5235 loc = &XEXP (*loc, 0);
5238 find_reloads_address_part (ad, loc, base_reg_class (mode, MEM, SCRATCH),
5239 address_mode, opnum, type, ind_levels);
5240 return ! removed_and;
5243 return find_reloads_address_1 (mode, ad, 0, MEM, SCRATCH, loc, opnum, type,
5244 ind_levels, insn);
5247 /* Find all pseudo regs appearing in AD
5248 that are eliminable in favor of equivalent values
5249 and do not have hard regs; replace them by their equivalents.
5250 INSN, if nonzero, is the insn in which we do the reload. We put USEs in
5251 front of it for pseudos that we have to replace with stack slots. */
5253 static rtx
5254 subst_reg_equivs (rtx ad, rtx insn)
5256 RTX_CODE code = GET_CODE (ad);
5257 int i;
5258 const char *fmt;
5260 switch (code)
5262 case HIGH:
5263 case CONST_INT:
5264 case CONST:
5265 case CONST_DOUBLE:
5266 case CONST_FIXED:
5267 case CONST_VECTOR:
5268 case SYMBOL_REF:
5269 case LABEL_REF:
5270 case PC:
5271 case CC0:
5272 return ad;
5274 case REG:
5276 int regno = REGNO (ad);
5278 if (reg_equiv_constant[regno] != 0)
5280 subst_reg_equivs_changed = 1;
5281 return reg_equiv_constant[regno];
5283 if (reg_equiv_memory_loc[regno] && num_not_at_initial_offset)
5285 rtx mem = make_memloc (ad, regno);
5286 if (! rtx_equal_p (mem, reg_equiv_mem[regno]))
5288 subst_reg_equivs_changed = 1;
5289 /* We mark the USE with QImode so that we recognize it
5290 as one that can be safely deleted at the end of
5291 reload. */
5292 PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode, ad), insn),
5293 QImode);
5294 return mem;
5298 return ad;
5300 case PLUS:
5301 /* Quickly dispose of a common case. */
5302 if (XEXP (ad, 0) == frame_pointer_rtx
5303 && CONST_INT_P (XEXP (ad, 1)))
5304 return ad;
5305 break;
5307 default:
5308 break;
5311 fmt = GET_RTX_FORMAT (code);
5312 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
5313 if (fmt[i] == 'e')
5314 XEXP (ad, i) = subst_reg_equivs (XEXP (ad, i), insn);
5315 return ad;
5318 /* Compute the sum of X and Y, making canonicalizations assumed in an
5319 address, namely: sum constant integers, surround the sum of two
5320 constants with a CONST, put the constant as the second operand, and
5321 group the constant on the outermost sum.
5323 This routine assumes both inputs are already in canonical form. */
5326 form_sum (enum machine_mode mode, rtx x, rtx y)
5328 rtx tem;
5330 gcc_assert (GET_MODE (x) == mode || GET_MODE (x) == VOIDmode);
5331 gcc_assert (GET_MODE (y) == mode || GET_MODE (y) == VOIDmode);
5333 if (CONST_INT_P (x))
5334 return plus_constant (y, INTVAL (x));
5335 else if (CONST_INT_P (y))
5336 return plus_constant (x, INTVAL (y));
5337 else if (CONSTANT_P (x))
5338 tem = x, x = y, y = tem;
5340 if (GET_CODE (x) == PLUS && CONSTANT_P (XEXP (x, 1)))
5341 return form_sum (mode, XEXP (x, 0), form_sum (mode, XEXP (x, 1), y));
5343 /* Note that if the operands of Y are specified in the opposite
5344 order in the recursive calls below, infinite recursion will occur. */
5345 if (GET_CODE (y) == PLUS && CONSTANT_P (XEXP (y, 1)))
5346 return form_sum (mode, form_sum (mode, x, XEXP (y, 0)), XEXP (y, 1));
5348 /* If both constant, encapsulate sum. Otherwise, just form sum. A
5349 constant will have been placed second. */
5350 if (CONSTANT_P (x) && CONSTANT_P (y))
5352 if (GET_CODE (x) == CONST)
5353 x = XEXP (x, 0);
5354 if (GET_CODE (y) == CONST)
5355 y = XEXP (y, 0);
5357 return gen_rtx_CONST (VOIDmode, gen_rtx_PLUS (mode, x, y));
5360 return gen_rtx_PLUS (mode, x, y);
5363 /* If ADDR is a sum containing a pseudo register that should be
5364 replaced with a constant (from reg_equiv_constant),
5365 return the result of doing so, and also apply the associative
5366 law so that the result is more likely to be a valid address.
5367 (But it is not guaranteed to be one.)
5369 Note that at most one register is replaced, even if more are
5370 replaceable. Also, we try to put the result into a canonical form
5371 so it is more likely to be a valid address.
5373 In all other cases, return ADDR. */
5375 static rtx
5376 subst_indexed_address (rtx addr)
5378 rtx op0 = 0, op1 = 0, op2 = 0;
5379 rtx tem;
5380 int regno;
5382 if (GET_CODE (addr) == PLUS)
5384 /* Try to find a register to replace. */
5385 op0 = XEXP (addr, 0), op1 = XEXP (addr, 1), op2 = 0;
5386 if (REG_P (op0)
5387 && (regno = REGNO (op0)) >= FIRST_PSEUDO_REGISTER
5388 && reg_renumber[regno] < 0
5389 && reg_equiv_constant[regno] != 0)
5390 op0 = reg_equiv_constant[regno];
5391 else if (REG_P (op1)
5392 && (regno = REGNO (op1)) >= FIRST_PSEUDO_REGISTER
5393 && reg_renumber[regno] < 0
5394 && reg_equiv_constant[regno] != 0)
5395 op1 = reg_equiv_constant[regno];
5396 else if (GET_CODE (op0) == PLUS
5397 && (tem = subst_indexed_address (op0)) != op0)
5398 op0 = tem;
5399 else if (GET_CODE (op1) == PLUS
5400 && (tem = subst_indexed_address (op1)) != op1)
5401 op1 = tem;
5402 else
5403 return addr;
5405 /* Pick out up to three things to add. */
5406 if (GET_CODE (op1) == PLUS)
5407 op2 = XEXP (op1, 1), op1 = XEXP (op1, 0);
5408 else if (GET_CODE (op0) == PLUS)
5409 op2 = op1, op1 = XEXP (op0, 1), op0 = XEXP (op0, 0);
5411 /* Compute the sum. */
5412 if (op2 != 0)
5413 op1 = form_sum (GET_MODE (addr), op1, op2);
5414 if (op1 != 0)
5415 op0 = form_sum (GET_MODE (addr), op0, op1);
5417 return op0;
5419 return addr;
5422 /* Update the REG_INC notes for an insn. It updates all REG_INC
5423 notes for the instruction which refer to REGNO the to refer
5424 to the reload number.
5426 INSN is the insn for which any REG_INC notes need updating.
5428 REGNO is the register number which has been reloaded.
5430 RELOADNUM is the reload number. */
5432 static void
5433 update_auto_inc_notes (rtx insn ATTRIBUTE_UNUSED, int regno ATTRIBUTE_UNUSED,
5434 int reloadnum ATTRIBUTE_UNUSED)
5436 #ifdef AUTO_INC_DEC
5437 rtx link;
5439 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
5440 if (REG_NOTE_KIND (link) == REG_INC
5441 && (int) REGNO (XEXP (link, 0)) == regno)
5442 push_replacement (&XEXP (link, 0), reloadnum, VOIDmode);
5443 #endif
5446 /* Record the pseudo registers we must reload into hard registers in a
5447 subexpression of a would-be memory address, X referring to a value
5448 in mode MODE. (This function is not called if the address we find
5449 is strictly valid.)
5451 CONTEXT = 1 means we are considering regs as index regs,
5452 = 0 means we are considering them as base regs.
5453 OUTER_CODE is the code of the enclosing RTX, typically a MEM, a PLUS,
5454 or an autoinc code.
5455 If CONTEXT == 0 and OUTER_CODE is a PLUS or LO_SUM, then INDEX_CODE
5456 is the code of the index part of the address. Otherwise, pass SCRATCH
5457 for this argument.
5458 OPNUM and TYPE specify the purpose of any reloads made.
5460 IND_LEVELS says how many levels of indirect addressing are
5461 supported at this point in the address.
5463 INSN, if nonzero, is the insn in which we do the reload. It is used
5464 to determine if we may generate output reloads.
5466 We return nonzero if X, as a whole, is reloaded or replaced. */
5468 /* Note that we take shortcuts assuming that no multi-reg machine mode
5469 occurs as part of an address.
5470 Also, this is not fully machine-customizable; it works for machines
5471 such as VAXen and 68000's and 32000's, but other possible machines
5472 could have addressing modes that this does not handle right.
5473 If you add push_reload calls here, you need to make sure gen_reload
5474 handles those cases gracefully. */
5476 static int
5477 find_reloads_address_1 (enum machine_mode mode, rtx x, int context,
5478 enum rtx_code outer_code, enum rtx_code index_code,
5479 rtx *loc, int opnum, enum reload_type type,
5480 int ind_levels, rtx insn)
5482 #define REG_OK_FOR_CONTEXT(CONTEXT, REGNO, MODE, OUTER, INDEX) \
5483 ((CONTEXT) == 0 \
5484 ? regno_ok_for_base_p (REGNO, MODE, OUTER, INDEX) \
5485 : REGNO_OK_FOR_INDEX_P (REGNO))
5487 enum reg_class context_reg_class;
5488 RTX_CODE code = GET_CODE (x);
5490 if (context == 1)
5491 context_reg_class = INDEX_REG_CLASS;
5492 else
5493 context_reg_class = base_reg_class (mode, outer_code, index_code);
5495 switch (code)
5497 case PLUS:
5499 rtx orig_op0 = XEXP (x, 0);
5500 rtx orig_op1 = XEXP (x, 1);
5501 RTX_CODE code0 = GET_CODE (orig_op0);
5502 RTX_CODE code1 = GET_CODE (orig_op1);
5503 rtx op0 = orig_op0;
5504 rtx op1 = orig_op1;
5506 if (GET_CODE (op0) == SUBREG)
5508 op0 = SUBREG_REG (op0);
5509 code0 = GET_CODE (op0);
5510 if (code0 == REG && REGNO (op0) < FIRST_PSEUDO_REGISTER)
5511 op0 = gen_rtx_REG (word_mode,
5512 (REGNO (op0) +
5513 subreg_regno_offset (REGNO (SUBREG_REG (orig_op0)),
5514 GET_MODE (SUBREG_REG (orig_op0)),
5515 SUBREG_BYTE (orig_op0),
5516 GET_MODE (orig_op0))));
5519 if (GET_CODE (op1) == SUBREG)
5521 op1 = SUBREG_REG (op1);
5522 code1 = GET_CODE (op1);
5523 if (code1 == REG && REGNO (op1) < FIRST_PSEUDO_REGISTER)
5524 /* ??? Why is this given op1's mode and above for
5525 ??? op0 SUBREGs we use word_mode? */
5526 op1 = gen_rtx_REG (GET_MODE (op1),
5527 (REGNO (op1) +
5528 subreg_regno_offset (REGNO (SUBREG_REG (orig_op1)),
5529 GET_MODE (SUBREG_REG (orig_op1)),
5530 SUBREG_BYTE (orig_op1),
5531 GET_MODE (orig_op1))));
5533 /* Plus in the index register may be created only as a result of
5534 register rematerialization for expression like &localvar*4. Reload it.
5535 It may be possible to combine the displacement on the outer level,
5536 but it is probably not worthwhile to do so. */
5537 if (context == 1)
5539 find_reloads_address (GET_MODE (x), loc, XEXP (x, 0), &XEXP (x, 0),
5540 opnum, ADDR_TYPE (type), ind_levels, insn);
5541 push_reload (*loc, NULL_RTX, loc, (rtx*) 0,
5542 context_reg_class,
5543 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5544 return 1;
5547 if (code0 == MULT || code0 == SIGN_EXTEND || code0 == TRUNCATE
5548 || code0 == ZERO_EXTEND || code1 == MEM)
5550 find_reloads_address_1 (mode, orig_op0, 1, PLUS, SCRATCH,
5551 &XEXP (x, 0), opnum, type, ind_levels,
5552 insn);
5553 find_reloads_address_1 (mode, orig_op1, 0, PLUS, code0,
5554 &XEXP (x, 1), opnum, type, ind_levels,
5555 insn);
5558 else if (code1 == MULT || code1 == SIGN_EXTEND || code1 == TRUNCATE
5559 || code1 == ZERO_EXTEND || code0 == MEM)
5561 find_reloads_address_1 (mode, orig_op0, 0, PLUS, code1,
5562 &XEXP (x, 0), opnum, type, ind_levels,
5563 insn);
5564 find_reloads_address_1 (mode, orig_op1, 1, PLUS, SCRATCH,
5565 &XEXP (x, 1), opnum, type, ind_levels,
5566 insn);
5569 else if (code0 == CONST_INT || code0 == CONST
5570 || code0 == SYMBOL_REF || code0 == LABEL_REF)
5571 find_reloads_address_1 (mode, orig_op1, 0, PLUS, code0,
5572 &XEXP (x, 1), opnum, type, ind_levels,
5573 insn);
5575 else if (code1 == CONST_INT || code1 == CONST
5576 || code1 == SYMBOL_REF || code1 == LABEL_REF)
5577 find_reloads_address_1 (mode, orig_op0, 0, PLUS, code1,
5578 &XEXP (x, 0), opnum, type, ind_levels,
5579 insn);
5581 else if (code0 == REG && code1 == REG)
5583 if (REGNO_OK_FOR_INDEX_P (REGNO (op1))
5584 && regno_ok_for_base_p (REGNO (op0), mode, PLUS, REG))
5585 return 0;
5586 else if (REGNO_OK_FOR_INDEX_P (REGNO (op0))
5587 && regno_ok_for_base_p (REGNO (op1), mode, PLUS, REG))
5588 return 0;
5589 else if (regno_ok_for_base_p (REGNO (op0), mode, PLUS, REG))
5590 find_reloads_address_1 (mode, orig_op1, 1, PLUS, SCRATCH,
5591 &XEXP (x, 1), opnum, type, ind_levels,
5592 insn);
5593 else if (REGNO_OK_FOR_INDEX_P (REGNO (op1)))
5594 find_reloads_address_1 (mode, orig_op0, 0, PLUS, REG,
5595 &XEXP (x, 0), opnum, type, ind_levels,
5596 insn);
5597 else if (regno_ok_for_base_p (REGNO (op1), mode, PLUS, REG))
5598 find_reloads_address_1 (mode, orig_op0, 1, PLUS, SCRATCH,
5599 &XEXP (x, 0), opnum, type, ind_levels,
5600 insn);
5601 else if (REGNO_OK_FOR_INDEX_P (REGNO (op0)))
5602 find_reloads_address_1 (mode, orig_op1, 0, PLUS, REG,
5603 &XEXP (x, 1), opnum, type, ind_levels,
5604 insn);
5605 else
5607 find_reloads_address_1 (mode, orig_op0, 0, PLUS, REG,
5608 &XEXP (x, 0), opnum, type, ind_levels,
5609 insn);
5610 find_reloads_address_1 (mode, orig_op1, 1, PLUS, SCRATCH,
5611 &XEXP (x, 1), opnum, type, ind_levels,
5612 insn);
5616 else if (code0 == REG)
5618 find_reloads_address_1 (mode, orig_op0, 1, PLUS, SCRATCH,
5619 &XEXP (x, 0), opnum, type, ind_levels,
5620 insn);
5621 find_reloads_address_1 (mode, orig_op1, 0, PLUS, REG,
5622 &XEXP (x, 1), opnum, type, ind_levels,
5623 insn);
5626 else if (code1 == REG)
5628 find_reloads_address_1 (mode, orig_op1, 1, PLUS, SCRATCH,
5629 &XEXP (x, 1), opnum, type, ind_levels,
5630 insn);
5631 find_reloads_address_1 (mode, orig_op0, 0, PLUS, REG,
5632 &XEXP (x, 0), opnum, type, ind_levels,
5633 insn);
5637 return 0;
5639 case POST_MODIFY:
5640 case PRE_MODIFY:
5642 rtx op0 = XEXP (x, 0);
5643 rtx op1 = XEXP (x, 1);
5644 enum rtx_code index_code;
5645 int regno;
5646 int reloadnum;
5648 if (GET_CODE (op1) != PLUS && GET_CODE (op1) != MINUS)
5649 return 0;
5651 /* Currently, we only support {PRE,POST}_MODIFY constructs
5652 where a base register is {inc,dec}remented by the contents
5653 of another register or by a constant value. Thus, these
5654 operands must match. */
5655 gcc_assert (op0 == XEXP (op1, 0));
5657 /* Require index register (or constant). Let's just handle the
5658 register case in the meantime... If the target allows
5659 auto-modify by a constant then we could try replacing a pseudo
5660 register with its equivalent constant where applicable.
5662 We also handle the case where the register was eliminated
5663 resulting in a PLUS subexpression.
5665 If we later decide to reload the whole PRE_MODIFY or
5666 POST_MODIFY, inc_for_reload might clobber the reload register
5667 before reading the index. The index register might therefore
5668 need to live longer than a TYPE reload normally would, so be
5669 conservative and class it as RELOAD_OTHER. */
5670 if ((REG_P (XEXP (op1, 1))
5671 && !REGNO_OK_FOR_INDEX_P (REGNO (XEXP (op1, 1))))
5672 || GET_CODE (XEXP (op1, 1)) == PLUS)
5673 find_reloads_address_1 (mode, XEXP (op1, 1), 1, code, SCRATCH,
5674 &XEXP (op1, 1), opnum, RELOAD_OTHER,
5675 ind_levels, insn);
5677 gcc_assert (REG_P (XEXP (op1, 0)));
5679 regno = REGNO (XEXP (op1, 0));
5680 index_code = GET_CODE (XEXP (op1, 1));
5682 /* A register that is incremented cannot be constant! */
5683 gcc_assert (regno < FIRST_PSEUDO_REGISTER
5684 || reg_equiv_constant[regno] == 0);
5686 /* Handle a register that is equivalent to a memory location
5687 which cannot be addressed directly. */
5688 if (reg_equiv_memory_loc[regno] != 0
5689 && (reg_equiv_address[regno] != 0
5690 || num_not_at_initial_offset))
5692 rtx tem = make_memloc (XEXP (x, 0), regno);
5694 if (reg_equiv_address[regno]
5695 || ! rtx_equal_p (tem, reg_equiv_mem[regno]))
5697 rtx orig = tem;
5699 /* First reload the memory location's address.
5700 We can't use ADDR_TYPE (type) here, because we need to
5701 write back the value after reading it, hence we actually
5702 need two registers. */
5703 find_reloads_address (GET_MODE (tem), &tem, XEXP (tem, 0),
5704 &XEXP (tem, 0), opnum,
5705 RELOAD_OTHER,
5706 ind_levels, insn);
5708 if (!rtx_equal_p (tem, orig))
5709 push_reg_equiv_alt_mem (regno, tem);
5711 /* Then reload the memory location into a base
5712 register. */
5713 reloadnum = push_reload (tem, tem, &XEXP (x, 0),
5714 &XEXP (op1, 0),
5715 base_reg_class (mode, code,
5716 index_code),
5717 GET_MODE (x), GET_MODE (x), 0,
5718 0, opnum, RELOAD_OTHER);
5720 update_auto_inc_notes (this_insn, regno, reloadnum);
5721 return 0;
5725 if (reg_renumber[regno] >= 0)
5726 regno = reg_renumber[regno];
5728 /* We require a base register here... */
5729 if (!regno_ok_for_base_p (regno, GET_MODE (x), code, index_code))
5731 reloadnum = push_reload (XEXP (op1, 0), XEXP (x, 0),
5732 &XEXP (op1, 0), &XEXP (x, 0),
5733 base_reg_class (mode, code, index_code),
5734 GET_MODE (x), GET_MODE (x), 0, 0,
5735 opnum, RELOAD_OTHER);
5737 update_auto_inc_notes (this_insn, regno, reloadnum);
5738 return 0;
5741 return 0;
5743 case POST_INC:
5744 case POST_DEC:
5745 case PRE_INC:
5746 case PRE_DEC:
5747 if (REG_P (XEXP (x, 0)))
5749 int regno = REGNO (XEXP (x, 0));
5750 int value = 0;
5751 rtx x_orig = x;
5753 /* A register that is incremented cannot be constant! */
5754 gcc_assert (regno < FIRST_PSEUDO_REGISTER
5755 || reg_equiv_constant[regno] == 0);
5757 /* Handle a register that is equivalent to a memory location
5758 which cannot be addressed directly. */
5759 if (reg_equiv_memory_loc[regno] != 0
5760 && (reg_equiv_address[regno] != 0 || num_not_at_initial_offset))
5762 rtx tem = make_memloc (XEXP (x, 0), regno);
5763 if (reg_equiv_address[regno]
5764 || ! rtx_equal_p (tem, reg_equiv_mem[regno]))
5766 rtx orig = tem;
5768 /* First reload the memory location's address.
5769 We can't use ADDR_TYPE (type) here, because we need to
5770 write back the value after reading it, hence we actually
5771 need two registers. */
5772 find_reloads_address (GET_MODE (tem), &tem, XEXP (tem, 0),
5773 &XEXP (tem, 0), opnum, type,
5774 ind_levels, insn);
5775 if (!rtx_equal_p (tem, orig))
5776 push_reg_equiv_alt_mem (regno, tem);
5777 /* Put this inside a new increment-expression. */
5778 x = gen_rtx_fmt_e (GET_CODE (x), GET_MODE (x), tem);
5779 /* Proceed to reload that, as if it contained a register. */
5783 /* If we have a hard register that is ok in this incdec context,
5784 don't make a reload. If the register isn't nice enough for
5785 autoincdec, we can reload it. But, if an autoincrement of a
5786 register that we here verified as playing nice, still outside
5787 isn't "valid", it must be that no autoincrement is "valid".
5788 If that is true and something made an autoincrement anyway,
5789 this must be a special context where one is allowed.
5790 (For example, a "push" instruction.)
5791 We can't improve this address, so leave it alone. */
5793 /* Otherwise, reload the autoincrement into a suitable hard reg
5794 and record how much to increment by. */
5796 if (reg_renumber[regno] >= 0)
5797 regno = reg_renumber[regno];
5798 if (regno >= FIRST_PSEUDO_REGISTER
5799 || !REG_OK_FOR_CONTEXT (context, regno, mode, code,
5800 index_code))
5802 int reloadnum;
5804 /* If we can output the register afterwards, do so, this
5805 saves the extra update.
5806 We can do so if we have an INSN - i.e. no JUMP_INSN nor
5807 CALL_INSN - and it does not set CC0.
5808 But don't do this if we cannot directly address the
5809 memory location, since this will make it harder to
5810 reuse address reloads, and increases register pressure.
5811 Also don't do this if we can probably update x directly. */
5812 rtx equiv = (MEM_P (XEXP (x, 0))
5813 ? XEXP (x, 0)
5814 : reg_equiv_mem[regno]);
5815 int icode = (int) optab_handler (add_optab, GET_MODE (x));
5816 if (insn && NONJUMP_INSN_P (insn) && equiv
5817 && memory_operand (equiv, GET_MODE (equiv))
5818 #ifdef HAVE_cc0
5819 && ! sets_cc0_p (PATTERN (insn))
5820 #endif
5821 && ! (icode != CODE_FOR_nothing
5822 && ((*insn_data[icode].operand[0].predicate)
5823 (equiv, GET_MODE (x)))
5824 && ((*insn_data[icode].operand[1].predicate)
5825 (equiv, GET_MODE (x)))))
5827 /* We use the original pseudo for loc, so that
5828 emit_reload_insns() knows which pseudo this
5829 reload refers to and updates the pseudo rtx, not
5830 its equivalent memory location, as well as the
5831 corresponding entry in reg_last_reload_reg. */
5832 loc = &XEXP (x_orig, 0);
5833 x = XEXP (x, 0);
5834 reloadnum
5835 = push_reload (x, x, loc, loc,
5836 context_reg_class,
5837 GET_MODE (x), GET_MODE (x), 0, 0,
5838 opnum, RELOAD_OTHER);
5840 else
5842 reloadnum
5843 = push_reload (x, x, loc, (rtx*) 0,
5844 context_reg_class,
5845 GET_MODE (x), GET_MODE (x), 0, 0,
5846 opnum, type);
5847 rld[reloadnum].inc
5848 = find_inc_amount (PATTERN (this_insn), XEXP (x_orig, 0));
5850 value = 1;
5853 update_auto_inc_notes (this_insn, REGNO (XEXP (x_orig, 0)),
5854 reloadnum);
5856 return value;
5858 return 0;
5860 case TRUNCATE:
5861 case SIGN_EXTEND:
5862 case ZERO_EXTEND:
5863 /* Look for parts to reload in the inner expression and reload them
5864 too, in addition to this operation. Reloading all inner parts in
5865 addition to this one shouldn't be necessary, but at this point,
5866 we don't know if we can possibly omit any part that *can* be
5867 reloaded. Targets that are better off reloading just either part
5868 (or perhaps even a different part of an outer expression), should
5869 define LEGITIMIZE_RELOAD_ADDRESS. */
5870 find_reloads_address_1 (GET_MODE (XEXP (x, 0)), XEXP (x, 0),
5871 context, code, SCRATCH, &XEXP (x, 0), opnum,
5872 type, ind_levels, insn);
5873 push_reload (x, NULL_RTX, loc, (rtx*) 0,
5874 context_reg_class,
5875 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5876 return 1;
5878 case MEM:
5879 /* This is probably the result of a substitution, by eliminate_regs, of
5880 an equivalent address for a pseudo that was not allocated to a hard
5881 register. Verify that the specified address is valid and reload it
5882 into a register.
5884 Since we know we are going to reload this item, don't decrement for
5885 the indirection level.
5887 Note that this is actually conservative: it would be slightly more
5888 efficient to use the value of SPILL_INDIRECT_LEVELS from
5889 reload1.c here. */
5891 find_reloads_address (GET_MODE (x), loc, XEXP (x, 0), &XEXP (x, 0),
5892 opnum, ADDR_TYPE (type), ind_levels, insn);
5893 push_reload (*loc, NULL_RTX, loc, (rtx*) 0,
5894 context_reg_class,
5895 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5896 return 1;
5898 case REG:
5900 int regno = REGNO (x);
5902 if (reg_equiv_constant[regno] != 0)
5904 find_reloads_address_part (reg_equiv_constant[regno], loc,
5905 context_reg_class,
5906 GET_MODE (x), opnum, type, ind_levels);
5907 return 1;
5910 #if 0 /* This might screw code in reload1.c to delete prior output-reload
5911 that feeds this insn. */
5912 if (reg_equiv_mem[regno] != 0)
5914 push_reload (reg_equiv_mem[regno], NULL_RTX, loc, (rtx*) 0,
5915 context_reg_class,
5916 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5917 return 1;
5919 #endif
5921 if (reg_equiv_memory_loc[regno]
5922 && (reg_equiv_address[regno] != 0 || num_not_at_initial_offset))
5924 rtx tem = make_memloc (x, regno);
5925 if (reg_equiv_address[regno] != 0
5926 || ! rtx_equal_p (tem, reg_equiv_mem[regno]))
5928 x = tem;
5929 find_reloads_address (GET_MODE (x), &x, XEXP (x, 0),
5930 &XEXP (x, 0), opnum, ADDR_TYPE (type),
5931 ind_levels, insn);
5932 if (!rtx_equal_p (x, tem))
5933 push_reg_equiv_alt_mem (regno, x);
5937 if (reg_renumber[regno] >= 0)
5938 regno = reg_renumber[regno];
5940 if (regno >= FIRST_PSEUDO_REGISTER
5941 || !REG_OK_FOR_CONTEXT (context, regno, mode, outer_code,
5942 index_code))
5944 push_reload (x, NULL_RTX, loc, (rtx*) 0,
5945 context_reg_class,
5946 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5947 return 1;
5950 /* If a register appearing in an address is the subject of a CLOBBER
5951 in this insn, reload it into some other register to be safe.
5952 The CLOBBER is supposed to make the register unavailable
5953 from before this insn to after it. */
5954 if (regno_clobbered_p (regno, this_insn, GET_MODE (x), 0))
5956 push_reload (x, NULL_RTX, loc, (rtx*) 0,
5957 context_reg_class,
5958 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5959 return 1;
5962 return 0;
5964 case SUBREG:
5965 if (REG_P (SUBREG_REG (x)))
5967 /* If this is a SUBREG of a hard register and the resulting register
5968 is of the wrong class, reload the whole SUBREG. This avoids
5969 needless copies if SUBREG_REG is multi-word. */
5970 if (REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER)
5972 int regno ATTRIBUTE_UNUSED = subreg_regno (x);
5974 if (!REG_OK_FOR_CONTEXT (context, regno, mode, outer_code,
5975 index_code))
5977 push_reload (x, NULL_RTX, loc, (rtx*) 0,
5978 context_reg_class,
5979 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5980 return 1;
5983 /* If this is a SUBREG of a pseudo-register, and the pseudo-register
5984 is larger than the class size, then reload the whole SUBREG. */
5985 else
5987 enum reg_class rclass = context_reg_class;
5988 if ((unsigned) CLASS_MAX_NREGS (rclass, GET_MODE (SUBREG_REG (x)))
5989 > reg_class_size[rclass])
5991 x = find_reloads_subreg_address (x, 0, opnum,
5992 ADDR_TYPE (type),
5993 ind_levels, insn);
5994 push_reload (x, NULL_RTX, loc, (rtx*) 0, rclass,
5995 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5996 return 1;
6000 break;
6002 default:
6003 break;
6007 const char *fmt = GET_RTX_FORMAT (code);
6008 int i;
6010 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
6012 if (fmt[i] == 'e')
6013 /* Pass SCRATCH for INDEX_CODE, since CODE can never be a PLUS once
6014 we get here. */
6015 find_reloads_address_1 (mode, XEXP (x, i), context, code, SCRATCH,
6016 &XEXP (x, i), opnum, type, ind_levels, insn);
6020 #undef REG_OK_FOR_CONTEXT
6021 return 0;
6024 /* X, which is found at *LOC, is a part of an address that needs to be
6025 reloaded into a register of class RCLASS. If X is a constant, or if
6026 X is a PLUS that contains a constant, check that the constant is a
6027 legitimate operand and that we are supposed to be able to load
6028 it into the register.
6030 If not, force the constant into memory and reload the MEM instead.
6032 MODE is the mode to use, in case X is an integer constant.
6034 OPNUM and TYPE describe the purpose of any reloads made.
6036 IND_LEVELS says how many levels of indirect addressing this machine
6037 supports. */
6039 static void
6040 find_reloads_address_part (rtx x, rtx *loc, enum reg_class rclass,
6041 enum machine_mode mode, int opnum,
6042 enum reload_type type, int ind_levels)
6044 if (CONSTANT_P (x)
6045 && (! LEGITIMATE_CONSTANT_P (x)
6046 || targetm.preferred_reload_class (x, rclass) == NO_REGS))
6048 x = force_const_mem (mode, x);
6049 find_reloads_address (mode, &x, XEXP (x, 0), &XEXP (x, 0),
6050 opnum, type, ind_levels, 0);
6053 else if (GET_CODE (x) == PLUS
6054 && CONSTANT_P (XEXP (x, 1))
6055 && (! LEGITIMATE_CONSTANT_P (XEXP (x, 1))
6056 || targetm.preferred_reload_class (XEXP (x, 1), rclass)
6057 == NO_REGS))
6059 rtx tem;
6061 tem = force_const_mem (GET_MODE (x), XEXP (x, 1));
6062 x = gen_rtx_PLUS (GET_MODE (x), XEXP (x, 0), tem);
6063 find_reloads_address (mode, &XEXP (x, 1), XEXP (tem, 0), &XEXP (tem, 0),
6064 opnum, type, ind_levels, 0);
6067 push_reload (x, NULL_RTX, loc, (rtx*) 0, rclass,
6068 mode, VOIDmode, 0, 0, opnum, type);
6071 /* X, a subreg of a pseudo, is a part of an address that needs to be
6072 reloaded.
6074 If the pseudo is equivalent to a memory location that cannot be directly
6075 addressed, make the necessary address reloads.
6077 If address reloads have been necessary, or if the address is changed
6078 by register elimination, return the rtx of the memory location;
6079 otherwise, return X.
6081 If FORCE_REPLACE is nonzero, unconditionally replace the subreg with the
6082 memory location.
6084 OPNUM and TYPE identify the purpose of the reload.
6086 IND_LEVELS says how many levels of indirect addressing are
6087 supported at this point in the address.
6089 INSN, if nonzero, is the insn in which we do the reload. It is used
6090 to determine where to put USEs for pseudos that we have to replace with
6091 stack slots. */
6093 static rtx
6094 find_reloads_subreg_address (rtx x, int force_replace, int opnum,
6095 enum reload_type type, int ind_levels, rtx insn)
6097 int regno = REGNO (SUBREG_REG (x));
6099 if (reg_equiv_memory_loc[regno])
6101 /* If the address is not directly addressable, or if the address is not
6102 offsettable, then it must be replaced. */
6103 if (! force_replace
6104 && (reg_equiv_address[regno]
6105 || ! offsettable_memref_p (reg_equiv_mem[regno])))
6106 force_replace = 1;
6108 if (force_replace || num_not_at_initial_offset)
6110 rtx tem = make_memloc (SUBREG_REG (x), regno);
6112 /* If the address changes because of register elimination, then
6113 it must be replaced. */
6114 if (force_replace
6115 || ! rtx_equal_p (tem, reg_equiv_mem[regno]))
6117 unsigned outer_size = GET_MODE_SIZE (GET_MODE (x));
6118 unsigned inner_size = GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)));
6119 int offset;
6120 rtx orig = tem;
6121 int reloaded;
6123 /* For big-endian paradoxical subregs, SUBREG_BYTE does not
6124 hold the correct (negative) byte offset. */
6125 if (BYTES_BIG_ENDIAN && outer_size > inner_size)
6126 offset = inner_size - outer_size;
6127 else
6128 offset = SUBREG_BYTE (x);
6130 XEXP (tem, 0) = plus_constant (XEXP (tem, 0), offset);
6131 PUT_MODE (tem, GET_MODE (x));
6132 if (MEM_OFFSET (tem))
6133 set_mem_offset (tem, plus_constant (MEM_OFFSET (tem), offset));
6134 if (MEM_SIZE (tem)
6135 && INTVAL (MEM_SIZE (tem)) != (HOST_WIDE_INT) outer_size)
6136 set_mem_size (tem, GEN_INT (outer_size));
6138 /* If this was a paradoxical subreg that we replaced, the
6139 resulting memory must be sufficiently aligned to allow
6140 us to widen the mode of the memory. */
6141 if (outer_size > inner_size)
6143 rtx base;
6145 base = XEXP (tem, 0);
6146 if (GET_CODE (base) == PLUS)
6148 if (CONST_INT_P (XEXP (base, 1))
6149 && INTVAL (XEXP (base, 1)) % outer_size != 0)
6150 return x;
6151 base = XEXP (base, 0);
6153 if (!REG_P (base)
6154 || (REGNO_POINTER_ALIGN (REGNO (base))
6155 < outer_size * BITS_PER_UNIT))
6156 return x;
6159 reloaded = find_reloads_address (GET_MODE (tem), &tem,
6160 XEXP (tem, 0), &XEXP (tem, 0),
6161 opnum, type, ind_levels, insn);
6162 /* ??? Do we need to handle nonzero offsets somehow? */
6163 if (!offset && !rtx_equal_p (tem, orig))
6164 push_reg_equiv_alt_mem (regno, tem);
6166 /* For some processors an address may be valid in the
6167 original mode but not in a smaller mode. For
6168 example, ARM accepts a scaled index register in
6169 SImode but not in HImode. Note that this is only
6170 a problem if the address in reg_equiv_mem is already
6171 invalid in the new mode; other cases would be fixed
6172 by find_reloads_address as usual.
6174 ??? We attempt to handle such cases here by doing an
6175 additional reload of the full address after the
6176 usual processing by find_reloads_address. Note that
6177 this may not work in the general case, but it seems
6178 to cover the cases where this situation currently
6179 occurs. A more general fix might be to reload the
6180 *value* instead of the address, but this would not
6181 be expected by the callers of this routine as-is.
6183 If find_reloads_address already completed replaced
6184 the address, there is nothing further to do. */
6185 if (reloaded == 0
6186 && reg_equiv_mem[regno] != 0
6187 && !strict_memory_address_addr_space_p
6188 (GET_MODE (x), XEXP (reg_equiv_mem[regno], 0),
6189 MEM_ADDR_SPACE (reg_equiv_mem[regno])))
6190 push_reload (XEXP (tem, 0), NULL_RTX, &XEXP (tem, 0), (rtx*) 0,
6191 base_reg_class (GET_MODE (tem), MEM, SCRATCH),
6192 GET_MODE (XEXP (tem, 0)), VOIDmode, 0, 0,
6193 opnum, type);
6195 /* If this is not a toplevel operand, find_reloads doesn't see
6196 this substitution. We have to emit a USE of the pseudo so
6197 that delete_output_reload can see it. */
6198 if (replace_reloads && recog_data.operand[opnum] != x)
6199 /* We mark the USE with QImode so that we recognize it
6200 as one that can be safely deleted at the end of
6201 reload. */
6202 PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode,
6203 SUBREG_REG (x)),
6204 insn), QImode);
6205 x = tem;
6209 return x;
6212 /* Substitute into the current INSN the registers into which we have reloaded
6213 the things that need reloading. The array `replacements'
6214 contains the locations of all pointers that must be changed
6215 and says what to replace them with.
6217 Return the rtx that X translates into; usually X, but modified. */
6219 void
6220 subst_reloads (rtx insn)
6222 int i;
6224 for (i = 0; i < n_replacements; i++)
6226 struct replacement *r = &replacements[i];
6227 rtx reloadreg = rld[r->what].reg_rtx;
6228 if (reloadreg)
6230 #ifdef DEBUG_RELOAD
6231 /* This checking takes a very long time on some platforms
6232 causing the gcc.c-torture/compile/limits-fnargs.c test
6233 to time out during testing. See PR 31850.
6235 Internal consistency test. Check that we don't modify
6236 anything in the equivalence arrays. Whenever something from
6237 those arrays needs to be reloaded, it must be unshared before
6238 being substituted into; the equivalence must not be modified.
6239 Otherwise, if the equivalence is used after that, it will
6240 have been modified, and the thing substituted (probably a
6241 register) is likely overwritten and not a usable equivalence. */
6242 int check_regno;
6244 for (check_regno = 0; check_regno < max_regno; check_regno++)
6246 #define CHECK_MODF(ARRAY) \
6247 gcc_assert (!ARRAY[check_regno] \
6248 || !loc_mentioned_in_p (r->where, \
6249 ARRAY[check_regno]))
6251 CHECK_MODF (reg_equiv_constant);
6252 CHECK_MODF (reg_equiv_memory_loc);
6253 CHECK_MODF (reg_equiv_address);
6254 CHECK_MODF (reg_equiv_mem);
6255 #undef CHECK_MODF
6257 #endif /* DEBUG_RELOAD */
6259 /* If we're replacing a LABEL_REF with a register, there must
6260 already be an indication (to e.g. flow) which label this
6261 register refers to. */
6262 gcc_assert (GET_CODE (*r->where) != LABEL_REF
6263 || !JUMP_P (insn)
6264 || find_reg_note (insn,
6265 REG_LABEL_OPERAND,
6266 XEXP (*r->where, 0))
6267 || label_is_jump_target_p (XEXP (*r->where, 0), insn));
6269 /* Encapsulate RELOADREG so its machine mode matches what
6270 used to be there. Note that gen_lowpart_common will
6271 do the wrong thing if RELOADREG is multi-word. RELOADREG
6272 will always be a REG here. */
6273 if (GET_MODE (reloadreg) != r->mode && r->mode != VOIDmode)
6274 reloadreg = reload_adjust_reg_for_mode (reloadreg, r->mode);
6276 /* If we are putting this into a SUBREG and RELOADREG is a
6277 SUBREG, we would be making nested SUBREGs, so we have to fix
6278 this up. Note that r->where == &SUBREG_REG (*r->subreg_loc). */
6280 if (r->subreg_loc != 0 && GET_CODE (reloadreg) == SUBREG)
6282 if (GET_MODE (*r->subreg_loc)
6283 == GET_MODE (SUBREG_REG (reloadreg)))
6284 *r->subreg_loc = SUBREG_REG (reloadreg);
6285 else
6287 int final_offset =
6288 SUBREG_BYTE (*r->subreg_loc) + SUBREG_BYTE (reloadreg);
6290 /* When working with SUBREGs the rule is that the byte
6291 offset must be a multiple of the SUBREG's mode. */
6292 final_offset = (final_offset /
6293 GET_MODE_SIZE (GET_MODE (*r->subreg_loc)));
6294 final_offset = (final_offset *
6295 GET_MODE_SIZE (GET_MODE (*r->subreg_loc)));
6297 *r->where = SUBREG_REG (reloadreg);
6298 SUBREG_BYTE (*r->subreg_loc) = final_offset;
6301 else
6302 *r->where = reloadreg;
6304 /* If reload got no reg and isn't optional, something's wrong. */
6305 else
6306 gcc_assert (rld[r->what].optional);
6310 /* Make a copy of any replacements being done into X and move those
6311 copies to locations in Y, a copy of X. */
6313 void
6314 copy_replacements (rtx x, rtx y)
6316 /* We can't support X being a SUBREG because we might then need to know its
6317 location if something inside it was replaced. */
6318 gcc_assert (GET_CODE (x) != SUBREG);
6320 copy_replacements_1 (&x, &y, n_replacements);
6323 static void
6324 copy_replacements_1 (rtx *px, rtx *py, int orig_replacements)
6326 int i, j;
6327 rtx x, y;
6328 struct replacement *r;
6329 enum rtx_code code;
6330 const char *fmt;
6332 for (j = 0; j < orig_replacements; j++)
6334 if (replacements[j].subreg_loc == px)
6336 r = &replacements[n_replacements++];
6337 r->where = replacements[j].where;
6338 r->subreg_loc = py;
6339 r->what = replacements[j].what;
6340 r->mode = replacements[j].mode;
6342 else if (replacements[j].where == px)
6344 r = &replacements[n_replacements++];
6345 r->where = py;
6346 r->subreg_loc = 0;
6347 r->what = replacements[j].what;
6348 r->mode = replacements[j].mode;
6352 x = *px;
6353 y = *py;
6354 code = GET_CODE (x);
6355 fmt = GET_RTX_FORMAT (code);
6357 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
6359 if (fmt[i] == 'e')
6360 copy_replacements_1 (&XEXP (x, i), &XEXP (y, i), orig_replacements);
6361 else if (fmt[i] == 'E')
6362 for (j = XVECLEN (x, i); --j >= 0; )
6363 copy_replacements_1 (&XVECEXP (x, i, j), &XVECEXP (y, i, j),
6364 orig_replacements);
6368 /* Change any replacements being done to *X to be done to *Y. */
6370 void
6371 move_replacements (rtx *x, rtx *y)
6373 int i;
6375 for (i = 0; i < n_replacements; i++)
6376 if (replacements[i].subreg_loc == x)
6377 replacements[i].subreg_loc = y;
6378 else if (replacements[i].where == x)
6380 replacements[i].where = y;
6381 replacements[i].subreg_loc = 0;
6385 /* If LOC was scheduled to be replaced by something, return the replacement.
6386 Otherwise, return *LOC. */
6389 find_replacement (rtx *loc)
6391 struct replacement *r;
6393 for (r = &replacements[0]; r < &replacements[n_replacements]; r++)
6395 rtx reloadreg = rld[r->what].reg_rtx;
6397 if (reloadreg && r->where == loc)
6399 if (r->mode != VOIDmode && GET_MODE (reloadreg) != r->mode)
6400 reloadreg = gen_rtx_REG (r->mode, REGNO (reloadreg));
6402 return reloadreg;
6404 else if (reloadreg && r->subreg_loc == loc)
6406 /* RELOADREG must be either a REG or a SUBREG.
6408 ??? Is it actually still ever a SUBREG? If so, why? */
6410 if (REG_P (reloadreg))
6411 return gen_rtx_REG (GET_MODE (*loc),
6412 (REGNO (reloadreg) +
6413 subreg_regno_offset (REGNO (SUBREG_REG (*loc)),
6414 GET_MODE (SUBREG_REG (*loc)),
6415 SUBREG_BYTE (*loc),
6416 GET_MODE (*loc))));
6417 else if (GET_MODE (reloadreg) == GET_MODE (*loc))
6418 return reloadreg;
6419 else
6421 int final_offset = SUBREG_BYTE (reloadreg) + SUBREG_BYTE (*loc);
6423 /* When working with SUBREGs the rule is that the byte
6424 offset must be a multiple of the SUBREG's mode. */
6425 final_offset = (final_offset / GET_MODE_SIZE (GET_MODE (*loc)));
6426 final_offset = (final_offset * GET_MODE_SIZE (GET_MODE (*loc)));
6427 return gen_rtx_SUBREG (GET_MODE (*loc), SUBREG_REG (reloadreg),
6428 final_offset);
6433 /* If *LOC is a PLUS, MINUS, or MULT, see if a replacement is scheduled for
6434 what's inside and make a new rtl if so. */
6435 if (GET_CODE (*loc) == PLUS || GET_CODE (*loc) == MINUS
6436 || GET_CODE (*loc) == MULT)
6438 rtx x = find_replacement (&XEXP (*loc, 0));
6439 rtx y = find_replacement (&XEXP (*loc, 1));
6441 if (x != XEXP (*loc, 0) || y != XEXP (*loc, 1))
6442 return gen_rtx_fmt_ee (GET_CODE (*loc), GET_MODE (*loc), x, y);
6445 return *loc;
6448 /* Return nonzero if register in range [REGNO, ENDREGNO)
6449 appears either explicitly or implicitly in X
6450 other than being stored into (except for earlyclobber operands).
6452 References contained within the substructure at LOC do not count.
6453 LOC may be zero, meaning don't ignore anything.
6455 This is similar to refers_to_regno_p in rtlanal.c except that we
6456 look at equivalences for pseudos that didn't get hard registers. */
6458 static int
6459 refers_to_regno_for_reload_p (unsigned int regno, unsigned int endregno,
6460 rtx x, rtx *loc)
6462 int i;
6463 unsigned int r;
6464 RTX_CODE code;
6465 const char *fmt;
6467 if (x == 0)
6468 return 0;
6470 repeat:
6471 code = GET_CODE (x);
6473 switch (code)
6475 case REG:
6476 r = REGNO (x);
6478 /* If this is a pseudo, a hard register must not have been allocated.
6479 X must therefore either be a constant or be in memory. */
6480 if (r >= FIRST_PSEUDO_REGISTER)
6482 if (reg_equiv_memory_loc[r])
6483 return refers_to_regno_for_reload_p (regno, endregno,
6484 reg_equiv_memory_loc[r],
6485 (rtx*) 0);
6487 gcc_assert (reg_equiv_constant[r] || reg_equiv_invariant[r]);
6488 return 0;
6491 return (endregno > r
6492 && regno < r + (r < FIRST_PSEUDO_REGISTER
6493 ? hard_regno_nregs[r][GET_MODE (x)]
6494 : 1));
6496 case SUBREG:
6497 /* If this is a SUBREG of a hard reg, we can see exactly which
6498 registers are being modified. Otherwise, handle normally. */
6499 if (REG_P (SUBREG_REG (x))
6500 && REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER)
6502 unsigned int inner_regno = subreg_regno (x);
6503 unsigned int inner_endregno
6504 = inner_regno + (inner_regno < FIRST_PSEUDO_REGISTER
6505 ? subreg_nregs (x) : 1);
6507 return endregno > inner_regno && regno < inner_endregno;
6509 break;
6511 case CLOBBER:
6512 case SET:
6513 if (&SET_DEST (x) != loc
6514 /* Note setting a SUBREG counts as referring to the REG it is in for
6515 a pseudo but not for hard registers since we can
6516 treat each word individually. */
6517 && ((GET_CODE (SET_DEST (x)) == SUBREG
6518 && loc != &SUBREG_REG (SET_DEST (x))
6519 && REG_P (SUBREG_REG (SET_DEST (x)))
6520 && REGNO (SUBREG_REG (SET_DEST (x))) >= FIRST_PSEUDO_REGISTER
6521 && refers_to_regno_for_reload_p (regno, endregno,
6522 SUBREG_REG (SET_DEST (x)),
6523 loc))
6524 /* If the output is an earlyclobber operand, this is
6525 a conflict. */
6526 || ((!REG_P (SET_DEST (x))
6527 || earlyclobber_operand_p (SET_DEST (x)))
6528 && refers_to_regno_for_reload_p (regno, endregno,
6529 SET_DEST (x), loc))))
6530 return 1;
6532 if (code == CLOBBER || loc == &SET_SRC (x))
6533 return 0;
6534 x = SET_SRC (x);
6535 goto repeat;
6537 default:
6538 break;
6541 /* X does not match, so try its subexpressions. */
6543 fmt = GET_RTX_FORMAT (code);
6544 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
6546 if (fmt[i] == 'e' && loc != &XEXP (x, i))
6548 if (i == 0)
6550 x = XEXP (x, 0);
6551 goto repeat;
6553 else
6554 if (refers_to_regno_for_reload_p (regno, endregno,
6555 XEXP (x, i), loc))
6556 return 1;
6558 else if (fmt[i] == 'E')
6560 int j;
6561 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
6562 if (loc != &XVECEXP (x, i, j)
6563 && refers_to_regno_for_reload_p (regno, endregno,
6564 XVECEXP (x, i, j), loc))
6565 return 1;
6568 return 0;
6571 /* Nonzero if modifying X will affect IN. If X is a register or a SUBREG,
6572 we check if any register number in X conflicts with the relevant register
6573 numbers. If X is a constant, return 0. If X is a MEM, return 1 iff IN
6574 contains a MEM (we don't bother checking for memory addresses that can't
6575 conflict because we expect this to be a rare case.
6577 This function is similar to reg_overlap_mentioned_p in rtlanal.c except
6578 that we look at equivalences for pseudos that didn't get hard registers. */
6581 reg_overlap_mentioned_for_reload_p (rtx x, rtx in)
6583 int regno, endregno;
6585 /* Overly conservative. */
6586 if (GET_CODE (x) == STRICT_LOW_PART
6587 || GET_RTX_CLASS (GET_CODE (x)) == RTX_AUTOINC)
6588 x = XEXP (x, 0);
6590 /* If either argument is a constant, then modifying X can not affect IN. */
6591 if (CONSTANT_P (x) || CONSTANT_P (in))
6592 return 0;
6593 else if (GET_CODE (x) == SUBREG && MEM_P (SUBREG_REG (x)))
6594 return refers_to_mem_for_reload_p (in);
6595 else if (GET_CODE (x) == SUBREG)
6597 regno = REGNO (SUBREG_REG (x));
6598 if (regno < FIRST_PSEUDO_REGISTER)
6599 regno += subreg_regno_offset (REGNO (SUBREG_REG (x)),
6600 GET_MODE (SUBREG_REG (x)),
6601 SUBREG_BYTE (x),
6602 GET_MODE (x));
6603 endregno = regno + (regno < FIRST_PSEUDO_REGISTER
6604 ? subreg_nregs (x) : 1);
6606 return refers_to_regno_for_reload_p (regno, endregno, in, (rtx*) 0);
6608 else if (REG_P (x))
6610 regno = REGNO (x);
6612 /* If this is a pseudo, it must not have been assigned a hard register.
6613 Therefore, it must either be in memory or be a constant. */
6615 if (regno >= FIRST_PSEUDO_REGISTER)
6617 if (reg_equiv_memory_loc[regno])
6618 return refers_to_mem_for_reload_p (in);
6619 gcc_assert (reg_equiv_constant[regno]);
6620 return 0;
6623 endregno = END_HARD_REGNO (x);
6625 return refers_to_regno_for_reload_p (regno, endregno, in, (rtx*) 0);
6627 else if (MEM_P (x))
6628 return refers_to_mem_for_reload_p (in);
6629 else if (GET_CODE (x) == SCRATCH || GET_CODE (x) == PC
6630 || GET_CODE (x) == CC0)
6631 return reg_mentioned_p (x, in);
6632 else
6634 gcc_assert (GET_CODE (x) == PLUS);
6636 /* We actually want to know if X is mentioned somewhere inside IN.
6637 We must not say that (plus (sp) (const_int 124)) is in
6638 (plus (sp) (const_int 64)), since that can lead to incorrect reload
6639 allocation when spuriously changing a RELOAD_FOR_OUTPUT_ADDRESS
6640 into a RELOAD_OTHER on behalf of another RELOAD_OTHER. */
6641 while (MEM_P (in))
6642 in = XEXP (in, 0);
6643 if (REG_P (in))
6644 return 0;
6645 else if (GET_CODE (in) == PLUS)
6646 return (rtx_equal_p (x, in)
6647 || reg_overlap_mentioned_for_reload_p (x, XEXP (in, 0))
6648 || reg_overlap_mentioned_for_reload_p (x, XEXP (in, 1)));
6649 else return (reg_overlap_mentioned_for_reload_p (XEXP (x, 0), in)
6650 || reg_overlap_mentioned_for_reload_p (XEXP (x, 1), in));
6653 gcc_unreachable ();
6656 /* Return nonzero if anything in X contains a MEM. Look also for pseudo
6657 registers. */
6659 static int
6660 refers_to_mem_for_reload_p (rtx x)
6662 const char *fmt;
6663 int i;
6665 if (MEM_P (x))
6666 return 1;
6668 if (REG_P (x))
6669 return (REGNO (x) >= FIRST_PSEUDO_REGISTER
6670 && reg_equiv_memory_loc[REGNO (x)]);
6672 fmt = GET_RTX_FORMAT (GET_CODE (x));
6673 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
6674 if (fmt[i] == 'e'
6675 && (MEM_P (XEXP (x, i))
6676 || refers_to_mem_for_reload_p (XEXP (x, i))))
6677 return 1;
6679 return 0;
6682 /* Check the insns before INSN to see if there is a suitable register
6683 containing the same value as GOAL.
6684 If OTHER is -1, look for a register in class RCLASS.
6685 Otherwise, just see if register number OTHER shares GOAL's value.
6687 Return an rtx for the register found, or zero if none is found.
6689 If RELOAD_REG_P is (short *)1,
6690 we reject any hard reg that appears in reload_reg_rtx
6691 because such a hard reg is also needed coming into this insn.
6693 If RELOAD_REG_P is any other nonzero value,
6694 it is a vector indexed by hard reg number
6695 and we reject any hard reg whose element in the vector is nonnegative
6696 as well as any that appears in reload_reg_rtx.
6698 If GOAL is zero, then GOALREG is a register number; we look
6699 for an equivalent for that register.
6701 MODE is the machine mode of the value we want an equivalence for.
6702 If GOAL is nonzero and not VOIDmode, then it must have mode MODE.
6704 This function is used by jump.c as well as in the reload pass.
6706 If GOAL is the sum of the stack pointer and a constant, we treat it
6707 as if it were a constant except that sp is required to be unchanging. */
6710 find_equiv_reg (rtx goal, rtx insn, enum reg_class rclass, int other,
6711 short *reload_reg_p, int goalreg, enum machine_mode mode)
6713 rtx p = insn;
6714 rtx goaltry, valtry, value, where;
6715 rtx pat;
6716 int regno = -1;
6717 int valueno;
6718 int goal_mem = 0;
6719 int goal_const = 0;
6720 int goal_mem_addr_varies = 0;
6721 int need_stable_sp = 0;
6722 int nregs;
6723 int valuenregs;
6724 int num = 0;
6726 if (goal == 0)
6727 regno = goalreg;
6728 else if (REG_P (goal))
6729 regno = REGNO (goal);
6730 else if (MEM_P (goal))
6732 enum rtx_code code = GET_CODE (XEXP (goal, 0));
6733 if (MEM_VOLATILE_P (goal))
6734 return 0;
6735 if (flag_float_store && SCALAR_FLOAT_MODE_P (GET_MODE (goal)))
6736 return 0;
6737 /* An address with side effects must be reexecuted. */
6738 switch (code)
6740 case POST_INC:
6741 case PRE_INC:
6742 case POST_DEC:
6743 case PRE_DEC:
6744 case POST_MODIFY:
6745 case PRE_MODIFY:
6746 return 0;
6747 default:
6748 break;
6750 goal_mem = 1;
6752 else if (CONSTANT_P (goal))
6753 goal_const = 1;
6754 else if (GET_CODE (goal) == PLUS
6755 && XEXP (goal, 0) == stack_pointer_rtx
6756 && CONSTANT_P (XEXP (goal, 1)))
6757 goal_const = need_stable_sp = 1;
6758 else if (GET_CODE (goal) == PLUS
6759 && XEXP (goal, 0) == frame_pointer_rtx
6760 && CONSTANT_P (XEXP (goal, 1)))
6761 goal_const = 1;
6762 else
6763 return 0;
6765 num = 0;
6766 /* Scan insns back from INSN, looking for one that copies
6767 a value into or out of GOAL.
6768 Stop and give up if we reach a label. */
6770 while (1)
6772 p = PREV_INSN (p);
6773 if (p && DEBUG_INSN_P (p))
6774 continue;
6775 num++;
6776 if (p == 0 || LABEL_P (p)
6777 || num > PARAM_VALUE (PARAM_MAX_RELOAD_SEARCH_INSNS))
6778 return 0;
6780 if (NONJUMP_INSN_P (p)
6781 /* If we don't want spill regs ... */
6782 && (! (reload_reg_p != 0
6783 && reload_reg_p != (short *) (HOST_WIDE_INT) 1)
6784 /* ... then ignore insns introduced by reload; they aren't
6785 useful and can cause results in reload_as_needed to be
6786 different from what they were when calculating the need for
6787 spills. If we notice an input-reload insn here, we will
6788 reject it below, but it might hide a usable equivalent.
6789 That makes bad code. It may even fail: perhaps no reg was
6790 spilled for this insn because it was assumed we would find
6791 that equivalent. */
6792 || INSN_UID (p) < reload_first_uid))
6794 rtx tem;
6795 pat = single_set (p);
6797 /* First check for something that sets some reg equal to GOAL. */
6798 if (pat != 0
6799 && ((regno >= 0
6800 && true_regnum (SET_SRC (pat)) == regno
6801 && (valueno = true_regnum (valtry = SET_DEST (pat))) >= 0)
6803 (regno >= 0
6804 && true_regnum (SET_DEST (pat)) == regno
6805 && (valueno = true_regnum (valtry = SET_SRC (pat))) >= 0)
6807 (goal_const && rtx_equal_p (SET_SRC (pat), goal)
6808 /* When looking for stack pointer + const,
6809 make sure we don't use a stack adjust. */
6810 && !reg_overlap_mentioned_for_reload_p (SET_DEST (pat), goal)
6811 && (valueno = true_regnum (valtry = SET_DEST (pat))) >= 0)
6812 || (goal_mem
6813 && (valueno = true_regnum (valtry = SET_DEST (pat))) >= 0
6814 && rtx_renumbered_equal_p (goal, SET_SRC (pat)))
6815 || (goal_mem
6816 && (valueno = true_regnum (valtry = SET_SRC (pat))) >= 0
6817 && rtx_renumbered_equal_p (goal, SET_DEST (pat)))
6818 /* If we are looking for a constant,
6819 and something equivalent to that constant was copied
6820 into a reg, we can use that reg. */
6821 || (goal_const && REG_NOTES (p) != 0
6822 && (tem = find_reg_note (p, REG_EQUIV, NULL_RTX))
6823 && ((rtx_equal_p (XEXP (tem, 0), goal)
6824 && (valueno
6825 = true_regnum (valtry = SET_DEST (pat))) >= 0)
6826 || (REG_P (SET_DEST (pat))
6827 && GET_CODE (XEXP (tem, 0)) == CONST_DOUBLE
6828 && SCALAR_FLOAT_MODE_P (GET_MODE (XEXP (tem, 0)))
6829 && CONST_INT_P (goal)
6830 && 0 != (goaltry
6831 = operand_subword (XEXP (tem, 0), 0, 0,
6832 VOIDmode))
6833 && rtx_equal_p (goal, goaltry)
6834 && (valtry
6835 = operand_subword (SET_DEST (pat), 0, 0,
6836 VOIDmode))
6837 && (valueno = true_regnum (valtry)) >= 0)))
6838 || (goal_const && (tem = find_reg_note (p, REG_EQUIV,
6839 NULL_RTX))
6840 && REG_P (SET_DEST (pat))
6841 && GET_CODE (XEXP (tem, 0)) == CONST_DOUBLE
6842 && SCALAR_FLOAT_MODE_P (GET_MODE (XEXP (tem, 0)))
6843 && CONST_INT_P (goal)
6844 && 0 != (goaltry = operand_subword (XEXP (tem, 0), 1, 0,
6845 VOIDmode))
6846 && rtx_equal_p (goal, goaltry)
6847 && (valtry
6848 = operand_subword (SET_DEST (pat), 1, 0, VOIDmode))
6849 && (valueno = true_regnum (valtry)) >= 0)))
6851 if (other >= 0)
6853 if (valueno != other)
6854 continue;
6856 else if ((unsigned) valueno >= FIRST_PSEUDO_REGISTER)
6857 continue;
6858 else if (!in_hard_reg_set_p (reg_class_contents[(int) rclass],
6859 mode, valueno))
6860 continue;
6861 value = valtry;
6862 where = p;
6863 break;
6868 /* We found a previous insn copying GOAL into a suitable other reg VALUE
6869 (or copying VALUE into GOAL, if GOAL is also a register).
6870 Now verify that VALUE is really valid. */
6872 /* VALUENO is the register number of VALUE; a hard register. */
6874 /* Don't try to re-use something that is killed in this insn. We want
6875 to be able to trust REG_UNUSED notes. */
6876 if (REG_NOTES (where) != 0 && find_reg_note (where, REG_UNUSED, value))
6877 return 0;
6879 /* If we propose to get the value from the stack pointer or if GOAL is
6880 a MEM based on the stack pointer, we need a stable SP. */
6881 if (valueno == STACK_POINTER_REGNUM || regno == STACK_POINTER_REGNUM
6882 || (goal_mem && reg_overlap_mentioned_for_reload_p (stack_pointer_rtx,
6883 goal)))
6884 need_stable_sp = 1;
6886 /* Reject VALUE if the copy-insn moved the wrong sort of datum. */
6887 if (GET_MODE (value) != mode)
6888 return 0;
6890 /* Reject VALUE if it was loaded from GOAL
6891 and is also a register that appears in the address of GOAL. */
6893 if (goal_mem && value == SET_DEST (single_set (where))
6894 && refers_to_regno_for_reload_p (valueno, end_hard_regno (mode, valueno),
6895 goal, (rtx*) 0))
6896 return 0;
6898 /* Reject registers that overlap GOAL. */
6900 if (regno >= 0 && regno < FIRST_PSEUDO_REGISTER)
6901 nregs = hard_regno_nregs[regno][mode];
6902 else
6903 nregs = 1;
6904 valuenregs = hard_regno_nregs[valueno][mode];
6906 if (!goal_mem && !goal_const
6907 && regno + nregs > valueno && regno < valueno + valuenregs)
6908 return 0;
6910 /* Reject VALUE if it is one of the regs reserved for reloads.
6911 Reload1 knows how to reuse them anyway, and it would get
6912 confused if we allocated one without its knowledge.
6913 (Now that insns introduced by reload are ignored above,
6914 this case shouldn't happen, but I'm not positive.) */
6916 if (reload_reg_p != 0 && reload_reg_p != (short *) (HOST_WIDE_INT) 1)
6918 int i;
6919 for (i = 0; i < valuenregs; ++i)
6920 if (reload_reg_p[valueno + i] >= 0)
6921 return 0;
6924 /* Reject VALUE if it is a register being used for an input reload
6925 even if it is not one of those reserved. */
6927 if (reload_reg_p != 0)
6929 int i;
6930 for (i = 0; i < n_reloads; i++)
6931 if (rld[i].reg_rtx != 0 && rld[i].in)
6933 int regno1 = REGNO (rld[i].reg_rtx);
6934 int nregs1 = hard_regno_nregs[regno1]
6935 [GET_MODE (rld[i].reg_rtx)];
6936 if (regno1 < valueno + valuenregs
6937 && regno1 + nregs1 > valueno)
6938 return 0;
6942 if (goal_mem)
6943 /* We must treat frame pointer as varying here,
6944 since it can vary--in a nonlocal goto as generated by expand_goto. */
6945 goal_mem_addr_varies = !CONSTANT_ADDRESS_P (XEXP (goal, 0));
6947 /* Now verify that the values of GOAL and VALUE remain unaltered
6948 until INSN is reached. */
6950 p = insn;
6951 while (1)
6953 p = PREV_INSN (p);
6954 if (p == where)
6955 return value;
6957 /* Don't trust the conversion past a function call
6958 if either of the two is in a call-clobbered register, or memory. */
6959 if (CALL_P (p))
6961 int i;
6963 if (goal_mem || need_stable_sp)
6964 return 0;
6966 if (regno >= 0 && regno < FIRST_PSEUDO_REGISTER)
6967 for (i = 0; i < nregs; ++i)
6968 if (call_used_regs[regno + i]
6969 || HARD_REGNO_CALL_PART_CLOBBERED (regno + i, mode))
6970 return 0;
6972 if (valueno >= 0 && valueno < FIRST_PSEUDO_REGISTER)
6973 for (i = 0; i < valuenregs; ++i)
6974 if (call_used_regs[valueno + i]
6975 || HARD_REGNO_CALL_PART_CLOBBERED (valueno + i, mode))
6976 return 0;
6979 if (INSN_P (p))
6981 pat = PATTERN (p);
6983 /* Watch out for unspec_volatile, and volatile asms. */
6984 if (volatile_insn_p (pat))
6985 return 0;
6987 /* If this insn P stores in either GOAL or VALUE, return 0.
6988 If GOAL is a memory ref and this insn writes memory, return 0.
6989 If GOAL is a memory ref and its address is not constant,
6990 and this insn P changes a register used in GOAL, return 0. */
6992 if (GET_CODE (pat) == COND_EXEC)
6993 pat = COND_EXEC_CODE (pat);
6994 if (GET_CODE (pat) == SET || GET_CODE (pat) == CLOBBER)
6996 rtx dest = SET_DEST (pat);
6997 while (GET_CODE (dest) == SUBREG
6998 || GET_CODE (dest) == ZERO_EXTRACT
6999 || GET_CODE (dest) == STRICT_LOW_PART)
7000 dest = XEXP (dest, 0);
7001 if (REG_P (dest))
7003 int xregno = REGNO (dest);
7004 int xnregs;
7005 if (REGNO (dest) < FIRST_PSEUDO_REGISTER)
7006 xnregs = hard_regno_nregs[xregno][GET_MODE (dest)];
7007 else
7008 xnregs = 1;
7009 if (xregno < regno + nregs && xregno + xnregs > regno)
7010 return 0;
7011 if (xregno < valueno + valuenregs
7012 && xregno + xnregs > valueno)
7013 return 0;
7014 if (goal_mem_addr_varies
7015 && reg_overlap_mentioned_for_reload_p (dest, goal))
7016 return 0;
7017 if (xregno == STACK_POINTER_REGNUM && need_stable_sp)
7018 return 0;
7020 else if (goal_mem && MEM_P (dest)
7021 && ! push_operand (dest, GET_MODE (dest)))
7022 return 0;
7023 else if (MEM_P (dest) && regno >= FIRST_PSEUDO_REGISTER
7024 && reg_equiv_memory_loc[regno] != 0)
7025 return 0;
7026 else if (need_stable_sp && push_operand (dest, GET_MODE (dest)))
7027 return 0;
7029 else if (GET_CODE (pat) == PARALLEL)
7031 int i;
7032 for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
7034 rtx v1 = XVECEXP (pat, 0, i);
7035 if (GET_CODE (v1) == COND_EXEC)
7036 v1 = COND_EXEC_CODE (v1);
7037 if (GET_CODE (v1) == SET || GET_CODE (v1) == CLOBBER)
7039 rtx dest = SET_DEST (v1);
7040 while (GET_CODE (dest) == SUBREG
7041 || GET_CODE (dest) == ZERO_EXTRACT
7042 || GET_CODE (dest) == STRICT_LOW_PART)
7043 dest = XEXP (dest, 0);
7044 if (REG_P (dest))
7046 int xregno = REGNO (dest);
7047 int xnregs;
7048 if (REGNO (dest) < FIRST_PSEUDO_REGISTER)
7049 xnregs = hard_regno_nregs[xregno][GET_MODE (dest)];
7050 else
7051 xnregs = 1;
7052 if (xregno < regno + nregs
7053 && xregno + xnregs > regno)
7054 return 0;
7055 if (xregno < valueno + valuenregs
7056 && xregno + xnregs > valueno)
7057 return 0;
7058 if (goal_mem_addr_varies
7059 && reg_overlap_mentioned_for_reload_p (dest,
7060 goal))
7061 return 0;
7062 if (xregno == STACK_POINTER_REGNUM && need_stable_sp)
7063 return 0;
7065 else if (goal_mem && MEM_P (dest)
7066 && ! push_operand (dest, GET_MODE (dest)))
7067 return 0;
7068 else if (MEM_P (dest) && regno >= FIRST_PSEUDO_REGISTER
7069 && reg_equiv_memory_loc[regno] != 0)
7070 return 0;
7071 else if (need_stable_sp
7072 && push_operand (dest, GET_MODE (dest)))
7073 return 0;
7078 if (CALL_P (p) && CALL_INSN_FUNCTION_USAGE (p))
7080 rtx link;
7082 for (link = CALL_INSN_FUNCTION_USAGE (p); XEXP (link, 1) != 0;
7083 link = XEXP (link, 1))
7085 pat = XEXP (link, 0);
7086 if (GET_CODE (pat) == CLOBBER)
7088 rtx dest = SET_DEST (pat);
7090 if (REG_P (dest))
7092 int xregno = REGNO (dest);
7093 int xnregs
7094 = hard_regno_nregs[xregno][GET_MODE (dest)];
7096 if (xregno < regno + nregs
7097 && xregno + xnregs > regno)
7098 return 0;
7099 else if (xregno < valueno + valuenregs
7100 && xregno + xnregs > valueno)
7101 return 0;
7102 else if (goal_mem_addr_varies
7103 && reg_overlap_mentioned_for_reload_p (dest,
7104 goal))
7105 return 0;
7108 else if (goal_mem && MEM_P (dest)
7109 && ! push_operand (dest, GET_MODE (dest)))
7110 return 0;
7111 else if (need_stable_sp
7112 && push_operand (dest, GET_MODE (dest)))
7113 return 0;
7118 #ifdef AUTO_INC_DEC
7119 /* If this insn auto-increments or auto-decrements
7120 either regno or valueno, return 0 now.
7121 If GOAL is a memory ref and its address is not constant,
7122 and this insn P increments a register used in GOAL, return 0. */
7124 rtx link;
7126 for (link = REG_NOTES (p); link; link = XEXP (link, 1))
7127 if (REG_NOTE_KIND (link) == REG_INC
7128 && REG_P (XEXP (link, 0)))
7130 int incno = REGNO (XEXP (link, 0));
7131 if (incno < regno + nregs && incno >= regno)
7132 return 0;
7133 if (incno < valueno + valuenregs && incno >= valueno)
7134 return 0;
7135 if (goal_mem_addr_varies
7136 && reg_overlap_mentioned_for_reload_p (XEXP (link, 0),
7137 goal))
7138 return 0;
7141 #endif
7146 /* Find a place where INCED appears in an increment or decrement operator
7147 within X, and return the amount INCED is incremented or decremented by.
7148 The value is always positive. */
7150 static int
7151 find_inc_amount (rtx x, rtx inced)
7153 enum rtx_code code = GET_CODE (x);
7154 const char *fmt;
7155 int i;
7157 if (code == MEM)
7159 rtx addr = XEXP (x, 0);
7160 if ((GET_CODE (addr) == PRE_DEC
7161 || GET_CODE (addr) == POST_DEC
7162 || GET_CODE (addr) == PRE_INC
7163 || GET_CODE (addr) == POST_INC)
7164 && XEXP (addr, 0) == inced)
7165 return GET_MODE_SIZE (GET_MODE (x));
7166 else if ((GET_CODE (addr) == PRE_MODIFY
7167 || GET_CODE (addr) == POST_MODIFY)
7168 && GET_CODE (XEXP (addr, 1)) == PLUS
7169 && XEXP (addr, 0) == XEXP (XEXP (addr, 1), 0)
7170 && XEXP (addr, 0) == inced
7171 && CONST_INT_P (XEXP (XEXP (addr, 1), 1)))
7173 i = INTVAL (XEXP (XEXP (addr, 1), 1));
7174 return i < 0 ? -i : i;
7178 fmt = GET_RTX_FORMAT (code);
7179 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
7181 if (fmt[i] == 'e')
7183 int tem = find_inc_amount (XEXP (x, i), inced);
7184 if (tem != 0)
7185 return tem;
7187 if (fmt[i] == 'E')
7189 int j;
7190 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
7192 int tem = find_inc_amount (XVECEXP (x, i, j), inced);
7193 if (tem != 0)
7194 return tem;
7199 return 0;
7202 /* Return 1 if registers from REGNO to ENDREGNO are the subjects of a
7203 REG_INC note in insn INSN. REGNO must refer to a hard register. */
7205 #ifdef AUTO_INC_DEC
7206 static int
7207 reg_inc_found_and_valid_p (unsigned int regno, unsigned int endregno,
7208 rtx insn)
7210 rtx link;
7212 gcc_assert (insn);
7214 if (! INSN_P (insn))
7215 return 0;
7217 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
7218 if (REG_NOTE_KIND (link) == REG_INC)
7220 unsigned int test = (int) REGNO (XEXP (link, 0));
7221 if (test >= regno && test < endregno)
7222 return 1;
7224 return 0;
7226 #else
7228 #define reg_inc_found_and_valid_p(regno,endregno,insn) 0
7230 #endif
7232 /* Return 1 if register REGNO is the subject of a clobber in insn INSN.
7233 If SETS is 1, also consider SETs. If SETS is 2, enable checking
7234 REG_INC. REGNO must refer to a hard register. */
7237 regno_clobbered_p (unsigned int regno, rtx insn, enum machine_mode mode,
7238 int sets)
7240 unsigned int nregs, endregno;
7242 /* regno must be a hard register. */
7243 gcc_assert (regno < FIRST_PSEUDO_REGISTER);
7245 nregs = hard_regno_nregs[regno][mode];
7246 endregno = regno + nregs;
7248 if ((GET_CODE (PATTERN (insn)) == CLOBBER
7249 || (sets == 1 && GET_CODE (PATTERN (insn)) == SET))
7250 && REG_P (XEXP (PATTERN (insn), 0)))
7252 unsigned int test = REGNO (XEXP (PATTERN (insn), 0));
7254 return test >= regno && test < endregno;
7257 if (sets == 2 && reg_inc_found_and_valid_p (regno, endregno, insn))
7258 return 1;
7260 if (GET_CODE (PATTERN (insn)) == PARALLEL)
7262 int i = XVECLEN (PATTERN (insn), 0) - 1;
7264 for (; i >= 0; i--)
7266 rtx elt = XVECEXP (PATTERN (insn), 0, i);
7267 if ((GET_CODE (elt) == CLOBBER
7268 || (sets == 1 && GET_CODE (PATTERN (insn)) == SET))
7269 && REG_P (XEXP (elt, 0)))
7271 unsigned int test = REGNO (XEXP (elt, 0));
7273 if (test >= regno && test < endregno)
7274 return 1;
7276 if (sets == 2
7277 && reg_inc_found_and_valid_p (regno, endregno, elt))
7278 return 1;
7282 return 0;
7285 /* Find the low part, with mode MODE, of a hard regno RELOADREG. */
7287 reload_adjust_reg_for_mode (rtx reloadreg, enum machine_mode mode)
7289 int regno;
7291 if (GET_MODE (reloadreg) == mode)
7292 return reloadreg;
7294 regno = REGNO (reloadreg);
7296 if (WORDS_BIG_ENDIAN)
7297 regno += (int) hard_regno_nregs[regno][GET_MODE (reloadreg)]
7298 - (int) hard_regno_nregs[regno][mode];
7300 return gen_rtx_REG (mode, regno);
7303 static const char *const reload_when_needed_name[] =
7305 "RELOAD_FOR_INPUT",
7306 "RELOAD_FOR_OUTPUT",
7307 "RELOAD_FOR_INSN",
7308 "RELOAD_FOR_INPUT_ADDRESS",
7309 "RELOAD_FOR_INPADDR_ADDRESS",
7310 "RELOAD_FOR_OUTPUT_ADDRESS",
7311 "RELOAD_FOR_OUTADDR_ADDRESS",
7312 "RELOAD_FOR_OPERAND_ADDRESS",
7313 "RELOAD_FOR_OPADDR_ADDR",
7314 "RELOAD_OTHER",
7315 "RELOAD_FOR_OTHER_ADDRESS"
7318 /* These functions are used to print the variables set by 'find_reloads' */
7320 DEBUG_FUNCTION void
7321 debug_reload_to_stream (FILE *f)
7323 int r;
7324 const char *prefix;
7326 if (! f)
7327 f = stderr;
7328 for (r = 0; r < n_reloads; r++)
7330 fprintf (f, "Reload %d: ", r);
7332 if (rld[r].in != 0)
7334 fprintf (f, "reload_in (%s) = ",
7335 GET_MODE_NAME (rld[r].inmode));
7336 print_inline_rtx (f, rld[r].in, 24);
7337 fprintf (f, "\n\t");
7340 if (rld[r].out != 0)
7342 fprintf (f, "reload_out (%s) = ",
7343 GET_MODE_NAME (rld[r].outmode));
7344 print_inline_rtx (f, rld[r].out, 24);
7345 fprintf (f, "\n\t");
7348 fprintf (f, "%s, ", reg_class_names[(int) rld[r].rclass]);
7350 fprintf (f, "%s (opnum = %d)",
7351 reload_when_needed_name[(int) rld[r].when_needed],
7352 rld[r].opnum);
7354 if (rld[r].optional)
7355 fprintf (f, ", optional");
7357 if (rld[r].nongroup)
7358 fprintf (f, ", nongroup");
7360 if (rld[r].inc != 0)
7361 fprintf (f, ", inc by %d", rld[r].inc);
7363 if (rld[r].nocombine)
7364 fprintf (f, ", can't combine");
7366 if (rld[r].secondary_p)
7367 fprintf (f, ", secondary_reload_p");
7369 if (rld[r].in_reg != 0)
7371 fprintf (f, "\n\treload_in_reg: ");
7372 print_inline_rtx (f, rld[r].in_reg, 24);
7375 if (rld[r].out_reg != 0)
7377 fprintf (f, "\n\treload_out_reg: ");
7378 print_inline_rtx (f, rld[r].out_reg, 24);
7381 if (rld[r].reg_rtx != 0)
7383 fprintf (f, "\n\treload_reg_rtx: ");
7384 print_inline_rtx (f, rld[r].reg_rtx, 24);
7387 prefix = "\n\t";
7388 if (rld[r].secondary_in_reload != -1)
7390 fprintf (f, "%ssecondary_in_reload = %d",
7391 prefix, rld[r].secondary_in_reload);
7392 prefix = ", ";
7395 if (rld[r].secondary_out_reload != -1)
7396 fprintf (f, "%ssecondary_out_reload = %d\n",
7397 prefix, rld[r].secondary_out_reload);
7399 prefix = "\n\t";
7400 if (rld[r].secondary_in_icode != CODE_FOR_nothing)
7402 fprintf (f, "%ssecondary_in_icode = %s", prefix,
7403 insn_data[rld[r].secondary_in_icode].name);
7404 prefix = ", ";
7407 if (rld[r].secondary_out_icode != CODE_FOR_nothing)
7408 fprintf (f, "%ssecondary_out_icode = %s", prefix,
7409 insn_data[rld[r].secondary_out_icode].name);
7411 fprintf (f, "\n");
7415 DEBUG_FUNCTION void
7416 debug_reload (void)
7418 debug_reload_to_stream (stderr);