Merge from mainline (167278:168000).
[official-gcc/graphite-test-results.git] / gcc / ira.c
blob6db1fba5a6f22624761a2374afd5eabaa8c6ef83
1 /* Integrated Register Allocator (IRA) entry point.
2 Copyright (C) 2006, 2007, 2008, 2009, 2010
3 Free Software Foundation, Inc.
4 Contributed by Vladimir Makarov <vmakarov@redhat.com>.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 /* The integrated register allocator (IRA) is a
23 regional register allocator performing graph coloring on a top-down
24 traversal of nested regions. Graph coloring in a region is based
25 on Chaitin-Briggs algorithm. It is called integrated because
26 register coalescing, register live range splitting, and choosing a
27 better hard register are done on-the-fly during coloring. Register
28 coalescing and choosing a cheaper hard register is done by hard
29 register preferencing during hard register assigning. The live
30 range splitting is a byproduct of the regional register allocation.
32 Major IRA notions are:
34 o *Region* is a part of CFG where graph coloring based on
35 Chaitin-Briggs algorithm is done. IRA can work on any set of
36 nested CFG regions forming a tree. Currently the regions are
37 the entire function for the root region and natural loops for
38 the other regions. Therefore data structure representing a
39 region is called loop_tree_node.
41 o *Cover class* is a register class belonging to a set of
42 non-intersecting register classes containing all of the
43 hard-registers available for register allocation. The set of
44 all cover classes for a target is defined in the corresponding
45 machine-description file according some criteria. Such notion
46 is needed because Chaitin-Briggs algorithm works on
47 non-intersected register classes.
49 o *Allocno* represents the live range of a pseudo-register in a
50 region. Besides the obvious attributes like the corresponding
51 pseudo-register number, cover class, conflicting allocnos and
52 conflicting hard-registers, there are a few allocno attributes
53 which are important for understanding the allocation algorithm:
55 - *Live ranges*. This is a list of ranges of *program
56 points* where the allocno lives. Program points represent
57 places where a pseudo can be born or become dead (there are
58 approximately two times more program points than the insns)
59 and they are represented by integers starting with 0. The
60 live ranges are used to find conflicts between allocnos of
61 different cover classes. They also play very important role
62 for the transformation of the IRA internal representation of
63 several regions into a one region representation. The later is
64 used during the reload pass work because each allocno
65 represents all of the corresponding pseudo-registers.
67 - *Hard-register costs*. This is a vector of size equal to the
68 number of available hard-registers of the allocno's cover
69 class. The cost of a callee-clobbered hard-register for an
70 allocno is increased by the cost of save/restore code around
71 the calls through the given allocno's life. If the allocno
72 is a move instruction operand and another operand is a
73 hard-register of the allocno's cover class, the cost of the
74 hard-register is decreased by the move cost.
76 When an allocno is assigned, the hard-register with minimal
77 full cost is used. Initially, a hard-register's full cost is
78 the corresponding value from the hard-register's cost vector.
79 If the allocno is connected by a *copy* (see below) to
80 another allocno which has just received a hard-register, the
81 cost of the hard-register is decreased. Before choosing a
82 hard-register for an allocno, the allocno's current costs of
83 the hard-registers are modified by the conflict hard-register
84 costs of all of the conflicting allocnos which are not
85 assigned yet.
87 - *Conflict hard-register costs*. This is a vector of the same
88 size as the hard-register costs vector. To permit an
89 unassigned allocno to get a better hard-register, IRA uses
90 this vector to calculate the final full cost of the
91 available hard-registers. Conflict hard-register costs of an
92 unassigned allocno are also changed with a change of the
93 hard-register cost of the allocno when a copy involving the
94 allocno is processed as described above. This is done to
95 show other unassigned allocnos that a given allocno prefers
96 some hard-registers in order to remove the move instruction
97 corresponding to the copy.
99 o *Cap*. If a pseudo-register does not live in a region but
100 lives in a nested region, IRA creates a special allocno called
101 a cap in the outer region. A region cap is also created for a
102 subregion cap.
104 o *Copy*. Allocnos can be connected by copies. Copies are used
105 to modify hard-register costs for allocnos during coloring.
106 Such modifications reflects a preference to use the same
107 hard-register for the allocnos connected by copies. Usually
108 copies are created for move insns (in this case it results in
109 register coalescing). But IRA also creates copies for operands
110 of an insn which should be assigned to the same hard-register
111 due to constraints in the machine description (it usually
112 results in removing a move generated in reload to satisfy
113 the constraints) and copies referring to the allocno which is
114 the output operand of an instruction and the allocno which is
115 an input operand dying in the instruction (creation of such
116 copies results in less register shuffling). IRA *does not*
117 create copies between the same register allocnos from different
118 regions because we use another technique for propagating
119 hard-register preference on the borders of regions.
121 Allocnos (including caps) for the upper region in the region tree
122 *accumulate* information important for coloring from allocnos with
123 the same pseudo-register from nested regions. This includes
124 hard-register and memory costs, conflicts with hard-registers,
125 allocno conflicts, allocno copies and more. *Thus, attributes for
126 allocnos in a region have the same values as if the region had no
127 subregions*. It means that attributes for allocnos in the
128 outermost region corresponding to the function have the same values
129 as though the allocation used only one region which is the entire
130 function. It also means that we can look at IRA work as if the
131 first IRA did allocation for all function then it improved the
132 allocation for loops then their subloops and so on.
134 IRA major passes are:
136 o Building IRA internal representation which consists of the
137 following subpasses:
139 * First, IRA builds regions and creates allocnos (file
140 ira-build.c) and initializes most of their attributes.
142 * Then IRA finds a cover class for each allocno and calculates
143 its initial (non-accumulated) cost of memory and each
144 hard-register of its cover class (file ira-cost.c).
146 * IRA creates live ranges of each allocno, calulates register
147 pressure for each cover class in each region, sets up
148 conflict hard registers for each allocno and info about calls
149 the allocno lives through (file ira-lives.c).
151 * IRA removes low register pressure loops from the regions
152 mostly to speed IRA up (file ira-build.c).
154 * IRA propagates accumulated allocno info from lower region
155 allocnos to corresponding upper region allocnos (file
156 ira-build.c).
158 * IRA creates all caps (file ira-build.c).
160 * Having live-ranges of allocnos and their cover classes, IRA
161 creates conflicting allocnos of the same cover class for each
162 allocno. Conflicting allocnos are stored as a bit vector or
163 array of pointers to the conflicting allocnos whatever is
164 more profitable (file ira-conflicts.c). At this point IRA
165 creates allocno copies.
167 o Coloring. Now IRA has all necessary info to start graph coloring
168 process. It is done in each region on top-down traverse of the
169 region tree (file ira-color.c). There are following subpasses:
171 * Putting allocnos onto the coloring stack. IRA uses Briggs
172 optimistic coloring which is a major improvement over
173 Chaitin's coloring. Therefore IRA does not spill allocnos at
174 this point. There is some freedom in the order of putting
175 allocnos on the stack which can affect the final result of
176 the allocation. IRA uses some heuristics to improve the order.
178 * Popping the allocnos from the stack and assigning them hard
179 registers. If IRA can not assign a hard register to an
180 allocno and the allocno is coalesced, IRA undoes the
181 coalescing and puts the uncoalesced allocnos onto the stack in
182 the hope that some such allocnos will get a hard register
183 separately. If IRA fails to assign hard register or memory
184 is more profitable for it, IRA spills the allocno. IRA
185 assigns the allocno the hard-register with minimal full
186 allocation cost which reflects the cost of usage of the
187 hard-register for the allocno and cost of usage of the
188 hard-register for allocnos conflicting with given allocno.
190 * After allono assigning in the region, IRA modifies the hard
191 register and memory costs for the corresponding allocnos in
192 the subregions to reflect the cost of possible loads, stores,
193 or moves on the border of the region and its subregions.
194 When default regional allocation algorithm is used
195 (-fira-algorithm=mixed), IRA just propagates the assignment
196 for allocnos if the register pressure in the region for the
197 corresponding cover class is less than number of available
198 hard registers for given cover class.
200 o Spill/restore code moving. When IRA performs an allocation
201 by traversing regions in top-down order, it does not know what
202 happens below in the region tree. Therefore, sometimes IRA
203 misses opportunities to perform a better allocation. A simple
204 optimization tries to improve allocation in a region having
205 subregions and containing in another region. If the
206 corresponding allocnos in the subregion are spilled, it spills
207 the region allocno if it is profitable. The optimization
208 implements a simple iterative algorithm performing profitable
209 transformations while they are still possible. It is fast in
210 practice, so there is no real need for a better time complexity
211 algorithm.
213 o Code change. After coloring, two allocnos representing the same
214 pseudo-register outside and inside a region respectively may be
215 assigned to different locations (hard-registers or memory). In
216 this case IRA creates and uses a new pseudo-register inside the
217 region and adds code to move allocno values on the region's
218 borders. This is done during top-down traversal of the regions
219 (file ira-emit.c). In some complicated cases IRA can create a
220 new allocno to move allocno values (e.g. when a swap of values
221 stored in two hard-registers is needed). At this stage, the
222 new allocno is marked as spilled. IRA still creates the
223 pseudo-register and the moves on the region borders even when
224 both allocnos were assigned to the same hard-register. If the
225 reload pass spills a pseudo-register for some reason, the
226 effect will be smaller because another allocno will still be in
227 the hard-register. In most cases, this is better then spilling
228 both allocnos. If reload does not change the allocation
229 for the two pseudo-registers, the trivial move will be removed
230 by post-reload optimizations. IRA does not generate moves for
231 allocnos assigned to the same hard register when the default
232 regional allocation algorithm is used and the register pressure
233 in the region for the corresponding allocno cover class is less
234 than number of available hard registers for given cover class.
235 IRA also does some optimizations to remove redundant stores and
236 to reduce code duplication on the region borders.
238 o Flattening internal representation. After changing code, IRA
239 transforms its internal representation for several regions into
240 one region representation (file ira-build.c). This process is
241 called IR flattening. Such process is more complicated than IR
242 rebuilding would be, but is much faster.
244 o After IR flattening, IRA tries to assign hard registers to all
245 spilled allocnos. This is impelemented by a simple and fast
246 priority coloring algorithm (see function
247 ira_reassign_conflict_allocnos::ira-color.c). Here new allocnos
248 created during the code change pass can be assigned to hard
249 registers.
251 o At the end IRA calls the reload pass. The reload pass
252 communicates with IRA through several functions in file
253 ira-color.c to improve its decisions in
255 * sharing stack slots for the spilled pseudos based on IRA info
256 about pseudo-register conflicts.
258 * reassigning hard-registers to all spilled pseudos at the end
259 of each reload iteration.
261 * choosing a better hard-register to spill based on IRA info
262 about pseudo-register live ranges and the register pressure
263 in places where the pseudo-register lives.
265 IRA uses a lot of data representing the target processors. These
266 data are initilized in file ira.c.
268 If function has no loops (or the loops are ignored when
269 -fira-algorithm=CB is used), we have classic Chaitin-Briggs
270 coloring (only instead of separate pass of coalescing, we use hard
271 register preferencing). In such case, IRA works much faster
272 because many things are not made (like IR flattening, the
273 spill/restore optimization, and the code change).
275 Literature is worth to read for better understanding the code:
277 o Preston Briggs, Keith D. Cooper, Linda Torczon. Improvements to
278 Graph Coloring Register Allocation.
280 o David Callahan, Brian Koblenz. Register allocation via
281 hierarchical graph coloring.
283 o Keith Cooper, Anshuman Dasgupta, Jason Eckhardt. Revisiting Graph
284 Coloring Register Allocation: A Study of the Chaitin-Briggs and
285 Callahan-Koblenz Algorithms.
287 o Guei-Yuan Lueh, Thomas Gross, and Ali-Reza Adl-Tabatabai. Global
288 Register Allocation Based on Graph Fusion.
290 o Vladimir Makarov. The Integrated Register Allocator for GCC.
292 o Vladimir Makarov. The top-down register allocator for irregular
293 register file architectures.
298 #include "config.h"
299 #include "system.h"
300 #include "coretypes.h"
301 #include "tm.h"
302 #include "regs.h"
303 #include "rtl.h"
304 #include "tm_p.h"
305 #include "target.h"
306 #include "flags.h"
307 #include "obstack.h"
308 #include "bitmap.h"
309 #include "hard-reg-set.h"
310 #include "basic-block.h"
311 #include "df.h"
312 #include "expr.h"
313 #include "recog.h"
314 #include "params.h"
315 #include "timevar.h"
316 #include "tree-pass.h"
317 #include "output.h"
318 #include "except.h"
319 #include "reload.h"
320 #include "diagnostic-core.h"
321 #include "integrate.h"
322 #include "ggc.h"
323 #include "ira-int.h"
326 struct target_ira default_target_ira;
327 struct target_ira_int default_target_ira_int;
328 #if SWITCHABLE_TARGET
329 struct target_ira *this_target_ira = &default_target_ira;
330 struct target_ira_int *this_target_ira_int = &default_target_ira_int;
331 #endif
333 /* A modified value of flag `-fira-verbose' used internally. */
334 int internal_flag_ira_verbose;
336 /* Dump file of the allocator if it is not NULL. */
337 FILE *ira_dump_file;
339 /* The number of elements in the following array. */
340 int ira_spilled_reg_stack_slots_num;
342 /* The following array contains info about spilled pseudo-registers
343 stack slots used in current function so far. */
344 struct ira_spilled_reg_stack_slot *ira_spilled_reg_stack_slots;
346 /* Correspondingly overall cost of the allocation, cost of the
347 allocnos assigned to hard-registers, cost of the allocnos assigned
348 to memory, cost of loads, stores and register move insns generated
349 for pseudo-register live range splitting (see ira-emit.c). */
350 int ira_overall_cost;
351 int ira_reg_cost, ira_mem_cost;
352 int ira_load_cost, ira_store_cost, ira_shuffle_cost;
353 int ira_move_loops_num, ira_additional_jumps_num;
355 /* All registers that can be eliminated. */
357 HARD_REG_SET eliminable_regset;
359 /* Temporary hard reg set used for a different calculation. */
360 static HARD_REG_SET temp_hard_regset;
364 /* The function sets up the map IRA_REG_MODE_HARD_REGSET. */
365 static void
366 setup_reg_mode_hard_regset (void)
368 int i, m, hard_regno;
370 for (m = 0; m < NUM_MACHINE_MODES; m++)
371 for (hard_regno = 0; hard_regno < FIRST_PSEUDO_REGISTER; hard_regno++)
373 CLEAR_HARD_REG_SET (ira_reg_mode_hard_regset[hard_regno][m]);
374 for (i = hard_regno_nregs[hard_regno][m] - 1; i >= 0; i--)
375 if (hard_regno + i < FIRST_PSEUDO_REGISTER)
376 SET_HARD_REG_BIT (ira_reg_mode_hard_regset[hard_regno][m],
377 hard_regno + i);
382 #define no_unit_alloc_regs \
383 (this_target_ira_int->x_no_unit_alloc_regs)
385 /* The function sets up the three arrays declared above. */
386 static void
387 setup_class_hard_regs (void)
389 int cl, i, hard_regno, n;
390 HARD_REG_SET processed_hard_reg_set;
392 ira_assert (SHRT_MAX >= FIRST_PSEUDO_REGISTER);
393 for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
395 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
396 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
397 CLEAR_HARD_REG_SET (processed_hard_reg_set);
398 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
400 ira_non_ordered_class_hard_regs[cl][i] = -1;
401 ira_class_hard_reg_index[cl][i] = -1;
403 for (n = 0, i = 0; i < FIRST_PSEUDO_REGISTER; i++)
405 #ifdef REG_ALLOC_ORDER
406 hard_regno = reg_alloc_order[i];
407 #else
408 hard_regno = i;
409 #endif
410 if (TEST_HARD_REG_BIT (processed_hard_reg_set, hard_regno))
411 continue;
412 SET_HARD_REG_BIT (processed_hard_reg_set, hard_regno);
413 if (! TEST_HARD_REG_BIT (temp_hard_regset, hard_regno))
414 ira_class_hard_reg_index[cl][hard_regno] = -1;
415 else
417 ira_class_hard_reg_index[cl][hard_regno] = n;
418 ira_class_hard_regs[cl][n++] = hard_regno;
421 ira_class_hard_regs_num[cl] = n;
422 for (n = 0, i = 0; i < FIRST_PSEUDO_REGISTER; i++)
423 if (TEST_HARD_REG_BIT (temp_hard_regset, i))
424 ira_non_ordered_class_hard_regs[cl][n++] = i;
425 ira_assert (ira_class_hard_regs_num[cl] == n);
429 /* Set up IRA_AVAILABLE_CLASS_REGS. */
430 static void
431 setup_available_class_regs (void)
433 int i, j;
435 memset (ira_available_class_regs, 0, sizeof (ira_available_class_regs));
436 for (i = 0; i < N_REG_CLASSES; i++)
438 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[i]);
439 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
440 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
441 if (TEST_HARD_REG_BIT (temp_hard_regset, j))
442 ira_available_class_regs[i]++;
446 /* Set up global variables defining info about hard registers for the
447 allocation. These depend on USE_HARD_FRAME_P whose TRUE value means
448 that we can use the hard frame pointer for the allocation. */
449 static void
450 setup_alloc_regs (bool use_hard_frame_p)
452 #ifdef ADJUST_REG_ALLOC_ORDER
453 ADJUST_REG_ALLOC_ORDER;
454 #endif
455 COPY_HARD_REG_SET (no_unit_alloc_regs, fixed_reg_set);
456 if (! use_hard_frame_p)
457 SET_HARD_REG_BIT (no_unit_alloc_regs, HARD_FRAME_POINTER_REGNUM);
458 setup_class_hard_regs ();
459 setup_available_class_regs ();
464 /* Set up IRA_MEMORY_MOVE_COST, IRA_REGISTER_MOVE_COST. */
465 static void
466 setup_class_subset_and_memory_move_costs (void)
468 int cl, cl2, mode;
469 HARD_REG_SET temp_hard_regset2;
471 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
472 ira_memory_move_cost[mode][NO_REGS][0]
473 = ira_memory_move_cost[mode][NO_REGS][1] = SHRT_MAX;
474 for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
476 if (cl != (int) NO_REGS)
477 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
479 ira_memory_move_cost[mode][cl][0] =
480 memory_move_cost ((enum machine_mode) mode,
481 (enum reg_class) cl, false);
482 ira_memory_move_cost[mode][cl][1] =
483 memory_move_cost ((enum machine_mode) mode,
484 (enum reg_class) cl, true);
485 /* Costs for NO_REGS are used in cost calculation on the
486 1st pass when the preferred register classes are not
487 known yet. In this case we take the best scenario. */
488 if (ira_memory_move_cost[mode][NO_REGS][0]
489 > ira_memory_move_cost[mode][cl][0])
490 ira_memory_move_cost[mode][NO_REGS][0]
491 = ira_memory_move_cost[mode][cl][0];
492 if (ira_memory_move_cost[mode][NO_REGS][1]
493 > ira_memory_move_cost[mode][cl][1])
494 ira_memory_move_cost[mode][NO_REGS][1]
495 = ira_memory_move_cost[mode][cl][1];
497 for (cl2 = (int) N_REG_CLASSES - 1; cl2 >= 0; cl2--)
499 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
500 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
501 COPY_HARD_REG_SET (temp_hard_regset2, reg_class_contents[cl2]);
502 AND_COMPL_HARD_REG_SET (temp_hard_regset2, no_unit_alloc_regs);
503 ira_class_subset_p[cl][cl2]
504 = hard_reg_set_subset_p (temp_hard_regset, temp_hard_regset2);
511 /* Define the following macro if allocation through malloc if
512 preferable. */
513 #define IRA_NO_OBSTACK
515 #ifndef IRA_NO_OBSTACK
516 /* Obstack used for storing all dynamic data (except bitmaps) of the
517 IRA. */
518 static struct obstack ira_obstack;
519 #endif
521 /* Obstack used for storing all bitmaps of the IRA. */
522 static struct bitmap_obstack ira_bitmap_obstack;
524 /* Allocate memory of size LEN for IRA data. */
525 void *
526 ira_allocate (size_t len)
528 void *res;
530 #ifndef IRA_NO_OBSTACK
531 res = obstack_alloc (&ira_obstack, len);
532 #else
533 res = xmalloc (len);
534 #endif
535 return res;
538 /* Reallocate memory PTR of size LEN for IRA data. */
539 void *
540 ira_reallocate (void *ptr, size_t len)
542 void *res;
544 #ifndef IRA_NO_OBSTACK
545 res = obstack_alloc (&ira_obstack, len);
546 #else
547 res = xrealloc (ptr, len);
548 #endif
549 return res;
552 /* Free memory ADDR allocated for IRA data. */
553 void
554 ira_free (void *addr ATTRIBUTE_UNUSED)
556 #ifndef IRA_NO_OBSTACK
557 /* do nothing */
558 #else
559 free (addr);
560 #endif
564 /* Allocate and returns bitmap for IRA. */
565 bitmap
566 ira_allocate_bitmap (void)
568 return BITMAP_ALLOC (&ira_bitmap_obstack);
571 /* Free bitmap B allocated for IRA. */
572 void
573 ira_free_bitmap (bitmap b ATTRIBUTE_UNUSED)
575 /* do nothing */
580 /* Output information about allocation of all allocnos (except for
581 caps) into file F. */
582 void
583 ira_print_disposition (FILE *f)
585 int i, n, max_regno;
586 ira_allocno_t a;
587 basic_block bb;
589 fprintf (f, "Disposition:");
590 max_regno = max_reg_num ();
591 for (n = 0, i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
592 for (a = ira_regno_allocno_map[i];
593 a != NULL;
594 a = ALLOCNO_NEXT_REGNO_ALLOCNO (a))
596 if (n % 4 == 0)
597 fprintf (f, "\n");
598 n++;
599 fprintf (f, " %4d:r%-4d", ALLOCNO_NUM (a), ALLOCNO_REGNO (a));
600 if ((bb = ALLOCNO_LOOP_TREE_NODE (a)->bb) != NULL)
601 fprintf (f, "b%-3d", bb->index);
602 else
603 fprintf (f, "l%-3d", ALLOCNO_LOOP_TREE_NODE (a)->loop->num);
604 if (ALLOCNO_HARD_REGNO (a) >= 0)
605 fprintf (f, " %3d", ALLOCNO_HARD_REGNO (a));
606 else
607 fprintf (f, " mem");
609 fprintf (f, "\n");
612 /* Outputs information about allocation of all allocnos into
613 stderr. */
614 void
615 ira_debug_disposition (void)
617 ira_print_disposition (stderr);
621 #define alloc_reg_class_subclasses \
622 (this_target_ira_int->x_alloc_reg_class_subclasses)
624 /* Initialize the table of subclasses of each reg class. */
625 static void
626 setup_reg_subclasses (void)
628 int i, j;
629 HARD_REG_SET temp_hard_regset2;
631 for (i = 0; i < N_REG_CLASSES; i++)
632 for (j = 0; j < N_REG_CLASSES; j++)
633 alloc_reg_class_subclasses[i][j] = LIM_REG_CLASSES;
635 for (i = 0; i < N_REG_CLASSES; i++)
637 if (i == (int) NO_REGS)
638 continue;
640 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[i]);
641 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
642 if (hard_reg_set_empty_p (temp_hard_regset))
643 continue;
644 for (j = 0; j < N_REG_CLASSES; j++)
645 if (i != j)
647 enum reg_class *p;
649 COPY_HARD_REG_SET (temp_hard_regset2, reg_class_contents[j]);
650 AND_COMPL_HARD_REG_SET (temp_hard_regset2, no_unit_alloc_regs);
651 if (! hard_reg_set_subset_p (temp_hard_regset,
652 temp_hard_regset2))
653 continue;
654 p = &alloc_reg_class_subclasses[j][0];
655 while (*p != LIM_REG_CLASSES) p++;
656 *p = (enum reg_class) i;
663 /* Set the four global variables defined above. */
664 static void
665 setup_cover_and_important_classes (void)
667 int i, j, n, cl;
668 bool set_p;
669 const reg_class_t *cover_classes;
670 HARD_REG_SET temp_hard_regset2;
671 static enum reg_class classes[LIM_REG_CLASSES + 1];
673 if (targetm.ira_cover_classes == NULL)
674 cover_classes = NULL;
675 else
676 cover_classes = targetm.ira_cover_classes ();
677 if (cover_classes == NULL)
678 ira_assert (flag_ira_algorithm == IRA_ALGORITHM_PRIORITY);
679 else
681 for (i = 0; (cl = cover_classes[i]) != LIM_REG_CLASSES; i++)
682 classes[i] = (enum reg_class) cl;
683 classes[i] = LIM_REG_CLASSES;
686 if (flag_ira_algorithm == IRA_ALGORITHM_PRIORITY)
688 n = 0;
689 for (i = 0; i <= LIM_REG_CLASSES; i++)
691 if (i == NO_REGS)
692 continue;
693 #ifdef CONSTRAINT_NUM_DEFINED_P
694 for (j = 0; j < CONSTRAINT__LIMIT; j++)
695 if ((int) REG_CLASS_FOR_CONSTRAINT ((enum constraint_num) j) == i)
696 break;
697 if (j < CONSTRAINT__LIMIT)
699 classes[n++] = (enum reg_class) i;
700 continue;
702 #endif
703 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[i]);
704 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
705 for (j = 0; j < LIM_REG_CLASSES; j++)
707 if (i == j)
708 continue;
709 COPY_HARD_REG_SET (temp_hard_regset2, reg_class_contents[j]);
710 AND_COMPL_HARD_REG_SET (temp_hard_regset2,
711 no_unit_alloc_regs);
712 if (hard_reg_set_equal_p (temp_hard_regset,
713 temp_hard_regset2))
714 break;
716 if (j >= i)
717 classes[n++] = (enum reg_class) i;
719 classes[n] = LIM_REG_CLASSES;
722 ira_reg_class_cover_size = 0;
723 for (i = 0; (cl = classes[i]) != LIM_REG_CLASSES; i++)
725 for (j = 0; j < i; j++)
726 if (flag_ira_algorithm != IRA_ALGORITHM_PRIORITY
727 && reg_classes_intersect_p ((enum reg_class) cl, classes[j]))
728 gcc_unreachable ();
729 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
730 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
731 if (! hard_reg_set_empty_p (temp_hard_regset))
732 ira_reg_class_cover[ira_reg_class_cover_size++] = (enum reg_class) cl;
734 ira_important_classes_num = 0;
735 for (cl = 0; cl < N_REG_CLASSES; cl++)
737 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
738 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
739 if (! hard_reg_set_empty_p (temp_hard_regset))
741 set_p = false;
742 for (j = 0; j < ira_reg_class_cover_size; j++)
744 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
745 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
746 COPY_HARD_REG_SET (temp_hard_regset2,
747 reg_class_contents[ira_reg_class_cover[j]]);
748 AND_COMPL_HARD_REG_SET (temp_hard_regset2, no_unit_alloc_regs);
749 if ((enum reg_class) cl == ira_reg_class_cover[j]
750 || hard_reg_set_equal_p (temp_hard_regset,
751 temp_hard_regset2))
752 break;
753 else if (hard_reg_set_subset_p (temp_hard_regset,
754 temp_hard_regset2))
755 set_p = true;
757 if (set_p && j >= ira_reg_class_cover_size)
758 ira_important_classes[ira_important_classes_num++]
759 = (enum reg_class) cl;
762 for (j = 0; j < ira_reg_class_cover_size; j++)
763 ira_important_classes[ira_important_classes_num++]
764 = ira_reg_class_cover[j];
767 /* Set up array IRA_CLASS_TRANSLATE. */
768 static void
769 setup_class_translate (void)
771 int cl, mode;
772 enum reg_class cover_class, best_class, *cl_ptr;
773 int i, cost, min_cost, best_cost;
775 for (cl = 0; cl < N_REG_CLASSES; cl++)
776 ira_class_translate[cl] = NO_REGS;
778 if (flag_ira_algorithm == IRA_ALGORITHM_PRIORITY)
779 for (cl = 0; cl < LIM_REG_CLASSES; cl++)
781 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
782 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
783 for (i = 0; i < ira_reg_class_cover_size; i++)
785 HARD_REG_SET temp_hard_regset2;
787 cover_class = ira_reg_class_cover[i];
788 COPY_HARD_REG_SET (temp_hard_regset2,
789 reg_class_contents[cover_class]);
790 AND_COMPL_HARD_REG_SET (temp_hard_regset2, no_unit_alloc_regs);
791 if (hard_reg_set_equal_p (temp_hard_regset, temp_hard_regset2))
792 ira_class_translate[cl] = cover_class;
795 for (i = 0; i < ira_reg_class_cover_size; i++)
797 cover_class = ira_reg_class_cover[i];
798 if (flag_ira_algorithm != IRA_ALGORITHM_PRIORITY)
799 for (cl_ptr = &alloc_reg_class_subclasses[cover_class][0];
800 (cl = *cl_ptr) != LIM_REG_CLASSES;
801 cl_ptr++)
803 if (ira_class_translate[cl] == NO_REGS)
804 ira_class_translate[cl] = cover_class;
805 #ifdef ENABLE_IRA_CHECKING
806 else
808 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
809 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
810 if (! hard_reg_set_empty_p (temp_hard_regset))
811 gcc_unreachable ();
813 #endif
815 ira_class_translate[cover_class] = cover_class;
817 /* For classes which are not fully covered by a cover class (in
818 other words covered by more one cover class), use the cheapest
819 cover class. */
820 for (cl = 0; cl < N_REG_CLASSES; cl++)
822 if (cl == NO_REGS || ira_class_translate[cl] != NO_REGS)
823 continue;
824 best_class = NO_REGS;
825 best_cost = INT_MAX;
826 for (i = 0; i < ira_reg_class_cover_size; i++)
828 cover_class = ira_reg_class_cover[i];
829 COPY_HARD_REG_SET (temp_hard_regset,
830 reg_class_contents[cover_class]);
831 AND_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
832 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
833 if (! hard_reg_set_empty_p (temp_hard_regset))
835 min_cost = INT_MAX;
836 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
838 cost = (ira_memory_move_cost[mode][cl][0]
839 + ira_memory_move_cost[mode][cl][1]);
840 if (min_cost > cost)
841 min_cost = cost;
843 if (best_class == NO_REGS || best_cost > min_cost)
845 best_class = cover_class;
846 best_cost = min_cost;
850 ira_class_translate[cl] = best_class;
854 /* Order numbers of cover classes in original target cover class
855 array, -1 for non-cover classes. This is only live during
856 reorder_important_classes. */
857 static int cover_class_order[N_REG_CLASSES];
859 /* The function used to sort the important classes. */
860 static int
861 comp_reg_classes_func (const void *v1p, const void *v2p)
863 enum reg_class cl1 = *(const enum reg_class *) v1p;
864 enum reg_class cl2 = *(const enum reg_class *) v2p;
865 int diff;
867 cl1 = ira_class_translate[cl1];
868 cl2 = ira_class_translate[cl2];
869 if (cl1 != NO_REGS && cl2 != NO_REGS
870 && (diff = cover_class_order[cl1] - cover_class_order[cl2]) != 0)
871 return diff;
872 return (int) cl1 - (int) cl2;
875 /* Reorder important classes according to the order of their cover
876 classes. */
877 static void
878 reorder_important_classes (void)
880 int i;
882 for (i = 0; i < N_REG_CLASSES; i++)
883 cover_class_order[i] = -1;
884 for (i = 0; i < ira_reg_class_cover_size; i++)
885 cover_class_order[ira_reg_class_cover[i]] = i;
886 qsort (ira_important_classes, ira_important_classes_num,
887 sizeof (enum reg_class), comp_reg_classes_func);
890 /* Set up the above reg class relations. */
891 static void
892 setup_reg_class_relations (void)
894 int i, cl1, cl2, cl3;
895 HARD_REG_SET intersection_set, union_set, temp_set2;
896 bool important_class_p[N_REG_CLASSES];
898 memset (important_class_p, 0, sizeof (important_class_p));
899 for (i = 0; i < ira_important_classes_num; i++)
900 important_class_p[ira_important_classes[i]] = true;
901 for (cl1 = 0; cl1 < N_REG_CLASSES; cl1++)
903 ira_reg_class_super_classes[cl1][0] = LIM_REG_CLASSES;
904 for (cl2 = 0; cl2 < N_REG_CLASSES; cl2++)
906 ira_reg_classes_intersect_p[cl1][cl2] = false;
907 ira_reg_class_intersect[cl1][cl2] = NO_REGS;
908 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl1]);
909 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
910 COPY_HARD_REG_SET (temp_set2, reg_class_contents[cl2]);
911 AND_COMPL_HARD_REG_SET (temp_set2, no_unit_alloc_regs);
912 if (hard_reg_set_empty_p (temp_hard_regset)
913 && hard_reg_set_empty_p (temp_set2))
915 for (i = 0;; i++)
917 cl3 = reg_class_subclasses[cl1][i];
918 if (cl3 == LIM_REG_CLASSES)
919 break;
920 if (reg_class_subset_p (ira_reg_class_intersect[cl1][cl2],
921 (enum reg_class) cl3))
922 ira_reg_class_intersect[cl1][cl2] = (enum reg_class) cl3;
924 ira_reg_class_union[cl1][cl2] = reg_class_subunion[cl1][cl2];
925 continue;
927 ira_reg_classes_intersect_p[cl1][cl2]
928 = hard_reg_set_intersect_p (temp_hard_regset, temp_set2);
929 if (important_class_p[cl1] && important_class_p[cl2]
930 && hard_reg_set_subset_p (temp_hard_regset, temp_set2))
932 enum reg_class *p;
934 p = &ira_reg_class_super_classes[cl1][0];
935 while (*p != LIM_REG_CLASSES)
936 p++;
937 *p++ = (enum reg_class) cl2;
938 *p = LIM_REG_CLASSES;
940 ira_reg_class_union[cl1][cl2] = NO_REGS;
941 COPY_HARD_REG_SET (intersection_set, reg_class_contents[cl1]);
942 AND_HARD_REG_SET (intersection_set, reg_class_contents[cl2]);
943 AND_COMPL_HARD_REG_SET (intersection_set, no_unit_alloc_regs);
944 COPY_HARD_REG_SET (union_set, reg_class_contents[cl1]);
945 IOR_HARD_REG_SET (union_set, reg_class_contents[cl2]);
946 AND_COMPL_HARD_REG_SET (union_set, no_unit_alloc_regs);
947 for (i = 0; i < ira_important_classes_num; i++)
949 cl3 = ira_important_classes[i];
950 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl3]);
951 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
952 if (hard_reg_set_subset_p (temp_hard_regset, intersection_set))
954 COPY_HARD_REG_SET
955 (temp_set2,
956 reg_class_contents[(int)
957 ira_reg_class_intersect[cl1][cl2]]);
958 AND_COMPL_HARD_REG_SET (temp_set2, no_unit_alloc_regs);
959 if (! hard_reg_set_subset_p (temp_hard_regset, temp_set2)
960 /* Ignore unavailable hard registers and prefer
961 smallest class for debugging purposes. */
962 || (hard_reg_set_equal_p (temp_hard_regset, temp_set2)
963 && hard_reg_set_subset_p
964 (reg_class_contents[cl3],
965 reg_class_contents
966 [(int) ira_reg_class_intersect[cl1][cl2]])))
967 ira_reg_class_intersect[cl1][cl2] = (enum reg_class) cl3;
969 if (hard_reg_set_subset_p (temp_hard_regset, union_set))
971 COPY_HARD_REG_SET
972 (temp_set2,
973 reg_class_contents[(int) ira_reg_class_union[cl1][cl2]]);
974 AND_COMPL_HARD_REG_SET (temp_set2, no_unit_alloc_regs);
975 if (ira_reg_class_union[cl1][cl2] == NO_REGS
976 || (hard_reg_set_subset_p (temp_set2, temp_hard_regset)
978 && (! hard_reg_set_equal_p (temp_set2,
979 temp_hard_regset)
980 /* Ignore unavailable hard registers and
981 prefer smallest class for debugging
982 purposes. */
983 || hard_reg_set_subset_p
984 (reg_class_contents[cl3],
985 reg_class_contents
986 [(int) ira_reg_class_union[cl1][cl2]]))))
987 ira_reg_class_union[cl1][cl2] = (enum reg_class) cl3;
994 /* Output all cover classes and the translation map into file F. */
995 static void
996 print_class_cover (FILE *f)
998 static const char *const reg_class_names[] = REG_CLASS_NAMES;
999 int i;
1001 fprintf (f, "Class cover:\n");
1002 for (i = 0; i < ira_reg_class_cover_size; i++)
1003 fprintf (f, " %s", reg_class_names[ira_reg_class_cover[i]]);
1004 fprintf (f, "\nClass translation:\n");
1005 for (i = 0; i < N_REG_CLASSES; i++)
1006 fprintf (f, " %s -> %s\n", reg_class_names[i],
1007 reg_class_names[ira_class_translate[i]]);
1010 /* Output all cover classes and the translation map into
1011 stderr. */
1012 void
1013 ira_debug_class_cover (void)
1015 print_class_cover (stderr);
1018 /* Set up different arrays concerning class subsets, cover and
1019 important classes. */
1020 static void
1021 find_reg_class_closure (void)
1023 setup_reg_subclasses ();
1024 setup_cover_and_important_classes ();
1025 setup_class_translate ();
1026 reorder_important_classes ();
1027 setup_reg_class_relations ();
1032 /* Set up the array above. */
1033 static void
1034 setup_hard_regno_cover_class (void)
1036 int i, j;
1037 enum reg_class cl;
1039 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1041 ira_hard_regno_cover_class[i] = NO_REGS;
1042 for (j = 0; j < ira_reg_class_cover_size; j++)
1044 cl = ira_reg_class_cover[j];
1045 if (ira_class_hard_reg_index[cl][i] >= 0)
1047 ira_hard_regno_cover_class[i] = cl;
1048 break;
1057 /* Form IRA_REG_CLASS_NREGS map. */
1058 static void
1059 setup_reg_class_nregs (void)
1061 int cl, m;
1063 for (cl = 0; cl < N_REG_CLASSES; cl++)
1064 for (m = 0; m < MAX_MACHINE_MODE; m++)
1065 ira_reg_class_nregs[cl][m] = CLASS_MAX_NREGS ((enum reg_class) cl,
1066 (enum machine_mode) m);
1071 /* Set up PROHIBITED_CLASS_MODE_REGS. */
1072 static void
1073 setup_prohibited_class_mode_regs (void)
1075 int i, j, k, hard_regno;
1076 enum reg_class cl;
1078 for (i = 0; i < ira_reg_class_cover_size; i++)
1080 cl = ira_reg_class_cover[i];
1081 for (j = 0; j < NUM_MACHINE_MODES; j++)
1083 CLEAR_HARD_REG_SET (prohibited_class_mode_regs[cl][j]);
1084 for (k = ira_class_hard_regs_num[cl] - 1; k >= 0; k--)
1086 hard_regno = ira_class_hard_regs[cl][k];
1087 if (! HARD_REGNO_MODE_OK (hard_regno, (enum machine_mode) j))
1088 SET_HARD_REG_BIT (prohibited_class_mode_regs[cl][j],
1089 hard_regno);
1097 /* Allocate and initialize IRA_REGISTER_MOVE_COST,
1098 IRA_MAY_MOVE_IN_COST, and IRA_MAY_MOVE_OUT_COST for MODE if it is
1099 not done yet. */
1100 void
1101 ira_init_register_move_cost (enum machine_mode mode)
1103 int cl1, cl2;
1105 ira_assert (ira_register_move_cost[mode] == NULL
1106 && ira_may_move_in_cost[mode] == NULL
1107 && ira_may_move_out_cost[mode] == NULL);
1108 if (move_cost[mode] == NULL)
1109 init_move_cost (mode);
1110 ira_register_move_cost[mode] = move_cost[mode];
1111 /* Don't use ira_allocate because the tables exist out of scope of a
1112 IRA call. */
1113 ira_may_move_in_cost[mode]
1114 = (move_table *) xmalloc (sizeof (move_table) * N_REG_CLASSES);
1115 memcpy (ira_may_move_in_cost[mode], may_move_in_cost[mode],
1116 sizeof (move_table) * N_REG_CLASSES);
1117 ira_may_move_out_cost[mode]
1118 = (move_table *) xmalloc (sizeof (move_table) * N_REG_CLASSES);
1119 memcpy (ira_may_move_out_cost[mode], may_move_out_cost[mode],
1120 sizeof (move_table) * N_REG_CLASSES);
1121 for (cl1 = 0; cl1 < N_REG_CLASSES; cl1++)
1123 for (cl2 = 0; cl2 < N_REG_CLASSES; cl2++)
1125 if (ira_class_subset_p[cl1][cl2])
1126 ira_may_move_in_cost[mode][cl1][cl2] = 0;
1127 if (ira_class_subset_p[cl2][cl1])
1128 ira_may_move_out_cost[mode][cl1][cl2] = 0;
1135 /* This is called once during compiler work. It sets up
1136 different arrays whose values don't depend on the compiled
1137 function. */
1138 void
1139 ira_init_once (void)
1141 int mode;
1143 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
1145 ira_register_move_cost[mode] = NULL;
1146 ira_may_move_in_cost[mode] = NULL;
1147 ira_may_move_out_cost[mode] = NULL;
1149 ira_init_costs_once ();
1152 /* Free ira_register_move_cost, ira_may_move_in_cost, and
1153 ira_may_move_out_cost for each mode. */
1154 static void
1155 free_register_move_costs (void)
1157 int mode;
1159 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
1161 if (ira_may_move_in_cost[mode] != NULL)
1162 free (ira_may_move_in_cost[mode]);
1163 if (ira_may_move_out_cost[mode] != NULL)
1164 free (ira_may_move_out_cost[mode]);
1165 ira_register_move_cost[mode] = NULL;
1166 ira_may_move_in_cost[mode] = NULL;
1167 ira_may_move_out_cost[mode] = NULL;
1171 /* This is called every time when register related information is
1172 changed. */
1173 void
1174 ira_init (void)
1176 free_register_move_costs ();
1177 setup_reg_mode_hard_regset ();
1178 setup_alloc_regs (flag_omit_frame_pointer != 0);
1179 setup_class_subset_and_memory_move_costs ();
1180 find_reg_class_closure ();
1181 setup_hard_regno_cover_class ();
1182 setup_reg_class_nregs ();
1183 setup_prohibited_class_mode_regs ();
1184 ira_init_costs ();
1187 /* Function called once at the end of compiler work. */
1188 void
1189 ira_finish_once (void)
1191 ira_finish_costs_once ();
1192 free_register_move_costs ();
1196 #define ira_prohibited_mode_move_regs_initialized_p \
1197 (this_target_ira_int->x_ira_prohibited_mode_move_regs_initialized_p)
1199 /* Set up IRA_PROHIBITED_MODE_MOVE_REGS. */
1200 static void
1201 setup_prohibited_mode_move_regs (void)
1203 int i, j;
1204 rtx test_reg1, test_reg2, move_pat, move_insn;
1206 if (ira_prohibited_mode_move_regs_initialized_p)
1207 return;
1208 ira_prohibited_mode_move_regs_initialized_p = true;
1209 test_reg1 = gen_rtx_REG (VOIDmode, 0);
1210 test_reg2 = gen_rtx_REG (VOIDmode, 0);
1211 move_pat = gen_rtx_SET (VOIDmode, test_reg1, test_reg2);
1212 move_insn = gen_rtx_INSN (VOIDmode, 0, 0, 0, 0, move_pat, 0, -1, 0);
1213 for (i = 0; i < NUM_MACHINE_MODES; i++)
1215 SET_HARD_REG_SET (ira_prohibited_mode_move_regs[i]);
1216 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
1218 if (! HARD_REGNO_MODE_OK (j, (enum machine_mode) i))
1219 continue;
1220 SET_REGNO_RAW (test_reg1, j);
1221 PUT_MODE (test_reg1, (enum machine_mode) i);
1222 SET_REGNO_RAW (test_reg2, j);
1223 PUT_MODE (test_reg2, (enum machine_mode) i);
1224 INSN_CODE (move_insn) = -1;
1225 recog_memoized (move_insn);
1226 if (INSN_CODE (move_insn) < 0)
1227 continue;
1228 extract_insn (move_insn);
1229 if (! constrain_operands (1))
1230 continue;
1231 CLEAR_HARD_REG_BIT (ira_prohibited_mode_move_regs[i], j);
1238 /* Return nonzero if REGNO is a particularly bad choice for reloading X. */
1239 static bool
1240 ira_bad_reload_regno_1 (int regno, rtx x)
1242 int x_regno, n, i;
1243 ira_allocno_t a;
1244 enum reg_class pref;
1246 /* We only deal with pseudo regs. */
1247 if (! x || GET_CODE (x) != REG)
1248 return false;
1250 x_regno = REGNO (x);
1251 if (x_regno < FIRST_PSEUDO_REGISTER)
1252 return false;
1254 /* If the pseudo prefers REGNO explicitly, then do not consider
1255 REGNO a bad spill choice. */
1256 pref = reg_preferred_class (x_regno);
1257 if (reg_class_size[pref] == 1)
1258 return !TEST_HARD_REG_BIT (reg_class_contents[pref], regno);
1260 /* If the pseudo conflicts with REGNO, then we consider REGNO a
1261 poor choice for a reload regno. */
1262 a = ira_regno_allocno_map[x_regno];
1263 n = ALLOCNO_NUM_OBJECTS (a);
1264 for (i = 0; i < n; i++)
1266 ira_object_t obj = ALLOCNO_OBJECT (a, i);
1267 if (TEST_HARD_REG_BIT (OBJECT_TOTAL_CONFLICT_HARD_REGS (obj), regno))
1268 return true;
1270 return false;
1273 /* Return nonzero if REGNO is a particularly bad choice for reloading
1274 IN or OUT. */
1275 bool
1276 ira_bad_reload_regno (int regno, rtx in, rtx out)
1278 return (ira_bad_reload_regno_1 (regno, in)
1279 || ira_bad_reload_regno_1 (regno, out));
1282 /* Function specific hard registers that can not be used for the
1283 register allocation. */
1284 HARD_REG_SET ira_no_alloc_regs;
1286 /* Return TRUE if *LOC contains an asm. */
1287 static int
1288 insn_contains_asm_1 (rtx *loc, void *data ATTRIBUTE_UNUSED)
1290 if ( !*loc)
1291 return FALSE;
1292 if (GET_CODE (*loc) == ASM_OPERANDS)
1293 return TRUE;
1294 return FALSE;
1298 /* Return TRUE if INSN contains an ASM. */
1299 static bool
1300 insn_contains_asm (rtx insn)
1302 return for_each_rtx (&insn, insn_contains_asm_1, NULL);
1305 /* Add register clobbers from asm statements. */
1306 static void
1307 compute_regs_asm_clobbered (void)
1309 basic_block bb;
1311 FOR_EACH_BB (bb)
1313 rtx insn;
1314 FOR_BB_INSNS_REVERSE (bb, insn)
1316 df_ref *def_rec;
1318 if (insn_contains_asm (insn))
1319 for (def_rec = DF_INSN_DEFS (insn); *def_rec; def_rec++)
1321 df_ref def = *def_rec;
1322 unsigned int dregno = DF_REF_REGNO (def);
1323 if (dregno < FIRST_PSEUDO_REGISTER)
1325 unsigned int i;
1326 enum machine_mode mode = GET_MODE (DF_REF_REAL_REG (def));
1327 unsigned int end = dregno
1328 + hard_regno_nregs[dregno][mode] - 1;
1330 for (i = dregno; i <= end; ++i)
1331 SET_HARD_REG_BIT(crtl->asm_clobbers, i);
1339 /* Set up ELIMINABLE_REGSET, IRA_NO_ALLOC_REGS, and REGS_EVER_LIVE. */
1340 void
1341 ira_setup_eliminable_regset (void)
1343 #ifdef ELIMINABLE_REGS
1344 int i;
1345 static const struct {const int from, to; } eliminables[] = ELIMINABLE_REGS;
1346 #endif
1347 /* FIXME: If EXIT_IGNORE_STACK is set, we will not save and restore
1348 sp for alloca. So we can't eliminate the frame pointer in that
1349 case. At some point, we should improve this by emitting the
1350 sp-adjusting insns for this case. */
1351 int need_fp
1352 = (! flag_omit_frame_pointer
1353 || (cfun->calls_alloca && EXIT_IGNORE_STACK)
1354 /* We need the frame pointer to catch stack overflow exceptions
1355 if the stack pointer is moving. */
1356 || (flag_stack_check && STACK_CHECK_MOVING_SP)
1357 || crtl->accesses_prior_frames
1358 || crtl->stack_realign_needed
1359 || targetm.frame_pointer_required ());
1361 frame_pointer_needed = need_fp;
1363 COPY_HARD_REG_SET (ira_no_alloc_regs, no_unit_alloc_regs);
1364 CLEAR_HARD_REG_SET (eliminable_regset);
1366 compute_regs_asm_clobbered ();
1368 /* Build the regset of all eliminable registers and show we can't
1369 use those that we already know won't be eliminated. */
1370 #ifdef ELIMINABLE_REGS
1371 for (i = 0; i < (int) ARRAY_SIZE (eliminables); i++)
1373 bool cannot_elim
1374 = (! targetm.can_eliminate (eliminables[i].from, eliminables[i].to)
1375 || (eliminables[i].to == STACK_POINTER_REGNUM && need_fp));
1377 if (!TEST_HARD_REG_BIT (crtl->asm_clobbers, eliminables[i].from))
1379 SET_HARD_REG_BIT (eliminable_regset, eliminables[i].from);
1381 if (cannot_elim)
1382 SET_HARD_REG_BIT (ira_no_alloc_regs, eliminables[i].from);
1384 else if (cannot_elim)
1385 error ("%s cannot be used in asm here",
1386 reg_names[eliminables[i].from]);
1387 else
1388 df_set_regs_ever_live (eliminables[i].from, true);
1390 #if !HARD_FRAME_POINTER_IS_FRAME_POINTER
1391 if (!TEST_HARD_REG_BIT (crtl->asm_clobbers, HARD_FRAME_POINTER_REGNUM))
1393 SET_HARD_REG_BIT (eliminable_regset, HARD_FRAME_POINTER_REGNUM);
1394 if (need_fp)
1395 SET_HARD_REG_BIT (ira_no_alloc_regs, HARD_FRAME_POINTER_REGNUM);
1397 else if (need_fp)
1398 error ("%s cannot be used in asm here",
1399 reg_names[HARD_FRAME_POINTER_REGNUM]);
1400 else
1401 df_set_regs_ever_live (HARD_FRAME_POINTER_REGNUM, true);
1402 #endif
1404 #else
1405 if (!TEST_HARD_REG_BIT (crtl->asm_clobbers, HARD_FRAME_POINTER_REGNUM))
1407 SET_HARD_REG_BIT (eliminable_regset, FRAME_POINTER_REGNUM);
1408 if (need_fp)
1409 SET_HARD_REG_BIT (ira_no_alloc_regs, FRAME_POINTER_REGNUM);
1411 else if (need_fp)
1412 error ("%s cannot be used in asm here", reg_names[FRAME_POINTER_REGNUM]);
1413 else
1414 df_set_regs_ever_live (FRAME_POINTER_REGNUM, true);
1415 #endif
1420 /* The length of the following two arrays. */
1421 int ira_reg_equiv_len;
1423 /* The element value is TRUE if the corresponding regno value is
1424 invariant. */
1425 bool *ira_reg_equiv_invariant_p;
1427 /* The element value is equiv constant of given pseudo-register or
1428 NULL_RTX. */
1429 rtx *ira_reg_equiv_const;
1431 /* Set up the two arrays declared above. */
1432 static void
1433 find_reg_equiv_invariant_const (void)
1435 int i;
1436 bool invariant_p;
1437 rtx list, insn, note, constant, x;
1439 for (i = FIRST_PSEUDO_REGISTER; i < reg_equiv_init_size; i++)
1441 constant = NULL_RTX;
1442 invariant_p = false;
1443 for (list = reg_equiv_init[i]; list != NULL_RTX; list = XEXP (list, 1))
1445 insn = XEXP (list, 0);
1446 note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
1448 if (note == NULL_RTX)
1449 continue;
1451 x = XEXP (note, 0);
1453 if (! CONSTANT_P (x)
1454 || ! flag_pic || LEGITIMATE_PIC_OPERAND_P (x))
1456 /* It can happen that a REG_EQUIV note contains a MEM
1457 that is not a legitimate memory operand. As later
1458 stages of the reload assume that all addresses found
1459 in the reg_equiv_* arrays were originally legitimate,
1460 we ignore such REG_EQUIV notes. */
1461 if (memory_operand (x, VOIDmode))
1462 invariant_p = MEM_READONLY_P (x);
1463 else if (function_invariant_p (x))
1465 if (GET_CODE (x) == PLUS
1466 || x == frame_pointer_rtx || x == arg_pointer_rtx)
1467 invariant_p = true;
1468 else
1469 constant = x;
1473 ira_reg_equiv_invariant_p[i] = invariant_p;
1474 ira_reg_equiv_const[i] = constant;
1480 /* Vector of substitutions of register numbers,
1481 used to map pseudo regs into hardware regs.
1482 This is set up as a result of register allocation.
1483 Element N is the hard reg assigned to pseudo reg N,
1484 or is -1 if no hard reg was assigned.
1485 If N is a hard reg number, element N is N. */
1486 short *reg_renumber;
1488 /* Set up REG_RENUMBER and CALLER_SAVE_NEEDED (used by reload) from
1489 the allocation found by IRA. */
1490 static void
1491 setup_reg_renumber (void)
1493 int regno, hard_regno;
1494 ira_allocno_t a;
1495 ira_allocno_iterator ai;
1497 caller_save_needed = 0;
1498 FOR_EACH_ALLOCNO (a, ai)
1500 /* There are no caps at this point. */
1501 ira_assert (ALLOCNO_CAP_MEMBER (a) == NULL);
1502 if (! ALLOCNO_ASSIGNED_P (a))
1503 /* It can happen if A is not referenced but partially anticipated
1504 somewhere in a region. */
1505 ALLOCNO_ASSIGNED_P (a) = true;
1506 ira_free_allocno_updated_costs (a);
1507 hard_regno = ALLOCNO_HARD_REGNO (a);
1508 regno = (int) REGNO (ALLOCNO_REG (a));
1509 reg_renumber[regno] = (hard_regno < 0 ? -1 : hard_regno);
1510 if (hard_regno >= 0 && ALLOCNO_CALLS_CROSSED_NUM (a) != 0
1511 && ! ira_hard_reg_not_in_set_p (hard_regno, ALLOCNO_MODE (a),
1512 call_used_reg_set))
1514 ira_assert (!optimize || flag_caller_saves
1515 || regno >= ira_reg_equiv_len
1516 || ira_reg_equiv_const[regno]
1517 || ira_reg_equiv_invariant_p[regno]);
1518 caller_save_needed = 1;
1523 /* Set up allocno assignment flags for further allocation
1524 improvements. */
1525 static void
1526 setup_allocno_assignment_flags (void)
1528 int hard_regno;
1529 ira_allocno_t a;
1530 ira_allocno_iterator ai;
1532 FOR_EACH_ALLOCNO (a, ai)
1534 if (! ALLOCNO_ASSIGNED_P (a))
1535 /* It can happen if A is not referenced but partially anticipated
1536 somewhere in a region. */
1537 ira_free_allocno_updated_costs (a);
1538 hard_regno = ALLOCNO_HARD_REGNO (a);
1539 /* Don't assign hard registers to allocnos which are destination
1540 of removed store at the end of loop. It has no sense to keep
1541 the same value in different hard registers. It is also
1542 impossible to assign hard registers correctly to such
1543 allocnos because the cost info and info about intersected
1544 calls are incorrect for them. */
1545 ALLOCNO_ASSIGNED_P (a) = (hard_regno >= 0
1546 || ALLOCNO_MEM_OPTIMIZED_DEST_P (a)
1547 || (ALLOCNO_MEMORY_COST (a)
1548 - ALLOCNO_COVER_CLASS_COST (a)) < 0);
1549 ira_assert (hard_regno < 0
1550 || ! ira_hard_reg_not_in_set_p (hard_regno, ALLOCNO_MODE (a),
1551 reg_class_contents
1552 [ALLOCNO_COVER_CLASS (a)]));
1556 /* Evaluate overall allocation cost and the costs for using hard
1557 registers and memory for allocnos. */
1558 static void
1559 calculate_allocation_cost (void)
1561 int hard_regno, cost;
1562 ira_allocno_t a;
1563 ira_allocno_iterator ai;
1565 ira_overall_cost = ira_reg_cost = ira_mem_cost = 0;
1566 FOR_EACH_ALLOCNO (a, ai)
1568 hard_regno = ALLOCNO_HARD_REGNO (a);
1569 ira_assert (hard_regno < 0
1570 || ! ira_hard_reg_not_in_set_p
1571 (hard_regno, ALLOCNO_MODE (a),
1572 reg_class_contents[ALLOCNO_COVER_CLASS (a)]));
1573 if (hard_regno < 0)
1575 cost = ALLOCNO_MEMORY_COST (a);
1576 ira_mem_cost += cost;
1578 else if (ALLOCNO_HARD_REG_COSTS (a) != NULL)
1580 cost = (ALLOCNO_HARD_REG_COSTS (a)
1581 [ira_class_hard_reg_index
1582 [ALLOCNO_COVER_CLASS (a)][hard_regno]]);
1583 ira_reg_cost += cost;
1585 else
1587 cost = ALLOCNO_COVER_CLASS_COST (a);
1588 ira_reg_cost += cost;
1590 ira_overall_cost += cost;
1593 if (internal_flag_ira_verbose > 0 && ira_dump_file != NULL)
1595 fprintf (ira_dump_file,
1596 "+++Costs: overall %d, reg %d, mem %d, ld %d, st %d, move %d\n",
1597 ira_overall_cost, ira_reg_cost, ira_mem_cost,
1598 ira_load_cost, ira_store_cost, ira_shuffle_cost);
1599 fprintf (ira_dump_file, "+++ move loops %d, new jumps %d\n",
1600 ira_move_loops_num, ira_additional_jumps_num);
1605 #ifdef ENABLE_IRA_CHECKING
1606 /* Check the correctness of the allocation. We do need this because
1607 of complicated code to transform more one region internal
1608 representation into one region representation. */
1609 static void
1610 check_allocation (void)
1612 ira_allocno_t a;
1613 int hard_regno, nregs, conflict_nregs;
1614 ira_allocno_iterator ai;
1616 FOR_EACH_ALLOCNO (a, ai)
1618 int n = ALLOCNO_NUM_OBJECTS (a);
1619 int i;
1621 if (ALLOCNO_CAP_MEMBER (a) != NULL
1622 || (hard_regno = ALLOCNO_HARD_REGNO (a)) < 0)
1623 continue;
1624 nregs = hard_regno_nregs[hard_regno][ALLOCNO_MODE (a)];
1625 if (nregs == 1)
1626 /* We allocated a single hard register. */
1627 n = 1;
1628 else if (n > 1)
1629 /* We allocated multiple hard registers, and we will test
1630 conflicts in a granularity of single hard regs. */
1631 nregs = 1;
1633 for (i = 0; i < n; i++)
1635 ira_object_t obj = ALLOCNO_OBJECT (a, i);
1636 ira_object_t conflict_obj;
1637 ira_object_conflict_iterator oci;
1638 int this_regno = hard_regno;
1639 if (n > 1)
1641 if (WORDS_BIG_ENDIAN)
1642 this_regno += n - i - 1;
1643 else
1644 this_regno += i;
1646 FOR_EACH_OBJECT_CONFLICT (obj, conflict_obj, oci)
1648 ira_allocno_t conflict_a = OBJECT_ALLOCNO (conflict_obj);
1649 int conflict_hard_regno = ALLOCNO_HARD_REGNO (conflict_a);
1650 if (conflict_hard_regno < 0)
1651 continue;
1653 conflict_nregs
1654 = (hard_regno_nregs
1655 [conflict_hard_regno][ALLOCNO_MODE (conflict_a)]);
1657 if (ALLOCNO_NUM_OBJECTS (conflict_a) > 1
1658 && conflict_nregs == ALLOCNO_NUM_OBJECTS (conflict_a))
1660 if (WORDS_BIG_ENDIAN)
1661 conflict_hard_regno += (ALLOCNO_NUM_OBJECTS (conflict_a)
1662 - OBJECT_SUBWORD (conflict_obj) - 1);
1663 else
1664 conflict_hard_regno += OBJECT_SUBWORD (conflict_obj);
1665 conflict_nregs = 1;
1668 if ((conflict_hard_regno <= this_regno
1669 && this_regno < conflict_hard_regno + conflict_nregs)
1670 || (this_regno <= conflict_hard_regno
1671 && conflict_hard_regno < this_regno + nregs))
1673 fprintf (stderr, "bad allocation for %d and %d\n",
1674 ALLOCNO_REGNO (a), ALLOCNO_REGNO (conflict_a));
1675 gcc_unreachable ();
1681 #endif
1683 /* Fix values of array REG_EQUIV_INIT after live range splitting done
1684 by IRA. */
1685 static void
1686 fix_reg_equiv_init (void)
1688 int max_regno = max_reg_num ();
1689 int i, new_regno;
1690 rtx x, prev, next, insn, set;
1692 if (reg_equiv_init_size < max_regno)
1694 reg_equiv_init = GGC_RESIZEVEC (rtx, reg_equiv_init, max_regno);
1695 while (reg_equiv_init_size < max_regno)
1696 reg_equiv_init[reg_equiv_init_size++] = NULL_RTX;
1697 for (i = FIRST_PSEUDO_REGISTER; i < reg_equiv_init_size; i++)
1698 for (prev = NULL_RTX, x = reg_equiv_init[i]; x != NULL_RTX; x = next)
1700 next = XEXP (x, 1);
1701 insn = XEXP (x, 0);
1702 set = single_set (insn);
1703 ira_assert (set != NULL_RTX
1704 && (REG_P (SET_DEST (set)) || REG_P (SET_SRC (set))));
1705 if (REG_P (SET_DEST (set))
1706 && ((int) REGNO (SET_DEST (set)) == i
1707 || (int) ORIGINAL_REGNO (SET_DEST (set)) == i))
1708 new_regno = REGNO (SET_DEST (set));
1709 else if (REG_P (SET_SRC (set))
1710 && ((int) REGNO (SET_SRC (set)) == i
1711 || (int) ORIGINAL_REGNO (SET_SRC (set)) == i))
1712 new_regno = REGNO (SET_SRC (set));
1713 else
1714 gcc_unreachable ();
1715 if (new_regno == i)
1716 prev = x;
1717 else
1719 if (prev == NULL_RTX)
1720 reg_equiv_init[i] = next;
1721 else
1722 XEXP (prev, 1) = next;
1723 XEXP (x, 1) = reg_equiv_init[new_regno];
1724 reg_equiv_init[new_regno] = x;
1730 #ifdef ENABLE_IRA_CHECKING
1731 /* Print redundant memory-memory copies. */
1732 static void
1733 print_redundant_copies (void)
1735 int hard_regno;
1736 ira_allocno_t a;
1737 ira_copy_t cp, next_cp;
1738 ira_allocno_iterator ai;
1740 FOR_EACH_ALLOCNO (a, ai)
1742 if (ALLOCNO_CAP_MEMBER (a) != NULL)
1743 /* It is a cap. */
1744 continue;
1745 hard_regno = ALLOCNO_HARD_REGNO (a);
1746 if (hard_regno >= 0)
1747 continue;
1748 for (cp = ALLOCNO_COPIES (a); cp != NULL; cp = next_cp)
1749 if (cp->first == a)
1750 next_cp = cp->next_first_allocno_copy;
1751 else
1753 next_cp = cp->next_second_allocno_copy;
1754 if (internal_flag_ira_verbose > 4 && ira_dump_file != NULL
1755 && cp->insn != NULL_RTX
1756 && ALLOCNO_HARD_REGNO (cp->first) == hard_regno)
1757 fprintf (ira_dump_file,
1758 " Redundant move from %d(freq %d):%d\n",
1759 INSN_UID (cp->insn), cp->freq, hard_regno);
1763 #endif
1765 /* Setup preferred and alternative classes for new pseudo-registers
1766 created by IRA starting with START. */
1767 static void
1768 setup_preferred_alternate_classes_for_new_pseudos (int start)
1770 int i, old_regno;
1771 int max_regno = max_reg_num ();
1773 for (i = start; i < max_regno; i++)
1775 old_regno = ORIGINAL_REGNO (regno_reg_rtx[i]);
1776 ira_assert (i != old_regno);
1777 setup_reg_classes (i, reg_preferred_class (old_regno),
1778 reg_alternate_class (old_regno),
1779 reg_cover_class (old_regno));
1780 if (internal_flag_ira_verbose > 2 && ira_dump_file != NULL)
1781 fprintf (ira_dump_file,
1782 " New r%d: setting preferred %s, alternative %s\n",
1783 i, reg_class_names[reg_preferred_class (old_regno)],
1784 reg_class_names[reg_alternate_class (old_regno)]);
1790 /* Regional allocation can create new pseudo-registers. This function
1791 expands some arrays for pseudo-registers. */
1792 static void
1793 expand_reg_info (int old_size)
1795 int i;
1796 int size = max_reg_num ();
1798 resize_reg_info ();
1799 for (i = old_size; i < size; i++)
1800 setup_reg_classes (i, GENERAL_REGS, ALL_REGS, GENERAL_REGS);
1803 /* Return TRUE if there is too high register pressure in the function.
1804 It is used to decide when stack slot sharing is worth to do. */
1805 static bool
1806 too_high_register_pressure_p (void)
1808 int i;
1809 enum reg_class cover_class;
1811 for (i = 0; i < ira_reg_class_cover_size; i++)
1813 cover_class = ira_reg_class_cover[i];
1814 if (ira_loop_tree_root->reg_pressure[cover_class] > 10000)
1815 return true;
1817 return false;
1822 /* Indicate that hard register number FROM was eliminated and replaced with
1823 an offset from hard register number TO. The status of hard registers live
1824 at the start of a basic block is updated by replacing a use of FROM with
1825 a use of TO. */
1827 void
1828 mark_elimination (int from, int to)
1830 basic_block bb;
1832 FOR_EACH_BB (bb)
1834 /* We don't use LIVE info in IRA. */
1835 bitmap r = DF_LR_IN (bb);
1837 if (REGNO_REG_SET_P (r, from))
1839 CLEAR_REGNO_REG_SET (r, from);
1840 SET_REGNO_REG_SET (r, to);
1847 struct equivalence
1849 /* Set when a REG_EQUIV note is found or created. Use to
1850 keep track of what memory accesses might be created later,
1851 e.g. by reload. */
1852 rtx replacement;
1853 rtx *src_p;
1854 /* The list of each instruction which initializes this register. */
1855 rtx init_insns;
1856 /* Loop depth is used to recognize equivalences which appear
1857 to be present within the same loop (or in an inner loop). */
1858 int loop_depth;
1859 /* Nonzero if this had a preexisting REG_EQUIV note. */
1860 int is_arg_equivalence;
1861 /* Set when an attempt should be made to replace a register
1862 with the associated src_p entry. */
1863 char replace;
1866 /* reg_equiv[N] (where N is a pseudo reg number) is the equivalence
1867 structure for that register. */
1868 static struct equivalence *reg_equiv;
1870 /* Used for communication between the following two functions: contains
1871 a MEM that we wish to ensure remains unchanged. */
1872 static rtx equiv_mem;
1874 /* Set nonzero if EQUIV_MEM is modified. */
1875 static int equiv_mem_modified;
1877 /* If EQUIV_MEM is modified by modifying DEST, indicate that it is modified.
1878 Called via note_stores. */
1879 static void
1880 validate_equiv_mem_from_store (rtx dest, const_rtx set ATTRIBUTE_UNUSED,
1881 void *data ATTRIBUTE_UNUSED)
1883 if ((REG_P (dest)
1884 && reg_overlap_mentioned_p (dest, equiv_mem))
1885 || (MEM_P (dest)
1886 && true_dependence (dest, VOIDmode, equiv_mem, rtx_varies_p)))
1887 equiv_mem_modified = 1;
1890 /* Verify that no store between START and the death of REG invalidates
1891 MEMREF. MEMREF is invalidated by modifying a register used in MEMREF,
1892 by storing into an overlapping memory location, or with a non-const
1893 CALL_INSN.
1895 Return 1 if MEMREF remains valid. */
1896 static int
1897 validate_equiv_mem (rtx start, rtx reg, rtx memref)
1899 rtx insn;
1900 rtx note;
1902 equiv_mem = memref;
1903 equiv_mem_modified = 0;
1905 /* If the memory reference has side effects or is volatile, it isn't a
1906 valid equivalence. */
1907 if (side_effects_p (memref))
1908 return 0;
1910 for (insn = start; insn && ! equiv_mem_modified; insn = NEXT_INSN (insn))
1912 if (! INSN_P (insn))
1913 continue;
1915 if (find_reg_note (insn, REG_DEAD, reg))
1916 return 1;
1918 /* This used to ignore readonly memory and const/pure calls. The problem
1919 is the equivalent form may reference a pseudo which gets assigned a
1920 call clobbered hard reg. When we later replace REG with its
1921 equivalent form, the value in the call-clobbered reg has been
1922 changed and all hell breaks loose. */
1923 if (CALL_P (insn))
1924 return 0;
1926 note_stores (PATTERN (insn), validate_equiv_mem_from_store, NULL);
1928 /* If a register mentioned in MEMREF is modified via an
1929 auto-increment, we lose the equivalence. Do the same if one
1930 dies; although we could extend the life, it doesn't seem worth
1931 the trouble. */
1933 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
1934 if ((REG_NOTE_KIND (note) == REG_INC
1935 || REG_NOTE_KIND (note) == REG_DEAD)
1936 && REG_P (XEXP (note, 0))
1937 && reg_overlap_mentioned_p (XEXP (note, 0), memref))
1938 return 0;
1941 return 0;
1944 /* Returns zero if X is known to be invariant. */
1945 static int
1946 equiv_init_varies_p (rtx x)
1948 RTX_CODE code = GET_CODE (x);
1949 int i;
1950 const char *fmt;
1952 switch (code)
1954 case MEM:
1955 return !MEM_READONLY_P (x) || equiv_init_varies_p (XEXP (x, 0));
1957 case CONST:
1958 case CONST_INT:
1959 case CONST_DOUBLE:
1960 case CONST_FIXED:
1961 case CONST_VECTOR:
1962 case SYMBOL_REF:
1963 case LABEL_REF:
1964 return 0;
1966 case REG:
1967 return reg_equiv[REGNO (x)].replace == 0 && rtx_varies_p (x, 0);
1969 case ASM_OPERANDS:
1970 if (MEM_VOLATILE_P (x))
1971 return 1;
1973 /* Fall through. */
1975 default:
1976 break;
1979 fmt = GET_RTX_FORMAT (code);
1980 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1981 if (fmt[i] == 'e')
1983 if (equiv_init_varies_p (XEXP (x, i)))
1984 return 1;
1986 else if (fmt[i] == 'E')
1988 int j;
1989 for (j = 0; j < XVECLEN (x, i); j++)
1990 if (equiv_init_varies_p (XVECEXP (x, i, j)))
1991 return 1;
1994 return 0;
1997 /* Returns nonzero if X (used to initialize register REGNO) is movable.
1998 X is only movable if the registers it uses have equivalent initializations
1999 which appear to be within the same loop (or in an inner loop) and movable
2000 or if they are not candidates for local_alloc and don't vary. */
2001 static int
2002 equiv_init_movable_p (rtx x, int regno)
2004 int i, j;
2005 const char *fmt;
2006 enum rtx_code code = GET_CODE (x);
2008 switch (code)
2010 case SET:
2011 return equiv_init_movable_p (SET_SRC (x), regno);
2013 case CC0:
2014 case CLOBBER:
2015 return 0;
2017 case PRE_INC:
2018 case PRE_DEC:
2019 case POST_INC:
2020 case POST_DEC:
2021 case PRE_MODIFY:
2022 case POST_MODIFY:
2023 return 0;
2025 case REG:
2026 return (reg_equiv[REGNO (x)].loop_depth >= reg_equiv[regno].loop_depth
2027 && reg_equiv[REGNO (x)].replace)
2028 || (REG_BASIC_BLOCK (REGNO (x)) < NUM_FIXED_BLOCKS && ! rtx_varies_p (x, 0));
2030 case UNSPEC_VOLATILE:
2031 return 0;
2033 case ASM_OPERANDS:
2034 if (MEM_VOLATILE_P (x))
2035 return 0;
2037 /* Fall through. */
2039 default:
2040 break;
2043 fmt = GET_RTX_FORMAT (code);
2044 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2045 switch (fmt[i])
2047 case 'e':
2048 if (! equiv_init_movable_p (XEXP (x, i), regno))
2049 return 0;
2050 break;
2051 case 'E':
2052 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2053 if (! equiv_init_movable_p (XVECEXP (x, i, j), regno))
2054 return 0;
2055 break;
2058 return 1;
2061 /* TRUE if X uses any registers for which reg_equiv[REGNO].replace is true. */
2062 static int
2063 contains_replace_regs (rtx x)
2065 int i, j;
2066 const char *fmt;
2067 enum rtx_code code = GET_CODE (x);
2069 switch (code)
2071 case CONST_INT:
2072 case CONST:
2073 case LABEL_REF:
2074 case SYMBOL_REF:
2075 case CONST_DOUBLE:
2076 case CONST_FIXED:
2077 case CONST_VECTOR:
2078 case PC:
2079 case CC0:
2080 case HIGH:
2081 return 0;
2083 case REG:
2084 return reg_equiv[REGNO (x)].replace;
2086 default:
2087 break;
2090 fmt = GET_RTX_FORMAT (code);
2091 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2092 switch (fmt[i])
2094 case 'e':
2095 if (contains_replace_regs (XEXP (x, i)))
2096 return 1;
2097 break;
2098 case 'E':
2099 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2100 if (contains_replace_regs (XVECEXP (x, i, j)))
2101 return 1;
2102 break;
2105 return 0;
2108 /* TRUE if X references a memory location that would be affected by a store
2109 to MEMREF. */
2110 static int
2111 memref_referenced_p (rtx memref, rtx x)
2113 int i, j;
2114 const char *fmt;
2115 enum rtx_code code = GET_CODE (x);
2117 switch (code)
2119 case CONST_INT:
2120 case CONST:
2121 case LABEL_REF:
2122 case SYMBOL_REF:
2123 case CONST_DOUBLE:
2124 case CONST_FIXED:
2125 case CONST_VECTOR:
2126 case PC:
2127 case CC0:
2128 case HIGH:
2129 case LO_SUM:
2130 return 0;
2132 case REG:
2133 return (reg_equiv[REGNO (x)].replacement
2134 && memref_referenced_p (memref,
2135 reg_equiv[REGNO (x)].replacement));
2137 case MEM:
2138 if (true_dependence (memref, VOIDmode, x, rtx_varies_p))
2139 return 1;
2140 break;
2142 case SET:
2143 /* If we are setting a MEM, it doesn't count (its address does), but any
2144 other SET_DEST that has a MEM in it is referencing the MEM. */
2145 if (MEM_P (SET_DEST (x)))
2147 if (memref_referenced_p (memref, XEXP (SET_DEST (x), 0)))
2148 return 1;
2150 else if (memref_referenced_p (memref, SET_DEST (x)))
2151 return 1;
2153 return memref_referenced_p (memref, SET_SRC (x));
2155 default:
2156 break;
2159 fmt = GET_RTX_FORMAT (code);
2160 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2161 switch (fmt[i])
2163 case 'e':
2164 if (memref_referenced_p (memref, XEXP (x, i)))
2165 return 1;
2166 break;
2167 case 'E':
2168 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2169 if (memref_referenced_p (memref, XVECEXP (x, i, j)))
2170 return 1;
2171 break;
2174 return 0;
2177 /* TRUE if some insn in the range (START, END] references a memory location
2178 that would be affected by a store to MEMREF. */
2179 static int
2180 memref_used_between_p (rtx memref, rtx start, rtx end)
2182 rtx insn;
2184 for (insn = NEXT_INSN (start); insn != NEXT_INSN (end);
2185 insn = NEXT_INSN (insn))
2187 if (!NONDEBUG_INSN_P (insn))
2188 continue;
2190 if (memref_referenced_p (memref, PATTERN (insn)))
2191 return 1;
2193 /* Nonconst functions may access memory. */
2194 if (CALL_P (insn) && (! RTL_CONST_CALL_P (insn)))
2195 return 1;
2198 return 0;
2201 /* Mark REG as having no known equivalence.
2202 Some instructions might have been processed before and furnished
2203 with REG_EQUIV notes for this register; these notes will have to be
2204 removed.
2205 STORE is the piece of RTL that does the non-constant / conflicting
2206 assignment - a SET, CLOBBER or REG_INC note. It is currently not used,
2207 but needs to be there because this function is called from note_stores. */
2208 static void
2209 no_equiv (rtx reg, const_rtx store ATTRIBUTE_UNUSED, void *data ATTRIBUTE_UNUSED)
2211 int regno;
2212 rtx list;
2214 if (!REG_P (reg))
2215 return;
2216 regno = REGNO (reg);
2217 list = reg_equiv[regno].init_insns;
2218 if (list == const0_rtx)
2219 return;
2220 reg_equiv[regno].init_insns = const0_rtx;
2221 reg_equiv[regno].replacement = NULL_RTX;
2222 /* This doesn't matter for equivalences made for argument registers, we
2223 should keep their initialization insns. */
2224 if (reg_equiv[regno].is_arg_equivalence)
2225 return;
2226 reg_equiv_init[regno] = NULL_RTX;
2227 for (; list; list = XEXP (list, 1))
2229 rtx insn = XEXP (list, 0);
2230 remove_note (insn, find_reg_note (insn, REG_EQUIV, NULL_RTX));
2234 /* In DEBUG_INSN location adjust REGs from CLEARED_REGS bitmap to the
2235 equivalent replacement. */
2237 static rtx
2238 adjust_cleared_regs (rtx loc, const_rtx old_rtx ATTRIBUTE_UNUSED, void *data)
2240 if (REG_P (loc))
2242 bitmap cleared_regs = (bitmap) data;
2243 if (bitmap_bit_p (cleared_regs, REGNO (loc)))
2244 return simplify_replace_fn_rtx (*reg_equiv[REGNO (loc)].src_p,
2245 NULL_RTX, adjust_cleared_regs, data);
2247 return NULL_RTX;
2250 /* Nonzero if we recorded an equivalence for a LABEL_REF. */
2251 static int recorded_label_ref;
2253 /* Find registers that are equivalent to a single value throughout the
2254 compilation (either because they can be referenced in memory or are set once
2255 from a single constant). Lower their priority for a register.
2257 If such a register is only referenced once, try substituting its value
2258 into the using insn. If it succeeds, we can eliminate the register
2259 completely.
2261 Initialize the REG_EQUIV_INIT array of initializing insns.
2263 Return non-zero if jump label rebuilding should be done. */
2264 static int
2265 update_equiv_regs (void)
2267 rtx insn;
2268 basic_block bb;
2269 int loop_depth;
2270 bitmap cleared_regs;
2272 /* We need to keep track of whether or not we recorded a LABEL_REF so
2273 that we know if the jump optimizer needs to be rerun. */
2274 recorded_label_ref = 0;
2276 reg_equiv = XCNEWVEC (struct equivalence, max_regno);
2277 reg_equiv_init = ggc_alloc_cleared_vec_rtx (max_regno);
2278 reg_equiv_init_size = max_regno;
2280 init_alias_analysis ();
2282 /* Scan the insns and find which registers have equivalences. Do this
2283 in a separate scan of the insns because (due to -fcse-follow-jumps)
2284 a register can be set below its use. */
2285 FOR_EACH_BB (bb)
2287 loop_depth = bb->loop_depth;
2289 for (insn = BB_HEAD (bb);
2290 insn != NEXT_INSN (BB_END (bb));
2291 insn = NEXT_INSN (insn))
2293 rtx note;
2294 rtx set;
2295 rtx dest, src;
2296 int regno;
2298 if (! INSN_P (insn))
2299 continue;
2301 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
2302 if (REG_NOTE_KIND (note) == REG_INC)
2303 no_equiv (XEXP (note, 0), note, NULL);
2305 set = single_set (insn);
2307 /* If this insn contains more (or less) than a single SET,
2308 only mark all destinations as having no known equivalence. */
2309 if (set == 0)
2311 note_stores (PATTERN (insn), no_equiv, NULL);
2312 continue;
2314 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
2316 int i;
2318 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
2320 rtx part = XVECEXP (PATTERN (insn), 0, i);
2321 if (part != set)
2322 note_stores (part, no_equiv, NULL);
2326 dest = SET_DEST (set);
2327 src = SET_SRC (set);
2329 /* See if this is setting up the equivalence between an argument
2330 register and its stack slot. */
2331 note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
2332 if (note)
2334 gcc_assert (REG_P (dest));
2335 regno = REGNO (dest);
2337 /* Note that we don't want to clear reg_equiv_init even if there
2338 are multiple sets of this register. */
2339 reg_equiv[regno].is_arg_equivalence = 1;
2341 /* Record for reload that this is an equivalencing insn. */
2342 if (rtx_equal_p (src, XEXP (note, 0)))
2343 reg_equiv_init[regno]
2344 = gen_rtx_INSN_LIST (VOIDmode, insn, reg_equiv_init[regno]);
2346 /* Continue normally in case this is a candidate for
2347 replacements. */
2350 if (!optimize)
2351 continue;
2353 /* We only handle the case of a pseudo register being set
2354 once, or always to the same value. */
2355 /* ??? The mn10200 port breaks if we add equivalences for
2356 values that need an ADDRESS_REGS register and set them equivalent
2357 to a MEM of a pseudo. The actual problem is in the over-conservative
2358 handling of INPADDR_ADDRESS / INPUT_ADDRESS / INPUT triples in
2359 calculate_needs, but we traditionally work around this problem
2360 here by rejecting equivalences when the destination is in a register
2361 that's likely spilled. This is fragile, of course, since the
2362 preferred class of a pseudo depends on all instructions that set
2363 or use it. */
2365 if (!REG_P (dest)
2366 || (regno = REGNO (dest)) < FIRST_PSEUDO_REGISTER
2367 || reg_equiv[regno].init_insns == const0_rtx
2368 || (targetm.class_likely_spilled_p (reg_preferred_class (regno))
2369 && MEM_P (src) && ! reg_equiv[regno].is_arg_equivalence))
2371 /* This might be setting a SUBREG of a pseudo, a pseudo that is
2372 also set somewhere else to a constant. */
2373 note_stores (set, no_equiv, NULL);
2374 continue;
2377 note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
2379 /* cse sometimes generates function invariants, but doesn't put a
2380 REG_EQUAL note on the insn. Since this note would be redundant,
2381 there's no point creating it earlier than here. */
2382 if (! note && ! rtx_varies_p (src, 0))
2383 note = set_unique_reg_note (insn, REG_EQUAL, copy_rtx (src));
2385 /* Don't bother considering a REG_EQUAL note containing an EXPR_LIST
2386 since it represents a function call */
2387 if (note && GET_CODE (XEXP (note, 0)) == EXPR_LIST)
2388 note = NULL_RTX;
2390 if (DF_REG_DEF_COUNT (regno) != 1
2391 && (! note
2392 || rtx_varies_p (XEXP (note, 0), 0)
2393 || (reg_equiv[regno].replacement
2394 && ! rtx_equal_p (XEXP (note, 0),
2395 reg_equiv[regno].replacement))))
2397 no_equiv (dest, set, NULL);
2398 continue;
2400 /* Record this insn as initializing this register. */
2401 reg_equiv[regno].init_insns
2402 = gen_rtx_INSN_LIST (VOIDmode, insn, reg_equiv[regno].init_insns);
2404 /* If this register is known to be equal to a constant, record that
2405 it is always equivalent to the constant. */
2406 if (DF_REG_DEF_COUNT (regno) == 1
2407 && note && ! rtx_varies_p (XEXP (note, 0), 0))
2409 rtx note_value = XEXP (note, 0);
2410 remove_note (insn, note);
2411 set_unique_reg_note (insn, REG_EQUIV, note_value);
2414 /* If this insn introduces a "constant" register, decrease the priority
2415 of that register. Record this insn if the register is only used once
2416 more and the equivalence value is the same as our source.
2418 The latter condition is checked for two reasons: First, it is an
2419 indication that it may be more efficient to actually emit the insn
2420 as written (if no registers are available, reload will substitute
2421 the equivalence). Secondly, it avoids problems with any registers
2422 dying in this insn whose death notes would be missed.
2424 If we don't have a REG_EQUIV note, see if this insn is loading
2425 a register used only in one basic block from a MEM. If so, and the
2426 MEM remains unchanged for the life of the register, add a REG_EQUIV
2427 note. */
2429 note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
2431 if (note == 0 && REG_BASIC_BLOCK (regno) >= NUM_FIXED_BLOCKS
2432 && MEM_P (SET_SRC (set))
2433 && validate_equiv_mem (insn, dest, SET_SRC (set)))
2434 note = set_unique_reg_note (insn, REG_EQUIV, copy_rtx (SET_SRC (set)));
2436 if (note)
2438 int regno = REGNO (dest);
2439 rtx x = XEXP (note, 0);
2441 /* If we haven't done so, record for reload that this is an
2442 equivalencing insn. */
2443 if (!reg_equiv[regno].is_arg_equivalence)
2444 reg_equiv_init[regno]
2445 = gen_rtx_INSN_LIST (VOIDmode, insn, reg_equiv_init[regno]);
2447 /* Record whether or not we created a REG_EQUIV note for a LABEL_REF.
2448 We might end up substituting the LABEL_REF for uses of the
2449 pseudo here or later. That kind of transformation may turn an
2450 indirect jump into a direct jump, in which case we must rerun the
2451 jump optimizer to ensure that the JUMP_LABEL fields are valid. */
2452 if (GET_CODE (x) == LABEL_REF
2453 || (GET_CODE (x) == CONST
2454 && GET_CODE (XEXP (x, 0)) == PLUS
2455 && (GET_CODE (XEXP (XEXP (x, 0), 0)) == LABEL_REF)))
2456 recorded_label_ref = 1;
2458 reg_equiv[regno].replacement = x;
2459 reg_equiv[regno].src_p = &SET_SRC (set);
2460 reg_equiv[regno].loop_depth = loop_depth;
2462 /* Don't mess with things live during setjmp. */
2463 if (REG_LIVE_LENGTH (regno) >= 0 && optimize)
2465 /* Note that the statement below does not affect the priority
2466 in local-alloc! */
2467 REG_LIVE_LENGTH (regno) *= 2;
2469 /* If the register is referenced exactly twice, meaning it is
2470 set once and used once, indicate that the reference may be
2471 replaced by the equivalence we computed above. Do this
2472 even if the register is only used in one block so that
2473 dependencies can be handled where the last register is
2474 used in a different block (i.e. HIGH / LO_SUM sequences)
2475 and to reduce the number of registers alive across
2476 calls. */
2478 if (REG_N_REFS (regno) == 2
2479 && (rtx_equal_p (x, src)
2480 || ! equiv_init_varies_p (src))
2481 && NONJUMP_INSN_P (insn)
2482 && equiv_init_movable_p (PATTERN (insn), regno))
2483 reg_equiv[regno].replace = 1;
2489 if (!optimize)
2490 goto out;
2492 /* A second pass, to gather additional equivalences with memory. This needs
2493 to be done after we know which registers we are going to replace. */
2495 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
2497 rtx set, src, dest;
2498 unsigned regno;
2500 if (! INSN_P (insn))
2501 continue;
2503 set = single_set (insn);
2504 if (! set)
2505 continue;
2507 dest = SET_DEST (set);
2508 src = SET_SRC (set);
2510 /* If this sets a MEM to the contents of a REG that is only used
2511 in a single basic block, see if the register is always equivalent
2512 to that memory location and if moving the store from INSN to the
2513 insn that set REG is safe. If so, put a REG_EQUIV note on the
2514 initializing insn.
2516 Don't add a REG_EQUIV note if the insn already has one. The existing
2517 REG_EQUIV is likely more useful than the one we are adding.
2519 If one of the regs in the address has reg_equiv[REGNO].replace set,
2520 then we can't add this REG_EQUIV note. The reg_equiv[REGNO].replace
2521 optimization may move the set of this register immediately before
2522 insn, which puts it after reg_equiv[REGNO].init_insns, and hence
2523 the mention in the REG_EQUIV note would be to an uninitialized
2524 pseudo. */
2526 if (MEM_P (dest) && REG_P (src)
2527 && (regno = REGNO (src)) >= FIRST_PSEUDO_REGISTER
2528 && REG_BASIC_BLOCK (regno) >= NUM_FIXED_BLOCKS
2529 && DF_REG_DEF_COUNT (regno) == 1
2530 && reg_equiv[regno].init_insns != 0
2531 && reg_equiv[regno].init_insns != const0_rtx
2532 && ! find_reg_note (XEXP (reg_equiv[regno].init_insns, 0),
2533 REG_EQUIV, NULL_RTX)
2534 && ! contains_replace_regs (XEXP (dest, 0)))
2536 rtx init_insn = XEXP (reg_equiv[regno].init_insns, 0);
2537 if (validate_equiv_mem (init_insn, src, dest)
2538 && ! memref_used_between_p (dest, init_insn, insn)
2539 /* Attaching a REG_EQUIV note will fail if INIT_INSN has
2540 multiple sets. */
2541 && set_unique_reg_note (init_insn, REG_EQUIV, copy_rtx (dest)))
2543 /* This insn makes the equivalence, not the one initializing
2544 the register. */
2545 reg_equiv_init[regno]
2546 = gen_rtx_INSN_LIST (VOIDmode, insn, NULL_RTX);
2547 df_notes_rescan (init_insn);
2552 cleared_regs = BITMAP_ALLOC (NULL);
2553 /* Now scan all regs killed in an insn to see if any of them are
2554 registers only used that once. If so, see if we can replace the
2555 reference with the equivalent form. If we can, delete the
2556 initializing reference and this register will go away. If we
2557 can't replace the reference, and the initializing reference is
2558 within the same loop (or in an inner loop), then move the register
2559 initialization just before the use, so that they are in the same
2560 basic block. */
2561 FOR_EACH_BB_REVERSE (bb)
2563 loop_depth = bb->loop_depth;
2564 for (insn = BB_END (bb);
2565 insn != PREV_INSN (BB_HEAD (bb));
2566 insn = PREV_INSN (insn))
2568 rtx link;
2570 if (! INSN_P (insn))
2571 continue;
2573 /* Don't substitute into a non-local goto, this confuses CFG. */
2574 if (JUMP_P (insn)
2575 && find_reg_note (insn, REG_NON_LOCAL_GOTO, NULL_RTX))
2576 continue;
2578 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2580 if (REG_NOTE_KIND (link) == REG_DEAD
2581 /* Make sure this insn still refers to the register. */
2582 && reg_mentioned_p (XEXP (link, 0), PATTERN (insn)))
2584 int regno = REGNO (XEXP (link, 0));
2585 rtx equiv_insn;
2587 if (! reg_equiv[regno].replace
2588 || reg_equiv[regno].loop_depth < loop_depth
2589 /* There is no sense to move insns if we did
2590 register pressure-sensitive scheduling was
2591 done because it will not improve allocation
2592 but worsen insn schedule with a big
2593 probability. */
2594 || (flag_sched_pressure && flag_schedule_insns))
2595 continue;
2597 /* reg_equiv[REGNO].replace gets set only when
2598 REG_N_REFS[REGNO] is 2, i.e. the register is set
2599 once and used once. (If it were only set, but not used,
2600 flow would have deleted the setting insns.) Hence
2601 there can only be one insn in reg_equiv[REGNO].init_insns. */
2602 gcc_assert (reg_equiv[regno].init_insns
2603 && !XEXP (reg_equiv[regno].init_insns, 1));
2604 equiv_insn = XEXP (reg_equiv[regno].init_insns, 0);
2606 /* We may not move instructions that can throw, since
2607 that changes basic block boundaries and we are not
2608 prepared to adjust the CFG to match. */
2609 if (can_throw_internal (equiv_insn))
2610 continue;
2612 if (asm_noperands (PATTERN (equiv_insn)) < 0
2613 && validate_replace_rtx (regno_reg_rtx[regno],
2614 *(reg_equiv[regno].src_p), insn))
2616 rtx equiv_link;
2617 rtx last_link;
2618 rtx note;
2620 /* Find the last note. */
2621 for (last_link = link; XEXP (last_link, 1);
2622 last_link = XEXP (last_link, 1))
2625 /* Append the REG_DEAD notes from equiv_insn. */
2626 equiv_link = REG_NOTES (equiv_insn);
2627 while (equiv_link)
2629 note = equiv_link;
2630 equiv_link = XEXP (equiv_link, 1);
2631 if (REG_NOTE_KIND (note) == REG_DEAD)
2633 remove_note (equiv_insn, note);
2634 XEXP (last_link, 1) = note;
2635 XEXP (note, 1) = NULL_RTX;
2636 last_link = note;
2640 remove_death (regno, insn);
2641 SET_REG_N_REFS (regno, 0);
2642 REG_FREQ (regno) = 0;
2643 delete_insn (equiv_insn);
2645 reg_equiv[regno].init_insns
2646 = XEXP (reg_equiv[regno].init_insns, 1);
2648 reg_equiv_init[regno] = NULL_RTX;
2649 bitmap_set_bit (cleared_regs, regno);
2651 /* Move the initialization of the register to just before
2652 INSN. Update the flow information. */
2653 else if (prev_nondebug_insn (insn) != equiv_insn)
2655 rtx new_insn;
2657 new_insn = emit_insn_before (PATTERN (equiv_insn), insn);
2658 REG_NOTES (new_insn) = REG_NOTES (equiv_insn);
2659 REG_NOTES (equiv_insn) = 0;
2660 /* Rescan it to process the notes. */
2661 df_insn_rescan (new_insn);
2663 /* Make sure this insn is recognized before
2664 reload begins, otherwise
2665 eliminate_regs_in_insn will die. */
2666 INSN_CODE (new_insn) = INSN_CODE (equiv_insn);
2668 delete_insn (equiv_insn);
2670 XEXP (reg_equiv[regno].init_insns, 0) = new_insn;
2672 REG_BASIC_BLOCK (regno) = bb->index;
2673 REG_N_CALLS_CROSSED (regno) = 0;
2674 REG_FREQ_CALLS_CROSSED (regno) = 0;
2675 REG_N_THROWING_CALLS_CROSSED (regno) = 0;
2676 REG_LIVE_LENGTH (regno) = 2;
2678 if (insn == BB_HEAD (bb))
2679 BB_HEAD (bb) = PREV_INSN (insn);
2681 reg_equiv_init[regno]
2682 = gen_rtx_INSN_LIST (VOIDmode, new_insn, NULL_RTX);
2683 bitmap_set_bit (cleared_regs, regno);
2690 if (!bitmap_empty_p (cleared_regs))
2692 FOR_EACH_BB (bb)
2694 bitmap_and_compl_into (DF_LIVE_IN (bb), cleared_regs);
2695 bitmap_and_compl_into (DF_LIVE_OUT (bb), cleared_regs);
2696 bitmap_and_compl_into (DF_LR_IN (bb), cleared_regs);
2697 bitmap_and_compl_into (DF_LR_OUT (bb), cleared_regs);
2700 /* Last pass - adjust debug insns referencing cleared regs. */
2701 if (MAY_HAVE_DEBUG_INSNS)
2702 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
2703 if (DEBUG_INSN_P (insn))
2705 rtx old_loc = INSN_VAR_LOCATION_LOC (insn);
2706 INSN_VAR_LOCATION_LOC (insn)
2707 = simplify_replace_fn_rtx (old_loc, NULL_RTX,
2708 adjust_cleared_regs,
2709 (void *) cleared_regs);
2710 if (old_loc != INSN_VAR_LOCATION_LOC (insn))
2711 df_insn_rescan (insn);
2715 BITMAP_FREE (cleared_regs);
2717 out:
2718 /* Clean up. */
2720 end_alias_analysis ();
2721 free (reg_equiv);
2722 return recorded_label_ref;
2727 /* Print chain C to FILE. */
2728 static void
2729 print_insn_chain (FILE *file, struct insn_chain *c)
2731 fprintf (file, "insn=%d, ", INSN_UID(c->insn));
2732 bitmap_print (file, &c->live_throughout, "live_throughout: ", ", ");
2733 bitmap_print (file, &c->dead_or_set, "dead_or_set: ", "\n");
2737 /* Print all reload_insn_chains to FILE. */
2738 static void
2739 print_insn_chains (FILE *file)
2741 struct insn_chain *c;
2742 for (c = reload_insn_chain; c ; c = c->next)
2743 print_insn_chain (file, c);
2746 /* Return true if pseudo REGNO should be added to set live_throughout
2747 or dead_or_set of the insn chains for reload consideration. */
2748 static bool
2749 pseudo_for_reload_consideration_p (int regno)
2751 /* Consider spilled pseudos too for IRA because they still have a
2752 chance to get hard-registers in the reload when IRA is used. */
2753 return (reg_renumber[regno] >= 0 || ira_conflicts_p);
2756 /* Init LIVE_SUBREGS[ALLOCNUM] and LIVE_SUBREGS_USED[ALLOCNUM] using
2757 REG to the number of nregs, and INIT_VALUE to get the
2758 initialization. ALLOCNUM need not be the regno of REG. */
2759 static void
2760 init_live_subregs (bool init_value, sbitmap *live_subregs,
2761 int *live_subregs_used, int allocnum, rtx reg)
2763 unsigned int regno = REGNO (SUBREG_REG (reg));
2764 int size = GET_MODE_SIZE (GET_MODE (regno_reg_rtx[regno]));
2766 gcc_assert (size > 0);
2768 /* Been there, done that. */
2769 if (live_subregs_used[allocnum])
2770 return;
2772 /* Create a new one with zeros. */
2773 if (live_subregs[allocnum] == NULL)
2774 live_subregs[allocnum] = sbitmap_alloc (size);
2776 /* If the entire reg was live before blasting into subregs, we need
2777 to init all of the subregs to ones else init to 0. */
2778 if (init_value)
2779 sbitmap_ones (live_subregs[allocnum]);
2780 else
2781 sbitmap_zero (live_subregs[allocnum]);
2783 /* Set the number of bits that we really want. */
2784 live_subregs_used[allocnum] = size;
2787 /* Walk the insns of the current function and build reload_insn_chain,
2788 and record register life information. */
2789 static void
2790 build_insn_chain (void)
2792 unsigned int i;
2793 struct insn_chain **p = &reload_insn_chain;
2794 basic_block bb;
2795 struct insn_chain *c = NULL;
2796 struct insn_chain *next = NULL;
2797 bitmap live_relevant_regs = BITMAP_ALLOC (NULL);
2798 bitmap elim_regset = BITMAP_ALLOC (NULL);
2799 /* live_subregs is a vector used to keep accurate information about
2800 which hardregs are live in multiword pseudos. live_subregs and
2801 live_subregs_used are indexed by pseudo number. The live_subreg
2802 entry for a particular pseudo is only used if the corresponding
2803 element is non zero in live_subregs_used. The value in
2804 live_subregs_used is number of bytes that the pseudo can
2805 occupy. */
2806 sbitmap *live_subregs = XCNEWVEC (sbitmap, max_regno);
2807 int *live_subregs_used = XNEWVEC (int, max_regno);
2809 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2810 if (TEST_HARD_REG_BIT (eliminable_regset, i))
2811 bitmap_set_bit (elim_regset, i);
2812 FOR_EACH_BB_REVERSE (bb)
2814 bitmap_iterator bi;
2815 rtx insn;
2817 CLEAR_REG_SET (live_relevant_regs);
2818 memset (live_subregs_used, 0, max_regno * sizeof (int));
2820 EXECUTE_IF_SET_IN_BITMAP (DF_LR_OUT (bb), 0, i, bi)
2822 if (i >= FIRST_PSEUDO_REGISTER)
2823 break;
2824 bitmap_set_bit (live_relevant_regs, i);
2827 EXECUTE_IF_SET_IN_BITMAP (DF_LR_OUT (bb),
2828 FIRST_PSEUDO_REGISTER, i, bi)
2830 if (pseudo_for_reload_consideration_p (i))
2831 bitmap_set_bit (live_relevant_regs, i);
2834 FOR_BB_INSNS_REVERSE (bb, insn)
2836 if (!NOTE_P (insn) && !BARRIER_P (insn))
2838 unsigned int uid = INSN_UID (insn);
2839 df_ref *def_rec;
2840 df_ref *use_rec;
2842 c = new_insn_chain ();
2843 c->next = next;
2844 next = c;
2845 *p = c;
2846 p = &c->prev;
2848 c->insn = insn;
2849 c->block = bb->index;
2851 if (INSN_P (insn))
2852 for (def_rec = DF_INSN_UID_DEFS (uid); *def_rec; def_rec++)
2854 df_ref def = *def_rec;
2855 unsigned int regno = DF_REF_REGNO (def);
2857 /* Ignore may clobbers because these are generated
2858 from calls. However, every other kind of def is
2859 added to dead_or_set. */
2860 if (!DF_REF_FLAGS_IS_SET (def, DF_REF_MAY_CLOBBER))
2862 if (regno < FIRST_PSEUDO_REGISTER)
2864 if (!fixed_regs[regno])
2865 bitmap_set_bit (&c->dead_or_set, regno);
2867 else if (pseudo_for_reload_consideration_p (regno))
2868 bitmap_set_bit (&c->dead_or_set, regno);
2871 if ((regno < FIRST_PSEUDO_REGISTER
2872 || reg_renumber[regno] >= 0
2873 || ira_conflicts_p)
2874 && (!DF_REF_FLAGS_IS_SET (def, DF_REF_CONDITIONAL)))
2876 rtx reg = DF_REF_REG (def);
2878 /* We can model subregs, but not if they are
2879 wrapped in ZERO_EXTRACTS. */
2880 if (GET_CODE (reg) == SUBREG
2881 && !DF_REF_FLAGS_IS_SET (def, DF_REF_ZERO_EXTRACT))
2883 unsigned int start = SUBREG_BYTE (reg);
2884 unsigned int last = start
2885 + GET_MODE_SIZE (GET_MODE (reg));
2887 init_live_subregs
2888 (bitmap_bit_p (live_relevant_regs, regno),
2889 live_subregs, live_subregs_used, regno, reg);
2891 if (!DF_REF_FLAGS_IS_SET
2892 (def, DF_REF_STRICT_LOW_PART))
2894 /* Expand the range to cover entire words.
2895 Bytes added here are "don't care". */
2896 start
2897 = start / UNITS_PER_WORD * UNITS_PER_WORD;
2898 last = ((last + UNITS_PER_WORD - 1)
2899 / UNITS_PER_WORD * UNITS_PER_WORD);
2902 /* Ignore the paradoxical bits. */
2903 if ((int)last > live_subregs_used[regno])
2904 last = live_subregs_used[regno];
2906 while (start < last)
2908 RESET_BIT (live_subregs[regno], start);
2909 start++;
2912 if (sbitmap_empty_p (live_subregs[regno]))
2914 live_subregs_used[regno] = 0;
2915 bitmap_clear_bit (live_relevant_regs, regno);
2917 else
2918 /* Set live_relevant_regs here because
2919 that bit has to be true to get us to
2920 look at the live_subregs fields. */
2921 bitmap_set_bit (live_relevant_regs, regno);
2923 else
2925 /* DF_REF_PARTIAL is generated for
2926 subregs, STRICT_LOW_PART, and
2927 ZERO_EXTRACT. We handle the subreg
2928 case above so here we have to keep from
2929 modeling the def as a killing def. */
2930 if (!DF_REF_FLAGS_IS_SET (def, DF_REF_PARTIAL))
2932 bitmap_clear_bit (live_relevant_regs, regno);
2933 live_subregs_used[regno] = 0;
2939 bitmap_and_compl_into (live_relevant_regs, elim_regset);
2940 bitmap_copy (&c->live_throughout, live_relevant_regs);
2942 if (INSN_P (insn))
2943 for (use_rec = DF_INSN_UID_USES (uid); *use_rec; use_rec++)
2945 df_ref use = *use_rec;
2946 unsigned int regno = DF_REF_REGNO (use);
2947 rtx reg = DF_REF_REG (use);
2949 /* DF_REF_READ_WRITE on a use means that this use
2950 is fabricated from a def that is a partial set
2951 to a multiword reg. Here, we only model the
2952 subreg case that is not wrapped in ZERO_EXTRACT
2953 precisely so we do not need to look at the
2954 fabricated use. */
2955 if (DF_REF_FLAGS_IS_SET (use, DF_REF_READ_WRITE)
2956 && !DF_REF_FLAGS_IS_SET (use, DF_REF_ZERO_EXTRACT)
2957 && DF_REF_FLAGS_IS_SET (use, DF_REF_SUBREG))
2958 continue;
2960 /* Add the last use of each var to dead_or_set. */
2961 if (!bitmap_bit_p (live_relevant_regs, regno))
2963 if (regno < FIRST_PSEUDO_REGISTER)
2965 if (!fixed_regs[regno])
2966 bitmap_set_bit (&c->dead_or_set, regno);
2968 else if (pseudo_for_reload_consideration_p (regno))
2969 bitmap_set_bit (&c->dead_or_set, regno);
2972 if (regno < FIRST_PSEUDO_REGISTER
2973 || pseudo_for_reload_consideration_p (regno))
2975 if (GET_CODE (reg) == SUBREG
2976 && !DF_REF_FLAGS_IS_SET (use,
2977 DF_REF_SIGN_EXTRACT
2978 | DF_REF_ZERO_EXTRACT))
2980 unsigned int start = SUBREG_BYTE (reg);
2981 unsigned int last = start
2982 + GET_MODE_SIZE (GET_MODE (reg));
2984 init_live_subregs
2985 (bitmap_bit_p (live_relevant_regs, regno),
2986 live_subregs, live_subregs_used, regno, reg);
2988 /* Ignore the paradoxical bits. */
2989 if ((int)last > live_subregs_used[regno])
2990 last = live_subregs_used[regno];
2992 while (start < last)
2994 SET_BIT (live_subregs[regno], start);
2995 start++;
2998 else
2999 /* Resetting the live_subregs_used is
3000 effectively saying do not use the subregs
3001 because we are reading the whole
3002 pseudo. */
3003 live_subregs_used[regno] = 0;
3004 bitmap_set_bit (live_relevant_regs, regno);
3010 /* FIXME!! The following code is a disaster. Reload needs to see the
3011 labels and jump tables that are just hanging out in between
3012 the basic blocks. See pr33676. */
3013 insn = BB_HEAD (bb);
3015 /* Skip over the barriers and cruft. */
3016 while (insn && (BARRIER_P (insn) || NOTE_P (insn)
3017 || BLOCK_FOR_INSN (insn) == bb))
3018 insn = PREV_INSN (insn);
3020 /* While we add anything except barriers and notes, the focus is
3021 to get the labels and jump tables into the
3022 reload_insn_chain. */
3023 while (insn)
3025 if (!NOTE_P (insn) && !BARRIER_P (insn))
3027 if (BLOCK_FOR_INSN (insn))
3028 break;
3030 c = new_insn_chain ();
3031 c->next = next;
3032 next = c;
3033 *p = c;
3034 p = &c->prev;
3036 /* The block makes no sense here, but it is what the old
3037 code did. */
3038 c->block = bb->index;
3039 c->insn = insn;
3040 bitmap_copy (&c->live_throughout, live_relevant_regs);
3042 insn = PREV_INSN (insn);
3046 for (i = 0; i < (unsigned int) max_regno; i++)
3047 if (live_subregs[i])
3048 free (live_subregs[i]);
3050 reload_insn_chain = c;
3051 *p = NULL;
3053 free (live_subregs);
3054 free (live_subregs_used);
3055 BITMAP_FREE (live_relevant_regs);
3056 BITMAP_FREE (elim_regset);
3058 if (dump_file)
3059 print_insn_chains (dump_file);
3062 /* Allocate memory for reg_equiv_memory_loc. */
3063 static void
3064 init_reg_equiv_memory_loc (void)
3066 max_regno = max_reg_num ();
3068 /* And the reg_equiv_memory_loc array. */
3069 VEC_safe_grow (rtx, gc, reg_equiv_memory_loc_vec, max_regno);
3070 memset (VEC_address (rtx, reg_equiv_memory_loc_vec), 0,
3071 sizeof (rtx) * max_regno);
3072 reg_equiv_memory_loc = VEC_address (rtx, reg_equiv_memory_loc_vec);
3075 /* All natural loops. */
3076 struct loops ira_loops;
3078 /* True if we have allocno conflicts. It is false for non-optimized
3079 mode or when the conflict table is too big. */
3080 bool ira_conflicts_p;
3082 /* This is the main entry of IRA. */
3083 static void
3084 ira (FILE *f)
3086 int overall_cost_before, allocated_reg_info_size;
3087 bool loops_p;
3088 int max_regno_before_ira, ira_max_point_before_emit;
3089 int rebuild_p;
3090 int saved_flag_ira_share_spill_slots;
3091 basic_block bb;
3093 timevar_push (TV_IRA);
3095 if (flag_caller_saves)
3096 init_caller_save ();
3098 if (flag_ira_verbose < 10)
3100 internal_flag_ira_verbose = flag_ira_verbose;
3101 ira_dump_file = f;
3103 else
3105 internal_flag_ira_verbose = flag_ira_verbose - 10;
3106 ira_dump_file = stderr;
3109 ira_conflicts_p = optimize > 0;
3110 setup_prohibited_mode_move_regs ();
3112 df_note_add_problem ();
3114 if (optimize == 1)
3116 df_live_add_problem ();
3117 df_live_set_all_dirty ();
3119 #ifdef ENABLE_CHECKING
3120 df->changeable_flags |= DF_VERIFY_SCHEDULED;
3121 #endif
3122 df_analyze ();
3123 df_clear_flags (DF_NO_INSN_RESCAN);
3124 regstat_init_n_sets_and_refs ();
3125 regstat_compute_ri ();
3127 /* If we are not optimizing, then this is the only place before
3128 register allocation where dataflow is done. And that is needed
3129 to generate these warnings. */
3130 if (warn_clobbered)
3131 generate_setjmp_warnings ();
3133 /* Determine if the current function is a leaf before running IRA
3134 since this can impact optimizations done by the prologue and
3135 epilogue thus changing register elimination offsets. */
3136 current_function_is_leaf = leaf_function_p ();
3138 if (resize_reg_info () && flag_ira_loop_pressure)
3139 ira_set_pseudo_classes (ira_dump_file);
3141 rebuild_p = update_equiv_regs ();
3143 #ifndef IRA_NO_OBSTACK
3144 gcc_obstack_init (&ira_obstack);
3145 #endif
3146 bitmap_obstack_initialize (&ira_bitmap_obstack);
3147 if (optimize)
3149 max_regno = max_reg_num ();
3150 ira_reg_equiv_len = max_regno;
3151 ira_reg_equiv_invariant_p
3152 = (bool *) ira_allocate (max_regno * sizeof (bool));
3153 memset (ira_reg_equiv_invariant_p, 0, max_regno * sizeof (bool));
3154 ira_reg_equiv_const = (rtx *) ira_allocate (max_regno * sizeof (rtx));
3155 memset (ira_reg_equiv_const, 0, max_regno * sizeof (rtx));
3156 find_reg_equiv_invariant_const ();
3157 if (rebuild_p)
3159 timevar_push (TV_JUMP);
3160 rebuild_jump_labels (get_insns ());
3161 purge_all_dead_edges ();
3162 timevar_pop (TV_JUMP);
3166 max_regno_before_ira = allocated_reg_info_size = max_reg_num ();
3167 ira_setup_eliminable_regset ();
3169 ira_overall_cost = ira_reg_cost = ira_mem_cost = 0;
3170 ira_load_cost = ira_store_cost = ira_shuffle_cost = 0;
3171 ira_move_loops_num = ira_additional_jumps_num = 0;
3173 ira_assert (current_loops == NULL);
3174 flow_loops_find (&ira_loops);
3175 record_loop_exits ();
3176 current_loops = &ira_loops;
3178 init_reg_equiv_memory_loc ();
3180 if (internal_flag_ira_verbose > 0 && ira_dump_file != NULL)
3181 fprintf (ira_dump_file, "Building IRA IR\n");
3182 loops_p = ira_build (optimize
3183 && (flag_ira_region == IRA_REGION_ALL
3184 || flag_ira_region == IRA_REGION_MIXED));
3186 ira_assert (ira_conflicts_p || !loops_p);
3188 saved_flag_ira_share_spill_slots = flag_ira_share_spill_slots;
3189 if (too_high_register_pressure_p () || cfun->calls_setjmp)
3190 /* It is just wasting compiler's time to pack spilled pseudos into
3191 stack slots in this case -- prohibit it. We also do this if
3192 there is setjmp call because a variable not modified between
3193 setjmp and longjmp the compiler is required to preserve its
3194 value and sharing slots does not guarantee it. */
3195 flag_ira_share_spill_slots = FALSE;
3197 ira_color ();
3199 ira_max_point_before_emit = ira_max_point;
3201 ira_emit (loops_p);
3203 if (ira_conflicts_p)
3205 max_regno = max_reg_num ();
3207 if (! loops_p)
3208 ira_initiate_assign ();
3209 else
3211 expand_reg_info (allocated_reg_info_size);
3212 setup_preferred_alternate_classes_for_new_pseudos
3213 (allocated_reg_info_size);
3214 allocated_reg_info_size = max_regno;
3216 if (internal_flag_ira_verbose > 0 && ira_dump_file != NULL)
3217 fprintf (ira_dump_file, "Flattening IR\n");
3218 ira_flattening (max_regno_before_ira, ira_max_point_before_emit);
3219 /* New insns were generated: add notes and recalculate live
3220 info. */
3221 df_analyze ();
3223 flow_loops_find (&ira_loops);
3224 record_loop_exits ();
3225 current_loops = &ira_loops;
3227 setup_allocno_assignment_flags ();
3228 ira_initiate_assign ();
3229 ira_reassign_conflict_allocnos (max_regno);
3233 setup_reg_renumber ();
3235 calculate_allocation_cost ();
3237 #ifdef ENABLE_IRA_CHECKING
3238 if (ira_conflicts_p)
3239 check_allocation ();
3240 #endif
3242 delete_trivially_dead_insns (get_insns (), max_reg_num ());
3244 init_reg_equiv_memory_loc ();
3246 if (max_regno != max_regno_before_ira)
3248 regstat_free_n_sets_and_refs ();
3249 regstat_free_ri ();
3250 regstat_init_n_sets_and_refs ();
3251 regstat_compute_ri ();
3254 allocate_initial_values (reg_equiv_memory_loc);
3256 overall_cost_before = ira_overall_cost;
3257 if (ira_conflicts_p)
3259 fix_reg_equiv_init ();
3261 #ifdef ENABLE_IRA_CHECKING
3262 print_redundant_copies ();
3263 #endif
3265 ira_spilled_reg_stack_slots_num = 0;
3266 ira_spilled_reg_stack_slots
3267 = ((struct ira_spilled_reg_stack_slot *)
3268 ira_allocate (max_regno
3269 * sizeof (struct ira_spilled_reg_stack_slot)));
3270 memset (ira_spilled_reg_stack_slots, 0,
3271 max_regno * sizeof (struct ira_spilled_reg_stack_slot));
3274 timevar_pop (TV_IRA);
3276 timevar_push (TV_RELOAD);
3277 df_set_flags (DF_NO_INSN_RESCAN);
3278 build_insn_chain ();
3280 reload_completed = !reload (get_insns (), ira_conflicts_p);
3282 timevar_pop (TV_RELOAD);
3284 timevar_push (TV_IRA);
3286 if (ira_conflicts_p)
3288 ira_free (ira_spilled_reg_stack_slots);
3290 ira_finish_assign ();
3293 if (internal_flag_ira_verbose > 0 && ira_dump_file != NULL
3294 && overall_cost_before != ira_overall_cost)
3295 fprintf (ira_dump_file, "+++Overall after reload %d\n", ira_overall_cost);
3296 ira_destroy ();
3298 flag_ira_share_spill_slots = saved_flag_ira_share_spill_slots;
3300 flow_loops_free (&ira_loops);
3301 free_dominance_info (CDI_DOMINATORS);
3302 FOR_ALL_BB (bb)
3303 bb->loop_father = NULL;
3304 current_loops = NULL;
3306 regstat_free_ri ();
3307 regstat_free_n_sets_and_refs ();
3309 if (optimize)
3311 cleanup_cfg (CLEANUP_EXPENSIVE);
3313 ira_free (ira_reg_equiv_invariant_p);
3314 ira_free (ira_reg_equiv_const);
3317 bitmap_obstack_release (&ira_bitmap_obstack);
3318 #ifndef IRA_NO_OBSTACK
3319 obstack_free (&ira_obstack, NULL);
3320 #endif
3322 /* The code after the reload has changed so much that at this point
3323 we might as well just rescan everything. Not that
3324 df_rescan_all_insns is not going to help here because it does not
3325 touch the artificial uses and defs. */
3326 df_finish_pass (true);
3327 if (optimize > 1)
3328 df_live_add_problem ();
3329 df_scan_alloc (NULL);
3330 df_scan_blocks ();
3332 if (optimize)
3333 df_analyze ();
3335 timevar_pop (TV_IRA);
3340 static bool
3341 gate_ira (void)
3343 return true;
3346 /* Run the integrated register allocator. */
3347 static unsigned int
3348 rest_of_handle_ira (void)
3350 ira (dump_file);
3351 return 0;
3354 struct rtl_opt_pass pass_ira =
3357 RTL_PASS,
3358 "ira", /* name */
3359 gate_ira, /* gate */
3360 rest_of_handle_ira, /* execute */
3361 NULL, /* sub */
3362 NULL, /* next */
3363 0, /* static_pass_number */
3364 TV_NONE, /* tv_id */
3365 0, /* properties_required */
3366 0, /* properties_provided */
3367 0, /* properties_destroyed */
3368 0, /* todo_flags_start */
3369 TODO_dump_func |
3370 TODO_ggc_collect /* todo_flags_finish */