Merge from mainline (167278:168000).
[official-gcc/graphite-test-results.git] / gcc / graphite-clast-to-gimple.c
blobc33bb619a58576bb34d53f067d513bfc4902102d
1 /* Translation of CLAST (CLooG AST) to Gimple.
2 Copyright (C) 2009, 2010 Free Software Foundation, Inc.
3 Contributed by Sebastian Pop <sebastian.pop@amd.com>.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "ggc.h"
26 #include "tree.h"
27 #include "rtl.h"
28 #include "basic-block.h"
29 #include "diagnostic.h"
30 #include "tree-flow.h"
31 #include "tree-dump.h"
32 #include "timevar.h"
33 #include "cfgloop.h"
34 #include "tree-chrec.h"
35 #include "tree-data-ref.h"
36 #include "tree-scalar-evolution.h"
37 #include "tree-pass.h"
38 #include "domwalk.h"
39 #include "value-prof.h"
40 #include "pointer-set.h"
41 #include "gimple.h"
42 #include "langhooks.h"
43 #include "sese.h"
45 #ifdef HAVE_cloog
46 #include "cloog/cloog.h"
47 #include "ppl_c.h"
48 #include "graphite-cloog-util.h"
49 #include "graphite-ppl.h"
50 #include "graphite.h"
51 #include "graphite-poly.h"
52 #include "graphite-scop-detection.h"
53 #include "graphite-clast-to-gimple.h"
54 #include "graphite-dependences.h"
55 #include "graphite-cloog-compat.h"
57 /* This flag is set when an error occurred during the translation of
58 CLAST to Gimple. */
59 static bool gloog_error;
61 /* Verifies properties that GRAPHITE should maintain during translation. */
63 static inline void
64 graphite_verify (void)
66 #ifdef ENABLE_CHECKING
67 verify_loop_structure ();
68 verify_dominators (CDI_DOMINATORS);
69 verify_loop_closed_ssa (true);
70 #endif
73 /* Stores the INDEX in a vector for a given clast NAME. */
75 typedef struct clast_name_index {
76 int index;
77 const char *name;
78 } *clast_name_index_p;
80 /* Returns a pointer to a new element of type clast_name_index_p built
81 from NAME and INDEX. */
83 static inline clast_name_index_p
84 new_clast_name_index (const char *name, int index)
86 clast_name_index_p res = XNEW (struct clast_name_index);
88 res->name = name;
89 res->index = index;
90 return res;
93 /* For a given clast NAME, returns -1 if it does not correspond to any
94 parameter, or otherwise, returns the index in the PARAMS or
95 SCATTERING_DIMENSIONS vector. */
97 static inline int
98 clast_name_to_index (clast_name_p name, htab_t index_table)
100 struct clast_name_index tmp;
101 PTR *slot;
103 #ifdef CLOOG_ORG
104 gcc_assert (name->type == clast_expr_name);
105 tmp.name = ((const struct clast_name*) name)->name;
106 #else
107 tmp.name = name;
108 #endif
110 slot = htab_find_slot (index_table, &tmp, NO_INSERT);
112 if (slot && *slot)
113 return ((struct clast_name_index *) *slot)->index;
115 return -1;
118 /* Records in INDEX_TABLE the INDEX for NAME. */
120 static inline void
121 save_clast_name_index (htab_t index_table, const char *name, int index)
123 struct clast_name_index tmp;
124 PTR *slot;
126 tmp.name = name;
127 slot = htab_find_slot (index_table, &tmp, INSERT);
129 if (slot)
131 if (*slot)
132 free (*slot);
134 *slot = new_clast_name_index (name, index);
138 /* Computes a hash function for database element ELT. */
140 static inline hashval_t
141 clast_name_index_elt_info (const void *elt)
143 return htab_hash_pointer (((const struct clast_name_index *) elt)->name);
146 /* Compares database elements E1 and E2. */
148 static inline int
149 eq_clast_name_indexes (const void *e1, const void *e2)
151 const struct clast_name_index *elt1 = (const struct clast_name_index *) e1;
152 const struct clast_name_index *elt2 = (const struct clast_name_index *) e2;
154 return (elt1->name == elt2->name);
157 /* For a given scattering dimension, return the new induction variable
158 associated to it. */
160 static inline tree
161 newivs_to_depth_to_newiv (VEC (tree, heap) *newivs, int depth)
163 return VEC_index (tree, newivs, depth);
168 /* Returns the tree variable from the name NAME that was given in
169 Cloog representation. */
171 static tree
172 clast_name_to_gcc (clast_name_p name, sese region, VEC (tree, heap) *newivs,
173 htab_t newivs_index, htab_t params_index)
175 int index;
176 VEC (tree, heap) *params = SESE_PARAMS (region);
178 if (params && params_index)
180 index = clast_name_to_index (name, params_index);
182 if (index >= 0)
183 return VEC_index (tree, params, index);
186 gcc_assert (newivs && newivs_index);
187 index = clast_name_to_index (name, newivs_index);
188 gcc_assert (index >= 0);
190 return newivs_to_depth_to_newiv (newivs, index);
193 /* Returns the signed maximal precision type for expressions TYPE1 and TYPE2. */
195 static tree
196 max_signed_precision_type (tree type1, tree type2)
198 int p1 = TYPE_PRECISION (type1);
199 int p2 = TYPE_PRECISION (type2);
200 int precision;
201 tree type;
202 enum machine_mode mode;
204 if (p1 > p2)
205 precision = TYPE_UNSIGNED (type1) ? p1 * 2 : p1;
206 else
207 precision = TYPE_UNSIGNED (type2) ? p2 * 2 : p2;
209 if (precision > BITS_PER_WORD)
211 gloog_error = true;
212 return integer_type_node;
215 mode = smallest_mode_for_size (precision, MODE_INT);
216 precision = GET_MODE_PRECISION (mode);
217 type = build_nonstandard_integer_type (precision, false);
219 if (!type)
221 gloog_error = true;
222 return integer_type_node;
225 return type;
228 /* Returns the maximal precision type for expressions TYPE1 and TYPE2. */
230 static tree
231 max_precision_type (tree type1, tree type2)
233 if (POINTER_TYPE_P (type1))
234 return type1;
236 if (POINTER_TYPE_P (type2))
237 return type2;
239 if (!TYPE_UNSIGNED (type1)
240 || !TYPE_UNSIGNED (type2))
241 return max_signed_precision_type (type1, type2);
243 return TYPE_PRECISION (type1) > TYPE_PRECISION (type2) ? type1 : type2;
246 static tree
247 clast_to_gcc_expression (tree, struct clast_expr *, sese, VEC (tree, heap) *,
248 htab_t, htab_t);
250 /* Converts a Cloog reduction expression R with reduction operation OP
251 to a GCC expression tree of type TYPE. */
253 static tree
254 clast_to_gcc_expression_red (tree type, enum tree_code op,
255 struct clast_reduction *r,
256 sese region, VEC (tree, heap) *newivs,
257 htab_t newivs_index, htab_t params_index)
259 int i;
260 tree res = clast_to_gcc_expression (type, r->elts[0], region, newivs,
261 newivs_index, params_index);
262 tree operand_type = (op == POINTER_PLUS_EXPR) ? sizetype : type;
264 for (i = 1; i < r->n; i++)
266 tree t = clast_to_gcc_expression (operand_type, r->elts[i], region,
267 newivs, newivs_index, params_index);
268 res = fold_build2 (op, type, res, t);
271 return res;
274 /* Converts a Cloog AST expression E back to a GCC expression tree of
275 type TYPE. */
277 static tree
278 clast_to_gcc_expression (tree type, struct clast_expr *e,
279 sese region, VEC (tree, heap) *newivs,
280 htab_t newivs_index, htab_t params_index)
282 switch (e->type)
284 case clast_expr_term:
286 struct clast_term *t = (struct clast_term *) e;
288 if (t->var)
290 if (mpz_cmp_si (t->val, 1) == 0)
292 tree name = clast_name_to_gcc (t->var, region, newivs,
293 newivs_index, params_index);
295 if (POINTER_TYPE_P (TREE_TYPE (name)) != POINTER_TYPE_P (type))
296 name = fold_convert (sizetype, name);
298 name = fold_convert (type, name);
299 return name;
302 else if (mpz_cmp_si (t->val, -1) == 0)
304 tree name = clast_name_to_gcc (t->var, region, newivs,
305 newivs_index, params_index);
307 if (POINTER_TYPE_P (TREE_TYPE (name)) != POINTER_TYPE_P (type))
308 name = fold_convert (sizetype, name);
310 name = fold_convert (type, name);
312 return fold_build1 (NEGATE_EXPR, type, name);
314 else
316 tree name = clast_name_to_gcc (t->var, region, newivs,
317 newivs_index, params_index);
318 tree cst = gmp_cst_to_tree (type, t->val);
320 if (POINTER_TYPE_P (TREE_TYPE (name)) != POINTER_TYPE_P (type))
321 name = fold_convert (sizetype, name);
323 name = fold_convert (type, name);
325 if (!POINTER_TYPE_P (type))
326 return fold_build2 (MULT_EXPR, type, cst, name);
328 gloog_error = true;
329 return cst;
332 else
333 return gmp_cst_to_tree (type, t->val);
336 case clast_expr_red:
338 struct clast_reduction *r = (struct clast_reduction *) e;
340 switch (r->type)
342 case clast_red_sum:
343 return clast_to_gcc_expression_red
344 (type, POINTER_TYPE_P (type) ? POINTER_PLUS_EXPR : PLUS_EXPR,
345 r, region, newivs, newivs_index, params_index);
347 case clast_red_min:
348 return clast_to_gcc_expression_red (type, MIN_EXPR, r, region,
349 newivs, newivs_index,
350 params_index);
352 case clast_red_max:
353 return clast_to_gcc_expression_red (type, MAX_EXPR, r, region,
354 newivs, newivs_index,
355 params_index);
357 default:
358 gcc_unreachable ();
360 break;
363 case clast_expr_bin:
365 struct clast_binary *b = (struct clast_binary *) e;
366 struct clast_expr *lhs = (struct clast_expr *) b->LHS;
367 tree tl = clast_to_gcc_expression (type, lhs, region, newivs,
368 newivs_index, params_index);
369 tree tr = gmp_cst_to_tree (type, b->RHS);
371 switch (b->type)
373 case clast_bin_fdiv:
374 return fold_build2 (FLOOR_DIV_EXPR, type, tl, tr);
376 case clast_bin_cdiv:
377 return fold_build2 (CEIL_DIV_EXPR, type, tl, tr);
379 case clast_bin_div:
380 return fold_build2 (EXACT_DIV_EXPR, type, tl, tr);
382 case clast_bin_mod:
383 return fold_build2 (TRUNC_MOD_EXPR, type, tl, tr);
385 default:
386 gcc_unreachable ();
390 default:
391 gcc_unreachable ();
394 return NULL_TREE;
397 /* Return the precision needed to represent the value VAL. */
399 static int
400 precision_for_value (mpz_t val)
402 mpz_t x, y, two;
403 int precision;
405 mpz_init (x);
406 mpz_init (y);
407 mpz_init (two);
408 mpz_set_si (x, 2);
409 mpz_set (y, val);
410 mpz_set_si (two, 2);
411 precision = 1;
413 if (mpz_sgn (y) < 0)
414 mpz_neg (y, y);
416 while (mpz_cmp (y, x) >= 0)
418 mpz_mul (x, x, two);
419 precision++;
422 mpz_clear (x);
423 mpz_clear (y);
424 mpz_clear (two);
426 return precision;
429 /* Return the precision needed to represent the values between LOW and
430 UP. */
432 static int
433 precision_for_interval (mpz_t low, mpz_t up)
435 mpz_t diff;
436 int precision;
438 gcc_assert (mpz_cmp (low, up) <= 0);
440 mpz_init (diff);
441 mpz_sub (diff, up, low);
442 precision = precision_for_value (diff);
443 mpz_clear (diff);
445 return precision;
448 /* Return a type that could represent the integer value VAL. */
450 static tree
451 gcc_type_for_interval (mpz_t low, mpz_t up)
453 bool unsigned_p = true;
454 int precision, prec_up, prec_int;
455 tree type;
456 enum machine_mode mode;
458 gcc_assert (mpz_cmp (low, up) <= 0);
460 prec_up = precision_for_value (up);
461 prec_int = precision_for_interval (low, up);
462 precision = MAX (prec_up, prec_int);
464 if (precision > BITS_PER_WORD)
466 gloog_error = true;
467 return integer_type_node;
470 if (mpz_sgn (low) <= 0)
471 unsigned_p = false;
473 else if (precision < BITS_PER_WORD)
475 unsigned_p = false;
476 precision++;
479 mode = smallest_mode_for_size (precision, MODE_INT);
480 precision = GET_MODE_PRECISION (mode);
481 type = build_nonstandard_integer_type (precision, unsigned_p);
483 if (!type)
485 gloog_error = true;
486 return integer_type_node;
489 return type;
492 /* Return a type that could represent the integer value VAL, or
493 otherwise return NULL_TREE. */
495 static tree
496 gcc_type_for_value (mpz_t val)
498 return gcc_type_for_interval (val, val);
501 /* Return the type for the clast_term T used in STMT. */
503 static tree
504 gcc_type_for_clast_term (struct clast_term *t,
505 sese region, VEC (tree, heap) *newivs,
506 htab_t newivs_index, htab_t params_index)
508 gcc_assert (t->expr.type == clast_expr_term);
510 if (!t->var)
511 return gcc_type_for_value (t->val);
513 return TREE_TYPE (clast_name_to_gcc (t->var, region, newivs,
514 newivs_index, params_index));
517 static tree
518 gcc_type_for_clast_expr (struct clast_expr *, sese,
519 VEC (tree, heap) *, htab_t, htab_t);
521 /* Return the type for the clast_reduction R used in STMT. */
523 static tree
524 gcc_type_for_clast_red (struct clast_reduction *r, sese region,
525 VEC (tree, heap) *newivs,
526 htab_t newivs_index, htab_t params_index)
528 int i;
529 tree type = NULL_TREE;
531 if (r->n == 1)
532 return gcc_type_for_clast_expr (r->elts[0], region, newivs,
533 newivs_index, params_index);
535 switch (r->type)
537 case clast_red_sum:
538 case clast_red_min:
539 case clast_red_max:
540 type = gcc_type_for_clast_expr (r->elts[0], region, newivs,
541 newivs_index, params_index);
542 for (i = 1; i < r->n; i++)
543 type = max_precision_type (type, gcc_type_for_clast_expr
544 (r->elts[i], region, newivs,
545 newivs_index, params_index));
547 return type;
549 default:
550 break;
553 gcc_unreachable ();
554 return NULL_TREE;
557 /* Return the type for the clast_binary B used in STMT. */
559 static tree
560 gcc_type_for_clast_bin (struct clast_binary *b,
561 sese region, VEC (tree, heap) *newivs,
562 htab_t newivs_index, htab_t params_index)
564 tree l = gcc_type_for_clast_expr ((struct clast_expr *) b->LHS, region,
565 newivs, newivs_index, params_index);
566 tree r = gcc_type_for_value (b->RHS);
567 return max_signed_precision_type (l, r);
570 /* Returns the type for the CLAST expression E when used in statement
571 STMT. */
573 static tree
574 gcc_type_for_clast_expr (struct clast_expr *e,
575 sese region, VEC (tree, heap) *newivs,
576 htab_t newivs_index, htab_t params_index)
578 switch (e->type)
580 case clast_expr_term:
581 return gcc_type_for_clast_term ((struct clast_term *) e, region,
582 newivs, newivs_index, params_index);
584 case clast_expr_red:
585 return gcc_type_for_clast_red ((struct clast_reduction *) e, region,
586 newivs, newivs_index, params_index);
588 case clast_expr_bin:
589 return gcc_type_for_clast_bin ((struct clast_binary *) e, region,
590 newivs, newivs_index, params_index);
592 default:
593 gcc_unreachable ();
596 return NULL_TREE;
599 /* Returns the type for the equation CLEQ. */
601 static tree
602 gcc_type_for_clast_eq (struct clast_equation *cleq,
603 sese region, VEC (tree, heap) *newivs,
604 htab_t newivs_index, htab_t params_index)
606 tree l = gcc_type_for_clast_expr (cleq->LHS, region, newivs,
607 newivs_index, params_index);
608 tree r = gcc_type_for_clast_expr (cleq->RHS, region, newivs,
609 newivs_index, params_index);
610 return max_precision_type (l, r);
613 /* Translates a clast equation CLEQ to a tree. */
615 static tree
616 graphite_translate_clast_equation (sese region,
617 struct clast_equation *cleq,
618 VEC (tree, heap) *newivs,
619 htab_t newivs_index, htab_t params_index)
621 enum tree_code comp;
622 tree type = gcc_type_for_clast_eq (cleq, region, newivs, newivs_index,
623 params_index);
624 tree lhs = clast_to_gcc_expression (type, cleq->LHS, region, newivs,
625 newivs_index, params_index);
626 tree rhs = clast_to_gcc_expression (type, cleq->RHS, region, newivs,
627 newivs_index, params_index);
629 if (cleq->sign == 0)
630 comp = EQ_EXPR;
632 else if (cleq->sign > 0)
633 comp = GE_EXPR;
635 else
636 comp = LE_EXPR;
638 return fold_build2 (comp, boolean_type_node, lhs, rhs);
641 /* Creates the test for the condition in STMT. */
643 static tree
644 graphite_create_guard_cond_expr (sese region, struct clast_guard *stmt,
645 VEC (tree, heap) *newivs,
646 htab_t newivs_index, htab_t params_index)
648 tree cond = NULL;
649 int i;
651 for (i = 0; i < stmt->n; i++)
653 tree eq = graphite_translate_clast_equation (region, &stmt->eq[i],
654 newivs, newivs_index,
655 params_index);
657 if (cond)
658 cond = fold_build2 (TRUTH_AND_EXPR, TREE_TYPE (eq), cond, eq);
659 else
660 cond = eq;
663 return cond;
666 /* Creates a new if region corresponding to Cloog's guard. */
668 static edge
669 graphite_create_new_guard (sese region, edge entry_edge,
670 struct clast_guard *stmt,
671 VEC (tree, heap) *newivs,
672 htab_t newivs_index, htab_t params_index)
674 tree cond_expr = graphite_create_guard_cond_expr (region, stmt, newivs,
675 newivs_index, params_index);
676 edge exit_edge = create_empty_if_region_on_edge (entry_edge, cond_expr);
677 return exit_edge;
680 /* Compute the lower bound LOW and upper bound UP for the induction
681 variable at LEVEL for the statement PBB, based on the transformed
682 scattering of PBB: T|I|G|Cst, with T the scattering transform, I
683 the iteration domain, and G the context parameters. */
685 static void
686 compute_bounds_for_level (poly_bb_p pbb, int level, mpz_t low, mpz_t up)
688 ppl_Pointset_Powerset_C_Polyhedron_t ps;
689 ppl_Linear_Expression_t le;
691 combine_context_id_scat (&ps, pbb, false);
693 /* Prepare the linear expression corresponding to the level that we
694 want to maximize/minimize. */
696 ppl_dimension_type dim = pbb_nb_scattering_transform (pbb)
697 + pbb_dim_iter_domain (pbb) + pbb_nb_params (pbb);
699 ppl_new_Linear_Expression_with_dimension (&le, dim);
700 ppl_set_coef (le, 2 * level + 1, 1);
703 ppl_max_for_le_pointset (ps, le, up);
704 ppl_min_for_le_pointset (ps, le, low);
705 ppl_delete_Linear_Expression (le);
706 ppl_delete_Pointset_Powerset_C_Polyhedron (ps);
709 /* Compute the type for the induction variable at LEVEL for the
710 statement PBB, based on the transformed schedule of PBB. */
712 static tree
713 compute_type_for_level (poly_bb_p pbb, int level)
715 mpz_t low, up;
716 tree type;
718 mpz_init (low);
719 mpz_init (up);
721 compute_bounds_for_level (pbb, level, low, up);
722 type = gcc_type_for_interval (low, up);
724 mpz_clear (low);
725 mpz_clear (up);
726 return type;
729 /* Walks a CLAST and returns the first statement in the body of a
730 loop. */
732 static struct clast_user_stmt *
733 clast_get_body_of_loop (struct clast_stmt *stmt)
735 if (!stmt
736 || CLAST_STMT_IS_A (stmt, stmt_user))
737 return (struct clast_user_stmt *) stmt;
739 if (CLAST_STMT_IS_A (stmt, stmt_for))
740 return clast_get_body_of_loop (((struct clast_for *) stmt)->body);
742 if (CLAST_STMT_IS_A (stmt, stmt_guard))
743 return clast_get_body_of_loop (((struct clast_guard *) stmt)->then);
745 if (CLAST_STMT_IS_A (stmt, stmt_block))
746 return clast_get_body_of_loop (((struct clast_block *) stmt)->body);
748 gcc_unreachable ();
751 /* Returns the type for the induction variable for the loop translated
752 from STMT_FOR. */
754 static tree
755 gcc_type_for_iv_of_clast_loop (struct clast_for *stmt_for, int level,
756 tree lb_type, tree ub_type)
758 struct clast_stmt *stmt = (struct clast_stmt *) stmt_for;
759 struct clast_user_stmt *body = clast_get_body_of_loop (stmt);
760 CloogStatement *cs = body->statement;
761 poly_bb_p pbb = (poly_bb_p) cloog_statement_usr (cs);
763 return max_signed_precision_type (lb_type, max_precision_type
764 (ub_type, compute_type_for_level
765 (pbb, level - 1)));
768 /* Creates a new LOOP corresponding to Cloog's STMT. Inserts an
769 induction variable for the new LOOP. New LOOP is attached to CFG
770 starting at ENTRY_EDGE. LOOP is inserted into the loop tree and
771 becomes the child loop of the OUTER_LOOP. NEWIVS_INDEX binds
772 CLooG's scattering name to the induction variable created for the
773 loop of STMT. The new induction variable is inserted in the NEWIVS
774 vector. */
776 static struct loop *
777 graphite_create_new_loop (sese region, edge entry_edge,
778 struct clast_for *stmt,
779 loop_p outer, VEC (tree, heap) **newivs,
780 htab_t newivs_index, htab_t params_index, int level)
782 tree lb_type = gcc_type_for_clast_expr (stmt->LB, region, *newivs,
783 newivs_index, params_index);
784 tree ub_type = gcc_type_for_clast_expr (stmt->UB, region, *newivs,
785 newivs_index, params_index);
786 tree type = gcc_type_for_iv_of_clast_loop (stmt, level, lb_type, ub_type);
787 tree lb = clast_to_gcc_expression (type, stmt->LB, region, *newivs,
788 newivs_index, params_index);
789 tree ub = clast_to_gcc_expression (type, stmt->UB, region, *newivs,
790 newivs_index, params_index);
791 tree stride = gmp_cst_to_tree (type, stmt->stride);
792 tree ivvar = create_tmp_var (type, "graphite_IV");
793 tree iv, iv_after_increment;
794 loop_p loop = create_empty_loop_on_edge
795 (entry_edge, lb, stride, ub, ivvar, &iv, &iv_after_increment,
796 outer ? outer : entry_edge->src->loop_father);
798 add_referenced_var (ivvar);
800 save_clast_name_index (newivs_index, stmt->iterator,
801 VEC_length (tree, *newivs));
802 VEC_safe_push (tree, heap, *newivs, iv);
803 return loop;
806 /* Inserts in iv_map a tuple (OLD_LOOP->num, NEW_NAME) for the
807 induction variables of the loops around GBB in SESE. */
809 static void
810 build_iv_mapping (VEC (tree, heap) *iv_map, sese region,
811 VEC (tree, heap) *newivs, htab_t newivs_index,
812 struct clast_user_stmt *user_stmt,
813 htab_t params_index)
815 struct clast_stmt *t;
816 int depth = 0;
817 CloogStatement *cs = user_stmt->statement;
818 poly_bb_p pbb = (poly_bb_p) cloog_statement_usr (cs);
819 gimple_bb_p gbb = PBB_BLACK_BOX (pbb);
821 for (t = user_stmt->substitutions; t; t = t->next, depth++)
823 struct clast_expr *expr = (struct clast_expr *)
824 ((struct clast_assignment *)t)->RHS;
825 tree type = gcc_type_for_clast_expr (expr, region, newivs,
826 newivs_index, params_index);
827 tree new_name = clast_to_gcc_expression (type, expr, region, newivs,
828 newivs_index, params_index);
829 loop_p old_loop = gbb_loop_at_index (gbb, region, depth);
831 VEC_replace (tree, iv_map, old_loop->num, new_name);
835 /* Construct bb_pbb_def with BB and PBB. */
837 static bb_pbb_def *
838 new_bb_pbb_def (basic_block bb, poly_bb_p pbb)
840 bb_pbb_def *bb_pbb_p;
842 bb_pbb_p = XNEW (bb_pbb_def);
843 bb_pbb_p->bb = bb;
844 bb_pbb_p->pbb = pbb;
846 return bb_pbb_p;
849 /* Mark BB with it's relevant PBB via hashing table BB_PBB_MAPPING. */
851 static void
852 mark_bb_with_pbb (poly_bb_p pbb, basic_block bb, htab_t bb_pbb_mapping)
854 bb_pbb_def tmp;
855 PTR *x;
857 tmp.bb = bb;
858 x = htab_find_slot (bb_pbb_mapping, &tmp, INSERT);
860 if (x && !*x)
861 *x = new_bb_pbb_def (bb, pbb);
864 /* Find BB's related poly_bb_p in hash table BB_PBB_MAPPING. */
866 static poly_bb_p
867 find_pbb_via_hash (htab_t bb_pbb_mapping, basic_block bb)
869 bb_pbb_def tmp;
870 PTR *slot;
872 tmp.bb = bb;
873 slot = htab_find_slot (bb_pbb_mapping, &tmp, NO_INSERT);
875 if (slot && *slot)
876 return ((bb_pbb_def *) *slot)->pbb;
878 return NULL;
881 /* Check data dependency in LOOP at scattering level LEVEL.
882 BB_PBB_MAPPING is a basic_block and it's related poly_bb_p
883 mapping. */
885 static bool
886 dependency_in_loop_p (loop_p loop, htab_t bb_pbb_mapping, int level)
888 unsigned i,j;
889 basic_block *bbs = get_loop_body_in_dom_order (loop);
891 for (i = 0; i < loop->num_nodes; i++)
893 poly_bb_p pbb1 = find_pbb_via_hash (bb_pbb_mapping, bbs[i]);
895 if (pbb1 == NULL)
896 continue;
898 for (j = 0; j < loop->num_nodes; j++)
900 poly_bb_p pbb2 = find_pbb_via_hash (bb_pbb_mapping, bbs[j]);
902 if (pbb2 == NULL)
903 continue;
905 if (dependency_between_pbbs_p (pbb1, pbb2, level))
907 free (bbs);
908 return true;
913 free (bbs);
915 return false;
918 /* Translates a clast user statement STMT to gimple.
920 - REGION is the sese region we used to generate the scop.
921 - NEXT_E is the edge where new generated code should be attached.
922 - CONTEXT_LOOP is the loop in which the generated code will be placed
923 - BB_PBB_MAPPING is is a basic_block and it's related poly_bb_p mapping.
924 - PARAMS_INDEX connects the cloog parameters with the gimple parameters in
925 the sese region. */
926 static edge
927 translate_clast_user (sese region, struct clast_user_stmt *stmt, edge next_e,
928 VEC (tree, heap) **newivs,
929 htab_t newivs_index, htab_t bb_pbb_mapping,
930 htab_t params_index)
932 int i, nb_loops;
933 basic_block new_bb;
934 poly_bb_p pbb = (poly_bb_p) cloog_statement_usr (stmt->statement);
935 gimple_bb_p gbb = PBB_BLACK_BOX (pbb);
936 VEC (tree, heap) *iv_map;
938 if (GBB_BB (gbb) == ENTRY_BLOCK_PTR)
939 return next_e;
941 nb_loops = number_of_loops ();
942 iv_map = VEC_alloc (tree, heap, nb_loops);
943 for (i = 0; i < nb_loops; i++)
944 VEC_quick_push (tree, iv_map, NULL_TREE);
946 build_iv_mapping (iv_map, region, *newivs, newivs_index, stmt, params_index);
947 next_e = copy_bb_and_scalar_dependences (GBB_BB (gbb), region,
948 next_e, iv_map);
949 VEC_free (tree, heap, iv_map);
951 new_bb = next_e->src;
952 mark_bb_with_pbb (pbb, new_bb, bb_pbb_mapping);
953 update_ssa (TODO_update_ssa);
955 return next_e;
958 /* Creates a new if region protecting the loop to be executed, if the execution
959 count is zero (lb > ub). */
961 static edge
962 graphite_create_new_loop_guard (sese region, edge entry_edge,
963 struct clast_for *stmt,
964 VEC (tree, heap) *newivs,
965 htab_t newivs_index, htab_t params_index)
967 tree cond_expr;
968 edge exit_edge;
969 tree lb_type = gcc_type_for_clast_expr (stmt->LB, region, newivs,
970 newivs_index, params_index);
971 tree ub_type = gcc_type_for_clast_expr (stmt->UB, region, newivs,
972 newivs_index, params_index);
973 tree type = max_precision_type (lb_type, ub_type);
974 tree lb = clast_to_gcc_expression (type, stmt->LB, region, newivs,
975 newivs_index, params_index);
976 tree ub = clast_to_gcc_expression (type, stmt->UB, region, newivs,
977 newivs_index, params_index);
978 /* When ub is simply a constant or a parameter, use lb <= ub. */
979 if (TREE_CODE (ub) == INTEGER_CST || TREE_CODE (ub) == SSA_NAME)
980 cond_expr = fold_build2 (LE_EXPR, boolean_type_node, lb, ub);
981 else
983 tree one = (POINTER_TYPE_P (type)
984 ? size_one_node
985 : fold_convert (type, integer_one_node));
986 /* Adding +1 and using LT_EXPR helps with loop latches that have a
987 loop iteration count of "PARAMETER - 1". For PARAMETER == 0 this becomes
988 2^k-1 due to integer overflow, and the condition lb <= ub is true,
989 even if we do not want this. However lb < ub + 1 is false, as
990 expected. */
991 tree ub_one = fold_build2 (POINTER_TYPE_P (type) ? POINTER_PLUS_EXPR
992 : PLUS_EXPR, type, ub, one);
994 cond_expr = fold_build2 (LT_EXPR, boolean_type_node, lb, ub_one);
997 exit_edge = create_empty_if_region_on_edge (entry_edge, cond_expr);
999 return exit_edge;
1002 static edge
1003 translate_clast (sese, loop_p, struct clast_stmt *, edge,
1004 VEC (tree, heap) **, htab_t, htab_t, int, htab_t);
1006 /* Create the loop for a clast for statement.
1008 - REGION is the sese region we used to generate the scop.
1009 - NEXT_E is the edge where new generated code should be attached.
1010 - BB_PBB_MAPPING is is a basic_block and it's related poly_bb_p mapping.
1011 - PARAMS_INDEX connects the cloog parameters with the gimple parameters in
1012 the sese region. */
1013 static edge
1014 translate_clast_for_loop (sese region, loop_p context_loop,
1015 struct clast_for *stmt, edge next_e,
1016 VEC (tree, heap) **newivs,
1017 htab_t newivs_index, htab_t bb_pbb_mapping,
1018 int level, htab_t params_index)
1020 struct loop *loop = graphite_create_new_loop (region, next_e, stmt,
1021 context_loop, newivs,
1022 newivs_index, params_index,
1023 level);
1024 edge last_e = single_exit (loop);
1025 edge to_body = single_succ_edge (loop->header);
1026 basic_block after = to_body->dest;
1028 /* Create a basic block for loop close phi nodes. */
1029 last_e = single_succ_edge (split_edge (last_e));
1031 /* Translate the body of the loop. */
1032 next_e = translate_clast (region, loop, stmt->body, to_body,
1033 newivs, newivs_index, bb_pbb_mapping, level + 1,
1034 params_index);
1035 redirect_edge_succ_nodup (next_e, after);
1036 set_immediate_dominator (CDI_DOMINATORS, next_e->dest, next_e->src);
1038 if (flag_loop_parallelize_all
1039 && !dependency_in_loop_p (loop, bb_pbb_mapping,
1040 get_scattering_level (level)))
1041 loop->can_be_parallel = true;
1043 return last_e;
1046 /* Translates a clast for statement STMT to gimple. First a guard is created
1047 protecting the loop, if it is executed zero times. In this guard we create
1048 the real loop structure.
1050 - REGION is the sese region we used to generate the scop.
1051 - NEXT_E is the edge where new generated code should be attached.
1052 - BB_PBB_MAPPING is is a basic_block and it's related poly_bb_p mapping.
1053 - PARAMS_INDEX connects the cloog parameters with the gimple parameters in
1054 the sese region. */
1055 static edge
1056 translate_clast_for (sese region, loop_p context_loop, struct clast_for *stmt,
1057 edge next_e, VEC (tree, heap) **newivs,
1058 htab_t newivs_index, htab_t bb_pbb_mapping, int level,
1059 htab_t params_index)
1061 edge last_e = graphite_create_new_loop_guard (region, next_e, stmt, *newivs,
1062 newivs_index, params_index);
1063 edge true_e = get_true_edge_from_guard_bb (next_e->dest);
1065 translate_clast_for_loop (region, context_loop, stmt, true_e, newivs,
1066 newivs_index, bb_pbb_mapping, level,
1067 params_index);
1068 return last_e;
1071 /* Translates a clast guard statement STMT to gimple.
1073 - REGION is the sese region we used to generate the scop.
1074 - NEXT_E is the edge where new generated code should be attached.
1075 - CONTEXT_LOOP is the loop in which the generated code will be placed
1076 - BB_PBB_MAPPING is is a basic_block and it's related poly_bb_p mapping.
1077 - PARAMS_INDEX connects the cloog parameters with the gimple parameters in
1078 the sese region. */
1079 static edge
1080 translate_clast_guard (sese region, loop_p context_loop,
1081 struct clast_guard *stmt, edge next_e,
1082 VEC (tree, heap) **newivs,
1083 htab_t newivs_index, htab_t bb_pbb_mapping, int level,
1084 htab_t params_index)
1086 edge last_e = graphite_create_new_guard (region, next_e, stmt, *newivs,
1087 newivs_index, params_index);
1088 edge true_e = get_true_edge_from_guard_bb (next_e->dest);
1090 translate_clast (region, context_loop, stmt->then, true_e,
1091 newivs, newivs_index, bb_pbb_mapping,
1092 level, params_index);
1093 return last_e;
1096 /* Translates a CLAST statement STMT to GCC representation in the
1097 context of a SESE.
1099 - NEXT_E is the edge where new generated code should be attached.
1100 - CONTEXT_LOOP is the loop in which the generated code will be placed
1101 - BB_PBB_MAPPING is is a basic_block and it's related poly_bb_p mapping. */
1102 static edge
1103 translate_clast (sese region, loop_p context_loop, struct clast_stmt *stmt,
1104 edge next_e, VEC (tree, heap) **newivs,
1105 htab_t newivs_index, htab_t bb_pbb_mapping, int level,
1106 htab_t params_index)
1108 if (!stmt)
1109 return next_e;
1111 if (CLAST_STMT_IS_A (stmt, stmt_root))
1112 ; /* Do nothing. */
1114 else if (CLAST_STMT_IS_A (stmt, stmt_user))
1115 next_e = translate_clast_user (region, (struct clast_user_stmt *) stmt,
1116 next_e, newivs, newivs_index,
1117 bb_pbb_mapping, params_index);
1119 else if (CLAST_STMT_IS_A (stmt, stmt_for))
1120 next_e = translate_clast_for (region, context_loop,
1121 (struct clast_for *) stmt, next_e,
1122 newivs, newivs_index,
1123 bb_pbb_mapping, level, params_index);
1125 else if (CLAST_STMT_IS_A (stmt, stmt_guard))
1126 next_e = translate_clast_guard (region, context_loop,
1127 (struct clast_guard *) stmt, next_e,
1128 newivs, newivs_index,
1129 bb_pbb_mapping, level, params_index);
1131 else if (CLAST_STMT_IS_A (stmt, stmt_block))
1132 next_e = translate_clast (region, context_loop,
1133 ((struct clast_block *) stmt)->body,
1134 next_e, newivs, newivs_index,
1135 bb_pbb_mapping, level, params_index);
1136 else
1137 gcc_unreachable();
1139 recompute_all_dominators ();
1140 graphite_verify ();
1142 return translate_clast (region, context_loop, stmt->next, next_e,
1143 newivs, newivs_index,
1144 bb_pbb_mapping, level, params_index);
1147 /* Free the SCATTERING domain list. */
1149 static void
1150 free_scattering (CloogScatteringList *scattering)
1152 while (scattering)
1154 CloogScattering *dom = cloog_scattering (scattering);
1155 CloogScatteringList *next = cloog_next_scattering (scattering);
1157 cloog_scattering_free (dom);
1158 free (scattering);
1159 scattering = next;
1163 /* Initialize Cloog's parameter names from the names used in GIMPLE.
1164 Initialize Cloog's iterator names, using 'graphite_iterator_%d'
1165 from 0 to scop_nb_loops (scop). */
1167 static void
1168 initialize_cloog_names (scop_p scop, CloogProgram *prog)
1170 sese region = SCOP_REGION (scop);
1171 int i;
1172 int nb_iterators = scop_max_loop_depth (scop);
1173 int nb_scattering = cloog_program_nb_scattdims (prog);
1174 int nb_parameters = VEC_length (tree, SESE_PARAMS (region));
1175 char **iterators = XNEWVEC (char *, nb_iterators * 2);
1176 char **scattering = XNEWVEC (char *, nb_scattering);
1177 char **parameters= XNEWVEC (char *, nb_parameters);
1179 cloog_program_set_names (prog, cloog_names_malloc ());
1181 for (i = 0; i < nb_parameters; i++)
1183 tree param = VEC_index (tree, SESE_PARAMS(region), i);
1184 const char *name = get_name (param);
1185 int len;
1187 if (!name)
1188 name = "T";
1190 len = strlen (name);
1191 len += 17;
1192 parameters[i] = XNEWVEC (char, len + 1);
1193 snprintf (parameters[i], len, "%s_%d", name, SSA_NAME_VERSION (param));
1196 cloog_names_set_nb_parameters (cloog_program_names (prog), nb_parameters);
1197 cloog_names_set_parameters (cloog_program_names (prog), parameters);
1199 for (i = 0; i < nb_iterators; i++)
1201 int len = 4 + 16;
1202 iterators[i] = XNEWVEC (char, len);
1203 snprintf (iterators[i], len, "git_%d", i);
1206 cloog_names_set_nb_iterators (cloog_program_names (prog),
1207 nb_iterators);
1208 cloog_names_set_iterators (cloog_program_names (prog),
1209 iterators);
1211 for (i = 0; i < nb_scattering; i++)
1213 int len = 5 + 16;
1214 scattering[i] = XNEWVEC (char, len);
1215 snprintf (scattering[i], len, "scat_%d", i);
1218 cloog_names_set_nb_scattering (cloog_program_names (prog),
1219 nb_scattering);
1220 cloog_names_set_scattering (cloog_program_names (prog),
1221 scattering);
1224 /* Initialize a CLooG input file. */
1226 static FILE *
1227 init_cloog_input_file (int scop_number)
1229 FILE *graphite_out_file;
1230 int len = strlen (dump_base_name);
1231 char *dumpname = XNEWVEC (char, len + 25);
1232 char *s_scop_number = XNEWVEC (char, 15);
1234 memcpy (dumpname, dump_base_name, len + 1);
1235 strip_off_ending (dumpname, len);
1236 sprintf (s_scop_number, ".%d", scop_number);
1237 strcat (dumpname, s_scop_number);
1238 strcat (dumpname, ".cloog");
1239 graphite_out_file = fopen (dumpname, "w+b");
1241 if (graphite_out_file == 0)
1242 fatal_error ("can%'t open %s for writing: %m", dumpname);
1244 free (dumpname);
1246 return graphite_out_file;
1249 /* Build cloog program for SCoP. */
1251 static void
1252 build_cloog_prog (scop_p scop, CloogProgram *prog,
1253 CloogOptions *options, CloogState *state ATTRIBUTE_UNUSED)
1255 int i;
1256 int max_nb_loops = scop_max_loop_depth (scop);
1257 poly_bb_p pbb;
1258 CloogLoop *loop_list = NULL;
1259 CloogBlockList *block_list = NULL;
1260 CloogScatteringList *scattering = NULL;
1261 int nbs = 2 * max_nb_loops + 1;
1262 int *scaldims;
1264 cloog_program_set_context
1265 (prog, new_Cloog_Domain_from_ppl_Pointset_Powerset (SCOP_CONTEXT (scop),
1266 scop_nb_params (scop), state));
1267 nbs = unify_scattering_dimensions (scop);
1268 scaldims = (int *) xmalloc (nbs * (sizeof (int)));
1269 cloog_program_set_nb_scattdims (prog, nbs);
1270 initialize_cloog_names (scop, prog);
1272 FOR_EACH_VEC_ELT (poly_bb_p, SCOP_BBS (scop), i, pbb)
1274 CloogStatement *stmt;
1275 CloogBlock *block;
1276 CloogDomain *dom;
1278 /* Dead code elimination: when the domain of a PBB is empty,
1279 don't generate code for the PBB. */
1280 if (ppl_Pointset_Powerset_C_Polyhedron_is_empty (PBB_DOMAIN (pbb)))
1281 continue;
1283 /* Build the new statement and its block. */
1284 stmt = cloog_statement_alloc (state, pbb_index (pbb));
1285 dom = new_Cloog_Domain_from_ppl_Pointset_Powerset (PBB_DOMAIN (pbb),
1286 scop_nb_params (scop),
1287 state);
1288 block = cloog_block_alloc (stmt, 0, NULL, pbb_dim_iter_domain (pbb));
1289 cloog_statement_set_usr (stmt, pbb);
1291 /* Build loop list. */
1293 CloogLoop *new_loop_list = cloog_loop_malloc (state);
1294 cloog_loop_set_next (new_loop_list, loop_list);
1295 cloog_loop_set_domain (new_loop_list, dom);
1296 cloog_loop_set_block (new_loop_list, block);
1297 loop_list = new_loop_list;
1300 /* Build block list. */
1302 CloogBlockList *new_block_list = cloog_block_list_malloc ();
1304 cloog_block_list_set_next (new_block_list, block_list);
1305 cloog_block_list_set_block (new_block_list, block);
1306 block_list = new_block_list;
1309 /* Build scattering list. */
1311 /* XXX: Replace with cloog_domain_list_alloc(), when available. */
1312 CloogScatteringList *new_scattering
1313 = (CloogScatteringList *) xmalloc (sizeof (CloogScatteringList));
1314 ppl_Polyhedron_t scat;
1315 CloogScattering *dom;
1317 scat = PBB_TRANSFORMED_SCATTERING (pbb);
1318 dom = new_Cloog_Scattering_from_ppl_Polyhedron
1319 (scat, scop_nb_params (scop), pbb_nb_scattering_transform (pbb),
1320 state);
1322 cloog_set_next_scattering (new_scattering, scattering);
1323 cloog_set_scattering (new_scattering, dom);
1324 scattering = new_scattering;
1328 cloog_program_set_loop (prog, loop_list);
1329 cloog_program_set_blocklist (prog, block_list);
1331 for (i = 0; i < nbs; i++)
1332 scaldims[i] = 0 ;
1334 cloog_program_set_scaldims (prog, scaldims);
1336 /* Extract scalar dimensions to simplify the code generation problem. */
1337 cloog_program_extract_scalars (prog, scattering, options);
1339 /* Dump a .cloog input file, if requested. This feature is only
1340 enabled in the Graphite branch. */
1341 if (flag_graphite_dump_cloog)
1343 static size_t file_scop_number = 0;
1344 FILE *cloog_file = init_cloog_input_file (file_scop_number);
1346 cloog_program_dump_cloog (cloog_file, prog, scattering);
1347 ++file_scop_number;
1350 /* Apply scattering. */
1351 cloog_program_scatter (prog, scattering, options);
1352 free_scattering (scattering);
1354 /* Iterators corresponding to scalar dimensions have to be extracted. */
1355 cloog_names_scalarize (cloog_program_names (prog), nbs,
1356 cloog_program_scaldims (prog));
1358 /* Free blocklist. */
1360 CloogBlockList *next = cloog_program_blocklist (prog);
1362 while (next)
1364 CloogBlockList *toDelete = next;
1365 next = cloog_block_list_next (next);
1366 cloog_block_list_set_next (toDelete, NULL);
1367 cloog_block_list_set_block (toDelete, NULL);
1368 cloog_block_list_free (toDelete);
1370 cloog_program_set_blocklist (prog, NULL);
1374 /* Return the options that will be used in GLOOG. */
1376 static CloogOptions *
1377 set_cloog_options (CloogState *state ATTRIBUTE_UNUSED)
1379 CloogOptions *options = cloog_options_malloc (state);
1381 /* Change cloog output language to C. If we do use FORTRAN instead, cloog
1382 will stop e.g. with "ERROR: unbounded loops not allowed in FORTRAN.", if
1383 we pass an incomplete program to cloog. */
1384 options->language = LANGUAGE_C;
1386 /* Enable complex equality spreading: removes dummy statements
1387 (assignments) in the generated code which repeats the
1388 substitution equations for statements. This is useless for
1389 GLooG. */
1390 options->esp = 1;
1392 #ifdef CLOOG_ORG
1393 /* Silence CLooG to avoid failing tests due to debug output to stderr. */
1394 options->quiet = 1;
1395 #else
1396 /* Enable C pretty-printing mode: normalizes the substitution
1397 equations for statements. */
1398 options->cpp = 1;
1399 #endif
1401 /* Allow cloog to build strides with a stride width different to one.
1402 This example has stride = 4:
1404 for (i = 0; i < 20; i += 4)
1405 A */
1406 options->strides = 1;
1408 /* Disable optimizations and make cloog generate source code closer to the
1409 input. This is useful for debugging, but later we want the optimized
1410 code.
1412 XXX: We can not disable optimizations, as loop blocking is not working
1413 without them. */
1414 if (!flag_graphite_cloog_opts)
1416 options->f = -1;
1417 options->l = INT_MAX;
1420 return options;
1423 /* Prints STMT to STDERR. */
1425 void
1426 print_clast_stmt (FILE *file, struct clast_stmt *stmt)
1428 CloogState *state = cloog_state_malloc ();
1429 CloogOptions *options = set_cloog_options (state);
1431 clast_pprint (file, stmt, 0, options);
1432 cloog_options_free (options);
1433 cloog_state_free (state);
1436 /* Prints STMT to STDERR. */
1438 DEBUG_FUNCTION void
1439 debug_clast_stmt (struct clast_stmt *stmt)
1441 print_clast_stmt (stderr, stmt);
1444 /* Translate SCOP to a CLooG program and clast. These two
1445 representations should be freed together: a clast cannot be used
1446 without a program. */
1448 cloog_prog_clast
1449 scop_to_clast (scop_p scop, CloogState *state)
1451 CloogOptions *options = set_cloog_options (state);
1452 cloog_prog_clast pc;
1454 /* Connect new cloog prog generation to graphite. */
1455 pc.prog = cloog_program_malloc ();
1456 build_cloog_prog (scop, pc.prog, options, state);
1457 pc.prog = cloog_program_generate (pc.prog, options);
1458 pc.stmt = cloog_clast_create (pc.prog, options);
1460 cloog_options_free (options);
1461 return pc;
1464 /* Prints to FILE the code generated by CLooG for SCOP. */
1466 void
1467 print_generated_program (FILE *file, scop_p scop)
1469 CloogState *state = cloog_state_malloc ();
1470 CloogOptions *options = set_cloog_options (state);
1472 cloog_prog_clast pc = scop_to_clast (scop, state);
1474 fprintf (file, " (prog: \n");
1475 cloog_program_print (file, pc.prog);
1476 fprintf (file, " )\n");
1478 fprintf (file, " (clast: \n");
1479 clast_pprint (file, pc.stmt, 0, options);
1480 fprintf (file, " )\n");
1482 cloog_options_free (options);
1483 cloog_clast_free (pc.stmt);
1484 cloog_program_free (pc.prog);
1487 /* Prints to STDERR the code generated by CLooG for SCOP. */
1489 DEBUG_FUNCTION void
1490 debug_generated_program (scop_p scop)
1492 print_generated_program (stderr, scop);
1495 /* Add CLooG names to parameter index. The index is used to translate
1496 back from CLooG names to GCC trees. */
1498 static void
1499 create_params_index (htab_t index_table, CloogProgram *prog) {
1500 CloogNames* names = cloog_program_names (prog);
1501 int nb_parameters = cloog_names_nb_parameters (names);
1502 char **parameters = cloog_names_parameters (names);
1503 int i;
1505 for (i = 0; i < nb_parameters; i++)
1506 save_clast_name_index (index_table, parameters[i], i);
1509 /* GIMPLE Loop Generator: generates loops from STMT in GIMPLE form for
1510 the given SCOP. Return true if code generation succeeded.
1511 BB_PBB_MAPPING is a basic_block and it's related poly_bb_p mapping.
1514 bool
1515 gloog (scop_p scop, htab_t bb_pbb_mapping)
1517 VEC (tree, heap) *newivs = VEC_alloc (tree, heap, 10);
1518 loop_p context_loop;
1519 sese region = SCOP_REGION (scop);
1520 ifsese if_region = NULL;
1521 htab_t newivs_index, params_index;
1522 cloog_prog_clast pc;
1523 CloogState *state;
1525 state = cloog_state_malloc ();
1526 timevar_push (TV_GRAPHITE_CODE_GEN);
1527 gloog_error = false;
1529 pc = scop_to_clast (scop, state);
1531 if (dump_file && (dump_flags & TDF_DETAILS))
1533 fprintf (dump_file, "\nCLAST generated by CLooG: \n");
1534 print_clast_stmt (dump_file, pc.stmt);
1535 fprintf (dump_file, "\n");
1538 recompute_all_dominators ();
1539 graphite_verify ();
1541 if_region = move_sese_in_condition (region);
1542 sese_insert_phis_for_liveouts (region,
1543 if_region->region->exit->src,
1544 if_region->false_region->exit,
1545 if_region->true_region->exit);
1546 recompute_all_dominators ();
1547 graphite_verify ();
1549 context_loop = SESE_ENTRY (region)->src->loop_father;
1550 newivs_index = htab_create (10, clast_name_index_elt_info,
1551 eq_clast_name_indexes, free);
1552 params_index = htab_create (10, clast_name_index_elt_info,
1553 eq_clast_name_indexes, free);
1555 create_params_index (params_index, pc.prog);
1557 translate_clast (region, context_loop, pc.stmt,
1558 if_region->true_region->entry,
1559 &newivs, newivs_index,
1560 bb_pbb_mapping, 1, params_index);
1561 graphite_verify ();
1562 scev_reset ();
1563 recompute_all_dominators ();
1564 graphite_verify ();
1566 if (gloog_error)
1567 set_ifsese_condition (if_region, integer_zero_node);
1569 free (if_region->true_region);
1570 free (if_region->region);
1571 free (if_region);
1573 htab_delete (newivs_index);
1574 htab_delete (params_index);
1575 VEC_free (tree, heap, newivs);
1576 cloog_clast_free (pc.stmt);
1577 cloog_program_free (pc.prog);
1578 timevar_pop (TV_GRAPHITE_CODE_GEN);
1580 if (dump_file && (dump_flags & TDF_DETAILS))
1582 loop_p loop;
1583 loop_iterator li;
1584 int num_no_dependency = 0;
1586 FOR_EACH_LOOP (li, loop, 0)
1587 if (loop->can_be_parallel)
1588 num_no_dependency++;
1590 fprintf (dump_file, "\n%d loops carried no dependency.\n",
1591 num_no_dependency);
1594 cloog_state_free (state);
1596 return !gloog_error;
1598 #endif