Merge from mainline (167278:168000).
[official-gcc/graphite-test-results.git] / gcc / config / v850 / v850.h
blobc34ee889a10913a554958a1e5a91b21bb55af9c1
1 /* Definitions of target machine for GNU compiler. NEC V850 series
2 Copyright (C) 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005,
3 2007, 2008, 2009, 2010 Free Software Foundation, Inc.
4 Contributed by Jeff Law (law@cygnus.com).
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
11 any later version.
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 #ifndef GCC_V850_H
23 #define GCC_V850_H
25 extern GTY(()) rtx v850_compare_op0;
26 extern GTY(()) rtx v850_compare_op1;
28 /* These are defined in svr4.h but we want to override them. */
29 #undef LIB_SPEC
30 #define LIB_SPEC "%{!shared:%{!symbolic:--start-group -lc -lgcc --end-group}}"
32 #undef ENDFILE_SPEC
33 #undef LINK_SPEC
34 #undef STARTFILE_SPEC
35 #undef ASM_SPEC
37 #define TARGET_CPU_generic 1
38 #define TARGET_CPU_v850e 2
39 #define TARGET_CPU_v850e1 3
40 #define TARGET_CPU_v850e2 4
41 #define TARGET_CPU_v850e2v3 5
44 #ifndef TARGET_CPU_DEFAULT
45 #define TARGET_CPU_DEFAULT TARGET_CPU_generic
46 #endif
48 #define MASK_DEFAULT MASK_V850
49 #define SUBTARGET_ASM_SPEC "%{!mv*:-mv850}"
50 #define SUBTARGET_CPP_SPEC "%{!mv*:-D__v850__}"
51 #define TARGET_VERSION fprintf (stderr, " (NEC V850)");
53 /* Choose which processor will be the default.
54 We must pass a -mv850xx option to the assembler if no explicit -mv* option
55 is given, because the assembler's processor default may not be correct. */
56 #if TARGET_CPU_DEFAULT == TARGET_CPU_v850e
57 #undef MASK_DEFAULT
58 #define MASK_DEFAULT MASK_V850E
59 #undef SUBTARGET_ASM_SPEC
60 #define SUBTARGET_ASM_SPEC "%{!mv*:-mv850e}"
61 #undef SUBTARGET_CPP_SPEC
62 #define SUBTARGET_CPP_SPEC "%{!mv*:-D__v850e__}"
63 #undef TARGET_VERSION
64 #define TARGET_VERSION fprintf (stderr, " (NEC V850E)");
65 #endif
67 #if TARGET_CPU_DEFAULT == TARGET_CPU_v850e1
68 #undef MASK_DEFAULT
69 #define MASK_DEFAULT MASK_V850E /* No practical difference. */
70 #undef SUBTARGET_ASM_SPEC
71 #define SUBTARGET_ASM_SPEC "%{!mv*:-mv850e1}"
72 #undef SUBTARGET_CPP_SPEC
73 #define SUBTARGET_CPP_SPEC "%{!mv*:-D__v850e1__} %{mv850e1:-D__v850e1__}"
74 #undef TARGET_VERSION
75 #define TARGET_VERSION fprintf (stderr, " (NEC V850E1)");
76 #endif
78 #if TARGET_CPU_DEFAULT == TARGET_CPU_v850e2
79 #undef MASK_DEFAULT
80 #define MASK_DEFAULT MASK_V850E2
81 #undef SUBTARGET_ASM_SPEC
82 #define SUBTARGET_ASM_SPEC "%{!mv*:-mv850e2}"
83 #undef SUBTARGET_CPP_SPEC
84 #define SUBTARGET_CPP_SPEC "%{!mv*:-D__v850e2__} %{mv850e2:-D__v850e2__}"
85 #undef TARGET_VERSION
86 #define TARGET_VERSION fprintf (stderr, " (NEC V850E2)");
87 #endif
89 #if TARGET_CPU_DEFAULT == TARGET_CPU_v850e2v3
90 #undef MASK_DEFAULT
91 #define MASK_DEFAULT MASK_V850E2V3
92 #undef SUBTARGET_ASM_SPEC
93 #define SUBTARGET_ASM_SPEC "%{!mv*:-mv850e2v3}"
94 #undef SUBTARGET_CPP_SPEC
95 #define SUBTARGET_CPP_SPEC "%{!mv*:-D__v850e2v3__} %{mv850e2v3:-D__v850e2v3__}"
96 #undef TARGET_VERSION
97 #define TARGET_VERSION fprintf (stderr, " (NEC V850E2V3)");
98 #endif
100 #define TARGET_V850E2_ALL (TARGET_V850E2 || TARGET_V850E2V3)
102 #define ASM_SPEC "%{mv*:-mv%*}"
103 #define CPP_SPEC "%{mv850e2v3:-D__v850e2v3__} %{mv850e2:-D__v850e2__} %{mv850e:-D__v850e__} %{mv850:-D__v850__} %(subtarget_cpp_spec)" \
104 " %{mep:-D__EP__}"
106 #define EXTRA_SPECS \
107 { "subtarget_asm_spec", SUBTARGET_ASM_SPEC }, \
108 { "subtarget_cpp_spec", SUBTARGET_CPP_SPEC }
110 /* Names to predefine in the preprocessor for this target machine. */
111 #define TARGET_CPU_CPP_BUILTINS() do { \
112 builtin_define( "__v851__" ); \
113 builtin_define( "__v850" ); \
114 builtin_assert( "machine=v850" ); \
115 builtin_assert( "cpu=v850" ); \
116 if (TARGET_EP) \
117 builtin_define ("__EP__"); \
118 } while(0)
120 #define MASK_CPU (MASK_V850 | MASK_V850E)
122 /* Information about the various small memory areas. */
123 struct small_memory_info {
124 const char *name;
125 long max;
126 long physical_max;
129 enum small_memory_type {
130 /* tiny data area, using EP as base register */
131 SMALL_MEMORY_TDA = 0,
132 /* small data area using dp as base register */
133 SMALL_MEMORY_SDA,
134 /* zero data area using r0 as base register */
135 SMALL_MEMORY_ZDA,
136 SMALL_MEMORY_max
139 extern struct small_memory_info small_memory[(int)SMALL_MEMORY_max];
141 /* Target machine storage layout */
143 /* Define this if most significant bit is lowest numbered
144 in instructions that operate on numbered bit-fields.
145 This is not true on the NEC V850. */
146 #define BITS_BIG_ENDIAN 0
148 /* Define this if most significant byte of a word is the lowest numbered. */
149 /* This is not true on the NEC V850. */
150 #define BYTES_BIG_ENDIAN 0
152 /* Define this if most significant word of a multiword number is lowest
153 numbered.
154 This is not true on the NEC V850. */
155 #define WORDS_BIG_ENDIAN 0
157 /* Width of a word, in units (bytes). */
158 #define UNITS_PER_WORD 4
160 /* Define this macro if it is advisable to hold scalars in registers
161 in a wider mode than that declared by the program. In such cases,
162 the value is constrained to be within the bounds of the declared
163 type, but kept valid in the wider mode. The signedness of the
164 extension may differ from that of the type.
166 Some simple experiments have shown that leaving UNSIGNEDP alone
167 generates the best overall code. */
169 #define PROMOTE_MODE(MODE,UNSIGNEDP,TYPE) \
170 if (GET_MODE_CLASS (MODE) == MODE_INT \
171 && GET_MODE_SIZE (MODE) < 4) \
172 { (MODE) = SImode; }
174 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
175 #define PARM_BOUNDARY 32
177 /* The stack goes in 32-bit lumps. */
178 #define STACK_BOUNDARY 32
180 /* Allocation boundary (in *bits*) for the code of a function.
181 16 is the minimum boundary; 32 would give better performance. */
182 #define FUNCTION_BOUNDARY 16
184 /* No data type wants to be aligned rounder than this. */
185 #define BIGGEST_ALIGNMENT 32
187 /* Alignment of field after `int : 0' in a structure. */
188 #define EMPTY_FIELD_BOUNDARY 32
190 /* No structure field wants to be aligned rounder than this. */
191 #define BIGGEST_FIELD_ALIGNMENT 32
193 /* Define this if move instructions will actually fail to work
194 when given unaligned data. */
195 #define STRICT_ALIGNMENT (!TARGET_NO_STRICT_ALIGN)
197 /* Define this as 1 if `char' should by default be signed; else as 0.
199 On the NEC V850, loads do sign extension, so make this default. */
200 #define DEFAULT_SIGNED_CHAR 1
202 #undef SIZE_TYPE
203 #define SIZE_TYPE "unsigned int"
205 #undef PTRDIFF_TYPE
206 #define PTRDIFF_TYPE "int"
208 #undef WCHAR_TYPE
209 #define WCHAR_TYPE "long int"
211 #undef WCHAR_TYPE_SIZE
212 #define WCHAR_TYPE_SIZE BITS_PER_WORD
214 /* Standard register usage. */
216 /* Number of actual hardware registers.
217 The hardware registers are assigned numbers for the compiler
218 from 0 to just below FIRST_PSEUDO_REGISTER.
220 All registers that the compiler knows about must be given numbers,
221 even those that are not normally considered general registers. */
223 #define FIRST_PSEUDO_REGISTER 36
225 /* 1 for registers that have pervasive standard uses
226 and are not available for the register allocator. */
228 #define FIXED_REGISTERS \
229 { 1, 1, 1, 1, 1, 1, 0, 0, \
230 0, 0, 0, 0, 0, 0, 0, 0, \
231 0, 0, 0, 0, 0, 0, 0, 0, \
232 0, 0, 0, 0, 0, 0, 1, 0, \
233 1, 1, \
234 1, 1}
236 /* 1 for registers not available across function calls.
237 These must include the FIXED_REGISTERS and also any
238 registers that can be used without being saved.
239 The latter must include the registers where values are returned
240 and the register where structure-value addresses are passed.
241 Aside from that, you can include as many other registers as you
242 like. */
244 #define CALL_USED_REGISTERS \
245 { 1, 1, 1, 1, 1, 1, 1, 1, \
246 1, 1, 1, 1, 1, 1, 1, 1, \
247 1, 1, 1, 1, 0, 0, 0, 0, \
248 0, 0, 0, 0, 0, 0, 1, 1, \
249 1, 1, \
250 1, 1}
252 /* List the order in which to allocate registers. Each register must be
253 listed once, even those in FIXED_REGISTERS.
255 On the 850, we make the return registers first, then all of the volatile
256 registers, then the saved registers in reverse order to better save the
257 registers with an out of line function, and finally the fixed
258 registers. */
260 #define REG_ALLOC_ORDER \
262 10, 11, /* return registers */ \
263 12, 13, 14, 15, 16, 17, 18, 19, /* scratch registers */ \
264 6, 7, 8, 9, 31, /* argument registers */ \
265 29, 28, 27, 26, 25, 24, 23, 22, /* saved registers */ \
266 21, 20, 2, \
267 0, 1, 3, 4, 5, 30, 32, 33, /* fixed registers */ \
268 34, 35 \
271 /* Return number of consecutive hard regs needed starting at reg REGNO
272 to hold something of mode MODE.
274 This is ordinarily the length in words of a value of mode MODE
275 but can be less for certain modes in special long registers. */
277 #define HARD_REGNO_NREGS(REGNO, MODE) \
278 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
280 /* Value is 1 if hard register REGNO can hold a value of machine-mode
281 MODE. */
283 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
284 ((GET_MODE_SIZE (MODE) <= 4) || (((REGNO) & 1) == 0 && (REGNO) != 0))
286 /* Value is 1 if it is a good idea to tie two pseudo registers
287 when one has mode MODE1 and one has mode MODE2.
288 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
289 for any hard reg, then this must be 0 for correct output. */
290 #define MODES_TIEABLE_P(MODE1, MODE2) \
291 (MODE1 == MODE2 || (GET_MODE_SIZE (MODE1) <= 4 && GET_MODE_SIZE (MODE2) <= 4))
294 /* Define the classes of registers for register constraints in the
295 machine description. Also define ranges of constants.
297 One of the classes must always be named ALL_REGS and include all hard regs.
298 If there is more than one class, another class must be named NO_REGS
299 and contain no registers.
301 The name GENERAL_REGS must be the name of a class (or an alias for
302 another name such as ALL_REGS). This is the class of registers
303 that is allowed by "g" or "r" in a register constraint.
304 Also, registers outside this class are allocated only when
305 instructions express preferences for them.
307 The classes must be numbered in nondecreasing order; that is,
308 a larger-numbered class must never be contained completely
309 in a smaller-numbered class.
311 For any two classes, it is very desirable that there be another
312 class that represents their union. */
314 enum reg_class
316 NO_REGS, GENERAL_REGS, EVEN_REGS, ALL_REGS, LIM_REG_CLASSES
319 #define N_REG_CLASSES (int) LIM_REG_CLASSES
321 #define IRA_COVER_CLASSES \
323 GENERAL_REGS, LIM_REG_CLASSES \
326 /* Give names of register classes as strings for dump file. */
328 #define REG_CLASS_NAMES \
329 { "NO_REGS", "GENERAL_REGS", "EVEN_REGS", "ALL_REGS", "LIM_REGS" }
331 /* Define which registers fit in which classes.
332 This is an initializer for a vector of HARD_REG_SET
333 of length N_REG_CLASSES. */
335 #define REG_CLASS_CONTENTS \
337 { 0x00000000,0x0 }, /* NO_REGS */ \
338 { 0xffffffff,0x0 }, /* GENERAL_REGS */ \
339 { 0x55555554,0x0 }, /* EVEN_REGS */ \
340 { 0xffffffff,0x0 }, /* ALL_REGS */ \
343 /* The same information, inverted:
344 Return the class number of the smallest class containing
345 reg number REGNO. This could be a conditional expression
346 or could index an array. */
348 #define REGNO_REG_CLASS(REGNO) ((REGNO == CC_REGNUM || REGNO == FCC_REGNUM) ? NO_REGS : GENERAL_REGS)
350 /* The class value for index registers, and the one for base regs. */
352 #define INDEX_REG_CLASS NO_REGS
353 #define BASE_REG_CLASS GENERAL_REGS
355 /* Get reg_class from a letter such as appears in the machine description. */
357 #define REG_CLASS_FROM_LETTER(C) \
358 (C == 'e' ? EVEN_REGS : (NO_REGS))
360 /* Macros to check register numbers against specific register classes. */
362 /* These assume that REGNO is a hard or pseudo reg number.
363 They give nonzero only if REGNO is a hard reg of the suitable class
364 or a pseudo reg currently allocated to a suitable hard reg.
365 Since they use reg_renumber, they are safe only once reg_renumber
366 has been allocated, which happens in local-alloc.c. */
368 #define REGNO_OK_FOR_BASE_P(regno) \
369 (((regno) < FIRST_PSEUDO_REGISTER \
370 && (regno) != CC_REGNUM \
371 && (regno) != FCC_REGNUM) \
372 || reg_renumber[regno] >= 0)
374 #define REGNO_OK_FOR_INDEX_P(regno) 0
376 /* Return the maximum number of consecutive registers
377 needed to represent mode MODE in a register of class CLASS. */
379 #define CLASS_MAX_NREGS(CLASS, MODE) \
380 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
382 /* The letters I, J, K, L, M, N, O, P in a register constraint string
383 can be used to stand for particular ranges of immediate operands.
384 This macro defines what the ranges are.
385 C is the letter, and VALUE is a constant value.
386 Return 1 if VALUE is in the range specified by C. */
388 #define INT_7_BITS(VALUE) ((unsigned) (VALUE) + 0x40 < 0x80)
389 #define INT_8_BITS(VALUE) ((unsigned) (VALUE) + 0x80 < 0x100)
390 /* zero */
391 #define CONST_OK_FOR_I(VALUE) ((VALUE) == 0)
392 /* 5-bit signed immediate */
393 #define CONST_OK_FOR_J(VALUE) ((unsigned) (VALUE) + 0x10 < 0x20)
394 /* 16-bit signed immediate */
395 #define CONST_OK_FOR_K(VALUE) ((unsigned) (VALUE) + 0x8000 < 0x10000)
396 /* valid constant for movhi instruction. */
397 #define CONST_OK_FOR_L(VALUE) \
398 (((unsigned) ((int) (VALUE) >> 16) + 0x8000 < 0x10000) \
399 && CONST_OK_FOR_I ((VALUE & 0xffff)))
400 /* 16-bit unsigned immediate */
401 #define CONST_OK_FOR_M(VALUE) ((unsigned)(VALUE) < 0x10000)
402 /* 5-bit unsigned immediate in shift instructions */
403 #define CONST_OK_FOR_N(VALUE) ((unsigned) (VALUE) <= 31)
404 /* 9-bit signed immediate for word multiply instruction. */
405 #define CONST_OK_FOR_O(VALUE) ((unsigned) (VALUE) + 0x100 < 0x200)
407 #define CONST_OK_FOR_P(VALUE) 0
409 #define CONST_OK_FOR_LETTER_P(VALUE, C) \
410 ((C) == 'I' ? CONST_OK_FOR_I (VALUE) : \
411 (C) == 'J' ? CONST_OK_FOR_J (VALUE) : \
412 (C) == 'K' ? CONST_OK_FOR_K (VALUE) : \
413 (C) == 'L' ? CONST_OK_FOR_L (VALUE) : \
414 (C) == 'M' ? CONST_OK_FOR_M (VALUE) : \
415 (C) == 'N' ? CONST_OK_FOR_N (VALUE) : \
416 (C) == 'O' ? CONST_OK_FOR_O (VALUE) : \
417 (C) == 'P' ? CONST_OK_FOR_P (VALUE) : \
420 /* Similar, but for floating constants, and defining letters G and H.
421 Here VALUE is the CONST_DOUBLE rtx itself.
423 `G' is a zero of some form. */
425 #define CONST_DOUBLE_OK_FOR_G(VALUE) \
426 ((GET_MODE_CLASS (GET_MODE (VALUE)) == MODE_FLOAT \
427 && (VALUE) == CONST0_RTX (GET_MODE (VALUE))) \
428 || (GET_MODE_CLASS (GET_MODE (VALUE)) == MODE_INT \
429 && CONST_DOUBLE_LOW (VALUE) == 0 \
430 && CONST_DOUBLE_HIGH (VALUE) == 0))
432 #define CONST_DOUBLE_OK_FOR_H(VALUE) 0
434 #define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
435 ((C) == 'G' ? CONST_DOUBLE_OK_FOR_G (VALUE) \
436 : (C) == 'H' ? CONST_DOUBLE_OK_FOR_H (VALUE) \
437 : 0)
440 /* Stack layout; function entry, exit and calling. */
442 /* Define this if pushing a word on the stack
443 makes the stack pointer a smaller address. */
445 #define STACK_GROWS_DOWNWARD
447 /* Define this to nonzero if the nominal address of the stack frame
448 is at the high-address end of the local variables;
449 that is, each additional local variable allocated
450 goes at a more negative offset in the frame. */
452 #define FRAME_GROWS_DOWNWARD 1
454 /* Offset within stack frame to start allocating local variables at.
455 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
456 first local allocated. Otherwise, it is the offset to the BEGINNING
457 of the first local allocated. */
459 #define STARTING_FRAME_OFFSET 0
461 /* Offset of first parameter from the argument pointer register value. */
462 /* Is equal to the size of the saved fp + pc, even if an fp isn't
463 saved since the value is used before we know. */
465 #define FIRST_PARM_OFFSET(FNDECL) 0
467 /* Specify the registers used for certain standard purposes.
468 The values of these macros are register numbers. */
470 /* Register to use for pushing function arguments. */
471 #define STACK_POINTER_REGNUM SP_REGNUM
473 /* Base register for access to local variables of the function. */
474 #define FRAME_POINTER_REGNUM 34
476 /* Register containing return address from latest function call. */
477 #define LINK_POINTER_REGNUM LP_REGNUM
479 /* On some machines the offset between the frame pointer and starting
480 offset of the automatic variables is not known until after register
481 allocation has been done (for example, because the saved registers
482 are between these two locations). On those machines, define
483 `FRAME_POINTER_REGNUM' the number of a special, fixed register to
484 be used internally until the offset is known, and define
485 `HARD_FRAME_POINTER_REGNUM' to be actual the hard register number
486 used for the frame pointer.
488 You should define this macro only in the very rare circumstances
489 when it is not possible to calculate the offset between the frame
490 pointer and the automatic variables until after register
491 allocation has been completed. When this macro is defined, you
492 must also indicate in your definition of `ELIMINABLE_REGS' how to
493 eliminate `FRAME_POINTER_REGNUM' into either
494 `HARD_FRAME_POINTER_REGNUM' or `STACK_POINTER_REGNUM'.
496 Do not define this macro if it would be the same as
497 `FRAME_POINTER_REGNUM'. */
498 #undef HARD_FRAME_POINTER_REGNUM
499 #define HARD_FRAME_POINTER_REGNUM 29
501 /* Base register for access to arguments of the function. */
502 #define ARG_POINTER_REGNUM 35
504 /* Register in which static-chain is passed to a function. */
505 #define STATIC_CHAIN_REGNUM 20
507 /* If defined, this macro specifies a table of register pairs used to
508 eliminate unneeded registers that point into the stack frame. If
509 it is not defined, the only elimination attempted by the compiler
510 is to replace references to the frame pointer with references to
511 the stack pointer.
513 The definition of this macro is a list of structure
514 initializations, each of which specifies an original and
515 replacement register.
517 On some machines, the position of the argument pointer is not
518 known until the compilation is completed. In such a case, a
519 separate hard register must be used for the argument pointer.
520 This register can be eliminated by replacing it with either the
521 frame pointer or the argument pointer, depending on whether or not
522 the frame pointer has been eliminated.
524 In this case, you might specify:
525 #define ELIMINABLE_REGS \
526 {{ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
527 {ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM}, \
528 {FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}}
530 Note that the elimination of the argument pointer with the stack
531 pointer is specified first since that is the preferred elimination. */
533 #define ELIMINABLE_REGS \
534 {{ FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM }, \
535 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM }, \
536 { ARG_POINTER_REGNUM, STACK_POINTER_REGNUM }, \
537 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM }} \
539 /* This macro is similar to `INITIAL_FRAME_POINTER_OFFSET'. It
540 specifies the initial difference between the specified pair of
541 registers. This macro must be defined if `ELIMINABLE_REGS' is
542 defined. */
544 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
546 if ((FROM) == FRAME_POINTER_REGNUM) \
547 (OFFSET) = get_frame_size () + crtl->outgoing_args_size; \
548 else if ((FROM) == ARG_POINTER_REGNUM) \
549 (OFFSET) = compute_frame_size (get_frame_size (), (long *)0); \
550 else \
551 gcc_unreachable (); \
554 /* Keep the stack pointer constant throughout the function. */
555 #define ACCUMULATE_OUTGOING_ARGS 1
557 #define RETURN_ADDR_RTX(COUNT, FP) v850_return_addr (COUNT)
559 /* Define a data type for recording info about an argument list
560 during the scan of that argument list. This data type should
561 hold all necessary information about the function itself
562 and about the args processed so far, enough to enable macros
563 such as FUNCTION_ARG to determine where the next arg should go. */
565 #define CUMULATIVE_ARGS struct cum_arg
566 struct cum_arg { int nbytes; int anonymous_args; };
568 /* Initialize a variable CUM of type CUMULATIVE_ARGS
569 for a call to a function whose data type is FNTYPE.
570 For a library call, FNTYPE is 0. */
572 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, INDIRECT, N_NAMED_ARGS) \
573 ((CUM).nbytes = 0, (CUM).anonymous_args = 0)
575 /* When a parameter is passed in a register, stack space is still
576 allocated for it. */
577 #define REG_PARM_STACK_SPACE(DECL) 0
579 /* 1 if N is a possible register number for function argument passing. */
581 #define FUNCTION_ARG_REGNO_P(N) (N >= 6 && N <= 9)
583 /* Define how to find the value returned by a library function
584 assuming the value has mode MODE. */
586 #define LIBCALL_VALUE(MODE) \
587 gen_rtx_REG (MODE, 10)
589 #define DEFAULT_PCC_STRUCT_RETURN 0
591 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
592 the stack pointer does not matter. The value is tested only in
593 functions that have frame pointers.
594 No definition is equivalent to always zero. */
596 #define EXIT_IGNORE_STACK 1
598 /* Define this macro as a C expression that is nonzero for registers
599 used by the epilogue or the `return' pattern. */
601 #define EPILOGUE_USES(REGNO) \
602 (reload_completed && (REGNO) == LINK_POINTER_REGNUM)
604 /* Output assembler code to FILE to increment profiler label # LABELNO
605 for profiling a function entry. */
607 #define FUNCTION_PROFILER(FILE, LABELNO) ;
609 /* Length in units of the trampoline for entering a nested function. */
611 #define TRAMPOLINE_SIZE 24
613 /* Addressing modes, and classification of registers for them. */
616 /* 1 if X is an rtx for a constant that is a valid address. */
618 /* ??? This seems too exclusive. May get better code by accepting more
619 possibilities here, in particular, should accept ZDA_NAME SYMBOL_REFs. */
621 #define CONSTANT_ADDRESS_P(X) \
622 (GET_CODE (X) == CONST_INT \
623 && CONST_OK_FOR_K (INTVAL (X)))
625 /* Maximum number of registers that can appear in a valid memory address. */
627 #define MAX_REGS_PER_ADDRESS 1
629 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
630 and check its validity for a certain class.
631 We have two alternate definitions for each of them.
632 The usual definition accepts all pseudo regs; the other rejects
633 them unless they have been allocated suitable hard regs.
634 The symbol REG_OK_STRICT causes the latter definition to be used.
636 Most source files want to accept pseudo regs in the hope that
637 they will get allocated to the class that the insn wants them to be in.
638 Source files for reload pass need to be strict.
639 After reload, it makes no difference, since pseudo regs have
640 been eliminated by then. */
642 #ifndef REG_OK_STRICT
644 /* Nonzero if X is a hard reg that can be used as an index
645 or if it is a pseudo reg. */
646 #define REG_OK_FOR_INDEX_P(X) 0
647 /* Nonzero if X is a hard reg that can be used as a base reg
648 or if it is a pseudo reg. */
649 #define REG_OK_FOR_BASE_P(X) 1
650 #define REG_OK_FOR_INDEX_P_STRICT(X) 0
651 #define REG_OK_FOR_BASE_P_STRICT(X) REGNO_OK_FOR_BASE_P (REGNO (X))
652 #define STRICT 0
654 #else
656 /* Nonzero if X is a hard reg that can be used as an index. */
657 #define REG_OK_FOR_INDEX_P(X) 0
658 /* Nonzero if X is a hard reg that can be used as a base reg. */
659 #define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
660 #define STRICT 1
662 #endif
664 /* A C expression that defines the optional machine-dependent
665 constraint letters that can be used to segregate specific types of
666 operands, usually memory references, for the target machine.
667 Normally this macro will not be defined. If it is required for a
668 particular target machine, it should return 1 if VALUE corresponds
669 to the operand type represented by the constraint letter C. If C
670 is not defined as an extra constraint, the value returned should
671 be 0 regardless of VALUE.
673 For example, on the ROMP, load instructions cannot have their
674 output in r0 if the memory reference contains a symbolic address.
675 Constraint letter `Q' is defined as representing a memory address
676 that does *not* contain a symbolic address. An alternative is
677 specified with a `Q' constraint on the input and `r' on the
678 output. The next alternative specifies `m' on the input and a
679 register class that does not include r0 on the output. */
681 #define EXTRA_CONSTRAINT(OP, C) \
682 ((C) == 'Q' ? ep_memory_operand (OP, GET_MODE (OP), FALSE) \
683 : (C) == 'R' ? special_symbolref_operand (OP, VOIDmode) \
684 : (C) == 'S' ? (GET_CODE (OP) == SYMBOL_REF \
685 && !SYMBOL_REF_ZDA_P (OP)) \
686 : (C) == 'T' ? ep_memory_operand (OP, GET_MODE (OP), TRUE) \
687 : (C) == 'U' ? ((GET_CODE (OP) == SYMBOL_REF \
688 && SYMBOL_REF_ZDA_P (OP)) \
689 || (GET_CODE (OP) == CONST \
690 && GET_CODE (XEXP (OP, 0)) == PLUS \
691 && GET_CODE (XEXP (XEXP (OP, 0), 0)) == SYMBOL_REF\
692 && SYMBOL_REF_ZDA_P (XEXP (XEXP (OP, 0), 0)))) \
693 : (C) == 'W' ? (GET_CODE (OP) == CONST_INT \
694 && ((unsigned)(INTVAL (OP)) >= 0x8000) \
695 && ((unsigned)(INTVAL (OP)) < 0x400000)) \
696 : 0)
698 /* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
699 that is a valid memory address for an instruction.
700 The MODE argument is the machine mode for the MEM expression
701 that wants to use this address.
703 The other macros defined here are used only in GO_IF_LEGITIMATE_ADDRESS,
704 except for CONSTANT_ADDRESS_P which is actually
705 machine-independent. */
707 /* Accept either REG or SUBREG where a register is valid. */
709 #define RTX_OK_FOR_BASE_P(X) \
710 ((REG_P (X) && REG_OK_FOR_BASE_P (X)) \
711 || (GET_CODE (X) == SUBREG && REG_P (SUBREG_REG (X)) \
712 && REG_OK_FOR_BASE_P (SUBREG_REG (X))))
714 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
715 do { \
716 if (RTX_OK_FOR_BASE_P (X)) \
717 goto ADDR; \
718 if (CONSTANT_ADDRESS_P (X) \
719 && (MODE == QImode || INTVAL (X) % 2 == 0) \
720 && (GET_MODE_SIZE (MODE) <= 4 || INTVAL (X) % 4 == 0)) \
721 goto ADDR; \
722 if (GET_CODE (X) == LO_SUM \
723 && REG_P (XEXP (X, 0)) \
724 && REG_OK_FOR_BASE_P (XEXP (X, 0)) \
725 && CONSTANT_P (XEXP (X, 1)) \
726 && (GET_CODE (XEXP (X, 1)) != CONST_INT \
727 || ((MODE == QImode || INTVAL (XEXP (X, 1)) % 2 == 0) \
728 && CONST_OK_FOR_K (INTVAL (XEXP (X, 1))))) \
729 && GET_MODE_SIZE (MODE) <= GET_MODE_SIZE (word_mode)) \
730 goto ADDR; \
731 if (special_symbolref_operand (X, MODE) \
732 && (GET_MODE_SIZE (MODE) <= GET_MODE_SIZE (word_mode))) \
733 goto ADDR; \
734 if (GET_CODE (X) == PLUS \
735 && RTX_OK_FOR_BASE_P (XEXP (X, 0)) \
736 && (GET_CODE (XEXP (X,1)) == CONST_INT && CONST_OK_FOR_K (INTVAL(XEXP (X,1)) + GET_MODE_NUNITS(MODE) * UNITS_PER_WORD)) \
737 && ((MODE == QImode || INTVAL (XEXP (X, 1)) % 2 == 0) \
738 && CONST_OK_FOR_K (INTVAL (XEXP (X, 1)) \
739 + (GET_MODE_NUNITS (MODE) * UNITS_PER_WORD)))) \
740 goto ADDR; \
741 } while (0)
744 /* Nonzero if the constant value X is a legitimate general operand.
745 It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
747 #define LEGITIMATE_CONSTANT_P(X) \
748 (GET_CODE (X) == CONST_DOUBLE \
749 || !(GET_CODE (X) == CONST \
750 && GET_CODE (XEXP (X, 0)) == PLUS \
751 && GET_CODE (XEXP (XEXP (X, 0), 0)) == SYMBOL_REF \
752 && GET_CODE (XEXP (XEXP (X, 0), 1)) == CONST_INT \
753 && ! CONST_OK_FOR_K (INTVAL (XEXP (XEXP (X, 0), 1)))))
755 /* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
756 return the mode to be used for the comparison.
758 For floating-point equality comparisons, CCFPEQmode should be used.
759 VOIDmode should be used in all other cases.
761 For integer comparisons against zero, reduce to CCNOmode or CCZmode if
762 possible, to allow for more combinations. */
764 #define SELECT_CC_MODE(OP, X, Y) v850_select_cc_mode (OP, X, Y)
766 /* Tell final.c how to eliminate redundant test instructions. */
768 /* Here we define machine-dependent flags and fields in cc_status
769 (see `conditions.h'). No extra ones are needed for the VAX. */
771 /* Store in cc_status the expressions
772 that the condition codes will describe
773 after execution of an instruction whose pattern is EXP.
774 Do not alter them if the instruction would not alter the cc's. */
776 #define CC_OVERFLOW_UNUSABLE 0x200
777 #define CC_NO_CARRY CC_NO_OVERFLOW
778 #define NOTICE_UPDATE_CC(EXP, INSN) notice_update_cc(EXP, INSN)
780 /* Nonzero if access to memory by bytes or half words is no faster
781 than accessing full words. */
782 #define SLOW_BYTE_ACCESS 1
784 /* According expr.c, a value of around 6 should minimize code size, and
785 for the V850 series, that's our primary concern. */
786 #define MOVE_RATIO(speed) 6
788 /* Indirect calls are expensive, never turn a direct call
789 into an indirect call. */
790 #define NO_FUNCTION_CSE
792 /* The four different data regions on the v850. */
793 typedef enum
795 DATA_AREA_NORMAL,
796 DATA_AREA_SDA,
797 DATA_AREA_TDA,
798 DATA_AREA_ZDA
799 } v850_data_area;
801 #define TEXT_SECTION_ASM_OP "\t.section .text"
802 #define DATA_SECTION_ASM_OP "\t.section .data"
803 #define BSS_SECTION_ASM_OP "\t.section .bss"
804 #define SDATA_SECTION_ASM_OP "\t.section .sdata,\"aw\""
805 #define SBSS_SECTION_ASM_OP "\t.section .sbss,\"aw\""
807 #define SCOMMON_ASM_OP "\t.scomm\t"
808 #define ZCOMMON_ASM_OP "\t.zcomm\t"
809 #define TCOMMON_ASM_OP "\t.tcomm\t"
811 #define ASM_COMMENT_START "#"
813 /* Output to assembler file text saying following lines
814 may contain character constants, extra white space, comments, etc. */
816 #define ASM_APP_ON "#APP\n"
818 /* Output to assembler file text saying following lines
819 no longer contain unusual constructs. */
821 #define ASM_APP_OFF "#NO_APP\n"
823 #undef USER_LABEL_PREFIX
824 #define USER_LABEL_PREFIX "_"
826 #define OUTPUT_ADDR_CONST_EXTRA(FILE, X, FAIL) \
827 if (! v850_output_addr_const_extra (FILE, X)) \
828 goto FAIL
830 /* This says how to output the assembler to define a global
831 uninitialized but not common symbol. */
833 #define ASM_OUTPUT_ALIGNED_BSS(FILE, DECL, NAME, SIZE, ALIGN) \
834 asm_output_aligned_bss ((FILE), (DECL), (NAME), (SIZE), (ALIGN))
836 #undef ASM_OUTPUT_ALIGNED_BSS
837 #define ASM_OUTPUT_ALIGNED_BSS(FILE, DECL, NAME, SIZE, ALIGN) \
838 v850_output_aligned_bss (FILE, DECL, NAME, SIZE, ALIGN)
840 /* This says how to output the assembler to define a global
841 uninitialized, common symbol. */
842 #undef ASM_OUTPUT_ALIGNED_COMMON
843 #undef ASM_OUTPUT_COMMON
844 #define ASM_OUTPUT_ALIGNED_DECL_COMMON(FILE, DECL, NAME, SIZE, ALIGN) \
845 v850_output_common (FILE, DECL, NAME, SIZE, ALIGN)
847 /* This says how to output the assembler to define a local
848 uninitialized symbol. */
849 #undef ASM_OUTPUT_ALIGNED_LOCAL
850 #undef ASM_OUTPUT_LOCAL
851 #define ASM_OUTPUT_ALIGNED_DECL_LOCAL(FILE, DECL, NAME, SIZE, ALIGN) \
852 v850_output_local (FILE, DECL, NAME, SIZE, ALIGN)
854 /* Globalizing directive for a label. */
855 #define GLOBAL_ASM_OP "\t.global "
857 #define ASM_PN_FORMAT "%s___%lu"
859 /* This is how we tell the assembler that two symbols have the same value. */
861 #define ASM_OUTPUT_DEF(FILE,NAME1,NAME2) \
862 do { assemble_name(FILE, NAME1); \
863 fputs(" = ", FILE); \
864 assemble_name(FILE, NAME2); \
865 fputc('\n', FILE); } while (0)
868 /* How to refer to registers in assembler output.
869 This sequence is indexed by compiler's hard-register-number (see above). */
871 #define REGISTER_NAMES \
872 { "r0", "r1", "r2", "sp", "gp", "r5", "r6" , "r7", \
873 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", \
874 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23", \
875 "r24", "r25", "r26", "r27", "r28", "r29", "ep", "r31", \
876 "psw", "fcc", \
877 ".fp", ".ap"}
879 /* Register numbers */
881 #define ADDITIONAL_REGISTER_NAMES \
882 { { "zero", ZERO_REGNUM }, \
883 { "hp", 2 }, \
884 { "r3", 3 }, \
885 { "r4", 4 }, \
886 { "tp", 5 }, \
887 { "fp", 29 }, \
888 { "r30", 30 }, \
889 { "lp", LP_REGNUM} }
891 /* This is how to output an element of a case-vector that is absolute. */
893 #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
894 fprintf (FILE, "\t%s .L%d\n", \
895 (TARGET_BIG_SWITCH ? ".long" : ".short"), VALUE)
897 /* This is how to output an element of a case-vector that is relative. */
899 /* Disable the shift, which is for the currently disabled "switch"
900 opcode. Se casesi in v850.md. */
902 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
903 fprintf (FILE, "\t%s %s.L%d-.L%d%s\n", \
904 (TARGET_BIG_SWITCH ? ".long" : ".short"), \
905 (0 && ! TARGET_BIG_SWITCH && (TARGET_V850E || TARGET_V850E2_ALL) ? "(" : ""), \
906 VALUE, REL, \
907 (0 && ! TARGET_BIG_SWITCH && (TARGET_V850E || TARGET_V850E2_ALL) ? ")>>1" : ""))
909 #define ASM_OUTPUT_ALIGN(FILE, LOG) \
910 if ((LOG) != 0) \
911 fprintf (FILE, "\t.align %d\n", (LOG))
913 /* We don't have to worry about dbx compatibility for the v850. */
914 #define DEFAULT_GDB_EXTENSIONS 1
916 /* Use stabs debugging info by default. */
917 #undef PREFERRED_DEBUGGING_TYPE
918 #define PREFERRED_DEBUGGING_TYPE DBX_DEBUG
920 /* Specify the machine mode that this machine uses
921 for the index in the tablejump instruction. */
922 #define CASE_VECTOR_MODE (TARGET_BIG_SWITCH ? SImode : HImode)
924 /* Define as C expression which evaluates to nonzero if the tablejump
925 instruction expects the table to contain offsets from the address of the
926 table.
927 Do not define this if the table should contain absolute addresses. */
928 #define CASE_VECTOR_PC_RELATIVE 1
930 /* The switch instruction requires that the jump table immediately follow
931 it. */
932 #define JUMP_TABLES_IN_TEXT_SECTION (!TARGET_JUMP_TABLES_IN_DATA_SECTION)
934 /* svr4.h defines this assuming that 4 byte alignment is required. */
935 #undef ASM_OUTPUT_BEFORE_CASE_LABEL
936 #define ASM_OUTPUT_BEFORE_CASE_LABEL(FILE,PREFIX,NUM,TABLE) \
937 ASM_OUTPUT_ALIGN ((FILE), (TARGET_BIG_SWITCH ? 2 : 1));
939 #define WORD_REGISTER_OPERATIONS
941 /* Byte and short loads sign extend the value to a word. */
942 #define LOAD_EXTEND_OP(MODE) SIGN_EXTEND
944 /* This flag, if defined, says the same insns that convert to a signed fixnum
945 also convert validly to an unsigned one. */
946 #define FIXUNS_TRUNC_LIKE_FIX_TRUNC
948 /* Max number of bytes we can move from memory to memory
949 in one reasonably fast instruction. */
950 #define MOVE_MAX 4
952 /* Define if shifts truncate the shift count
953 which implies one can omit a sign-extension or zero-extension
954 of a shift count. */
955 #define SHIFT_COUNT_TRUNCATED 1
957 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
958 is done just by pretending it is already truncated. */
959 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
961 /* Specify the machine mode that pointers have.
962 After generation of rtl, the compiler makes no further distinction
963 between pointers and any other objects of this machine mode. */
964 #define Pmode SImode
966 /* A function address in a call instruction
967 is a byte address (for indexing purposes)
968 so give the MEM rtx a byte's mode. */
969 #define FUNCTION_MODE QImode
971 /* Tell compiler we want to support GHS pragmas */
972 #define REGISTER_TARGET_PRAGMAS() do { \
973 c_register_pragma ("ghs", "interrupt", ghs_pragma_interrupt); \
974 c_register_pragma ("ghs", "section", ghs_pragma_section); \
975 c_register_pragma ("ghs", "starttda", ghs_pragma_starttda); \
976 c_register_pragma ("ghs", "startsda", ghs_pragma_startsda); \
977 c_register_pragma ("ghs", "startzda", ghs_pragma_startzda); \
978 c_register_pragma ("ghs", "endtda", ghs_pragma_endtda); \
979 c_register_pragma ("ghs", "endsda", ghs_pragma_endsda); \
980 c_register_pragma ("ghs", "endzda", ghs_pragma_endzda); \
981 } while (0)
983 /* enum GHS_SECTION_KIND is an enumeration of the kinds of sections that
984 can appear in the "ghs section" pragma. These names are used to index
985 into the GHS_default_section_names[] and GHS_current_section_names[]
986 that are defined in v850.c, and so the ordering of each must remain
987 consistent.
989 These arrays give the default and current names for each kind of
990 section defined by the GHS pragmas. The current names can be changed
991 by the "ghs section" pragma. If the current names are null, use
992 the default names. Note that the two arrays have different types.
994 For the *normal* section kinds (like .data, .text, etc.) we do not
995 want to explicitly force the name of these sections, but would rather
996 let the linker (or at least the back end) choose the name of the
997 section, UNLESS the user has force a specific name for these section
998 kinds. To accomplish this set the name in ghs_default_section_names
999 to null. */
1001 enum GHS_section_kind
1003 GHS_SECTION_KIND_DEFAULT,
1005 GHS_SECTION_KIND_TEXT,
1006 GHS_SECTION_KIND_DATA,
1007 GHS_SECTION_KIND_RODATA,
1008 GHS_SECTION_KIND_BSS,
1009 GHS_SECTION_KIND_SDATA,
1010 GHS_SECTION_KIND_ROSDATA,
1011 GHS_SECTION_KIND_TDATA,
1012 GHS_SECTION_KIND_ZDATA,
1013 GHS_SECTION_KIND_ROZDATA,
1015 COUNT_OF_GHS_SECTION_KINDS /* must be last */
1018 /* The following code is for handling pragmas supported by the
1019 v850 compiler produced by Green Hills Software. This is at
1020 the specific request of a customer. */
1022 typedef struct data_area_stack_element
1024 struct data_area_stack_element * prev;
1025 v850_data_area data_area; /* Current default data area. */
1026 } data_area_stack_element;
1028 /* Track the current data area set by the
1029 data area pragma (which can be nested). */
1030 extern data_area_stack_element * data_area_stack;
1032 /* Names of the various data areas used on the v850. */
1033 extern union tree_node * GHS_default_section_names [(int) COUNT_OF_GHS_SECTION_KINDS];
1034 extern union tree_node * GHS_current_section_names [(int) COUNT_OF_GHS_SECTION_KINDS];
1036 /* The assembler op to start the file. */
1038 #define FILE_ASM_OP "\t.file\n"
1040 /* Enable the register move pass to improve code. */
1041 #define ENABLE_REGMOVE_PASS
1044 /* Implement ZDA, TDA, and SDA */
1046 #define EP_REGNUM 30 /* ep register number */
1048 #define SYMBOL_FLAG_ZDA (SYMBOL_FLAG_MACH_DEP << 0)
1049 #define SYMBOL_FLAG_TDA (SYMBOL_FLAG_MACH_DEP << 1)
1050 #define SYMBOL_FLAG_SDA (SYMBOL_FLAG_MACH_DEP << 2)
1051 #define SYMBOL_REF_ZDA_P(X) ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_ZDA) != 0)
1052 #define SYMBOL_REF_TDA_P(X) ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_TDA) != 0)
1053 #define SYMBOL_REF_SDA_P(X) ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_SDA) != 0)
1055 #define TARGET_ASM_INIT_SECTIONS v850_asm_init_sections
1057 /* Define this so that the cc1plus will not think that system header files
1058 need an implicit 'extern "C" { ... }' assumed. This breaks testing C++
1059 in a build directory where the libstdc++ header files are found via a
1060 -isystem <path-to-build-dir>. */
1061 #define NO_IMPLICIT_EXTERN_C
1063 #endif /* ! GCC_V850_H */