Merge from mainline (165734:167278).
[official-gcc/graphite-test-results.git] / gcc / config / ia64 / ia64.h
blob0b512f25cc87c897c40a985b60362097b2a1491b
1 /* Definitions of target machine GNU compiler. IA-64 version.
2 Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
3 2009, 2010 Free Software Foundation, Inc.
4 Contributed by James E. Wilson <wilson@cygnus.com> and
5 David Mosberger <davidm@hpl.hp.com>.
7 This file is part of GCC.
9 GCC is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3, or (at your option)
12 any later version.
14 GCC is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING3. If not see
21 <http://www.gnu.org/licenses/>. */
23 /* ??? Look at ABI group documents for list of preprocessor macros and
24 other features required for ABI compliance. */
26 /* ??? Functions containing a non-local goto target save many registers. Why?
27 See for instance execute/920428-2.c. */
30 /* Run-time target specifications */
32 /* Target CPU builtins. */
33 #define TARGET_CPU_CPP_BUILTINS() \
34 do { \
35 builtin_assert("cpu=ia64"); \
36 builtin_assert("machine=ia64"); \
37 builtin_define("__ia64"); \
38 builtin_define("__ia64__"); \
39 builtin_define("__itanium__"); \
40 if (TARGET_BIG_ENDIAN) \
41 builtin_define("__BIG_ENDIAN__"); \
42 } while (0)
44 #ifndef SUBTARGET_EXTRA_SPECS
45 #define SUBTARGET_EXTRA_SPECS
46 #endif
48 #define EXTRA_SPECS \
49 { "asm_extra", ASM_EXTRA_SPEC }, \
50 SUBTARGET_EXTRA_SPECS
52 #define CC1_SPEC "%(cc1_cpu) "
54 #define ASM_EXTRA_SPEC ""
56 /* Variables which are this size or smaller are put in the sdata/sbss
57 sections. */
58 extern unsigned int ia64_section_threshold;
60 /* If the assembler supports thread-local storage, assume that the
61 system does as well. If a particular target system has an
62 assembler that supports TLS -- but the rest of the system does not
63 support TLS -- that system should explicit define TARGET_HAVE_TLS
64 to false in its own configuration file. */
65 #if !defined(TARGET_HAVE_TLS) && defined(HAVE_AS_TLS)
66 #define TARGET_HAVE_TLS true
67 #endif
69 #define TARGET_TLS14 (ia64_tls_size == 14)
70 #define TARGET_TLS22 (ia64_tls_size == 22)
71 #define TARGET_TLS64 (ia64_tls_size == 64)
73 #define TARGET_HPUX 0
74 #define TARGET_HPUX_LD 0
76 #define TARGET_ABI_OPEN_VMS 0
78 #ifndef TARGET_ILP32
79 #define TARGET_ILP32 0
80 #endif
82 #ifndef HAVE_AS_LTOFFX_LDXMOV_RELOCS
83 #define HAVE_AS_LTOFFX_LDXMOV_RELOCS 0
84 #endif
86 /* Values for TARGET_INLINE_FLOAT_DIV, TARGET_INLINE_INT_DIV, and
87 TARGET_INLINE_SQRT. */
89 enum ia64_inline_type
91 INL_NO = 0,
92 INL_MIN_LAT = 1,
93 INL_MAX_THR = 2
96 /* Default target_flags if no switches are specified */
98 #ifndef TARGET_DEFAULT
99 #define TARGET_DEFAULT (MASK_DWARF2_ASM)
100 #endif
102 #ifndef TARGET_CPU_DEFAULT
103 #define TARGET_CPU_DEFAULT 0
104 #endif
106 /* Which processor to schedule for. The cpu attribute defines a list
107 that mirrors this list, so changes to ia64.md must be made at the
108 same time. */
110 enum processor_type
112 PROCESSOR_ITANIUM, /* Original Itanium. */
113 PROCESSOR_ITANIUM2,
114 PROCESSOR_max
117 extern enum processor_type ia64_tune;
119 /* Driver configuration */
121 /* A C string constant that tells the GCC driver program options to pass to
122 `cc1'. It can also specify how to translate options you give to GCC into
123 options for GCC to pass to the `cc1'. */
125 #undef CC1_SPEC
126 #define CC1_SPEC "%{G*}"
128 /* A C string constant that tells the GCC driver program options to pass to
129 `cc1plus'. It can also specify how to translate options you give to GCC
130 into options for GCC to pass to the `cc1plus'. */
132 /* #define CC1PLUS_SPEC "" */
134 /* Storage Layout */
136 /* Define this macro to have the value 1 if the most significant bit in a byte
137 has the lowest number; otherwise define it to have the value zero. */
139 #define BITS_BIG_ENDIAN 0
141 #define BYTES_BIG_ENDIAN (TARGET_BIG_ENDIAN != 0)
143 /* Define this macro to have the value 1 if, in a multiword object, the most
144 significant word has the lowest number. */
146 #define WORDS_BIG_ENDIAN (TARGET_BIG_ENDIAN != 0)
148 #define UNITS_PER_WORD 8
150 #define POINTER_SIZE (TARGET_ILP32 ? 32 : 64)
152 /* A C expression whose value is zero if pointers that need to be extended
153 from being `POINTER_SIZE' bits wide to `Pmode' are sign-extended and one if
154 they are zero-extended and negative one if there is a ptr_extend operation.
156 You need not define this macro if the `POINTER_SIZE' is equal to the width
157 of `Pmode'. */
158 /* Need this for 32-bit pointers, see hpux.h for setting it. */
159 /* #define POINTERS_EXTEND_UNSIGNED */
161 /* A macro to update MODE and UNSIGNEDP when an object whose type is TYPE and
162 which has the specified mode and signedness is to be stored in a register.
163 This macro is only called when TYPE is a scalar type. */
164 #define PROMOTE_MODE(MODE,UNSIGNEDP,TYPE) \
165 do \
167 if (GET_MODE_CLASS (MODE) == MODE_INT \
168 && GET_MODE_SIZE (MODE) < 4) \
169 (MODE) = SImode; \
171 while (0)
173 #define PARM_BOUNDARY 64
175 /* Define this macro if you wish to preserve a certain alignment for the stack
176 pointer. The definition is a C expression for the desired alignment
177 (measured in bits). */
179 #define STACK_BOUNDARY 128
181 /* Align frames on double word boundaries */
182 #ifndef IA64_STACK_ALIGN
183 #define IA64_STACK_ALIGN(LOC) (((LOC) + 15) & ~15)
184 #endif
186 #define FUNCTION_BOUNDARY 128
188 /* Optional x86 80-bit float, quad-precision 128-bit float, and quad-word
189 128-bit integers all require 128-bit alignment. */
190 #define BIGGEST_ALIGNMENT 128
192 /* If defined, a C expression to compute the alignment for a static variable.
193 TYPE is the data type, and ALIGN is the alignment that the object
194 would ordinarily have. The value of this macro is used instead of that
195 alignment to align the object. */
197 #define DATA_ALIGNMENT(TYPE, ALIGN) \
198 (TREE_CODE (TYPE) == ARRAY_TYPE \
199 && TYPE_MODE (TREE_TYPE (TYPE)) == QImode \
200 && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
202 /* If defined, a C expression to compute the alignment given to a constant that
203 is being placed in memory. CONSTANT is the constant and ALIGN is the
204 alignment that the object would ordinarily have. The value of this macro is
205 used instead of that alignment to align the object. */
207 #define CONSTANT_ALIGNMENT(EXP, ALIGN) \
208 (TREE_CODE (EXP) == STRING_CST \
209 && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
211 #define STRICT_ALIGNMENT 1
213 /* Define this if you wish to imitate the way many other C compilers handle
214 alignment of bitfields and the structures that contain them.
215 The behavior is that the type written for a bit-field (`int', `short', or
216 other integer type) imposes an alignment for the entire structure, as if the
217 structure really did contain an ordinary field of that type. In addition,
218 the bit-field is placed within the structure so that it would fit within such
219 a field, not crossing a boundary for it. */
220 #define PCC_BITFIELD_TYPE_MATTERS 1
222 /* An integer expression for the size in bits of the largest integer machine
223 mode that should actually be used. */
225 /* Allow pairs of registers to be used, which is the intent of the default. */
226 #define MAX_FIXED_MODE_SIZE GET_MODE_BITSIZE (TImode)
228 /* By default, the C++ compiler will use function addresses in the
229 vtable entries. Setting this nonzero tells the compiler to use
230 function descriptors instead. The value of this macro says how
231 many words wide the descriptor is (normally 2). It is assumed
232 that the address of a function descriptor may be treated as a
233 pointer to a function.
235 For reasons known only to HP, the vtable entries (as opposed to
236 normal function descriptors) are 16 bytes wide in 32-bit mode as
237 well, even though the 3rd and 4th words are unused. */
238 #define TARGET_VTABLE_USES_DESCRIPTORS (TARGET_ILP32 ? 4 : 2)
240 /* Due to silliness in the HPUX linker, vtable entries must be
241 8-byte aligned even in 32-bit mode. Rather than create multiple
242 ABIs, force this restriction on everyone else too. */
243 #define TARGET_VTABLE_ENTRY_ALIGN 64
245 /* Due to the above, we need extra padding for the data entries below 0
246 to retain the alignment of the descriptors. */
247 #define TARGET_VTABLE_DATA_ENTRY_DISTANCE (TARGET_ILP32 ? 2 : 1)
249 /* Layout of Source Language Data Types */
251 #define INT_TYPE_SIZE 32
253 #define SHORT_TYPE_SIZE 16
255 #define LONG_TYPE_SIZE (TARGET_ILP32 ? 32 : 64)
257 #define LONG_LONG_TYPE_SIZE 64
259 #define FLOAT_TYPE_SIZE 32
261 #define DOUBLE_TYPE_SIZE 64
263 /* long double is XFmode normally, and TFmode for HPUX. It should be
264 TFmode for VMS as well but we only support up to DFmode now. */
265 #define LONG_DOUBLE_TYPE_SIZE \
266 (TARGET_HPUX ? 128 \
267 : TARGET_ABI_OPEN_VMS ? 64 \
268 : 80)
270 /* We always want the XFmode operations from libgcc2.c, except on VMS
271 where this yields references to unimplemented "insns". */
272 #define LIBGCC2_LONG_DOUBLE_TYPE_SIZE (TARGET_ABI_OPEN_VMS ? 64 : 80)
275 /* On HP-UX, we use the l suffix for TFmode in libgcc2.c. */
276 #define LIBGCC2_TF_CEXT l
278 #define DEFAULT_SIGNED_CHAR 1
280 /* A C expression for a string describing the name of the data type to use for
281 size values. The typedef name `size_t' is defined using the contents of the
282 string. */
283 /* ??? Needs to be defined for P64 code. */
284 /* #define SIZE_TYPE */
286 /* A C expression for a string describing the name of the data type to use for
287 the result of subtracting two pointers. The typedef name `ptrdiff_t' is
288 defined using the contents of the string. See `SIZE_TYPE' above for more
289 information. */
290 /* ??? Needs to be defined for P64 code. */
291 /* #define PTRDIFF_TYPE */
293 /* A C expression for a string describing the name of the data type to use for
294 wide characters. The typedef name `wchar_t' is defined using the contents
295 of the string. See `SIZE_TYPE' above for more information. */
296 /* #define WCHAR_TYPE */
298 /* A C expression for the size in bits of the data type for wide characters.
299 This is used in `cpp', which cannot make use of `WCHAR_TYPE'. */
300 /* #define WCHAR_TYPE_SIZE */
303 /* Register Basics */
305 /* Number of hardware registers known to the compiler.
306 We have 128 general registers, 128 floating point registers,
307 64 predicate registers, 8 branch registers, one frame pointer,
308 and several "application" registers. */
310 #define FIRST_PSEUDO_REGISTER 334
312 /* Ranges for the various kinds of registers. */
313 #define ADDL_REGNO_P(REGNO) ((unsigned HOST_WIDE_INT) (REGNO) <= 3)
314 #define GR_REGNO_P(REGNO) ((unsigned HOST_WIDE_INT) (REGNO) <= 127)
315 #define FR_REGNO_P(REGNO) ((REGNO) >= 128 && (REGNO) <= 255)
316 #define FP_REGNO_P(REGNO) ((REGNO) >= 128 && (REGNO) <= 254 && (REGNO) != 159)
317 #define PR_REGNO_P(REGNO) ((REGNO) >= 256 && (REGNO) <= 319)
318 #define BR_REGNO_P(REGNO) ((REGNO) >= 320 && (REGNO) <= 327)
319 #define GENERAL_REGNO_P(REGNO) \
320 (GR_REGNO_P (REGNO) || (REGNO) == FRAME_POINTER_REGNUM)
322 #define GR_REG(REGNO) ((REGNO) + 0)
323 #define FR_REG(REGNO) ((REGNO) + 128)
324 #define PR_REG(REGNO) ((REGNO) + 256)
325 #define BR_REG(REGNO) ((REGNO) + 320)
326 #define OUT_REG(REGNO) ((REGNO) + 120)
327 #define IN_REG(REGNO) ((REGNO) + 112)
328 #define LOC_REG(REGNO) ((REGNO) + 32)
330 #define AR_CCV_REGNUM 329
331 #define AR_UNAT_REGNUM 330
332 #define AR_PFS_REGNUM 331
333 #define AR_LC_REGNUM 332
334 #define AR_EC_REGNUM 333
336 #define IN_REGNO_P(REGNO) ((REGNO) >= IN_REG (0) && (REGNO) <= IN_REG (7))
337 #define LOC_REGNO_P(REGNO) ((REGNO) >= LOC_REG (0) && (REGNO) <= LOC_REG (79))
338 #define OUT_REGNO_P(REGNO) ((REGNO) >= OUT_REG (0) && (REGNO) <= OUT_REG (7))
340 #define AR_M_REGNO_P(REGNO) ((REGNO) == AR_CCV_REGNUM \
341 || (REGNO) == AR_UNAT_REGNUM)
342 #define AR_I_REGNO_P(REGNO) ((REGNO) >= AR_PFS_REGNUM \
343 && (REGNO) < FIRST_PSEUDO_REGISTER)
344 #define AR_REGNO_P(REGNO) ((REGNO) >= AR_CCV_REGNUM \
345 && (REGNO) < FIRST_PSEUDO_REGISTER)
348 /* ??? Don't really need two sets of macros. I like this one better because
349 it is less typing. */
350 #define R_GR(REGNO) GR_REG (REGNO)
351 #define R_FR(REGNO) FR_REG (REGNO)
352 #define R_PR(REGNO) PR_REG (REGNO)
353 #define R_BR(REGNO) BR_REG (REGNO)
355 /* An initializer that says which registers are used for fixed purposes all
356 throughout the compiled code and are therefore not available for general
357 allocation.
359 r0: constant 0
360 r1: global pointer (gp)
361 r12: stack pointer (sp)
362 r13: thread pointer (tp)
363 f0: constant 0.0
364 f1: constant 1.0
365 p0: constant true
366 fp: eliminable frame pointer */
368 /* The last 16 stacked regs are reserved for the 8 input and 8 output
369 registers. */
371 #define FIXED_REGISTERS \
372 { /* General registers. */ \
373 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, \
374 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
375 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
376 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
377 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
378 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
379 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
380 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
381 /* Floating-point registers. */ \
382 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
383 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
384 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
385 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
386 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
387 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
388 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
389 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
390 /* Predicate registers. */ \
391 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
392 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
393 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
394 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
395 /* Branch registers. */ \
396 0, 0, 0, 0, 0, 0, 0, 0, \
397 /*FP CCV UNAT PFS LC EC */ \
398 1, 1, 1, 1, 1, 1 \
401 /* Like `FIXED_REGISTERS' but has 1 for each register that is clobbered
402 (in general) by function calls as well as for fixed registers. This
403 macro therefore identifies the registers that are not available for
404 general allocation of values that must live across function calls. */
406 #define CALL_USED_REGISTERS \
407 { /* General registers. */ \
408 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, \
409 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
410 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
411 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
412 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
413 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
414 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
415 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, \
416 /* Floating-point registers. */ \
417 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
418 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
419 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
420 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
421 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
422 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
423 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
424 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
425 /* Predicate registers. */ \
426 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
427 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
428 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
429 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
430 /* Branch registers. */ \
431 1, 0, 0, 0, 0, 0, 1, 1, \
432 /*FP CCV UNAT PFS LC EC */ \
433 1, 1, 1, 1, 1, 1 \
436 /* Like `CALL_USED_REGISTERS' but used to overcome a historical
437 problem which makes CALL_USED_REGISTERS *always* include
438 all the FIXED_REGISTERS. Until this problem has been
439 resolved this macro can be used to overcome this situation.
440 In particular, block_propagate() requires this list
441 be accurate, or we can remove registers which should be live.
442 This macro is used in regs_invalidated_by_call. */
444 #define CALL_REALLY_USED_REGISTERS \
445 { /* General registers. */ \
446 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, \
447 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
448 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
449 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
450 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
451 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
452 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
453 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, \
454 /* Floating-point registers. */ \
455 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
456 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
457 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
458 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
459 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
460 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
461 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
462 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
463 /* Predicate registers. */ \
464 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
465 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
466 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
467 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
468 /* Branch registers. */ \
469 1, 0, 0, 0, 0, 0, 1, 1, \
470 /*FP CCV UNAT PFS LC EC */ \
471 0, 1, 0, 1, 0, 0 \
475 /* Define this macro if the target machine has register windows. This C
476 expression returns the register number as seen by the called function
477 corresponding to the register number OUT as seen by the calling function.
478 Return OUT if register number OUT is not an outbound register. */
480 #define INCOMING_REGNO(OUT) \
481 ((unsigned) ((OUT) - OUT_REG (0)) < 8 ? IN_REG ((OUT) - OUT_REG (0)) : (OUT))
483 /* Define this macro if the target machine has register windows. This C
484 expression returns the register number as seen by the calling function
485 corresponding to the register number IN as seen by the called function.
486 Return IN if register number IN is not an inbound register. */
488 #define OUTGOING_REGNO(IN) \
489 ((unsigned) ((IN) - IN_REG (0)) < 8 ? OUT_REG ((IN) - IN_REG (0)) : (IN))
491 /* Define this macro if the target machine has register windows. This
492 C expression returns true if the register is call-saved but is in the
493 register window. */
495 #define LOCAL_REGNO(REGNO) \
496 (IN_REGNO_P (REGNO) || LOC_REGNO_P (REGNO))
498 /* We define CCImode in ia64-modes.def so we need a selector. */
500 #define SELECT_CC_MODE(OP,X,Y) CCmode
502 /* Order of allocation of registers */
504 /* If defined, an initializer for a vector of integers, containing the numbers
505 of hard registers in the order in which GCC should prefer to use them
506 (from most preferred to least).
508 If this macro is not defined, registers are used lowest numbered first (all
509 else being equal).
511 One use of this macro is on machines where the highest numbered registers
512 must always be saved and the save-multiple-registers instruction supports
513 only sequences of consecutive registers. On such machines, define
514 `REG_ALLOC_ORDER' to be an initializer that lists the highest numbered
515 allocatable register first. */
517 /* ??? Should the GR return value registers come before or after the rest
518 of the caller-save GRs? */
520 #define REG_ALLOC_ORDER \
522 /* Caller-saved general registers. */ \
523 R_GR (14), R_GR (15), R_GR (16), R_GR (17), \
524 R_GR (18), R_GR (19), R_GR (20), R_GR (21), R_GR (22), R_GR (23), \
525 R_GR (24), R_GR (25), R_GR (26), R_GR (27), R_GR (28), R_GR (29), \
526 R_GR (30), R_GR (31), \
527 /* Output registers. */ \
528 R_GR (120), R_GR (121), R_GR (122), R_GR (123), R_GR (124), R_GR (125), \
529 R_GR (126), R_GR (127), \
530 /* Caller-saved general registers, also used for return values. */ \
531 R_GR (8), R_GR (9), R_GR (10), R_GR (11), \
532 /* addl caller-saved general registers. */ \
533 R_GR (2), R_GR (3), \
534 /* Caller-saved FP registers. */ \
535 R_FR (6), R_FR (7), \
536 /* Caller-saved FP registers, used for parameters and return values. */ \
537 R_FR (8), R_FR (9), R_FR (10), R_FR (11), \
538 R_FR (12), R_FR (13), R_FR (14), R_FR (15), \
539 /* Rotating caller-saved FP registers. */ \
540 R_FR (32), R_FR (33), R_FR (34), R_FR (35), \
541 R_FR (36), R_FR (37), R_FR (38), R_FR (39), R_FR (40), R_FR (41), \
542 R_FR (42), R_FR (43), R_FR (44), R_FR (45), R_FR (46), R_FR (47), \
543 R_FR (48), R_FR (49), R_FR (50), R_FR (51), R_FR (52), R_FR (53), \
544 R_FR (54), R_FR (55), R_FR (56), R_FR (57), R_FR (58), R_FR (59), \
545 R_FR (60), R_FR (61), R_FR (62), R_FR (63), R_FR (64), R_FR (65), \
546 R_FR (66), R_FR (67), R_FR (68), R_FR (69), R_FR (70), R_FR (71), \
547 R_FR (72), R_FR (73), R_FR (74), R_FR (75), R_FR (76), R_FR (77), \
548 R_FR (78), R_FR (79), R_FR (80), R_FR (81), R_FR (82), R_FR (83), \
549 R_FR (84), R_FR (85), R_FR (86), R_FR (87), R_FR (88), R_FR (89), \
550 R_FR (90), R_FR (91), R_FR (92), R_FR (93), R_FR (94), R_FR (95), \
551 R_FR (96), R_FR (97), R_FR (98), R_FR (99), R_FR (100), R_FR (101), \
552 R_FR (102), R_FR (103), R_FR (104), R_FR (105), R_FR (106), R_FR (107), \
553 R_FR (108), R_FR (109), R_FR (110), R_FR (111), R_FR (112), R_FR (113), \
554 R_FR (114), R_FR (115), R_FR (116), R_FR (117), R_FR (118), R_FR (119), \
555 R_FR (120), R_FR (121), R_FR (122), R_FR (123), R_FR (124), R_FR (125), \
556 R_FR (126), R_FR (127), \
557 /* Caller-saved predicate registers. */ \
558 R_PR (6), R_PR (7), R_PR (8), R_PR (9), R_PR (10), R_PR (11), \
559 R_PR (12), R_PR (13), R_PR (14), R_PR (15), \
560 /* Rotating caller-saved predicate registers. */ \
561 R_PR (16), R_PR (17), \
562 R_PR (18), R_PR (19), R_PR (20), R_PR (21), R_PR (22), R_PR (23), \
563 R_PR (24), R_PR (25), R_PR (26), R_PR (27), R_PR (28), R_PR (29), \
564 R_PR (30), R_PR (31), R_PR (32), R_PR (33), R_PR (34), R_PR (35), \
565 R_PR (36), R_PR (37), R_PR (38), R_PR (39), R_PR (40), R_PR (41), \
566 R_PR (42), R_PR (43), R_PR (44), R_PR (45), R_PR (46), R_PR (47), \
567 R_PR (48), R_PR (49), R_PR (50), R_PR (51), R_PR (52), R_PR (53), \
568 R_PR (54), R_PR (55), R_PR (56), R_PR (57), R_PR (58), R_PR (59), \
569 R_PR (60), R_PR (61), R_PR (62), R_PR (63), \
570 /* Caller-saved branch registers. */ \
571 R_BR (6), R_BR (7), \
573 /* Stacked callee-saved general registers. */ \
574 R_GR (32), R_GR (33), R_GR (34), R_GR (35), \
575 R_GR (36), R_GR (37), R_GR (38), R_GR (39), R_GR (40), R_GR (41), \
576 R_GR (42), R_GR (43), R_GR (44), R_GR (45), R_GR (46), R_GR (47), \
577 R_GR (48), R_GR (49), R_GR (50), R_GR (51), R_GR (52), R_GR (53), \
578 R_GR (54), R_GR (55), R_GR (56), R_GR (57), R_GR (58), R_GR (59), \
579 R_GR (60), R_GR (61), R_GR (62), R_GR (63), R_GR (64), R_GR (65), \
580 R_GR (66), R_GR (67), R_GR (68), R_GR (69), R_GR (70), R_GR (71), \
581 R_GR (72), R_GR (73), R_GR (74), R_GR (75), R_GR (76), R_GR (77), \
582 R_GR (78), R_GR (79), R_GR (80), R_GR (81), R_GR (82), R_GR (83), \
583 R_GR (84), R_GR (85), R_GR (86), R_GR (87), R_GR (88), R_GR (89), \
584 R_GR (90), R_GR (91), R_GR (92), R_GR (93), R_GR (94), R_GR (95), \
585 R_GR (96), R_GR (97), R_GR (98), R_GR (99), R_GR (100), R_GR (101), \
586 R_GR (102), R_GR (103), R_GR (104), R_GR (105), R_GR (106), R_GR (107), \
587 R_GR (108), \
588 /* Input registers. */ \
589 R_GR (112), R_GR (113), R_GR (114), R_GR (115), R_GR (116), R_GR (117), \
590 R_GR (118), R_GR (119), \
591 /* Callee-saved general registers. */ \
592 R_GR (4), R_GR (5), R_GR (6), R_GR (7), \
593 /* Callee-saved FP registers. */ \
594 R_FR (2), R_FR (3), R_FR (4), R_FR (5), R_FR (16), R_FR (17), \
595 R_FR (18), R_FR (19), R_FR (20), R_FR (21), R_FR (22), R_FR (23), \
596 R_FR (24), R_FR (25), R_FR (26), R_FR (27), R_FR (28), R_FR (29), \
597 R_FR (30), R_FR (31), \
598 /* Callee-saved predicate registers. */ \
599 R_PR (1), R_PR (2), R_PR (3), R_PR (4), R_PR (5), \
600 /* Callee-saved branch registers. */ \
601 R_BR (1), R_BR (2), R_BR (3), R_BR (4), R_BR (5), \
603 /* ??? Stacked registers reserved for fp, rp, and ar.pfs. */ \
604 R_GR (109), R_GR (110), R_GR (111), \
606 /* Special general registers. */ \
607 R_GR (0), R_GR (1), R_GR (12), R_GR (13), \
608 /* Special FP registers. */ \
609 R_FR (0), R_FR (1), \
610 /* Special predicate registers. */ \
611 R_PR (0), \
612 /* Special branch registers. */ \
613 R_BR (0), \
614 /* Other fixed registers. */ \
615 FRAME_POINTER_REGNUM, \
616 AR_CCV_REGNUM, AR_UNAT_REGNUM, AR_PFS_REGNUM, AR_LC_REGNUM, \
617 AR_EC_REGNUM \
620 /* How Values Fit in Registers */
622 /* A C expression for the number of consecutive hard registers, starting at
623 register number REGNO, required to hold a value of mode MODE. */
625 /* ??? We say that BImode PR values require two registers. This allows us to
626 easily store the normal and inverted values. We use CCImode to indicate
627 a single predicate register. */
629 #define HARD_REGNO_NREGS(REGNO, MODE) \
630 ((REGNO) == PR_REG (0) && (MODE) == DImode ? 64 \
631 : PR_REGNO_P (REGNO) && (MODE) == BImode ? 2 \
632 : (PR_REGNO_P (REGNO) || GR_REGNO_P (REGNO)) && (MODE) == CCImode ? 1\
633 : FR_REGNO_P (REGNO) && (MODE) == XFmode ? 1 \
634 : FR_REGNO_P (REGNO) && (MODE) == RFmode ? 1 \
635 : FR_REGNO_P (REGNO) && (MODE) == XCmode ? 2 \
636 : (GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
638 /* A C expression that is nonzero if it is permissible to store a value of mode
639 MODE in hard register number REGNO (or in several registers starting with
640 that one). */
642 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
643 (FR_REGNO_P (REGNO) ? \
644 GET_MODE_CLASS (MODE) != MODE_CC && \
645 (MODE) != BImode && \
646 (MODE) != TFmode \
647 : PR_REGNO_P (REGNO) ? \
648 (MODE) == BImode || GET_MODE_CLASS (MODE) == MODE_CC \
649 : GR_REGNO_P (REGNO) ? \
650 (MODE) != XFmode && (MODE) != XCmode && (MODE) != RFmode \
651 : AR_REGNO_P (REGNO) ? (MODE) == DImode \
652 : BR_REGNO_P (REGNO) ? (MODE) == DImode \
653 : 0)
655 /* A C expression that is nonzero if it is desirable to choose register
656 allocation so as to avoid move instructions between a value of mode MODE1
657 and a value of mode MODE2.
659 If `HARD_REGNO_MODE_OK (R, MODE1)' and `HARD_REGNO_MODE_OK (R, MODE2)' are
660 ever different for any R, then `MODES_TIEABLE_P (MODE1, MODE2)' must be
661 zero. */
662 /* Don't tie integer and FP modes, as that causes us to get integer registers
663 allocated for FP instructions. XFmode only supported in FP registers so
664 we can't tie it with any other modes. */
665 #define MODES_TIEABLE_P(MODE1, MODE2) \
666 (GET_MODE_CLASS (MODE1) == GET_MODE_CLASS (MODE2) \
667 && ((((MODE1) == XFmode) || ((MODE1) == XCmode) || ((MODE1) == RFmode)) \
668 == (((MODE2) == XFmode) || ((MODE2) == XCmode) || ((MODE2) == RFmode))) \
669 && (((MODE1) == BImode) == ((MODE2) == BImode)))
671 /* Specify the modes required to caller save a given hard regno.
672 We need to ensure floating pt regs are not saved as DImode. */
674 #define HARD_REGNO_CALLER_SAVE_MODE(REGNO, NREGS, MODE) \
675 ((FR_REGNO_P (REGNO) && (NREGS) == 1) ? RFmode \
676 : choose_hard_reg_mode ((REGNO), (NREGS), false))
678 /* Handling Leaf Functions */
680 /* A C initializer for a vector, indexed by hard register number, which
681 contains 1 for a register that is allowable in a candidate for leaf function
682 treatment. */
683 /* ??? This might be useful. */
684 /* #define LEAF_REGISTERS */
686 /* A C expression whose value is the register number to which REGNO should be
687 renumbered, when a function is treated as a leaf function. */
688 /* ??? This might be useful. */
689 /* #define LEAF_REG_REMAP(REGNO) */
692 /* Register Classes */
694 /* An enumeral type that must be defined with all the register class names as
695 enumeral values. `NO_REGS' must be first. `ALL_REGS' must be the last
696 register class, followed by one more enumeral value, `LIM_REG_CLASSES',
697 which is not a register class but rather tells how many classes there
698 are. */
699 /* ??? When compiling without optimization, it is possible for the only use of
700 a pseudo to be a parameter load from the stack with a REG_EQUIV note.
701 Regclass handles this case specially and does not assign any costs to the
702 pseudo. The pseudo then ends up using the last class before ALL_REGS.
703 Thus we must not let either PR_REGS or BR_REGS be the last class. The
704 testcase for this is gcc.c-torture/execute/va-arg-7.c. */
705 enum reg_class
707 NO_REGS,
708 PR_REGS,
709 BR_REGS,
710 AR_M_REGS,
711 AR_I_REGS,
712 ADDL_REGS,
713 GR_REGS,
714 FP_REGS,
715 FR_REGS,
716 GR_AND_BR_REGS,
717 GR_AND_FR_REGS,
718 ALL_REGS,
719 LIM_REG_CLASSES
722 #define GENERAL_REGS GR_REGS
724 /* The number of distinct register classes. */
725 #define N_REG_CLASSES ((int) LIM_REG_CLASSES)
727 /* An initializer containing the names of the register classes as C string
728 constants. These names are used in writing some of the debugging dumps. */
729 #define REG_CLASS_NAMES \
730 { "NO_REGS", "PR_REGS", "BR_REGS", "AR_M_REGS", "AR_I_REGS", \
731 "ADDL_REGS", "GR_REGS", "FP_REGS", "FR_REGS", \
732 "GR_AND_BR_REGS", "GR_AND_FR_REGS", "ALL_REGS" }
734 /* An initializer containing the contents of the register classes, as integers
735 which are bit masks. The Nth integer specifies the contents of class N.
736 The way the integer MASK is interpreted is that register R is in the class
737 if `MASK & (1 << R)' is 1. */
738 #define REG_CLASS_CONTENTS \
740 /* NO_REGS. */ \
741 { 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
742 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
743 0x00000000, 0x00000000, 0x0000 }, \
744 /* PR_REGS. */ \
745 { 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
746 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
747 0xFFFFFFFF, 0xFFFFFFFF, 0x0000 }, \
748 /* BR_REGS. */ \
749 { 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
750 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
751 0x00000000, 0x00000000, 0x00FF }, \
752 /* AR_M_REGS. */ \
753 { 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
754 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
755 0x00000000, 0x00000000, 0x0600 }, \
756 /* AR_I_REGS. */ \
757 { 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
758 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
759 0x00000000, 0x00000000, 0x3800 }, \
760 /* ADDL_REGS. */ \
761 { 0x0000000F, 0x00000000, 0x00000000, 0x00000000, \
762 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
763 0x00000000, 0x00000000, 0x0000 }, \
764 /* GR_REGS. */ \
765 { 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, \
766 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
767 0x00000000, 0x00000000, 0x0100 }, \
768 /* FP_REGS. */ \
769 { 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
770 0x7FFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0x7FFFFFFF, \
771 0x00000000, 0x00000000, 0x0000 }, \
772 /* FR_REGS. */ \
773 { 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
774 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, \
775 0x00000000, 0x00000000, 0x0000 }, \
776 /* GR_AND_BR_REGS. */ \
777 { 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, \
778 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
779 0x00000000, 0x00000000, 0x01FF }, \
780 /* GR_AND_FR_REGS. */ \
781 { 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, \
782 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, \
783 0x00000000, 0x00000000, 0x0100 }, \
784 /* ALL_REGS. */ \
785 { 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, \
786 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, \
787 0xFFFFFFFF, 0xFFFFFFFF, 0x3FFF }, \
790 /* The following macro defines cover classes for Integrated Register
791 Allocator. Cover classes is a set of non-intersected register
792 classes covering all hard registers used for register allocation
793 purpose. Any move between two registers of a cover class should be
794 cheaper than load or store of the registers. The macro value is
795 array of register classes with LIM_REG_CLASSES used as the end
796 marker. */
798 #define IRA_COVER_CLASSES \
800 PR_REGS, BR_REGS, AR_M_REGS, AR_I_REGS, GR_REGS, FR_REGS, LIM_REG_CLASSES \
803 /* A C expression whose value is a register class containing hard register
804 REGNO. In general there is more than one such class; choose a class which
805 is "minimal", meaning that no smaller class also contains the register. */
806 /* The NO_REGS case is primarily for the benefit of rws_access_reg, which
807 may call here with private (invalid) register numbers, such as
808 REG_VOLATILE. */
809 #define REGNO_REG_CLASS(REGNO) \
810 (ADDL_REGNO_P (REGNO) ? ADDL_REGS \
811 : GENERAL_REGNO_P (REGNO) ? GR_REGS \
812 : FR_REGNO_P (REGNO) ? (REGNO) != R_FR (31) \
813 && (REGNO) != R_FR(127) ? FP_REGS : FR_REGS \
814 : PR_REGNO_P (REGNO) ? PR_REGS \
815 : BR_REGNO_P (REGNO) ? BR_REGS \
816 : AR_M_REGNO_P (REGNO) ? AR_M_REGS \
817 : AR_I_REGNO_P (REGNO) ? AR_I_REGS \
818 : NO_REGS)
820 /* A macro whose definition is the name of the class to which a valid base
821 register must belong. A base register is one used in an address which is
822 the register value plus a displacement. */
823 #define BASE_REG_CLASS GENERAL_REGS
825 /* A macro whose definition is the name of the class to which a valid index
826 register must belong. An index register is one used in an address where its
827 value is either multiplied by a scale factor or added to another register
828 (as well as added to a displacement). This is needed for POST_MODIFY. */
829 #define INDEX_REG_CLASS GENERAL_REGS
831 /* A C expression which is nonzero if register number NUM is suitable for use
832 as a base register in operand addresses. It may be either a suitable hard
833 register or a pseudo register that has been allocated such a hard reg. */
834 #define REGNO_OK_FOR_BASE_P(REGNO) \
835 (GENERAL_REGNO_P (REGNO) || GENERAL_REGNO_P (reg_renumber[REGNO]))
837 /* A C expression which is nonzero if register number NUM is suitable for use
838 as an index register in operand addresses. It may be either a suitable hard
839 register or a pseudo register that has been allocated such a hard reg.
840 This is needed for POST_MODIFY. */
841 #define REGNO_OK_FOR_INDEX_P(NUM) REGNO_OK_FOR_BASE_P (NUM)
843 /* You should define this macro to indicate to the reload phase that it may
844 need to allocate at least one register for a reload in addition to the
845 register to contain the data. Specifically, if copying X to a register
846 CLASS in MODE requires an intermediate register, you should define this
847 to return the largest register class all of whose registers can be used
848 as intermediate registers or scratch registers. */
850 #define SECONDARY_RELOAD_CLASS(CLASS, MODE, X) \
851 ia64_secondary_reload_class (CLASS, MODE, X)
853 /* Certain machines have the property that some registers cannot be copied to
854 some other registers without using memory. Define this macro on those
855 machines to be a C expression that is nonzero if objects of mode M in
856 registers of CLASS1 can only be copied to registers of class CLASS2 by
857 storing a register of CLASS1 into memory and loading that memory location
858 into a register of CLASS2. */
860 #if 0
861 /* ??? May need this, but since we've disallowed XFmode in GR_REGS,
862 I'm not quite sure how it could be invoked. The normal problems
863 with unions should be solved with the addressof fiddling done by
864 movxf and friends. */
865 #define SECONDARY_MEMORY_NEEDED(CLASS1, CLASS2, MODE) \
866 (((MODE) == XFmode || (MODE) == XCmode) \
867 && (((CLASS1) == GR_REGS && (CLASS2) == FR_REGS) \
868 || ((CLASS1) == FR_REGS && (CLASS2) == GR_REGS)))
869 #endif
871 /* A C expression for the maximum number of consecutive registers of
872 class CLASS needed to hold a value of mode MODE.
873 This is closely related to the macro `HARD_REGNO_NREGS'. */
875 #define CLASS_MAX_NREGS(CLASS, MODE) \
876 ((MODE) == BImode && (CLASS) == PR_REGS ? 2 \
877 : (((CLASS) == FR_REGS || (CLASS) == FP_REGS) && (MODE) == XFmode) ? 1 \
878 : (((CLASS) == FR_REGS || (CLASS) == FP_REGS) && (MODE) == RFmode) ? 1 \
879 : (((CLASS) == FR_REGS || (CLASS) == FP_REGS) && (MODE) == XCmode) ? 2 \
880 : (GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
882 /* In BR regs, we can't change the DImode at all.
883 In FP regs, we can't change FP values to integer values and vice versa,
884 but we can change e.g. DImode to SImode, and V2SFmode into DImode. */
886 #define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS) \
887 (reg_classes_intersect_p (CLASS, BR_REGS) \
888 ? (FROM) != (TO) \
889 : (SCALAR_FLOAT_MODE_P (FROM) != SCALAR_FLOAT_MODE_P (TO) \
890 ? reg_classes_intersect_p (CLASS, FR_REGS) \
891 : 0))
893 /* Basic Stack Layout */
895 /* Define this macro if pushing a word onto the stack moves the stack pointer
896 to a smaller address. */
897 #define STACK_GROWS_DOWNWARD 1
899 /* Define this macro to nonzero if the addresses of local variable slots
900 are at negative offsets from the frame pointer. */
901 #define FRAME_GROWS_DOWNWARD 0
903 /* Offset from the frame pointer to the first local variable slot to
904 be allocated. */
905 #define STARTING_FRAME_OFFSET 0
907 /* Offset from the stack pointer register to the first location at which
908 outgoing arguments are placed. If not specified, the default value of zero
909 is used. This is the proper value for most machines. */
910 /* IA64 has a 16 byte scratch area that is at the bottom of the stack. */
911 #define STACK_POINTER_OFFSET 16
913 /* Offset from the argument pointer register to the first argument's address.
914 On some machines it may depend on the data type of the function. */
915 #define FIRST_PARM_OFFSET(FUNDECL) 0
917 /* A C expression whose value is RTL representing the value of the return
918 address for the frame COUNT steps up from the current frame, after the
919 prologue. */
921 /* ??? Frames other than zero would likely require interpreting the frame
922 unwind info, so we don't try to support them. We would also need to define
923 DYNAMIC_CHAIN_ADDRESS and SETUP_FRAME_ADDRESS (for the reg stack flush). */
925 #define RETURN_ADDR_RTX(COUNT, FRAME) \
926 ia64_return_addr_rtx (COUNT, FRAME)
928 /* A C expression whose value is RTL representing the location of the incoming
929 return address at the beginning of any function, before the prologue. This
930 RTL is either a `REG', indicating that the return value is saved in `REG',
931 or a `MEM' representing a location in the stack. This enables DWARF2
932 unwind info for C++ EH. */
933 #define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (VOIDmode, BR_REG (0))
935 /* A C expression whose value is an integer giving the offset, in bytes, from
936 the value of the stack pointer register to the top of the stack frame at the
937 beginning of any function, before the prologue. The top of the frame is
938 defined to be the value of the stack pointer in the previous frame, just
939 before the call instruction. */
940 /* The CFA is past the red zone, not at the entry-point stack
941 pointer. */
942 #define INCOMING_FRAME_SP_OFFSET STACK_POINTER_OFFSET
944 /* We shorten debug info by using CFA-16 as DW_AT_frame_base. */
945 #define CFA_FRAME_BASE_OFFSET(FUNDECL) (-INCOMING_FRAME_SP_OFFSET)
948 /* Register That Address the Stack Frame. */
950 /* The register number of the stack pointer register, which must also be a
951 fixed register according to `FIXED_REGISTERS'. On most machines, the
952 hardware determines which register this is. */
954 #define STACK_POINTER_REGNUM 12
956 /* The register number of the frame pointer register, which is used to access
957 automatic variables in the stack frame. On some machines, the hardware
958 determines which register this is. On other machines, you can choose any
959 register you wish for this purpose. */
961 #define FRAME_POINTER_REGNUM 328
963 /* Base register for access to local variables of the function. */
964 #define HARD_FRAME_POINTER_REGNUM LOC_REG (79)
966 /* The register number of the arg pointer register, which is used to access the
967 function's argument list. */
968 /* r0 won't otherwise be used, so put the always eliminated argument pointer
969 in it. */
970 #define ARG_POINTER_REGNUM R_GR(0)
972 /* Due to the way varargs and argument spilling happens, the argument
973 pointer is not 16-byte aligned like the stack pointer. */
974 #define INIT_EXPANDERS \
975 do { \
976 ia64_init_expanders (); \
977 if (crtl->emit.regno_pointer_align) \
978 REGNO_POINTER_ALIGN (ARG_POINTER_REGNUM) = 64; \
979 } while (0)
981 /* Register numbers used for passing a function's static chain pointer. */
982 /* ??? The ABI sez the static chain should be passed as a normal parameter. */
983 #define STATIC_CHAIN_REGNUM 15
985 /* Eliminating the Frame Pointer and the Arg Pointer */
987 /* If defined, this macro specifies a table of register pairs used to eliminate
988 unneeded registers that point into the stack frame. */
990 #define ELIMINABLE_REGS \
992 {ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
993 {ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
994 {FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
995 {FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
998 /* This macro is similar to `INITIAL_FRAME_POINTER_OFFSET'. It
999 specifies the initial difference between the specified pair of
1000 registers. This macro must be defined if `ELIMINABLE_REGS' is
1001 defined. */
1002 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1003 ((OFFSET) = ia64_initial_elimination_offset ((FROM), (TO)))
1005 /* Passing Function Arguments on the Stack */
1007 /* If defined, the maximum amount of space required for outgoing arguments will
1008 be computed and placed into the variable
1009 `crtl->outgoing_args_size'. */
1011 #define ACCUMULATE_OUTGOING_ARGS 1
1014 /* Function Arguments in Registers */
1016 #define MAX_ARGUMENT_SLOTS 8
1017 #define MAX_INT_RETURN_SLOTS 4
1018 #define GR_ARG_FIRST IN_REG (0)
1019 #define GR_RET_FIRST GR_REG (8)
1020 #define GR_RET_LAST GR_REG (11)
1021 #define FR_ARG_FIRST FR_REG (8)
1022 #define FR_RET_FIRST FR_REG (8)
1023 #define FR_RET_LAST FR_REG (15)
1024 #define AR_ARG_FIRST OUT_REG (0)
1026 /* A C type for declaring a variable that is used as the first argument of
1027 `FUNCTION_ARG' and other related values. For some target machines, the type
1028 `int' suffices and can hold the number of bytes of argument so far. */
1030 enum ivms_arg_type {I64, FF, FD, FG, FS, FT};
1031 /* VMS floating point formats VAX F, VAX D, VAX G, IEEE S, IEEE T. */
1033 typedef struct ia64_args
1035 int words; /* # words of arguments so far */
1036 int int_regs; /* # GR registers used so far */
1037 int fp_regs; /* # FR registers used so far */
1038 int prototype; /* whether function prototyped */
1039 enum ivms_arg_type atypes[8]; /* which VMS float type or if not float */
1040 } CUMULATIVE_ARGS;
1042 /* A C statement (sans semicolon) for initializing the variable CUM for the
1043 state at the beginning of the argument list. */
1045 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, INDIRECT, N_NAMED_ARGS) \
1046 do { \
1047 (CUM).words = 0; \
1048 (CUM).int_regs = 0; \
1049 (CUM).fp_regs = 0; \
1050 (CUM).prototype = ((FNTYPE) && TYPE_ARG_TYPES (FNTYPE)) || (LIBNAME); \
1051 (CUM).atypes[0] = (CUM).atypes[1] = (CUM).atypes[2] = I64; \
1052 (CUM).atypes[3] = (CUM).atypes[4] = (CUM).atypes[5] = I64; \
1053 (CUM).atypes[6] = (CUM).atypes[7] = I64; \
1054 } while (0)
1056 /* Like `INIT_CUMULATIVE_ARGS' but overrides it for the purposes of finding the
1057 arguments for the function being compiled. If this macro is undefined,
1058 `INIT_CUMULATIVE_ARGS' is used instead. */
1060 /* We set prototype to true so that we never try to return a PARALLEL from
1061 function_arg. */
1062 #define INIT_CUMULATIVE_INCOMING_ARGS(CUM, FNTYPE, LIBNAME) \
1063 do { \
1064 (CUM).words = 0; \
1065 (CUM).int_regs = 0; \
1066 (CUM).fp_regs = 0; \
1067 (CUM).prototype = 1; \
1068 (CUM).atypes[0] = (CUM).atypes[1] = (CUM).atypes[2] = I64; \
1069 (CUM).atypes[3] = (CUM).atypes[4] = (CUM).atypes[5] = I64; \
1070 (CUM).atypes[6] = (CUM).atypes[7] = I64; \
1071 } while (0)
1073 /* A C expression that is nonzero if REGNO is the number of a hard register in
1074 which function arguments are sometimes passed. This does *not* include
1075 implicit arguments such as the static chain and the structure-value address.
1076 On many machines, no registers can be used for this purpose since all
1077 function arguments are pushed on the stack. */
1078 #define FUNCTION_ARG_REGNO_P(REGNO) \
1079 (((REGNO) >= AR_ARG_FIRST && (REGNO) < (AR_ARG_FIRST + MAX_ARGUMENT_SLOTS)) \
1080 || ((REGNO) >= FR_ARG_FIRST && (REGNO) < (FR_ARG_FIRST + MAX_ARGUMENT_SLOTS)))
1083 /* How Large Values are Returned */
1085 #define DEFAULT_PCC_STRUCT_RETURN 0
1088 /* Caller-Saves Register Allocation */
1090 /* A C expression to determine whether it is worthwhile to consider placing a
1091 pseudo-register in a call-clobbered hard register and saving and restoring
1092 it around each function call. The expression should be 1 when this is worth
1093 doing, and 0 otherwise.
1095 If you don't define this macro, a default is used which is good on most
1096 machines: `4 * CALLS < REFS'. */
1097 /* ??? Investigate. */
1098 /* #define CALLER_SAVE_PROFITABLE(REFS, CALLS) */
1101 /* Function Entry and Exit */
1103 /* Define this macro as a C expression that is nonzero if the return
1104 instruction or the function epilogue ignores the value of the stack pointer;
1105 in other words, if it is safe to delete an instruction to adjust the stack
1106 pointer before a return from the function. */
1108 #define EXIT_IGNORE_STACK 1
1110 /* Define this macro as a C expression that is nonzero for registers
1111 used by the epilogue or the `return' pattern. */
1113 #define EPILOGUE_USES(REGNO) ia64_epilogue_uses (REGNO)
1115 /* Nonzero for registers used by the exception handling mechanism. */
1117 #define EH_USES(REGNO) ia64_eh_uses (REGNO)
1119 /* Output part N of a function descriptor for DECL. For ia64, both
1120 words are emitted with a single relocation, so ignore N > 0. */
1121 #define ASM_OUTPUT_FDESC(FILE, DECL, PART) \
1122 do { \
1123 if ((PART) == 0) \
1125 if (TARGET_ILP32) \
1126 fputs ("\tdata8.ua @iplt(", FILE); \
1127 else \
1128 fputs ("\tdata16.ua @iplt(", FILE); \
1129 mark_decl_referenced (DECL); \
1130 assemble_name (FILE, XSTR (XEXP (DECL_RTL (DECL), 0), 0)); \
1131 fputs (")\n", FILE); \
1132 if (TARGET_ILP32) \
1133 fputs ("\tdata8.ua 0\n", FILE); \
1135 } while (0)
1137 /* Generating Code for Profiling. */
1139 /* A C statement or compound statement to output to FILE some assembler code to
1140 call the profiling subroutine `mcount'. */
1142 #undef FUNCTION_PROFILER
1143 #define FUNCTION_PROFILER(FILE, LABELNO) \
1144 ia64_output_function_profiler(FILE, LABELNO)
1146 /* Neither hpux nor linux use profile counters. */
1147 #define NO_PROFILE_COUNTERS 1
1149 /* Trampolines for Nested Functions. */
1151 /* We need 32 bytes, so we can save the sp, ar.rnat, ar.bsp, and ar.pfs of
1152 the function containing a non-local goto target. */
1154 #define STACK_SAVEAREA_MODE(LEVEL) \
1155 ((LEVEL) == SAVE_NONLOCAL ? OImode : Pmode)
1157 /* A C expression for the size in bytes of the trampoline, as an integer. */
1159 #define TRAMPOLINE_SIZE 32
1161 /* Alignment required for trampolines, in bits. */
1163 #define TRAMPOLINE_ALIGNMENT 64
1165 /* Addressing Modes */
1167 /* Define this macro if the machine supports post-increment addressing. */
1169 #define HAVE_POST_INCREMENT 1
1170 #define HAVE_POST_DECREMENT 1
1171 #define HAVE_POST_MODIFY_DISP 1
1172 #define HAVE_POST_MODIFY_REG 1
1174 /* A C expression that is 1 if the RTX X is a constant which is a valid
1175 address. */
1177 #define CONSTANT_ADDRESS_P(X) 0
1179 /* The max number of registers that can appear in a valid memory address. */
1181 #define MAX_REGS_PER_ADDRESS 2
1183 /* A C compound statement with a conditional `goto LABEL;' executed if X (an
1184 RTX) is a legitimate memory address on the target machine for a memory
1185 operand of mode MODE. */
1187 #define LEGITIMATE_ADDRESS_REG(X) \
1188 ((GET_CODE (X) == REG && REG_OK_FOR_BASE_P (X)) \
1189 || (GET_CODE (X) == SUBREG && GET_CODE (XEXP (X, 0)) == REG \
1190 && REG_OK_FOR_BASE_P (XEXP (X, 0))))
1192 #define LEGITIMATE_ADDRESS_DISP(R, X) \
1193 (GET_CODE (X) == PLUS \
1194 && rtx_equal_p (R, XEXP (X, 0)) \
1195 && (LEGITIMATE_ADDRESS_REG (XEXP (X, 1)) \
1196 || (GET_CODE (XEXP (X, 1)) == CONST_INT \
1197 && INTVAL (XEXP (X, 1)) >= -256 \
1198 && INTVAL (XEXP (X, 1)) < 256)))
1200 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, LABEL) \
1201 do { \
1202 if (LEGITIMATE_ADDRESS_REG (X)) \
1203 goto LABEL; \
1204 else if ((GET_CODE (X) == POST_INC || GET_CODE (X) == POST_DEC) \
1205 && LEGITIMATE_ADDRESS_REG (XEXP (X, 0)) \
1206 && XEXP (X, 0) != arg_pointer_rtx) \
1207 goto LABEL; \
1208 else if (GET_CODE (X) == POST_MODIFY \
1209 && LEGITIMATE_ADDRESS_REG (XEXP (X, 0)) \
1210 && XEXP (X, 0) != arg_pointer_rtx \
1211 && LEGITIMATE_ADDRESS_DISP (XEXP (X, 0), XEXP (X, 1))) \
1212 goto LABEL; \
1213 } while (0)
1215 /* A C expression that is nonzero if X (assumed to be a `reg' RTX) is valid for
1216 use as a base register. */
1218 #ifdef REG_OK_STRICT
1219 #define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
1220 #else
1221 #define REG_OK_FOR_BASE_P(X) \
1222 (GENERAL_REGNO_P (REGNO (X)) || (REGNO (X) >= FIRST_PSEUDO_REGISTER))
1223 #endif
1225 /* A C expression that is nonzero if X (assumed to be a `reg' RTX) is valid for
1226 use as an index register. This is needed for POST_MODIFY. */
1228 #define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_BASE_P (X)
1230 /* A C expression that is nonzero if X is a legitimate constant for an
1231 immediate operand on the target machine. */
1233 #define LEGITIMATE_CONSTANT_P(X) ia64_legitimate_constant_p (X)
1235 /* Condition Code Status */
1237 /* One some machines not all possible comparisons are defined, but you can
1238 convert an invalid comparison into a valid one. */
1239 /* ??? Investigate. See the alpha definition. */
1240 /* #define CANONICALIZE_COMPARISON(CODE, OP0, OP1) */
1243 /* Describing Relative Costs of Operations */
1245 /* A C expression for the cost of a branch instruction. A value of 1 is the
1246 default; other values are interpreted relative to that. Used by the
1247 if-conversion code as max instruction count. */
1248 /* ??? This requires investigation. The primary effect might be how
1249 many additional insn groups we run into, vs how good the dynamic
1250 branch predictor is. */
1252 #define BRANCH_COST(speed_p, predictable_p) 6
1254 /* Define this macro as a C expression which is nonzero if accessing less than
1255 a word of memory (i.e. a `char' or a `short') is no faster than accessing a
1256 word of memory. */
1258 #define SLOW_BYTE_ACCESS 1
1260 /* Define this macro if it is as good or better to call a constant function
1261 address than to call an address kept in a register.
1263 Indirect function calls are more expensive that direct function calls, so
1264 don't cse function addresses. */
1266 #define NO_FUNCTION_CSE
1269 /* Dividing the output into sections. */
1271 /* A C expression whose value is a string containing the assembler operation
1272 that should precede instructions and read-only data. */
1274 #define TEXT_SECTION_ASM_OP "\t.text"
1276 /* A C expression whose value is a string containing the assembler operation to
1277 identify the following data as writable initialized data. */
1279 #define DATA_SECTION_ASM_OP "\t.data"
1281 /* If defined, a C expression whose value is a string containing the assembler
1282 operation to identify the following data as uninitialized global data. */
1284 #define BSS_SECTION_ASM_OP "\t.bss"
1286 #define IA64_DEFAULT_GVALUE 8
1288 /* Position Independent Code. */
1290 /* The register number of the register used to address a table of static data
1291 addresses in memory. */
1293 /* ??? Should modify ia64.md to use pic_offset_table_rtx instead of
1294 gen_rtx_REG (DImode, 1). */
1296 /* ??? Should we set flag_pic? Probably need to define
1297 LEGITIMIZE_PIC_OPERAND_P to make that work. */
1299 #define PIC_OFFSET_TABLE_REGNUM GR_REG (1)
1301 /* Define this macro if the register defined by `PIC_OFFSET_TABLE_REGNUM' is
1302 clobbered by calls. */
1304 #define PIC_OFFSET_TABLE_REG_CALL_CLOBBERED 1
1307 /* The Overall Framework of an Assembler File. */
1309 /* A C string constant describing how to begin a comment in the target
1310 assembler language. The compiler assumes that the comment will end at the
1311 end of the line. */
1313 #define ASM_COMMENT_START "//"
1315 /* A C string constant for text to be output before each `asm' statement or
1316 group of consecutive ones. */
1318 #define ASM_APP_ON (TARGET_GNU_AS ? "#APP\n" : "//APP\n")
1320 /* A C string constant for text to be output after each `asm' statement or
1321 group of consecutive ones. */
1323 #define ASM_APP_OFF (TARGET_GNU_AS ? "#NO_APP\n" : "//NO_APP\n")
1325 /* Output of Uninitialized Variables. */
1327 /* This is all handled by svr4.h. */
1330 /* Output and Generation of Labels. */
1332 /* A C statement (sans semicolon) to output to the stdio stream STREAM the
1333 assembler definition of a label named NAME. */
1335 /* See the ASM_OUTPUT_LABELREF definition in sysv4.h for an explanation of
1336 why ia64_asm_output_label exists. */
1338 extern int ia64_asm_output_label;
1339 #define ASM_OUTPUT_LABEL(STREAM, NAME) \
1340 do { \
1341 ia64_asm_output_label = 1; \
1342 assemble_name (STREAM, NAME); \
1343 fputs (":\n", STREAM); \
1344 ia64_asm_output_label = 0; \
1345 } while (0)
1347 /* Globalizing directive for a label. */
1348 #define GLOBAL_ASM_OP "\t.global "
1350 /* A C statement (sans semicolon) to output to the stdio stream STREAM any text
1351 necessary for declaring the name of an external symbol named NAME which is
1352 referenced in this compilation but not defined. */
1354 #define ASM_OUTPUT_EXTERNAL(FILE, DECL, NAME) \
1355 ia64_asm_output_external (FILE, DECL, NAME)
1357 /* A C statement to store into the string STRING a label whose name is made
1358 from the string PREFIX and the number NUM. */
1360 #define ASM_GENERATE_INTERNAL_LABEL(LABEL, PREFIX, NUM) \
1361 do { \
1362 sprintf (LABEL, "*.%s%d", PREFIX, NUM); \
1363 } while (0)
1365 /* ??? Not sure if using a ? in the name for Intel as is safe. */
1367 #define ASM_PN_FORMAT (TARGET_GNU_AS ? "%s.%lu" : "%s?%lu")
1369 /* A C statement to output to the stdio stream STREAM assembler code which
1370 defines (equates) the symbol NAME to have the value VALUE. */
1372 #define ASM_OUTPUT_DEF(STREAM, NAME, VALUE) \
1373 do { \
1374 assemble_name (STREAM, NAME); \
1375 fputs (" = ", STREAM); \
1376 if (ISDIGIT (*VALUE)) \
1377 ia64_asm_output_label = 1; \
1378 assemble_name (STREAM, VALUE); \
1379 fputc ('\n', STREAM); \
1380 ia64_asm_output_label = 0; \
1381 } while (0)
1384 /* Macros Controlling Initialization Routines. */
1386 /* This is handled by svr4.h and sysv4.h. */
1389 /* Output of Assembler Instructions. */
1391 /* A C initializer containing the assembler's names for the machine registers,
1392 each one as a C string constant. */
1394 #define REGISTER_NAMES \
1396 /* General registers. */ \
1397 "ap", "r1", "r2", "r3", "r4", "r5", "r6", "r7", "r8", "r9", \
1398 "r10", "r11", "r12", "r13", "r14", "r15", "r16", "r17", "r18", "r19", \
1399 "r20", "r21", "r22", "r23", "r24", "r25", "r26", "r27", "r28", "r29", \
1400 "r30", "r31", \
1401 /* Local registers. */ \
1402 "loc0", "loc1", "loc2", "loc3", "loc4", "loc5", "loc6", "loc7", \
1403 "loc8", "loc9", "loc10","loc11","loc12","loc13","loc14","loc15", \
1404 "loc16","loc17","loc18","loc19","loc20","loc21","loc22","loc23", \
1405 "loc24","loc25","loc26","loc27","loc28","loc29","loc30","loc31", \
1406 "loc32","loc33","loc34","loc35","loc36","loc37","loc38","loc39", \
1407 "loc40","loc41","loc42","loc43","loc44","loc45","loc46","loc47", \
1408 "loc48","loc49","loc50","loc51","loc52","loc53","loc54","loc55", \
1409 "loc56","loc57","loc58","loc59","loc60","loc61","loc62","loc63", \
1410 "loc64","loc65","loc66","loc67","loc68","loc69","loc70","loc71", \
1411 "loc72","loc73","loc74","loc75","loc76","loc77","loc78","loc79", \
1412 /* Input registers. */ \
1413 "in0", "in1", "in2", "in3", "in4", "in5", "in6", "in7", \
1414 /* Output registers. */ \
1415 "out0", "out1", "out2", "out3", "out4", "out5", "out6", "out7", \
1416 /* Floating-point registers. */ \
1417 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7", "f8", "f9", \
1418 "f10", "f11", "f12", "f13", "f14", "f15", "f16", "f17", "f18", "f19", \
1419 "f20", "f21", "f22", "f23", "f24", "f25", "f26", "f27", "f28", "f29", \
1420 "f30", "f31", "f32", "f33", "f34", "f35", "f36", "f37", "f38", "f39", \
1421 "f40", "f41", "f42", "f43", "f44", "f45", "f46", "f47", "f48", "f49", \
1422 "f50", "f51", "f52", "f53", "f54", "f55", "f56", "f57", "f58", "f59", \
1423 "f60", "f61", "f62", "f63", "f64", "f65", "f66", "f67", "f68", "f69", \
1424 "f70", "f71", "f72", "f73", "f74", "f75", "f76", "f77", "f78", "f79", \
1425 "f80", "f81", "f82", "f83", "f84", "f85", "f86", "f87", "f88", "f89", \
1426 "f90", "f91", "f92", "f93", "f94", "f95", "f96", "f97", "f98", "f99", \
1427 "f100","f101","f102","f103","f104","f105","f106","f107","f108","f109",\
1428 "f110","f111","f112","f113","f114","f115","f116","f117","f118","f119",\
1429 "f120","f121","f122","f123","f124","f125","f126","f127", \
1430 /* Predicate registers. */ \
1431 "p0", "p1", "p2", "p3", "p4", "p5", "p6", "p7", "p8", "p9", \
1432 "p10", "p11", "p12", "p13", "p14", "p15", "p16", "p17", "p18", "p19", \
1433 "p20", "p21", "p22", "p23", "p24", "p25", "p26", "p27", "p28", "p29", \
1434 "p30", "p31", "p32", "p33", "p34", "p35", "p36", "p37", "p38", "p39", \
1435 "p40", "p41", "p42", "p43", "p44", "p45", "p46", "p47", "p48", "p49", \
1436 "p50", "p51", "p52", "p53", "p54", "p55", "p56", "p57", "p58", "p59", \
1437 "p60", "p61", "p62", "p63", \
1438 /* Branch registers. */ \
1439 "b0", "b1", "b2", "b3", "b4", "b5", "b6", "b7", \
1440 /* Frame pointer. Application registers. */ \
1441 "sfp", "ar.ccv", "ar.unat", "ar.pfs", "ar.lc", "ar.ec", \
1444 /* If defined, a C initializer for an array of structures containing a name and
1445 a register number. This macro defines additional names for hard registers,
1446 thus allowing the `asm' option in declarations to refer to registers using
1447 alternate names. */
1449 #define ADDITIONAL_REGISTER_NAMES \
1451 { "gp", R_GR (1) }, \
1452 { "sp", R_GR (12) }, \
1453 { "in0", IN_REG (0) }, \
1454 { "in1", IN_REG (1) }, \
1455 { "in2", IN_REG (2) }, \
1456 { "in3", IN_REG (3) }, \
1457 { "in4", IN_REG (4) }, \
1458 { "in5", IN_REG (5) }, \
1459 { "in6", IN_REG (6) }, \
1460 { "in7", IN_REG (7) }, \
1461 { "out0", OUT_REG (0) }, \
1462 { "out1", OUT_REG (1) }, \
1463 { "out2", OUT_REG (2) }, \
1464 { "out3", OUT_REG (3) }, \
1465 { "out4", OUT_REG (4) }, \
1466 { "out5", OUT_REG (5) }, \
1467 { "out6", OUT_REG (6) }, \
1468 { "out7", OUT_REG (7) }, \
1469 { "loc0", LOC_REG (0) }, \
1470 { "loc1", LOC_REG (1) }, \
1471 { "loc2", LOC_REG (2) }, \
1472 { "loc3", LOC_REG (3) }, \
1473 { "loc4", LOC_REG (4) }, \
1474 { "loc5", LOC_REG (5) }, \
1475 { "loc6", LOC_REG (6) }, \
1476 { "loc7", LOC_REG (7) }, \
1477 { "loc8", LOC_REG (8) }, \
1478 { "loc9", LOC_REG (9) }, \
1479 { "loc10", LOC_REG (10) }, \
1480 { "loc11", LOC_REG (11) }, \
1481 { "loc12", LOC_REG (12) }, \
1482 { "loc13", LOC_REG (13) }, \
1483 { "loc14", LOC_REG (14) }, \
1484 { "loc15", LOC_REG (15) }, \
1485 { "loc16", LOC_REG (16) }, \
1486 { "loc17", LOC_REG (17) }, \
1487 { "loc18", LOC_REG (18) }, \
1488 { "loc19", LOC_REG (19) }, \
1489 { "loc20", LOC_REG (20) }, \
1490 { "loc21", LOC_REG (21) }, \
1491 { "loc22", LOC_REG (22) }, \
1492 { "loc23", LOC_REG (23) }, \
1493 { "loc24", LOC_REG (24) }, \
1494 { "loc25", LOC_REG (25) }, \
1495 { "loc26", LOC_REG (26) }, \
1496 { "loc27", LOC_REG (27) }, \
1497 { "loc28", LOC_REG (28) }, \
1498 { "loc29", LOC_REG (29) }, \
1499 { "loc30", LOC_REG (30) }, \
1500 { "loc31", LOC_REG (31) }, \
1501 { "loc32", LOC_REG (32) }, \
1502 { "loc33", LOC_REG (33) }, \
1503 { "loc34", LOC_REG (34) }, \
1504 { "loc35", LOC_REG (35) }, \
1505 { "loc36", LOC_REG (36) }, \
1506 { "loc37", LOC_REG (37) }, \
1507 { "loc38", LOC_REG (38) }, \
1508 { "loc39", LOC_REG (39) }, \
1509 { "loc40", LOC_REG (40) }, \
1510 { "loc41", LOC_REG (41) }, \
1511 { "loc42", LOC_REG (42) }, \
1512 { "loc43", LOC_REG (43) }, \
1513 { "loc44", LOC_REG (44) }, \
1514 { "loc45", LOC_REG (45) }, \
1515 { "loc46", LOC_REG (46) }, \
1516 { "loc47", LOC_REG (47) }, \
1517 { "loc48", LOC_REG (48) }, \
1518 { "loc49", LOC_REG (49) }, \
1519 { "loc50", LOC_REG (50) }, \
1520 { "loc51", LOC_REG (51) }, \
1521 { "loc52", LOC_REG (52) }, \
1522 { "loc53", LOC_REG (53) }, \
1523 { "loc54", LOC_REG (54) }, \
1524 { "loc55", LOC_REG (55) }, \
1525 { "loc56", LOC_REG (56) }, \
1526 { "loc57", LOC_REG (57) }, \
1527 { "loc58", LOC_REG (58) }, \
1528 { "loc59", LOC_REG (59) }, \
1529 { "loc60", LOC_REG (60) }, \
1530 { "loc61", LOC_REG (61) }, \
1531 { "loc62", LOC_REG (62) }, \
1532 { "loc63", LOC_REG (63) }, \
1533 { "loc64", LOC_REG (64) }, \
1534 { "loc65", LOC_REG (65) }, \
1535 { "loc66", LOC_REG (66) }, \
1536 { "loc67", LOC_REG (67) }, \
1537 { "loc68", LOC_REG (68) }, \
1538 { "loc69", LOC_REG (69) }, \
1539 { "loc70", LOC_REG (70) }, \
1540 { "loc71", LOC_REG (71) }, \
1541 { "loc72", LOC_REG (72) }, \
1542 { "loc73", LOC_REG (73) }, \
1543 { "loc74", LOC_REG (74) }, \
1544 { "loc75", LOC_REG (75) }, \
1545 { "loc76", LOC_REG (76) }, \
1546 { "loc77", LOC_REG (77) }, \
1547 { "loc78", LOC_REG (78) }, \
1548 { "loc79", LOC_REG (79) }, \
1551 /* A C compound statement to output to stdio stream STREAM the assembler syntax
1552 for an instruction operand X. X is an RTL expression. */
1554 #define PRINT_OPERAND(STREAM, X, CODE) \
1555 ia64_print_operand (STREAM, X, CODE)
1557 /* A C expression which evaluates to true if CODE is a valid punctuation
1558 character for use in the `PRINT_OPERAND' macro. */
1560 /* ??? Keep this around for now, as we might need it later. */
1562 #define PRINT_OPERAND_PUNCT_VALID_P(CODE) \
1563 ((CODE) == '+' || (CODE) == ',')
1565 /* A C compound statement to output to stdio stream STREAM the assembler syntax
1566 for an instruction operand that is a memory reference whose address is X. X
1567 is an RTL expression. */
1569 #define PRINT_OPERAND_ADDRESS(STREAM, X) \
1570 ia64_print_operand_address (STREAM, X)
1572 /* If defined, C string expressions to be used for the `%R', `%L', `%U', and
1573 `%I' options of `asm_fprintf' (see `final.c'). */
1575 #define REGISTER_PREFIX ""
1576 #define LOCAL_LABEL_PREFIX "."
1577 #define USER_LABEL_PREFIX ""
1578 #define IMMEDIATE_PREFIX ""
1581 /* Output of dispatch tables. */
1583 /* This macro should be provided on machines where the addresses in a dispatch
1584 table are relative to the table's own address. */
1586 /* ??? Depends on the pointer size. */
1588 #define ASM_OUTPUT_ADDR_DIFF_ELT(STREAM, BODY, VALUE, REL) \
1589 do { \
1590 if (TARGET_ILP32) \
1591 fprintf (STREAM, "\tdata4 @pcrel(.L%d)\n", VALUE); \
1592 else \
1593 fprintf (STREAM, "\tdata8 @pcrel(.L%d)\n", VALUE); \
1594 } while (0)
1596 /* Jump tables only need 8 byte alignment. */
1598 #define ADDR_VEC_ALIGN(ADDR_VEC) 3
1601 /* Assembler Commands for Exception Regions. */
1603 /* Select a format to encode pointers in exception handling data. CODE
1604 is 0 for data, 1 for code labels, 2 for function pointers. GLOBAL is
1605 true if the symbol may be affected by dynamic relocations. */
1606 #define ASM_PREFERRED_EH_DATA_FORMAT(CODE,GLOBAL) \
1607 (((CODE) == 1 ? DW_EH_PE_textrel : DW_EH_PE_datarel) \
1608 | ((GLOBAL) ? DW_EH_PE_indirect : 0) \
1609 | (TARGET_ILP32 ? DW_EH_PE_udata4 : DW_EH_PE_udata8))
1611 /* Handle special EH pointer encodings. Absolute, pc-relative, and
1612 indirect are handled automatically. */
1613 #define ASM_MAYBE_OUTPUT_ENCODED_ADDR_RTX(FILE, ENCODING, SIZE, ADDR, DONE) \
1614 do { \
1615 const char *reltag = NULL; \
1616 if (((ENCODING) & 0xF0) == DW_EH_PE_textrel) \
1617 reltag = "@segrel("; \
1618 else if (((ENCODING) & 0xF0) == DW_EH_PE_datarel) \
1619 reltag = "@gprel("; \
1620 if (reltag) \
1622 fputs (integer_asm_op (SIZE, FALSE), FILE); \
1623 fputs (reltag, FILE); \
1624 assemble_name (FILE, XSTR (ADDR, 0)); \
1625 fputc (')', FILE); \
1626 goto DONE; \
1628 } while (0)
1631 /* Assembler Commands for Alignment. */
1633 /* ??? Investigate. */
1635 /* The alignment (log base 2) to put in front of LABEL, which follows
1636 a BARRIER. */
1638 /* #define LABEL_ALIGN_AFTER_BARRIER(LABEL) */
1640 /* The desired alignment for the location counter at the beginning
1641 of a loop. */
1643 /* #define LOOP_ALIGN(LABEL) */
1645 /* Define this macro if `ASM_OUTPUT_SKIP' should not be used in the text
1646 section because it fails put zeros in the bytes that are skipped. */
1648 #define ASM_NO_SKIP_IN_TEXT 1
1650 /* A C statement to output to the stdio stream STREAM an assembler command to
1651 advance the location counter to a multiple of 2 to the POWER bytes. */
1653 #define ASM_OUTPUT_ALIGN(STREAM, POWER) \
1654 fprintf (STREAM, "\t.align %d\n", 1<<(POWER))
1657 /* Macros Affecting all Debug Formats. */
1659 /* This is handled in svr4.h and sysv4.h. */
1662 /* Specific Options for DBX Output. */
1664 /* This is handled by dbxelf.h which is included by svr4.h. */
1667 /* Open ended Hooks for DBX Output. */
1669 /* Likewise. */
1672 /* File names in DBX format. */
1674 /* Likewise. */
1677 /* Macros for SDB and Dwarf Output. */
1679 /* Define this macro if GCC should produce dwarf version 2 format debugging
1680 output in response to the `-g' option. */
1682 #define DWARF2_DEBUGGING_INFO 1
1684 #define DWARF2_ASM_LINE_DEBUG_INFO (TARGET_DWARF2_ASM)
1686 /* Use tags for debug info labels, so that they don't break instruction
1687 bundles. This also avoids getting spurious DV warnings from the
1688 assembler. This is similar to (*targetm.asm_out.internal_label), except that we
1689 add brackets around the label. */
1691 #define ASM_OUTPUT_DEBUG_LABEL(FILE, PREFIX, NUM) \
1692 fprintf (FILE, TARGET_GNU_AS ? "[.%s%d:]\n" : ".%s%d:\n", PREFIX, NUM)
1694 /* Use section-relative relocations for debugging offsets. Unlike other
1695 targets that fake this by putting the section VMA at 0, IA-64 has
1696 proper relocations for them. */
1697 #define ASM_OUTPUT_DWARF_OFFSET(FILE, SIZE, LABEL, SECTION) \
1698 do { \
1699 fputs (integer_asm_op (SIZE, FALSE), FILE); \
1700 fputs ("@secrel(", FILE); \
1701 assemble_name (FILE, LABEL); \
1702 fputc (')', FILE); \
1703 } while (0)
1705 /* Emit a PC-relative relocation. */
1706 #define ASM_OUTPUT_DWARF_PCREL(FILE, SIZE, LABEL) \
1707 do { \
1708 fputs (integer_asm_op (SIZE, FALSE), FILE); \
1709 fputs ("@pcrel(", FILE); \
1710 assemble_name (FILE, LABEL); \
1711 fputc (')', FILE); \
1712 } while (0)
1714 /* Register Renaming Parameters. */
1716 /* A C expression that is nonzero if hard register number REGNO2 can be
1717 considered for use as a rename register for REGNO1 */
1719 #define HARD_REGNO_RENAME_OK(REGNO1,REGNO2) \
1720 ia64_hard_regno_rename_ok((REGNO1), (REGNO2))
1723 /* Miscellaneous Parameters. */
1725 /* Flag to mark data that is in the small address area (addressable
1726 via "addl", that is, within a 2MByte offset of 0. */
1727 #define SYMBOL_FLAG_SMALL_ADDR (SYMBOL_FLAG_MACH_DEP << 0)
1728 #define SYMBOL_REF_SMALL_ADDR_P(X) \
1729 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_SMALL_ADDR) != 0)
1731 /* An alias for a machine mode name. This is the machine mode that elements of
1732 a jump-table should have. */
1734 #define CASE_VECTOR_MODE ptr_mode
1736 /* Define as C expression which evaluates to nonzero if the tablejump
1737 instruction expects the table to contain offsets from the address of the
1738 table. */
1740 #define CASE_VECTOR_PC_RELATIVE 1
1742 /* Define this macro if operations between registers with integral mode smaller
1743 than a word are always performed on the entire register. */
1745 #define WORD_REGISTER_OPERATIONS
1747 /* Define this macro to be a C expression indicating when insns that read
1748 memory in MODE, an integral mode narrower than a word, set the bits outside
1749 of MODE to be either the sign-extension or the zero-extension of the data
1750 read. */
1752 #define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
1754 /* The maximum number of bytes that a single instruction can move quickly from
1755 memory to memory. */
1756 #define MOVE_MAX 8
1758 /* A C expression which is nonzero if on this machine it is safe to "convert"
1759 an integer of INPREC bits to one of OUTPREC bits (where OUTPREC is smaller
1760 than INPREC) by merely operating on it as if it had only OUTPREC bits. */
1762 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1764 /* A C expression describing the value returned by a comparison operator with
1765 an integral mode and stored by a store-flag instruction (`sCOND') when the
1766 condition is true. */
1768 /* ??? Investigate using STORE_FLAG_VALUE of -1 instead of 1. */
1770 /* An alias for the machine mode for pointers. */
1772 /* ??? This would change if we had ILP32 support. */
1774 #define Pmode DImode
1776 /* An alias for the machine mode used for memory references to functions being
1777 called, in `call' RTL expressions. */
1779 #define FUNCTION_MODE Pmode
1781 /* A C expression for the maximum number of instructions to execute via
1782 conditional execution instructions instead of a branch. A value of
1783 BRANCH_COST+1 is the default if the machine does not use
1784 cc0, and 1 if it does use cc0. */
1785 /* ??? Investigate. */
1786 #define MAX_CONDITIONAL_EXECUTE 12
1788 extern int ia64_final_schedule;
1790 #define TARGET_UNWIND_TABLES_DEFAULT true
1792 #define EH_RETURN_DATA_REGNO(N) ((N) < 4 ? (N) + 15 : INVALID_REGNUM)
1794 /* This function contains machine specific function data. */
1795 struct GTY(()) machine_function
1797 /* The new stack pointer when unwinding from EH. */
1798 rtx ia64_eh_epilogue_sp;
1800 /* The new bsp value when unwinding from EH. */
1801 rtx ia64_eh_epilogue_bsp;
1803 /* The GP value save register. */
1804 rtx ia64_gp_save;
1806 /* The number of varargs registers to save. */
1807 int n_varargs;
1809 /* The number of the next unwind state to copy. */
1810 int state_num;
1813 #define DONT_USE_BUILTIN_SETJMP
1815 /* Output any profiling code before the prologue. */
1817 #undef PROFILE_BEFORE_PROLOGUE
1818 #define PROFILE_BEFORE_PROLOGUE 1
1820 /* Initialize library function table. */
1821 #undef TARGET_INIT_LIBFUNCS
1822 #define TARGET_INIT_LIBFUNCS ia64_init_libfuncs
1825 /* Switch on code for querying unit reservations. */
1826 #define CPU_UNITS_QUERY 1
1828 /* End of ia64.h */