PR target/35491
[official-gcc/alias-decl.git] / gcc / config / rs6000 / rs6000.h
blob6065463691b13bbde221a664b45e494aee6b3773
1 /* Definitions of target machine for GNU compiler, for IBM RS/6000.
2 Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
4 Free Software Foundation, Inc.
5 Contributed by Richard Kenner (kenner@vlsi1.ultra.nyu.edu)
7 This file is part of GCC.
9 GCC is free software; you can redistribute it and/or modify it
10 under the terms of the GNU General Public License as published
11 by the Free Software Foundation; either version 3, or (at your
12 option) any later version.
14 GCC is distributed in the hope that it will be useful, but WITHOUT
15 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
16 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
17 License for more details.
19 Under Section 7 of GPL version 3, you are granted additional
20 permissions described in the GCC Runtime Library Exception, version
21 3.1, as published by the Free Software Foundation.
23 You should have received a copy of the GNU General Public License and
24 a copy of the GCC Runtime Library Exception along with this program;
25 see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
26 <http://www.gnu.org/licenses/>. */
28 /* Note that some other tm.h files include this one and then override
29 many of the definitions. */
31 /* Definitions for the object file format. These are set at
32 compile-time. */
34 #define OBJECT_XCOFF 1
35 #define OBJECT_ELF 2
36 #define OBJECT_PEF 3
37 #define OBJECT_MACHO 4
39 #define TARGET_ELF (TARGET_OBJECT_FORMAT == OBJECT_ELF)
40 #define TARGET_XCOFF (TARGET_OBJECT_FORMAT == OBJECT_XCOFF)
41 #define TARGET_MACOS (TARGET_OBJECT_FORMAT == OBJECT_PEF)
42 #define TARGET_MACHO (TARGET_OBJECT_FORMAT == OBJECT_MACHO)
44 #ifndef TARGET_AIX
45 #define TARGET_AIX 0
46 #endif
48 /* Control whether function entry points use a "dot" symbol when
49 ABI_AIX. */
50 #define DOT_SYMBOLS 1
52 /* Default string to use for cpu if not specified. */
53 #ifndef TARGET_CPU_DEFAULT
54 #define TARGET_CPU_DEFAULT ((char *)0)
55 #endif
57 /* If configured for PPC405, support PPC405CR Erratum77. */
58 #ifdef CONFIG_PPC405CR
59 #define PPC405_ERRATUM77 (rs6000_cpu == PROCESSOR_PPC405)
60 #else
61 #define PPC405_ERRATUM77 0
62 #endif
64 #ifndef TARGET_PAIRED_FLOAT
65 #define TARGET_PAIRED_FLOAT 0
66 #endif
68 #ifdef HAVE_AS_POPCNTB
69 #define ASM_CPU_POWER5_SPEC "-mpower5"
70 #else
71 #define ASM_CPU_POWER5_SPEC "-mpower4"
72 #endif
74 #ifdef HAVE_AS_DFP
75 #define ASM_CPU_POWER6_SPEC "-mpower6 -maltivec"
76 #else
77 #define ASM_CPU_POWER6_SPEC "-mpower4 -maltivec"
78 #endif
80 #ifdef HAVE_AS_POPCNTD
81 #define ASM_CPU_POWER7_SPEC "-mpower7"
82 #else
83 #define ASM_CPU_POWER7_SPEC "-mpower4 -maltivec"
84 #endif
86 #ifdef HAVE_AS_DCI
87 #define ASM_CPU_476_SPEC "-m476"
88 #else
89 #define ASM_CPU_476_SPEC "-mpower4"
90 #endif
92 /* Common ASM definitions used by ASM_SPEC among the various targets for
93 handling -mcpu=xxx switches. There is a parallel list in driver-rs6000.c to
94 provide the default assembler options if the user uses -mcpu=native, so if
95 you make changes here, make them also there. */
96 #define ASM_CPU_SPEC \
97 "%{!mcpu*: \
98 %{mpower: %{!mpower2: -mpwr}} \
99 %{mpower2: -mpwrx} \
100 %{mpowerpc64*: -mppc64} \
101 %{!mpowerpc64*: %{mpowerpc*: -mppc}} \
102 %{mno-power: %{!mpowerpc*: -mcom}} \
103 %{!mno-power: %{!mpower*: %(asm_default)}}} \
104 %{mcpu=native: %(asm_cpu_native)} \
105 %{mcpu=common: -mcom} \
106 %{mcpu=cell: -mcell} \
107 %{mcpu=power: -mpwr} \
108 %{mcpu=power2: -mpwrx} \
109 %{mcpu=power3: -mppc64} \
110 %{mcpu=power4: -mpower4} \
111 %{mcpu=power5: %(asm_cpu_power5)} \
112 %{mcpu=power5+: %(asm_cpu_power5)} \
113 %{mcpu=power6: %(asm_cpu_power6) -maltivec} \
114 %{mcpu=power6x: %(asm_cpu_power6) -maltivec} \
115 %{mcpu=power7: %(asm_cpu_power7)} \
116 %{mcpu=a2: -ma2} \
117 %{mcpu=powerpc: -mppc} \
118 %{mcpu=rios: -mpwr} \
119 %{mcpu=rios1: -mpwr} \
120 %{mcpu=rios2: -mpwrx} \
121 %{mcpu=rsc: -mpwr} \
122 %{mcpu=rsc1: -mpwr} \
123 %{mcpu=rs64a: -mppc64} \
124 %{mcpu=401: -mppc} \
125 %{mcpu=403: -m403} \
126 %{mcpu=405: -m405} \
127 %{mcpu=405fp: -m405} \
128 %{mcpu=440: -m440} \
129 %{mcpu=440fp: -m440} \
130 %{mcpu=464: -m440} \
131 %{mcpu=464fp: -m440} \
132 %{mcpu=476: %(asm_cpu_476)} \
133 %{mcpu=476fp: %(asm_cpu_476)} \
134 %{mcpu=505: -mppc} \
135 %{mcpu=601: -m601} \
136 %{mcpu=602: -mppc} \
137 %{mcpu=603: -mppc} \
138 %{mcpu=603e: -mppc} \
139 %{mcpu=ec603e: -mppc} \
140 %{mcpu=604: -mppc} \
141 %{mcpu=604e: -mppc} \
142 %{mcpu=620: -mppc64} \
143 %{mcpu=630: -mppc64} \
144 %{mcpu=740: -mppc} \
145 %{mcpu=750: -mppc} \
146 %{mcpu=G3: -mppc} \
147 %{mcpu=7400: -mppc -maltivec} \
148 %{mcpu=7450: -mppc -maltivec} \
149 %{mcpu=G4: -mppc -maltivec} \
150 %{mcpu=801: -mppc} \
151 %{mcpu=821: -mppc} \
152 %{mcpu=823: -mppc} \
153 %{mcpu=860: -mppc} \
154 %{mcpu=970: -mpower4 -maltivec} \
155 %{mcpu=G5: -mpower4 -maltivec} \
156 %{mcpu=8540: -me500} \
157 %{mcpu=8548: -me500} \
158 %{mcpu=e300c2: -me300} \
159 %{mcpu=e300c3: -me300} \
160 %{mcpu=e500mc: -me500mc} \
161 %{mcpu=e500mc64: -me500mc64} \
162 %{maltivec: -maltivec} \
163 %{mvsx: -mvsx %{!maltivec: -maltivec} %{!mcpu*: %(asm_cpu_power7)}} \
164 -many"
166 #define CPP_DEFAULT_SPEC ""
168 #define ASM_DEFAULT_SPEC ""
170 /* This macro defines names of additional specifications to put in the specs
171 that can be used in various specifications like CC1_SPEC. Its definition
172 is an initializer with a subgrouping for each command option.
174 Each subgrouping contains a string constant, that defines the
175 specification name, and a string constant that used by the GCC driver
176 program.
178 Do not define this macro if it does not need to do anything. */
180 #define SUBTARGET_EXTRA_SPECS
182 #define EXTRA_SPECS \
183 { "cpp_default", CPP_DEFAULT_SPEC }, \
184 { "asm_cpu", ASM_CPU_SPEC }, \
185 { "asm_cpu_native", ASM_CPU_NATIVE_SPEC }, \
186 { "asm_default", ASM_DEFAULT_SPEC }, \
187 { "cc1_cpu", CC1_CPU_SPEC }, \
188 { "asm_cpu_power5", ASM_CPU_POWER5_SPEC }, \
189 { "asm_cpu_power6", ASM_CPU_POWER6_SPEC }, \
190 { "asm_cpu_power7", ASM_CPU_POWER7_SPEC }, \
191 { "asm_cpu_476", ASM_CPU_476_SPEC }, \
192 SUBTARGET_EXTRA_SPECS
194 /* -mcpu=native handling only makes sense with compiler running on
195 an PowerPC chip. If changing this condition, also change
196 the condition in driver-rs6000.c. */
197 #if defined(__powerpc__) || defined(__POWERPC__) || defined(_AIX)
198 /* In driver-rs6000.c. */
199 extern const char *host_detect_local_cpu (int argc, const char **argv);
200 #define EXTRA_SPEC_FUNCTIONS \
201 { "local_cpu_detect", host_detect_local_cpu },
202 #define HAVE_LOCAL_CPU_DETECT
203 #define ASM_CPU_NATIVE_SPEC "%:local_cpu_detect(asm)"
205 #else
206 #define ASM_CPU_NATIVE_SPEC "%(asm_default)"
207 #endif
209 #ifndef CC1_CPU_SPEC
210 #ifdef HAVE_LOCAL_CPU_DETECT
211 #define CC1_CPU_SPEC \
212 "%{mcpu=native:%<mcpu=native %:local_cpu_detect(cpu)} \
213 %{mtune=native:%<mtune=native %:local_cpu_detect(tune)}"
214 #else
215 #define CC1_CPU_SPEC ""
216 #endif
217 #endif
219 /* Architecture type. */
221 /* Define TARGET_MFCRF if the target assembler does not support the
222 optional field operand for mfcr. */
224 #ifndef HAVE_AS_MFCRF
225 #undef TARGET_MFCRF
226 #define TARGET_MFCRF 0
227 #endif
229 /* Define TARGET_POPCNTB if the target assembler does not support the
230 popcount byte instruction. */
232 #ifndef HAVE_AS_POPCNTB
233 #undef TARGET_POPCNTB
234 #define TARGET_POPCNTB 0
235 #endif
237 /* Define TARGET_FPRND if the target assembler does not support the
238 fp rounding instructions. */
240 #ifndef HAVE_AS_FPRND
241 #undef TARGET_FPRND
242 #define TARGET_FPRND 0
243 #endif
245 /* Define TARGET_CMPB if the target assembler does not support the
246 cmpb instruction. */
248 #ifndef HAVE_AS_CMPB
249 #undef TARGET_CMPB
250 #define TARGET_CMPB 0
251 #endif
253 /* Define TARGET_MFPGPR if the target assembler does not support the
254 mffpr and mftgpr instructions. */
256 #ifndef HAVE_AS_MFPGPR
257 #undef TARGET_MFPGPR
258 #define TARGET_MFPGPR 0
259 #endif
261 /* Define TARGET_DFP if the target assembler does not support decimal
262 floating point instructions. */
263 #ifndef HAVE_AS_DFP
264 #undef TARGET_DFP
265 #define TARGET_DFP 0
266 #endif
268 /* Define TARGET_POPCNTD if the target assembler does not support the
269 popcount word and double word instructions. */
271 #ifndef HAVE_AS_POPCNTD
272 #undef TARGET_POPCNTD
273 #define TARGET_POPCNTD 0
274 #endif
276 /* Define TARGET_LWSYNC_INSTRUCTION if the assembler knows about lwsync. If
277 not, generate the lwsync code as an integer constant. */
278 #ifdef HAVE_AS_LWSYNC
279 #define TARGET_LWSYNC_INSTRUCTION 1
280 #else
281 #define TARGET_LWSYNC_INSTRUCTION 0
282 #endif
284 /* Define TARGET_TLS_MARKERS if the target assembler does not support
285 arg markers for __tls_get_addr calls. */
286 #ifndef HAVE_AS_TLS_MARKERS
287 #undef TARGET_TLS_MARKERS
288 #define TARGET_TLS_MARKERS 0
289 #else
290 #define TARGET_TLS_MARKERS tls_markers
291 #endif
293 #ifndef TARGET_SECURE_PLT
294 #define TARGET_SECURE_PLT 0
295 #endif
297 /* Code model for 64-bit linux.
298 small: 16-bit toc offsets.
299 large: 32-bit toc offsets. */
300 enum rs6000_cmodel {
301 CMODEL_SMALL,
302 CMODEL_LARGE
305 #ifndef TARGET_CMODEL
306 #define TARGET_CMODEL CMODEL_SMALL
307 #endif
309 #define TARGET_32BIT (! TARGET_64BIT)
311 #ifndef HAVE_AS_TLS
312 #define HAVE_AS_TLS 0
313 #endif
315 /* Return 1 for a symbol ref for a thread-local storage symbol. */
316 #define RS6000_SYMBOL_REF_TLS_P(RTX) \
317 (GET_CODE (RTX) == SYMBOL_REF && SYMBOL_REF_TLS_MODEL (RTX) != 0)
319 #ifdef IN_LIBGCC2
320 /* For libgcc2 we make sure this is a compile time constant */
321 #if defined (__64BIT__) || defined (__powerpc64__) || defined (__ppc64__)
322 #undef TARGET_POWERPC64
323 #define TARGET_POWERPC64 1
324 #else
325 #undef TARGET_POWERPC64
326 #define TARGET_POWERPC64 0
327 #endif
328 #else
329 /* The option machinery will define this. */
330 #endif
332 #define TARGET_DEFAULT (MASK_POWER | MASK_MULTIPLE | MASK_STRING)
334 /* Processor type. Order must match cpu attribute in MD file. */
335 enum processor_type
337 PROCESSOR_RIOS1,
338 PROCESSOR_RIOS2,
339 PROCESSOR_RS64A,
340 PROCESSOR_MPCCORE,
341 PROCESSOR_PPC403,
342 PROCESSOR_PPC405,
343 PROCESSOR_PPC440,
344 PROCESSOR_PPC476,
345 PROCESSOR_PPC601,
346 PROCESSOR_PPC603,
347 PROCESSOR_PPC604,
348 PROCESSOR_PPC604e,
349 PROCESSOR_PPC620,
350 PROCESSOR_PPC630,
351 PROCESSOR_PPC750,
352 PROCESSOR_PPC7400,
353 PROCESSOR_PPC7450,
354 PROCESSOR_PPC8540,
355 PROCESSOR_PPCE300C2,
356 PROCESSOR_PPCE300C3,
357 PROCESSOR_PPCE500MC,
358 PROCESSOR_PPCE500MC64,
359 PROCESSOR_POWER4,
360 PROCESSOR_POWER5,
361 PROCESSOR_POWER6,
362 PROCESSOR_POWER7,
363 PROCESSOR_CELL,
364 PROCESSOR_PPCA2,
365 PROCESSOR_TITAN
368 /* FPU operations supported.
369 Each use of TARGET_SINGLE_FLOAT or TARGET_DOUBLE_FLOAT must
370 also test TARGET_HARD_FLOAT. */
371 #define TARGET_SINGLE_FLOAT 1
372 #define TARGET_DOUBLE_FLOAT 1
373 #define TARGET_SINGLE_FPU 0
374 #define TARGET_SIMPLE_FPU 0
375 #define TARGET_XILINX_FPU 0
377 extern enum processor_type rs6000_cpu;
379 /* Recast the processor type to the cpu attribute. */
380 #define rs6000_cpu_attr ((enum attr_cpu)rs6000_cpu)
382 /* Define generic processor types based upon current deployment. */
383 #define PROCESSOR_COMMON PROCESSOR_PPC601
384 #define PROCESSOR_POWER PROCESSOR_RIOS1
385 #define PROCESSOR_POWERPC PROCESSOR_PPC604
386 #define PROCESSOR_POWERPC64 PROCESSOR_RS64A
388 /* Define the default processor. This is overridden by other tm.h files. */
389 #define PROCESSOR_DEFAULT PROCESSOR_RIOS1
390 #define PROCESSOR_DEFAULT64 PROCESSOR_RS64A
392 /* FP processor type. */
393 enum fpu_type_t
395 FPU_NONE, /* No FPU */
396 FPU_SF_LITE, /* Limited Single Precision FPU */
397 FPU_DF_LITE, /* Limited Double Precision FPU */
398 FPU_SF_FULL, /* Full Single Precision FPU */
399 FPU_DF_FULL /* Full Double Single Precision FPU */
402 extern enum fpu_type_t fpu_type;
404 /* Specify the dialect of assembler to use. New mnemonics is dialect one
405 and the old mnemonics are dialect zero. */
406 #define ASSEMBLER_DIALECT (TARGET_NEW_MNEMONICS ? 1 : 0)
408 /* Types of costly dependences. */
409 enum rs6000_dependence_cost
411 max_dep_latency = 1000,
412 no_dep_costly,
413 all_deps_costly,
414 true_store_to_load_dep_costly,
415 store_to_load_dep_costly
418 /* Types of nop insertion schemes in sched target hook sched_finish. */
419 enum rs6000_nop_insertion
421 sched_finish_regroup_exact = 1000,
422 sched_finish_pad_groups,
423 sched_finish_none
426 /* Dispatch group termination caused by an insn. */
427 enum group_termination
429 current_group,
430 previous_group
433 /* rs6000_select[0] is reserved for the default cpu defined via --with-cpu */
434 struct rs6000_cpu_select
436 const char *string;
437 const char *name;
438 int set_tune_p;
439 int set_arch_p;
442 extern struct rs6000_cpu_select rs6000_select[];
444 /* Debug support */
445 extern const char *rs6000_debug_name; /* Name for -mdebug-xxxx option */
446 extern int rs6000_debug_stack; /* debug stack applications */
447 extern int rs6000_debug_arg; /* debug argument handling */
448 extern int rs6000_debug_reg; /* debug register handling */
449 extern int rs6000_debug_addr; /* debug memory addressing */
450 extern int rs6000_debug_cost; /* debug rtx_costs */
452 #define TARGET_DEBUG_STACK rs6000_debug_stack
453 #define TARGET_DEBUG_ARG rs6000_debug_arg
454 #define TARGET_DEBUG_REG rs6000_debug_reg
455 #define TARGET_DEBUG_ADDR rs6000_debug_addr
456 #define TARGET_DEBUG_COST rs6000_debug_cost
458 extern const char *rs6000_traceback_name; /* Type of traceback table. */
460 /* These are separate from target_flags because we've run out of bits
461 there. */
462 extern int rs6000_long_double_type_size;
463 extern int rs6000_ieeequad;
464 extern int rs6000_altivec_abi;
465 extern int rs6000_spe_abi;
466 extern int rs6000_spe;
467 extern int rs6000_float_gprs;
468 extern int rs6000_alignment_flags;
469 extern const char *rs6000_sched_insert_nops_str;
470 extern enum rs6000_nop_insertion rs6000_sched_insert_nops;
471 extern int rs6000_xilinx_fpu;
473 /* Describe which vector unit to use for a given machine mode. */
474 enum rs6000_vector {
475 VECTOR_NONE, /* Type is not a vector or not supported */
476 VECTOR_ALTIVEC, /* Use altivec for vector processing */
477 VECTOR_VSX, /* Use VSX for vector processing */
478 VECTOR_PAIRED, /* Use paired floating point for vectors */
479 VECTOR_SPE, /* Use SPE for vector processing */
480 VECTOR_OTHER /* Some other vector unit */
483 extern enum rs6000_vector rs6000_vector_unit[];
485 #define VECTOR_UNIT_NONE_P(MODE) \
486 (rs6000_vector_unit[(MODE)] == VECTOR_NONE)
488 #define VECTOR_UNIT_VSX_P(MODE) \
489 (rs6000_vector_unit[(MODE)] == VECTOR_VSX)
491 #define VECTOR_UNIT_ALTIVEC_P(MODE) \
492 (rs6000_vector_unit[(MODE)] == VECTOR_ALTIVEC)
494 #define VECTOR_UNIT_ALTIVEC_OR_VSX_P(MODE) \
495 (rs6000_vector_unit[(MODE)] == VECTOR_ALTIVEC \
496 || rs6000_vector_unit[(MODE)] == VECTOR_VSX)
498 /* Describe whether to use VSX loads or Altivec loads. For now, just use the
499 same unit as the vector unit we are using, but we may want to migrate to
500 using VSX style loads even for types handled by altivec. */
501 extern enum rs6000_vector rs6000_vector_mem[];
503 #define VECTOR_MEM_NONE_P(MODE) \
504 (rs6000_vector_mem[(MODE)] == VECTOR_NONE)
506 #define VECTOR_MEM_VSX_P(MODE) \
507 (rs6000_vector_mem[(MODE)] == VECTOR_VSX)
509 #define VECTOR_MEM_ALTIVEC_P(MODE) \
510 (rs6000_vector_mem[(MODE)] == VECTOR_ALTIVEC)
512 #define VECTOR_MEM_ALTIVEC_OR_VSX_P(MODE) \
513 (rs6000_vector_mem[(MODE)] == VECTOR_ALTIVEC \
514 || rs6000_vector_mem[(MODE)] == VECTOR_VSX)
516 /* Return the alignment of a given vector type, which is set based on the
517 vector unit use. VSX for instance can load 32 or 64 bit aligned words
518 without problems, while Altivec requires 128-bit aligned vectors. */
519 extern int rs6000_vector_align[];
521 #define VECTOR_ALIGN(MODE) \
522 ((rs6000_vector_align[(MODE)] != 0) \
523 ? rs6000_vector_align[(MODE)] \
524 : (int)GET_MODE_BITSIZE ((MODE)))
526 /* Alignment options for fields in structures for sub-targets following
527 AIX-like ABI.
528 ALIGN_POWER word-aligns FP doubles (default AIX ABI).
529 ALIGN_NATURAL doubleword-aligns FP doubles (align to object size).
531 Override the macro definitions when compiling libobjc to avoid undefined
532 reference to rs6000_alignment_flags due to library's use of GCC alignment
533 macros which use the macros below. */
535 #ifndef IN_TARGET_LIBS
536 #define MASK_ALIGN_POWER 0x00000000
537 #define MASK_ALIGN_NATURAL 0x00000001
538 #define TARGET_ALIGN_NATURAL (rs6000_alignment_flags & MASK_ALIGN_NATURAL)
539 #else
540 #define TARGET_ALIGN_NATURAL 0
541 #endif
543 #define TARGET_LONG_DOUBLE_128 (rs6000_long_double_type_size == 128)
544 #define TARGET_IEEEQUAD rs6000_ieeequad
545 #define TARGET_ALTIVEC_ABI rs6000_altivec_abi
546 #define TARGET_LDBRX (TARGET_POPCNTD || rs6000_cpu == PROCESSOR_CELL)
548 #define TARGET_SPE_ABI 0
549 #define TARGET_SPE 0
550 #define TARGET_E500 0
551 #define TARGET_ISEL64 (TARGET_ISEL && TARGET_POWERPC64)
552 #define TARGET_FPRS 1
553 #define TARGET_E500_SINGLE 0
554 #define TARGET_E500_DOUBLE 0
555 #define CHECK_E500_OPTIONS do { } while (0)
557 /* E500 processors only support plain "sync", not lwsync. */
558 #define TARGET_NO_LWSYNC TARGET_E500
560 /* Which machine supports the various reciprocal estimate instructions. */
561 #define TARGET_FRES (TARGET_HARD_FLOAT && TARGET_PPC_GFXOPT \
562 && TARGET_FPRS && TARGET_SINGLE_FLOAT)
564 #define TARGET_FRE (TARGET_HARD_FLOAT && TARGET_FPRS \
565 && TARGET_DOUBLE_FLOAT \
566 && (TARGET_POPCNTB || VECTOR_UNIT_VSX_P (DFmode)))
568 #define TARGET_FRSQRTES (TARGET_HARD_FLOAT && TARGET_POPCNTB \
569 && TARGET_FPRS && TARGET_SINGLE_FLOAT)
571 #define TARGET_FRSQRTE (TARGET_HARD_FLOAT && TARGET_FPRS \
572 && TARGET_DOUBLE_FLOAT \
573 && (TARGET_PPC_GFXOPT || VECTOR_UNIT_VSX_P (DFmode)))
575 /* Whether the various reciprocal divide/square root estimate instructions
576 exist, and whether we should automatically generate code for the instruction
577 by default. */
578 #define RS6000_RECIP_MASK_HAVE_RE 0x1 /* have RE instruction. */
579 #define RS6000_RECIP_MASK_AUTO_RE 0x2 /* generate RE by default. */
580 #define RS6000_RECIP_MASK_HAVE_RSQRTE 0x4 /* have RSQRTE instruction. */
581 #define RS6000_RECIP_MASK_AUTO_RSQRTE 0x8 /* gen. RSQRTE by default. */
583 extern unsigned char rs6000_recip_bits[];
585 #define RS6000_RECIP_HAVE_RE_P(MODE) \
586 (rs6000_recip_bits[(int)(MODE)] & RS6000_RECIP_MASK_HAVE_RE)
588 #define RS6000_RECIP_AUTO_RE_P(MODE) \
589 (rs6000_recip_bits[(int)(MODE)] & RS6000_RECIP_MASK_AUTO_RE)
591 #define RS6000_RECIP_HAVE_RSQRTE_P(MODE) \
592 (rs6000_recip_bits[(int)(MODE)] & RS6000_RECIP_MASK_HAVE_RSQRTE)
594 #define RS6000_RECIP_AUTO_RSQRTE_P(MODE) \
595 (rs6000_recip_bits[(int)(MODE)] & RS6000_RECIP_MASK_AUTO_RSQRTE)
597 #define RS6000_RECIP_HIGH_PRECISION_P(MODE) \
598 ((MODE) == SFmode || (MODE) == V4SFmode || TARGET_RECIP_PRECISION)
600 /* Sometimes certain combinations of command options do not make sense
601 on a particular target machine. You can define a macro
602 `OVERRIDE_OPTIONS' to take account of this. This macro, if
603 defined, is executed once just after all the command options have
604 been parsed.
606 Do not use this macro to turn on various extra optimizations for
607 `-O'. That is what `OPTIMIZATION_OPTIONS' is for.
609 On the RS/6000 this is used to define the target cpu type. */
611 #define OVERRIDE_OPTIONS rs6000_override_options (TARGET_CPU_DEFAULT)
613 /* Define this to change the optimizations performed by default. */
614 #define OPTIMIZATION_OPTIONS(LEVEL,SIZE) optimization_options(LEVEL,SIZE)
616 /* Show we can debug even without a frame pointer. */
617 #define CAN_DEBUG_WITHOUT_FP
619 /* Target pragma. */
620 #define REGISTER_TARGET_PRAGMAS() do { \
621 c_register_pragma (0, "longcall", rs6000_pragma_longcall); \
622 targetm.resolve_overloaded_builtin = altivec_resolve_overloaded_builtin; \
623 } while (0)
625 /* Target #defines. */
626 #define TARGET_CPU_CPP_BUILTINS() \
627 rs6000_cpu_cpp_builtins (pfile)
629 /* This is used by rs6000_cpu_cpp_builtins to indicate the byte order
630 we're compiling for. Some configurations may need to override it. */
631 #define RS6000_CPU_CPP_ENDIAN_BUILTINS() \
632 do \
634 if (BYTES_BIG_ENDIAN) \
636 builtin_define ("__BIG_ENDIAN__"); \
637 builtin_define ("_BIG_ENDIAN"); \
638 builtin_assert ("machine=bigendian"); \
640 else \
642 builtin_define ("__LITTLE_ENDIAN__"); \
643 builtin_define ("_LITTLE_ENDIAN"); \
644 builtin_assert ("machine=littleendian"); \
647 while (0)
649 /* Target machine storage layout. */
651 /* Define this macro if it is advisable to hold scalars in registers
652 in a wider mode than that declared by the program. In such cases,
653 the value is constrained to be within the bounds of the declared
654 type, but kept valid in the wider mode. The signedness of the
655 extension may differ from that of the type. */
657 #define PROMOTE_MODE(MODE,UNSIGNEDP,TYPE) \
658 if (GET_MODE_CLASS (MODE) == MODE_INT \
659 && GET_MODE_SIZE (MODE) < UNITS_PER_WORD) \
660 (MODE) = TARGET_32BIT ? SImode : DImode;
662 /* Define this if most significant bit is lowest numbered
663 in instructions that operate on numbered bit-fields. */
664 /* That is true on RS/6000. */
665 #define BITS_BIG_ENDIAN 1
667 /* Define this if most significant byte of a word is the lowest numbered. */
668 /* That is true on RS/6000. */
669 #define BYTES_BIG_ENDIAN 1
671 /* Define this if most significant word of a multiword number is lowest
672 numbered.
674 For RS/6000 we can decide arbitrarily since there are no machine
675 instructions for them. Might as well be consistent with bits and bytes. */
676 #define WORDS_BIG_ENDIAN 1
678 #define MAX_BITS_PER_WORD 64
680 /* Width of a word, in units (bytes). */
681 #define UNITS_PER_WORD (! TARGET_POWERPC64 ? 4 : 8)
682 #ifdef IN_LIBGCC2
683 #define MIN_UNITS_PER_WORD UNITS_PER_WORD
684 #else
685 #define MIN_UNITS_PER_WORD 4
686 #endif
687 #define UNITS_PER_FP_WORD 8
688 #define UNITS_PER_ALTIVEC_WORD 16
689 #define UNITS_PER_VSX_WORD 16
690 #define UNITS_PER_SPE_WORD 8
691 #define UNITS_PER_PAIRED_WORD 8
693 /* Type used for ptrdiff_t, as a string used in a declaration. */
694 #define PTRDIFF_TYPE "int"
696 /* Type used for size_t, as a string used in a declaration. */
697 #define SIZE_TYPE "long unsigned int"
699 /* Type used for wchar_t, as a string used in a declaration. */
700 #define WCHAR_TYPE "short unsigned int"
702 /* Width of wchar_t in bits. */
703 #define WCHAR_TYPE_SIZE 16
705 /* A C expression for the size in bits of the type `short' on the
706 target machine. If you don't define this, the default is half a
707 word. (If this would be less than one storage unit, it is
708 rounded up to one unit.) */
709 #define SHORT_TYPE_SIZE 16
711 /* A C expression for the size in bits of the type `int' on the
712 target machine. If you don't define this, the default is one
713 word. */
714 #define INT_TYPE_SIZE 32
716 /* A C expression for the size in bits of the type `long' on the
717 target machine. If you don't define this, the default is one
718 word. */
719 #define LONG_TYPE_SIZE (TARGET_32BIT ? 32 : 64)
721 /* A C expression for the size in bits of the type `long long' on the
722 target machine. If you don't define this, the default is two
723 words. */
724 #define LONG_LONG_TYPE_SIZE 64
726 /* A C expression for the size in bits of the type `float' on the
727 target machine. If you don't define this, the default is one
728 word. */
729 #define FLOAT_TYPE_SIZE 32
731 /* A C expression for the size in bits of the type `double' on the
732 target machine. If you don't define this, the default is two
733 words. */
734 #define DOUBLE_TYPE_SIZE 64
736 /* A C expression for the size in bits of the type `long double' on
737 the target machine. If you don't define this, the default is two
738 words. */
739 #define LONG_DOUBLE_TYPE_SIZE rs6000_long_double_type_size
741 /* Define this to set long double type size to use in libgcc2.c, which can
742 not depend on target_flags. */
743 #ifdef __LONG_DOUBLE_128__
744 #define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 128
745 #else
746 #define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 64
747 #endif
749 /* Work around rs6000_long_double_type_size dependency in ada/targtyps.c. */
750 #define WIDEST_HARDWARE_FP_SIZE 64
752 /* Width in bits of a pointer.
753 See also the macro `Pmode' defined below. */
754 extern unsigned rs6000_pointer_size;
755 #define POINTER_SIZE rs6000_pointer_size
757 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
758 #define PARM_BOUNDARY (TARGET_32BIT ? 32 : 64)
760 /* Boundary (in *bits*) on which stack pointer should be aligned. */
761 #define STACK_BOUNDARY \
762 ((TARGET_32BIT && !TARGET_ALTIVEC && !TARGET_ALTIVEC_ABI && !TARGET_VSX) \
763 ? 64 : 128)
765 /* Allocation boundary (in *bits*) for the code of a function. */
766 #define FUNCTION_BOUNDARY 32
768 /* No data type wants to be aligned rounder than this. */
769 #define BIGGEST_ALIGNMENT 128
771 /* A C expression to compute the alignment for a variables in the
772 local store. TYPE is the data type, and ALIGN is the alignment
773 that the object would ordinarily have. */
774 #define LOCAL_ALIGNMENT(TYPE, ALIGN) \
775 DATA_ALIGNMENT (TYPE, ALIGN)
777 /* Alignment of field after `int : 0' in a structure. */
778 #define EMPTY_FIELD_BOUNDARY 32
780 /* Every structure's size must be a multiple of this. */
781 #define STRUCTURE_SIZE_BOUNDARY 8
783 /* Return 1 if a structure or array containing FIELD should be
784 accessed using `BLKMODE'.
786 For the SPE, simd types are V2SI, and gcc can be tempted to put the
787 entire thing in a DI and use subregs to access the internals.
788 store_bit_field() will force (subreg:DI (reg:V2SI x))'s to the
789 back-end. Because a single GPR can hold a V2SI, but not a DI, the
790 best thing to do is set structs to BLKmode and avoid Severe Tire
791 Damage.
793 On e500 v2, DF and DI modes suffer from the same anomaly. DF can
794 fit into 1, whereas DI still needs two. */
795 #define MEMBER_TYPE_FORCES_BLK(FIELD, MODE) \
796 ((TARGET_SPE && TREE_CODE (TREE_TYPE (FIELD)) == VECTOR_TYPE) \
797 || (TARGET_E500_DOUBLE && (MODE) == DFmode))
799 /* A bit-field declared as `int' forces `int' alignment for the struct. */
800 #define PCC_BITFIELD_TYPE_MATTERS 1
802 /* Make strings word-aligned so strcpy from constants will be faster.
803 Make vector constants quadword aligned. */
804 #define CONSTANT_ALIGNMENT(EXP, ALIGN) \
805 (TREE_CODE (EXP) == STRING_CST \
806 && (STRICT_ALIGNMENT || !optimize_size) \
807 && (ALIGN) < BITS_PER_WORD \
808 ? BITS_PER_WORD \
809 : (ALIGN))
811 /* Make arrays of chars word-aligned for the same reasons.
812 Align vectors to 128 bits. Align SPE vectors and E500 v2 doubles to
813 64 bits. */
814 #define DATA_ALIGNMENT(TYPE, ALIGN) \
815 (TREE_CODE (TYPE) == VECTOR_TYPE \
816 ? (((TARGET_SPE && SPE_VECTOR_MODE (TYPE_MODE (TYPE))) \
817 || (TARGET_PAIRED_FLOAT && PAIRED_VECTOR_MODE (TYPE_MODE (TYPE)))) \
818 ? 64 : 128) \
819 : ((TARGET_E500_DOUBLE \
820 && TREE_CODE (TYPE) == REAL_TYPE \
821 && TYPE_MODE (TYPE) == DFmode) \
822 ? 64 \
823 : (TREE_CODE (TYPE) == ARRAY_TYPE \
824 && TYPE_MODE (TREE_TYPE (TYPE)) == QImode \
825 && (ALIGN) < BITS_PER_WORD) ? BITS_PER_WORD : (ALIGN)))
827 /* Nonzero if move instructions will actually fail to work
828 when given unaligned data. */
829 #define STRICT_ALIGNMENT 0
831 /* Define this macro to be the value 1 if unaligned accesses have a cost
832 many times greater than aligned accesses, for example if they are
833 emulated in a trap handler. */
834 /* Altivec vector memory instructions simply ignore the low bits; SPE vector
835 memory instructions trap on unaligned accesses; VSX memory instructions are
836 aligned to 4 or 8 bytes. */
837 #define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) \
838 (STRICT_ALIGNMENT \
839 || (((MODE) == SFmode || (MODE) == DFmode || (MODE) == TFmode \
840 || (MODE) == SDmode || (MODE) == DDmode || (MODE) == TDmode \
841 || (MODE) == DImode) \
842 && (ALIGN) < 32) \
843 || (VECTOR_MODE_P ((MODE)) && (((int)(ALIGN)) < VECTOR_ALIGN (MODE))))
846 /* Standard register usage. */
848 /* Number of actual hardware registers.
849 The hardware registers are assigned numbers for the compiler
850 from 0 to just below FIRST_PSEUDO_REGISTER.
851 All registers that the compiler knows about must be given numbers,
852 even those that are not normally considered general registers.
854 RS/6000 has 32 fixed-point registers, 32 floating-point registers,
855 an MQ register, a count register, a link register, and 8 condition
856 register fields, which we view here as separate registers. AltiVec
857 adds 32 vector registers and a VRsave register.
859 In addition, the difference between the frame and argument pointers is
860 a function of the number of registers saved, so we need to have a
861 register for AP that will later be eliminated in favor of SP or FP.
862 This is a normal register, but it is fixed.
864 We also create a pseudo register for float/int conversions, that will
865 really represent the memory location used. It is represented here as
866 a register, in order to work around problems in allocating stack storage
867 in inline functions.
869 Another pseudo (not included in DWARF_FRAME_REGISTERS) is soft frame
870 pointer, which is eventually eliminated in favor of SP or FP. */
872 #define FIRST_PSEUDO_REGISTER 114
874 /* This must be included for pre gcc 3.0 glibc compatibility. */
875 #define PRE_GCC3_DWARF_FRAME_REGISTERS 77
877 /* Add 32 dwarf columns for synthetic SPE registers. */
878 #define DWARF_FRAME_REGISTERS ((FIRST_PSEUDO_REGISTER - 1) + 32)
880 /* The SPE has an additional 32 synthetic registers, with DWARF debug
881 info numbering for these registers starting at 1200. While eh_frame
882 register numbering need not be the same as the debug info numbering,
883 we choose to number these regs for eh_frame at 1200 too. This allows
884 future versions of the rs6000 backend to add hard registers and
885 continue to use the gcc hard register numbering for eh_frame. If the
886 extra SPE registers in eh_frame were numbered starting from the
887 current value of FIRST_PSEUDO_REGISTER, then if FIRST_PSEUDO_REGISTER
888 changed we'd need to introduce a mapping in DWARF_FRAME_REGNUM to
889 avoid invalidating older SPE eh_frame info.
891 We must map them here to avoid huge unwinder tables mostly consisting
892 of unused space. */
893 #define DWARF_REG_TO_UNWIND_COLUMN(r) \
894 ((r) > 1200 ? ((r) - 1200 + FIRST_PSEUDO_REGISTER - 1) : (r))
896 /* Use standard DWARF numbering for DWARF debugging information. */
897 #define DBX_REGISTER_NUMBER(REGNO) rs6000_dbx_register_number (REGNO)
899 /* Use gcc hard register numbering for eh_frame. */
900 #define DWARF_FRAME_REGNUM(REGNO) (REGNO)
902 /* Map register numbers held in the call frame info that gcc has
903 collected using DWARF_FRAME_REGNUM to those that should be output in
904 .debug_frame and .eh_frame. We continue to use gcc hard reg numbers
905 for .eh_frame, but use the numbers mandated by the various ABIs for
906 .debug_frame. rs6000_emit_prologue has translated any combination of
907 CR2, CR3, CR4 saves to a save of CR2. The actual code emitted saves
908 the whole of CR, so we map CR2_REGNO to the DWARF reg for CR. */
909 #define DWARF2_FRAME_REG_OUT(REGNO, FOR_EH) \
910 ((FOR_EH) ? (REGNO) \
911 : (REGNO) == CR2_REGNO ? 64 \
912 : DBX_REGISTER_NUMBER (REGNO))
914 /* 1 for registers that have pervasive standard uses
915 and are not available for the register allocator.
917 On RS/6000, r1 is used for the stack. On Darwin, r2 is available
918 as a local register; for all other OS's r2 is the TOC pointer.
920 cr5 is not supposed to be used.
922 On System V implementations, r13 is fixed and not available for use. */
924 #define FIXED_REGISTERS \
925 {0, 1, FIXED_R2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, FIXED_R13, 0, 0, \
926 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
927 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
928 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
929 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, \
930 /* AltiVec registers. */ \
931 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
932 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
933 1, 1 \
934 , 1, 1, 1 \
937 /* 1 for registers not available across function calls.
938 These must include the FIXED_REGISTERS and also any
939 registers that can be used without being saved.
940 The latter must include the registers where values are returned
941 and the register where structure-value addresses are passed.
942 Aside from that, you can include as many other registers as you like. */
944 #define CALL_USED_REGISTERS \
945 {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, FIXED_R13, 0, 0, \
946 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
947 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, \
948 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
949 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, \
950 /* AltiVec registers. */ \
951 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
952 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
953 1, 1 \
954 , 1, 1, 1 \
957 /* Like `CALL_USED_REGISTERS' except this macro doesn't require that
958 the entire set of `FIXED_REGISTERS' be included.
959 (`CALL_USED_REGISTERS' must be a superset of `FIXED_REGISTERS').
960 This macro is optional. If not specified, it defaults to the value
961 of `CALL_USED_REGISTERS'. */
963 #define CALL_REALLY_USED_REGISTERS \
964 {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, FIXED_R13, 0, 0, \
965 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
966 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, \
967 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
968 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, \
969 /* AltiVec registers. */ \
970 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
971 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
972 0, 0 \
973 , 0, 0, 0 \
976 #define TOTAL_ALTIVEC_REGS (LAST_ALTIVEC_REGNO - FIRST_ALTIVEC_REGNO + 1)
978 #define FIRST_SAVED_ALTIVEC_REGNO (FIRST_ALTIVEC_REGNO+20)
979 #define FIRST_SAVED_FP_REGNO (14+32)
980 #define FIRST_SAVED_GP_REGNO 13
982 /* List the order in which to allocate registers. Each register must be
983 listed once, even those in FIXED_REGISTERS.
985 We allocate in the following order:
986 fp0 (not saved or used for anything)
987 fp13 - fp2 (not saved; incoming fp arg registers)
988 fp1 (not saved; return value)
989 fp31 - fp14 (saved; order given to save least number)
990 cr7, cr6 (not saved or special)
991 cr1 (not saved, but used for FP operations)
992 cr0 (not saved, but used for arithmetic operations)
993 cr4, cr3, cr2 (saved)
994 r0 (not saved; cannot be base reg)
995 r9 (not saved; best for TImode)
996 r11, r10, r8-r4 (not saved; highest used first to make less conflict)
997 r3 (not saved; return value register)
998 r31 - r13 (saved; order given to save least number)
999 r12 (not saved; if used for DImode or DFmode would use r13)
1000 mq (not saved; best to use it if we can)
1001 ctr (not saved; when we have the choice ctr is better)
1002 lr (saved)
1003 cr5, r1, r2, ap, ca (fixed)
1004 v0 - v1 (not saved or used for anything)
1005 v13 - v3 (not saved; incoming vector arg registers)
1006 v2 (not saved; incoming vector arg reg; return value)
1007 v19 - v14 (not saved or used for anything)
1008 v31 - v20 (saved; order given to save least number)
1009 vrsave, vscr (fixed)
1010 spe_acc, spefscr (fixed)
1011 sfp (fixed)
1014 #if FIXED_R2 == 1
1015 #define MAYBE_R2_AVAILABLE
1016 #define MAYBE_R2_FIXED 2,
1017 #else
1018 #define MAYBE_R2_AVAILABLE 2,
1019 #define MAYBE_R2_FIXED
1020 #endif
1022 #define REG_ALLOC_ORDER \
1023 {32, \
1024 45, 44, 43, 42, 41, 40, 39, 38, 37, 36, 35, 34, \
1025 33, \
1026 63, 62, 61, 60, 59, 58, 57, 56, 55, 54, 53, 52, 51, \
1027 50, 49, 48, 47, 46, \
1028 75, 74, 69, 68, 72, 71, 70, \
1029 0, MAYBE_R2_AVAILABLE \
1030 9, 11, 10, 8, 7, 6, 5, 4, \
1031 3, \
1032 31, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19, \
1033 18, 17, 16, 15, 14, 13, 12, \
1034 64, 66, 65, \
1035 73, 1, MAYBE_R2_FIXED 67, 76, \
1036 /* AltiVec registers. */ \
1037 77, 78, \
1038 90, 89, 88, 87, 86, 85, 84, 83, 82, 81, 80, \
1039 79, \
1040 96, 95, 94, 93, 92, 91, \
1041 108, 107, 106, 105, 104, 103, 102, 101, 100, 99, 98, 97, \
1042 109, 110, \
1043 111, 112, 113 \
1046 /* True if register is floating-point. */
1047 #define FP_REGNO_P(N) ((N) >= 32 && (N) <= 63)
1049 /* True if register is a condition register. */
1050 #define CR_REGNO_P(N) ((N) >= CR0_REGNO && (N) <= CR7_REGNO)
1052 /* True if register is a condition register, but not cr0. */
1053 #define CR_REGNO_NOT_CR0_P(N) ((N) >= CR1_REGNO && (N) <= CR7_REGNO)
1055 /* True if register is an integer register. */
1056 #define INT_REGNO_P(N) \
1057 ((N) <= 31 || (N) == ARG_POINTER_REGNUM || (N) == FRAME_POINTER_REGNUM)
1059 /* SPE SIMD registers are just the GPRs. */
1060 #define SPE_SIMD_REGNO_P(N) ((N) <= 31)
1062 /* PAIRED SIMD registers are just the FPRs. */
1063 #define PAIRED_SIMD_REGNO_P(N) ((N) >= 32 && (N) <= 63)
1065 /* True if register is the CA register. */
1066 #define CA_REGNO_P(N) ((N) == CA_REGNO)
1068 /* True if register is an AltiVec register. */
1069 #define ALTIVEC_REGNO_P(N) ((N) >= FIRST_ALTIVEC_REGNO && (N) <= LAST_ALTIVEC_REGNO)
1071 /* True if register is a VSX register. */
1072 #define VSX_REGNO_P(N) (FP_REGNO_P (N) || ALTIVEC_REGNO_P (N))
1074 /* Alternate name for any vector register supporting floating point, no matter
1075 which instruction set(s) are available. */
1076 #define VFLOAT_REGNO_P(N) \
1077 (ALTIVEC_REGNO_P (N) || (TARGET_VSX && FP_REGNO_P (N)))
1079 /* Alternate name for any vector register supporting integer, no matter which
1080 instruction set(s) are available. */
1081 #define VINT_REGNO_P(N) ALTIVEC_REGNO_P (N)
1083 /* Alternate name for any vector register supporting logical operations, no
1084 matter which instruction set(s) are available. */
1085 #define VLOGICAL_REGNO_P(N) VFLOAT_REGNO_P (N)
1087 /* Return number of consecutive hard regs needed starting at reg REGNO
1088 to hold something of mode MODE. */
1090 #define HARD_REGNO_NREGS(REGNO, MODE) rs6000_hard_regno_nregs[(MODE)][(REGNO)]
1092 #define HARD_REGNO_CALL_PART_CLOBBERED(REGNO, MODE) \
1093 (((TARGET_32BIT && TARGET_POWERPC64 \
1094 && (GET_MODE_SIZE (MODE) > 4) \
1095 && INT_REGNO_P (REGNO)) ? 1 : 0) \
1096 || (TARGET_VSX && FP_REGNO_P (REGNO) \
1097 && GET_MODE_SIZE (MODE) > 8))
1099 #define VSX_VECTOR_MODE(MODE) \
1100 ((MODE) == V4SFmode \
1101 || (MODE) == V2DFmode) \
1103 #define VSX_SCALAR_MODE(MODE) \
1104 ((MODE) == DFmode)
1106 #define VSX_MODE(MODE) \
1107 (VSX_VECTOR_MODE (MODE) \
1108 || VSX_SCALAR_MODE (MODE))
1110 #define VSX_MOVE_MODE(MODE) \
1111 (VSX_VECTOR_MODE (MODE) \
1112 || VSX_SCALAR_MODE (MODE) \
1113 || ALTIVEC_VECTOR_MODE (MODE) \
1114 || (MODE) == TImode)
1116 #define ALTIVEC_VECTOR_MODE(MODE) \
1117 ((MODE) == V16QImode \
1118 || (MODE) == V8HImode \
1119 || (MODE) == V4SFmode \
1120 || (MODE) == V4SImode)
1122 #define SPE_VECTOR_MODE(MODE) \
1123 ((MODE) == V4HImode \
1124 || (MODE) == V2SFmode \
1125 || (MODE) == V1DImode \
1126 || (MODE) == V2SImode)
1128 #define PAIRED_VECTOR_MODE(MODE) \
1129 ((MODE) == V2SFmode)
1131 #define UNITS_PER_SIMD_WORD(MODE) \
1132 (TARGET_VSX ? UNITS_PER_VSX_WORD \
1133 : (TARGET_ALTIVEC ? UNITS_PER_ALTIVEC_WORD \
1134 : (TARGET_SPE ? UNITS_PER_SPE_WORD \
1135 : (TARGET_PAIRED_FLOAT ? UNITS_PER_PAIRED_WORD \
1136 : UNITS_PER_WORD))))
1138 /* Value is TRUE if hard register REGNO can hold a value of
1139 machine-mode MODE. */
1140 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
1141 rs6000_hard_regno_mode_ok_p[(int)(MODE)][REGNO]
1143 /* Value is 1 if it is a good idea to tie two pseudo registers
1144 when one has mode MODE1 and one has mode MODE2.
1145 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
1146 for any hard reg, then this must be 0 for correct output. */
1147 #define MODES_TIEABLE_P(MODE1, MODE2) \
1148 (SCALAR_FLOAT_MODE_P (MODE1) \
1149 ? SCALAR_FLOAT_MODE_P (MODE2) \
1150 : SCALAR_FLOAT_MODE_P (MODE2) \
1151 ? SCALAR_FLOAT_MODE_P (MODE1) \
1152 : GET_MODE_CLASS (MODE1) == MODE_CC \
1153 ? GET_MODE_CLASS (MODE2) == MODE_CC \
1154 : GET_MODE_CLASS (MODE2) == MODE_CC \
1155 ? GET_MODE_CLASS (MODE1) == MODE_CC \
1156 : SPE_VECTOR_MODE (MODE1) \
1157 ? SPE_VECTOR_MODE (MODE2) \
1158 : SPE_VECTOR_MODE (MODE2) \
1159 ? SPE_VECTOR_MODE (MODE1) \
1160 : ALTIVEC_VECTOR_MODE (MODE1) \
1161 ? ALTIVEC_VECTOR_MODE (MODE2) \
1162 : ALTIVEC_VECTOR_MODE (MODE2) \
1163 ? ALTIVEC_VECTOR_MODE (MODE1) \
1164 : VSX_VECTOR_MODE (MODE1) \
1165 ? VSX_VECTOR_MODE (MODE2) \
1166 : VSX_VECTOR_MODE (MODE2) \
1167 ? VSX_VECTOR_MODE (MODE1) \
1168 : 1)
1170 /* Post-reload, we can't use any new AltiVec registers, as we already
1171 emitted the vrsave mask. */
1173 #define HARD_REGNO_RENAME_OK(SRC, DST) \
1174 (! ALTIVEC_REGNO_P (DST) || df_regs_ever_live_p (DST))
1176 /* Specify the cost of a branch insn; roughly the number of extra insns that
1177 should be added to avoid a branch.
1179 Set this to 3 on the RS/6000 since that is roughly the average cost of an
1180 unscheduled conditional branch. */
1182 #define BRANCH_COST(speed_p, predictable_p) 3
1184 /* Override BRANCH_COST heuristic which empirically produces worse
1185 performance for removing short circuiting from the logical ops. */
1187 #define LOGICAL_OP_NON_SHORT_CIRCUIT 0
1189 /* A fixed register used at epilogue generation to address SPE registers
1190 with negative offsets. The 64-bit load/store instructions on the SPE
1191 only take positive offsets (and small ones at that), so we need to
1192 reserve a register for consing up negative offsets. */
1194 #define FIXED_SCRATCH 0
1196 /* Define this macro to change register usage conditional on target
1197 flags. */
1199 #define CONDITIONAL_REGISTER_USAGE rs6000_conditional_register_usage ()
1201 /* Specify the registers used for certain standard purposes.
1202 The values of these macros are register numbers. */
1204 /* RS/6000 pc isn't overloaded on a register that the compiler knows about. */
1205 /* #define PC_REGNUM */
1207 /* Register to use for pushing function arguments. */
1208 #define STACK_POINTER_REGNUM 1
1210 /* Base register for access to local variables of the function. */
1211 #define HARD_FRAME_POINTER_REGNUM 31
1213 /* Base register for access to local variables of the function. */
1214 #define FRAME_POINTER_REGNUM 113
1216 /* Base register for access to arguments of the function. */
1217 #define ARG_POINTER_REGNUM 67
1219 /* Place to put static chain when calling a function that requires it. */
1220 #define STATIC_CHAIN_REGNUM 11
1223 /* Define the classes of registers for register constraints in the
1224 machine description. Also define ranges of constants.
1226 One of the classes must always be named ALL_REGS and include all hard regs.
1227 If there is more than one class, another class must be named NO_REGS
1228 and contain no registers.
1230 The name GENERAL_REGS must be the name of a class (or an alias for
1231 another name such as ALL_REGS). This is the class of registers
1232 that is allowed by "g" or "r" in a register constraint.
1233 Also, registers outside this class are allocated only when
1234 instructions express preferences for them.
1236 The classes must be numbered in nondecreasing order; that is,
1237 a larger-numbered class must never be contained completely
1238 in a smaller-numbered class.
1240 For any two classes, it is very desirable that there be another
1241 class that represents their union. */
1243 /* The RS/6000 has three types of registers, fixed-point, floating-point, and
1244 condition registers, plus three special registers, MQ, CTR, and the link
1245 register. AltiVec adds a vector register class. VSX registers overlap the
1246 FPR registers and the Altivec registers.
1248 However, r0 is special in that it cannot be used as a base register.
1249 So make a class for registers valid as base registers.
1251 Also, cr0 is the only condition code register that can be used in
1252 arithmetic insns, so make a separate class for it. */
1254 enum reg_class
1256 NO_REGS,
1257 BASE_REGS,
1258 GENERAL_REGS,
1259 FLOAT_REGS,
1260 ALTIVEC_REGS,
1261 VSX_REGS,
1262 VRSAVE_REGS,
1263 VSCR_REGS,
1264 SPE_ACC_REGS,
1265 SPEFSCR_REGS,
1266 NON_SPECIAL_REGS,
1267 MQ_REGS,
1268 LINK_REGS,
1269 CTR_REGS,
1270 LINK_OR_CTR_REGS,
1271 SPECIAL_REGS,
1272 SPEC_OR_GEN_REGS,
1273 CR0_REGS,
1274 CR_REGS,
1275 NON_FLOAT_REGS,
1276 CA_REGS,
1277 ALL_REGS,
1278 LIM_REG_CLASSES
1281 #define N_REG_CLASSES (int) LIM_REG_CLASSES
1283 /* Give names of register classes as strings for dump file. */
1285 #define REG_CLASS_NAMES \
1287 "NO_REGS", \
1288 "BASE_REGS", \
1289 "GENERAL_REGS", \
1290 "FLOAT_REGS", \
1291 "ALTIVEC_REGS", \
1292 "VSX_REGS", \
1293 "VRSAVE_REGS", \
1294 "VSCR_REGS", \
1295 "SPE_ACC_REGS", \
1296 "SPEFSCR_REGS", \
1297 "NON_SPECIAL_REGS", \
1298 "MQ_REGS", \
1299 "LINK_REGS", \
1300 "CTR_REGS", \
1301 "LINK_OR_CTR_REGS", \
1302 "SPECIAL_REGS", \
1303 "SPEC_OR_GEN_REGS", \
1304 "CR0_REGS", \
1305 "CR_REGS", \
1306 "NON_FLOAT_REGS", \
1307 "CA_REGS", \
1308 "ALL_REGS" \
1311 /* Define which registers fit in which classes.
1312 This is an initializer for a vector of HARD_REG_SET
1313 of length N_REG_CLASSES. */
1315 #define REG_CLASS_CONTENTS \
1317 { 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* NO_REGS */ \
1318 { 0xfffffffe, 0x00000000, 0x00000008, 0x00020000 }, /* BASE_REGS */ \
1319 { 0xffffffff, 0x00000000, 0x00000008, 0x00020000 }, /* GENERAL_REGS */ \
1320 { 0x00000000, 0xffffffff, 0x00000000, 0x00000000 }, /* FLOAT_REGS */ \
1321 { 0x00000000, 0x00000000, 0xffffe000, 0x00001fff }, /* ALTIVEC_REGS */ \
1322 { 0x00000000, 0xffffffff, 0xffffe000, 0x00001fff }, /* VSX_REGS */ \
1323 { 0x00000000, 0x00000000, 0x00000000, 0x00002000 }, /* VRSAVE_REGS */ \
1324 { 0x00000000, 0x00000000, 0x00000000, 0x00004000 }, /* VSCR_REGS */ \
1325 { 0x00000000, 0x00000000, 0x00000000, 0x00008000 }, /* SPE_ACC_REGS */ \
1326 { 0x00000000, 0x00000000, 0x00000000, 0x00010000 }, /* SPEFSCR_REGS */ \
1327 { 0xffffffff, 0xffffffff, 0x00000008, 0x00020000 }, /* NON_SPECIAL_REGS */ \
1328 { 0x00000000, 0x00000000, 0x00000001, 0x00000000 }, /* MQ_REGS */ \
1329 { 0x00000000, 0x00000000, 0x00000002, 0x00000000 }, /* LINK_REGS */ \
1330 { 0x00000000, 0x00000000, 0x00000004, 0x00000000 }, /* CTR_REGS */ \
1331 { 0x00000000, 0x00000000, 0x00000006, 0x00000000 }, /* LINK_OR_CTR_REGS */ \
1332 { 0x00000000, 0x00000000, 0x00000007, 0x00002000 }, /* SPECIAL_REGS */ \
1333 { 0xffffffff, 0x00000000, 0x0000000f, 0x00022000 }, /* SPEC_OR_GEN_REGS */ \
1334 { 0x00000000, 0x00000000, 0x00000010, 0x00000000 }, /* CR0_REGS */ \
1335 { 0x00000000, 0x00000000, 0x00000ff0, 0x00000000 }, /* CR_REGS */ \
1336 { 0xffffffff, 0x00000000, 0x0000efff, 0x00020000 }, /* NON_FLOAT_REGS */ \
1337 { 0x00000000, 0x00000000, 0x00001000, 0x00000000 }, /* CA_REGS */ \
1338 { 0xffffffff, 0xffffffff, 0xffffffff, 0x0003ffff } /* ALL_REGS */ \
1341 /* The following macro defines cover classes for Integrated Register
1342 Allocator. Cover classes is a set of non-intersected register
1343 classes covering all hard registers used for register allocation
1344 purpose. Any move between two registers of a cover class should be
1345 cheaper than load or store of the registers. The macro value is
1346 array of register classes with LIM_REG_CLASSES used as the end
1347 marker.
1349 We need two IRA_COVER_CLASSES, one for pre-VSX, and the other for VSX to
1350 account for the Altivec and Floating registers being subsets of the VSX
1351 register set. */
1353 #define IRA_COVER_CLASSES_PRE_VSX \
1355 GENERAL_REGS, SPECIAL_REGS, FLOAT_REGS, ALTIVEC_REGS, /* VSX_REGS, */ \
1356 /* VRSAVE_REGS,*/ VSCR_REGS, SPE_ACC_REGS, SPEFSCR_REGS, \
1357 /* MQ_REGS, LINK_REGS, CTR_REGS, */ \
1358 CR_REGS, CA_REGS, LIM_REG_CLASSES \
1361 #define IRA_COVER_CLASSES_VSX \
1363 GENERAL_REGS, SPECIAL_REGS, /* FLOAT_REGS, ALTIVEC_REGS, */ VSX_REGS, \
1364 /* VRSAVE_REGS,*/ VSCR_REGS, SPE_ACC_REGS, SPEFSCR_REGS, \
1365 /* MQ_REGS, LINK_REGS, CTR_REGS, */ \
1366 CR_REGS, CA_REGS, LIM_REG_CLASSES \
1369 /* The same information, inverted:
1370 Return the class number of the smallest class containing
1371 reg number REGNO. This could be a conditional expression
1372 or could index an array. */
1374 extern enum reg_class rs6000_regno_regclass[FIRST_PSEUDO_REGISTER];
1376 #if ENABLE_CHECKING
1377 #define REGNO_REG_CLASS(REGNO) \
1378 (gcc_assert (IN_RANGE ((REGNO), 0, FIRST_PSEUDO_REGISTER-1)), \
1379 rs6000_regno_regclass[(REGNO)])
1381 #else
1382 #define REGNO_REG_CLASS(REGNO) rs6000_regno_regclass[(REGNO)]
1383 #endif
1385 /* Register classes for various constraints that are based on the target
1386 switches. */
1387 enum r6000_reg_class_enum {
1388 RS6000_CONSTRAINT_d, /* fpr registers for double values */
1389 RS6000_CONSTRAINT_f, /* fpr registers for single values */
1390 RS6000_CONSTRAINT_v, /* Altivec registers */
1391 RS6000_CONSTRAINT_wa, /* Any VSX register */
1392 RS6000_CONSTRAINT_wd, /* VSX register for V2DF */
1393 RS6000_CONSTRAINT_wf, /* VSX register for V4SF */
1394 RS6000_CONSTRAINT_ws, /* VSX register for DF */
1395 RS6000_CONSTRAINT_MAX
1398 extern enum reg_class rs6000_constraints[RS6000_CONSTRAINT_MAX];
1400 /* The class value for index registers, and the one for base regs. */
1401 #define INDEX_REG_CLASS GENERAL_REGS
1402 #define BASE_REG_CLASS BASE_REGS
1404 /* Return whether a given register class can hold VSX objects. */
1405 #define VSX_REG_CLASS_P(CLASS) \
1406 ((CLASS) == VSX_REGS || (CLASS) == FLOAT_REGS || (CLASS) == ALTIVEC_REGS)
1408 /* Given an rtx X being reloaded into a reg required to be
1409 in class CLASS, return the class of reg to actually use.
1410 In general this is just CLASS; but on some machines
1411 in some cases it is preferable to use a more restrictive class.
1413 On the RS/6000, we have to return NO_REGS when we want to reload a
1414 floating-point CONST_DOUBLE to force it to be copied to memory.
1416 We also don't want to reload integer values into floating-point
1417 registers if we can at all help it. In fact, this can
1418 cause reload to die, if it tries to generate a reload of CTR
1419 into a FP register and discovers it doesn't have the memory location
1420 required.
1422 ??? Would it be a good idea to have reload do the converse, that is
1423 try to reload floating modes into FP registers if possible?
1426 #define PREFERRED_RELOAD_CLASS(X,CLASS) \
1427 rs6000_preferred_reload_class_ptr (X, CLASS)
1429 /* Return the register class of a scratch register needed to copy IN into
1430 or out of a register in CLASS in MODE. If it can be done directly,
1431 NO_REGS is returned. */
1433 #define SECONDARY_RELOAD_CLASS(CLASS,MODE,IN) \
1434 rs6000_secondary_reload_class_ptr (CLASS, MODE, IN)
1436 /* If we are copying between FP or AltiVec registers and anything
1437 else, we need a memory location. The exception is when we are
1438 targeting ppc64 and the move to/from fpr to gpr instructions
1439 are available.*/
1441 #define SECONDARY_MEMORY_NEEDED(CLASS1,CLASS2,MODE) \
1442 rs6000_secondary_memory_needed_ptr (CLASS1, CLASS2, MODE)
1444 /* For cpus that cannot load/store SDmode values from the 64-bit
1445 FP registers without using a full 64-bit load/store, we need
1446 to allocate a full 64-bit stack slot for them. */
1448 #define SECONDARY_MEMORY_NEEDED_RTX(MODE) \
1449 rs6000_secondary_memory_needed_rtx (MODE)
1451 /* Return the maximum number of consecutive registers
1452 needed to represent mode MODE in a register of class CLASS.
1454 On RS/6000, this is the size of MODE in words, except in the FP regs, where
1455 a single reg is enough for two words, unless we have VSX, where the FP
1456 registers can hold 128 bits. */
1457 #define CLASS_MAX_NREGS(CLASS, MODE) rs6000_class_max_nregs[(MODE)][(CLASS)]
1459 /* Return nonzero if for CLASS a mode change from FROM to TO is invalid. */
1461 #define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS) \
1462 rs6000_cannot_change_mode_class_ptr (FROM, TO, CLASS)
1464 /* Stack layout; function entry, exit and calling. */
1466 /* Enumeration to give which calling sequence to use. */
1467 enum rs6000_abi {
1468 ABI_NONE,
1469 ABI_AIX, /* IBM's AIX */
1470 ABI_V4, /* System V.4/eabi */
1471 ABI_DARWIN /* Apple's Darwin (OS X kernel) */
1474 extern enum rs6000_abi rs6000_current_abi; /* available for use by subtarget */
1476 /* Define this if pushing a word on the stack
1477 makes the stack pointer a smaller address. */
1478 #define STACK_GROWS_DOWNWARD
1480 /* Offsets recorded in opcodes are a multiple of this alignment factor. */
1481 #define DWARF_CIE_DATA_ALIGNMENT (-((int) (TARGET_32BIT ? 4 : 8)))
1483 /* Define this to nonzero if the nominal address of the stack frame
1484 is at the high-address end of the local variables;
1485 that is, each additional local variable allocated
1486 goes at a more negative offset in the frame.
1488 On the RS/6000, we grow upwards, from the area after the outgoing
1489 arguments. */
1490 #define FRAME_GROWS_DOWNWARD (flag_stack_protect != 0)
1492 /* Size of the outgoing register save area */
1493 #define RS6000_REG_SAVE ((DEFAULT_ABI == ABI_AIX \
1494 || DEFAULT_ABI == ABI_DARWIN) \
1495 ? (TARGET_64BIT ? 64 : 32) \
1496 : 0)
1498 /* Size of the fixed area on the stack */
1499 #define RS6000_SAVE_AREA \
1500 (((DEFAULT_ABI == ABI_AIX || DEFAULT_ABI == ABI_DARWIN) ? 24 : 8) \
1501 << (TARGET_64BIT ? 1 : 0))
1503 /* MEM representing address to save the TOC register */
1504 #define RS6000_SAVE_TOC gen_rtx_MEM (Pmode, \
1505 plus_constant (stack_pointer_rtx, \
1506 (TARGET_32BIT ? 20 : 40)))
1508 /* Align an address */
1509 #define RS6000_ALIGN(n,a) (((n) + (a) - 1) & ~((a) - 1))
1511 /* Offset within stack frame to start allocating local variables at.
1512 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
1513 first local allocated. Otherwise, it is the offset to the BEGINNING
1514 of the first local allocated.
1516 On the RS/6000, the frame pointer is the same as the stack pointer,
1517 except for dynamic allocations. So we start after the fixed area and
1518 outgoing parameter area. */
1520 #define STARTING_FRAME_OFFSET \
1521 (FRAME_GROWS_DOWNWARD \
1522 ? 0 \
1523 : (RS6000_ALIGN (crtl->outgoing_args_size, \
1524 (TARGET_ALTIVEC || TARGET_VSX) ? 16 : 8) \
1525 + RS6000_SAVE_AREA))
1527 /* Offset from the stack pointer register to an item dynamically
1528 allocated on the stack, e.g., by `alloca'.
1530 The default value for this macro is `STACK_POINTER_OFFSET' plus the
1531 length of the outgoing arguments. The default is correct for most
1532 machines. See `function.c' for details. */
1533 #define STACK_DYNAMIC_OFFSET(FUNDECL) \
1534 (RS6000_ALIGN (crtl->outgoing_args_size, \
1535 (TARGET_ALTIVEC || TARGET_VSX) ? 16 : 8) \
1536 + (STACK_POINTER_OFFSET))
1538 /* If we generate an insn to push BYTES bytes,
1539 this says how many the stack pointer really advances by.
1540 On RS/6000, don't define this because there are no push insns. */
1541 /* #define PUSH_ROUNDING(BYTES) */
1543 /* Offset of first parameter from the argument pointer register value.
1544 On the RS/6000, we define the argument pointer to the start of the fixed
1545 area. */
1546 #define FIRST_PARM_OFFSET(FNDECL) RS6000_SAVE_AREA
1548 /* Offset from the argument pointer register value to the top of
1549 stack. This is different from FIRST_PARM_OFFSET because of the
1550 register save area. */
1551 #define ARG_POINTER_CFA_OFFSET(FNDECL) 0
1553 /* Define this if stack space is still allocated for a parameter passed
1554 in a register. The value is the number of bytes allocated to this
1555 area. */
1556 #define REG_PARM_STACK_SPACE(FNDECL) RS6000_REG_SAVE
1558 /* Define this if the above stack space is to be considered part of the
1559 space allocated by the caller. */
1560 #define OUTGOING_REG_PARM_STACK_SPACE(FNTYPE) 1
1562 /* This is the difference between the logical top of stack and the actual sp.
1564 For the RS/6000, sp points past the fixed area. */
1565 #define STACK_POINTER_OFFSET RS6000_SAVE_AREA
1567 /* Define this if the maximum size of all the outgoing args is to be
1568 accumulated and pushed during the prologue. The amount can be
1569 found in the variable crtl->outgoing_args_size. */
1570 #define ACCUMULATE_OUTGOING_ARGS 1
1572 /* Define how to find the value returned by a library function
1573 assuming the value has mode MODE. */
1575 #define LIBCALL_VALUE(MODE) rs6000_libcall_value ((MODE))
1577 /* DRAFT_V4_STRUCT_RET defaults off. */
1578 #define DRAFT_V4_STRUCT_RET 0
1580 /* Let TARGET_RETURN_IN_MEMORY control what happens. */
1581 #define DEFAULT_PCC_STRUCT_RETURN 0
1583 /* Mode of stack savearea.
1584 FUNCTION is VOIDmode because calling convention maintains SP.
1585 BLOCK needs Pmode for SP.
1586 NONLOCAL needs twice Pmode to maintain both backchain and SP. */
1587 #define STACK_SAVEAREA_MODE(LEVEL) \
1588 (LEVEL == SAVE_FUNCTION ? VOIDmode \
1589 : LEVEL == SAVE_NONLOCAL ? (TARGET_32BIT ? DImode : TImode) : Pmode)
1591 /* Minimum and maximum general purpose registers used to hold arguments. */
1592 #define GP_ARG_MIN_REG 3
1593 #define GP_ARG_MAX_REG 10
1594 #define GP_ARG_NUM_REG (GP_ARG_MAX_REG - GP_ARG_MIN_REG + 1)
1596 /* Minimum and maximum floating point registers used to hold arguments. */
1597 #define FP_ARG_MIN_REG 33
1598 #define FP_ARG_AIX_MAX_REG 45
1599 #define FP_ARG_V4_MAX_REG 40
1600 #define FP_ARG_MAX_REG ((DEFAULT_ABI == ABI_AIX \
1601 || DEFAULT_ABI == ABI_DARWIN) \
1602 ? FP_ARG_AIX_MAX_REG : FP_ARG_V4_MAX_REG)
1603 #define FP_ARG_NUM_REG (FP_ARG_MAX_REG - FP_ARG_MIN_REG + 1)
1605 /* Minimum and maximum AltiVec registers used to hold arguments. */
1606 #define ALTIVEC_ARG_MIN_REG (FIRST_ALTIVEC_REGNO + 2)
1607 #define ALTIVEC_ARG_MAX_REG (ALTIVEC_ARG_MIN_REG + 11)
1608 #define ALTIVEC_ARG_NUM_REG (ALTIVEC_ARG_MAX_REG - ALTIVEC_ARG_MIN_REG + 1)
1610 /* Return registers */
1611 #define GP_ARG_RETURN GP_ARG_MIN_REG
1612 #define FP_ARG_RETURN FP_ARG_MIN_REG
1613 #define ALTIVEC_ARG_RETURN (FIRST_ALTIVEC_REGNO + 2)
1615 /* Flags for the call/call_value rtl operations set up by function_arg */
1616 #define CALL_NORMAL 0x00000000 /* no special processing */
1617 /* Bits in 0x00000001 are unused. */
1618 #define CALL_V4_CLEAR_FP_ARGS 0x00000002 /* V.4, no FP args passed */
1619 #define CALL_V4_SET_FP_ARGS 0x00000004 /* V.4, FP args were passed */
1620 #define CALL_LONG 0x00000008 /* always call indirect */
1621 #define CALL_LIBCALL 0x00000010 /* libcall */
1623 /* We don't have prologue and epilogue functions to save/restore
1624 everything for most ABIs. */
1625 #define WORLD_SAVE_P(INFO) 0
1627 /* 1 if N is a possible register number for a function value
1628 as seen by the caller.
1630 On RS/6000, this is r3, fp1, and v2 (for AltiVec). */
1631 #define FUNCTION_VALUE_REGNO_P(N) \
1632 ((N) == GP_ARG_RETURN \
1633 || ((N) == FP_ARG_RETURN && TARGET_HARD_FLOAT && TARGET_FPRS) \
1634 || ((N) == ALTIVEC_ARG_RETURN && TARGET_ALTIVEC && TARGET_ALTIVEC_ABI))
1636 /* 1 if N is a possible register number for function argument passing.
1637 On RS/6000, these are r3-r10 and fp1-fp13.
1638 On AltiVec, v2 - v13 are used for passing vectors. */
1639 #define FUNCTION_ARG_REGNO_P(N) \
1640 ((unsigned) (N) - GP_ARG_MIN_REG < GP_ARG_NUM_REG \
1641 || ((unsigned) (N) - ALTIVEC_ARG_MIN_REG < ALTIVEC_ARG_NUM_REG \
1642 && TARGET_ALTIVEC && TARGET_ALTIVEC_ABI) \
1643 || ((unsigned) (N) - FP_ARG_MIN_REG < FP_ARG_NUM_REG \
1644 && TARGET_HARD_FLOAT && TARGET_FPRS))
1646 /* Define a data type for recording info about an argument list
1647 during the scan of that argument list. This data type should
1648 hold all necessary information about the function itself
1649 and about the args processed so far, enough to enable macros
1650 such as FUNCTION_ARG to determine where the next arg should go.
1652 On the RS/6000, this is a structure. The first element is the number of
1653 total argument words, the second is used to store the next
1654 floating-point register number, and the third says how many more args we
1655 have prototype types for.
1657 For ABI_V4, we treat these slightly differently -- `sysv_gregno' is
1658 the next available GP register, `fregno' is the next available FP
1659 register, and `words' is the number of words used on the stack.
1661 The varargs/stdarg support requires that this structure's size
1662 be a multiple of sizeof(int). */
1664 typedef struct rs6000_args
1666 int words; /* # words used for passing GP registers */
1667 int fregno; /* next available FP register */
1668 int vregno; /* next available AltiVec register */
1669 int nargs_prototype; /* # args left in the current prototype */
1670 int prototype; /* Whether a prototype was defined */
1671 int stdarg; /* Whether function is a stdarg function. */
1672 int call_cookie; /* Do special things for this call */
1673 int sysv_gregno; /* next available GP register */
1674 int intoffset; /* running offset in struct (darwin64) */
1675 int use_stack; /* any part of struct on stack (darwin64) */
1676 int floats_in_gpr; /* count of SFmode floats taking up
1677 GPR space (darwin64) */
1678 int named; /* false for varargs params */
1679 } CUMULATIVE_ARGS;
1681 /* Initialize a variable CUM of type CUMULATIVE_ARGS
1682 for a call to a function whose data type is FNTYPE.
1683 For a library call, FNTYPE is 0. */
1685 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, INDIRECT, N_NAMED_ARGS) \
1686 init_cumulative_args (&CUM, FNTYPE, LIBNAME, FALSE, FALSE, N_NAMED_ARGS)
1688 /* Similar, but when scanning the definition of a procedure. We always
1689 set NARGS_PROTOTYPE large so we never return an EXPR_LIST. */
1691 #define INIT_CUMULATIVE_INCOMING_ARGS(CUM, FNTYPE, LIBNAME) \
1692 init_cumulative_args (&CUM, FNTYPE, LIBNAME, TRUE, FALSE, 1000)
1694 /* Like INIT_CUMULATIVE_ARGS' but only used for outgoing libcalls. */
1696 #define INIT_CUMULATIVE_LIBCALL_ARGS(CUM, MODE, LIBNAME) \
1697 init_cumulative_args (&CUM, NULL_TREE, LIBNAME, FALSE, TRUE, 0)
1699 /* Update the data in CUM to advance over an argument
1700 of mode MODE and data type TYPE.
1701 (TYPE is null for libcalls where that information may not be available.) */
1703 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
1704 function_arg_advance (&CUM, MODE, TYPE, NAMED, 0)
1706 /* Determine where to put an argument to a function.
1707 Value is zero to push the argument on the stack,
1708 or a hard register in which to store the argument.
1710 MODE is the argument's machine mode.
1711 TYPE is the data type of the argument (as a tree).
1712 This is null for libcalls where that information may
1713 not be available.
1714 CUM is a variable of type CUMULATIVE_ARGS which gives info about
1715 the preceding args and about the function being called.
1716 NAMED is nonzero if this argument is a named parameter
1717 (otherwise it is an extra parameter matching an ellipsis).
1719 On RS/6000 the first eight words of non-FP are normally in registers
1720 and the rest are pushed. The first 13 FP args are in registers.
1722 If this is floating-point and no prototype is specified, we use
1723 both an FP and integer register (or possibly FP reg and stack). Library
1724 functions (when TYPE is zero) always have the proper types for args,
1725 so we can pass the FP value just in one register. emit_library_function
1726 doesn't support EXPR_LIST anyway. */
1728 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
1729 function_arg (&CUM, MODE, TYPE, NAMED)
1731 /* If defined, a C expression which determines whether, and in which
1732 direction, to pad out an argument with extra space. The value
1733 should be of type `enum direction': either `upward' to pad above
1734 the argument, `downward' to pad below, or `none' to inhibit
1735 padding. */
1737 #define FUNCTION_ARG_PADDING(MODE, TYPE) function_arg_padding (MODE, TYPE)
1739 /* If defined, a C expression that gives the alignment boundary, in bits,
1740 of an argument with the specified mode and type. If it is not defined,
1741 PARM_BOUNDARY is used for all arguments. */
1743 #define FUNCTION_ARG_BOUNDARY(MODE, TYPE) \
1744 function_arg_boundary (MODE, TYPE)
1746 #define PAD_VARARGS_DOWN \
1747 (FUNCTION_ARG_PADDING (TYPE_MODE (type), type) == downward)
1749 /* Output assembler code to FILE to increment profiler label # LABELNO
1750 for profiling a function entry. */
1752 #define FUNCTION_PROFILER(FILE, LABELNO) \
1753 output_function_profiler ((FILE), (LABELNO));
1755 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1756 the stack pointer does not matter. No definition is equivalent to
1757 always zero.
1759 On the RS/6000, this is nonzero because we can restore the stack from
1760 its backpointer, which we maintain. */
1761 #define EXIT_IGNORE_STACK 1
1763 /* Define this macro as a C expression that is nonzero for registers
1764 that are used by the epilogue or the return' pattern. The stack
1765 and frame pointer registers are already be assumed to be used as
1766 needed. */
1768 #define EPILOGUE_USES(REGNO) \
1769 ((reload_completed && (REGNO) == LR_REGNO) \
1770 || (TARGET_ALTIVEC && (REGNO) == VRSAVE_REGNO) \
1771 || (crtl->calls_eh_return \
1772 && TARGET_AIX \
1773 && (REGNO) == 2))
1776 /* Length in units of the trampoline for entering a nested function. */
1778 #define TRAMPOLINE_SIZE rs6000_trampoline_size ()
1780 /* Definitions for __builtin_return_address and __builtin_frame_address.
1781 __builtin_return_address (0) should give link register (65), enable
1782 this. */
1783 /* This should be uncommented, so that the link register is used, but
1784 currently this would result in unmatched insns and spilling fixed
1785 registers so we'll leave it for another day. When these problems are
1786 taken care of one additional fetch will be necessary in RETURN_ADDR_RTX.
1787 (mrs) */
1788 /* #define RETURN_ADDR_IN_PREVIOUS_FRAME */
1790 /* Number of bytes into the frame return addresses can be found. See
1791 rs6000_stack_info in rs6000.c for more information on how the different
1792 abi's store the return address. */
1793 #define RETURN_ADDRESS_OFFSET \
1794 ((DEFAULT_ABI == ABI_AIX \
1795 || DEFAULT_ABI == ABI_DARWIN) ? (TARGET_32BIT ? 8 : 16) : \
1796 (DEFAULT_ABI == ABI_V4) ? 4 : \
1797 (internal_error ("RETURN_ADDRESS_OFFSET not supported"), 0))
1799 /* The current return address is in link register (65). The return address
1800 of anything farther back is accessed normally at an offset of 8 from the
1801 frame pointer. */
1802 #define RETURN_ADDR_RTX(COUNT, FRAME) \
1803 (rs6000_return_addr (COUNT, FRAME))
1806 /* Definitions for register eliminations.
1808 We have two registers that can be eliminated on the RS/6000. First, the
1809 frame pointer register can often be eliminated in favor of the stack
1810 pointer register. Secondly, the argument pointer register can always be
1811 eliminated; it is replaced with either the stack or frame pointer.
1813 In addition, we use the elimination mechanism to see if r30 is needed
1814 Initially we assume that it isn't. If it is, we spill it. This is done
1815 by making it an eliminable register. We replace it with itself so that
1816 if it isn't needed, then existing uses won't be modified. */
1818 /* This is an array of structures. Each structure initializes one pair
1819 of eliminable registers. The "from" register number is given first,
1820 followed by "to". Eliminations of the same "from" register are listed
1821 in order of preference. */
1822 #define ELIMINABLE_REGS \
1823 {{ HARD_FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1824 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1825 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
1826 { ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1827 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
1828 { RS6000_PIC_OFFSET_TABLE_REGNUM, RS6000_PIC_OFFSET_TABLE_REGNUM } }
1830 /* Define the offset between two registers, one to be eliminated, and the other
1831 its replacement, at the start of a routine. */
1832 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1833 ((OFFSET) = rs6000_initial_elimination_offset(FROM, TO))
1835 /* Addressing modes, and classification of registers for them. */
1837 #define HAVE_PRE_DECREMENT 1
1838 #define HAVE_PRE_INCREMENT 1
1839 #define HAVE_PRE_MODIFY_DISP 1
1840 #define HAVE_PRE_MODIFY_REG 1
1842 /* Macros to check register numbers against specific register classes. */
1844 /* These assume that REGNO is a hard or pseudo reg number.
1845 They give nonzero only if REGNO is a hard reg of the suitable class
1846 or a pseudo reg currently allocated to a suitable hard reg.
1847 Since they use reg_renumber, they are safe only once reg_renumber
1848 has been allocated, which happens in local-alloc.c. */
1850 #define REGNO_OK_FOR_INDEX_P(REGNO) \
1851 ((REGNO) < FIRST_PSEUDO_REGISTER \
1852 ? (REGNO) <= 31 || (REGNO) == 67 \
1853 || (REGNO) == FRAME_POINTER_REGNUM \
1854 : (reg_renumber[REGNO] >= 0 \
1855 && (reg_renumber[REGNO] <= 31 || reg_renumber[REGNO] == 67 \
1856 || reg_renumber[REGNO] == FRAME_POINTER_REGNUM)))
1858 #define REGNO_OK_FOR_BASE_P(REGNO) \
1859 ((REGNO) < FIRST_PSEUDO_REGISTER \
1860 ? ((REGNO) > 0 && (REGNO) <= 31) || (REGNO) == 67 \
1861 || (REGNO) == FRAME_POINTER_REGNUM \
1862 : (reg_renumber[REGNO] > 0 \
1863 && (reg_renumber[REGNO] <= 31 || reg_renumber[REGNO] == 67 \
1864 || reg_renumber[REGNO] == FRAME_POINTER_REGNUM)))
1866 /* Nonzero if X is a hard reg that can be used as an index
1867 or if it is a pseudo reg in the non-strict case. */
1868 #define INT_REG_OK_FOR_INDEX_P(X, STRICT) \
1869 ((!(STRICT) && REGNO (X) >= FIRST_PSEUDO_REGISTER) \
1870 || REGNO_OK_FOR_INDEX_P (REGNO (X)))
1872 /* Nonzero if X is a hard reg that can be used as a base reg
1873 or if it is a pseudo reg in the non-strict case. */
1874 #define INT_REG_OK_FOR_BASE_P(X, STRICT) \
1875 ((!(STRICT) && REGNO (X) >= FIRST_PSEUDO_REGISTER) \
1876 || REGNO_OK_FOR_BASE_P (REGNO (X)))
1879 /* Maximum number of registers that can appear in a valid memory address. */
1881 #define MAX_REGS_PER_ADDRESS 2
1883 /* Recognize any constant value that is a valid address. */
1885 #define CONSTANT_ADDRESS_P(X) \
1886 (GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF \
1887 || GET_CODE (X) == CONST_INT || GET_CODE (X) == CONST \
1888 || GET_CODE (X) == HIGH)
1890 /* Nonzero if the constant value X is a legitimate general operand.
1891 It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE.
1893 On the RS/6000, all integer constants are acceptable, most won't be valid
1894 for particular insns, though. Only easy FP constants are
1895 acceptable. */
1897 #define LEGITIMATE_CONSTANT_P(X) \
1898 (((GET_CODE (X) != CONST_DOUBLE \
1899 && GET_CODE (X) != CONST_VECTOR) \
1900 || GET_MODE (X) == VOIDmode \
1901 || (TARGET_POWERPC64 && GET_MODE (X) == DImode) \
1902 || easy_fp_constant (X, GET_MODE (X)) \
1903 || easy_vector_constant (X, GET_MODE (X))) \
1904 && !rs6000_tls_referenced_p (X))
1906 #define EASY_VECTOR_15(n) ((n) >= -16 && (n) <= 15)
1907 #define EASY_VECTOR_15_ADD_SELF(n) (!EASY_VECTOR_15((n)) \
1908 && EASY_VECTOR_15((n) >> 1) \
1909 && ((n) & 1) == 0)
1911 #define EASY_VECTOR_MSB(n,mode) \
1912 (((unsigned HOST_WIDE_INT)n) == \
1913 ((((unsigned HOST_WIDE_INT)GET_MODE_MASK (mode)) + 1) >> 1))
1916 /* Try a machine-dependent way of reloading an illegitimate address
1917 operand. If we find one, push the reload and jump to WIN. This
1918 macro is used in only one place: `find_reloads_address' in reload.c.
1920 Implemented on rs6000 by rs6000_legitimize_reload_address.
1921 Note that (X) is evaluated twice; this is safe in current usage. */
1923 #define LEGITIMIZE_RELOAD_ADDRESS(X,MODE,OPNUM,TYPE,IND_LEVELS,WIN) \
1924 do { \
1925 int win; \
1926 (X) = rs6000_legitimize_reload_address_ptr ((X), (MODE), (OPNUM), \
1927 (int)(TYPE), (IND_LEVELS), &win); \
1928 if ( win ) \
1929 goto WIN; \
1930 } while (0)
1932 #define FIND_BASE_TERM rs6000_find_base_term
1934 /* The register number of the register used to address a table of
1935 static data addresses in memory. In some cases this register is
1936 defined by a processor's "application binary interface" (ABI).
1937 When this macro is defined, RTL is generated for this register
1938 once, as with the stack pointer and frame pointer registers. If
1939 this macro is not defined, it is up to the machine-dependent files
1940 to allocate such a register (if necessary). */
1942 #define RS6000_PIC_OFFSET_TABLE_REGNUM 30
1943 #define PIC_OFFSET_TABLE_REGNUM (flag_pic ? RS6000_PIC_OFFSET_TABLE_REGNUM : INVALID_REGNUM)
1945 #define TOC_REGISTER (TARGET_MINIMAL_TOC ? RS6000_PIC_OFFSET_TABLE_REGNUM : 2)
1947 /* Define this macro if the register defined by
1948 `PIC_OFFSET_TABLE_REGNUM' is clobbered by calls. Do not define
1949 this macro if `PIC_OFFSET_TABLE_REGNUM' is not defined. */
1951 /* #define PIC_OFFSET_TABLE_REG_CALL_CLOBBERED */
1953 /* A C expression that is nonzero if X is a legitimate immediate
1954 operand on the target machine when generating position independent
1955 code. You can assume that X satisfies `CONSTANT_P', so you need
1956 not check this. You can also assume FLAG_PIC is true, so you need
1957 not check it either. You need not define this macro if all
1958 constants (including `SYMBOL_REF') can be immediate operands when
1959 generating position independent code. */
1961 /* #define LEGITIMATE_PIC_OPERAND_P (X) */
1963 /* Define this if some processing needs to be done immediately before
1964 emitting code for an insn. */
1966 #define FINAL_PRESCAN_INSN(INSN,OPERANDS,NOPERANDS) \
1967 rs6000_final_prescan_insn (INSN, OPERANDS, NOPERANDS)
1969 /* Specify the machine mode that this machine uses
1970 for the index in the tablejump instruction. */
1971 #define CASE_VECTOR_MODE SImode
1973 /* Define as C expression which evaluates to nonzero if the tablejump
1974 instruction expects the table to contain offsets from the address of the
1975 table.
1976 Do not define this if the table should contain absolute addresses. */
1977 #define CASE_VECTOR_PC_RELATIVE 1
1979 /* Define this as 1 if `char' should by default be signed; else as 0. */
1980 #define DEFAULT_SIGNED_CHAR 0
1982 /* This flag, if defined, says the same insns that convert to a signed fixnum
1983 also convert validly to an unsigned one. */
1985 /* #define FIXUNS_TRUNC_LIKE_FIX_TRUNC */
1987 /* An integer expression for the size in bits of the largest integer machine
1988 mode that should actually be used. */
1990 /* Allow pairs of registers to be used, which is the intent of the default. */
1991 #define MAX_FIXED_MODE_SIZE GET_MODE_BITSIZE (TARGET_POWERPC64 ? TImode : DImode)
1993 /* Max number of bytes we can move from memory to memory
1994 in one reasonably fast instruction. */
1995 #define MOVE_MAX (! TARGET_POWERPC64 ? 4 : 8)
1996 #define MAX_MOVE_MAX 8
1998 /* Nonzero if access to memory by bytes is no faster than for words.
1999 Also nonzero if doing byte operations (specifically shifts) in registers
2000 is undesirable. */
2001 #define SLOW_BYTE_ACCESS 1
2003 /* Define if operations between registers always perform the operation
2004 on the full register even if a narrower mode is specified. */
2005 #define WORD_REGISTER_OPERATIONS
2007 /* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
2008 will either zero-extend or sign-extend. The value of this macro should
2009 be the code that says which one of the two operations is implicitly
2010 done, UNKNOWN if none. */
2011 #define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
2013 /* Define if loading short immediate values into registers sign extends. */
2014 #define SHORT_IMMEDIATES_SIGN_EXTEND
2016 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
2017 is done just by pretending it is already truncated. */
2018 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
2020 /* The cntlzw and cntlzd instructions return 32 and 64 for input of zero. */
2021 #define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
2022 ((VALUE) = ((MODE) == SImode ? 32 : 64), 1)
2024 /* The CTZ patterns return -1 for input of zero. */
2025 #define CTZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) ((VALUE) = -1, 1)
2027 /* Specify the machine mode that pointers have.
2028 After generation of rtl, the compiler makes no further distinction
2029 between pointers and any other objects of this machine mode. */
2030 extern unsigned rs6000_pmode;
2031 #define Pmode ((enum machine_mode)rs6000_pmode)
2033 /* Supply definition of STACK_SIZE_MODE for allocate_dynamic_stack_space. */
2034 #define STACK_SIZE_MODE (TARGET_32BIT ? SImode : DImode)
2036 /* Mode of a function address in a call instruction (for indexing purposes).
2037 Doesn't matter on RS/6000. */
2038 #define FUNCTION_MODE SImode
2040 /* Define this if addresses of constant functions
2041 shouldn't be put through pseudo regs where they can be cse'd.
2042 Desirable on machines where ordinary constants are expensive
2043 but a CALL with constant address is cheap. */
2044 #define NO_FUNCTION_CSE
2046 /* Define this to be nonzero if shift instructions ignore all but the low-order
2047 few bits.
2049 The sle and sre instructions which allow SHIFT_COUNT_TRUNCATED
2050 have been dropped from the PowerPC architecture. */
2052 #define SHIFT_COUNT_TRUNCATED (TARGET_POWER ? 1 : 0)
2054 /* Adjust the length of an INSN. LENGTH is the currently-computed length and
2055 should be adjusted to reflect any required changes. This macro is used when
2056 there is some systematic length adjustment required that would be difficult
2057 to express in the length attribute. */
2059 /* #define ADJUST_INSN_LENGTH(X,LENGTH) */
2061 /* Given a comparison code (EQ, NE, etc.) and the first operand of a
2062 COMPARE, return the mode to be used for the comparison. For
2063 floating-point, CCFPmode should be used. CCUNSmode should be used
2064 for unsigned comparisons. CCEQmode should be used when we are
2065 doing an inequality comparison on the result of a
2066 comparison. CCmode should be used in all other cases. */
2068 #define SELECT_CC_MODE(OP,X,Y) \
2069 (SCALAR_FLOAT_MODE_P (GET_MODE (X)) ? CCFPmode \
2070 : (OP) == GTU || (OP) == LTU || (OP) == GEU || (OP) == LEU ? CCUNSmode \
2071 : (((OP) == EQ || (OP) == NE) && COMPARISON_P (X) \
2072 ? CCEQmode : CCmode))
2074 /* Can the condition code MODE be safely reversed? This is safe in
2075 all cases on this port, because at present it doesn't use the
2076 trapping FP comparisons (fcmpo). */
2077 #define REVERSIBLE_CC_MODE(MODE) 1
2079 /* Given a condition code and a mode, return the inverse condition. */
2080 #define REVERSE_CONDITION(CODE, MODE) rs6000_reverse_condition (MODE, CODE)
2083 /* Control the assembler format that we output. */
2085 /* A C string constant describing how to begin a comment in the target
2086 assembler language. The compiler assumes that the comment will end at
2087 the end of the line. */
2088 #define ASM_COMMENT_START " #"
2090 /* Flag to say the TOC is initialized */
2091 extern int toc_initialized;
2093 /* Macro to output a special constant pool entry. Go to WIN if we output
2094 it. Otherwise, it is written the usual way.
2096 On the RS/6000, toc entries are handled this way. */
2098 #define ASM_OUTPUT_SPECIAL_POOL_ENTRY(FILE, X, MODE, ALIGN, LABELNO, WIN) \
2099 { if (ASM_OUTPUT_SPECIAL_POOL_ENTRY_P (X, MODE)) \
2101 output_toc (FILE, X, LABELNO, MODE); \
2102 goto WIN; \
2106 #ifdef HAVE_GAS_WEAK
2107 #define RS6000_WEAK 1
2108 #else
2109 #define RS6000_WEAK 0
2110 #endif
2112 #if RS6000_WEAK
2113 /* Used in lieu of ASM_WEAKEN_LABEL. */
2114 #define ASM_WEAKEN_DECL(FILE, DECL, NAME, VAL) \
2115 do \
2117 fputs ("\t.weak\t", (FILE)); \
2118 RS6000_OUTPUT_BASENAME ((FILE), (NAME)); \
2119 if ((DECL) && TREE_CODE (DECL) == FUNCTION_DECL \
2120 && DEFAULT_ABI == ABI_AIX && DOT_SYMBOLS) \
2122 if (TARGET_XCOFF) \
2123 fputs ("[DS]", (FILE)); \
2124 fputs ("\n\t.weak\t.", (FILE)); \
2125 RS6000_OUTPUT_BASENAME ((FILE), (NAME)); \
2127 fputc ('\n', (FILE)); \
2128 if (VAL) \
2130 ASM_OUTPUT_DEF ((FILE), (NAME), (VAL)); \
2131 if ((DECL) && TREE_CODE (DECL) == FUNCTION_DECL \
2132 && DEFAULT_ABI == ABI_AIX && DOT_SYMBOLS) \
2134 fputs ("\t.set\t.", (FILE)); \
2135 RS6000_OUTPUT_BASENAME ((FILE), (NAME)); \
2136 fputs (",.", (FILE)); \
2137 RS6000_OUTPUT_BASENAME ((FILE), (VAL)); \
2138 fputc ('\n', (FILE)); \
2142 while (0)
2143 #endif
2145 #if HAVE_GAS_WEAKREF
2146 #define ASM_OUTPUT_WEAKREF(FILE, DECL, NAME, VALUE) \
2147 do \
2149 fputs ("\t.weakref\t", (FILE)); \
2150 RS6000_OUTPUT_BASENAME ((FILE), (NAME)); \
2151 fputs (", ", (FILE)); \
2152 RS6000_OUTPUT_BASENAME ((FILE), (VALUE)); \
2153 if ((DECL) && TREE_CODE (DECL) == FUNCTION_DECL \
2154 && DEFAULT_ABI == ABI_AIX && DOT_SYMBOLS) \
2156 fputs ("\n\t.weakref\t.", (FILE)); \
2157 RS6000_OUTPUT_BASENAME ((FILE), (NAME)); \
2158 fputs (", .", (FILE)); \
2159 RS6000_OUTPUT_BASENAME ((FILE), (VALUE)); \
2161 fputc ('\n', (FILE)); \
2162 } while (0)
2163 #endif
2165 /* This implements the `alias' attribute. */
2166 #undef ASM_OUTPUT_DEF_FROM_DECLS
2167 #define ASM_OUTPUT_DEF_FROM_DECLS(FILE, DECL, TARGET) \
2168 do \
2170 const char *alias = XSTR (XEXP (DECL_RTL (DECL), 0), 0); \
2171 const char *name = IDENTIFIER_POINTER (TARGET); \
2172 if (TREE_CODE (DECL) == FUNCTION_DECL \
2173 && DEFAULT_ABI == ABI_AIX && DOT_SYMBOLS) \
2175 if (TREE_PUBLIC (DECL)) \
2177 if (!RS6000_WEAK || !DECL_WEAK (DECL)) \
2179 fputs ("\t.globl\t.", FILE); \
2180 RS6000_OUTPUT_BASENAME (FILE, alias); \
2181 putc ('\n', FILE); \
2184 else if (TARGET_XCOFF) \
2186 fputs ("\t.lglobl\t.", FILE); \
2187 RS6000_OUTPUT_BASENAME (FILE, alias); \
2188 putc ('\n', FILE); \
2190 fputs ("\t.set\t.", FILE); \
2191 RS6000_OUTPUT_BASENAME (FILE, alias); \
2192 fputs (",.", FILE); \
2193 RS6000_OUTPUT_BASENAME (FILE, name); \
2194 fputc ('\n', FILE); \
2196 ASM_OUTPUT_DEF (FILE, alias, name); \
2198 while (0)
2200 #define TARGET_ASM_FILE_START rs6000_file_start
2202 /* Output to assembler file text saying following lines
2203 may contain character constants, extra white space, comments, etc. */
2205 #define ASM_APP_ON ""
2207 /* Output to assembler file text saying following lines
2208 no longer contain unusual constructs. */
2210 #define ASM_APP_OFF ""
2212 /* How to refer to registers in assembler output.
2213 This sequence is indexed by compiler's hard-register-number (see above). */
2215 extern char rs6000_reg_names[][8]; /* register names (0 vs. %r0). */
2217 #define REGISTER_NAMES \
2219 &rs6000_reg_names[ 0][0], /* r0 */ \
2220 &rs6000_reg_names[ 1][0], /* r1 */ \
2221 &rs6000_reg_names[ 2][0], /* r2 */ \
2222 &rs6000_reg_names[ 3][0], /* r3 */ \
2223 &rs6000_reg_names[ 4][0], /* r4 */ \
2224 &rs6000_reg_names[ 5][0], /* r5 */ \
2225 &rs6000_reg_names[ 6][0], /* r6 */ \
2226 &rs6000_reg_names[ 7][0], /* r7 */ \
2227 &rs6000_reg_names[ 8][0], /* r8 */ \
2228 &rs6000_reg_names[ 9][0], /* r9 */ \
2229 &rs6000_reg_names[10][0], /* r10 */ \
2230 &rs6000_reg_names[11][0], /* r11 */ \
2231 &rs6000_reg_names[12][0], /* r12 */ \
2232 &rs6000_reg_names[13][0], /* r13 */ \
2233 &rs6000_reg_names[14][0], /* r14 */ \
2234 &rs6000_reg_names[15][0], /* r15 */ \
2235 &rs6000_reg_names[16][0], /* r16 */ \
2236 &rs6000_reg_names[17][0], /* r17 */ \
2237 &rs6000_reg_names[18][0], /* r18 */ \
2238 &rs6000_reg_names[19][0], /* r19 */ \
2239 &rs6000_reg_names[20][0], /* r20 */ \
2240 &rs6000_reg_names[21][0], /* r21 */ \
2241 &rs6000_reg_names[22][0], /* r22 */ \
2242 &rs6000_reg_names[23][0], /* r23 */ \
2243 &rs6000_reg_names[24][0], /* r24 */ \
2244 &rs6000_reg_names[25][0], /* r25 */ \
2245 &rs6000_reg_names[26][0], /* r26 */ \
2246 &rs6000_reg_names[27][0], /* r27 */ \
2247 &rs6000_reg_names[28][0], /* r28 */ \
2248 &rs6000_reg_names[29][0], /* r29 */ \
2249 &rs6000_reg_names[30][0], /* r30 */ \
2250 &rs6000_reg_names[31][0], /* r31 */ \
2252 &rs6000_reg_names[32][0], /* fr0 */ \
2253 &rs6000_reg_names[33][0], /* fr1 */ \
2254 &rs6000_reg_names[34][0], /* fr2 */ \
2255 &rs6000_reg_names[35][0], /* fr3 */ \
2256 &rs6000_reg_names[36][0], /* fr4 */ \
2257 &rs6000_reg_names[37][0], /* fr5 */ \
2258 &rs6000_reg_names[38][0], /* fr6 */ \
2259 &rs6000_reg_names[39][0], /* fr7 */ \
2260 &rs6000_reg_names[40][0], /* fr8 */ \
2261 &rs6000_reg_names[41][0], /* fr9 */ \
2262 &rs6000_reg_names[42][0], /* fr10 */ \
2263 &rs6000_reg_names[43][0], /* fr11 */ \
2264 &rs6000_reg_names[44][0], /* fr12 */ \
2265 &rs6000_reg_names[45][0], /* fr13 */ \
2266 &rs6000_reg_names[46][0], /* fr14 */ \
2267 &rs6000_reg_names[47][0], /* fr15 */ \
2268 &rs6000_reg_names[48][0], /* fr16 */ \
2269 &rs6000_reg_names[49][0], /* fr17 */ \
2270 &rs6000_reg_names[50][0], /* fr18 */ \
2271 &rs6000_reg_names[51][0], /* fr19 */ \
2272 &rs6000_reg_names[52][0], /* fr20 */ \
2273 &rs6000_reg_names[53][0], /* fr21 */ \
2274 &rs6000_reg_names[54][0], /* fr22 */ \
2275 &rs6000_reg_names[55][0], /* fr23 */ \
2276 &rs6000_reg_names[56][0], /* fr24 */ \
2277 &rs6000_reg_names[57][0], /* fr25 */ \
2278 &rs6000_reg_names[58][0], /* fr26 */ \
2279 &rs6000_reg_names[59][0], /* fr27 */ \
2280 &rs6000_reg_names[60][0], /* fr28 */ \
2281 &rs6000_reg_names[61][0], /* fr29 */ \
2282 &rs6000_reg_names[62][0], /* fr30 */ \
2283 &rs6000_reg_names[63][0], /* fr31 */ \
2285 &rs6000_reg_names[64][0], /* mq */ \
2286 &rs6000_reg_names[65][0], /* lr */ \
2287 &rs6000_reg_names[66][0], /* ctr */ \
2288 &rs6000_reg_names[67][0], /* ap */ \
2290 &rs6000_reg_names[68][0], /* cr0 */ \
2291 &rs6000_reg_names[69][0], /* cr1 */ \
2292 &rs6000_reg_names[70][0], /* cr2 */ \
2293 &rs6000_reg_names[71][0], /* cr3 */ \
2294 &rs6000_reg_names[72][0], /* cr4 */ \
2295 &rs6000_reg_names[73][0], /* cr5 */ \
2296 &rs6000_reg_names[74][0], /* cr6 */ \
2297 &rs6000_reg_names[75][0], /* cr7 */ \
2299 &rs6000_reg_names[76][0], /* ca */ \
2301 &rs6000_reg_names[77][0], /* v0 */ \
2302 &rs6000_reg_names[78][0], /* v1 */ \
2303 &rs6000_reg_names[79][0], /* v2 */ \
2304 &rs6000_reg_names[80][0], /* v3 */ \
2305 &rs6000_reg_names[81][0], /* v4 */ \
2306 &rs6000_reg_names[82][0], /* v5 */ \
2307 &rs6000_reg_names[83][0], /* v6 */ \
2308 &rs6000_reg_names[84][0], /* v7 */ \
2309 &rs6000_reg_names[85][0], /* v8 */ \
2310 &rs6000_reg_names[86][0], /* v9 */ \
2311 &rs6000_reg_names[87][0], /* v10 */ \
2312 &rs6000_reg_names[88][0], /* v11 */ \
2313 &rs6000_reg_names[89][0], /* v12 */ \
2314 &rs6000_reg_names[90][0], /* v13 */ \
2315 &rs6000_reg_names[91][0], /* v14 */ \
2316 &rs6000_reg_names[92][0], /* v15 */ \
2317 &rs6000_reg_names[93][0], /* v16 */ \
2318 &rs6000_reg_names[94][0], /* v17 */ \
2319 &rs6000_reg_names[95][0], /* v18 */ \
2320 &rs6000_reg_names[96][0], /* v19 */ \
2321 &rs6000_reg_names[97][0], /* v20 */ \
2322 &rs6000_reg_names[98][0], /* v21 */ \
2323 &rs6000_reg_names[99][0], /* v22 */ \
2324 &rs6000_reg_names[100][0], /* v23 */ \
2325 &rs6000_reg_names[101][0], /* v24 */ \
2326 &rs6000_reg_names[102][0], /* v25 */ \
2327 &rs6000_reg_names[103][0], /* v26 */ \
2328 &rs6000_reg_names[104][0], /* v27 */ \
2329 &rs6000_reg_names[105][0], /* v28 */ \
2330 &rs6000_reg_names[106][0], /* v29 */ \
2331 &rs6000_reg_names[107][0], /* v30 */ \
2332 &rs6000_reg_names[108][0], /* v31 */ \
2333 &rs6000_reg_names[109][0], /* vrsave */ \
2334 &rs6000_reg_names[110][0], /* vscr */ \
2335 &rs6000_reg_names[111][0], /* spe_acc */ \
2336 &rs6000_reg_names[112][0], /* spefscr */ \
2337 &rs6000_reg_names[113][0], /* sfp */ \
2340 /* Table of additional register names to use in user input. */
2342 #define ADDITIONAL_REGISTER_NAMES \
2343 {{"r0", 0}, {"r1", 1}, {"r2", 2}, {"r3", 3}, \
2344 {"r4", 4}, {"r5", 5}, {"r6", 6}, {"r7", 7}, \
2345 {"r8", 8}, {"r9", 9}, {"r10", 10}, {"r11", 11}, \
2346 {"r12", 12}, {"r13", 13}, {"r14", 14}, {"r15", 15}, \
2347 {"r16", 16}, {"r17", 17}, {"r18", 18}, {"r19", 19}, \
2348 {"r20", 20}, {"r21", 21}, {"r22", 22}, {"r23", 23}, \
2349 {"r24", 24}, {"r25", 25}, {"r26", 26}, {"r27", 27}, \
2350 {"r28", 28}, {"r29", 29}, {"r30", 30}, {"r31", 31}, \
2351 {"fr0", 32}, {"fr1", 33}, {"fr2", 34}, {"fr3", 35}, \
2352 {"fr4", 36}, {"fr5", 37}, {"fr6", 38}, {"fr7", 39}, \
2353 {"fr8", 40}, {"fr9", 41}, {"fr10", 42}, {"fr11", 43}, \
2354 {"fr12", 44}, {"fr13", 45}, {"fr14", 46}, {"fr15", 47}, \
2355 {"fr16", 48}, {"fr17", 49}, {"fr18", 50}, {"fr19", 51}, \
2356 {"fr20", 52}, {"fr21", 53}, {"fr22", 54}, {"fr23", 55}, \
2357 {"fr24", 56}, {"fr25", 57}, {"fr26", 58}, {"fr27", 59}, \
2358 {"fr28", 60}, {"fr29", 61}, {"fr30", 62}, {"fr31", 63}, \
2359 {"v0", 77}, {"v1", 78}, {"v2", 79}, {"v3", 80}, \
2360 {"v4", 81}, {"v5", 82}, {"v6", 83}, {"v7", 84}, \
2361 {"v8", 85}, {"v9", 86}, {"v10", 87}, {"v11", 88}, \
2362 {"v12", 89}, {"v13", 90}, {"v14", 91}, {"v15", 92}, \
2363 {"v16", 93}, {"v17", 94}, {"v18", 95}, {"v19", 96}, \
2364 {"v20", 97}, {"v21", 98}, {"v22", 99}, {"v23", 100}, \
2365 {"v24", 101},{"v25", 102},{"v26", 103},{"v27", 104}, \
2366 {"v28", 105},{"v29", 106},{"v30", 107},{"v31", 108}, \
2367 {"vrsave", 109}, {"vscr", 110}, \
2368 {"spe_acc", 111}, {"spefscr", 112}, \
2369 /* no additional names for: mq, lr, ctr, ap */ \
2370 {"cr0", 68}, {"cr1", 69}, {"cr2", 70}, {"cr3", 71}, \
2371 {"cr4", 72}, {"cr5", 73}, {"cr6", 74}, {"cr7", 75}, \
2372 {"cc", 68}, {"sp", 1}, {"toc", 2}, \
2373 /* CA is only part of XER, but we do not model the other parts (yet). */ \
2374 {"xer", 76}, \
2375 /* VSX registers overlaid on top of FR, Altivec registers */ \
2376 {"vs0", 32}, {"vs1", 33}, {"vs2", 34}, {"vs3", 35}, \
2377 {"vs4", 36}, {"vs5", 37}, {"vs6", 38}, {"vs7", 39}, \
2378 {"vs8", 40}, {"vs9", 41}, {"vs10", 42}, {"vs11", 43}, \
2379 {"vs12", 44}, {"vs13", 45}, {"vs14", 46}, {"vs15", 47}, \
2380 {"vs16", 48}, {"vs17", 49}, {"vs18", 50}, {"vs19", 51}, \
2381 {"vs20", 52}, {"vs21", 53}, {"vs22", 54}, {"vs23", 55}, \
2382 {"vs24", 56}, {"vs25", 57}, {"vs26", 58}, {"vs27", 59}, \
2383 {"vs28", 60}, {"vs29", 61}, {"vs30", 62}, {"vs31", 63}, \
2384 {"vs32", 77}, {"vs33", 78}, {"vs34", 79}, {"vs35", 80}, \
2385 {"vs36", 81}, {"vs37", 82}, {"vs38", 83}, {"vs39", 84}, \
2386 {"vs40", 85}, {"vs41", 86}, {"vs42", 87}, {"vs43", 88}, \
2387 {"vs44", 89}, {"vs45", 90}, {"vs46", 91}, {"vs47", 92}, \
2388 {"vs48", 93}, {"vs49", 94}, {"vs50", 95}, {"vs51", 96}, \
2389 {"vs52", 97}, {"vs53", 98}, {"vs54", 99}, {"vs55", 100}, \
2390 {"vs56", 101},{"vs57", 102},{"vs58", 103},{"vs59", 104}, \
2391 {"vs60", 105},{"vs61", 106},{"vs62", 107},{"vs63", 108} }
2393 /* Text to write out after a CALL that may be replaced by glue code by
2394 the loader. This depends on the AIX version. */
2395 #define RS6000_CALL_GLUE "cror 31,31,31"
2397 /* This is how to output an element of a case-vector that is relative. */
2399 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
2400 do { char buf[100]; \
2401 fputs ("\t.long ", FILE); \
2402 ASM_GENERATE_INTERNAL_LABEL (buf, "L", VALUE); \
2403 assemble_name (FILE, buf); \
2404 putc ('-', FILE); \
2405 ASM_GENERATE_INTERNAL_LABEL (buf, "L", REL); \
2406 assemble_name (FILE, buf); \
2407 putc ('\n', FILE); \
2408 } while (0)
2410 /* This is how to output an assembler line
2411 that says to advance the location counter
2412 to a multiple of 2**LOG bytes. */
2414 #define ASM_OUTPUT_ALIGN(FILE,LOG) \
2415 if ((LOG) != 0) \
2416 fprintf (FILE, "\t.align %d\n", (LOG))
2418 /* Pick up the return address upon entry to a procedure. Used for
2419 dwarf2 unwind information. This also enables the table driven
2420 mechanism. */
2422 #define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (Pmode, LR_REGNO)
2423 #define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (LR_REGNO)
2425 /* Describe how we implement __builtin_eh_return. */
2426 #define EH_RETURN_DATA_REGNO(N) ((N) < 4 ? (N) + 3 : INVALID_REGNUM)
2427 #define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, 10)
2429 /* Print operand X (an rtx) in assembler syntax to file FILE.
2430 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
2431 For `%' followed by punctuation, CODE is the punctuation and X is null. */
2433 #define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
2435 /* Define which CODE values are valid. */
2437 #define PRINT_OPERAND_PUNCT_VALID_P(CODE) \
2438 ((CODE) == '.' || (CODE) == '&')
2440 /* Print a memory address as an operand to reference that memory location. */
2442 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) print_operand_address (FILE, ADDR)
2444 #define OUTPUT_ADDR_CONST_EXTRA(STREAM, X, FAIL) \
2445 do \
2446 if (!rs6000_output_addr_const_extra (STREAM, X)) \
2447 goto FAIL; \
2448 while (0)
2450 /* uncomment for disabling the corresponding default options */
2451 /* #define MACHINE_no_sched_interblock */
2452 /* #define MACHINE_no_sched_speculative */
2453 /* #define MACHINE_no_sched_speculative_load */
2455 /* General flags. */
2456 extern int flag_pic;
2457 extern int optimize;
2458 extern int flag_expensive_optimizations;
2459 extern int frame_pointer_needed;
2461 /* Classification of the builtin functions to properly set the declaration tree
2462 flags. */
2463 enum rs6000_btc
2465 RS6000_BTC_MISC, /* assume builtin can do anything */
2466 RS6000_BTC_CONST, /* builtin is a 'const' function. */
2467 RS6000_BTC_PURE, /* builtin is a 'pure' function. */
2468 RS6000_BTC_FP_PURE /* builtin is 'pure' if rounding math. */
2471 /* Convenience macros to document the instruction type. */
2472 #define RS6000_BTC_MEM RS6000_BTC_MISC /* load/store touches memory */
2473 #define RS6000_BTC_SAT RS6000_BTC_MISC /* VMX saturate sets VSCR register */
2475 #undef RS6000_BUILTIN
2476 #undef RS6000_BUILTIN_EQUATE
2477 #define RS6000_BUILTIN(NAME, TYPE) NAME,
2478 #define RS6000_BUILTIN_EQUATE(NAME, VALUE) NAME = VALUE,
2480 enum rs6000_builtins
2482 #include "rs6000-builtin.def"
2484 RS6000_BUILTIN_COUNT
2487 #undef RS6000_BUILTIN
2488 #undef RS6000_BUILTIN_EQUATE
2490 enum rs6000_builtin_type_index
2492 RS6000_BTI_NOT_OPAQUE,
2493 RS6000_BTI_opaque_V2SI,
2494 RS6000_BTI_opaque_V2SF,
2495 RS6000_BTI_opaque_p_V2SI,
2496 RS6000_BTI_opaque_V4SI,
2497 RS6000_BTI_V16QI,
2498 RS6000_BTI_V2SI,
2499 RS6000_BTI_V2SF,
2500 RS6000_BTI_V2DI,
2501 RS6000_BTI_V2DF,
2502 RS6000_BTI_V4HI,
2503 RS6000_BTI_V4SI,
2504 RS6000_BTI_V4SF,
2505 RS6000_BTI_V8HI,
2506 RS6000_BTI_unsigned_V16QI,
2507 RS6000_BTI_unsigned_V8HI,
2508 RS6000_BTI_unsigned_V4SI,
2509 RS6000_BTI_unsigned_V2DI,
2510 RS6000_BTI_bool_char, /* __bool char */
2511 RS6000_BTI_bool_short, /* __bool short */
2512 RS6000_BTI_bool_int, /* __bool int */
2513 RS6000_BTI_bool_long, /* __bool long */
2514 RS6000_BTI_pixel, /* __pixel */
2515 RS6000_BTI_bool_V16QI, /* __vector __bool char */
2516 RS6000_BTI_bool_V8HI, /* __vector __bool short */
2517 RS6000_BTI_bool_V4SI, /* __vector __bool int */
2518 RS6000_BTI_bool_V2DI, /* __vector __bool long */
2519 RS6000_BTI_pixel_V8HI, /* __vector __pixel */
2520 RS6000_BTI_long, /* long_integer_type_node */
2521 RS6000_BTI_unsigned_long, /* long_unsigned_type_node */
2522 RS6000_BTI_INTQI, /* intQI_type_node */
2523 RS6000_BTI_UINTQI, /* unsigned_intQI_type_node */
2524 RS6000_BTI_INTHI, /* intHI_type_node */
2525 RS6000_BTI_UINTHI, /* unsigned_intHI_type_node */
2526 RS6000_BTI_INTSI, /* intSI_type_node */
2527 RS6000_BTI_UINTSI, /* unsigned_intSI_type_node */
2528 RS6000_BTI_INTDI, /* intDI_type_node */
2529 RS6000_BTI_UINTDI, /* unsigned_intDI_type_node */
2530 RS6000_BTI_float, /* float_type_node */
2531 RS6000_BTI_double, /* double_type_node */
2532 RS6000_BTI_void, /* void_type_node */
2533 RS6000_BTI_MAX
2537 #define opaque_V2SI_type_node (rs6000_builtin_types[RS6000_BTI_opaque_V2SI])
2538 #define opaque_V2SF_type_node (rs6000_builtin_types[RS6000_BTI_opaque_V2SF])
2539 #define opaque_p_V2SI_type_node (rs6000_builtin_types[RS6000_BTI_opaque_p_V2SI])
2540 #define opaque_V4SI_type_node (rs6000_builtin_types[RS6000_BTI_opaque_V4SI])
2541 #define V16QI_type_node (rs6000_builtin_types[RS6000_BTI_V16QI])
2542 #define V2DI_type_node (rs6000_builtin_types[RS6000_BTI_V2DI])
2543 #define V2DF_type_node (rs6000_builtin_types[RS6000_BTI_V2DF])
2544 #define V2SI_type_node (rs6000_builtin_types[RS6000_BTI_V2SI])
2545 #define V2SF_type_node (rs6000_builtin_types[RS6000_BTI_V2SF])
2546 #define V4HI_type_node (rs6000_builtin_types[RS6000_BTI_V4HI])
2547 #define V4SI_type_node (rs6000_builtin_types[RS6000_BTI_V4SI])
2548 #define V4SF_type_node (rs6000_builtin_types[RS6000_BTI_V4SF])
2549 #define V8HI_type_node (rs6000_builtin_types[RS6000_BTI_V8HI])
2550 #define unsigned_V16QI_type_node (rs6000_builtin_types[RS6000_BTI_unsigned_V16QI])
2551 #define unsigned_V8HI_type_node (rs6000_builtin_types[RS6000_BTI_unsigned_V8HI])
2552 #define unsigned_V4SI_type_node (rs6000_builtin_types[RS6000_BTI_unsigned_V4SI])
2553 #define unsigned_V2DI_type_node (rs6000_builtin_types[RS6000_BTI_unsigned_V2DI])
2554 #define bool_char_type_node (rs6000_builtin_types[RS6000_BTI_bool_char])
2555 #define bool_short_type_node (rs6000_builtin_types[RS6000_BTI_bool_short])
2556 #define bool_int_type_node (rs6000_builtin_types[RS6000_BTI_bool_int])
2557 #define bool_long_type_node (rs6000_builtin_types[RS6000_BTI_bool_long])
2558 #define pixel_type_node (rs6000_builtin_types[RS6000_BTI_pixel])
2559 #define bool_V16QI_type_node (rs6000_builtin_types[RS6000_BTI_bool_V16QI])
2560 #define bool_V8HI_type_node (rs6000_builtin_types[RS6000_BTI_bool_V8HI])
2561 #define bool_V4SI_type_node (rs6000_builtin_types[RS6000_BTI_bool_V4SI])
2562 #define bool_V2DI_type_node (rs6000_builtin_types[RS6000_BTI_bool_V2DI])
2563 #define pixel_V8HI_type_node (rs6000_builtin_types[RS6000_BTI_pixel_V8HI])
2565 #define long_integer_type_internal_node (rs6000_builtin_types[RS6000_BTI_long])
2566 #define long_unsigned_type_internal_node (rs6000_builtin_types[RS6000_BTI_unsigned_long])
2567 #define intQI_type_internal_node (rs6000_builtin_types[RS6000_BTI_INTQI])
2568 #define uintQI_type_internal_node (rs6000_builtin_types[RS6000_BTI_UINTQI])
2569 #define intHI_type_internal_node (rs6000_builtin_types[RS6000_BTI_INTHI])
2570 #define uintHI_type_internal_node (rs6000_builtin_types[RS6000_BTI_UINTHI])
2571 #define intSI_type_internal_node (rs6000_builtin_types[RS6000_BTI_INTSI])
2572 #define uintSI_type_internal_node (rs6000_builtin_types[RS6000_BTI_UINTSI])
2573 #define intDI_type_internal_node (rs6000_builtin_types[RS6000_BTI_INTDI])
2574 #define uintDI_type_internal_node (rs6000_builtin_types[RS6000_BTI_UINTDI])
2575 #define float_type_internal_node (rs6000_builtin_types[RS6000_BTI_float])
2576 #define double_type_internal_node (rs6000_builtin_types[RS6000_BTI_double])
2577 #define void_type_internal_node (rs6000_builtin_types[RS6000_BTI_void])
2579 extern GTY(()) tree rs6000_builtin_types[RS6000_BTI_MAX];
2580 extern GTY(()) tree rs6000_builtin_decls[RS6000_BUILTIN_COUNT];