2010-07-27 Paolo Carlini <paolo.carlini@oracle.com>
[official-gcc/alias-decl.git] / gcc / tree-ssa-math-opts.c
blob9b96a60882756450b863abc2b097ebc5ba5561bc
1 /* Global, SSA-based optimizations using mathematical identities.
2 Copyright (C) 2005, 2006, 2007, 2008, 2009, 2010
3 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published by the
9 Free Software Foundation; either version 3, or (at your option) any
10 later version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 /* Currently, the only mini-pass in this file tries to CSE reciprocal
22 operations. These are common in sequences such as this one:
24 modulus = sqrt(x*x + y*y + z*z);
25 x = x / modulus;
26 y = y / modulus;
27 z = z / modulus;
29 that can be optimized to
31 modulus = sqrt(x*x + y*y + z*z);
32 rmodulus = 1.0 / modulus;
33 x = x * rmodulus;
34 y = y * rmodulus;
35 z = z * rmodulus;
37 We do this for loop invariant divisors, and with this pass whenever
38 we notice that a division has the same divisor multiple times.
40 Of course, like in PRE, we don't insert a division if a dominator
41 already has one. However, this cannot be done as an extension of
42 PRE for several reasons.
44 First of all, with some experiments it was found out that the
45 transformation is not always useful if there are only two divisions
46 hy the same divisor. This is probably because modern processors
47 can pipeline the divisions; on older, in-order processors it should
48 still be effective to optimize two divisions by the same number.
49 We make this a param, and it shall be called N in the remainder of
50 this comment.
52 Second, if trapping math is active, we have less freedom on where
53 to insert divisions: we can only do so in basic blocks that already
54 contain one. (If divisions don't trap, instead, we can insert
55 divisions elsewhere, which will be in blocks that are common dominators
56 of those that have the division).
58 We really don't want to compute the reciprocal unless a division will
59 be found. To do this, we won't insert the division in a basic block
60 that has less than N divisions *post-dominating* it.
62 The algorithm constructs a subset of the dominator tree, holding the
63 blocks containing the divisions and the common dominators to them,
64 and walk it twice. The first walk is in post-order, and it annotates
65 each block with the number of divisions that post-dominate it: this
66 gives information on where divisions can be inserted profitably.
67 The second walk is in pre-order, and it inserts divisions as explained
68 above, and replaces divisions by multiplications.
70 In the best case, the cost of the pass is O(n_statements). In the
71 worst-case, the cost is due to creating the dominator tree subset,
72 with a cost of O(n_basic_blocks ^ 2); however this can only happen
73 for n_statements / n_basic_blocks statements. So, the amortized cost
74 of creating the dominator tree subset is O(n_basic_blocks) and the
75 worst-case cost of the pass is O(n_statements * n_basic_blocks).
77 More practically, the cost will be small because there are few
78 divisions, and they tend to be in the same basic block, so insert_bb
79 is called very few times.
81 If we did this using domwalk.c, an efficient implementation would have
82 to work on all the variables in a single pass, because we could not
83 work on just a subset of the dominator tree, as we do now, and the
84 cost would also be something like O(n_statements * n_basic_blocks).
85 The data structures would be more complex in order to work on all the
86 variables in a single pass. */
88 #include "config.h"
89 #include "system.h"
90 #include "coretypes.h"
91 #include "tm.h"
92 #include "flags.h"
93 #include "tree.h"
94 #include "tree-flow.h"
95 #include "timevar.h"
96 #include "tree-pass.h"
97 #include "alloc-pool.h"
98 #include "basic-block.h"
99 #include "target.h"
100 #include "gimple-pretty-print.h"
102 /* FIXME: RTL headers have to be included here for optabs. */
103 #include "rtl.h" /* Because optabs.h wants enum rtx_code. */
104 #include "expr.h" /* Because optabs.h wants sepops. */
105 #include "optabs.h"
107 /* This structure represents one basic block that either computes a
108 division, or is a common dominator for basic block that compute a
109 division. */
110 struct occurrence {
111 /* The basic block represented by this structure. */
112 basic_block bb;
114 /* If non-NULL, the SSA_NAME holding the definition for a reciprocal
115 inserted in BB. */
116 tree recip_def;
118 /* If non-NULL, the GIMPLE_ASSIGN for a reciprocal computation that
119 was inserted in BB. */
120 gimple recip_def_stmt;
122 /* Pointer to a list of "struct occurrence"s for blocks dominated
123 by BB. */
124 struct occurrence *children;
126 /* Pointer to the next "struct occurrence"s in the list of blocks
127 sharing a common dominator. */
128 struct occurrence *next;
130 /* The number of divisions that are in BB before compute_merit. The
131 number of divisions that are in BB or post-dominate it after
132 compute_merit. */
133 int num_divisions;
135 /* True if the basic block has a division, false if it is a common
136 dominator for basic blocks that do. If it is false and trapping
137 math is active, BB is not a candidate for inserting a reciprocal. */
138 bool bb_has_division;
142 /* The instance of "struct occurrence" representing the highest
143 interesting block in the dominator tree. */
144 static struct occurrence *occ_head;
146 /* Allocation pool for getting instances of "struct occurrence". */
147 static alloc_pool occ_pool;
151 /* Allocate and return a new struct occurrence for basic block BB, and
152 whose children list is headed by CHILDREN. */
153 static struct occurrence *
154 occ_new (basic_block bb, struct occurrence *children)
156 struct occurrence *occ;
158 bb->aux = occ = (struct occurrence *) pool_alloc (occ_pool);
159 memset (occ, 0, sizeof (struct occurrence));
161 occ->bb = bb;
162 occ->children = children;
163 return occ;
167 /* Insert NEW_OCC into our subset of the dominator tree. P_HEAD points to a
168 list of "struct occurrence"s, one per basic block, having IDOM as
169 their common dominator.
171 We try to insert NEW_OCC as deep as possible in the tree, and we also
172 insert any other block that is a common dominator for BB and one
173 block already in the tree. */
175 static void
176 insert_bb (struct occurrence *new_occ, basic_block idom,
177 struct occurrence **p_head)
179 struct occurrence *occ, **p_occ;
181 for (p_occ = p_head; (occ = *p_occ) != NULL; )
183 basic_block bb = new_occ->bb, occ_bb = occ->bb;
184 basic_block dom = nearest_common_dominator (CDI_DOMINATORS, occ_bb, bb);
185 if (dom == bb)
187 /* BB dominates OCC_BB. OCC becomes NEW_OCC's child: remove OCC
188 from its list. */
189 *p_occ = occ->next;
190 occ->next = new_occ->children;
191 new_occ->children = occ;
193 /* Try the next block (it may as well be dominated by BB). */
196 else if (dom == occ_bb)
198 /* OCC_BB dominates BB. Tail recurse to look deeper. */
199 insert_bb (new_occ, dom, &occ->children);
200 return;
203 else if (dom != idom)
205 gcc_assert (!dom->aux);
207 /* There is a dominator between IDOM and BB, add it and make
208 two children out of NEW_OCC and OCC. First, remove OCC from
209 its list. */
210 *p_occ = occ->next;
211 new_occ->next = occ;
212 occ->next = NULL;
214 /* None of the previous blocks has DOM as a dominator: if we tail
215 recursed, we would reexamine them uselessly. Just switch BB with
216 DOM, and go on looking for blocks dominated by DOM. */
217 new_occ = occ_new (dom, new_occ);
220 else
222 /* Nothing special, go on with the next element. */
223 p_occ = &occ->next;
227 /* No place was found as a child of IDOM. Make BB a sibling of IDOM. */
228 new_occ->next = *p_head;
229 *p_head = new_occ;
232 /* Register that we found a division in BB. */
234 static inline void
235 register_division_in (basic_block bb)
237 struct occurrence *occ;
239 occ = (struct occurrence *) bb->aux;
240 if (!occ)
242 occ = occ_new (bb, NULL);
243 insert_bb (occ, ENTRY_BLOCK_PTR, &occ_head);
246 occ->bb_has_division = true;
247 occ->num_divisions++;
251 /* Compute the number of divisions that postdominate each block in OCC and
252 its children. */
254 static void
255 compute_merit (struct occurrence *occ)
257 struct occurrence *occ_child;
258 basic_block dom = occ->bb;
260 for (occ_child = occ->children; occ_child; occ_child = occ_child->next)
262 basic_block bb;
263 if (occ_child->children)
264 compute_merit (occ_child);
266 if (flag_exceptions)
267 bb = single_noncomplex_succ (dom);
268 else
269 bb = dom;
271 if (dominated_by_p (CDI_POST_DOMINATORS, bb, occ_child->bb))
272 occ->num_divisions += occ_child->num_divisions;
277 /* Return whether USE_STMT is a floating-point division by DEF. */
278 static inline bool
279 is_division_by (gimple use_stmt, tree def)
281 return is_gimple_assign (use_stmt)
282 && gimple_assign_rhs_code (use_stmt) == RDIV_EXPR
283 && gimple_assign_rhs2 (use_stmt) == def
284 /* Do not recognize x / x as valid division, as we are getting
285 confused later by replacing all immediate uses x in such
286 a stmt. */
287 && gimple_assign_rhs1 (use_stmt) != def;
290 /* Walk the subset of the dominator tree rooted at OCC, setting the
291 RECIP_DEF field to a definition of 1.0 / DEF that can be used in
292 the given basic block. The field may be left NULL, of course,
293 if it is not possible or profitable to do the optimization.
295 DEF_BSI is an iterator pointing at the statement defining DEF.
296 If RECIP_DEF is set, a dominator already has a computation that can
297 be used. */
299 static void
300 insert_reciprocals (gimple_stmt_iterator *def_gsi, struct occurrence *occ,
301 tree def, tree recip_def, int threshold)
303 tree type;
304 gimple new_stmt;
305 gimple_stmt_iterator gsi;
306 struct occurrence *occ_child;
308 if (!recip_def
309 && (occ->bb_has_division || !flag_trapping_math)
310 && occ->num_divisions >= threshold)
312 /* Make a variable with the replacement and substitute it. */
313 type = TREE_TYPE (def);
314 recip_def = make_rename_temp (type, "reciptmp");
315 new_stmt = gimple_build_assign_with_ops (RDIV_EXPR, recip_def,
316 build_one_cst (type), def);
318 if (occ->bb_has_division)
320 /* Case 1: insert before an existing division. */
321 gsi = gsi_after_labels (occ->bb);
322 while (!gsi_end_p (gsi) && !is_division_by (gsi_stmt (gsi), def))
323 gsi_next (&gsi);
325 gsi_insert_before (&gsi, new_stmt, GSI_SAME_STMT);
327 else if (def_gsi && occ->bb == def_gsi->bb)
329 /* Case 2: insert right after the definition. Note that this will
330 never happen if the definition statement can throw, because in
331 that case the sole successor of the statement's basic block will
332 dominate all the uses as well. */
333 gsi_insert_after (def_gsi, new_stmt, GSI_NEW_STMT);
335 else
337 /* Case 3: insert in a basic block not containing defs/uses. */
338 gsi = gsi_after_labels (occ->bb);
339 gsi_insert_before (&gsi, new_stmt, GSI_SAME_STMT);
342 occ->recip_def_stmt = new_stmt;
345 occ->recip_def = recip_def;
346 for (occ_child = occ->children; occ_child; occ_child = occ_child->next)
347 insert_reciprocals (def_gsi, occ_child, def, recip_def, threshold);
351 /* Replace the division at USE_P with a multiplication by the reciprocal, if
352 possible. */
354 static inline void
355 replace_reciprocal (use_operand_p use_p)
357 gimple use_stmt = USE_STMT (use_p);
358 basic_block bb = gimple_bb (use_stmt);
359 struct occurrence *occ = (struct occurrence *) bb->aux;
361 if (optimize_bb_for_speed_p (bb)
362 && occ->recip_def && use_stmt != occ->recip_def_stmt)
364 gimple_assign_set_rhs_code (use_stmt, MULT_EXPR);
365 SET_USE (use_p, occ->recip_def);
366 fold_stmt_inplace (use_stmt);
367 update_stmt (use_stmt);
372 /* Free OCC and return one more "struct occurrence" to be freed. */
374 static struct occurrence *
375 free_bb (struct occurrence *occ)
377 struct occurrence *child, *next;
379 /* First get the two pointers hanging off OCC. */
380 next = occ->next;
381 child = occ->children;
382 occ->bb->aux = NULL;
383 pool_free (occ_pool, occ);
385 /* Now ensure that we don't recurse unless it is necessary. */
386 if (!child)
387 return next;
388 else
390 while (next)
391 next = free_bb (next);
393 return child;
398 /* Look for floating-point divisions among DEF's uses, and try to
399 replace them by multiplications with the reciprocal. Add
400 as many statements computing the reciprocal as needed.
402 DEF must be a GIMPLE register of a floating-point type. */
404 static void
405 execute_cse_reciprocals_1 (gimple_stmt_iterator *def_gsi, tree def)
407 use_operand_p use_p;
408 imm_use_iterator use_iter;
409 struct occurrence *occ;
410 int count = 0, threshold;
412 gcc_assert (FLOAT_TYPE_P (TREE_TYPE (def)) && is_gimple_reg (def));
414 FOR_EACH_IMM_USE_FAST (use_p, use_iter, def)
416 gimple use_stmt = USE_STMT (use_p);
417 if (is_division_by (use_stmt, def))
419 register_division_in (gimple_bb (use_stmt));
420 count++;
424 /* Do the expensive part only if we can hope to optimize something. */
425 threshold = targetm.min_divisions_for_recip_mul (TYPE_MODE (TREE_TYPE (def)));
426 if (count >= threshold)
428 gimple use_stmt;
429 for (occ = occ_head; occ; occ = occ->next)
431 compute_merit (occ);
432 insert_reciprocals (def_gsi, occ, def, NULL, threshold);
435 FOR_EACH_IMM_USE_STMT (use_stmt, use_iter, def)
437 if (is_division_by (use_stmt, def))
439 FOR_EACH_IMM_USE_ON_STMT (use_p, use_iter)
440 replace_reciprocal (use_p);
445 for (occ = occ_head; occ; )
446 occ = free_bb (occ);
448 occ_head = NULL;
451 static bool
452 gate_cse_reciprocals (void)
454 return optimize && flag_reciprocal_math;
457 /* Go through all the floating-point SSA_NAMEs, and call
458 execute_cse_reciprocals_1 on each of them. */
459 static unsigned int
460 execute_cse_reciprocals (void)
462 basic_block bb;
463 tree arg;
465 occ_pool = create_alloc_pool ("dominators for recip",
466 sizeof (struct occurrence),
467 n_basic_blocks / 3 + 1);
469 calculate_dominance_info (CDI_DOMINATORS);
470 calculate_dominance_info (CDI_POST_DOMINATORS);
472 #ifdef ENABLE_CHECKING
473 FOR_EACH_BB (bb)
474 gcc_assert (!bb->aux);
475 #endif
477 for (arg = DECL_ARGUMENTS (cfun->decl); arg; arg = DECL_CHAIN (arg))
478 if (gimple_default_def (cfun, arg)
479 && FLOAT_TYPE_P (TREE_TYPE (arg))
480 && is_gimple_reg (arg))
481 execute_cse_reciprocals_1 (NULL, gimple_default_def (cfun, arg));
483 FOR_EACH_BB (bb)
485 gimple_stmt_iterator gsi;
486 gimple phi;
487 tree def;
489 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
491 phi = gsi_stmt (gsi);
492 def = PHI_RESULT (phi);
493 if (FLOAT_TYPE_P (TREE_TYPE (def))
494 && is_gimple_reg (def))
495 execute_cse_reciprocals_1 (NULL, def);
498 for (gsi = gsi_after_labels (bb); !gsi_end_p (gsi); gsi_next (&gsi))
500 gimple stmt = gsi_stmt (gsi);
502 if (gimple_has_lhs (stmt)
503 && (def = SINGLE_SSA_TREE_OPERAND (stmt, SSA_OP_DEF)) != NULL
504 && FLOAT_TYPE_P (TREE_TYPE (def))
505 && TREE_CODE (def) == SSA_NAME)
506 execute_cse_reciprocals_1 (&gsi, def);
509 if (optimize_bb_for_size_p (bb))
510 continue;
512 /* Scan for a/func(b) and convert it to reciprocal a*rfunc(b). */
513 for (gsi = gsi_after_labels (bb); !gsi_end_p (gsi); gsi_next (&gsi))
515 gimple stmt = gsi_stmt (gsi);
516 tree fndecl;
518 if (is_gimple_assign (stmt)
519 && gimple_assign_rhs_code (stmt) == RDIV_EXPR)
521 tree arg1 = gimple_assign_rhs2 (stmt);
522 gimple stmt1;
524 if (TREE_CODE (arg1) != SSA_NAME)
525 continue;
527 stmt1 = SSA_NAME_DEF_STMT (arg1);
529 if (is_gimple_call (stmt1)
530 && gimple_call_lhs (stmt1)
531 && (fndecl = gimple_call_fndecl (stmt1))
532 && (DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
533 || DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_MD))
535 enum built_in_function code;
536 bool md_code, fail;
537 imm_use_iterator ui;
538 use_operand_p use_p;
540 code = DECL_FUNCTION_CODE (fndecl);
541 md_code = DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_MD;
543 fndecl = targetm.builtin_reciprocal (code, md_code, false);
544 if (!fndecl)
545 continue;
547 /* Check that all uses of the SSA name are divisions,
548 otherwise replacing the defining statement will do
549 the wrong thing. */
550 fail = false;
551 FOR_EACH_IMM_USE_FAST (use_p, ui, arg1)
553 gimple stmt2 = USE_STMT (use_p);
554 if (is_gimple_debug (stmt2))
555 continue;
556 if (!is_gimple_assign (stmt2)
557 || gimple_assign_rhs_code (stmt2) != RDIV_EXPR
558 || gimple_assign_rhs1 (stmt2) == arg1
559 || gimple_assign_rhs2 (stmt2) != arg1)
561 fail = true;
562 break;
565 if (fail)
566 continue;
568 gimple_replace_lhs (stmt1, arg1);
569 gimple_call_set_fndecl (stmt1, fndecl);
570 update_stmt (stmt1);
572 FOR_EACH_IMM_USE_STMT (stmt, ui, arg1)
574 gimple_assign_set_rhs_code (stmt, MULT_EXPR);
575 fold_stmt_inplace (stmt);
576 update_stmt (stmt);
583 free_dominance_info (CDI_DOMINATORS);
584 free_dominance_info (CDI_POST_DOMINATORS);
585 free_alloc_pool (occ_pool);
586 return 0;
589 struct gimple_opt_pass pass_cse_reciprocals =
592 GIMPLE_PASS,
593 "recip", /* name */
594 gate_cse_reciprocals, /* gate */
595 execute_cse_reciprocals, /* execute */
596 NULL, /* sub */
597 NULL, /* next */
598 0, /* static_pass_number */
599 TV_NONE, /* tv_id */
600 PROP_ssa, /* properties_required */
601 0, /* properties_provided */
602 0, /* properties_destroyed */
603 0, /* todo_flags_start */
604 TODO_dump_func | TODO_update_ssa | TODO_verify_ssa
605 | TODO_verify_stmts /* todo_flags_finish */
609 /* Records an occurrence at statement USE_STMT in the vector of trees
610 STMTS if it is dominated by *TOP_BB or dominates it or this basic block
611 is not yet initialized. Returns true if the occurrence was pushed on
612 the vector. Adjusts *TOP_BB to be the basic block dominating all
613 statements in the vector. */
615 static bool
616 maybe_record_sincos (VEC(gimple, heap) **stmts,
617 basic_block *top_bb, gimple use_stmt)
619 basic_block use_bb = gimple_bb (use_stmt);
620 if (*top_bb
621 && (*top_bb == use_bb
622 || dominated_by_p (CDI_DOMINATORS, use_bb, *top_bb)))
623 VEC_safe_push (gimple, heap, *stmts, use_stmt);
624 else if (!*top_bb
625 || dominated_by_p (CDI_DOMINATORS, *top_bb, use_bb))
627 VEC_safe_push (gimple, heap, *stmts, use_stmt);
628 *top_bb = use_bb;
630 else
631 return false;
633 return true;
636 /* Look for sin, cos and cexpi calls with the same argument NAME and
637 create a single call to cexpi CSEing the result in this case.
638 We first walk over all immediate uses of the argument collecting
639 statements that we can CSE in a vector and in a second pass replace
640 the statement rhs with a REALPART or IMAGPART expression on the
641 result of the cexpi call we insert before the use statement that
642 dominates all other candidates. */
644 static void
645 execute_cse_sincos_1 (tree name)
647 gimple_stmt_iterator gsi;
648 imm_use_iterator use_iter;
649 tree fndecl, res, type;
650 gimple def_stmt, use_stmt, stmt;
651 int seen_cos = 0, seen_sin = 0, seen_cexpi = 0;
652 VEC(gimple, heap) *stmts = NULL;
653 basic_block top_bb = NULL;
654 int i;
656 type = TREE_TYPE (name);
657 FOR_EACH_IMM_USE_STMT (use_stmt, use_iter, name)
659 if (gimple_code (use_stmt) != GIMPLE_CALL
660 || !gimple_call_lhs (use_stmt)
661 || !(fndecl = gimple_call_fndecl (use_stmt))
662 || DECL_BUILT_IN_CLASS (fndecl) != BUILT_IN_NORMAL)
663 continue;
665 switch (DECL_FUNCTION_CODE (fndecl))
667 CASE_FLT_FN (BUILT_IN_COS):
668 seen_cos |= maybe_record_sincos (&stmts, &top_bb, use_stmt) ? 1 : 0;
669 break;
671 CASE_FLT_FN (BUILT_IN_SIN):
672 seen_sin |= maybe_record_sincos (&stmts, &top_bb, use_stmt) ? 1 : 0;
673 break;
675 CASE_FLT_FN (BUILT_IN_CEXPI):
676 seen_cexpi |= maybe_record_sincos (&stmts, &top_bb, use_stmt) ? 1 : 0;
677 break;
679 default:;
683 if (seen_cos + seen_sin + seen_cexpi <= 1)
685 VEC_free(gimple, heap, stmts);
686 return;
689 /* Simply insert cexpi at the beginning of top_bb but not earlier than
690 the name def statement. */
691 fndecl = mathfn_built_in (type, BUILT_IN_CEXPI);
692 if (!fndecl)
693 return;
694 res = make_rename_temp (TREE_TYPE (TREE_TYPE (fndecl)), "sincostmp");
695 stmt = gimple_build_call (fndecl, 1, name);
696 gimple_call_set_lhs (stmt, res);
698 def_stmt = SSA_NAME_DEF_STMT (name);
699 if (!SSA_NAME_IS_DEFAULT_DEF (name)
700 && gimple_code (def_stmt) != GIMPLE_PHI
701 && gimple_bb (def_stmt) == top_bb)
703 gsi = gsi_for_stmt (def_stmt);
704 gsi_insert_after (&gsi, stmt, GSI_SAME_STMT);
706 else
708 gsi = gsi_after_labels (top_bb);
709 gsi_insert_before (&gsi, stmt, GSI_SAME_STMT);
711 update_stmt (stmt);
713 /* And adjust the recorded old call sites. */
714 for (i = 0; VEC_iterate(gimple, stmts, i, use_stmt); ++i)
716 tree rhs = NULL;
717 fndecl = gimple_call_fndecl (use_stmt);
719 switch (DECL_FUNCTION_CODE (fndecl))
721 CASE_FLT_FN (BUILT_IN_COS):
722 rhs = fold_build1 (REALPART_EXPR, type, res);
723 break;
725 CASE_FLT_FN (BUILT_IN_SIN):
726 rhs = fold_build1 (IMAGPART_EXPR, type, res);
727 break;
729 CASE_FLT_FN (BUILT_IN_CEXPI):
730 rhs = res;
731 break;
733 default:;
734 gcc_unreachable ();
737 /* Replace call with a copy. */
738 stmt = gimple_build_assign (gimple_call_lhs (use_stmt), rhs);
740 gsi = gsi_for_stmt (use_stmt);
741 gsi_insert_after (&gsi, stmt, GSI_SAME_STMT);
742 gsi_remove (&gsi, true);
745 VEC_free(gimple, heap, stmts);
748 /* Go through all calls to sin, cos and cexpi and call execute_cse_sincos_1
749 on the SSA_NAME argument of each of them. */
751 static unsigned int
752 execute_cse_sincos (void)
754 basic_block bb;
756 calculate_dominance_info (CDI_DOMINATORS);
758 FOR_EACH_BB (bb)
760 gimple_stmt_iterator gsi;
762 for (gsi = gsi_after_labels (bb); !gsi_end_p (gsi); gsi_next (&gsi))
764 gimple stmt = gsi_stmt (gsi);
765 tree fndecl;
767 if (is_gimple_call (stmt)
768 && gimple_call_lhs (stmt)
769 && (fndecl = gimple_call_fndecl (stmt))
770 && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
772 tree arg;
774 switch (DECL_FUNCTION_CODE (fndecl))
776 CASE_FLT_FN (BUILT_IN_COS):
777 CASE_FLT_FN (BUILT_IN_SIN):
778 CASE_FLT_FN (BUILT_IN_CEXPI):
779 arg = gimple_call_arg (stmt, 0);
780 if (TREE_CODE (arg) == SSA_NAME)
781 execute_cse_sincos_1 (arg);
782 break;
784 default:;
790 free_dominance_info (CDI_DOMINATORS);
791 return 0;
794 static bool
795 gate_cse_sincos (void)
797 /* Make sure we have either sincos or cexp. */
798 return (TARGET_HAS_SINCOS
799 || TARGET_C99_FUNCTIONS)
800 && optimize;
803 struct gimple_opt_pass pass_cse_sincos =
806 GIMPLE_PASS,
807 "sincos", /* name */
808 gate_cse_sincos, /* gate */
809 execute_cse_sincos, /* execute */
810 NULL, /* sub */
811 NULL, /* next */
812 0, /* static_pass_number */
813 TV_NONE, /* tv_id */
814 PROP_ssa, /* properties_required */
815 0, /* properties_provided */
816 0, /* properties_destroyed */
817 0, /* todo_flags_start */
818 TODO_dump_func | TODO_update_ssa | TODO_verify_ssa
819 | TODO_verify_stmts /* todo_flags_finish */
823 /* A symbolic number is used to detect byte permutation and selection
824 patterns. Therefore the field N contains an artificial number
825 consisting of byte size markers:
827 0 - byte has the value 0
828 1..size - byte contains the content of the byte
829 number indexed with that value minus one */
831 struct symbolic_number {
832 unsigned HOST_WIDEST_INT n;
833 int size;
836 /* Perform a SHIFT or ROTATE operation by COUNT bits on symbolic
837 number N. Return false if the requested operation is not permitted
838 on a symbolic number. */
840 static inline bool
841 do_shift_rotate (enum tree_code code,
842 struct symbolic_number *n,
843 int count)
845 if (count % 8 != 0)
846 return false;
848 /* Zero out the extra bits of N in order to avoid them being shifted
849 into the significant bits. */
850 if (n->size < (int)sizeof (HOST_WIDEST_INT))
851 n->n &= ((unsigned HOST_WIDEST_INT)1 << (n->size * BITS_PER_UNIT)) - 1;
853 switch (code)
855 case LSHIFT_EXPR:
856 n->n <<= count;
857 break;
858 case RSHIFT_EXPR:
859 n->n >>= count;
860 break;
861 case LROTATE_EXPR:
862 n->n = (n->n << count) | (n->n >> ((n->size * BITS_PER_UNIT) - count));
863 break;
864 case RROTATE_EXPR:
865 n->n = (n->n >> count) | (n->n << ((n->size * BITS_PER_UNIT) - count));
866 break;
867 default:
868 return false;
870 return true;
873 /* Perform sanity checking for the symbolic number N and the gimple
874 statement STMT. */
876 static inline bool
877 verify_symbolic_number_p (struct symbolic_number *n, gimple stmt)
879 tree lhs_type;
881 lhs_type = gimple_expr_type (stmt);
883 if (TREE_CODE (lhs_type) != INTEGER_TYPE)
884 return false;
886 if (TYPE_PRECISION (lhs_type) != n->size * BITS_PER_UNIT)
887 return false;
889 return true;
892 /* find_bswap_1 invokes itself recursively with N and tries to perform
893 the operation given by the rhs of STMT on the result. If the
894 operation could successfully be executed the function returns the
895 tree expression of the source operand and NULL otherwise. */
897 static tree
898 find_bswap_1 (gimple stmt, struct symbolic_number *n, int limit)
900 enum tree_code code;
901 tree rhs1, rhs2 = NULL;
902 gimple rhs1_stmt, rhs2_stmt;
903 tree source_expr1;
904 enum gimple_rhs_class rhs_class;
906 if (!limit || !is_gimple_assign (stmt))
907 return NULL_TREE;
909 rhs1 = gimple_assign_rhs1 (stmt);
911 if (TREE_CODE (rhs1) != SSA_NAME)
912 return NULL_TREE;
914 code = gimple_assign_rhs_code (stmt);
915 rhs_class = gimple_assign_rhs_class (stmt);
916 rhs1_stmt = SSA_NAME_DEF_STMT (rhs1);
918 if (rhs_class == GIMPLE_BINARY_RHS)
919 rhs2 = gimple_assign_rhs2 (stmt);
921 /* Handle unary rhs and binary rhs with integer constants as second
922 operand. */
924 if (rhs_class == GIMPLE_UNARY_RHS
925 || (rhs_class == GIMPLE_BINARY_RHS
926 && TREE_CODE (rhs2) == INTEGER_CST))
928 if (code != BIT_AND_EXPR
929 && code != LSHIFT_EXPR
930 && code != RSHIFT_EXPR
931 && code != LROTATE_EXPR
932 && code != RROTATE_EXPR
933 && code != NOP_EXPR
934 && code != CONVERT_EXPR)
935 return NULL_TREE;
937 source_expr1 = find_bswap_1 (rhs1_stmt, n, limit - 1);
939 /* If find_bswap_1 returned NULL STMT is a leaf node and we have
940 to initialize the symbolic number. */
941 if (!source_expr1)
943 /* Set up the symbolic number N by setting each byte to a
944 value between 1 and the byte size of rhs1. The highest
945 order byte is set to n->size and the lowest order
946 byte to 1. */
947 n->size = TYPE_PRECISION (TREE_TYPE (rhs1));
948 if (n->size % BITS_PER_UNIT != 0)
949 return NULL_TREE;
950 n->size /= BITS_PER_UNIT;
951 n->n = (sizeof (HOST_WIDEST_INT) < 8 ? 0 :
952 (unsigned HOST_WIDEST_INT)0x08070605 << 32 | 0x04030201);
954 if (n->size < (int)sizeof (HOST_WIDEST_INT))
955 n->n &= ((unsigned HOST_WIDEST_INT)1 <<
956 (n->size * BITS_PER_UNIT)) - 1;
958 source_expr1 = rhs1;
961 switch (code)
963 case BIT_AND_EXPR:
965 int i;
966 unsigned HOST_WIDEST_INT val = widest_int_cst_value (rhs2);
967 unsigned HOST_WIDEST_INT tmp = val;
969 /* Only constants masking full bytes are allowed. */
970 for (i = 0; i < n->size; i++, tmp >>= BITS_PER_UNIT)
971 if ((tmp & 0xff) != 0 && (tmp & 0xff) != 0xff)
972 return NULL_TREE;
974 n->n &= val;
976 break;
977 case LSHIFT_EXPR:
978 case RSHIFT_EXPR:
979 case LROTATE_EXPR:
980 case RROTATE_EXPR:
981 if (!do_shift_rotate (code, n, (int)TREE_INT_CST_LOW (rhs2)))
982 return NULL_TREE;
983 break;
984 CASE_CONVERT:
986 int type_size;
988 type_size = TYPE_PRECISION (gimple_expr_type (stmt));
989 if (type_size % BITS_PER_UNIT != 0)
990 return NULL_TREE;
992 if (type_size / BITS_PER_UNIT < (int)(sizeof (HOST_WIDEST_INT)))
994 /* If STMT casts to a smaller type mask out the bits not
995 belonging to the target type. */
996 n->n &= ((unsigned HOST_WIDEST_INT)1 << type_size) - 1;
998 n->size = type_size / BITS_PER_UNIT;
1000 break;
1001 default:
1002 return NULL_TREE;
1004 return verify_symbolic_number_p (n, stmt) ? source_expr1 : NULL;
1007 /* Handle binary rhs. */
1009 if (rhs_class == GIMPLE_BINARY_RHS)
1011 struct symbolic_number n1, n2;
1012 tree source_expr2;
1014 if (code != BIT_IOR_EXPR)
1015 return NULL_TREE;
1017 if (TREE_CODE (rhs2) != SSA_NAME)
1018 return NULL_TREE;
1020 rhs2_stmt = SSA_NAME_DEF_STMT (rhs2);
1022 switch (code)
1024 case BIT_IOR_EXPR:
1025 source_expr1 = find_bswap_1 (rhs1_stmt, &n1, limit - 1);
1027 if (!source_expr1)
1028 return NULL_TREE;
1030 source_expr2 = find_bswap_1 (rhs2_stmt, &n2, limit - 1);
1032 if (source_expr1 != source_expr2
1033 || n1.size != n2.size)
1034 return NULL_TREE;
1036 n->size = n1.size;
1037 n->n = n1.n | n2.n;
1039 if (!verify_symbolic_number_p (n, stmt))
1040 return NULL_TREE;
1042 break;
1043 default:
1044 return NULL_TREE;
1046 return source_expr1;
1048 return NULL_TREE;
1051 /* Check if STMT completes a bswap implementation consisting of ORs,
1052 SHIFTs and ANDs. Return the source tree expression on which the
1053 byte swap is performed and NULL if no bswap was found. */
1055 static tree
1056 find_bswap (gimple stmt)
1058 /* The number which the find_bswap result should match in order to
1059 have a full byte swap. The number is shifted to the left according
1060 to the size of the symbolic number before using it. */
1061 unsigned HOST_WIDEST_INT cmp =
1062 sizeof (HOST_WIDEST_INT) < 8 ? 0 :
1063 (unsigned HOST_WIDEST_INT)0x01020304 << 32 | 0x05060708;
1065 struct symbolic_number n;
1066 tree source_expr;
1068 /* The last parameter determines the depth search limit. It usually
1069 correlates directly to the number of bytes to be touched. We
1070 increase that number by one here in order to also cover signed ->
1071 unsigned conversions of the src operand as can be seen in
1072 libgcc. */
1073 source_expr = find_bswap_1 (stmt, &n,
1074 TREE_INT_CST_LOW (
1075 TYPE_SIZE_UNIT (gimple_expr_type (stmt))) + 1);
1077 if (!source_expr)
1078 return NULL_TREE;
1080 /* Zero out the extra bits of N and CMP. */
1081 if (n.size < (int)sizeof (HOST_WIDEST_INT))
1083 unsigned HOST_WIDEST_INT mask =
1084 ((unsigned HOST_WIDEST_INT)1 << (n.size * BITS_PER_UNIT)) - 1;
1086 n.n &= mask;
1087 cmp >>= (sizeof (HOST_WIDEST_INT) - n.size) * BITS_PER_UNIT;
1090 /* A complete byte swap should make the symbolic number to start
1091 with the largest digit in the highest order byte. */
1092 if (cmp != n.n)
1093 return NULL_TREE;
1095 return source_expr;
1098 /* Find manual byte swap implementations and turn them into a bswap
1099 builtin invokation. */
1101 static unsigned int
1102 execute_optimize_bswap (void)
1104 basic_block bb;
1105 bool bswap32_p, bswap64_p;
1106 bool changed = false;
1107 tree bswap32_type = NULL_TREE, bswap64_type = NULL_TREE;
1109 if (BITS_PER_UNIT != 8)
1110 return 0;
1112 if (sizeof (HOST_WIDEST_INT) < 8)
1113 return 0;
1115 bswap32_p = (built_in_decls[BUILT_IN_BSWAP32]
1116 && optab_handler (bswap_optab, SImode) != CODE_FOR_nothing);
1117 bswap64_p = (built_in_decls[BUILT_IN_BSWAP64]
1118 && (optab_handler (bswap_optab, DImode) != CODE_FOR_nothing
1119 || (bswap32_p && word_mode == SImode)));
1121 if (!bswap32_p && !bswap64_p)
1122 return 0;
1124 /* Determine the argument type of the builtins. The code later on
1125 assumes that the return and argument type are the same. */
1126 if (bswap32_p)
1128 tree fndecl = built_in_decls[BUILT_IN_BSWAP32];
1129 bswap32_type = TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (fndecl)));
1132 if (bswap64_p)
1134 tree fndecl = built_in_decls[BUILT_IN_BSWAP64];
1135 bswap64_type = TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (fndecl)));
1138 FOR_EACH_BB (bb)
1140 gimple_stmt_iterator gsi;
1142 for (gsi = gsi_after_labels (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1144 gimple stmt = gsi_stmt (gsi);
1145 tree bswap_src, bswap_type;
1146 tree bswap_tmp;
1147 tree fndecl = NULL_TREE;
1148 int type_size;
1149 gimple call;
1151 if (!is_gimple_assign (stmt)
1152 || gimple_assign_rhs_code (stmt) != BIT_IOR_EXPR)
1153 continue;
1155 type_size = TYPE_PRECISION (gimple_expr_type (stmt));
1157 switch (type_size)
1159 case 32:
1160 if (bswap32_p)
1162 fndecl = built_in_decls[BUILT_IN_BSWAP32];
1163 bswap_type = bswap32_type;
1165 break;
1166 case 64:
1167 if (bswap64_p)
1169 fndecl = built_in_decls[BUILT_IN_BSWAP64];
1170 bswap_type = bswap64_type;
1172 break;
1173 default:
1174 continue;
1177 if (!fndecl)
1178 continue;
1180 bswap_src = find_bswap (stmt);
1182 if (!bswap_src)
1183 continue;
1185 changed = true;
1187 bswap_tmp = bswap_src;
1189 /* Convert the src expression if necessary. */
1190 if (!useless_type_conversion_p (TREE_TYPE (bswap_tmp), bswap_type))
1192 gimple convert_stmt;
1194 bswap_tmp = create_tmp_var (bswap_type, "bswapsrc");
1195 add_referenced_var (bswap_tmp);
1196 bswap_tmp = make_ssa_name (bswap_tmp, NULL);
1198 convert_stmt = gimple_build_assign_with_ops (
1199 CONVERT_EXPR, bswap_tmp, bswap_src, NULL);
1200 gsi_insert_before (&gsi, convert_stmt, GSI_SAME_STMT);
1203 call = gimple_build_call (fndecl, 1, bswap_tmp);
1205 bswap_tmp = gimple_assign_lhs (stmt);
1207 /* Convert the result if necessary. */
1208 if (!useless_type_conversion_p (TREE_TYPE (bswap_tmp), bswap_type))
1210 gimple convert_stmt;
1212 bswap_tmp = create_tmp_var (bswap_type, "bswapdst");
1213 add_referenced_var (bswap_tmp);
1214 bswap_tmp = make_ssa_name (bswap_tmp, NULL);
1215 convert_stmt = gimple_build_assign_with_ops (
1216 CONVERT_EXPR, gimple_assign_lhs (stmt), bswap_tmp, NULL);
1217 gsi_insert_after (&gsi, convert_stmt, GSI_SAME_STMT);
1220 gimple_call_set_lhs (call, bswap_tmp);
1222 if (dump_file)
1224 fprintf (dump_file, "%d bit bswap implementation found at: ",
1225 (int)type_size);
1226 print_gimple_stmt (dump_file, stmt, 0, 0);
1229 gsi_insert_after (&gsi, call, GSI_SAME_STMT);
1230 gsi_remove (&gsi, true);
1234 return (changed ? TODO_dump_func | TODO_update_ssa | TODO_verify_ssa
1235 | TODO_verify_stmts : 0);
1238 static bool
1239 gate_optimize_bswap (void)
1241 return flag_expensive_optimizations && optimize;
1244 struct gimple_opt_pass pass_optimize_bswap =
1247 GIMPLE_PASS,
1248 "bswap", /* name */
1249 gate_optimize_bswap, /* gate */
1250 execute_optimize_bswap, /* execute */
1251 NULL, /* sub */
1252 NULL, /* next */
1253 0, /* static_pass_number */
1254 TV_NONE, /* tv_id */
1255 PROP_ssa, /* properties_required */
1256 0, /* properties_provided */
1257 0, /* properties_destroyed */
1258 0, /* todo_flags_start */
1259 0 /* todo_flags_finish */
1263 /* Return true if RHS is a suitable operand for a widening multiplication.
1264 There are two cases:
1266 - RHS makes some value twice as wide. Store that value in *NEW_RHS_OUT
1267 if so, and store its type in *TYPE_OUT.
1269 - RHS is an integer constant. Store that value in *NEW_RHS_OUT if so,
1270 but leave *TYPE_OUT untouched. */
1272 static bool
1273 is_widening_mult_rhs_p (tree rhs, tree *type_out, tree *new_rhs_out)
1275 gimple stmt;
1276 tree type, type1, rhs1;
1277 enum tree_code rhs_code;
1279 if (TREE_CODE (rhs) == SSA_NAME)
1281 type = TREE_TYPE (rhs);
1282 stmt = SSA_NAME_DEF_STMT (rhs);
1283 if (!is_gimple_assign (stmt))
1284 return false;
1286 rhs_code = gimple_assign_rhs_code (stmt);
1287 if (TREE_CODE (type) == INTEGER_TYPE
1288 ? !CONVERT_EXPR_CODE_P (rhs_code)
1289 : rhs_code != FIXED_CONVERT_EXPR)
1290 return false;
1292 rhs1 = gimple_assign_rhs1 (stmt);
1293 type1 = TREE_TYPE (rhs1);
1294 if (TREE_CODE (type1) != TREE_CODE (type)
1295 || TYPE_PRECISION (type1) * 2 != TYPE_PRECISION (type))
1296 return false;
1298 *new_rhs_out = rhs1;
1299 *type_out = type1;
1300 return true;
1303 if (TREE_CODE (rhs) == INTEGER_CST)
1305 *new_rhs_out = rhs;
1306 *type_out = NULL;
1307 return true;
1310 return false;
1313 /* Return true if STMT performs a widening multiplication. If so,
1314 store the unwidened types of the operands in *TYPE1_OUT and *TYPE2_OUT
1315 respectively. Also fill *RHS1_OUT and *RHS2_OUT such that converting
1316 those operands to types *TYPE1_OUT and *TYPE2_OUT would give the
1317 operands of the multiplication. */
1319 static bool
1320 is_widening_mult_p (gimple stmt,
1321 tree *type1_out, tree *rhs1_out,
1322 tree *type2_out, tree *rhs2_out)
1324 tree type;
1326 type = TREE_TYPE (gimple_assign_lhs (stmt));
1327 if (TREE_CODE (type) != INTEGER_TYPE
1328 && TREE_CODE (type) != FIXED_POINT_TYPE)
1329 return false;
1331 if (!is_widening_mult_rhs_p (gimple_assign_rhs1 (stmt), type1_out, rhs1_out))
1332 return false;
1334 if (!is_widening_mult_rhs_p (gimple_assign_rhs2 (stmt), type2_out, rhs2_out))
1335 return false;
1337 if (*type1_out == NULL)
1339 if (*type2_out == NULL || !int_fits_type_p (*rhs1_out, *type2_out))
1340 return false;
1341 *type1_out = *type2_out;
1344 if (*type2_out == NULL)
1346 if (!int_fits_type_p (*rhs2_out, *type1_out))
1347 return false;
1348 *type2_out = *type1_out;
1351 return true;
1354 /* Process a single gimple statement STMT, which has a MULT_EXPR as
1355 its rhs, and try to convert it into a WIDEN_MULT_EXPR. The return
1356 value is true iff we converted the statement. */
1358 static bool
1359 convert_mult_to_widen (gimple stmt)
1361 tree lhs, rhs1, rhs2, type, type1, type2;
1362 enum insn_code handler;
1364 lhs = gimple_assign_lhs (stmt);
1365 type = TREE_TYPE (lhs);
1366 if (TREE_CODE (type) != INTEGER_TYPE)
1367 return false;
1369 if (!is_widening_mult_p (stmt, &type1, &rhs1, &type2, &rhs2))
1370 return false;
1372 if (TYPE_UNSIGNED (type1) && TYPE_UNSIGNED (type2))
1373 handler = optab_handler (umul_widen_optab, TYPE_MODE (type));
1374 else if (!TYPE_UNSIGNED (type1) && !TYPE_UNSIGNED (type2))
1375 handler = optab_handler (smul_widen_optab, TYPE_MODE (type));
1376 else
1377 handler = optab_handler (usmul_widen_optab, TYPE_MODE (type));
1379 if (handler == CODE_FOR_nothing)
1380 return false;
1382 gimple_assign_set_rhs1 (stmt, fold_convert (type1, rhs1));
1383 gimple_assign_set_rhs2 (stmt, fold_convert (type2, rhs2));
1384 gimple_assign_set_rhs_code (stmt, WIDEN_MULT_EXPR);
1385 update_stmt (stmt);
1386 return true;
1389 /* Process a single gimple statement STMT, which is found at the
1390 iterator GSI and has a either a PLUS_EXPR or a MINUS_EXPR as its
1391 rhs (given by CODE), and try to convert it into a
1392 WIDEN_MULT_PLUS_EXPR or a WIDEN_MULT_MINUS_EXPR. The return value
1393 is true iff we converted the statement. */
1395 static bool
1396 convert_plusminus_to_widen (gimple_stmt_iterator *gsi, gimple stmt,
1397 enum tree_code code)
1399 gimple rhs1_stmt = NULL, rhs2_stmt = NULL;
1400 tree type, type1, type2;
1401 tree lhs, rhs1, rhs2, mult_rhs1, mult_rhs2, add_rhs;
1402 enum tree_code rhs1_code = ERROR_MARK, rhs2_code = ERROR_MARK;
1403 optab this_optab;
1404 enum tree_code wmult_code;
1406 lhs = gimple_assign_lhs (stmt);
1407 type = TREE_TYPE (lhs);
1408 if (TREE_CODE (type) != INTEGER_TYPE
1409 && TREE_CODE (type) != FIXED_POINT_TYPE)
1410 return false;
1412 if (code == MINUS_EXPR)
1413 wmult_code = WIDEN_MULT_MINUS_EXPR;
1414 else
1415 wmult_code = WIDEN_MULT_PLUS_EXPR;
1417 /* Verify that the machine can perform a widening multiply
1418 accumulate in this mode/signedness combination, otherwise
1419 this transformation is likely to pessimize code. */
1420 this_optab = optab_for_tree_code (wmult_code, type, optab_default);
1421 if (optab_handler (this_optab, TYPE_MODE (type)) == CODE_FOR_nothing)
1422 return false;
1424 rhs1 = gimple_assign_rhs1 (stmt);
1425 rhs2 = gimple_assign_rhs2 (stmt);
1427 if (TREE_CODE (rhs1) == SSA_NAME)
1429 rhs1_stmt = SSA_NAME_DEF_STMT (rhs1);
1430 if (is_gimple_assign (rhs1_stmt))
1431 rhs1_code = gimple_assign_rhs_code (rhs1_stmt);
1433 else
1434 return false;
1436 if (TREE_CODE (rhs2) == SSA_NAME)
1438 rhs2_stmt = SSA_NAME_DEF_STMT (rhs2);
1439 if (is_gimple_assign (rhs2_stmt))
1440 rhs2_code = gimple_assign_rhs_code (rhs2_stmt);
1442 else
1443 return false;
1445 if (code == PLUS_EXPR && rhs1_code == MULT_EXPR)
1447 if (!is_widening_mult_p (rhs1_stmt, &type1, &mult_rhs1,
1448 &type2, &mult_rhs2))
1449 return false;
1450 mult_rhs1 = fold_convert (type1, mult_rhs1);
1451 mult_rhs2 = fold_convert (type2, mult_rhs2);
1452 add_rhs = rhs2;
1454 else if (rhs2_code == MULT_EXPR)
1456 if (!is_widening_mult_p (rhs1_stmt, &type1, &mult_rhs1,
1457 &type2, &mult_rhs2))
1458 return false;
1459 mult_rhs1 = fold_convert (type1, mult_rhs1);
1460 mult_rhs2 = fold_convert (type2, mult_rhs2);
1461 add_rhs = rhs1;
1463 else if (code == PLUS_EXPR && rhs1_code == WIDEN_MULT_EXPR)
1465 mult_rhs1 = gimple_assign_rhs1 (rhs1_stmt);
1466 mult_rhs2 = gimple_assign_rhs2 (rhs1_stmt);
1467 add_rhs = rhs2;
1469 else if (rhs2_code == WIDEN_MULT_EXPR)
1471 mult_rhs1 = gimple_assign_rhs1 (rhs2_stmt);
1472 mult_rhs2 = gimple_assign_rhs2 (rhs2_stmt);
1473 add_rhs = rhs1;
1475 else
1476 return false;
1478 /* ??? May need some type verification here? */
1480 gimple_assign_set_rhs_with_ops_1 (gsi, wmult_code, mult_rhs1, mult_rhs2,
1481 add_rhs);
1482 update_stmt (gsi_stmt (*gsi));
1483 return true;
1486 /* Find integer multiplications where the operands are extended from
1487 smaller types, and replace the MULT_EXPR with a WIDEN_MULT_EXPR
1488 where appropriate. */
1490 static unsigned int
1491 execute_optimize_widening_mul (void)
1493 bool changed = false;
1494 basic_block bb;
1496 FOR_EACH_BB (bb)
1498 gimple_stmt_iterator gsi;
1500 for (gsi = gsi_after_labels (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1502 gimple stmt = gsi_stmt (gsi);
1503 enum tree_code code;
1505 if (!is_gimple_assign (stmt))
1506 continue;
1508 code = gimple_assign_rhs_code (stmt);
1509 if (code == MULT_EXPR)
1510 changed |= convert_mult_to_widen (stmt);
1511 else if (code == PLUS_EXPR || code == MINUS_EXPR)
1512 changed |= convert_plusminus_to_widen (&gsi, stmt, code);
1516 return (changed ? TODO_dump_func | TODO_update_ssa | TODO_verify_ssa
1517 | TODO_verify_stmts : 0);
1520 static bool
1521 gate_optimize_widening_mul (void)
1523 return flag_expensive_optimizations && optimize;
1526 struct gimple_opt_pass pass_optimize_widening_mul =
1529 GIMPLE_PASS,
1530 "widening_mul", /* name */
1531 gate_optimize_widening_mul, /* gate */
1532 execute_optimize_widening_mul, /* execute */
1533 NULL, /* sub */
1534 NULL, /* next */
1535 0, /* static_pass_number */
1536 TV_NONE, /* tv_id */
1537 PROP_ssa, /* properties_required */
1538 0, /* properties_provided */
1539 0, /* properties_destroyed */
1540 0, /* todo_flags_start */
1541 0 /* todo_flags_finish */