2010-07-27 Paolo Carlini <paolo.carlini@oracle.com>
[official-gcc/alias-decl.git] / gcc / tree-into-ssa.c
blobe7c4eca1bb9ef470fbba121b377490734c680c4c
1 /* Rewrite a program in Normal form into SSA.
2 Copyright (C) 2001, 2002, 2003, 2004, 2005, 2007, 2008, 2009, 2010
3 Free Software Foundation, Inc.
4 Contributed by Diego Novillo <dnovillo@redhat.com>
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
11 any later version.
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "tree.h"
27 #include "flags.h"
28 #include "tm_p.h"
29 #include "langhooks.h"
30 #include "basic-block.h"
31 #include "output.h"
32 #include "function.h"
33 #include "tree-pretty-print.h"
34 #include "gimple-pretty-print.h"
35 #include "bitmap.h"
36 #include "tree-flow.h"
37 #include "gimple.h"
38 #include "tree-inline.h"
39 #include "timevar.h"
40 #include "hashtab.h"
41 #include "tree-dump.h"
42 #include "tree-pass.h"
43 #include "cfgloop.h"
44 #include "domwalk.h"
45 #include "params.h"
46 #include "vecprim.h"
49 /* This file builds the SSA form for a function as described in:
50 R. Cytron, J. Ferrante, B. Rosen, M. Wegman, and K. Zadeck. Efficiently
51 Computing Static Single Assignment Form and the Control Dependence
52 Graph. ACM Transactions on Programming Languages and Systems,
53 13(4):451-490, October 1991. */
55 /* Structure to map a variable VAR to the set of blocks that contain
56 definitions for VAR. */
57 struct def_blocks_d
59 /* The variable. */
60 tree var;
62 /* Blocks that contain definitions of VAR. Bit I will be set if the
63 Ith block contains a definition of VAR. */
64 bitmap def_blocks;
66 /* Blocks that contain a PHI node for VAR. */
67 bitmap phi_blocks;
69 /* Blocks where VAR is live-on-entry. Similar semantics as
70 DEF_BLOCKS. */
71 bitmap livein_blocks;
75 /* Each entry in DEF_BLOCKS contains an element of type STRUCT
76 DEF_BLOCKS_D, mapping a variable VAR to a bitmap describing all the
77 basic blocks where VAR is defined (assigned a new value). It also
78 contains a bitmap of all the blocks where VAR is live-on-entry
79 (i.e., there is a use of VAR in block B without a preceding
80 definition in B). The live-on-entry information is used when
81 computing PHI pruning heuristics. */
82 static htab_t def_blocks;
84 /* Stack of trees used to restore the global currdefs to its original
85 state after completing rewriting of a block and its dominator
86 children. Its elements have the following properties:
88 - An SSA_NAME (N) indicates that the current definition of the
89 underlying variable should be set to the given SSA_NAME. If the
90 symbol associated with the SSA_NAME is not a GIMPLE register, the
91 next slot in the stack must be a _DECL node (SYM). In this case,
92 the name N in the previous slot is the current reaching
93 definition for SYM.
95 - A _DECL node indicates that the underlying variable has no
96 current definition.
98 - A NULL node at the top entry is used to mark the last slot
99 associated with the current block. */
100 static VEC(tree,heap) *block_defs_stack;
103 /* Set of existing SSA names being replaced by update_ssa. */
104 static sbitmap old_ssa_names;
106 /* Set of new SSA names being added by update_ssa. Note that both
107 NEW_SSA_NAMES and OLD_SSA_NAMES are dense bitmaps because most of
108 the operations done on them are presence tests. */
109 static sbitmap new_ssa_names;
111 sbitmap interesting_blocks;
113 /* Set of SSA names that have been marked to be released after they
114 were registered in the replacement table. They will be finally
115 released after we finish updating the SSA web. */
116 static bitmap names_to_release;
118 static VEC(gimple_vec, heap) *phis_to_rewrite;
120 /* The bitmap of non-NULL elements of PHIS_TO_REWRITE. */
121 static bitmap blocks_with_phis_to_rewrite;
123 /* Growth factor for NEW_SSA_NAMES and OLD_SSA_NAMES. These sets need
124 to grow as the callers to register_new_name_mapping will typically
125 create new names on the fly. FIXME. Currently set to 1/3 to avoid
126 frequent reallocations but still need to find a reasonable growth
127 strategy. */
128 #define NAME_SETS_GROWTH_FACTOR (MAX (3, num_ssa_names / 3))
130 /* Tuple used to represent replacement mappings. */
131 struct repl_map_d
133 tree name;
134 bitmap set;
138 /* NEW -> OLD_SET replacement table. If we are replacing several
139 existing SSA names O_1, O_2, ..., O_j with a new name N_i,
140 then REPL_TBL[N_i] = { O_1, O_2, ..., O_j }. */
141 static htab_t repl_tbl;
143 /* The function the SSA updating data structures have been initialized for.
144 NULL if they need to be initialized by register_new_name_mapping. */
145 static struct function *update_ssa_initialized_fn = NULL;
147 /* Statistics kept by update_ssa to use in the virtual mapping
148 heuristic. If the number of virtual mappings is beyond certain
149 threshold, the updater will switch from using the mappings into
150 renaming the virtual symbols from scratch. In some cases, the
151 large number of name mappings for virtual names causes significant
152 slowdowns in the PHI insertion code. */
153 struct update_ssa_stats_d
155 unsigned num_virtual_mappings;
156 unsigned num_total_mappings;
157 bitmap virtual_symbols;
158 unsigned num_virtual_symbols;
160 static struct update_ssa_stats_d update_ssa_stats;
162 /* Global data to attach to the main dominator walk structure. */
163 struct mark_def_sites_global_data
165 /* This bitmap contains the variables which are set before they
166 are used in a basic block. */
167 bitmap kills;
171 /* Information stored for SSA names. */
172 struct ssa_name_info
174 /* The current reaching definition replacing this SSA name. */
175 tree current_def;
177 /* This field indicates whether or not the variable may need PHI nodes.
178 See the enum's definition for more detailed information about the
179 states. */
180 ENUM_BITFIELD (need_phi_state) need_phi_state : 2;
182 /* Age of this record (so that info_for_ssa_name table can be cleared
183 quickly); if AGE < CURRENT_INFO_FOR_SSA_NAME_AGE, then the fields
184 are assumed to be null. */
185 unsigned age;
188 /* The information associated with names. */
189 typedef struct ssa_name_info *ssa_name_info_p;
190 DEF_VEC_P (ssa_name_info_p);
191 DEF_VEC_ALLOC_P (ssa_name_info_p, heap);
193 static VEC(ssa_name_info_p, heap) *info_for_ssa_name;
194 static unsigned current_info_for_ssa_name_age;
196 /* The set of blocks affected by update_ssa. */
197 static bitmap blocks_to_update;
199 /* The main entry point to the SSA renamer (rewrite_blocks) may be
200 called several times to do different, but related, tasks.
201 Initially, we need it to rename the whole program into SSA form.
202 At other times, we may need it to only rename into SSA newly
203 exposed symbols. Finally, we can also call it to incrementally fix
204 an already built SSA web. */
205 enum rewrite_mode {
206 /* Convert the whole function into SSA form. */
207 REWRITE_ALL,
209 /* Incrementally update the SSA web by replacing existing SSA
210 names with new ones. See update_ssa for details. */
211 REWRITE_UPDATE
217 /* Prototypes for debugging functions. */
218 extern void dump_tree_ssa (FILE *);
219 extern void debug_tree_ssa (void);
220 extern void debug_def_blocks (void);
221 extern void dump_tree_ssa_stats (FILE *);
222 extern void debug_tree_ssa_stats (void);
223 extern void dump_update_ssa (FILE *);
224 extern void debug_update_ssa (void);
225 extern void dump_names_replaced_by (FILE *, tree);
226 extern void debug_names_replaced_by (tree);
227 extern void dump_def_blocks (FILE *);
228 extern void debug_def_blocks (void);
229 extern void dump_defs_stack (FILE *, int);
230 extern void debug_defs_stack (int);
231 extern void dump_currdefs (FILE *);
232 extern void debug_currdefs (void);
234 /* Return true if STMT needs to be rewritten. When renaming a subset
235 of the variables, not all statements will be processed. This is
236 decided in mark_def_sites. */
238 static inline bool
239 rewrite_uses_p (gimple stmt)
241 return gimple_visited_p (stmt);
245 /* Set the rewrite marker on STMT to the value given by REWRITE_P. */
247 static inline void
248 set_rewrite_uses (gimple stmt, bool rewrite_p)
250 gimple_set_visited (stmt, rewrite_p);
254 /* Return true if the DEFs created by statement STMT should be
255 registered when marking new definition sites. This is slightly
256 different than rewrite_uses_p: it's used by update_ssa to
257 distinguish statements that need to have both uses and defs
258 processed from those that only need to have their defs processed.
259 Statements that define new SSA names only need to have their defs
260 registered, but they don't need to have their uses renamed. */
262 static inline bool
263 register_defs_p (gimple stmt)
265 return gimple_plf (stmt, GF_PLF_1) != 0;
269 /* If REGISTER_DEFS_P is true, mark STMT to have its DEFs registered. */
271 static inline void
272 set_register_defs (gimple stmt, bool register_defs_p)
274 gimple_set_plf (stmt, GF_PLF_1, register_defs_p);
278 /* Get the information associated with NAME. */
280 static inline ssa_name_info_p
281 get_ssa_name_ann (tree name)
283 unsigned ver = SSA_NAME_VERSION (name);
284 unsigned len = VEC_length (ssa_name_info_p, info_for_ssa_name);
285 struct ssa_name_info *info;
287 if (ver >= len)
289 unsigned new_len = num_ssa_names;
291 VEC_reserve (ssa_name_info_p, heap, info_for_ssa_name, new_len);
292 while (len++ < new_len)
294 struct ssa_name_info *info = XCNEW (struct ssa_name_info);
295 info->age = current_info_for_ssa_name_age;
296 VEC_quick_push (ssa_name_info_p, info_for_ssa_name, info);
300 info = VEC_index (ssa_name_info_p, info_for_ssa_name, ver);
301 if (info->age < current_info_for_ssa_name_age)
303 info->need_phi_state = NEED_PHI_STATE_UNKNOWN;
304 info->current_def = NULL_TREE;
305 info->age = current_info_for_ssa_name_age;
308 return info;
312 /* Clears info for SSA names. */
314 static void
315 clear_ssa_name_info (void)
317 current_info_for_ssa_name_age++;
321 /* Get phi_state field for VAR. */
323 static inline enum need_phi_state
324 get_phi_state (tree var)
326 if (TREE_CODE (var) == SSA_NAME)
327 return get_ssa_name_ann (var)->need_phi_state;
328 else
329 return var_ann (var)->need_phi_state;
333 /* Sets phi_state field for VAR to STATE. */
335 static inline void
336 set_phi_state (tree var, enum need_phi_state state)
338 if (TREE_CODE (var) == SSA_NAME)
339 get_ssa_name_ann (var)->need_phi_state = state;
340 else
341 var_ann (var)->need_phi_state = state;
345 /* Return the current definition for VAR. */
347 tree
348 get_current_def (tree var)
350 if (TREE_CODE (var) == SSA_NAME)
351 return get_ssa_name_ann (var)->current_def;
352 else
353 return var_ann (var)->current_def;
357 /* Sets current definition of VAR to DEF. */
359 void
360 set_current_def (tree var, tree def)
362 if (TREE_CODE (var) == SSA_NAME)
363 get_ssa_name_ann (var)->current_def = def;
364 else
365 var_ann (var)->current_def = def;
369 /* Compute global livein information given the set of blocks where
370 an object is locally live at the start of the block (LIVEIN)
371 and the set of blocks where the object is defined (DEF_BLOCKS).
373 Note: This routine augments the existing local livein information
374 to include global livein (i.e., it modifies the underlying bitmap
375 for LIVEIN). */
377 void
378 compute_global_livein (bitmap livein ATTRIBUTE_UNUSED, bitmap def_blocks ATTRIBUTE_UNUSED)
380 basic_block bb, *worklist, *tos;
381 unsigned i;
382 bitmap_iterator bi;
384 tos = worklist
385 = (basic_block *) xmalloc (sizeof (basic_block) * (last_basic_block + 1));
387 EXECUTE_IF_SET_IN_BITMAP (livein, 0, i, bi)
388 *tos++ = BASIC_BLOCK (i);
390 /* Iterate until the worklist is empty. */
391 while (tos != worklist)
393 edge e;
394 edge_iterator ei;
396 /* Pull a block off the worklist. */
397 bb = *--tos;
399 /* For each predecessor block. */
400 FOR_EACH_EDGE (e, ei, bb->preds)
402 basic_block pred = e->src;
403 int pred_index = pred->index;
405 /* None of this is necessary for the entry block. */
406 if (pred != ENTRY_BLOCK_PTR
407 && ! bitmap_bit_p (livein, pred_index)
408 && ! bitmap_bit_p (def_blocks, pred_index))
410 *tos++ = pred;
411 bitmap_set_bit (livein, pred_index);
416 free (worklist);
420 /* Cleans up the REWRITE_THIS_STMT and REGISTER_DEFS_IN_THIS_STMT flags for
421 all statements in basic block BB. */
423 static void
424 initialize_flags_in_bb (basic_block bb)
426 gimple stmt;
427 gimple_stmt_iterator gsi;
429 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
431 gimple phi = gsi_stmt (gsi);
432 set_rewrite_uses (phi, false);
433 set_register_defs (phi, false);
436 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
438 stmt = gsi_stmt (gsi);
440 /* We are going to use the operand cache API, such as
441 SET_USE, SET_DEF, and FOR_EACH_IMM_USE_FAST. The operand
442 cache for each statement should be up-to-date. */
443 gcc_assert (!gimple_modified_p (stmt));
444 set_rewrite_uses (stmt, false);
445 set_register_defs (stmt, false);
449 /* Mark block BB as interesting for update_ssa. */
451 static void
452 mark_block_for_update (basic_block bb)
454 gcc_assert (blocks_to_update != NULL);
455 if (!bitmap_set_bit (blocks_to_update, bb->index))
456 return;
457 initialize_flags_in_bb (bb);
460 /* Return the set of blocks where variable VAR is defined and the blocks
461 where VAR is live on entry (livein). If no entry is found in
462 DEF_BLOCKS, a new one is created and returned. */
464 static inline struct def_blocks_d *
465 get_def_blocks_for (tree var)
467 struct def_blocks_d db, *db_p;
468 void **slot;
470 db.var = var;
471 slot = htab_find_slot (def_blocks, (void *) &db, INSERT);
472 if (*slot == NULL)
474 db_p = XNEW (struct def_blocks_d);
475 db_p->var = var;
476 db_p->def_blocks = BITMAP_ALLOC (NULL);
477 db_p->phi_blocks = BITMAP_ALLOC (NULL);
478 db_p->livein_blocks = BITMAP_ALLOC (NULL);
479 *slot = (void *) db_p;
481 else
482 db_p = (struct def_blocks_d *) *slot;
484 return db_p;
488 /* Mark block BB as the definition site for variable VAR. PHI_P is true if
489 VAR is defined by a PHI node. */
491 static void
492 set_def_block (tree var, basic_block bb, bool phi_p)
494 struct def_blocks_d *db_p;
495 enum need_phi_state state;
497 state = get_phi_state (var);
498 db_p = get_def_blocks_for (var);
500 /* Set the bit corresponding to the block where VAR is defined. */
501 bitmap_set_bit (db_p->def_blocks, bb->index);
502 if (phi_p)
503 bitmap_set_bit (db_p->phi_blocks, bb->index);
505 /* Keep track of whether or not we may need to insert PHI nodes.
507 If we are in the UNKNOWN state, then this is the first definition
508 of VAR. Additionally, we have not seen any uses of VAR yet, so
509 we do not need a PHI node for this variable at this time (i.e.,
510 transition to NEED_PHI_STATE_NO).
512 If we are in any other state, then we either have multiple definitions
513 of this variable occurring in different blocks or we saw a use of the
514 variable which was not dominated by the block containing the
515 definition(s). In this case we may need a PHI node, so enter
516 state NEED_PHI_STATE_MAYBE. */
517 if (state == NEED_PHI_STATE_UNKNOWN)
518 set_phi_state (var, NEED_PHI_STATE_NO);
519 else
520 set_phi_state (var, NEED_PHI_STATE_MAYBE);
524 /* Mark block BB as having VAR live at the entry to BB. */
526 static void
527 set_livein_block (tree var, basic_block bb)
529 struct def_blocks_d *db_p;
530 enum need_phi_state state = get_phi_state (var);
532 db_p = get_def_blocks_for (var);
534 /* Set the bit corresponding to the block where VAR is live in. */
535 bitmap_set_bit (db_p->livein_blocks, bb->index);
537 /* Keep track of whether or not we may need to insert PHI nodes.
539 If we reach here in NEED_PHI_STATE_NO, see if this use is dominated
540 by the single block containing the definition(s) of this variable. If
541 it is, then we remain in NEED_PHI_STATE_NO, otherwise we transition to
542 NEED_PHI_STATE_MAYBE. */
543 if (state == NEED_PHI_STATE_NO)
545 int def_block_index = bitmap_first_set_bit (db_p->def_blocks);
547 if (def_block_index == -1
548 || ! dominated_by_p (CDI_DOMINATORS, bb,
549 BASIC_BLOCK (def_block_index)))
550 set_phi_state (var, NEED_PHI_STATE_MAYBE);
552 else
553 set_phi_state (var, NEED_PHI_STATE_MAYBE);
557 /* Return true if symbol SYM is marked for renaming. */
559 bool
560 symbol_marked_for_renaming (tree sym)
562 return bitmap_bit_p (SYMS_TO_RENAME (cfun), DECL_UID (sym));
566 /* Return true if NAME is in OLD_SSA_NAMES. */
568 static inline bool
569 is_old_name (tree name)
571 unsigned ver = SSA_NAME_VERSION (name);
572 if (!new_ssa_names)
573 return false;
574 return ver < new_ssa_names->n_bits && TEST_BIT (old_ssa_names, ver);
578 /* Return true if NAME is in NEW_SSA_NAMES. */
580 static inline bool
581 is_new_name (tree name)
583 unsigned ver = SSA_NAME_VERSION (name);
584 if (!new_ssa_names)
585 return false;
586 return ver < new_ssa_names->n_bits && TEST_BIT (new_ssa_names, ver);
590 /* Hashing and equality functions for REPL_TBL. */
592 static hashval_t
593 repl_map_hash (const void *p)
595 return htab_hash_pointer ((const void *)((const struct repl_map_d *)p)->name);
598 static int
599 repl_map_eq (const void *p1, const void *p2)
601 return ((const struct repl_map_d *)p1)->name
602 == ((const struct repl_map_d *)p2)->name;
605 static void
606 repl_map_free (void *p)
608 BITMAP_FREE (((struct repl_map_d *)p)->set);
609 free (p);
613 /* Return the names replaced by NEW_TREE (i.e., REPL_TBL[NEW_TREE].SET). */
615 static inline bitmap
616 names_replaced_by (tree new_tree)
618 struct repl_map_d m;
619 void **slot;
621 m.name = new_tree;
622 slot = htab_find_slot (repl_tbl, (void *) &m, NO_INSERT);
624 /* If N was not registered in the replacement table, return NULL. */
625 if (slot == NULL || *slot == NULL)
626 return NULL;
628 return ((struct repl_map_d *) *slot)->set;
632 /* Add OLD to REPL_TBL[NEW_TREE].SET. */
634 static inline void
635 add_to_repl_tbl (tree new_tree, tree old)
637 struct repl_map_d m, *mp;
638 void **slot;
640 m.name = new_tree;
641 slot = htab_find_slot (repl_tbl, (void *) &m, INSERT);
642 if (*slot == NULL)
644 mp = XNEW (struct repl_map_d);
645 mp->name = new_tree;
646 mp->set = BITMAP_ALLOC (NULL);
647 *slot = (void *) mp;
649 else
650 mp = (struct repl_map_d *) *slot;
652 bitmap_set_bit (mp->set, SSA_NAME_VERSION (old));
656 /* Add a new mapping NEW_TREE -> OLD REPL_TBL. Every entry N_i in REPL_TBL
657 represents the set of names O_1 ... O_j replaced by N_i. This is
658 used by update_ssa and its helpers to introduce new SSA names in an
659 already formed SSA web. */
661 static void
662 add_new_name_mapping (tree new_tree, tree old)
664 timevar_push (TV_TREE_SSA_INCREMENTAL);
666 /* OLD and NEW_TREE must be different SSA names for the same symbol. */
667 gcc_assert (new_tree != old && SSA_NAME_VAR (new_tree) == SSA_NAME_VAR (old));
669 /* If this mapping is for virtual names, we will need to update
670 virtual operands. If this is a mapping for .MEM, then we gather
671 the symbols associated with each name. */
672 if (!is_gimple_reg (new_tree))
674 tree sym;
676 update_ssa_stats.num_virtual_mappings++;
677 update_ssa_stats.num_virtual_symbols++;
679 /* Keep counts of virtual mappings and symbols to use in the
680 virtual mapping heuristic. If we have large numbers of
681 virtual mappings for a relatively low number of symbols, it
682 will make more sense to rename the symbols from scratch.
683 Otherwise, the insertion of PHI nodes for each of the old
684 names in these mappings will be very slow. */
685 sym = SSA_NAME_VAR (new_tree);
686 bitmap_set_bit (update_ssa_stats.virtual_symbols, DECL_UID (sym));
689 /* We may need to grow NEW_SSA_NAMES and OLD_SSA_NAMES because our
690 caller may have created new names since the set was created. */
691 if (new_ssa_names->n_bits <= num_ssa_names - 1)
693 unsigned int new_sz = num_ssa_names + NAME_SETS_GROWTH_FACTOR;
694 new_ssa_names = sbitmap_resize (new_ssa_names, new_sz, 0);
695 old_ssa_names = sbitmap_resize (old_ssa_names, new_sz, 0);
698 /* Update the REPL_TBL table. */
699 add_to_repl_tbl (new_tree, old);
701 /* If OLD had already been registered as a new name, then all the
702 names that OLD replaces should also be replaced by NEW_TREE. */
703 if (is_new_name (old))
704 bitmap_ior_into (names_replaced_by (new_tree), names_replaced_by (old));
706 /* Register NEW_TREE and OLD in NEW_SSA_NAMES and OLD_SSA_NAMES,
707 respectively. */
708 SET_BIT (new_ssa_names, SSA_NAME_VERSION (new_tree));
709 SET_BIT (old_ssa_names, SSA_NAME_VERSION (old));
711 /* Update mapping counter to use in the virtual mapping heuristic. */
712 update_ssa_stats.num_total_mappings++;
714 timevar_pop (TV_TREE_SSA_INCREMENTAL);
718 /* Call back for walk_dominator_tree used to collect definition sites
719 for every variable in the function. For every statement S in block
722 1- Variables defined by S in the DEFS of S are marked in the bitmap
723 KILLS.
725 2- If S uses a variable VAR and there is no preceding kill of VAR,
726 then it is marked in the LIVEIN_BLOCKS bitmap associated with VAR.
728 This information is used to determine which variables are live
729 across block boundaries to reduce the number of PHI nodes
730 we create. */
732 static void
733 mark_def_sites (basic_block bb, gimple stmt, bitmap kills)
735 tree def;
736 use_operand_p use_p;
737 ssa_op_iter iter;
739 /* Since this is the first time that we rewrite the program into SSA
740 form, force an operand scan on every statement. */
741 update_stmt (stmt);
743 gcc_assert (blocks_to_update == NULL);
744 set_register_defs (stmt, false);
745 set_rewrite_uses (stmt, false);
747 if (is_gimple_debug (stmt))
748 return;
750 /* If a variable is used before being set, then the variable is live
751 across a block boundary, so mark it live-on-entry to BB. */
752 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_USE)
754 tree sym = USE_FROM_PTR (use_p);
755 gcc_assert (DECL_P (sym));
756 if (!bitmap_bit_p (kills, DECL_UID (sym)))
757 set_livein_block (sym, bb);
758 set_rewrite_uses (stmt, true);
761 /* Now process the defs. Mark BB as the definition block and add
762 each def to the set of killed symbols. */
763 FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_DEF)
765 gcc_assert (DECL_P (def));
766 set_def_block (def, bb, false);
767 bitmap_set_bit (kills, DECL_UID (def));
768 set_register_defs (stmt, true);
771 /* If we found the statement interesting then also mark the block BB
772 as interesting. */
773 if (rewrite_uses_p (stmt) || register_defs_p (stmt))
774 SET_BIT (interesting_blocks, bb->index);
777 /* Structure used by prune_unused_phi_nodes to record bounds of the intervals
778 in the dfs numbering of the dominance tree. */
780 struct dom_dfsnum
782 /* Basic block whose index this entry corresponds to. */
783 unsigned bb_index;
785 /* The dfs number of this node. */
786 unsigned dfs_num;
789 /* Compares two entries of type struct dom_dfsnum by dfs_num field. Callback
790 for qsort. */
792 static int
793 cmp_dfsnum (const void *a, const void *b)
795 const struct dom_dfsnum *const da = (const struct dom_dfsnum *) a;
796 const struct dom_dfsnum *const db = (const struct dom_dfsnum *) b;
798 return (int) da->dfs_num - (int) db->dfs_num;
801 /* Among the intervals starting at the N points specified in DEFS, find
802 the one that contains S, and return its bb_index. */
804 static unsigned
805 find_dfsnum_interval (struct dom_dfsnum *defs, unsigned n, unsigned s)
807 unsigned f = 0, t = n, m;
809 while (t > f + 1)
811 m = (f + t) / 2;
812 if (defs[m].dfs_num <= s)
813 f = m;
814 else
815 t = m;
818 return defs[f].bb_index;
821 /* Clean bits from PHIS for phi nodes whose value cannot be used in USES.
822 KILLS is a bitmap of blocks where the value is defined before any use. */
824 static void
825 prune_unused_phi_nodes (bitmap phis, bitmap kills, bitmap uses)
827 VEC(int, heap) *worklist;
828 bitmap_iterator bi;
829 unsigned i, b, p, u, top;
830 bitmap live_phis;
831 basic_block def_bb, use_bb;
832 edge e;
833 edge_iterator ei;
834 bitmap to_remove;
835 struct dom_dfsnum *defs;
836 unsigned n_defs, adef;
838 if (bitmap_empty_p (uses))
840 bitmap_clear (phis);
841 return;
844 /* The phi must dominate a use, or an argument of a live phi. Also, we
845 do not create any phi nodes in def blocks, unless they are also livein. */
846 to_remove = BITMAP_ALLOC (NULL);
847 bitmap_and_compl (to_remove, kills, uses);
848 bitmap_and_compl_into (phis, to_remove);
849 if (bitmap_empty_p (phis))
851 BITMAP_FREE (to_remove);
852 return;
855 /* We want to remove the unnecessary phi nodes, but we do not want to compute
856 liveness information, as that may be linear in the size of CFG, and if
857 there are lot of different variables to rewrite, this may lead to quadratic
858 behavior.
860 Instead, we basically emulate standard dce. We put all uses to worklist,
861 then for each of them find the nearest def that dominates them. If this
862 def is a phi node, we mark it live, and if it was not live before, we
863 add the predecessors of its basic block to the worklist.
865 To quickly locate the nearest def that dominates use, we use dfs numbering
866 of the dominance tree (that is already available in order to speed up
867 queries). For each def, we have the interval given by the dfs number on
868 entry to and on exit from the corresponding subtree in the dominance tree.
869 The nearest dominator for a given use is the smallest of these intervals
870 that contains entry and exit dfs numbers for the basic block with the use.
871 If we store the bounds for all the uses to an array and sort it, we can
872 locate the nearest dominating def in logarithmic time by binary search.*/
873 bitmap_ior (to_remove, kills, phis);
874 n_defs = bitmap_count_bits (to_remove);
875 defs = XNEWVEC (struct dom_dfsnum, 2 * n_defs + 1);
876 defs[0].bb_index = 1;
877 defs[0].dfs_num = 0;
878 adef = 1;
879 EXECUTE_IF_SET_IN_BITMAP (to_remove, 0, i, bi)
881 def_bb = BASIC_BLOCK (i);
882 defs[adef].bb_index = i;
883 defs[adef].dfs_num = bb_dom_dfs_in (CDI_DOMINATORS, def_bb);
884 defs[adef + 1].bb_index = i;
885 defs[adef + 1].dfs_num = bb_dom_dfs_out (CDI_DOMINATORS, def_bb);
886 adef += 2;
888 BITMAP_FREE (to_remove);
889 gcc_assert (adef == 2 * n_defs + 1);
890 qsort (defs, adef, sizeof (struct dom_dfsnum), cmp_dfsnum);
891 gcc_assert (defs[0].bb_index == 1);
893 /* Now each DEFS entry contains the number of the basic block to that the
894 dfs number corresponds. Change them to the number of basic block that
895 corresponds to the interval following the dfs number. Also, for the
896 dfs_out numbers, increase the dfs number by one (so that it corresponds
897 to the start of the following interval, not to the end of the current
898 one). We use WORKLIST as a stack. */
899 worklist = VEC_alloc (int, heap, n_defs + 1);
900 VEC_quick_push (int, worklist, 1);
901 top = 1;
902 n_defs = 1;
903 for (i = 1; i < adef; i++)
905 b = defs[i].bb_index;
906 if (b == top)
908 /* This is a closing element. Interval corresponding to the top
909 of the stack after removing it follows. */
910 VEC_pop (int, worklist);
911 top = VEC_index (int, worklist, VEC_length (int, worklist) - 1);
912 defs[n_defs].bb_index = top;
913 defs[n_defs].dfs_num = defs[i].dfs_num + 1;
915 else
917 /* Opening element. Nothing to do, just push it to the stack and move
918 it to the correct position. */
919 defs[n_defs].bb_index = defs[i].bb_index;
920 defs[n_defs].dfs_num = defs[i].dfs_num;
921 VEC_quick_push (int, worklist, b);
922 top = b;
925 /* If this interval starts at the same point as the previous one, cancel
926 the previous one. */
927 if (defs[n_defs].dfs_num == defs[n_defs - 1].dfs_num)
928 defs[n_defs - 1].bb_index = defs[n_defs].bb_index;
929 else
930 n_defs++;
932 VEC_pop (int, worklist);
933 gcc_assert (VEC_empty (int, worklist));
935 /* Now process the uses. */
936 live_phis = BITMAP_ALLOC (NULL);
937 EXECUTE_IF_SET_IN_BITMAP (uses, 0, i, bi)
939 VEC_safe_push (int, heap, worklist, i);
942 while (!VEC_empty (int, worklist))
944 b = VEC_pop (int, worklist);
945 if (b == ENTRY_BLOCK)
946 continue;
948 /* If there is a phi node in USE_BB, it is made live. Otherwise,
949 find the def that dominates the immediate dominator of USE_BB
950 (the kill in USE_BB does not dominate the use). */
951 if (bitmap_bit_p (phis, b))
952 p = b;
953 else
955 use_bb = get_immediate_dominator (CDI_DOMINATORS, BASIC_BLOCK (b));
956 p = find_dfsnum_interval (defs, n_defs,
957 bb_dom_dfs_in (CDI_DOMINATORS, use_bb));
958 if (!bitmap_bit_p (phis, p))
959 continue;
962 /* If the phi node is already live, there is nothing to do. */
963 if (bitmap_bit_p (live_phis, p))
964 continue;
966 /* Mark the phi as live, and add the new uses to the worklist. */
967 bitmap_set_bit (live_phis, p);
968 def_bb = BASIC_BLOCK (p);
969 FOR_EACH_EDGE (e, ei, def_bb->preds)
971 u = e->src->index;
972 if (bitmap_bit_p (uses, u))
973 continue;
975 /* In case there is a kill directly in the use block, do not record
976 the use (this is also necessary for correctness, as we assume that
977 uses dominated by a def directly in their block have been filtered
978 out before). */
979 if (bitmap_bit_p (kills, u))
980 continue;
982 bitmap_set_bit (uses, u);
983 VEC_safe_push (int, heap, worklist, u);
987 VEC_free (int, heap, worklist);
988 bitmap_copy (phis, live_phis);
989 BITMAP_FREE (live_phis);
990 free (defs);
993 /* Return the set of blocks where variable VAR is defined and the blocks
994 where VAR is live on entry (livein). Return NULL, if no entry is
995 found in DEF_BLOCKS. */
997 static inline struct def_blocks_d *
998 find_def_blocks_for (tree var)
1000 struct def_blocks_d dm;
1001 dm.var = var;
1002 return (struct def_blocks_d *) htab_find (def_blocks, &dm);
1006 /* Retrieve or create a default definition for symbol SYM. */
1008 static inline tree
1009 get_default_def_for (tree sym)
1011 tree ddef = gimple_default_def (cfun, sym);
1013 if (ddef == NULL_TREE)
1015 ddef = make_ssa_name (sym, gimple_build_nop ());
1016 set_default_def (sym, ddef);
1019 return ddef;
1023 /* Marks phi node PHI in basic block BB for rewrite. */
1025 static void
1026 mark_phi_for_rewrite (basic_block bb, gimple phi)
1028 gimple_vec phis;
1029 unsigned i, idx = bb->index;
1031 if (rewrite_uses_p (phi))
1032 return;
1034 set_rewrite_uses (phi, true);
1036 if (!blocks_with_phis_to_rewrite)
1037 return;
1039 bitmap_set_bit (blocks_with_phis_to_rewrite, idx);
1040 VEC_reserve (gimple_vec, heap, phis_to_rewrite, last_basic_block + 1);
1041 for (i = VEC_length (gimple_vec, phis_to_rewrite); i <= idx; i++)
1042 VEC_quick_push (gimple_vec, phis_to_rewrite, NULL);
1044 phis = VEC_index (gimple_vec, phis_to_rewrite, idx);
1045 if (!phis)
1046 phis = VEC_alloc (gimple, heap, 10);
1048 VEC_safe_push (gimple, heap, phis, phi);
1049 VEC_replace (gimple_vec, phis_to_rewrite, idx, phis);
1052 /* Insert PHI nodes for variable VAR using the iterated dominance
1053 frontier given in PHI_INSERTION_POINTS. If UPDATE_P is true, this
1054 function assumes that the caller is incrementally updating the
1055 existing SSA form, in which case VAR may be an SSA name instead of
1056 a symbol.
1058 PHI_INSERTION_POINTS is updated to reflect nodes that already had a
1059 PHI node for VAR. On exit, only the nodes that received a PHI node
1060 for VAR will be present in PHI_INSERTION_POINTS. */
1062 static void
1063 insert_phi_nodes_for (tree var, bitmap phi_insertion_points, bool update_p)
1065 unsigned bb_index;
1066 edge e;
1067 gimple phi;
1068 basic_block bb;
1069 bitmap_iterator bi;
1070 struct def_blocks_d *def_map;
1072 def_map = find_def_blocks_for (var);
1073 gcc_assert (def_map);
1075 /* Remove the blocks where we already have PHI nodes for VAR. */
1076 bitmap_and_compl_into (phi_insertion_points, def_map->phi_blocks);
1078 /* Remove obviously useless phi nodes. */
1079 prune_unused_phi_nodes (phi_insertion_points, def_map->def_blocks,
1080 def_map->livein_blocks);
1082 /* And insert the PHI nodes. */
1083 EXECUTE_IF_SET_IN_BITMAP (phi_insertion_points, 0, bb_index, bi)
1085 bb = BASIC_BLOCK (bb_index);
1086 if (update_p)
1087 mark_block_for_update (bb);
1089 phi = NULL;
1091 if (TREE_CODE (var) == SSA_NAME)
1093 /* If we are rewriting SSA names, create the LHS of the PHI
1094 node by duplicating VAR. This is useful in the case of
1095 pointers, to also duplicate pointer attributes (alias
1096 information, in particular). */
1097 edge_iterator ei;
1098 tree new_lhs;
1100 gcc_assert (update_p);
1101 phi = create_phi_node (var, bb);
1103 new_lhs = duplicate_ssa_name (var, phi);
1104 gimple_phi_set_result (phi, new_lhs);
1105 add_new_name_mapping (new_lhs, var);
1107 /* Add VAR to every argument slot of PHI. We need VAR in
1108 every argument so that rewrite_update_phi_arguments knows
1109 which name is this PHI node replacing. If VAR is a
1110 symbol marked for renaming, this is not necessary, the
1111 renamer will use the symbol on the LHS to get its
1112 reaching definition. */
1113 FOR_EACH_EDGE (e, ei, bb->preds)
1114 add_phi_arg (phi, var, e, UNKNOWN_LOCATION);
1116 else
1118 tree tracked_var;
1120 gcc_assert (DECL_P (var));
1121 phi = create_phi_node (var, bb);
1123 tracked_var = target_for_debug_bind (var);
1124 if (tracked_var)
1126 gimple note = gimple_build_debug_bind (tracked_var,
1127 PHI_RESULT (phi),
1128 phi);
1129 gimple_stmt_iterator si = gsi_after_labels (bb);
1130 gsi_insert_before (&si, note, GSI_SAME_STMT);
1134 /* Mark this PHI node as interesting for update_ssa. */
1135 set_register_defs (phi, true);
1136 mark_phi_for_rewrite (bb, phi);
1141 /* Insert PHI nodes at the dominance frontier of blocks with variable
1142 definitions. DFS contains the dominance frontier information for
1143 the flowgraph. */
1145 static void
1146 insert_phi_nodes (bitmap_head *dfs)
1148 referenced_var_iterator rvi;
1149 bitmap_iterator bi;
1150 tree var;
1151 bitmap vars;
1152 unsigned uid;
1154 timevar_push (TV_TREE_INSERT_PHI_NODES);
1156 /* Do two stages to avoid code generation differences for UID
1157 differences but no UID ordering differences. */
1159 vars = BITMAP_ALLOC (NULL);
1160 FOR_EACH_REFERENCED_VAR (var, rvi)
1162 struct def_blocks_d *def_map;
1164 def_map = find_def_blocks_for (var);
1165 if (def_map == NULL)
1166 continue;
1168 if (get_phi_state (var) != NEED_PHI_STATE_NO)
1169 bitmap_set_bit (vars, DECL_UID (var));
1172 EXECUTE_IF_SET_IN_BITMAP (vars, 0, uid, bi)
1174 tree var = referenced_var (uid);
1175 struct def_blocks_d *def_map;
1176 bitmap idf;
1178 def_map = find_def_blocks_for (var);
1179 idf = compute_idf (def_map->def_blocks, dfs);
1180 insert_phi_nodes_for (var, idf, false);
1181 BITMAP_FREE (idf);
1184 BITMAP_FREE (vars);
1186 timevar_pop (TV_TREE_INSERT_PHI_NODES);
1190 /* Push SYM's current reaching definition into BLOCK_DEFS_STACK and
1191 register DEF (an SSA_NAME) to be a new definition for SYM. */
1193 static void
1194 register_new_def (tree def, tree sym)
1196 tree currdef;
1198 /* If this variable is set in a single basic block and all uses are
1199 dominated by the set(s) in that single basic block, then there is
1200 no reason to record anything for this variable in the block local
1201 definition stacks. Doing so just wastes time and memory.
1203 This is the same test to prune the set of variables which may
1204 need PHI nodes. So we just use that information since it's already
1205 computed and available for us to use. */
1206 if (get_phi_state (sym) == NEED_PHI_STATE_NO)
1208 set_current_def (sym, def);
1209 return;
1212 currdef = get_current_def (sym);
1214 /* If SYM is not a GIMPLE register, then CURRDEF may be a name whose
1215 SSA_NAME_VAR is not necessarily SYM. In this case, also push SYM
1216 in the stack so that we know which symbol is being defined by
1217 this SSA name when we unwind the stack. */
1218 if (currdef && !is_gimple_reg (sym))
1219 VEC_safe_push (tree, heap, block_defs_stack, sym);
1221 /* Push the current reaching definition into BLOCK_DEFS_STACK. This
1222 stack is later used by the dominator tree callbacks to restore
1223 the reaching definitions for all the variables defined in the
1224 block after a recursive visit to all its immediately dominated
1225 blocks. If there is no current reaching definition, then just
1226 record the underlying _DECL node. */
1227 VEC_safe_push (tree, heap, block_defs_stack, currdef ? currdef : sym);
1229 /* Set the current reaching definition for SYM to be DEF. */
1230 set_current_def (sym, def);
1234 /* Perform a depth-first traversal of the dominator tree looking for
1235 variables to rename. BB is the block where to start searching.
1236 Renaming is a five step process:
1238 1- Every definition made by PHI nodes at the start of the blocks is
1239 registered as the current definition for the corresponding variable.
1241 2- Every statement in BB is rewritten. USE and VUSE operands are
1242 rewritten with their corresponding reaching definition. DEF and
1243 VDEF targets are registered as new definitions.
1245 3- All the PHI nodes in successor blocks of BB are visited. The
1246 argument corresponding to BB is replaced with its current reaching
1247 definition.
1249 4- Recursively rewrite every dominator child block of BB.
1251 5- Restore (in reverse order) the current reaching definition for every
1252 new definition introduced in this block. This is done so that when
1253 we return from the recursive call, all the current reaching
1254 definitions are restored to the names that were valid in the
1255 dominator parent of BB. */
1257 /* Return the current definition for variable VAR. If none is found,
1258 create a new SSA name to act as the zeroth definition for VAR. */
1260 static tree
1261 get_reaching_def (tree var)
1263 tree currdef;
1265 /* Lookup the current reaching definition for VAR. */
1266 currdef = get_current_def (var);
1268 /* If there is no reaching definition for VAR, create and register a
1269 default definition for it (if needed). */
1270 if (currdef == NULL_TREE)
1272 tree sym = DECL_P (var) ? var : SSA_NAME_VAR (var);
1273 currdef = get_default_def_for (sym);
1274 set_current_def (var, currdef);
1277 /* Return the current reaching definition for VAR, or the default
1278 definition, if we had to create one. */
1279 return currdef;
1283 /* SSA Rewriting Step 2. Rewrite every variable used in each statement in
1284 the block with its immediate reaching definitions. Update the current
1285 definition of a variable when a new real or virtual definition is found. */
1287 static void
1288 rewrite_stmt (gimple_stmt_iterator si)
1290 use_operand_p use_p;
1291 def_operand_p def_p;
1292 ssa_op_iter iter;
1293 gimple stmt = gsi_stmt (si);
1295 /* If mark_def_sites decided that we don't need to rewrite this
1296 statement, ignore it. */
1297 gcc_assert (blocks_to_update == NULL);
1298 if (!rewrite_uses_p (stmt) && !register_defs_p (stmt))
1299 return;
1301 if (dump_file && (dump_flags & TDF_DETAILS))
1303 fprintf (dump_file, "Renaming statement ");
1304 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
1305 fprintf (dump_file, "\n");
1308 /* Step 1. Rewrite USES in the statement. */
1309 if (rewrite_uses_p (stmt))
1310 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_USE)
1312 tree var = USE_FROM_PTR (use_p);
1313 gcc_assert (DECL_P (var));
1314 SET_USE (use_p, get_reaching_def (var));
1317 /* Step 2. Register the statement's DEF operands. */
1318 if (register_defs_p (stmt))
1319 FOR_EACH_SSA_DEF_OPERAND (def_p, stmt, iter, SSA_OP_DEF)
1321 tree var = DEF_FROM_PTR (def_p);
1322 tree name = make_ssa_name (var, stmt);
1323 tree tracked_var;
1324 gcc_assert (DECL_P (var));
1325 SET_DEF (def_p, name);
1326 register_new_def (DEF_FROM_PTR (def_p), var);
1328 tracked_var = target_for_debug_bind (var);
1329 if (tracked_var)
1331 gimple note = gimple_build_debug_bind (tracked_var, name, stmt);
1332 gsi_insert_after (&si, note, GSI_SAME_STMT);
1338 /* SSA Rewriting Step 3. Visit all the successor blocks of BB looking for
1339 PHI nodes. For every PHI node found, add a new argument containing the
1340 current reaching definition for the variable and the edge through which
1341 that definition is reaching the PHI node. */
1343 static void
1344 rewrite_add_phi_arguments (basic_block bb)
1346 edge e;
1347 edge_iterator ei;
1349 FOR_EACH_EDGE (e, ei, bb->succs)
1351 gimple phi;
1352 gimple_stmt_iterator gsi;
1354 for (gsi = gsi_start_phis (e->dest); !gsi_end_p (gsi);
1355 gsi_next (&gsi))
1357 tree currdef;
1358 gimple stmt;
1360 phi = gsi_stmt (gsi);
1361 currdef = get_reaching_def (SSA_NAME_VAR (gimple_phi_result (phi)));
1362 stmt = SSA_NAME_DEF_STMT (currdef);
1363 add_phi_arg (phi, currdef, e, gimple_location (stmt));
1368 /* SSA Rewriting Step 1. Initialization, create a block local stack
1369 of reaching definitions for new SSA names produced in this block
1370 (BLOCK_DEFS). Register new definitions for every PHI node in the
1371 block. */
1373 static void
1374 rewrite_enter_block (struct dom_walk_data *walk_data ATTRIBUTE_UNUSED,
1375 basic_block bb)
1377 gimple phi;
1378 gimple_stmt_iterator gsi;
1380 if (dump_file && (dump_flags & TDF_DETAILS))
1381 fprintf (dump_file, "\n\nRenaming block #%d\n\n", bb->index);
1383 /* Mark the unwind point for this block. */
1384 VEC_safe_push (tree, heap, block_defs_stack, NULL_TREE);
1386 /* Step 1. Register new definitions for every PHI node in the block.
1387 Conceptually, all the PHI nodes are executed in parallel and each PHI
1388 node introduces a new version for the associated variable. */
1389 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1391 tree result;
1393 phi = gsi_stmt (gsi);
1394 result = gimple_phi_result (phi);
1395 gcc_assert (is_gimple_reg (result));
1396 register_new_def (result, SSA_NAME_VAR (result));
1399 /* Step 2. Rewrite every variable used in each statement in the block
1400 with its immediate reaching definitions. Update the current definition
1401 of a variable when a new real or virtual definition is found. */
1402 if (TEST_BIT (interesting_blocks, bb->index))
1403 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1404 rewrite_stmt (gsi);
1406 /* Step 3. Visit all the successor blocks of BB looking for PHI nodes.
1407 For every PHI node found, add a new argument containing the current
1408 reaching definition for the variable and the edge through which that
1409 definition is reaching the PHI node. */
1410 rewrite_add_phi_arguments (bb);
1415 /* Called after visiting all the statements in basic block BB and all
1416 of its dominator children. Restore CURRDEFS to its original value. */
1418 static void
1419 rewrite_leave_block (struct dom_walk_data *walk_data ATTRIBUTE_UNUSED,
1420 basic_block bb ATTRIBUTE_UNUSED)
1422 /* Restore CURRDEFS to its original state. */
1423 while (VEC_length (tree, block_defs_stack) > 0)
1425 tree tmp = VEC_pop (tree, block_defs_stack);
1426 tree saved_def, var;
1428 if (tmp == NULL_TREE)
1429 break;
1431 if (TREE_CODE (tmp) == SSA_NAME)
1433 /* If we recorded an SSA_NAME, then make the SSA_NAME the
1434 current definition of its underlying variable. Note that
1435 if the SSA_NAME is not for a GIMPLE register, the symbol
1436 being defined is stored in the next slot in the stack.
1437 This mechanism is needed because an SSA name for a
1438 non-register symbol may be the definition for more than
1439 one symbol (e.g., SFTs, aliased variables, etc). */
1440 saved_def = tmp;
1441 var = SSA_NAME_VAR (saved_def);
1442 if (!is_gimple_reg (var))
1443 var = VEC_pop (tree, block_defs_stack);
1445 else
1447 /* If we recorded anything else, it must have been a _DECL
1448 node and its current reaching definition must have been
1449 NULL. */
1450 saved_def = NULL;
1451 var = tmp;
1454 set_current_def (var, saved_def);
1459 /* Dump bitmap SET (assumed to contain VAR_DECLs) to FILE. */
1461 void
1462 dump_decl_set (FILE *file, bitmap set)
1464 if (set)
1466 bitmap_iterator bi;
1467 unsigned i;
1469 fprintf (file, "{ ");
1471 EXECUTE_IF_SET_IN_BITMAP (set, 0, i, bi)
1473 tree var = referenced_var_lookup (i);
1474 if (var)
1475 print_generic_expr (file, var, 0);
1476 else
1477 fprintf (file, "D.%u", i);
1478 fprintf (file, " ");
1481 fprintf (file, "}");
1483 else
1484 fprintf (file, "NIL");
1488 /* Dump bitmap SET (assumed to contain VAR_DECLs) to FILE. */
1490 DEBUG_FUNCTION void
1491 debug_decl_set (bitmap set)
1493 dump_decl_set (stderr, set);
1494 fprintf (stderr, "\n");
1498 /* Dump the renaming stack (block_defs_stack) to FILE. Traverse the
1499 stack up to a maximum of N levels. If N is -1, the whole stack is
1500 dumped. New levels are created when the dominator tree traversal
1501 used for renaming enters a new sub-tree. */
1503 void
1504 dump_defs_stack (FILE *file, int n)
1506 int i, j;
1508 fprintf (file, "\n\nRenaming stack");
1509 if (n > 0)
1510 fprintf (file, " (up to %d levels)", n);
1511 fprintf (file, "\n\n");
1513 i = 1;
1514 fprintf (file, "Level %d (current level)\n", i);
1515 for (j = (int) VEC_length (tree, block_defs_stack) - 1; j >= 0; j--)
1517 tree name, var;
1519 name = VEC_index (tree, block_defs_stack, j);
1520 if (name == NULL_TREE)
1522 i++;
1523 if (n > 0 && i > n)
1524 break;
1525 fprintf (file, "\nLevel %d\n", i);
1526 continue;
1529 if (DECL_P (name))
1531 var = name;
1532 name = NULL_TREE;
1534 else
1536 var = SSA_NAME_VAR (name);
1537 if (!is_gimple_reg (var))
1539 j--;
1540 var = VEC_index (tree, block_defs_stack, j);
1544 fprintf (file, " Previous CURRDEF (");
1545 print_generic_expr (file, var, 0);
1546 fprintf (file, ") = ");
1547 if (name)
1548 print_generic_expr (file, name, 0);
1549 else
1550 fprintf (file, "<NIL>");
1551 fprintf (file, "\n");
1556 /* Dump the renaming stack (block_defs_stack) to stderr. Traverse the
1557 stack up to a maximum of N levels. If N is -1, the whole stack is
1558 dumped. New levels are created when the dominator tree traversal
1559 used for renaming enters a new sub-tree. */
1561 DEBUG_FUNCTION void
1562 debug_defs_stack (int n)
1564 dump_defs_stack (stderr, n);
1568 /* Dump the current reaching definition of every symbol to FILE. */
1570 void
1571 dump_currdefs (FILE *file)
1573 referenced_var_iterator i;
1574 tree var;
1576 fprintf (file, "\n\nCurrent reaching definitions\n\n");
1577 FOR_EACH_REFERENCED_VAR (var, i)
1578 if (SYMS_TO_RENAME (cfun) == NULL
1579 || bitmap_bit_p (SYMS_TO_RENAME (cfun), DECL_UID (var)))
1581 fprintf (file, "CURRDEF (");
1582 print_generic_expr (file, var, 0);
1583 fprintf (file, ") = ");
1584 if (get_current_def (var))
1585 print_generic_expr (file, get_current_def (var), 0);
1586 else
1587 fprintf (file, "<NIL>");
1588 fprintf (file, "\n");
1593 /* Dump the current reaching definition of every symbol to stderr. */
1595 DEBUG_FUNCTION void
1596 debug_currdefs (void)
1598 dump_currdefs (stderr);
1602 /* Dump SSA information to FILE. */
1604 void
1605 dump_tree_ssa (FILE *file)
1607 const char *funcname
1608 = lang_hooks.decl_printable_name (current_function_decl, 2);
1610 fprintf (file, "SSA renaming information for %s\n\n", funcname);
1612 dump_def_blocks (file);
1613 dump_defs_stack (file, -1);
1614 dump_currdefs (file);
1615 dump_tree_ssa_stats (file);
1619 /* Dump SSA information to stderr. */
1621 DEBUG_FUNCTION void
1622 debug_tree_ssa (void)
1624 dump_tree_ssa (stderr);
1628 /* Dump statistics for the hash table HTAB. */
1630 static void
1631 htab_statistics (FILE *file, htab_t htab)
1633 fprintf (file, "size %ld, %ld elements, %f collision/search ratio\n",
1634 (long) htab_size (htab),
1635 (long) htab_elements (htab),
1636 htab_collisions (htab));
1640 /* Dump SSA statistics on FILE. */
1642 void
1643 dump_tree_ssa_stats (FILE *file)
1645 if (def_blocks || repl_tbl)
1646 fprintf (file, "\nHash table statistics:\n");
1648 if (def_blocks)
1650 fprintf (file, " def_blocks: ");
1651 htab_statistics (file, def_blocks);
1654 if (repl_tbl)
1656 fprintf (file, " repl_tbl: ");
1657 htab_statistics (file, repl_tbl);
1660 if (def_blocks || repl_tbl)
1661 fprintf (file, "\n");
1665 /* Dump SSA statistics on stderr. */
1667 DEBUG_FUNCTION void
1668 debug_tree_ssa_stats (void)
1670 dump_tree_ssa_stats (stderr);
1674 /* Hashing and equality functions for DEF_BLOCKS. */
1676 static hashval_t
1677 def_blocks_hash (const void *p)
1679 return htab_hash_pointer
1680 ((const void *)((const struct def_blocks_d *)p)->var);
1683 static int
1684 def_blocks_eq (const void *p1, const void *p2)
1686 return ((const struct def_blocks_d *)p1)->var
1687 == ((const struct def_blocks_d *)p2)->var;
1691 /* Free memory allocated by one entry in DEF_BLOCKS. */
1693 static void
1694 def_blocks_free (void *p)
1696 struct def_blocks_d *entry = (struct def_blocks_d *) p;
1697 BITMAP_FREE (entry->def_blocks);
1698 BITMAP_FREE (entry->phi_blocks);
1699 BITMAP_FREE (entry->livein_blocks);
1700 free (entry);
1704 /* Callback for htab_traverse to dump the DEF_BLOCKS hash table. */
1706 static int
1707 debug_def_blocks_r (void **slot, void *data)
1709 FILE *file = (FILE *) data;
1710 struct def_blocks_d *db_p = (struct def_blocks_d *) *slot;
1712 fprintf (file, "VAR: ");
1713 print_generic_expr (file, db_p->var, dump_flags);
1714 bitmap_print (file, db_p->def_blocks, ", DEF_BLOCKS: { ", "}");
1715 bitmap_print (file, db_p->livein_blocks, ", LIVEIN_BLOCKS: { ", "}");
1716 bitmap_print (file, db_p->phi_blocks, ", PHI_BLOCKS: { ", "}\n");
1718 return 1;
1722 /* Dump the DEF_BLOCKS hash table on FILE. */
1724 void
1725 dump_def_blocks (FILE *file)
1727 fprintf (file, "\n\nDefinition and live-in blocks:\n\n");
1728 if (def_blocks)
1729 htab_traverse (def_blocks, debug_def_blocks_r, file);
1733 /* Dump the DEF_BLOCKS hash table on stderr. */
1735 DEBUG_FUNCTION void
1736 debug_def_blocks (void)
1738 dump_def_blocks (stderr);
1742 /* Register NEW_NAME to be the new reaching definition for OLD_NAME. */
1744 static inline void
1745 register_new_update_single (tree new_name, tree old_name)
1747 tree currdef = get_current_def (old_name);
1749 /* Push the current reaching definition into BLOCK_DEFS_STACK.
1750 This stack is later used by the dominator tree callbacks to
1751 restore the reaching definitions for all the variables
1752 defined in the block after a recursive visit to all its
1753 immediately dominated blocks. */
1754 VEC_reserve (tree, heap, block_defs_stack, 2);
1755 VEC_quick_push (tree, block_defs_stack, currdef);
1756 VEC_quick_push (tree, block_defs_stack, old_name);
1758 /* Set the current reaching definition for OLD_NAME to be
1759 NEW_NAME. */
1760 set_current_def (old_name, new_name);
1764 /* Register NEW_NAME to be the new reaching definition for all the
1765 names in OLD_NAMES. Used by the incremental SSA update routines to
1766 replace old SSA names with new ones. */
1768 static inline void
1769 register_new_update_set (tree new_name, bitmap old_names)
1771 bitmap_iterator bi;
1772 unsigned i;
1774 EXECUTE_IF_SET_IN_BITMAP (old_names, 0, i, bi)
1775 register_new_update_single (new_name, ssa_name (i));
1780 /* If the operand pointed to by USE_P is a name in OLD_SSA_NAMES or
1781 it is a symbol marked for renaming, replace it with USE_P's current
1782 reaching definition. */
1784 static inline void
1785 maybe_replace_use (use_operand_p use_p)
1787 tree rdef = NULL_TREE;
1788 tree use = USE_FROM_PTR (use_p);
1789 tree sym = DECL_P (use) ? use : SSA_NAME_VAR (use);
1791 if (symbol_marked_for_renaming (sym))
1792 rdef = get_reaching_def (sym);
1793 else if (is_old_name (use))
1794 rdef = get_reaching_def (use);
1796 if (rdef && rdef != use)
1797 SET_USE (use_p, rdef);
1801 /* Same as maybe_replace_use, but without introducing default stmts,
1802 returning false to indicate a need to do so. */
1804 static inline bool
1805 maybe_replace_use_in_debug_stmt (use_operand_p use_p)
1807 tree rdef = NULL_TREE;
1808 tree use = USE_FROM_PTR (use_p);
1809 tree sym = DECL_P (use) ? use : SSA_NAME_VAR (use);
1811 if (symbol_marked_for_renaming (sym))
1812 rdef = get_current_def (sym);
1813 else if (is_old_name (use))
1815 rdef = get_current_def (use);
1816 /* We can't assume that, if there's no current definition, the
1817 default one should be used. It could be the case that we've
1818 rearranged blocks so that the earlier definition no longer
1819 dominates the use. */
1820 if (!rdef && SSA_NAME_IS_DEFAULT_DEF (use))
1821 rdef = use;
1823 else
1824 rdef = use;
1826 if (rdef && rdef != use)
1827 SET_USE (use_p, rdef);
1829 return rdef != NULL_TREE;
1833 /* If the operand pointed to by DEF_P is an SSA name in NEW_SSA_NAMES
1834 or OLD_SSA_NAMES, or if it is a symbol marked for renaming,
1835 register it as the current definition for the names replaced by
1836 DEF_P. */
1838 static inline void
1839 maybe_register_def (def_operand_p def_p, gimple stmt,
1840 gimple_stmt_iterator gsi)
1842 tree def = DEF_FROM_PTR (def_p);
1843 tree sym = DECL_P (def) ? def : SSA_NAME_VAR (def);
1845 /* If DEF is a naked symbol that needs renaming, create a new
1846 name for it. */
1847 if (symbol_marked_for_renaming (sym))
1849 if (DECL_P (def))
1851 tree tracked_var;
1853 def = make_ssa_name (def, stmt);
1854 SET_DEF (def_p, def);
1856 tracked_var = target_for_debug_bind (sym);
1857 if (tracked_var)
1859 gimple note = gimple_build_debug_bind (tracked_var, def, stmt);
1860 /* If stmt ends the bb, insert the debug stmt on the single
1861 non-EH edge from the stmt. */
1862 if (gsi_one_before_end_p (gsi) && stmt_ends_bb_p (stmt))
1864 basic_block bb = gsi_bb (gsi);
1865 edge_iterator ei;
1866 edge e, ef = NULL;
1867 FOR_EACH_EDGE (e, ei, bb->succs)
1868 if (!(e->flags & EDGE_EH))
1870 gcc_assert (!ef);
1871 ef = e;
1873 gcc_assert (ef
1874 && single_pred_p (ef->dest)
1875 && !phi_nodes (ef->dest)
1876 && ef->dest != EXIT_BLOCK_PTR);
1877 gsi_insert_on_edge_immediate (ef, note);
1879 else
1880 gsi_insert_after (&gsi, note, GSI_SAME_STMT);
1884 register_new_update_single (def, sym);
1886 else
1888 /* If DEF is a new name, register it as a new definition
1889 for all the names replaced by DEF. */
1890 if (is_new_name (def))
1891 register_new_update_set (def, names_replaced_by (def));
1893 /* If DEF is an old name, register DEF as a new
1894 definition for itself. */
1895 if (is_old_name (def))
1896 register_new_update_single (def, def);
1901 /* Update every variable used in the statement pointed-to by SI. The
1902 statement is assumed to be in SSA form already. Names in
1903 OLD_SSA_NAMES used by SI will be updated to their current reaching
1904 definition. Names in OLD_SSA_NAMES or NEW_SSA_NAMES defined by SI
1905 will be registered as a new definition for their corresponding name
1906 in OLD_SSA_NAMES. */
1908 static void
1909 rewrite_update_stmt (gimple stmt, gimple_stmt_iterator gsi)
1911 use_operand_p use_p;
1912 def_operand_p def_p;
1913 ssa_op_iter iter;
1915 /* Only update marked statements. */
1916 if (!rewrite_uses_p (stmt) && !register_defs_p (stmt))
1917 return;
1919 if (dump_file && (dump_flags & TDF_DETAILS))
1921 fprintf (dump_file, "Updating SSA information for statement ");
1922 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
1923 fprintf (dump_file, "\n");
1926 /* Rewrite USES included in OLD_SSA_NAMES and USES whose underlying
1927 symbol is marked for renaming. */
1928 if (rewrite_uses_p (stmt))
1930 if (is_gimple_debug (stmt))
1932 bool failed = false;
1934 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_USE)
1935 if (!maybe_replace_use_in_debug_stmt (use_p))
1937 failed = true;
1938 break;
1941 if (failed)
1943 /* DOM sometimes threads jumps in such a way that a
1944 debug stmt ends up referencing a SSA variable that no
1945 longer dominates the debug stmt, but such that all
1946 incoming definitions refer to the same definition in
1947 an earlier dominator. We could try to recover that
1948 definition somehow, but this will have to do for now.
1950 Introducing a default definition, which is what
1951 maybe_replace_use() would do in such cases, may
1952 modify code generation, for the otherwise-unused
1953 default definition would never go away, modifying SSA
1954 version numbers all over. */
1955 gimple_debug_bind_reset_value (stmt);
1956 update_stmt (stmt);
1959 else
1961 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_ALL_USES)
1962 maybe_replace_use (use_p);
1966 /* Register definitions of names in NEW_SSA_NAMES and OLD_SSA_NAMES.
1967 Also register definitions for names whose underlying symbol is
1968 marked for renaming. */
1969 if (register_defs_p (stmt))
1970 FOR_EACH_SSA_DEF_OPERAND (def_p, stmt, iter, SSA_OP_ALL_DEFS)
1971 maybe_register_def (def_p, stmt, gsi);
1975 /* Visit all the successor blocks of BB looking for PHI nodes. For
1976 every PHI node found, check if any of its arguments is in
1977 OLD_SSA_NAMES. If so, and if the argument has a current reaching
1978 definition, replace it. */
1980 static void
1981 rewrite_update_phi_arguments (basic_block bb)
1983 edge e;
1984 edge_iterator ei;
1985 unsigned i;
1987 FOR_EACH_EDGE (e, ei, bb->succs)
1989 gimple phi;
1990 gimple_vec phis;
1992 if (!bitmap_bit_p (blocks_with_phis_to_rewrite, e->dest->index))
1993 continue;
1995 phis = VEC_index (gimple_vec, phis_to_rewrite, e->dest->index);
1996 for (i = 0; VEC_iterate (gimple, phis, i, phi); i++)
1998 tree arg, lhs_sym, reaching_def = NULL;
1999 use_operand_p arg_p;
2001 gcc_assert (rewrite_uses_p (phi));
2003 arg_p = PHI_ARG_DEF_PTR_FROM_EDGE (phi, e);
2004 arg = USE_FROM_PTR (arg_p);
2006 if (arg && !DECL_P (arg) && TREE_CODE (arg) != SSA_NAME)
2007 continue;
2009 lhs_sym = SSA_NAME_VAR (gimple_phi_result (phi));
2011 if (arg == NULL_TREE)
2013 /* When updating a PHI node for a recently introduced
2014 symbol we may find NULL arguments. That's why we
2015 take the symbol from the LHS of the PHI node. */
2016 reaching_def = get_reaching_def (lhs_sym);
2019 else
2021 tree sym = DECL_P (arg) ? arg : SSA_NAME_VAR (arg);
2023 if (symbol_marked_for_renaming (sym))
2024 reaching_def = get_reaching_def (sym);
2025 else if (is_old_name (arg))
2026 reaching_def = get_reaching_def (arg);
2029 /* Update the argument if there is a reaching def. */
2030 if (reaching_def)
2032 gimple stmt;
2033 source_location locus;
2034 int arg_i = PHI_ARG_INDEX_FROM_USE (arg_p);
2036 SET_USE (arg_p, reaching_def);
2037 stmt = SSA_NAME_DEF_STMT (reaching_def);
2039 /* Single element PHI nodes behave like copies, so get the
2040 location from the phi argument. */
2041 if (gimple_code (stmt) == GIMPLE_PHI &&
2042 gimple_phi_num_args (stmt) == 1)
2043 locus = gimple_phi_arg_location (stmt, 0);
2044 else
2045 locus = gimple_location (stmt);
2047 gimple_phi_arg_set_location (phi, arg_i, locus);
2051 if (e->flags & EDGE_ABNORMAL)
2052 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (USE_FROM_PTR (arg_p)) = 1;
2058 /* Initialization of block data structures for the incremental SSA
2059 update pass. Create a block local stack of reaching definitions
2060 for new SSA names produced in this block (BLOCK_DEFS). Register
2061 new definitions for every PHI node in the block. */
2063 static void
2064 rewrite_update_enter_block (struct dom_walk_data *walk_data ATTRIBUTE_UNUSED,
2065 basic_block bb)
2067 edge e;
2068 edge_iterator ei;
2069 bool is_abnormal_phi;
2070 gimple_stmt_iterator gsi;
2072 if (dump_file && (dump_flags & TDF_DETAILS))
2073 fprintf (dump_file, "\n\nRegistering new PHI nodes in block #%d\n\n",
2074 bb->index);
2076 /* Mark the unwind point for this block. */
2077 VEC_safe_push (tree, heap, block_defs_stack, NULL_TREE);
2079 if (!bitmap_bit_p (blocks_to_update, bb->index))
2080 return;
2082 /* Mark the LHS if any of the arguments flows through an abnormal
2083 edge. */
2084 is_abnormal_phi = false;
2085 FOR_EACH_EDGE (e, ei, bb->preds)
2086 if (e->flags & EDGE_ABNORMAL)
2088 is_abnormal_phi = true;
2089 break;
2092 /* If any of the PHI nodes is a replacement for a name in
2093 OLD_SSA_NAMES or it's one of the names in NEW_SSA_NAMES, then
2094 register it as a new definition for its corresponding name. Also
2095 register definitions for names whose underlying symbols are
2096 marked for renaming. */
2097 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
2099 tree lhs, lhs_sym;
2100 gimple phi = gsi_stmt (gsi);
2102 if (!register_defs_p (phi))
2103 continue;
2105 lhs = gimple_phi_result (phi);
2106 lhs_sym = SSA_NAME_VAR (lhs);
2108 if (symbol_marked_for_renaming (lhs_sym))
2109 register_new_update_single (lhs, lhs_sym);
2110 else
2113 /* If LHS is a new name, register a new definition for all
2114 the names replaced by LHS. */
2115 if (is_new_name (lhs))
2116 register_new_update_set (lhs, names_replaced_by (lhs));
2118 /* If LHS is an OLD name, register it as a new definition
2119 for itself. */
2120 if (is_old_name (lhs))
2121 register_new_update_single (lhs, lhs);
2124 if (is_abnormal_phi)
2125 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (lhs) = 1;
2128 /* Step 2. Rewrite every variable used in each statement in the block. */
2129 if (TEST_BIT (interesting_blocks, bb->index))
2131 gcc_assert (bitmap_bit_p (blocks_to_update, bb->index));
2132 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
2133 rewrite_update_stmt (gsi_stmt (gsi), gsi);
2136 /* Step 3. Update PHI nodes. */
2137 rewrite_update_phi_arguments (bb);
2140 /* Called after visiting block BB. Unwind BLOCK_DEFS_STACK to restore
2141 the current reaching definition of every name re-written in BB to
2142 the original reaching definition before visiting BB. This
2143 unwinding must be done in the opposite order to what is done in
2144 register_new_update_set. */
2146 static void
2147 rewrite_update_leave_block (struct dom_walk_data *walk_data ATTRIBUTE_UNUSED,
2148 basic_block bb ATTRIBUTE_UNUSED)
2150 while (VEC_length (tree, block_defs_stack) > 0)
2152 tree var = VEC_pop (tree, block_defs_stack);
2153 tree saved_def;
2155 /* NULL indicates the unwind stop point for this block (see
2156 rewrite_update_enter_block). */
2157 if (var == NULL)
2158 return;
2160 saved_def = VEC_pop (tree, block_defs_stack);
2161 set_current_def (var, saved_def);
2166 /* Rewrite the actual blocks, statements, and PHI arguments, to be in SSA
2167 form.
2169 ENTRY indicates the block where to start. Every block dominated by
2170 ENTRY will be rewritten.
2172 WHAT indicates what actions will be taken by the renamer (see enum
2173 rewrite_mode).
2175 BLOCKS are the set of interesting blocks for the dominator walker
2176 to process. If this set is NULL, then all the nodes dominated
2177 by ENTRY are walked. Otherwise, blocks dominated by ENTRY that
2178 are not present in BLOCKS are ignored. */
2180 static void
2181 rewrite_blocks (basic_block entry, enum rewrite_mode what)
2183 struct dom_walk_data walk_data;
2185 /* Rewrite all the basic blocks in the program. */
2186 timevar_push (TV_TREE_SSA_REWRITE_BLOCKS);
2188 /* Setup callbacks for the generic dominator tree walker. */
2189 memset (&walk_data, 0, sizeof (walk_data));
2191 walk_data.dom_direction = CDI_DOMINATORS;
2193 if (what == REWRITE_ALL)
2195 walk_data.before_dom_children = rewrite_enter_block;
2196 walk_data.after_dom_children = rewrite_leave_block;
2198 else if (what == REWRITE_UPDATE)
2200 walk_data.before_dom_children = rewrite_update_enter_block;
2201 walk_data.after_dom_children = rewrite_update_leave_block;
2203 else
2204 gcc_unreachable ();
2206 block_defs_stack = VEC_alloc (tree, heap, 10);
2208 /* Initialize the dominator walker. */
2209 init_walk_dominator_tree (&walk_data);
2211 /* Recursively walk the dominator tree rewriting each statement in
2212 each basic block. */
2213 walk_dominator_tree (&walk_data, entry);
2215 /* Finalize the dominator walker. */
2216 fini_walk_dominator_tree (&walk_data);
2218 /* Debugging dumps. */
2219 if (dump_file && (dump_flags & TDF_STATS))
2221 dump_dfa_stats (dump_file);
2222 if (def_blocks)
2223 dump_tree_ssa_stats (dump_file);
2226 VEC_free (tree, heap, block_defs_stack);
2228 timevar_pop (TV_TREE_SSA_REWRITE_BLOCKS);
2232 /* Block processing routine for mark_def_sites. Clear the KILLS bitmap
2233 at the start of each block, and call mark_def_sites for each statement. */
2235 static void
2236 mark_def_sites_block (struct dom_walk_data *walk_data, basic_block bb)
2238 struct mark_def_sites_global_data *gd;
2239 bitmap kills;
2240 gimple_stmt_iterator gsi;
2242 gd = (struct mark_def_sites_global_data *) walk_data->global_data;
2243 kills = gd->kills;
2245 bitmap_clear (kills);
2246 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
2247 mark_def_sites (bb, gsi_stmt (gsi), kills);
2251 /* Mark the definition site blocks for each variable, so that we know
2252 where the variable is actually live.
2254 The INTERESTING_BLOCKS global will be filled in with all the blocks
2255 that should be processed by the renamer. It is assumed that the
2256 caller has already initialized and zeroed it. */
2258 static void
2259 mark_def_site_blocks (void)
2261 struct dom_walk_data walk_data;
2262 struct mark_def_sites_global_data mark_def_sites_global_data;
2264 /* Setup callbacks for the generic dominator tree walker to find and
2265 mark definition sites. */
2266 walk_data.dom_direction = CDI_DOMINATORS;
2267 walk_data.initialize_block_local_data = NULL;
2268 walk_data.before_dom_children = mark_def_sites_block;
2269 walk_data.after_dom_children = NULL;
2271 /* Notice that this bitmap is indexed using variable UIDs, so it must be
2272 large enough to accommodate all the variables referenced in the
2273 function, not just the ones we are renaming. */
2274 mark_def_sites_global_data.kills = BITMAP_ALLOC (NULL);
2275 walk_data.global_data = &mark_def_sites_global_data;
2277 /* We do not have any local data. */
2278 walk_data.block_local_data_size = 0;
2280 /* Initialize the dominator walker. */
2281 init_walk_dominator_tree (&walk_data);
2283 /* Recursively walk the dominator tree. */
2284 walk_dominator_tree (&walk_data, ENTRY_BLOCK_PTR);
2286 /* Finalize the dominator walker. */
2287 fini_walk_dominator_tree (&walk_data);
2289 /* We no longer need this bitmap, clear and free it. */
2290 BITMAP_FREE (mark_def_sites_global_data.kills);
2294 /* Initialize internal data needed during renaming. */
2296 static void
2297 init_ssa_renamer (void)
2299 tree var;
2300 referenced_var_iterator rvi;
2302 cfun->gimple_df->in_ssa_p = false;
2304 /* Allocate memory for the DEF_BLOCKS hash table. */
2305 gcc_assert (def_blocks == NULL);
2306 def_blocks = htab_create (num_referenced_vars, def_blocks_hash,
2307 def_blocks_eq, def_blocks_free);
2309 FOR_EACH_REFERENCED_VAR(var, rvi)
2310 set_current_def (var, NULL_TREE);
2314 /* Deallocate internal data structures used by the renamer. */
2316 static void
2317 fini_ssa_renamer (void)
2319 if (def_blocks)
2321 htab_delete (def_blocks);
2322 def_blocks = NULL;
2325 cfun->gimple_df->in_ssa_p = true;
2328 /* Main entry point into the SSA builder. The renaming process
2329 proceeds in four main phases:
2331 1- Compute dominance frontier and immediate dominators, needed to
2332 insert PHI nodes and rename the function in dominator tree
2333 order.
2335 2- Find and mark all the blocks that define variables
2336 (mark_def_site_blocks).
2338 3- Insert PHI nodes at dominance frontiers (insert_phi_nodes).
2340 4- Rename all the blocks (rewrite_blocks) and statements in the program.
2342 Steps 3 and 4 are done using the dominator tree walker
2343 (walk_dominator_tree). */
2345 static unsigned int
2346 rewrite_into_ssa (void)
2348 bitmap_head *dfs;
2349 basic_block bb;
2351 timevar_push (TV_TREE_SSA_OTHER);
2353 /* Initialize operand data structures. */
2354 init_ssa_operands ();
2356 /* Initialize internal data needed by the renamer. */
2357 init_ssa_renamer ();
2359 /* Initialize the set of interesting blocks. The callback
2360 mark_def_sites will add to this set those blocks that the renamer
2361 should process. */
2362 interesting_blocks = sbitmap_alloc (last_basic_block);
2363 sbitmap_zero (interesting_blocks);
2365 /* Initialize dominance frontier. */
2366 dfs = XNEWVEC (bitmap_head, last_basic_block);
2367 FOR_EACH_BB (bb)
2368 bitmap_initialize (&dfs[bb->index], &bitmap_default_obstack);
2370 /* 1- Compute dominance frontiers. */
2371 calculate_dominance_info (CDI_DOMINATORS);
2372 compute_dominance_frontiers (dfs);
2374 /* 2- Find and mark definition sites. */
2375 mark_def_site_blocks ();
2377 /* 3- Insert PHI nodes at dominance frontiers of definition blocks. */
2378 insert_phi_nodes (dfs);
2380 /* 4- Rename all the blocks. */
2381 rewrite_blocks (ENTRY_BLOCK_PTR, REWRITE_ALL);
2383 /* Free allocated memory. */
2384 FOR_EACH_BB (bb)
2385 bitmap_clear (&dfs[bb->index]);
2386 free (dfs);
2388 sbitmap_free (interesting_blocks);
2390 fini_ssa_renamer ();
2392 timevar_pop (TV_TREE_SSA_OTHER);
2393 return 0;
2397 struct gimple_opt_pass pass_build_ssa =
2400 GIMPLE_PASS,
2401 "ssa", /* name */
2402 NULL, /* gate */
2403 rewrite_into_ssa, /* execute */
2404 NULL, /* sub */
2405 NULL, /* next */
2406 0, /* static_pass_number */
2407 TV_NONE, /* tv_id */
2408 PROP_cfg | PROP_referenced_vars, /* properties_required */
2409 PROP_ssa, /* properties_provided */
2410 0, /* properties_destroyed */
2411 0, /* todo_flags_start */
2412 TODO_dump_func
2413 | TODO_update_ssa_only_virtuals
2414 | TODO_verify_ssa
2415 | TODO_remove_unused_locals /* todo_flags_finish */
2420 /* Mark the definition of VAR at STMT and BB as interesting for the
2421 renamer. BLOCKS is the set of blocks that need updating. */
2423 static void
2424 mark_def_interesting (tree var, gimple stmt, basic_block bb, bool insert_phi_p)
2426 gcc_assert (bitmap_bit_p (blocks_to_update, bb->index));
2427 set_register_defs (stmt, true);
2429 if (insert_phi_p)
2431 bool is_phi_p = gimple_code (stmt) == GIMPLE_PHI;
2433 set_def_block (var, bb, is_phi_p);
2435 /* If VAR is an SSA name in NEW_SSA_NAMES, this is a definition
2436 site for both itself and all the old names replaced by it. */
2437 if (TREE_CODE (var) == SSA_NAME && is_new_name (var))
2439 bitmap_iterator bi;
2440 unsigned i;
2441 bitmap set = names_replaced_by (var);
2442 if (set)
2443 EXECUTE_IF_SET_IN_BITMAP (set, 0, i, bi)
2444 set_def_block (ssa_name (i), bb, is_phi_p);
2450 /* Mark the use of VAR at STMT and BB as interesting for the
2451 renamer. INSERT_PHI_P is true if we are going to insert new PHI
2452 nodes. */
2454 static inline void
2455 mark_use_interesting (tree var, gimple stmt, basic_block bb, bool insert_phi_p)
2457 basic_block def_bb = gimple_bb (stmt);
2459 mark_block_for_update (def_bb);
2460 mark_block_for_update (bb);
2462 if (gimple_code (stmt) == GIMPLE_PHI)
2463 mark_phi_for_rewrite (def_bb, stmt);
2464 else
2466 set_rewrite_uses (stmt, true);
2468 if (is_gimple_debug (stmt))
2469 return;
2472 /* If VAR has not been defined in BB, then it is live-on-entry
2473 to BB. Note that we cannot just use the block holding VAR's
2474 definition because if VAR is one of the names in OLD_SSA_NAMES,
2475 it will have several definitions (itself and all the names that
2476 replace it). */
2477 if (insert_phi_p)
2479 struct def_blocks_d *db_p = get_def_blocks_for (var);
2480 if (!bitmap_bit_p (db_p->def_blocks, bb->index))
2481 set_livein_block (var, bb);
2486 /* Do a dominator walk starting at BB processing statements that
2487 reference symbols in SYMS_TO_RENAME. This is very similar to
2488 mark_def_sites, but the scan handles statements whose operands may
2489 already be SSA names.
2491 If INSERT_PHI_P is true, mark those uses as live in the
2492 corresponding block. This is later used by the PHI placement
2493 algorithm to make PHI pruning decisions.
2495 FIXME. Most of this would be unnecessary if we could associate a
2496 symbol to all the SSA names that reference it. But that
2497 sounds like it would be expensive to maintain. Still, it
2498 would be interesting to see if it makes better sense to do
2499 that. */
2501 static void
2502 prepare_block_for_update (basic_block bb, bool insert_phi_p)
2504 basic_block son;
2505 gimple_stmt_iterator si;
2506 edge e;
2507 edge_iterator ei;
2509 mark_block_for_update (bb);
2511 /* Process PHI nodes marking interesting those that define or use
2512 the symbols that we are interested in. */
2513 for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si))
2515 gimple phi = gsi_stmt (si);
2516 tree lhs_sym, lhs = gimple_phi_result (phi);
2518 lhs_sym = DECL_P (lhs) ? lhs : SSA_NAME_VAR (lhs);
2520 if (!symbol_marked_for_renaming (lhs_sym))
2521 continue;
2523 mark_def_interesting (lhs_sym, phi, bb, insert_phi_p);
2525 /* Mark the uses in phi nodes as interesting. It would be more correct
2526 to process the arguments of the phi nodes of the successor edges of
2527 BB at the end of prepare_block_for_update, however, that turns out
2528 to be significantly more expensive. Doing it here is conservatively
2529 correct -- it may only cause us to believe a value to be live in a
2530 block that also contains its definition, and thus insert a few more
2531 phi nodes for it. */
2532 FOR_EACH_EDGE (e, ei, bb->preds)
2533 mark_use_interesting (lhs_sym, phi, e->src, insert_phi_p);
2536 /* Process the statements. */
2537 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
2539 gimple stmt;
2540 ssa_op_iter i;
2541 use_operand_p use_p;
2542 def_operand_p def_p;
2544 stmt = gsi_stmt (si);
2546 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, i, SSA_OP_ALL_USES)
2548 tree use = USE_FROM_PTR (use_p);
2549 tree sym = DECL_P (use) ? use : SSA_NAME_VAR (use);
2550 if (symbol_marked_for_renaming (sym))
2551 mark_use_interesting (sym, stmt, bb, insert_phi_p);
2554 FOR_EACH_SSA_DEF_OPERAND (def_p, stmt, i, SSA_OP_ALL_DEFS)
2556 tree def = DEF_FROM_PTR (def_p);
2557 tree sym = DECL_P (def) ? def : SSA_NAME_VAR (def);
2558 if (symbol_marked_for_renaming (sym))
2559 mark_def_interesting (sym, stmt, bb, insert_phi_p);
2563 /* Now visit all the blocks dominated by BB. */
2564 for (son = first_dom_son (CDI_DOMINATORS, bb);
2565 son;
2566 son = next_dom_son (CDI_DOMINATORS, son))
2567 prepare_block_for_update (son, insert_phi_p);
2571 /* Helper for prepare_names_to_update. Mark all the use sites for
2572 NAME as interesting. BLOCKS and INSERT_PHI_P are as in
2573 prepare_names_to_update. */
2575 static void
2576 prepare_use_sites_for (tree name, bool insert_phi_p)
2578 use_operand_p use_p;
2579 imm_use_iterator iter;
2581 FOR_EACH_IMM_USE_FAST (use_p, iter, name)
2583 gimple stmt = USE_STMT (use_p);
2584 basic_block bb = gimple_bb (stmt);
2586 if (gimple_code (stmt) == GIMPLE_PHI)
2588 int ix = PHI_ARG_INDEX_FROM_USE (use_p);
2589 edge e = gimple_phi_arg_edge (stmt, ix);
2590 mark_use_interesting (name, stmt, e->src, insert_phi_p);
2592 else
2594 /* For regular statements, mark this as an interesting use
2595 for NAME. */
2596 mark_use_interesting (name, stmt, bb, insert_phi_p);
2602 /* Helper for prepare_names_to_update. Mark the definition site for
2603 NAME as interesting. BLOCKS and INSERT_PHI_P are as in
2604 prepare_names_to_update. */
2606 static void
2607 prepare_def_site_for (tree name, bool insert_phi_p)
2609 gimple stmt;
2610 basic_block bb;
2612 gcc_assert (names_to_release == NULL
2613 || !bitmap_bit_p (names_to_release, SSA_NAME_VERSION (name)));
2615 stmt = SSA_NAME_DEF_STMT (name);
2616 bb = gimple_bb (stmt);
2617 if (bb)
2619 gcc_assert (bb->index < last_basic_block);
2620 mark_block_for_update (bb);
2621 mark_def_interesting (name, stmt, bb, insert_phi_p);
2626 /* Mark definition and use sites of names in NEW_SSA_NAMES and
2627 OLD_SSA_NAMES. INSERT_PHI_P is true if the caller wants to insert
2628 PHI nodes for newly created names. */
2630 static void
2631 prepare_names_to_update (bool insert_phi_p)
2633 unsigned i = 0;
2634 bitmap_iterator bi;
2635 sbitmap_iterator sbi;
2637 /* If a name N from NEW_SSA_NAMES is also marked to be released,
2638 remove it from NEW_SSA_NAMES so that we don't try to visit its
2639 defining basic block (which most likely doesn't exist). Notice
2640 that we cannot do the same with names in OLD_SSA_NAMES because we
2641 want to replace existing instances. */
2642 if (names_to_release)
2643 EXECUTE_IF_SET_IN_BITMAP (names_to_release, 0, i, bi)
2644 RESET_BIT (new_ssa_names, i);
2646 /* First process names in NEW_SSA_NAMES. Otherwise, uses of old
2647 names may be considered to be live-in on blocks that contain
2648 definitions for their replacements. */
2649 EXECUTE_IF_SET_IN_SBITMAP (new_ssa_names, 0, i, sbi)
2650 prepare_def_site_for (ssa_name (i), insert_phi_p);
2652 /* If an old name is in NAMES_TO_RELEASE, we cannot remove it from
2653 OLD_SSA_NAMES, but we have to ignore its definition site. */
2654 EXECUTE_IF_SET_IN_SBITMAP (old_ssa_names, 0, i, sbi)
2656 if (names_to_release == NULL || !bitmap_bit_p (names_to_release, i))
2657 prepare_def_site_for (ssa_name (i), insert_phi_p);
2658 prepare_use_sites_for (ssa_name (i), insert_phi_p);
2663 /* Dump all the names replaced by NAME to FILE. */
2665 void
2666 dump_names_replaced_by (FILE *file, tree name)
2668 unsigned i;
2669 bitmap old_set;
2670 bitmap_iterator bi;
2672 print_generic_expr (file, name, 0);
2673 fprintf (file, " -> { ");
2675 old_set = names_replaced_by (name);
2676 EXECUTE_IF_SET_IN_BITMAP (old_set, 0, i, bi)
2678 print_generic_expr (file, ssa_name (i), 0);
2679 fprintf (file, " ");
2682 fprintf (file, "}\n");
2686 /* Dump all the names replaced by NAME to stderr. */
2688 DEBUG_FUNCTION void
2689 debug_names_replaced_by (tree name)
2691 dump_names_replaced_by (stderr, name);
2695 /* Dump SSA update information to FILE. */
2697 void
2698 dump_update_ssa (FILE *file)
2700 unsigned i = 0;
2701 bitmap_iterator bi;
2703 if (!need_ssa_update_p (cfun))
2704 return;
2706 if (new_ssa_names && sbitmap_first_set_bit (new_ssa_names) >= 0)
2708 sbitmap_iterator sbi;
2710 fprintf (file, "\nSSA replacement table\n");
2711 fprintf (file, "N_i -> { O_1 ... O_j } means that N_i replaces "
2712 "O_1, ..., O_j\n\n");
2714 EXECUTE_IF_SET_IN_SBITMAP (new_ssa_names, 0, i, sbi)
2715 dump_names_replaced_by (file, ssa_name (i));
2717 fprintf (file, "\n");
2718 fprintf (file, "Number of virtual NEW -> OLD mappings: %7u\n",
2719 update_ssa_stats.num_virtual_mappings);
2720 fprintf (file, "Number of real NEW -> OLD mappings: %7u\n",
2721 update_ssa_stats.num_total_mappings
2722 - update_ssa_stats.num_virtual_mappings);
2723 fprintf (file, "Number of total NEW -> OLD mappings: %7u\n",
2724 update_ssa_stats.num_total_mappings);
2726 fprintf (file, "\nNumber of virtual symbols: %u\n",
2727 update_ssa_stats.num_virtual_symbols);
2730 if (!bitmap_empty_p (SYMS_TO_RENAME (cfun)))
2732 fprintf (file, "\n\nSymbols to be put in SSA form\n\n");
2733 dump_decl_set (file, SYMS_TO_RENAME (cfun));
2734 fprintf (file, "\n");
2737 if (names_to_release && !bitmap_empty_p (names_to_release))
2739 fprintf (file, "\n\nSSA names to release after updating the SSA web\n\n");
2740 EXECUTE_IF_SET_IN_BITMAP (names_to_release, 0, i, bi)
2742 print_generic_expr (file, ssa_name (i), 0);
2743 fprintf (file, " ");
2747 fprintf (file, "\n\n");
2751 /* Dump SSA update information to stderr. */
2753 DEBUG_FUNCTION void
2754 debug_update_ssa (void)
2756 dump_update_ssa (stderr);
2760 /* Initialize data structures used for incremental SSA updates. */
2762 static void
2763 init_update_ssa (struct function *fn)
2765 /* Reserve more space than the current number of names. The calls to
2766 add_new_name_mapping are typically done after creating new SSA
2767 names, so we'll need to reallocate these arrays. */
2768 old_ssa_names = sbitmap_alloc (num_ssa_names + NAME_SETS_GROWTH_FACTOR);
2769 sbitmap_zero (old_ssa_names);
2771 new_ssa_names = sbitmap_alloc (num_ssa_names + NAME_SETS_GROWTH_FACTOR);
2772 sbitmap_zero (new_ssa_names);
2774 repl_tbl = htab_create (20, repl_map_hash, repl_map_eq, repl_map_free);
2775 names_to_release = NULL;
2776 memset (&update_ssa_stats, 0, sizeof (update_ssa_stats));
2777 update_ssa_stats.virtual_symbols = BITMAP_ALLOC (NULL);
2778 update_ssa_initialized_fn = fn;
2782 /* Deallocate data structures used for incremental SSA updates. */
2784 void
2785 delete_update_ssa (void)
2787 unsigned i;
2788 bitmap_iterator bi;
2790 sbitmap_free (old_ssa_names);
2791 old_ssa_names = NULL;
2793 sbitmap_free (new_ssa_names);
2794 new_ssa_names = NULL;
2796 htab_delete (repl_tbl);
2797 repl_tbl = NULL;
2799 bitmap_clear (SYMS_TO_RENAME (update_ssa_initialized_fn));
2800 BITMAP_FREE (update_ssa_stats.virtual_symbols);
2802 if (names_to_release)
2804 EXECUTE_IF_SET_IN_BITMAP (names_to_release, 0, i, bi)
2805 release_ssa_name (ssa_name (i));
2806 BITMAP_FREE (names_to_release);
2809 clear_ssa_name_info ();
2811 fini_ssa_renamer ();
2813 if (blocks_with_phis_to_rewrite)
2814 EXECUTE_IF_SET_IN_BITMAP (blocks_with_phis_to_rewrite, 0, i, bi)
2816 gimple_vec phis = VEC_index (gimple_vec, phis_to_rewrite, i);
2818 VEC_free (gimple, heap, phis);
2819 VEC_replace (gimple_vec, phis_to_rewrite, i, NULL);
2822 BITMAP_FREE (blocks_with_phis_to_rewrite);
2823 BITMAP_FREE (blocks_to_update);
2824 update_ssa_initialized_fn = NULL;
2828 /* Create a new name for OLD_NAME in statement STMT and replace the
2829 operand pointed to by DEF_P with the newly created name. Return
2830 the new name and register the replacement mapping <NEW, OLD> in
2831 update_ssa's tables. */
2833 tree
2834 create_new_def_for (tree old_name, gimple stmt, def_operand_p def)
2836 tree new_name = duplicate_ssa_name (old_name, stmt);
2838 SET_DEF (def, new_name);
2840 if (gimple_code (stmt) == GIMPLE_PHI)
2842 edge e;
2843 edge_iterator ei;
2844 basic_block bb = gimple_bb (stmt);
2846 /* If needed, mark NEW_NAME as occurring in an abnormal PHI node. */
2847 FOR_EACH_EDGE (e, ei, bb->preds)
2848 if (e->flags & EDGE_ABNORMAL)
2850 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (new_name) = 1;
2851 break;
2855 register_new_name_mapping (new_name, old_name);
2857 /* For the benefit of passes that will be updating the SSA form on
2858 their own, set the current reaching definition of OLD_NAME to be
2859 NEW_NAME. */
2860 set_current_def (old_name, new_name);
2862 return new_name;
2866 /* Register name NEW to be a replacement for name OLD. This function
2867 must be called for every replacement that should be performed by
2868 update_ssa. */
2870 void
2871 register_new_name_mapping (tree new_tree, tree old)
2873 if (!update_ssa_initialized_fn)
2874 init_update_ssa (cfun);
2876 gcc_assert (update_ssa_initialized_fn == cfun);
2878 add_new_name_mapping (new_tree, old);
2882 /* Register symbol SYM to be renamed by update_ssa. */
2884 void
2885 mark_sym_for_renaming (tree sym)
2887 bitmap_set_bit (SYMS_TO_RENAME (cfun), DECL_UID (sym));
2891 /* Register all the symbols in SET to be renamed by update_ssa. */
2893 void
2894 mark_set_for_renaming (bitmap set)
2896 bitmap_iterator bi;
2897 unsigned i;
2899 if (set == NULL || bitmap_empty_p (set))
2900 return;
2902 EXECUTE_IF_SET_IN_BITMAP (set, 0, i, bi)
2903 mark_sym_for_renaming (referenced_var (i));
2907 /* Return true if there is any work to be done by update_ssa
2908 for function FN. */
2910 bool
2911 need_ssa_update_p (struct function *fn)
2913 gcc_assert (fn != NULL);
2914 return (update_ssa_initialized_fn == fn
2915 || (fn->gimple_df
2916 && !bitmap_empty_p (SYMS_TO_RENAME (fn))));
2919 /* Return true if SSA name mappings have been registered for SSA updating. */
2921 bool
2922 name_mappings_registered_p (void)
2924 if (!update_ssa_initialized_fn)
2925 return false;
2927 gcc_assert (update_ssa_initialized_fn == cfun);
2929 return repl_tbl && htab_elements (repl_tbl) > 0;
2932 /* Return true if name N has been registered in the replacement table. */
2934 bool
2935 name_registered_for_update_p (tree n ATTRIBUTE_UNUSED)
2937 if (!update_ssa_initialized_fn)
2938 return false;
2940 gcc_assert (update_ssa_initialized_fn == cfun);
2942 return is_new_name (n) || is_old_name (n);
2946 /* Return the set of all the SSA names marked to be replaced. */
2948 bitmap
2949 ssa_names_to_replace (void)
2951 unsigned i = 0;
2952 bitmap ret;
2953 sbitmap_iterator sbi;
2955 gcc_assert (update_ssa_initialized_fn == NULL
2956 || update_ssa_initialized_fn == cfun);
2958 ret = BITMAP_ALLOC (NULL);
2959 EXECUTE_IF_SET_IN_SBITMAP (old_ssa_names, 0, i, sbi)
2960 bitmap_set_bit (ret, i);
2962 return ret;
2966 /* Mark NAME to be released after update_ssa has finished. */
2968 void
2969 release_ssa_name_after_update_ssa (tree name)
2971 gcc_assert (cfun && update_ssa_initialized_fn == cfun);
2973 if (names_to_release == NULL)
2974 names_to_release = BITMAP_ALLOC (NULL);
2976 bitmap_set_bit (names_to_release, SSA_NAME_VERSION (name));
2980 /* Insert new PHI nodes to replace VAR. DFS contains dominance
2981 frontier information. BLOCKS is the set of blocks to be updated.
2983 This is slightly different than the regular PHI insertion
2984 algorithm. The value of UPDATE_FLAGS controls how PHI nodes for
2985 real names (i.e., GIMPLE registers) are inserted:
2987 - If UPDATE_FLAGS == TODO_update_ssa, we are only interested in PHI
2988 nodes inside the region affected by the block that defines VAR
2989 and the blocks that define all its replacements. All these
2990 definition blocks are stored in DEF_BLOCKS[VAR]->DEF_BLOCKS.
2992 First, we compute the entry point to the region (ENTRY). This is
2993 given by the nearest common dominator to all the definition
2994 blocks. When computing the iterated dominance frontier (IDF), any
2995 block not strictly dominated by ENTRY is ignored.
2997 We then call the standard PHI insertion algorithm with the pruned
2998 IDF.
3000 - If UPDATE_FLAGS == TODO_update_ssa_full_phi, the IDF for real
3001 names is not pruned. PHI nodes are inserted at every IDF block. */
3003 static void
3004 insert_updated_phi_nodes_for (tree var, bitmap_head *dfs, bitmap blocks,
3005 unsigned update_flags)
3007 basic_block entry;
3008 struct def_blocks_d *db;
3009 bitmap idf, pruned_idf;
3010 bitmap_iterator bi;
3011 unsigned i;
3013 #if defined ENABLE_CHECKING
3014 if (TREE_CODE (var) == SSA_NAME)
3015 gcc_assert (is_old_name (var));
3016 else
3017 gcc_assert (symbol_marked_for_renaming (var));
3018 #endif
3020 /* Get all the definition sites for VAR. */
3021 db = find_def_blocks_for (var);
3023 /* No need to do anything if there were no definitions to VAR. */
3024 if (db == NULL || bitmap_empty_p (db->def_blocks))
3025 return;
3027 /* Compute the initial iterated dominance frontier. */
3028 idf = compute_idf (db->def_blocks, dfs);
3029 pruned_idf = BITMAP_ALLOC (NULL);
3031 if (TREE_CODE (var) == SSA_NAME)
3033 if (update_flags == TODO_update_ssa)
3035 /* If doing regular SSA updates for GIMPLE registers, we are
3036 only interested in IDF blocks dominated by the nearest
3037 common dominator of all the definition blocks. */
3038 entry = nearest_common_dominator_for_set (CDI_DOMINATORS,
3039 db->def_blocks);
3040 if (entry != ENTRY_BLOCK_PTR)
3041 EXECUTE_IF_SET_IN_BITMAP (idf, 0, i, bi)
3042 if (BASIC_BLOCK (i) != entry
3043 && dominated_by_p (CDI_DOMINATORS, BASIC_BLOCK (i), entry))
3044 bitmap_set_bit (pruned_idf, i);
3046 else
3048 /* Otherwise, do not prune the IDF for VAR. */
3049 gcc_assert (update_flags == TODO_update_ssa_full_phi);
3050 bitmap_copy (pruned_idf, idf);
3053 else
3055 /* Otherwise, VAR is a symbol that needs to be put into SSA form
3056 for the first time, so we need to compute the full IDF for
3057 it. */
3058 bitmap_copy (pruned_idf, idf);
3061 if (!bitmap_empty_p (pruned_idf))
3063 /* Make sure that PRUNED_IDF blocks and all their feeding blocks
3064 are included in the region to be updated. The feeding blocks
3065 are important to guarantee that the PHI arguments are renamed
3066 properly. */
3068 /* FIXME, this is not needed if we are updating symbols. We are
3069 already starting at the ENTRY block anyway. */
3070 bitmap_ior_into (blocks, pruned_idf);
3071 EXECUTE_IF_SET_IN_BITMAP (pruned_idf, 0, i, bi)
3073 edge e;
3074 edge_iterator ei;
3075 basic_block bb = BASIC_BLOCK (i);
3077 FOR_EACH_EDGE (e, ei, bb->preds)
3078 if (e->src->index >= 0)
3079 bitmap_set_bit (blocks, e->src->index);
3082 insert_phi_nodes_for (var, pruned_idf, true);
3085 BITMAP_FREE (pruned_idf);
3086 BITMAP_FREE (idf);
3090 /* Heuristic to determine whether SSA name mappings for virtual names
3091 should be discarded and their symbols rewritten from scratch. When
3092 there is a large number of mappings for virtual names, the
3093 insertion of PHI nodes for the old names in the mappings takes
3094 considerable more time than if we inserted PHI nodes for the
3095 symbols instead.
3097 Currently the heuristic takes these stats into account:
3099 - Number of mappings for virtual SSA names.
3100 - Number of distinct virtual symbols involved in those mappings.
3102 If the number of virtual mappings is much larger than the number of
3103 virtual symbols, then it will be faster to compute PHI insertion
3104 spots for the symbols. Even if this involves traversing the whole
3105 CFG, which is what happens when symbols are renamed from scratch. */
3107 static bool
3108 switch_virtuals_to_full_rewrite_p (void)
3110 if (update_ssa_stats.num_virtual_mappings < (unsigned) MIN_VIRTUAL_MAPPINGS)
3111 return false;
3113 if (update_ssa_stats.num_virtual_mappings
3114 > (unsigned) VIRTUAL_MAPPINGS_TO_SYMS_RATIO
3115 * update_ssa_stats.num_virtual_symbols)
3116 return true;
3118 return false;
3122 /* Remove every virtual mapping and mark all the affected virtual
3123 symbols for renaming. */
3125 static void
3126 switch_virtuals_to_full_rewrite (void)
3128 unsigned i = 0;
3129 sbitmap_iterator sbi;
3131 if (dump_file)
3133 fprintf (dump_file, "\nEnabled virtual name mapping heuristic.\n");
3134 fprintf (dump_file, "\tNumber of virtual mappings: %7u\n",
3135 update_ssa_stats.num_virtual_mappings);
3136 fprintf (dump_file, "\tNumber of unique virtual symbols: %7u\n",
3137 update_ssa_stats.num_virtual_symbols);
3138 fprintf (dump_file, "Updating FUD-chains from top of CFG will be "
3139 "faster than processing\nthe name mappings.\n\n");
3142 /* Remove all virtual names from NEW_SSA_NAMES and OLD_SSA_NAMES.
3143 Note that it is not really necessary to remove the mappings from
3144 REPL_TBL, that would only waste time. */
3145 EXECUTE_IF_SET_IN_SBITMAP (new_ssa_names, 0, i, sbi)
3146 if (!is_gimple_reg (ssa_name (i)))
3147 RESET_BIT (new_ssa_names, i);
3149 EXECUTE_IF_SET_IN_SBITMAP (old_ssa_names, 0, i, sbi)
3150 if (!is_gimple_reg (ssa_name (i)))
3151 RESET_BIT (old_ssa_names, i);
3153 mark_set_for_renaming (update_ssa_stats.virtual_symbols);
3157 /* Given a set of newly created SSA names (NEW_SSA_NAMES) and a set of
3158 existing SSA names (OLD_SSA_NAMES), update the SSA form so that:
3160 1- The names in OLD_SSA_NAMES dominated by the definitions of
3161 NEW_SSA_NAMES are all re-written to be reached by the
3162 appropriate definition from NEW_SSA_NAMES.
3164 2- If needed, new PHI nodes are added to the iterated dominance
3165 frontier of the blocks where each of NEW_SSA_NAMES are defined.
3167 The mapping between OLD_SSA_NAMES and NEW_SSA_NAMES is setup by
3168 calling register_new_name_mapping for every pair of names that the
3169 caller wants to replace.
3171 The caller identifies the new names that have been inserted and the
3172 names that need to be replaced by calling register_new_name_mapping
3173 for every pair <NEW, OLD>. Note that the function assumes that the
3174 new names have already been inserted in the IL.
3176 For instance, given the following code:
3178 1 L0:
3179 2 x_1 = PHI (0, x_5)
3180 3 if (x_1 < 10)
3181 4 if (x_1 > 7)
3182 5 y_2 = 0
3183 6 else
3184 7 y_3 = x_1 + x_7
3185 8 endif
3186 9 x_5 = x_1 + 1
3187 10 goto L0;
3188 11 endif
3190 Suppose that we insert new names x_10 and x_11 (lines 4 and 8).
3192 1 L0:
3193 2 x_1 = PHI (0, x_5)
3194 3 if (x_1 < 10)
3195 4 x_10 = ...
3196 5 if (x_1 > 7)
3197 6 y_2 = 0
3198 7 else
3199 8 x_11 = ...
3200 9 y_3 = x_1 + x_7
3201 10 endif
3202 11 x_5 = x_1 + 1
3203 12 goto L0;
3204 13 endif
3206 We want to replace all the uses of x_1 with the new definitions of
3207 x_10 and x_11. Note that the only uses that should be replaced are
3208 those at lines 5, 9 and 11. Also, the use of x_7 at line 9 should
3209 *not* be replaced (this is why we cannot just mark symbol 'x' for
3210 renaming).
3212 Additionally, we may need to insert a PHI node at line 11 because
3213 that is a merge point for x_10 and x_11. So the use of x_1 at line
3214 11 will be replaced with the new PHI node. The insertion of PHI
3215 nodes is optional. They are not strictly necessary to preserve the
3216 SSA form, and depending on what the caller inserted, they may not
3217 even be useful for the optimizers. UPDATE_FLAGS controls various
3218 aspects of how update_ssa operates, see the documentation for
3219 TODO_update_ssa*. */
3221 void
3222 update_ssa (unsigned update_flags)
3224 basic_block bb, start_bb;
3225 bitmap_iterator bi;
3226 unsigned i = 0;
3227 bool insert_phi_p;
3228 sbitmap_iterator sbi;
3230 if (!need_ssa_update_p (cfun))
3231 return;
3233 timevar_push (TV_TREE_SSA_INCREMENTAL);
3235 if (!update_ssa_initialized_fn)
3236 init_update_ssa (cfun);
3237 gcc_assert (update_ssa_initialized_fn == cfun);
3239 blocks_with_phis_to_rewrite = BITMAP_ALLOC (NULL);
3240 if (!phis_to_rewrite)
3241 phis_to_rewrite = VEC_alloc (gimple_vec, heap, last_basic_block);
3242 blocks_to_update = BITMAP_ALLOC (NULL);
3244 /* Ensure that the dominance information is up-to-date. */
3245 calculate_dominance_info (CDI_DOMINATORS);
3247 /* Only one update flag should be set. */
3248 gcc_assert (update_flags == TODO_update_ssa
3249 || update_flags == TODO_update_ssa_no_phi
3250 || update_flags == TODO_update_ssa_full_phi
3251 || update_flags == TODO_update_ssa_only_virtuals);
3253 /* If we only need to update virtuals, remove all the mappings for
3254 real names before proceeding. The caller is responsible for
3255 having dealt with the name mappings before calling update_ssa. */
3256 if (update_flags == TODO_update_ssa_only_virtuals)
3258 sbitmap_zero (old_ssa_names);
3259 sbitmap_zero (new_ssa_names);
3260 htab_empty (repl_tbl);
3263 insert_phi_p = (update_flags != TODO_update_ssa_no_phi);
3265 if (insert_phi_p)
3267 /* If the caller requested PHI nodes to be added, initialize
3268 live-in information data structures (DEF_BLOCKS). */
3270 /* For each SSA name N, the DEF_BLOCKS table describes where the
3271 name is defined, which blocks have PHI nodes for N, and which
3272 blocks have uses of N (i.e., N is live-on-entry in those
3273 blocks). */
3274 def_blocks = htab_create (num_ssa_names, def_blocks_hash,
3275 def_blocks_eq, def_blocks_free);
3277 else
3279 def_blocks = NULL;
3282 /* Heuristic to avoid massive slow downs when the replacement
3283 mappings include lots of virtual names. */
3284 if (insert_phi_p && switch_virtuals_to_full_rewrite_p ())
3285 switch_virtuals_to_full_rewrite ();
3287 /* If there are names defined in the replacement table, prepare
3288 definition and use sites for all the names in NEW_SSA_NAMES and
3289 OLD_SSA_NAMES. */
3290 if (sbitmap_first_set_bit (new_ssa_names) >= 0)
3292 prepare_names_to_update (insert_phi_p);
3294 /* If all the names in NEW_SSA_NAMES had been marked for
3295 removal, and there are no symbols to rename, then there's
3296 nothing else to do. */
3297 if (sbitmap_first_set_bit (new_ssa_names) < 0
3298 && bitmap_empty_p (SYMS_TO_RENAME (cfun)))
3299 goto done;
3302 /* Next, determine the block at which to start the renaming process. */
3303 if (!bitmap_empty_p (SYMS_TO_RENAME (cfun)))
3305 /* If we have to rename some symbols from scratch, we need to
3306 start the process at the root of the CFG. FIXME, it should
3307 be possible to determine the nearest block that had a
3308 definition for each of the symbols that are marked for
3309 updating. For now this seems more work than it's worth. */
3310 start_bb = ENTRY_BLOCK_PTR;
3312 /* Traverse the CFG looking for existing definitions and uses of
3313 symbols in SYMS_TO_RENAME. Mark interesting blocks and
3314 statements and set local live-in information for the PHI
3315 placement heuristics. */
3316 prepare_block_for_update (start_bb, insert_phi_p);
3318 else
3320 /* Otherwise, the entry block to the region is the nearest
3321 common dominator for the blocks in BLOCKS. */
3322 start_bb = nearest_common_dominator_for_set (CDI_DOMINATORS,
3323 blocks_to_update);
3326 /* If requested, insert PHI nodes at the iterated dominance frontier
3327 of every block, creating new definitions for names in OLD_SSA_NAMES
3328 and for symbols in SYMS_TO_RENAME. */
3329 if (insert_phi_p)
3331 bitmap_head *dfs;
3333 /* If the caller requested PHI nodes to be added, compute
3334 dominance frontiers. */
3335 dfs = XNEWVEC (bitmap_head, last_basic_block);
3336 FOR_EACH_BB (bb)
3337 bitmap_initialize (&dfs[bb->index], &bitmap_default_obstack);
3338 compute_dominance_frontiers (dfs);
3340 if (sbitmap_first_set_bit (old_ssa_names) >= 0)
3342 sbitmap_iterator sbi;
3344 /* insert_update_phi_nodes_for will call add_new_name_mapping
3345 when inserting new PHI nodes, so the set OLD_SSA_NAMES
3346 will grow while we are traversing it (but it will not
3347 gain any new members). Copy OLD_SSA_NAMES to a temporary
3348 for traversal. */
3349 sbitmap tmp = sbitmap_alloc (old_ssa_names->n_bits);
3350 sbitmap_copy (tmp, old_ssa_names);
3351 EXECUTE_IF_SET_IN_SBITMAP (tmp, 0, i, sbi)
3352 insert_updated_phi_nodes_for (ssa_name (i), dfs, blocks_to_update,
3353 update_flags);
3354 sbitmap_free (tmp);
3357 EXECUTE_IF_SET_IN_BITMAP (SYMS_TO_RENAME (cfun), 0, i, bi)
3358 insert_updated_phi_nodes_for (referenced_var (i), dfs, blocks_to_update,
3359 update_flags);
3361 FOR_EACH_BB (bb)
3362 bitmap_clear (&dfs[bb->index]);
3363 free (dfs);
3365 /* Insertion of PHI nodes may have added blocks to the region.
3366 We need to re-compute START_BB to include the newly added
3367 blocks. */
3368 if (start_bb != ENTRY_BLOCK_PTR)
3369 start_bb = nearest_common_dominator_for_set (CDI_DOMINATORS,
3370 blocks_to_update);
3373 /* Reset the current definition for name and symbol before renaming
3374 the sub-graph. */
3375 EXECUTE_IF_SET_IN_SBITMAP (old_ssa_names, 0, i, sbi)
3376 set_current_def (ssa_name (i), NULL_TREE);
3378 EXECUTE_IF_SET_IN_BITMAP (SYMS_TO_RENAME (cfun), 0, i, bi)
3379 set_current_def (referenced_var (i), NULL_TREE);
3381 /* Now start the renaming process at START_BB. */
3382 interesting_blocks = sbitmap_alloc (last_basic_block);
3383 sbitmap_zero (interesting_blocks);
3384 EXECUTE_IF_SET_IN_BITMAP (blocks_to_update, 0, i, bi)
3385 SET_BIT (interesting_blocks, i);
3387 rewrite_blocks (start_bb, REWRITE_UPDATE);
3389 sbitmap_free (interesting_blocks);
3391 /* Debugging dumps. */
3392 if (dump_file)
3394 int c;
3395 unsigned i;
3397 dump_update_ssa (dump_file);
3399 fprintf (dump_file, "Incremental SSA update started at block: %d\n\n",
3400 start_bb->index);
3402 c = 0;
3403 EXECUTE_IF_SET_IN_BITMAP (blocks_to_update, 0, i, bi)
3404 c++;
3405 fprintf (dump_file, "Number of blocks in CFG: %d\n", last_basic_block);
3406 fprintf (dump_file, "Number of blocks to update: %d (%3.0f%%)\n\n",
3407 c, PERCENT (c, last_basic_block));
3409 if (dump_flags & TDF_DETAILS)
3411 fprintf (dump_file, "Affected blocks: ");
3412 EXECUTE_IF_SET_IN_BITMAP (blocks_to_update, 0, i, bi)
3413 fprintf (dump_file, "%u ", i);
3414 fprintf (dump_file, "\n");
3417 fprintf (dump_file, "\n\n");
3420 /* Free allocated memory. */
3421 done:
3422 delete_update_ssa ();
3424 timevar_pop (TV_TREE_SSA_INCREMENTAL);