2010-07-27 Paolo Carlini <paolo.carlini@oracle.com>
[official-gcc/alias-decl.git] / gcc / tree-complex.c
blob49165713725ba2d17286d7f5dec1e386b23d2878
1 /* Lower complex number operations to scalar operations.
2 Copyright (C) 2004, 2005, 2006, 2007, 2008, 2009, 2010
3 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published by the
9 Free Software Foundation; either version 3, or (at your option) any
10 later version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "tree.h"
26 #include "flags.h"
27 #include "tree-flow.h"
28 #include "gimple.h"
29 #include "tree-iterator.h"
30 #include "tree-pass.h"
31 #include "tree-ssa-propagate.h"
34 /* For each complex ssa name, a lattice value. We're interested in finding
35 out whether a complex number is degenerate in some way, having only real
36 or only complex parts. */
38 enum
40 UNINITIALIZED = 0,
41 ONLY_REAL = 1,
42 ONLY_IMAG = 2,
43 VARYING = 3
46 /* The type complex_lattice_t holds combinations of the above
47 constants. */
48 typedef int complex_lattice_t;
50 #define PAIR(a, b) ((a) << 2 | (b))
52 DEF_VEC_I(complex_lattice_t);
53 DEF_VEC_ALLOC_I(complex_lattice_t, heap);
55 static VEC(complex_lattice_t, heap) *complex_lattice_values;
57 /* For each complex variable, a pair of variables for the components exists in
58 the hashtable. */
59 static htab_t complex_variable_components;
61 /* For each complex SSA_NAME, a pair of ssa names for the components. */
62 static VEC(tree, heap) *complex_ssa_name_components;
64 /* Lookup UID in the complex_variable_components hashtable and return the
65 associated tree. */
66 static tree
67 cvc_lookup (unsigned int uid)
69 struct int_tree_map *h, in;
70 in.uid = uid;
71 h = (struct int_tree_map *) htab_find_with_hash (complex_variable_components, &in, uid);
72 return h ? h->to : NULL;
75 /* Insert the pair UID, TO into the complex_variable_components hashtable. */
77 static void
78 cvc_insert (unsigned int uid, tree to)
80 struct int_tree_map *h;
81 void **loc;
83 h = XNEW (struct int_tree_map);
84 h->uid = uid;
85 h->to = to;
86 loc = htab_find_slot_with_hash (complex_variable_components, h,
87 uid, INSERT);
88 *(struct int_tree_map **) loc = h;
91 /* Return true if T is not a zero constant. In the case of real values,
92 we're only interested in +0.0. */
94 static int
95 some_nonzerop (tree t)
97 int zerop = false;
99 /* Operations with real or imaginary part of a complex number zero
100 cannot be treated the same as operations with a real or imaginary
101 operand if we care about the signs of zeros in the result. */
102 if (TREE_CODE (t) == REAL_CST && !flag_signed_zeros)
103 zerop = REAL_VALUES_IDENTICAL (TREE_REAL_CST (t), dconst0);
104 else if (TREE_CODE (t) == FIXED_CST)
105 zerop = fixed_zerop (t);
106 else if (TREE_CODE (t) == INTEGER_CST)
107 zerop = integer_zerop (t);
109 return !zerop;
113 /* Compute a lattice value from the components of a complex type REAL
114 and IMAG. */
116 static complex_lattice_t
117 find_lattice_value_parts (tree real, tree imag)
119 int r, i;
120 complex_lattice_t ret;
122 r = some_nonzerop (real);
123 i = some_nonzerop (imag);
124 ret = r * ONLY_REAL + i * ONLY_IMAG;
126 /* ??? On occasion we could do better than mapping 0+0i to real, but we
127 certainly don't want to leave it UNINITIALIZED, which eventually gets
128 mapped to VARYING. */
129 if (ret == UNINITIALIZED)
130 ret = ONLY_REAL;
132 return ret;
136 /* Compute a lattice value from gimple_val T. */
138 static complex_lattice_t
139 find_lattice_value (tree t)
141 tree real, imag;
143 switch (TREE_CODE (t))
145 case SSA_NAME:
146 return VEC_index (complex_lattice_t, complex_lattice_values,
147 SSA_NAME_VERSION (t));
149 case COMPLEX_CST:
150 real = TREE_REALPART (t);
151 imag = TREE_IMAGPART (t);
152 break;
154 default:
155 gcc_unreachable ();
158 return find_lattice_value_parts (real, imag);
161 /* Determine if LHS is something for which we're interested in seeing
162 simulation results. */
164 static bool
165 is_complex_reg (tree lhs)
167 return TREE_CODE (TREE_TYPE (lhs)) == COMPLEX_TYPE && is_gimple_reg (lhs);
170 /* Mark the incoming parameters to the function as VARYING. */
172 static void
173 init_parameter_lattice_values (void)
175 tree parm, ssa_name;
177 for (parm = DECL_ARGUMENTS (cfun->decl); parm ; parm = DECL_CHAIN (parm))
178 if (is_complex_reg (parm)
179 && var_ann (parm) != NULL
180 && (ssa_name = gimple_default_def (cfun, parm)) != NULL_TREE)
181 VEC_replace (complex_lattice_t, complex_lattice_values,
182 SSA_NAME_VERSION (ssa_name), VARYING);
185 /* Initialize simulation state for each statement. Return false if we
186 found no statements we want to simulate, and thus there's nothing
187 for the entire pass to do. */
189 static bool
190 init_dont_simulate_again (void)
192 basic_block bb;
193 gimple_stmt_iterator gsi;
194 gimple phi;
195 bool saw_a_complex_op = false;
197 FOR_EACH_BB (bb)
199 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
201 phi = gsi_stmt (gsi);
202 prop_set_simulate_again (phi,
203 is_complex_reg (gimple_phi_result (phi)));
206 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
208 gimple stmt;
209 tree op0, op1;
210 bool sim_again_p;
212 stmt = gsi_stmt (gsi);
213 op0 = op1 = NULL_TREE;
215 /* Most control-altering statements must be initially
216 simulated, else we won't cover the entire cfg. */
217 sim_again_p = stmt_ends_bb_p (stmt);
219 switch (gimple_code (stmt))
221 case GIMPLE_CALL:
222 if (gimple_call_lhs (stmt))
223 sim_again_p = is_complex_reg (gimple_call_lhs (stmt));
224 break;
226 case GIMPLE_ASSIGN:
227 sim_again_p = is_complex_reg (gimple_assign_lhs (stmt));
228 if (gimple_assign_rhs_code (stmt) == REALPART_EXPR
229 || gimple_assign_rhs_code (stmt) == IMAGPART_EXPR)
230 op0 = TREE_OPERAND (gimple_assign_rhs1 (stmt), 0);
231 else
232 op0 = gimple_assign_rhs1 (stmt);
233 if (gimple_num_ops (stmt) > 2)
234 op1 = gimple_assign_rhs2 (stmt);
235 break;
237 case GIMPLE_COND:
238 op0 = gimple_cond_lhs (stmt);
239 op1 = gimple_cond_rhs (stmt);
240 break;
242 default:
243 break;
246 if (op0 || op1)
247 switch (gimple_expr_code (stmt))
249 case EQ_EXPR:
250 case NE_EXPR:
251 case PLUS_EXPR:
252 case MINUS_EXPR:
253 case MULT_EXPR:
254 case TRUNC_DIV_EXPR:
255 case CEIL_DIV_EXPR:
256 case FLOOR_DIV_EXPR:
257 case ROUND_DIV_EXPR:
258 case RDIV_EXPR:
259 if (TREE_CODE (TREE_TYPE (op0)) == COMPLEX_TYPE
260 || TREE_CODE (TREE_TYPE (op1)) == COMPLEX_TYPE)
261 saw_a_complex_op = true;
262 break;
264 case NEGATE_EXPR:
265 case CONJ_EXPR:
266 if (TREE_CODE (TREE_TYPE (op0)) == COMPLEX_TYPE)
267 saw_a_complex_op = true;
268 break;
270 case REALPART_EXPR:
271 case IMAGPART_EXPR:
272 /* The total store transformation performed during
273 gimplification creates such uninitialized loads
274 and we need to lower the statement to be able
275 to fix things up. */
276 if (TREE_CODE (op0) == SSA_NAME
277 && ssa_undefined_value_p (op0))
278 saw_a_complex_op = true;
279 break;
281 default:
282 break;
285 prop_set_simulate_again (stmt, sim_again_p);
289 return saw_a_complex_op;
293 /* Evaluate statement STMT against the complex lattice defined above. */
295 static enum ssa_prop_result
296 complex_visit_stmt (gimple stmt, edge *taken_edge_p ATTRIBUTE_UNUSED,
297 tree *result_p)
299 complex_lattice_t new_l, old_l, op1_l, op2_l;
300 unsigned int ver;
301 tree lhs;
303 lhs = gimple_get_lhs (stmt);
304 /* Skip anything but GIMPLE_ASSIGN and GIMPLE_CALL with a lhs. */
305 if (!lhs)
306 return SSA_PROP_VARYING;
308 /* These conditions should be satisfied due to the initial filter
309 set up in init_dont_simulate_again. */
310 gcc_assert (TREE_CODE (lhs) == SSA_NAME);
311 gcc_assert (TREE_CODE (TREE_TYPE (lhs)) == COMPLEX_TYPE);
313 *result_p = lhs;
314 ver = SSA_NAME_VERSION (lhs);
315 old_l = VEC_index (complex_lattice_t, complex_lattice_values, ver);
317 switch (gimple_expr_code (stmt))
319 case SSA_NAME:
320 case COMPLEX_CST:
321 new_l = find_lattice_value (gimple_assign_rhs1 (stmt));
322 break;
324 case COMPLEX_EXPR:
325 new_l = find_lattice_value_parts (gimple_assign_rhs1 (stmt),
326 gimple_assign_rhs2 (stmt));
327 break;
329 case PLUS_EXPR:
330 case MINUS_EXPR:
331 op1_l = find_lattice_value (gimple_assign_rhs1 (stmt));
332 op2_l = find_lattice_value (gimple_assign_rhs2 (stmt));
334 /* We've set up the lattice values such that IOR neatly
335 models addition. */
336 new_l = op1_l | op2_l;
337 break;
339 case MULT_EXPR:
340 case RDIV_EXPR:
341 case TRUNC_DIV_EXPR:
342 case CEIL_DIV_EXPR:
343 case FLOOR_DIV_EXPR:
344 case ROUND_DIV_EXPR:
345 op1_l = find_lattice_value (gimple_assign_rhs1 (stmt));
346 op2_l = find_lattice_value (gimple_assign_rhs2 (stmt));
348 /* Obviously, if either varies, so does the result. */
349 if (op1_l == VARYING || op2_l == VARYING)
350 new_l = VARYING;
351 /* Don't prematurely promote variables if we've not yet seen
352 their inputs. */
353 else if (op1_l == UNINITIALIZED)
354 new_l = op2_l;
355 else if (op2_l == UNINITIALIZED)
356 new_l = op1_l;
357 else
359 /* At this point both numbers have only one component. If the
360 numbers are of opposite kind, the result is imaginary,
361 otherwise the result is real. The add/subtract translates
362 the real/imag from/to 0/1; the ^ performs the comparison. */
363 new_l = ((op1_l - ONLY_REAL) ^ (op2_l - ONLY_REAL)) + ONLY_REAL;
365 /* Don't allow the lattice value to flip-flop indefinitely. */
366 new_l |= old_l;
368 break;
370 case NEGATE_EXPR:
371 case CONJ_EXPR:
372 new_l = find_lattice_value (gimple_assign_rhs1 (stmt));
373 break;
375 default:
376 new_l = VARYING;
377 break;
380 /* If nothing changed this round, let the propagator know. */
381 if (new_l == old_l)
382 return SSA_PROP_NOT_INTERESTING;
384 VEC_replace (complex_lattice_t, complex_lattice_values, ver, new_l);
385 return new_l == VARYING ? SSA_PROP_VARYING : SSA_PROP_INTERESTING;
388 /* Evaluate a PHI node against the complex lattice defined above. */
390 static enum ssa_prop_result
391 complex_visit_phi (gimple phi)
393 complex_lattice_t new_l, old_l;
394 unsigned int ver;
395 tree lhs;
396 int i;
398 lhs = gimple_phi_result (phi);
400 /* This condition should be satisfied due to the initial filter
401 set up in init_dont_simulate_again. */
402 gcc_assert (TREE_CODE (TREE_TYPE (lhs)) == COMPLEX_TYPE);
404 /* We've set up the lattice values such that IOR neatly models PHI meet. */
405 new_l = UNINITIALIZED;
406 for (i = gimple_phi_num_args (phi) - 1; i >= 0; --i)
407 new_l |= find_lattice_value (gimple_phi_arg_def (phi, i));
409 ver = SSA_NAME_VERSION (lhs);
410 old_l = VEC_index (complex_lattice_t, complex_lattice_values, ver);
412 if (new_l == old_l)
413 return SSA_PROP_NOT_INTERESTING;
415 VEC_replace (complex_lattice_t, complex_lattice_values, ver, new_l);
416 return new_l == VARYING ? SSA_PROP_VARYING : SSA_PROP_INTERESTING;
419 /* Create one backing variable for a complex component of ORIG. */
421 static tree
422 create_one_component_var (tree type, tree orig, const char *prefix,
423 const char *suffix, enum tree_code code)
425 tree r = create_tmp_var (type, prefix);
426 add_referenced_var (r);
428 DECL_SOURCE_LOCATION (r) = DECL_SOURCE_LOCATION (orig);
429 DECL_ARTIFICIAL (r) = 1;
431 if (DECL_NAME (orig) && !DECL_IGNORED_P (orig))
433 const char *name = IDENTIFIER_POINTER (DECL_NAME (orig));
435 DECL_NAME (r) = get_identifier (ACONCAT ((name, suffix, NULL)));
437 SET_DECL_DEBUG_EXPR (r, build1 (code, type, orig));
438 DECL_DEBUG_EXPR_IS_FROM (r) = 1;
439 DECL_IGNORED_P (r) = 0;
440 TREE_NO_WARNING (r) = TREE_NO_WARNING (orig);
442 else
444 DECL_IGNORED_P (r) = 1;
445 TREE_NO_WARNING (r) = 1;
448 return r;
451 /* Retrieve a value for a complex component of VAR. */
453 static tree
454 get_component_var (tree var, bool imag_p)
456 size_t decl_index = DECL_UID (var) * 2 + imag_p;
457 tree ret = cvc_lookup (decl_index);
459 if (ret == NULL)
461 ret = create_one_component_var (TREE_TYPE (TREE_TYPE (var)), var,
462 imag_p ? "CI" : "CR",
463 imag_p ? "$imag" : "$real",
464 imag_p ? IMAGPART_EXPR : REALPART_EXPR);
465 cvc_insert (decl_index, ret);
468 return ret;
471 /* Retrieve a value for a complex component of SSA_NAME. */
473 static tree
474 get_component_ssa_name (tree ssa_name, bool imag_p)
476 complex_lattice_t lattice = find_lattice_value (ssa_name);
477 size_t ssa_name_index;
478 tree ret;
480 if (lattice == (imag_p ? ONLY_REAL : ONLY_IMAG))
482 tree inner_type = TREE_TYPE (TREE_TYPE (ssa_name));
483 if (SCALAR_FLOAT_TYPE_P (inner_type))
484 return build_real (inner_type, dconst0);
485 else
486 return build_int_cst (inner_type, 0);
489 ssa_name_index = SSA_NAME_VERSION (ssa_name) * 2 + imag_p;
490 ret = VEC_index (tree, complex_ssa_name_components, ssa_name_index);
491 if (ret == NULL)
493 ret = get_component_var (SSA_NAME_VAR (ssa_name), imag_p);
494 ret = make_ssa_name (ret, NULL);
496 /* Copy some properties from the original. In particular, whether it
497 is used in an abnormal phi, and whether it's uninitialized. */
498 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (ret)
499 = SSA_NAME_OCCURS_IN_ABNORMAL_PHI (ssa_name);
500 if (TREE_CODE (SSA_NAME_VAR (ssa_name)) == VAR_DECL
501 && gimple_nop_p (SSA_NAME_DEF_STMT (ssa_name)))
503 SSA_NAME_DEF_STMT (ret) = SSA_NAME_DEF_STMT (ssa_name);
504 set_default_def (SSA_NAME_VAR (ret), ret);
507 VEC_replace (tree, complex_ssa_name_components, ssa_name_index, ret);
510 return ret;
513 /* Set a value for a complex component of SSA_NAME, return a
514 gimple_seq of stuff that needs doing. */
516 static gimple_seq
517 set_component_ssa_name (tree ssa_name, bool imag_p, tree value)
519 complex_lattice_t lattice = find_lattice_value (ssa_name);
520 size_t ssa_name_index;
521 tree comp;
522 gimple last;
523 gimple_seq list;
525 /* We know the value must be zero, else there's a bug in our lattice
526 analysis. But the value may well be a variable known to contain
527 zero. We should be safe ignoring it. */
528 if (lattice == (imag_p ? ONLY_REAL : ONLY_IMAG))
529 return NULL;
531 /* If we've already assigned an SSA_NAME to this component, then this
532 means that our walk of the basic blocks found a use before the set.
533 This is fine. Now we should create an initialization for the value
534 we created earlier. */
535 ssa_name_index = SSA_NAME_VERSION (ssa_name) * 2 + imag_p;
536 comp = VEC_index (tree, complex_ssa_name_components, ssa_name_index);
537 if (comp)
540 /* If we've nothing assigned, and the value we're given is already stable,
541 then install that as the value for this SSA_NAME. This preemptively
542 copy-propagates the value, which avoids unnecessary memory allocation. */
543 else if (is_gimple_min_invariant (value)
544 && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (ssa_name))
546 VEC_replace (tree, complex_ssa_name_components, ssa_name_index, value);
547 return NULL;
549 else if (TREE_CODE (value) == SSA_NAME
550 && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (ssa_name))
552 /* Replace an anonymous base value with the variable from cvc_lookup.
553 This should result in better debug info. */
554 if (DECL_IGNORED_P (SSA_NAME_VAR (value))
555 && !DECL_IGNORED_P (SSA_NAME_VAR (ssa_name)))
557 comp = get_component_var (SSA_NAME_VAR (ssa_name), imag_p);
558 replace_ssa_name_symbol (value, comp);
561 VEC_replace (tree, complex_ssa_name_components, ssa_name_index, value);
562 return NULL;
565 /* Finally, we need to stabilize the result by installing the value into
566 a new ssa name. */
567 else
568 comp = get_component_ssa_name (ssa_name, imag_p);
570 /* Do all the work to assign VALUE to COMP. */
571 list = NULL;
572 value = force_gimple_operand (value, &list, false, NULL);
573 last = gimple_build_assign (comp, value);
574 gimple_seq_add_stmt (&list, last);
575 gcc_assert (SSA_NAME_DEF_STMT (comp) == last);
577 return list;
580 /* Extract the real or imaginary part of a complex variable or constant.
581 Make sure that it's a proper gimple_val and gimplify it if not.
582 Emit any new code before gsi. */
584 static tree
585 extract_component (gimple_stmt_iterator *gsi, tree t, bool imagpart_p,
586 bool gimple_p)
588 switch (TREE_CODE (t))
590 case COMPLEX_CST:
591 return imagpart_p ? TREE_IMAGPART (t) : TREE_REALPART (t);
593 case COMPLEX_EXPR:
594 gcc_unreachable ();
596 case VAR_DECL:
597 case RESULT_DECL:
598 case PARM_DECL:
599 case COMPONENT_REF:
600 case ARRAY_REF:
601 case VIEW_CONVERT_EXPR:
602 case MEM_REF:
604 tree inner_type = TREE_TYPE (TREE_TYPE (t));
606 t = build1 ((imagpart_p ? IMAGPART_EXPR : REALPART_EXPR),
607 inner_type, unshare_expr (t));
609 if (gimple_p)
610 t = force_gimple_operand_gsi (gsi, t, true, NULL, true,
611 GSI_SAME_STMT);
613 return t;
616 case SSA_NAME:
617 return get_component_ssa_name (t, imagpart_p);
619 default:
620 gcc_unreachable ();
624 /* Update the complex components of the ssa name on the lhs of STMT. */
626 static void
627 update_complex_components (gimple_stmt_iterator *gsi, gimple stmt, tree r,
628 tree i)
630 tree lhs;
631 gimple_seq list;
633 lhs = gimple_get_lhs (stmt);
635 list = set_component_ssa_name (lhs, false, r);
636 if (list)
637 gsi_insert_seq_after (gsi, list, GSI_CONTINUE_LINKING);
639 list = set_component_ssa_name (lhs, true, i);
640 if (list)
641 gsi_insert_seq_after (gsi, list, GSI_CONTINUE_LINKING);
644 static void
645 update_complex_components_on_edge (edge e, tree lhs, tree r, tree i)
647 gimple_seq list;
649 list = set_component_ssa_name (lhs, false, r);
650 if (list)
651 gsi_insert_seq_on_edge (e, list);
653 list = set_component_ssa_name (lhs, true, i);
654 if (list)
655 gsi_insert_seq_on_edge (e, list);
659 /* Update an assignment to a complex variable in place. */
661 static void
662 update_complex_assignment (gimple_stmt_iterator *gsi, tree r, tree i)
664 gimple_stmt_iterator orig_si = *gsi;
666 if (gimple_in_ssa_p (cfun))
667 update_complex_components (gsi, gsi_stmt (*gsi), r, i);
669 gimple_assign_set_rhs_with_ops (&orig_si, COMPLEX_EXPR, r, i);
670 update_stmt (gsi_stmt (orig_si));
674 /* Generate code at the entry point of the function to initialize the
675 component variables for a complex parameter. */
677 static void
678 update_parameter_components (void)
680 edge entry_edge = single_succ_edge (ENTRY_BLOCK_PTR);
681 tree parm;
683 for (parm = DECL_ARGUMENTS (cfun->decl); parm ; parm = DECL_CHAIN (parm))
685 tree type = TREE_TYPE (parm);
686 tree ssa_name, r, i;
688 if (TREE_CODE (type) != COMPLEX_TYPE || !is_gimple_reg (parm))
689 continue;
691 type = TREE_TYPE (type);
692 ssa_name = gimple_default_def (cfun, parm);
693 if (!ssa_name)
694 continue;
696 r = build1 (REALPART_EXPR, type, ssa_name);
697 i = build1 (IMAGPART_EXPR, type, ssa_name);
698 update_complex_components_on_edge (entry_edge, ssa_name, r, i);
702 /* Generate code to set the component variables of a complex variable
703 to match the PHI statements in block BB. */
705 static void
706 update_phi_components (basic_block bb)
708 gimple_stmt_iterator gsi;
710 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
712 gimple phi = gsi_stmt (gsi);
714 if (is_complex_reg (gimple_phi_result (phi)))
716 tree lr, li;
717 gimple pr = NULL, pi = NULL;
718 unsigned int i, n;
720 lr = get_component_ssa_name (gimple_phi_result (phi), false);
721 if (TREE_CODE (lr) == SSA_NAME)
723 pr = create_phi_node (lr, bb);
724 SSA_NAME_DEF_STMT (lr) = pr;
727 li = get_component_ssa_name (gimple_phi_result (phi), true);
728 if (TREE_CODE (li) == SSA_NAME)
730 pi = create_phi_node (li, bb);
731 SSA_NAME_DEF_STMT (li) = pi;
734 for (i = 0, n = gimple_phi_num_args (phi); i < n; ++i)
736 tree comp, arg = gimple_phi_arg_def (phi, i);
737 if (pr)
739 comp = extract_component (NULL, arg, false, false);
740 SET_PHI_ARG_DEF (pr, i, comp);
742 if (pi)
744 comp = extract_component (NULL, arg, true, false);
745 SET_PHI_ARG_DEF (pi, i, comp);
752 /* Expand a complex move to scalars. */
754 static void
755 expand_complex_move (gimple_stmt_iterator *gsi, tree type)
757 tree inner_type = TREE_TYPE (type);
758 tree r, i, lhs, rhs;
759 gimple stmt = gsi_stmt (*gsi);
761 if (is_gimple_assign (stmt))
763 lhs = gimple_assign_lhs (stmt);
764 if (gimple_num_ops (stmt) == 2)
765 rhs = gimple_assign_rhs1 (stmt);
766 else
767 rhs = NULL_TREE;
769 else if (is_gimple_call (stmt))
771 lhs = gimple_call_lhs (stmt);
772 rhs = NULL_TREE;
774 else
775 gcc_unreachable ();
777 if (TREE_CODE (lhs) == SSA_NAME)
779 if (is_ctrl_altering_stmt (stmt))
781 edge_iterator ei;
782 edge e;
784 /* The value is not assigned on the exception edges, so we need not
785 concern ourselves there. We do need to update on the fallthru
786 edge. Find it. */
787 FOR_EACH_EDGE (e, ei, gsi_bb (*gsi)->succs)
788 if (e->flags & EDGE_FALLTHRU)
789 goto found_fallthru;
790 gcc_unreachable ();
791 found_fallthru:
793 r = build1 (REALPART_EXPR, inner_type, lhs);
794 i = build1 (IMAGPART_EXPR, inner_type, lhs);
795 update_complex_components_on_edge (e, lhs, r, i);
797 else if (is_gimple_call (stmt)
798 || gimple_has_side_effects (stmt)
799 || gimple_assign_rhs_code (stmt) == PAREN_EXPR)
801 r = build1 (REALPART_EXPR, inner_type, lhs);
802 i = build1 (IMAGPART_EXPR, inner_type, lhs);
803 update_complex_components (gsi, stmt, r, i);
805 else
807 if (gimple_assign_rhs_code (stmt) != COMPLEX_EXPR)
809 r = extract_component (gsi, rhs, 0, true);
810 i = extract_component (gsi, rhs, 1, true);
812 else
814 r = gimple_assign_rhs1 (stmt);
815 i = gimple_assign_rhs2 (stmt);
817 update_complex_assignment (gsi, r, i);
820 else if (rhs && TREE_CODE (rhs) == SSA_NAME && !TREE_SIDE_EFFECTS (lhs))
822 tree x;
823 gimple t;
825 r = extract_component (gsi, rhs, 0, false);
826 i = extract_component (gsi, rhs, 1, false);
828 x = build1 (REALPART_EXPR, inner_type, unshare_expr (lhs));
829 t = gimple_build_assign (x, r);
830 gsi_insert_before (gsi, t, GSI_SAME_STMT);
832 if (stmt == gsi_stmt (*gsi))
834 x = build1 (IMAGPART_EXPR, inner_type, unshare_expr (lhs));
835 gimple_assign_set_lhs (stmt, x);
836 gimple_assign_set_rhs1 (stmt, i);
838 else
840 x = build1 (IMAGPART_EXPR, inner_type, unshare_expr (lhs));
841 t = gimple_build_assign (x, i);
842 gsi_insert_before (gsi, t, GSI_SAME_STMT);
844 stmt = gsi_stmt (*gsi);
845 gcc_assert (gimple_code (stmt) == GIMPLE_RETURN);
846 gimple_return_set_retval (stmt, lhs);
849 update_stmt (stmt);
853 /* Expand complex addition to scalars:
854 a + b = (ar + br) + i(ai + bi)
855 a - b = (ar - br) + i(ai + bi)
858 static void
859 expand_complex_addition (gimple_stmt_iterator *gsi, tree inner_type,
860 tree ar, tree ai, tree br, tree bi,
861 enum tree_code code,
862 complex_lattice_t al, complex_lattice_t bl)
864 tree rr, ri;
866 switch (PAIR (al, bl))
868 case PAIR (ONLY_REAL, ONLY_REAL):
869 rr = gimplify_build2 (gsi, code, inner_type, ar, br);
870 ri = ai;
871 break;
873 case PAIR (ONLY_REAL, ONLY_IMAG):
874 rr = ar;
875 if (code == MINUS_EXPR)
876 ri = gimplify_build2 (gsi, MINUS_EXPR, inner_type, ai, bi);
877 else
878 ri = bi;
879 break;
881 case PAIR (ONLY_IMAG, ONLY_REAL):
882 if (code == MINUS_EXPR)
883 rr = gimplify_build2 (gsi, MINUS_EXPR, inner_type, ar, br);
884 else
885 rr = br;
886 ri = ai;
887 break;
889 case PAIR (ONLY_IMAG, ONLY_IMAG):
890 rr = ar;
891 ri = gimplify_build2 (gsi, code, inner_type, ai, bi);
892 break;
894 case PAIR (VARYING, ONLY_REAL):
895 rr = gimplify_build2 (gsi, code, inner_type, ar, br);
896 ri = ai;
897 break;
899 case PAIR (VARYING, ONLY_IMAG):
900 rr = ar;
901 ri = gimplify_build2 (gsi, code, inner_type, ai, bi);
902 break;
904 case PAIR (ONLY_REAL, VARYING):
905 if (code == MINUS_EXPR)
906 goto general;
907 rr = gimplify_build2 (gsi, code, inner_type, ar, br);
908 ri = bi;
909 break;
911 case PAIR (ONLY_IMAG, VARYING):
912 if (code == MINUS_EXPR)
913 goto general;
914 rr = br;
915 ri = gimplify_build2 (gsi, code, inner_type, ai, bi);
916 break;
918 case PAIR (VARYING, VARYING):
919 general:
920 rr = gimplify_build2 (gsi, code, inner_type, ar, br);
921 ri = gimplify_build2 (gsi, code, inner_type, ai, bi);
922 break;
924 default:
925 gcc_unreachable ();
928 update_complex_assignment (gsi, rr, ri);
931 /* Expand a complex multiplication or division to a libcall to the c99
932 compliant routines. */
934 static void
935 expand_complex_libcall (gimple_stmt_iterator *gsi, tree ar, tree ai,
936 tree br, tree bi, enum tree_code code)
938 enum machine_mode mode;
939 enum built_in_function bcode;
940 tree fn, type, lhs;
941 gimple old_stmt, stmt;
943 old_stmt = gsi_stmt (*gsi);
944 lhs = gimple_assign_lhs (old_stmt);
945 type = TREE_TYPE (lhs);
947 mode = TYPE_MODE (type);
948 gcc_assert (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT);
950 if (code == MULT_EXPR)
951 bcode = ((enum built_in_function)
952 (BUILT_IN_COMPLEX_MUL_MIN + mode - MIN_MODE_COMPLEX_FLOAT));
953 else if (code == RDIV_EXPR)
954 bcode = ((enum built_in_function)
955 (BUILT_IN_COMPLEX_DIV_MIN + mode - MIN_MODE_COMPLEX_FLOAT));
956 else
957 gcc_unreachable ();
958 fn = built_in_decls[bcode];
960 stmt = gimple_build_call (fn, 4, ar, ai, br, bi);
961 gimple_call_set_lhs (stmt, lhs);
962 update_stmt (stmt);
963 gsi_replace (gsi, stmt, false);
965 if (maybe_clean_or_replace_eh_stmt (old_stmt, stmt))
966 gimple_purge_dead_eh_edges (gsi_bb (*gsi));
968 if (gimple_in_ssa_p (cfun))
970 type = TREE_TYPE (type);
971 update_complex_components (gsi, stmt,
972 build1 (REALPART_EXPR, type, lhs),
973 build1 (IMAGPART_EXPR, type, lhs));
974 SSA_NAME_DEF_STMT (lhs) = stmt;
978 /* Expand complex multiplication to scalars:
979 a * b = (ar*br - ai*bi) + i(ar*bi + br*ai)
982 static void
983 expand_complex_multiplication (gimple_stmt_iterator *gsi, tree inner_type,
984 tree ar, tree ai, tree br, tree bi,
985 complex_lattice_t al, complex_lattice_t bl)
987 tree rr, ri;
989 if (al < bl)
991 complex_lattice_t tl;
992 rr = ar, ar = br, br = rr;
993 ri = ai, ai = bi, bi = ri;
994 tl = al, al = bl, bl = tl;
997 switch (PAIR (al, bl))
999 case PAIR (ONLY_REAL, ONLY_REAL):
1000 rr = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, br);
1001 ri = ai;
1002 break;
1004 case PAIR (ONLY_IMAG, ONLY_REAL):
1005 rr = ar;
1006 if (TREE_CODE (ai) == REAL_CST
1007 && REAL_VALUES_IDENTICAL (TREE_REAL_CST (ai), dconst1))
1008 ri = br;
1009 else
1010 ri = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, br);
1011 break;
1013 case PAIR (ONLY_IMAG, ONLY_IMAG):
1014 rr = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, bi);
1015 rr = gimplify_build1 (gsi, NEGATE_EXPR, inner_type, rr);
1016 ri = ar;
1017 break;
1019 case PAIR (VARYING, ONLY_REAL):
1020 rr = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, br);
1021 ri = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, br);
1022 break;
1024 case PAIR (VARYING, ONLY_IMAG):
1025 rr = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, bi);
1026 rr = gimplify_build1 (gsi, NEGATE_EXPR, inner_type, rr);
1027 ri = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, bi);
1028 break;
1030 case PAIR (VARYING, VARYING):
1031 if (flag_complex_method == 2 && SCALAR_FLOAT_TYPE_P (inner_type))
1033 expand_complex_libcall (gsi, ar, ai, br, bi, MULT_EXPR);
1034 return;
1036 else
1038 tree t1, t2, t3, t4;
1040 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, br);
1041 t2 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, bi);
1042 t3 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, bi);
1044 /* Avoid expanding redundant multiplication for the common
1045 case of squaring a complex number. */
1046 if (ar == br && ai == bi)
1047 t4 = t3;
1048 else
1049 t4 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, br);
1051 rr = gimplify_build2 (gsi, MINUS_EXPR, inner_type, t1, t2);
1052 ri = gimplify_build2 (gsi, PLUS_EXPR, inner_type, t3, t4);
1054 break;
1056 default:
1057 gcc_unreachable ();
1060 update_complex_assignment (gsi, rr, ri);
1063 /* Keep this algorithm in sync with fold-const.c:const_binop().
1065 Expand complex division to scalars, straightforward algorithm.
1066 a / b = ((ar*br + ai*bi)/t) + i((ai*br - ar*bi)/t)
1067 t = br*br + bi*bi
1070 static void
1071 expand_complex_div_straight (gimple_stmt_iterator *gsi, tree inner_type,
1072 tree ar, tree ai, tree br, tree bi,
1073 enum tree_code code)
1075 tree rr, ri, div, t1, t2, t3;
1077 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, br, br);
1078 t2 = gimplify_build2 (gsi, MULT_EXPR, inner_type, bi, bi);
1079 div = gimplify_build2 (gsi, PLUS_EXPR, inner_type, t1, t2);
1081 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, br);
1082 t2 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, bi);
1083 t3 = gimplify_build2 (gsi, PLUS_EXPR, inner_type, t1, t2);
1084 rr = gimplify_build2 (gsi, code, inner_type, t3, div);
1086 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, br);
1087 t2 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, bi);
1088 t3 = gimplify_build2 (gsi, MINUS_EXPR, inner_type, t1, t2);
1089 ri = gimplify_build2 (gsi, code, inner_type, t3, div);
1091 update_complex_assignment (gsi, rr, ri);
1094 /* Keep this algorithm in sync with fold-const.c:const_binop().
1096 Expand complex division to scalars, modified algorithm to minimize
1097 overflow with wide input ranges. */
1099 static void
1100 expand_complex_div_wide (gimple_stmt_iterator *gsi, tree inner_type,
1101 tree ar, tree ai, tree br, tree bi,
1102 enum tree_code code)
1104 tree rr, ri, ratio, div, t1, t2, tr, ti, compare;
1105 basic_block bb_cond, bb_true, bb_false, bb_join;
1106 gimple stmt;
1108 /* Examine |br| < |bi|, and branch. */
1109 t1 = gimplify_build1 (gsi, ABS_EXPR, inner_type, br);
1110 t2 = gimplify_build1 (gsi, ABS_EXPR, inner_type, bi);
1111 compare = fold_build2_loc (gimple_location (gsi_stmt (*gsi)),
1112 LT_EXPR, boolean_type_node, t1, t2);
1113 STRIP_NOPS (compare);
1115 bb_cond = bb_true = bb_false = bb_join = NULL;
1116 rr = ri = tr = ti = NULL;
1117 if (TREE_CODE (compare) != INTEGER_CST)
1119 edge e;
1120 gimple stmt;
1121 tree cond, tmp;
1123 tmp = create_tmp_var (boolean_type_node, NULL);
1124 stmt = gimple_build_assign (tmp, compare);
1125 if (gimple_in_ssa_p (cfun))
1127 tmp = make_ssa_name (tmp, stmt);
1128 gimple_assign_set_lhs (stmt, tmp);
1131 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1133 cond = fold_build2_loc (gimple_location (stmt),
1134 EQ_EXPR, boolean_type_node, tmp, boolean_true_node);
1135 stmt = gimple_build_cond_from_tree (cond, NULL_TREE, NULL_TREE);
1136 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1138 /* Split the original block, and create the TRUE and FALSE blocks. */
1139 e = split_block (gsi_bb (*gsi), stmt);
1140 bb_cond = e->src;
1141 bb_join = e->dest;
1142 bb_true = create_empty_bb (bb_cond);
1143 bb_false = create_empty_bb (bb_true);
1145 /* Wire the blocks together. */
1146 e->flags = EDGE_TRUE_VALUE;
1147 redirect_edge_succ (e, bb_true);
1148 make_edge (bb_cond, bb_false, EDGE_FALSE_VALUE);
1149 make_edge (bb_true, bb_join, EDGE_FALLTHRU);
1150 make_edge (bb_false, bb_join, EDGE_FALLTHRU);
1152 /* Update dominance info. Note that bb_join's data was
1153 updated by split_block. */
1154 if (dom_info_available_p (CDI_DOMINATORS))
1156 set_immediate_dominator (CDI_DOMINATORS, bb_true, bb_cond);
1157 set_immediate_dominator (CDI_DOMINATORS, bb_false, bb_cond);
1160 rr = make_rename_temp (inner_type, NULL);
1161 ri = make_rename_temp (inner_type, NULL);
1164 /* In the TRUE branch, we compute
1165 ratio = br/bi;
1166 div = (br * ratio) + bi;
1167 tr = (ar * ratio) + ai;
1168 ti = (ai * ratio) - ar;
1169 tr = tr / div;
1170 ti = ti / div; */
1171 if (bb_true || integer_nonzerop (compare))
1173 if (bb_true)
1175 *gsi = gsi_last_bb (bb_true);
1176 gsi_insert_after (gsi, gimple_build_nop (), GSI_NEW_STMT);
1179 ratio = gimplify_build2 (gsi, code, inner_type, br, bi);
1181 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, br, ratio);
1182 div = gimplify_build2 (gsi, PLUS_EXPR, inner_type, t1, bi);
1184 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, ratio);
1185 tr = gimplify_build2 (gsi, PLUS_EXPR, inner_type, t1, ai);
1187 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, ratio);
1188 ti = gimplify_build2 (gsi, MINUS_EXPR, inner_type, t1, ar);
1190 tr = gimplify_build2 (gsi, code, inner_type, tr, div);
1191 ti = gimplify_build2 (gsi, code, inner_type, ti, div);
1193 if (bb_true)
1195 stmt = gimple_build_assign (rr, tr);
1196 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1197 stmt = gimple_build_assign (ri, ti);
1198 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1199 gsi_remove (gsi, true);
1203 /* In the FALSE branch, we compute
1204 ratio = d/c;
1205 divisor = (d * ratio) + c;
1206 tr = (b * ratio) + a;
1207 ti = b - (a * ratio);
1208 tr = tr / div;
1209 ti = ti / div; */
1210 if (bb_false || integer_zerop (compare))
1212 if (bb_false)
1214 *gsi = gsi_last_bb (bb_false);
1215 gsi_insert_after (gsi, gimple_build_nop (), GSI_NEW_STMT);
1218 ratio = gimplify_build2 (gsi, code, inner_type, bi, br);
1220 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, bi, ratio);
1221 div = gimplify_build2 (gsi, PLUS_EXPR, inner_type, t1, br);
1223 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, ratio);
1224 tr = gimplify_build2 (gsi, PLUS_EXPR, inner_type, t1, ar);
1226 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, ratio);
1227 ti = gimplify_build2 (gsi, MINUS_EXPR, inner_type, ai, t1);
1229 tr = gimplify_build2 (gsi, code, inner_type, tr, div);
1230 ti = gimplify_build2 (gsi, code, inner_type, ti, div);
1232 if (bb_false)
1234 stmt = gimple_build_assign (rr, tr);
1235 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1236 stmt = gimple_build_assign (ri, ti);
1237 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1238 gsi_remove (gsi, true);
1242 if (bb_join)
1243 *gsi = gsi_start_bb (bb_join);
1244 else
1245 rr = tr, ri = ti;
1247 update_complex_assignment (gsi, rr, ri);
1250 /* Expand complex division to scalars. */
1252 static void
1253 expand_complex_division (gimple_stmt_iterator *gsi, tree inner_type,
1254 tree ar, tree ai, tree br, tree bi,
1255 enum tree_code code,
1256 complex_lattice_t al, complex_lattice_t bl)
1258 tree rr, ri;
1260 switch (PAIR (al, bl))
1262 case PAIR (ONLY_REAL, ONLY_REAL):
1263 rr = gimplify_build2 (gsi, code, inner_type, ar, br);
1264 ri = ai;
1265 break;
1267 case PAIR (ONLY_REAL, ONLY_IMAG):
1268 rr = ai;
1269 ri = gimplify_build2 (gsi, code, inner_type, ar, bi);
1270 ri = gimplify_build1 (gsi, NEGATE_EXPR, inner_type, ri);
1271 break;
1273 case PAIR (ONLY_IMAG, ONLY_REAL):
1274 rr = ar;
1275 ri = gimplify_build2 (gsi, code, inner_type, ai, br);
1276 break;
1278 case PAIR (ONLY_IMAG, ONLY_IMAG):
1279 rr = gimplify_build2 (gsi, code, inner_type, ai, bi);
1280 ri = ar;
1281 break;
1283 case PAIR (VARYING, ONLY_REAL):
1284 rr = gimplify_build2 (gsi, code, inner_type, ar, br);
1285 ri = gimplify_build2 (gsi, code, inner_type, ai, br);
1286 break;
1288 case PAIR (VARYING, ONLY_IMAG):
1289 rr = gimplify_build2 (gsi, code, inner_type, ai, bi);
1290 ri = gimplify_build2 (gsi, code, inner_type, ar, bi);
1291 ri = gimplify_build1 (gsi, NEGATE_EXPR, inner_type, ri);
1293 case PAIR (ONLY_REAL, VARYING):
1294 case PAIR (ONLY_IMAG, VARYING):
1295 case PAIR (VARYING, VARYING):
1296 switch (flag_complex_method)
1298 case 0:
1299 /* straightforward implementation of complex divide acceptable. */
1300 expand_complex_div_straight (gsi, inner_type, ar, ai, br, bi, code);
1301 break;
1303 case 2:
1304 if (SCALAR_FLOAT_TYPE_P (inner_type))
1306 expand_complex_libcall (gsi, ar, ai, br, bi, code);
1307 break;
1309 /* FALLTHRU */
1311 case 1:
1312 /* wide ranges of inputs must work for complex divide. */
1313 expand_complex_div_wide (gsi, inner_type, ar, ai, br, bi, code);
1314 break;
1316 default:
1317 gcc_unreachable ();
1319 return;
1321 default:
1322 gcc_unreachable ();
1325 update_complex_assignment (gsi, rr, ri);
1328 /* Expand complex negation to scalars:
1329 -a = (-ar) + i(-ai)
1332 static void
1333 expand_complex_negation (gimple_stmt_iterator *gsi, tree inner_type,
1334 tree ar, tree ai)
1336 tree rr, ri;
1338 rr = gimplify_build1 (gsi, NEGATE_EXPR, inner_type, ar);
1339 ri = gimplify_build1 (gsi, NEGATE_EXPR, inner_type, ai);
1341 update_complex_assignment (gsi, rr, ri);
1344 /* Expand complex conjugate to scalars:
1345 ~a = (ar) + i(-ai)
1348 static void
1349 expand_complex_conjugate (gimple_stmt_iterator *gsi, tree inner_type,
1350 tree ar, tree ai)
1352 tree ri;
1354 ri = gimplify_build1 (gsi, NEGATE_EXPR, inner_type, ai);
1356 update_complex_assignment (gsi, ar, ri);
1359 /* Expand complex comparison (EQ or NE only). */
1361 static void
1362 expand_complex_comparison (gimple_stmt_iterator *gsi, tree ar, tree ai,
1363 tree br, tree bi, enum tree_code code)
1365 tree cr, ci, cc, type;
1366 gimple stmt;
1368 cr = gimplify_build2 (gsi, code, boolean_type_node, ar, br);
1369 ci = gimplify_build2 (gsi, code, boolean_type_node, ai, bi);
1370 cc = gimplify_build2 (gsi,
1371 (code == EQ_EXPR ? TRUTH_AND_EXPR : TRUTH_OR_EXPR),
1372 boolean_type_node, cr, ci);
1374 stmt = gsi_stmt (*gsi);
1376 switch (gimple_code (stmt))
1378 case GIMPLE_RETURN:
1379 type = TREE_TYPE (gimple_return_retval (stmt));
1380 gimple_return_set_retval (stmt, fold_convert (type, cc));
1381 break;
1383 case GIMPLE_ASSIGN:
1384 type = TREE_TYPE (gimple_assign_lhs (stmt));
1385 gimple_assign_set_rhs_from_tree (gsi, fold_convert (type, cc));
1386 stmt = gsi_stmt (*gsi);
1387 break;
1389 case GIMPLE_COND:
1390 gimple_cond_set_code (stmt, EQ_EXPR);
1391 gimple_cond_set_lhs (stmt, cc);
1392 gimple_cond_set_rhs (stmt, boolean_true_node);
1393 break;
1395 default:
1396 gcc_unreachable ();
1399 update_stmt (stmt);
1403 /* Process one statement. If we identify a complex operation, expand it. */
1405 static void
1406 expand_complex_operations_1 (gimple_stmt_iterator *gsi)
1408 gimple stmt = gsi_stmt (*gsi);
1409 tree type, inner_type, lhs;
1410 tree ac, ar, ai, bc, br, bi;
1411 complex_lattice_t al, bl;
1412 enum tree_code code;
1414 lhs = gimple_get_lhs (stmt);
1415 if (!lhs && gimple_code (stmt) != GIMPLE_COND)
1416 return;
1418 type = TREE_TYPE (gimple_op (stmt, 0));
1419 code = gimple_expr_code (stmt);
1421 /* Initial filter for operations we handle. */
1422 switch (code)
1424 case PLUS_EXPR:
1425 case MINUS_EXPR:
1426 case MULT_EXPR:
1427 case TRUNC_DIV_EXPR:
1428 case CEIL_DIV_EXPR:
1429 case FLOOR_DIV_EXPR:
1430 case ROUND_DIV_EXPR:
1431 case RDIV_EXPR:
1432 case NEGATE_EXPR:
1433 case CONJ_EXPR:
1434 if (TREE_CODE (type) != COMPLEX_TYPE)
1435 return;
1436 inner_type = TREE_TYPE (type);
1437 break;
1439 case EQ_EXPR:
1440 case NE_EXPR:
1441 /* Note, both GIMPLE_ASSIGN and GIMPLE_COND may have an EQ_EXPR
1442 subocde, so we need to access the operands using gimple_op. */
1443 inner_type = TREE_TYPE (gimple_op (stmt, 1));
1444 if (TREE_CODE (inner_type) != COMPLEX_TYPE)
1445 return;
1446 break;
1448 default:
1450 tree rhs;
1452 /* GIMPLE_COND may also fallthru here, but we do not need to
1453 do anything with it. */
1454 if (gimple_code (stmt) == GIMPLE_COND)
1455 return;
1457 if (TREE_CODE (type) == COMPLEX_TYPE)
1458 expand_complex_move (gsi, type);
1459 else if (is_gimple_assign (stmt)
1460 && (gimple_assign_rhs_code (stmt) == REALPART_EXPR
1461 || gimple_assign_rhs_code (stmt) == IMAGPART_EXPR)
1462 && TREE_CODE (lhs) == SSA_NAME)
1464 rhs = gimple_assign_rhs1 (stmt);
1465 rhs = extract_component (gsi, TREE_OPERAND (rhs, 0),
1466 gimple_assign_rhs_code (stmt)
1467 == IMAGPART_EXPR,
1468 false);
1469 gimple_assign_set_rhs_from_tree (gsi, rhs);
1470 stmt = gsi_stmt (*gsi);
1471 update_stmt (stmt);
1474 return;
1477 /* Extract the components of the two complex values. Make sure and
1478 handle the common case of the same value used twice specially. */
1479 if (is_gimple_assign (stmt))
1481 ac = gimple_assign_rhs1 (stmt);
1482 bc = (gimple_num_ops (stmt) > 2) ? gimple_assign_rhs2 (stmt) : NULL;
1484 /* GIMPLE_CALL can not get here. */
1485 else
1487 ac = gimple_cond_lhs (stmt);
1488 bc = gimple_cond_rhs (stmt);
1491 ar = extract_component (gsi, ac, false, true);
1492 ai = extract_component (gsi, ac, true, true);
1494 if (ac == bc)
1495 br = ar, bi = ai;
1496 else if (bc)
1498 br = extract_component (gsi, bc, 0, true);
1499 bi = extract_component (gsi, bc, 1, true);
1501 else
1502 br = bi = NULL_TREE;
1504 if (gimple_in_ssa_p (cfun))
1506 al = find_lattice_value (ac);
1507 if (al == UNINITIALIZED)
1508 al = VARYING;
1510 if (TREE_CODE_CLASS (code) == tcc_unary)
1511 bl = UNINITIALIZED;
1512 else if (ac == bc)
1513 bl = al;
1514 else
1516 bl = find_lattice_value (bc);
1517 if (bl == UNINITIALIZED)
1518 bl = VARYING;
1521 else
1522 al = bl = VARYING;
1524 switch (code)
1526 case PLUS_EXPR:
1527 case MINUS_EXPR:
1528 expand_complex_addition (gsi, inner_type, ar, ai, br, bi, code, al, bl);
1529 break;
1531 case MULT_EXPR:
1532 expand_complex_multiplication (gsi, inner_type, ar, ai, br, bi, al, bl);
1533 break;
1535 case TRUNC_DIV_EXPR:
1536 case CEIL_DIV_EXPR:
1537 case FLOOR_DIV_EXPR:
1538 case ROUND_DIV_EXPR:
1539 case RDIV_EXPR:
1540 expand_complex_division (gsi, inner_type, ar, ai, br, bi, code, al, bl);
1541 break;
1543 case NEGATE_EXPR:
1544 expand_complex_negation (gsi, inner_type, ar, ai);
1545 break;
1547 case CONJ_EXPR:
1548 expand_complex_conjugate (gsi, inner_type, ar, ai);
1549 break;
1551 case EQ_EXPR:
1552 case NE_EXPR:
1553 expand_complex_comparison (gsi, ar, ai, br, bi, code);
1554 break;
1556 default:
1557 gcc_unreachable ();
1562 /* Entry point for complex operation lowering during optimization. */
1564 static unsigned int
1565 tree_lower_complex (void)
1567 int old_last_basic_block;
1568 gimple_stmt_iterator gsi;
1569 basic_block bb;
1571 if (!init_dont_simulate_again ())
1572 return 0;
1574 complex_lattice_values = VEC_alloc (complex_lattice_t, heap, num_ssa_names);
1575 VEC_safe_grow_cleared (complex_lattice_t, heap,
1576 complex_lattice_values, num_ssa_names);
1578 init_parameter_lattice_values ();
1579 ssa_propagate (complex_visit_stmt, complex_visit_phi);
1581 complex_variable_components = htab_create (10, int_tree_map_hash,
1582 int_tree_map_eq, free);
1584 complex_ssa_name_components = VEC_alloc (tree, heap, 2*num_ssa_names);
1585 VEC_safe_grow_cleared (tree, heap, complex_ssa_name_components,
1586 2 * num_ssa_names);
1588 update_parameter_components ();
1590 /* ??? Ideally we'd traverse the blocks in breadth-first order. */
1591 old_last_basic_block = last_basic_block;
1592 FOR_EACH_BB (bb)
1594 if (bb->index >= old_last_basic_block)
1595 continue;
1597 update_phi_components (bb);
1598 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1599 expand_complex_operations_1 (&gsi);
1602 gsi_commit_edge_inserts ();
1604 htab_delete (complex_variable_components);
1605 VEC_free (tree, heap, complex_ssa_name_components);
1606 VEC_free (complex_lattice_t, heap, complex_lattice_values);
1607 return 0;
1610 struct gimple_opt_pass pass_lower_complex =
1613 GIMPLE_PASS,
1614 "cplxlower", /* name */
1615 0, /* gate */
1616 tree_lower_complex, /* execute */
1617 NULL, /* sub */
1618 NULL, /* next */
1619 0, /* static_pass_number */
1620 TV_NONE, /* tv_id */
1621 PROP_ssa, /* properties_required */
1622 PROP_gimple_lcx, /* properties_provided */
1623 0, /* properties_destroyed */
1624 0, /* todo_flags_start */
1625 TODO_dump_func
1626 | TODO_ggc_collect
1627 | TODO_update_ssa
1628 | TODO_verify_stmts /* todo_flags_finish */
1633 static bool
1634 gate_no_optimization (void)
1636 /* With errors, normal optimization passes are not run. If we don't
1637 lower complex operations at all, rtl expansion will abort. */
1638 return !(cfun->curr_properties & PROP_gimple_lcx);
1641 struct gimple_opt_pass pass_lower_complex_O0 =
1644 GIMPLE_PASS,
1645 "cplxlower0", /* name */
1646 gate_no_optimization, /* gate */
1647 tree_lower_complex, /* execute */
1648 NULL, /* sub */
1649 NULL, /* next */
1650 0, /* static_pass_number */
1651 TV_NONE, /* tv_id */
1652 PROP_cfg, /* properties_required */
1653 PROP_gimple_lcx, /* properties_provided */
1654 0, /* properties_destroyed */
1655 0, /* todo_flags_start */
1656 TODO_dump_func
1657 | TODO_ggc_collect
1658 | TODO_update_ssa
1659 | TODO_verify_stmts /* todo_flags_finish */